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Abstract

We study an incompressible ideal fluid with a free surface that is subject to surface tension; it is not assumed that the fluid is
irrotational. We derive a priori estimates for smooth solutions and prove a short-time existence result. The bounds are obtained
by combining estimates of energy type with estimates of vorticity type and rely on a careful study of the regularity properties of
the pressure function. An adequate artificial coordinate system is used instead of the standard Lagrangian coordinates. Under ar
assumption on the vorticity, a solution to the Euler equations is obtained as a vanishing viscosity limit of solutions to appropriate
Navier—Stokes systems.
© 2005 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

The investigation of fluids with a free boundary has recently attracted much interest, and numerical studies
became possible on the basis of analytical results. Typically, one obtains local existence results that clarify the
well-posedness of the equations and identify the adequate function spaces to work with. This was done for the most
prominent equations describing incompressible fluids: Navier—Stokes equations, Euler equations for irrotational
flow, general Euler equations. In addition, surface tension may be included or neglected.

Depending on the equation, different techniques are used to derive a priori estimates. For the incompressible
Navier-Stokes equations with surface tension we mention [1] and [13] for fundamental contributions. Estimates
for the solutions can be based on the regularizing effect of the viscosity in this case.

For the Euler equations, no regularizing effect can be exploited in the fluid body; surface tension, if included,
has a regularizing effect on the free surface. Existence results for the irrotational Euler equations without surface
tension were achieved in [18] and [19]. For results on the irrotational motion of ideal fluids with surface tension
see [2,17].
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For the general incompressible Euler equations only partial results are available. For vanishing surface tension,
an existence result was obtained in the two-dimensional case in [8]. The three-dimensional case is studied in [4]
under a sign condition. The need for such an additional condition is known from [5]. Including surface tension,
only the two-dimensional case was treated [11].

Despite the lack of affirmative results, it seems to be a common belief that, even in three dimensions, the regu-
larizing effect of surface tension is strong enough in order to control the nonlinearities of the system (compare [4]).
This is confirmed with our Theorem 1, where a priori estimates for solutions are shown. On the other hand, there is
not known any iteration procedure which improves approximate solutions in such a way that a fixed point theorem
can be applied. In fact, in order to turn our estimates into an existence result, we can not use an iteration, but mus
approximate the equations by a Navier—Stokes system. Since our estimates are independent of the viscosity we fin
a local existence result in Theorem 2.

We have to deal with the fact that the Navier—Stokes equations with the natural free boundary conditions will in
general not produce approximate solutions to the Euler equation in regular function spaces. We therefore have tc
impose an artificial boundary condition that relates to the Euler equation. We treat here the case that the vorticity
vanishes on the boundary initially (and thus for all times), which provides a tractable condition for the Navier—
Stokes approximation. The condition of vanishing vorticity on the boundary was not needed in the two-dimensional
case studied in [11], but a smallness condition for the initial velocity was imposed there. For the analysis of related
problems see [3,9,12], and [7,14] for two-phase problems.

Methods in the proof. The fundamental inequality for solutions of the Euler equations is conservation of energy.

In the case of a positive surface tension the energy consists of kinetic energy (integral of the squared velocity)
and potential energy (proportional to the area or length of the free surface). Energy conservation follows with an
integration by parts after testing the equation with the solution. In order to find a priori estimates in spaces of
higher regularity (as they are needed for the treatment of the free boundary), it is standard to try the following: One
differentiates the equations with respect to time and multiplies with the differentiated solution. The same is done
with tangential spatial derivatives. The combination of both should give estimates of energy type for derivatives.

It turns out that this procedure does not work without further estimates in our case. Due to the nonlinearity,
the differentiation produces error terms which are of higher order than the positive terms and can therefore not
be controlled. The principal idea in this work is to combine the energy estimates with bounds based on the vor-
ticity transport equation. The latter can be used to improve velocity and pressure estimates by half a derivative.
Fundamental is the control of highest time derivatives of the pressure in Sobolev spaces of negative order.

The need for the combination of energy and vorticity estimates leads to a difficulty in finding approximate
solutions which are needed for the existence result. A discretization of the Euler equations can preserve energy
estimates, but we will in general lose the bounds that are based on the vorticity equation. Similarly, an iteration
scheme can be constructed to keep the energy bounds, but we did not succeed in keeping additionally the vorticity
bounds. Our solution to this problem consist in using the Navier—Stokes equations to construct approximate so-
lutions. The Navier—Stokes system has the same structure as the Euler equations and allows to keep the vorticit
estimates.

Equations and main results.We consider the Euler equations M space dimensiongy =2 or N = 3. We
normalize the equations to have all physical constants equal to 1. They read

v+ (-V)v+Vp=0, (1.2)

dive =0, (1.2)
in the time dependent domai2,. We assume that the free boundary is parametrized as the graph of a height

functionk. Then the kinematic boundary condition and the balance of forces (with surface tension) can be written
as
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oth —v3+ Vih - (v, v2) =0, (1.3)

V.h
Ve - <+> +p=0. (1.4)
V1+|Vih|?
We wrote here the equations for = 3. To treat both dimensions simultaneously, we writeNoe 2: x for x1, y

for xp, andV, for d,. For N = 3: x for (x1, x2), y for x3, andV, for (dy,, dx,). Later on we will often omit the
index of V,, when the operator acts on a functionmofndr. The domains2, is defined by a function(x, 7) as

2, —{(x y)|xe[0 1]per , 1<y<h(x,t)}, (1.5)
and the free boundary is
I={(x, h(x, 1) |x e [0. 1101} (1.6)

We use the flat torugo, 1 1 as horizontal domain, which means that we impose periodicity conditions on the lat-
eral boundaries. We will always write= n, for the exterior normal of2, on the free boundary,(x, h(x,1),t) =
(—=Vh(x,1),1)/v/1+ |Vh(x,1)|?. We write HV 1 for the N — 1-dimensional Hausdorff-measure, in particular,
HN-1(I;) is the length off; for N = 2, and the area of the free surfaEefor N = 3.
A very useful consequence of (1.1) is the transport equation for the voticitycurlv, in the caseV = 2 we
identify the vorticity with the scalar quantity = d,v1 — 91v2.
dw+ (v-Vio=0 for N =2,
v+ (v -Vo—(w-V)v=0 for N=3.
The important observation is that this equation admits regularity estimatesTdfe only restriction to such esti-

mates is the regularity of the normal velocity on the boundary. This connection is made precise in Proposition 3.
One obtains the (zero-order) energy estimate when testing equation (1.1) Withfind

2.7)

1
o [ 1o+ 0 =o. (L8)
o
This equation provides a pointwise (in time) estimate for the kinetic and the potential energy. In a linearized
setting, we expect (1.8) to provide bounds foe L>°(0, T; L?), h € L>(0, T; H1([0,1]V~1)). Differentiating
the equation and testing with derivatives of the solution we expect to find estimates for derivatives of the solution
in the same spaces. We call such estimhbigker order energy estimates.
In order to define a norm for the function it is necessary to transform the variable to a reference domain. We

parametrize the time dependent dom&inover the rectangl® := [0, 1]per x (—1,0) by amapX (., 1),

X(-,1):R— £, 0ne-to-one  X(x,y,1)=(x,Y(x,y,1)). (1.9)

We write S := [0, 1]per x {0} =[O, 1]perl for the pre-image of the free surface. To make a choice w# 6et)
to be the harmonic function oR with valuesi(-, ) on S, and constant value 1 on [0, 1]per x {—1}. We will

always be in the case that-, r) € H*(S, R) is small in the Lipschitz norm. In particular, the derivatiye” will
be close to 1 pointwise (compare [6], p. 346), and therefbter) : R — £2; is one-to-one.
We use the following norms for the primary variables.

voX eL®(0,T; H32(R))n-.-nwk>(0, T; H¥?(R)) n WK1>°(0, T; L3(R)), (1.10)
poXeL®0,T; H32R) n-..nwk=1>(0, T; HZ2(R)) n W (0, T; HY(R))

nwkte(o, 7; B, Y2(R)), (1.11)
heL™®(0,T; H2($)) n--.nwkt>(0, 7; HY(S)). (1.12)

For a definition ofH,:l/Z(R) see Lemma?7.
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We next state our first theorem. It provides the a priori bounds for solutions and is proved by combining the
energy estimates of Section 2 with the improved velocity and pressure estimates of Proposition 3. The statement is
loosely speaking, that the solution is as good as the initial values allow. More precisely, the norm of the solution can
be estimated by the norm of the initial values, where the appropriate norm for initial values is obtained by taking
the infimum of the time-dependent norm over all continuations of the initial values. The precise definition is given
in Assumption 5 on page 769, we abbreviate the norm of initial valu&g:°) of Assumption 5 byj|(v°, 1%y .

In the statements we u&e; = (0, c0).

Theorem 1. For k € N, k > 3, there exist) > 0 and Ty € C (R4, R,) such that the following holds. Every solution
(v, p, h) of the Euler equations with free boundgfy1)—(1.4)on (0, 7) in the function spaces dfL..10)—(1.12for
indexk + 1 with [|2(-, 0) | y2(s)nco.1cs) < n and T < To(l| (0, k%)) satisfies

ol + 1l + 1Al <C (1.13)

in the norms of(1.10)—(1.12) The positive numbef depends only ofi(v°, #%)]v .

Our second theorem provides the existence of solutions. It is proved in Section 4 via unifarjregimates
for a Navier—Stokes system.

Theorem 2. For k € N, k > 3, there exists; > 0 such that the following holds. Let®, 1% be € initial values
with ||h0||H2(S)mCo,1(S) < n and with initial vorticity curlv® vanishing on the free boundadp. Then there exist
T > 0 and a solution of the Euler equatioft.1)—(1.4)on the time interval0, T).

Moreover, the valug > 0 depends only on the norms of the initial values as given by Assuntatithe
solution is a vanishing viscosity limit of solutions of a Navier—Stokes approximation.

Remarks on the theorems. (1) On the initial data we only impose smallnesshof.e. we only demand that the
initial parametrization of the domairy is close to the identity, independent of the velo¢Ry.The bounds for the
pressure in(1.11)improve the estimates for the height function and provide bounds for

heL®(0,T; H*3()n--.nwhk=1(0, T; H*(S)) n Wh*(0, T; H*Y/2(S)). (1.14)

(3) The assumption on the initial values to G& in the existence result can be circumvented by an approximation
argument, sinc& depends only on the norms of the initial values.

The key in the proof of both theorems is the following proposition. It states that the vakiéibde the evolution
of the domain) controls the other primary variableand p. The proof exploits the vorticity equation (1.7) and is
presented in Section 3.

Proposition 3. For k € N, k > 3, there exist) > 0 andTp € C (R, Ry) such that the following holds. Lét, p, h)
be a smooth solution of the Euler equations(0n7’) with T < To([| (2, A% [[v), 12¢, ) y2s)nc0.1cs) < 7 for all
t € [0, T]. Then the velocity field and the pressurg satisfy a bound

ol + llpll < C(lIAl,

@ 1] ). (1.15)

Here the norm ob is that of (1.10) without the W**1.>-estimate. The norm qf is that of (1.11) without the
Wk _estimateC depends on the norm éfin (1.12).
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2. Growth inequalitiesfor regular energies

Our aim in this section is to derive the energy estimates for derivatives of the physical variables. They include
the desired estimates far but they do not provide sufficient regularity of the velocity. Instead(the 1)-st order
energy estimate refers to the spaces

voXeL®(0,T; HX(R))n---nWkL>(0, T; LA(R)), (2.1)

heL®(0,T; H2($))n---n Wkt (0, T; HY(S)). (2.2)
In order to control error terms we must use Proposition 3. It improves the estimatebydralf an order to those
of (1.10), and yields bounds fgras in (1.11).

When differentiating the solution we have to perform all derivatives in tangential directions to the free boundary
in space and time, either in temporal or in a horizontal direction. This way we can exploit differentiated boundary
conditions in the calculations. With the scalar fig¢ld= 9, Y o X 1 we introduce avertical material derivatives

Du(x, y,1) = dpu(x, y,1) + yu(x,y, )Y (x,y,1).

This quantity is a total time derivative afin the moving co-ordinateX in the sense that the following chain-rule
holds. The function o X has the time derivative

woX)= %(u 0 X) = @) 0 X + (Vix.pyut) 0 X - 3, X = (3u) 0 X + (dyu) 0 X8,Y = Dju o X, (2.3)
or, equivalently,

3 (o X)(x,y,1) = Deu(x, Y (x, y,1),1),
for all (x, y) € R and allt. Note that on the boundary holds the equality

Yy (x,h(x,0),1) =8, Y(x,1,0)=0;h(x, 1) = vyy/ 1+ V|2, (2.4)

We can introduce these derivatives of the solution as new variables. We define
Uy 1= Blva Pt = Btp-

We wish to emphasize at this point that we understgnand p; as new variables — at no point of this article a
subscript indicates a derivative. Instedg, v;, fi, g:, fx;, and other functions will be new variables, their name is
chosen to remind us their definition or their meaning (¢.@n error term introduced through time differentiation).

We can also introduce variables corresponding to higher derivatives in thﬁbvr,nﬁfp. Moreover, the same
idea can also be used for spatial derivatives. W&'set d,,Y o X —1, and introduce #angential derivativeas

5x,u(x, y.t) i=0qu(x,y, t) +oyulx,y, )Y (x,y,1).
Note that
Yi(x,h(x,t),t):axiY(x,l, t):axih(xvt) (25)

on the boundary. We can also introduce higher derivatives of the fdj"m 5];ip as new variables.

The goal of this section is to derive equations for the functiddsv, Df p) and (DX v, DX p). The equations
will have the same structure as the initial system. We can therefore repeat the testing procedure applied for (1.8),
just that now we will, for example, multiply the equation fﬁ{‘v with the functionﬁfv. This will provide the
high-order energy estimates of (2.1) and (2.2).

We will make use of the following observation. The testing procedure does not exactly provide the estirhates of
as in (2.2), but we will rather find estimates for weighfednorms of derivatives of, the weight being a function
of 1+ |Vh|Zasine.g. (2.7) or (2.10). Nevertheless, by the assumption in Theorem 1, the [§oynd» holds
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initially. As long ash continues to satisfy the boun® | < 25, the weighted energies are equivalent to standard
Sobolev norms and we find tHe?-type estimates. Now the energy-bounds imply iV (-, 1)|», can only grow
linearly in time, thereforéVi| < 25 remains valid on a time interval of a length determined by the initial values.
The precise argument is used in the conclusion of the theorem with estimate (2.25).

2.1. First derivatives in 2D

The vertical material derivative does not commute with standard derivatives. This is the source of the highest
order error terms. We have the commutator

(9. DyJu = 0; (3, + Y;dy)u — (3 + Y,0y)d;u = 3; Y, dyu,
and here can stand fox1, x2, y, or¢. Using the standard abbreviatigh = 9; + (v V), the equation for, = Dlv
andp, = D!p reads

D - ~
—v; = 0;D;v+ (v-V)Dsv
D it Dy ( )D;

~ D ~
D,Ev +0,Y,0yv — (Dyv - V)v+ (v- V)Y, 0yv

—DVp +8,Y,3yv — (Dyv - V)v+ (v- V)Y, dyv
= —VD;p+VY,0,p+ 80,0 — (Dyv-V)v+ (v-V)Y,dyv
= —Vp + fL.

Testing this equation with, and using

N
divy, = Zan,Byvj =: gtl
j=1

we find

1
3t§/|vt|2+/l7tvt'”Z/ftl'vt‘i‘/gtlpt- (2.6)

Qt D Qt Ql

We already see that our choice of coordinates will make it necessary to control highest time derivatives of the
pressure. Such an estimate can not be derived from the energy itself.
We next want to identify, up to error terms, the boundary integral on the left-hand side of (2.6) with the time
derivative of an energy. We calculate for the first factor
23 d

p,(x,h(x,t),t) = (5,p)(x,h(x,t),t) = dtp(x,h(x,t),t)

Vh
e ()
1+ |Vh|?

B 3 Vh Vh(Vh, 3 Vh)

o -y
1+|Vh? /T4 |VAE2

9 Vh
(2D) —v.< ‘ 3>'
V1+|Vh|?

With the notationﬁ,n =0,(n o X), or, evaluated in a point,

Din(x, hix, 1), 1) = %[(—Vh(x, 0.1)/y1+[Vhe. 0[]
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we now calculate for the second factor

v-n = Diw-n=Di(v-n)—v-Din

9 .
3 a(—> D
V1+|Vh2

B 32h 8:h(Vh, 8, Vh) a( (=Vh,1) )
VI+IVA2 [T vaR® V1+|Vh?
LB g

CVikveE

We therefore find for the integral

/ptvt‘n:/ptvt‘n\/1+|Vh|2
I; S

& Vh )( 82h 1)
= V~< +68:)/14+|Vh|2
S/ VI v \Vi+ vz

(i) e
= () v(02h+s 1+|Vh|)
3 ' !
S \V1¥ViP

1 |3ch|2 5> (Vh, ath)
= té |0 Vh|*——%
1+|Vh|2 1+|Vh|2

0;Vh
+/<’—3) -v(a},/1+|wz|2).
2
5 \W1+IVA]
For the integrand of the second integral we introduce the abbreviation
(Vh, 3 Vh)
—.
V1+|Vh|?
We can now introduce the first order energy

1 3 Vh|?
EXw, h) = /Iv,|+/ LAkl @7)
JIFIViES

and estimate (2.6) can be written as

QEL= /ft vt+/g,p,+f8t /( & Vh >.v(a,1,/1+|w|2). 2.8)

JIr i

3
el :=—§|8,Vh|2

We will see that all terms on the right-hand side can be treated as error terms. Our next aim must therefore be
to analyze the quality of the integrals on the right-hand side. To this end we use jets: Giiefuaction u =

u(x, v, 1), the symbolD*u denotes the vector of all derivativesolip to orderk. The symbob*u is used for the

jet of functionsu = u(x, ). By P(&1, ..., &) we denote the class of polynomials in the varialfies. ., &,, and

. . +1 . .
additionally in\/1 4 |VA|2™ . We inspect the error terms and find
frePD, Dy, Vp), gleP(Vv,VY), 8reP(3%h,v), eleP(d%h). (2.9)
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The calculations leading to (2.8) can be repeated for the tangential derivﬁ;iyeand 5x,.p. We exploit that the
derivative has a tangential direction when calculating

= d
(D p) (¥, h(x, 1), 1) = = p(x, h(x, 1), 1).

Introducing the energy

1 ~ 1 3, Vh|?
EL(v,h) :=§/|Dx,.v|2+—/7' 5 V| - (2.10)
2
5 ¢ V1+1|Vh]|

we find the estimate

3y, Vh
o EL =v/fxzt~vx,+/g}%ipxl /31 /( i 3> .v<5}i,/1+|w|2>. (2.11)
2

2
s J V1+|Vh?2

Here the error term;"xli, gxl, 8)} , andsl have the structure (2. 9) just as their temporal counterparts.

The sum of the two energies (three for= 3), Et1 +>,E x[, can yield bounds foh € L*(0, T; T; H3(S)) N

wl, T; H1(S)). This coincides with (2.2) fok = 0. On this basis Proposition 3 can provide boundsufor
andp. Once the error integrals can be estimated by these norms, (2.8) and (2.11) yield the desired a priori estimate

2.2. Higher derivatives in 2D

In this subsection we use an inductive procedure to calculate the equations and the estimates for higher deriva
tives. We start from the equation on level

D _~ —~~
5 Div+VDip =, (2.12)

as it was derived fok = 1 in 2.1. A further differentiation of yields the same equation fdb**1y and the
expression forf<+1

D ~ ~ PN
EDva = 8D,D*v + (v- V) D, D*v

D, 3 D¥v + 8,Y,8,D*v + D;[(v - V)D*v] — (Dyv - V) DFv + (v - V)Y,9, D¥v

— b, 2 kv 1 0,v,0,D5 — (Dv- v)D V)Y,d, Dk
= Dy, U+ 0, Y;0yDfv— (Dyv-V)Div+ (v-V)Y,0yDv

—D,VDFp + D, f¥ +8,v,0,D*v — (D,v - V)DFv + (v - V)Y,8,D*v
= —VD,D¥p + D, fF +VvY,8,DF p + 8,Y,0,D¥v — (D;v - V)DFv + (v - V)Y,8, D v
_VDf+lp+f[k+l-

(2 12)

By induction we can conclude for the structure/jf

ftk+l c 7)(1) (Ek-ﬁ-lv7 5k+1Yt, Ekvp) Vk > 1

ftk+l c fp(l,l) (l_)k+1v, 5k+lY;, l_)kvp) Vk > 3.
Here we use the following short notation for polynomiag®® is the class of all polynomials that are affine in
all entries that represent highest derivatives:? denotes polynomials that are affine in all entries that represent

highest or next to highest derivatives.
Concerning the divergence we start from the equation

div D¥v = gk. (2.13)
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Again, gf was calculated fok = 1 in the last subsection. We derive

divDf "ty = D, divDfv + ) " 9;¥,8,Dfv; = D,gf + Y 9;Y,dyDfv; =: gf L.
J J
By induction follows

gt e PO(DFVY, DFVY,)  Vk>1,
gitt e PO (DEVy, DAVY,) Yk > 3.
We now test (2.12) on levél+ 1 with D***y and find
1 [ impin 2 r o~ - ~
% /|D§<+1v| + / Df*tpDftty n= / Y Dff y + / A ) (2.14)
2 I; 2, 2

We again want to identify the boundary integral on the left-hand side as the time derivative of a positive function.
Starting from

k
(BEp) (x, hix,0),1) B —v . <ﬂ> + ok, (2.15)

NN

wherepk = pk(x, 1) is considered as a function efand:, we derive the expression fgbf‘*l as
~ d,. ~
D;‘Jrlp(x, h(x,t), t) = E[(Dfp)(x, h(x,t),t)]

215 *kvh
V1+|Vh]?

o tlvp KVh(Vh, 8, Vh
=—V< t _3[ < t ))_'_atptk

N JIFIViE®

= —V. (LW’?) + okt
V1+1VhP?
Starting induction withp! = 0 we find
okt e PO G20, 55 VR, 0kn) Yk > 1,
okt e PADGEV2n 5kVh, 3%h) Vi > 3.

We finally calculate the velocity, starting from equation

. 8k+lh
Dfv.on=——— 45k (2.16)

V14 |Vh?

on the boundary. The derivatiVig, uses only the boundary values and we calculate

. atk+lh

D*1y.n = Dy (Dkv)-n = Dy(Drv-n) — Drv- Din = at<7 + 5{‘) _ Dtv-Din
V1+ (Vi

Cha L h(Vh, 3,Vh) P (=Vh,1)
= - — + 5] —D,v-a,<—)
V1+|Vh2 A+ V]2 V1+|Vh?
8 %h k1
=L skt

1+ |Vh]2
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In the analysis of error terms introduced nysome care is required. The expressfr){iﬁ,l appears im‘f*l. This is
the only term of ordek + 2 in . We recall

St=F.9,Vh with F e P(8%h,v).

For the other contributions we find
skl _ gkst e PO (351, DFv)  Vk > 2,
skl _ gkst e PAD (31, DRv) Wk > 3.

Concerning the second entry we emphazise that the polynomial is expressed in té&ragafh(x, 1), 1).
We are now in a position to derive energy estimates-th order. We introduce the abbreviation

gt §|ak+1Vh|2 Vh-3Vh
T t

& 5
2 J1+Vh2

and note that fok > 2
+1 ¢ p0) Ghtlyy

where P?0 denotes the class of polynomials that are quadratic in the entries for highest derivatives and are
independent of entries for next to highest derivatives. Combining the above equalities we get

/ l/)\f"'lpl/)\fﬁ'lv -n= / /D\f"'lp/D\;""lv -ny/ 1+ |Vh|?

r N

ak+th 8k+2h
[l ) o e
< 1+ |Vh|? 1+|Vh|

I Vh ) k+2 k+1

=/<7 -v(a +t2p 4 skt ,/1+|Vh|2) +/pk+1(ak+2h+ak+l,/1+|Vh|2)

3 t t t t t
4 \V1+|VhP? s

1 8k+1Vh 2 3k+th
=2 im0 [ () o0
S

1+|Vh|2 1+|Vh|2

+/ k+l(ak+2h+3k+lm>

s
For the high-regularity energy

1 [ i~eq 2 1 [05Ftvn)?
E;<+l(v,h) = §/|Df€+lv| + §/t73

2 ¢ V1+|Vh]?
the estimate (2.14) reads now

~ A 3k+1Vh
3;E,k+l:/f,k+l'Df+lv+/gf+1Df+lp+/€f+l—/<t723>-V(Serl /1+|Vh|2)
2 1o 5 s V1+IVh

_/ k+l(ak+2h+8k+l /1+|Vh|2) (2.18)

S

(2.17)
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Without repeating the calculations we note that the same inequality holds for tangential derivatives. For the energy

ak+th2
EXTL (v, ) = /|Dk+1 1?4 2 f | | (2.19)

Vi+ |Vh|2
holds

~ ak+ivn
atEJ;:A:/f)éJrl,Dl;rlv_i_/ k+1Dk+1p+/ k+1 /(X—23> ~V(8§i+1 /1+|Vh|2>
o 2 3 V1+IVh|

_ / k+1<ak+2h 1okt \/m) (2.20)

s
Fork > 3 the error terms satisfy

firte pdD (DAL, Dy, DRV p),
+1 e pAY(Drvy, DFVY;),
+1 e pAD Gk 2 5Evh, ),
s gk sl e D (GhiLy Dhy),
1 ¢ pRO) (Fktlyp).
with
8L =Fi -0, Vh for F; e P(3'h,v).

2.3. Analysis of error terms

From now on we always assurke= 3. We will use the sum of all the higher energies as a total energy,
EN @) = EffY ) + -+ EXTT o + B ). (2.21)

The dots indicate that also energies of mixed derivatives (spatial and temporal) are usadependent estimate
for the energye*+1(r) yields immediately a bound for the functian

1Al Lo 0,7 HF+2(5y) + -+ I Rllwr+roo0,7: H1(5)) S C 5{391 EF(D),

where we assume thia (-, t)| .~ < 2n remains satisfied for alle [0, T]. Based on this estimate, Proposition 3
yields the estimate

||U ] X||L°°(0,T;Hk+3/2(R)) +---+ ”U ] X||W"1°°(0,T;H3/2(R)) + ||U ] X” Wk+1,00(0,T;L2(R)) < va (222)

whereC, depends only on supg 7 EX™(r). Note that theW**1.> estimate is not taken from the proposition,
but directly from the energif“. The corresponding regularity of the pressure is

||p ] X||L°°(O,T;H"'+3/2(R)) +--+ ||p o X” Wk=1.00(0,T; H2+1/2(R))

+lp o Xllwkooor;m1r) 1P 0 Xl yirroo 7. 22y S Cro (2.23)
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whereC ), depends only on sypg 1) E**t1(1). Here theW* > estimate is not taken from the proposition; instead
we use Eg. (1.1) foM p and conclude from the estimate forWe emphasize at this point that we will use in the
following only the estimate

Y2

D (poX)eL™®(0,T (R)).

The final a priori estimate follows now by using the estimates (2.22) and (2.23) in the energy growth inequalities
(2.18) and (2.20). It suffices to check that for boundeg, and#, time integrals of the right-hand side in (2.18)
are bounded by a small number f6r> 0 small.

For the two integrals

k+1, pk+1y k+1
/ Dy and / &
N

the bound is immediate; the integrands are products offivunctions with othel.*°-functions; the norms of all
factors are bounded by the energies.

The term
T
1= [ [ Dt
0%

poses a severe problem if one has only energy estimatesdiod p. Our improved estimates imply that
g o X ~ DV (vo X) € L™(0, T; HY?(R)),
andd**1(p o X) € L=(0, T; H; /*(R)), that is,

N-1
Df™'poX=Qo+ ) 0,0, with Q;eL>®(0,T; HY*(R)).
j=l

The pairing

HY?(R) x HY?(R) > (3. Q) / gdy, 0

is a bounded map. This implies thitis small for bounded energies afid> 0 small.
Other critical terms in the estimate are

T
I := //p[1<+131k+2h,
ak+1Vh
A _//< >.v(5{€+1,/1+|Vh|2).

1+|Vh|2

In the analysis of these terms we have to represent the highest order expressions as derivatives. With polynomial
P;j € P(3*~1h) we write the highest order terms pf ** asdy, ., 351 P;; (3*~1h). We calculate for the integral

I = / / 3, Oy, OF h P (3T h)9f T2
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T
=f/ 3 [0y, 0x, 0 h P (3* 1)} T1h] —// 3; [y, x, 0 h P (3 Th) Jof T1h
0s 0s

/ Oy, O hdy, [ Py (3 1h)8k+1h + / / 3 [0, 0f hdy, Pij (3" th)]of h
S 0s

T
+ / f 3 [0, 0f Py (3 ) a0 .
0s

Concerning the first integral we use thjgk, al"*lh(T)Hi2 is bounded by the energy. The other factor has a time
derivative inL>°(0, T; L?) bounded by the energy. We find

Ii < C1<1+

1/2
supEkH(r)‘ ) + CzT(l +
T

SupEk+1(r)‘m), (2.24)

with C1 andC> depending only on the initial values and> 0. Note that also the second and third integral satisfy
the bound.

For the integrall> we must exploit that the highest order terms are diverger&;’eis; a multiple ofo,Vh,
therefore the highest order terms are

T T
_ _ 1
Ié:// a,"“wp,»(a"—lh)af“ax,.w=f/ P,-(ak—lh)axi(§|at’<+lv;z|2>
0Ss 0Ss

T
, 1
—/f dy, Pi(a"—lh)szﬂvmz.

This integral again satisfies (2.24).
A critical term of lower order is generated by time derivatives @bntained ins***. Such terms read

T
// o *IVhP@*th) . VDrv.

For this integral we use the estimate for boundary valu%l’éfv expressed in (3.6) and can estimate as in (2.24).

Conclusion of Theorem 1 inthe ca¥e= 2. Estimate (2.18) together with (2.20) and their counterparts for mixed
derivatives allow now to conclude the proof of Theorem 1. Since the energy estimates impRtyyge estimates
of (2.22) and (2.23) only for uniformly boundes®ix|, we setT;, := sup(t € [0, T1: |[VA(-, T)|eo < 2n VT < 1},
As a preparation we observe that th&’-bound ofd, EX*1(r) implies the continuity of the energy d0, Tl
We now estimate the energy by its initial values and the supremum of its time derivatives and find

sup EFL(r) < C+tq>( sup E"“(r))
7€[0,7] 7€[0.1]

forall ¢ € [0, T; ], for a constan€ and a polynomiatP depending only on the norms of the initial values. Here we
absorbed the factaf1|sup, (o 71 EXT1(1)|? of (2.24) in the left-hand side. For< To, To > 0 small (depending
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on the initial values througlt’ and @), the supremum of the energies can only be either smaller&hanl or
larger thanC + 2. Continuity of the energy then implies the uniform bound

sup EFY(ry<c+1 (2.25)
t€[0,t]

for all t € [0, min{T;, To}]. In order to conclude the uniform estimate on a time interval that depends only on the
norms of the initial values, it remains to estimdigfrom below. The boundd, Vi|« < C on [0, min{T;, To}]
implies | VA(:, 1)|loc < n + Ct for t € [0, min{T,, To}], and hencd;,, > min{n/C, To}. In particular, the value of
min{T,, To} depends only on the norm of the initial values.

2.4. Estimates in the three-dimensional case

In our approach there is not much difference between the ¢ase2 andN = 3. In the two-dimensional case
the expression fop, on page simplifies in the last line. This Ieadpt,b: 0in Eq. (2.15). In the three-dimensional
case the equation is replaced by

(ﬁfﬂp)(x, h(x,1),1) @ _y. Ap+pktL

with
pe aFivn Vh(Vh, 3¥*1vh)

L _
VI+IVaZ i vie’

In the testing procedur®**p is multiplied with

Az:=03f"2h + 85T /14 VA2,

and integrated oves. We evaluate the two terms that appear additionally in the three-dimensional case. Again, we
have to interpret the error terms as divergences. Multiplication of the second terimaoid the first term o¥ A2
yields

-3 -3 1
1 2 1 2 ak+1
—/1+|Vh2 VR(Vh,3¥IVh) . 952Vh = —\ /14 |VhA|2 at§<Vh,a,’<+ Vh)2 + P@*h)

for a polynomialP € P1D (5%+1p). Integration ovef0, T yields the contribution
J1+ VA 2 1 Vh, o+ ivp2 T« Vh(T)|? k+1
s

Since we assumed thiV i (T)|| L (s) is initially small, it remains small oif0, 7], and we can absorb the above
error term in the energy estimate.

Concerning the multiplication of the second termsigfandV A, we evaluate the highest order expression, the
contributionF; 851, h of 851,

1 _ _
—(Vh, 3T IVh)(Vh, V(F;85 0y, 1)) = — F,, 5<Vh, 3 Ivh)2 + P(3*IVh, 31 F).

After an integration by parts this expression is bounded by the energy and the time integral is small.
The product of the first term of; with the second term d¥ A, is treated in the same way,

1
(0K IVh, V(F0f T, b)) = Fidy, =

N 2|a,"+1Vh|2 + P(3*TVh, 31 F).
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Conclusion of Theorem 1.Based on this analysis of the error terms, the estimate of Theorem 1 follows from
(2.18) and (2.20) just as in the two-dimensional case.

3. Regularity propertiesof velocity and pressure

In this section we present the proof of Proposition 3. We will use the results on fractional Sobolev spaces and
interpolation that are collected in Appendix.

3.1. Estimates for the velocity

Based on the transport equation fer= curlv we will derive estimates fov. They will improve the energy
estimates by half an order. We will work on a fixed domain using the domain transformation : R — £2;. The
first step of the proof is an integration lemma: Given divénd curl(v) the functionv is one order more regular

than these data.

Lemma 4. Let the evolution of the domain be given by a functiomith bounded norm

heL™®(0,T; H2($))n-..nwktt>(0,1; H(S)) (3.1)
and small in the norm

heL®(0,T; H3(S)) N L>(0, T; COL()). (3.2)
We assume furthermore that the vorticity satisfies bounds for

Df(wo X) e L®(0,T; HY?(R)), (3.3)

DM(wo X)|s € L™(0, T; LA(S)). (3.4)

Then the unigue solution of

divv=0, curlv=w in £y,

orh
V= ——— onlr;,

V14 |Vih[?

has bounded derivatives
D'V(vo X)e L®(0,T; HY?(R)), (3.5)
D'V(vo X)ls € L™(0,T; LA(S)). (3.6)

Proof. We present the proof in the two-dimensional case. The three-dimensional case follows the same lines and
requires only some additional notational effort.

Interior estimates. As a first step we rewrite the equations with an unknown functidining on the fixed do-
main R. We useB = (b;;);;, the inverse matrix oDX : R — RN*N _On the boundary holds

1 0 1 [ar 0
DX—[axh ayY}’ B_ay—y[—axh 1] 3.7)

Instead of showing the estimates fero X), by the regularity of: andY it is sufficient to show the estimates for
the new independent variahle= (u;);

u; ZZZb,‘jUjOX. (3-8)
J
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To verify the equivalence of norms ofo X and ofu one exploits that for some constantall functions f andg
on R satisfy

I - &l mirzry < CN Sl poonmsrellgll sz (3.9)

This follows with an interpolation: the maf : g — f - g is bounded inC(L2(R), L?(R)) and inL(H(R), HX(R)).
For the latter we use in three space dimensions the embedditgs— L3 and H1 c LS.
In order to derive equations farwe evaluate

D bijdi(vjo X) =) bij(dv;) o X0 X =Y (8v;) 0 X8 =0,

ij ijk jk
doul — dqup = 32<Zb1jvj OX) — 31<Zb2jvj OX)
J J
= Zazbljvj oX—i—Zblj(Bkvj) o X2 Xy — Zalszvj oX — szj(akvj) o X01 Xk,
J ik j Jjk

1
uzls = E (bz'jUjOXNSZ—B Y(vz—axhvl)-
4 y
j

We find foru the equations

divu = "(d;bij)(DX -u); inR,
ij
curlu =wo X + F1(D,B, D?X) -u+ F2(B, DX) - Vu inR,
UL S
ug = —— s
RN
where Fy, F» are polynomials withF»> = 0 for h = 0. We now consider these equations at a fixed time instance
t € [0, T, and omit the index in the following. We decompose the solutierin two parts,u = i + u, whereu
solves

divi=0 IinR,

curlt =0 inR,
o:h

u-ey=— ons.
3,Y

We can writez = V@ for an harmonic functiord. We infer thatiz has the regularity of continuations &f: and
och, i.e.

]l g2y < C LB grracsy + IV R greagsy} < C. (3.10)
The remaindefi solves
divii = (d;bij)(DX -u); inR,
L
curli =wo X + F1(DyB, D?X) -u + F2(B, DX)-Vu inR,
=0 onS§S.

With the help of standard? div—curl estimates we conclude that for every k

lill gmi1cgy < Callw o X\ pm(ry + Sllull gmir gy + Collull m(r)- (3.11)
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Heres > 0 is arbitrary small forz small in the norm of (3.2). After an interpolation of the standard estimates we
conclude additionally

||L~l”Hk+3/2(R) S C]_”CL) (¢] X||Hk+l/2(R) =+ 8||u||Hk+3/2(R) + CZ“M ||Hk+l(R).

Here we use again (3.9).

The original equation for immediately implies an estimate for th!-norm of v, which we use to start the
induction ovenn in Eq. (3.11). The induction and Eq. (3.10) yield the desired spatial estimate for

In order to derive bounds on time derivatives we only have to differentiate the equatiansvitir respect to
time and proceed as above. This concludes the proof of the interior estimates.

Boundary estimates. As a first step we claim that the harmonic functibrsatisfies a bound for
DMy |s e L®(0, T; L%(S)). (3.12)

Y is the harmonic extension of the functidnthis implies bounds fob*+1y e L>°(0, T; H%/2(S)), and therefore
a bound for

DMy|s e L™(0, T; HY(S)).

This implies the result for alt + 2-nd derivatives that contain a derivative in horizontal directioiror purely
normal derivatives we use

k+2vy _ ka2
bty = —pka2y,

and find the result (3.12).
For u we follow a similar path. The trace theorem and the inner estimates yield bounds for

(D*u)|s € L™(0, T; H(S)),

which is a bound fob, D*u|g € L°°(0, T; L2(S)). For normal derivatives ab*u we have to exploit the equations
for divergence and curl.

dyD*up = D*dyup = —D*d,ur + D* divu € L (0, T; LA(S)).
We used (3.12) here. For derivativesigfon the boundary we calculate
8},1_)ku1 = 5"3},”1 = D*8,u> + D* curlu.

Using (3.4), (3.12), and an iterative improvement as in (3.11) this concludes the proof.

In order to describe our compatibility assumption on the initial values we have to introduce the concept of
formal time derivatives. Given only the initial valu¢s®, %) we can calculate the initial pressup@ from its
boundary values (determined b and (1.4)), and\p° = div((v° - V)v?). The initial pressure now determines the
initial time derivative ofv by (1.1). The boundary values of determine the initial time derivative d@f by (1.3).
Differentiating the equations we can also find higher time derivatives; they depend only on the initialv8)uS3
and are denoted k§)"v°, 3 p°, andd;” h°. From Eq. (1.7) we can determing «°.

Assumption 5. Let the initial values be such that the formal time derivativesifqr, » andw are bounded in

MmO e HF327m () Vm <k, 10 e L2(20),
0"V o X|s € HF™(S)  Vm <k,
m<k

mh® e HH2m () % +1.
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Note that the above estimates automatically implies bounds fercurlv:
3w’ e HSFY27m (o) Vm <k,
("% o X|s € HE™(S)  Vm <k.

The next step in our analysis is to exploit the vorticity equation.

Lemma 6. We consider a time dependent domain, given by a funétigith bounded norm
heL™®(0,T; H($))n---nwktte(0,1; HY(S)). (3.13)

Letw = curlv solve(1.7) and assume that the initial values are bounded in the norms of Assungption
Then, for a possibly smalléf > 0, the vorticityw o X satisfies bounds in the spaceq813), (3.4), i.e. bounds
for

DX(wo X) e L®(0, T; HY?(R)),
D*(wo X)|g € L®(0,T: LA(S)).
Proof. The primary goal is to find a priori estimates for the transport equation
o+ - -Vo=f in 82y,
w(Q)=wg In Lo,

for a given domain evolution and for a given velocity fieldatisfying the boundary condition (1.3).

Interior estimates. We differentiate the transport equatiantimes with respect to and obtain

[6: + (- V)] D}"w =[3;, D"+ [(v- V), D"]w+ D" f = D" f + F(D"Y,, D"v, D" w), (3.14)
whereF is a polynomial that is linear in the set of highest and second but highest derivatives. Multiplication of Eq.
(3.14) with D" w and integration ovesf2; yields with the transport theorem

T 1/2
/%|5{"a)|2 <C sup {/|5;"a)|2(,t)} ”5tmeX+F(5th,Bmv,5ma))OX”Ll(Q’T;LZ)'
)
2

t=0 te(0,T
t

The same calculation can be done with spatial derivatives. dVe will use the estimate witlh = k andm =
k + 1, in the latter case we assume that at least one derivative is spatial. Using the equivalence of the two norms
ID"® o X||;2 and|| D™ (O o X)||, 2 for ®, we find by the regularity ok

Hﬁm(“) o X) HLOOLZ < CU{H 5m“’(o)”LZ + Hﬁm(f o X) ”L1L2

+1+ || D"wo X)| 1,24 | D" (@0 X)| 1,2} (3.15)

The constan€, depends only on the norfrD*~1(v o X) | Loor2- EXplOiting [|© || 10 7. 12) < T 1@ || Lo (0.7 1.2y @Nd
choosing?l small (depending o8’,) we can absorb the last term into the left-hand side.

[D" (@0 X0 jp2 < COA [ D" 0@ 12+ [ D" (f 0 X) | 12+ 14+ [ D" (0 X 11,2} (3.16)

We next interpolate this estimate fer=k andm = k 4+ 1 in order to obtain an estimate bfth derivatives
in HY/2,

(a) Dependence omg. We study the cas¢ = 0 andv fixed in order to study the (linear) dependence of the
solutionw uponwg. The map

J:woo Xor> (o X)(0), ..., (wo X)(0))
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is bounded in the function spaces
J:H™(R)— H™(R) x --- x H" *(R)

for m =k andm =k + 1. (3.16) yields that for every < T and! < k the map
S;tH™(R) x - x H" ™ (R) 3 ((® 0 X)(0), ..., 3 (w0 X)(0)) = 8 (w0 X)(x) e H" ' (R)

is bounded. The interpolation betweknandk + 1 yields that the linear map$ o J are also bounded as maps
S;o0J: H*Y2(Ry - HM/27L(R). (3.17)

This provides the regularity in dependence of the initial data.
(b) Dependence orf. We now assumeg = 0 and investigate the dependencewobn f. For fixed f with
bounded norms

DX(f o X) e LY0,T; H"*(R)),
we automatically have a bound for
3! f(0)o Xoe H" 17I(R)

for everyl < k — 1. These expressions enter in the calculation of formal time derivativesof = 0. The estimate
(3.16) yields that for everyy< k the linear map

Ui (foX,...,05(f o X)) > 8l (wo X)(7)
is bounded in the spaces
Ui LYH™(R) x --- x LY\H" 8 (R) - H™"'(R).
With another interpolation between= k andm = k + 1 we find the result for th¢ -dependence.
Our interpolated estimate now reads
” Do X) ||L°<>H1/2(R)
< CCU{ ” Dfw(0)o XO”Hl/Z(R) + ” D (foX) ||L1H1/2(R) + ” D'V (o X) ||L1L2(R)}' (3.18)

In order to treat the norm af on the right-hand side we use Lemma 4.

[DV o X) | 12 ST D V@0 X) | o2 STC(1+ [ D@0 XD e aje + [ D@ 0 X)ls | v 2):

For smallT and with the boundary estimate below we can absorb the last term in estimate (3.18).
In the two-dimensional casg¢ vanishes; in the three-dimensional case we hAve (o - V)v and we must
exploit Lemma 4 in its full strength. It yields

[DA(f 0 X0 gz < CLID V@0 X0 a2
< TC;(1+ ” Do X) ||L°°H1/2 + ” Do X)|S||L°°L2(S))'
Together with the boundary estimate below, (3.18) provides an estimate for
¢= “ D*(wo X) ||L°°H1/2(R) + ” DX (wo X)ls ||L°°L2(S)
of the form

¢ < Cu(Cr+C2TY).
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We exploit thatC, contains only lower order derivatives ofand can therefore be estimated in terms of its initial
values and an integral over its temporal derivative, whence

C, < C3+ CaT®(2)

for some polynomiatp. We combine the last two inequalities and find with a new consfargnd a new polyno-
mial @

(<C1L+TP(©).

EnlargingCy if necessary, we can assume that on a small time intgfyal) there holdst < C; (we assumed
that the initial values are smooth). Choosifigsmall (depending only on the norms of the initial values as in
Assumption 5), we conclude thatcan never exceed the valdg + 1.

Boundary estimates. As for the interior estimates we start from (3.14) and multiply again ﬁﬁb), but this time
we will integrate only over the boundari€. We have to choose an appropriate parametrizatian afiamely

yeiS =RV with 8y, (x) = v(y (x), 7). (3.19)

With this parametrization we find

d _ D
E/g(ut)oyz—/[ag(nt)} o V-
S S

We setg = %|ﬁ§‘a)|2 and integrate over time.

1~

N

2// [Dfw - (DF f + F(D*Y,, D*v, D*w))] o

T

t=0

/2
<C s((l)Jp {/!Dka)| oX} |(Df f o X + F(D*y,, D*v, 5kw)°X)|s||L1(o,T;Lz<s>)
te(0,7T)

by equivalence of.2-norms with the different parametrizations. The same calculation can be done for spatial
derivatives. Again using norm equivalence we find

nk
|D*(woX)| L®(0,T;L2(S))
< Cv{ ” D*w(0)o X||L2(S) + ” D*(f o X) ”LlLZ(S) + ” Do X) ||L1L2(5) + ” Do X) ||L1L2(S)}'
The proof is finished as in the lines after (3.18): the last term can be absorbed in the left-hand side, the second bu
last term is of lower order, for the term containiffigve exploit the boundary estimates of Lemma 4
3.2. Estimates for the pressure

The estimates for the pressure are based not only on the regulavigxpfessed in (3.5), but also on the energy
estimates

k1 k1
|9 o X) ||L°°(O,T;L2(R)) + 118 0l oo 0.7 1.2(5)) < C-
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We write the Euler equation a&8p = —9,v — (vV)v. The regularity ofv implies that the right-hand side has
the k-th time derivative bounded > (0, T; L?(R)), and mixed (or purely spatiak-th derivatives bounded in
L>®(0, T; HY2(R)). We infer the following estimate for the pressure.

||p o X||L°°(0,T;Hk+3/2(R)) +---+ ||p o X”Wk*l’oc(O,T;HZ*l/Z(R)) + ”p o X”Wk’oc(O,T;Hl(R)) < CO. (320)
It remains to show the estimate for the- 1 time derivative which is verified in the following lemma.

Lemma 7. Under the assumptions of PropositiBrihe pressure satisfies the estimate

”P © X||Wk+1’°0(0,T;H;1/2(R)) < C7 (321)

whereC depends only on the norm kfand on the constar@g of (3.20). In this estimateH;l/Z(R) denotes the
space of functiong of the form

N-1

Jj=1

with Qg € L2(R), 01, ..., On_1 € HY2(R).

Proof. Step 1. An equation far := 8,"+1(p o X). The first step in the proof is to derive an equation #doMVe
begin by transforming the Laplace operator on the donfairtio the domainr, that is, for functions of the form
foX:R—R.WesetB = (b;;);; = (DX) L andA = BB". Then forf € C?(2,R) andX : R — £ one-to-one
we can calculate

V- (AV(f o X)) = 0 (bibji(Ok f) o X0;Xx) =Y 3 (bix (% ) 0 X)

ijkl ik
= bin(@def) o X0, Xi + Y dibir (9 f) o X
ikl ik

=Y @) o X+ dibud(f o X)by
k ikl
=(Af)oX +divB-BT-V(foX).
With the operatow := V - (AVw) —div B - BT - Vw we can write this equality as
L(foX)=(Af)oX. (3.22)
We can now derive the equation feoy exploiting Ap = —div[(v - V)v] = — Zij dv;jd;v;.

Lu= L (poX)

= L0 poX) +L<Zka{‘a,~p oXE)tX,'> e +£(Zaip oxa,’<+1x,~>
i i
= (A3 p)ox +k<AZafaipa,X,- o X—1> o X+ +£<Z dp 0X8tk+1Xi)
i i
- _(a,k”Za,-vjajvi) oX — kZ(afa,- [Z a,u,-ajul}a,x,- o X—l> oX -
ij i lj
- L(Z d;po Xa,“lx,»).
i
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We conclude that
Lu =div F1 + F>, (3.23)

with F» in L°°(0, T; L2(R)). The functionFy includes the terrr@,"*lv, first derivatives oﬂ,"v, first derivatives of
9} 1x;, and first derivatives off p. ThereforeF; € L>(0, T; L3(R)).
The boundary values of are

Vh
u=oty. <7) (3.24)

V1+|Vh|?
Step 2. A decomposition of In this and the next step of the proof we do not indicate the boundary conditions
on the lower boundary of the rectangte
We decompose into a boundary contribution and a remainder of higher regularity,
u=i+1i, (3.25)
with iZ: R x I — R being the solution of
Li=0 IinR,
Vh
ﬁzv'af&l(i) =:V.g ons. (3.26)
V1+|Vh|?
Note that we have a bound fgre L>°(0, T'; L2(S)). The remaindefi satisfies by linearity of the equations
Lu=divF1+ F> InR,

.27
u=0 onS. (3.27)

Testing this equation witli we immediately conclude the regulariiye L°°(0, T; H1(R)). It remains to verify a
bound for

ii e L(0, T; Hy 2(R)). (3.28)
We try to approximatex astV: ‘11 0; U; with U; solving
LU; =0 inR,
! (3.29)
Ui =gi ons.
U; has the regularity/; € L>(0, T; HY2(R)), therefore the contributioEfi‘l1 0; U; has the desired estimate in
L*>®(,T; H*_l/z(R)). The remaindeV¥ :=u — Zf’:’ll 9; U; solves the system
N-1
LV = oL )U; InR,
(X; ’ ) ’ (3.30)
V=0 onsS.

It remains to show that’ € L>(0, T; L2(R)) is bounded.
Step 3. Regularity of . We have to study solutionig of
V.-(AVV)=V.-(BVU) inR,
V=0 ons§,
with smoothA and B, U € HY2(R), andU|s = g € L2(S). In order to show a bound fdf € L2(R) we take an
arbitraryw € L2(R) and study thd.2-product(V, w).
Givenw we solve the dual problem
9j(a;jdip) =w InR,
=0 onsS.



B. Schweizer / Ann. I. H. Poincaré — AN 22 (2005) 753-781 775

Then withyr = (a;;9;¢) ; we find

/Vw=/Vmww:-/vvw:f&wﬁmw=—fwvmww
R R R R R

_ / UV .- (BTVg) + / Un - (BTV) < C(IU L2 + 10151205 1@l 2 -
R S

Sincell¢|l y2(g) can be bounded in terms Pl 2 g, this yields an.? estimate forv,

||V||L2(R) < C(”U”LZ(R) + ||U|S||L2(S))~
This concludes the proof.0O

4. A Navier—Stokes approximation

In the previous sections we have derived a priori estimates for smooth solutions of the incompressible Euler
equations £). Once we can approximaté&) by a system E.) that has smooth solutions, we can conclude the
existence of solutions ta®) — we only have to verify that solutions of() satisfy the same a priori estimates.

Our estimates are derived using both, the energy estimatesdod , and the estimates for the vorticity.

If we approximate the equations forin a generic way, e.g. with a Galerkin scheme, we lose the structure in the
equations forw. Then the a priori estimates can not be reproduced for the approximation. Our solution to this
problem is to use an approximating systefg)that has the same structure & (— we choose the Navier—Stokes
equations.

In this section we do all calculations in the two-dimensional dsise 2. The method works in the same way
for N = 3.

The Navier-Stokes equations read

v+ (W-V)v+Vp=cAv, (4.2)
divv =0, (4.2)

in the time dependent domai®,. Two of the physical boundary conditions are the kinematic relation and balance
of normal forces.

oh —vp+0,h-v1=0, (4.3)
O h
Oy - (xi) + p =2¢(9,v) - n. (4.4)
V1+10:h|?

On the fixed boundary we use the normal conditiom = 0. It remains to choose tangential boundary conditions
on upper and lower boundary. We will not use the physical equation, but introduce an artificial condition: we
impose on the free boundary and on the bottom the condition

The equation for the vorticity := curlv reads
orw+ (v- Vo =¢cAw. (4.6)

The boundary condition (4.5) helps to exploit this vorticity equation. Note that with a no-slip condition on the
bottom we could not hope to approximate the solution of the Euler equations in smooth function spaces.
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We will derive estimates for the Navier—Stokes system by following the ideas used for the Euler equations. We
will see that Proposition 3 remains valid: The reconstructionfodbm « in Lemma 4 uses only the incompressibil-
ity and the kinematic condition. The regularity propertiewoh Lemma 6 can be reproduced due to our boundary
condition. Lemma 7 remains valid with slight modifications in the statement and in the proof.

The a priori estimates follow if we can repeat the differentiated energy estimates of Section 2 for solutions of
the Navier—Stokes equations. This is not obvious due to the artificial tangential boundary condition.

4.1. First energy estimate

Multiplication of (4.1) withv and integrating ovef2; yields

1
/(8,+U~V)§|v|2+/pvn=—8/|Vv|2+8/8nv~v.
2

2 I I

By the transport theorem and by expanding the product under the last integral we find with the tangential unit
vectort

dl
EE/|v|2+a/|W|2+/[p—s<anv>n]vn=a/(anv>rvr.
o 2

I Iy
We calculate for the right-hand side

f (Bpv)pv; = / (0 v)pvr = / [0 (a) — v - Ben s

Iy Iy Iy
Pl.
(=)—/vn8r(vr)—/v-(3rn)vr
! I
= /vn(anv)n—/v,lafr-v—/v-(atn)vt.
! I I
The energy estimate is now
1
@EfwF+@HN4un+s/an=—/ﬁﬁﬂ-v—/vmmmW. 4.7)
2 2 I; I;

This equation does not yield estimates for the energy since the right-hand side contains second derivatives of
Nevertheless, for derivatives of the solution we can expect that the error terms on the right-hand side are of lower
order.

4.2. Higher order energy estimates

Just as we did for the Euler equations we can differentiate the Navier—Stokes equations with respect to time.
Again, in order to find total time derivatives of boundary values we use the vertical material deridtive
& + Y d,. R R
The equation fow, = D}v andp, = D} p reads
D, 1 gt
Dtvl_ th+€AU[+ft +8Ft'
It coincides with the Euler case except for the expressgidnproduced by the commutator

Fl=—[A,Y,0,v.
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The divergence div; = g,1 remains unchanged. The energy estimate reads in its first form

&= /|vt| +/ptvt n+ef|wt|2—sfa v v = /(f, +eFl)- v,+fg,pt (4.8)

Qt r t r *Qt

In order to recover the expressipn— 2¢(d,v;), as a factor ofv;),, we have to follow the ideas of Subsection 4.1.
Differentiating the equatiom = 0 yields

Di[(@,v)c] = Di[(@cv)a],
or, using the Leibniz rule

(Din - Vo)e + (v0)r — (BnYidy0)7 + (35v) - Dy = (D7 - V) + (32000 — (9 Ydy0)n + (9;v) - Dyn.
We can therefore replace one integral by

/ (Owvr)e (vr)e = f (@ vn (Ve + / 71,

r
with the error term

7t = W) [(Dit - V) — (3 Yidyv)y + (3:v) - Dyn — (Dyn - V)r + (8, Y,8yv)r — (8,v) - Dy 7).
We proceed with an integration by parts of the operator

/(arvt)n(vt)r = /(Ut)n(afvt)f /7[;,

r
with the error term

A= —(U)nd:T - v — vy - e (Vy)r.
The third step was to exploit incompressibility; v), = —(9,v),. An application ofD, yields

(Dit - VO)r + (Brv))r — (3 Yi9yv)e + (3v) - Dyt = —(Dyn - V) = (p00)n + (3 Yidy0)n — (340) - Dyn.
We finally find

/ (Ovr)e (ur)e = f W) (Bnvi)n + f al,

with
mt=at+ 7t + WOn[(Dit - VU)r — (3 Yidyv): + (3;v) - Dyt
+ (Din - V)y — (8, Y,8y0) + (35v) - Dyn].

We have therefore recovered the boundary integral wer 2¢(3,v;),] - (v¢),. The error term is an integral
overs! with

nt e P(3'Vh, D v, Dly)).

We again want to identify, up to error terms, the boundary integrals on the left-hand side of (4.8) with the time
derivative of an energy. We evaluate
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Ds (x, h(x,t), t) — 2&(0ve)n

(2:3)%[17()6, h(x,1),1) = 26(@,0)n] + 26[(Din - V), — (0, Y,8y0) + 0,0 - Dyn]

&Vh 1
=V | ———=) +¢0;
V1+|Vh|?
with
ot :=2[(Dyn - V) — (9 Y:dyv)n + 8,0 - Dyn].
The equation
32h
V;-n= — 4 (Stl
V1+|Vh|?

remains unchanged. We find for the boundary integral

3 Vh
F/[Pt — 26300 | (v)n = S/(—V- m +ea,1> (8,2h +65/1+ |Vh|2)

1 8 Vh
—8,= / 16, Vh? /g, /sa, )/ 1+ | VA2
S

1+|Vh|2

()
N

The energy estimate corresponding to (2.8) reads now

8,E,1=—8/|Vv |2+/ftl.v,—}—/gllp,—i—/eFtl.v,

£ £

[ () sl

VIt vip®
—/satl-(v,),,,/1+|Vh|2+£/rrtl.
S r

We sketch the analysis of these error terms. On lewvell the energy
T
SUpEFtL (1) + ¢ f/ |Vok+t 12 ds
i 0%
controls the norms
VeVitto X) e L2(0, T; L3(R)),
Ve r o X € L2(0, T; HYZ(S)).
The estimates fov obtained from the vorticity equation provide bounds for
V(o X) e L®(0,T; HY?(R)),
V(F|r o X) e L®(0,T; L%(S)),

(4.9)

(4.10)

(4.11)



B. Schweizer / Ann. I. H. Poincaré — AN 22 (2005) 753-781 779

as in the inviscid case (see below). By taking horizontal derivatives we conclude the corresponding spatial esti-

mates. With these bounds we can control the highest order terifys of+* - v/ **. The expressioi; ™ has in

highest order the term&“™ = p,; (D, D'Y,)d;9;vF. Therefore, after one integration by parts,

/sﬁ,kJrl . va“l = / £0; a/vf‘P,'j(l_)lv, l_)lY,) . vf+1
2 2
= —/aajvfai[Pi~(51v, BlYt) . vf+1] +/83jvfnl-Pij (Blv, BlY,) . vf+1.
2 I;

These integrals are bounded by the norms of (4.10) and (4.11).
For the boundary integral containilathrl we use that fok > 3

okt e pLO Gy, DEvy).

This implies sufficient regularity sin(ze,k+1 is multiplied with 8*2x; for purely temporal estimates we use that
J20¥+2p, has the regularity of 05 o X|s.

The other integral that did not appear in the inviscid case is the boundary integrabd\?‘ér. Fork > 3 we
have

T[tk-‘rl c P(Z’O)(5k+lvh, l_)k+1v, 5k+lYt).

The energy estimate includes a boundd@btrivh e L (1; L?(S)) and therefore this integral is bounded, too.

4.3. Regularity properties af and p

It remains to show the regularity propertieswénd p. The most important observation is that tHg /2
estimate fon@tk“p still holds, at least in ai.?-sense in time.

Step 1Lemma 6 remains valid. We multiply (4.6) withAw and integrate by parts on the left-hand side. The
boundary terms vanish due to our condition= 0 on upper and lower boundary. The right-hand side yields a
negative term in the energy inequality. For higher regularity one take&m tangential or vertical derivatives and
repeats the procedure. For the boundary estimates one exploits once more the special boundary condition.

Step 2Lemma 4 holds also for the Navier—Stokes approximation: the above bourdaridi imply estimates
for v as in (3.5), and the traces BF Vv are bounded i, L2(S).

The proof for the velocity estimates is identical to that in the inviscid case. We only used the knowledge on div
and curb and the boundary values in order to conclude the regularity of

Step 3The pressure satisfies a bound

(R)-

Ipo X207 m*+12ry) + -+ P o Xl gro,1; H1/2(R)) < C- (4.12)

This estimate differs from (3.20) in two respects: fifé-norm in time is replaced by ab?-norm, and the orders of
differentiability are reduced by one. This change does not affect the analysis of error terms concerning the pressure.

The proof for the above pressure estimates is based on an equatiap ftinat remains unchanged, and the
boundary values fop. Here we have with (4.4) a variation with respect to the inviscid case:

V. h
Vi - <+) + p = 2¢&(9,v) - n.
V14 |Vih|?

In order to analyzé + 1-st derivatives of the pressure we have to assurethat-st derivatives of the right-hand
side have boundary values Irf(I; H~1(S)). This follows from the equality

(3,05 L), 0 X = (0,05, 0 X + LO0,
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where |.0.t. denotes terms of lower ordeninin highest order the error term fpi 2 is therefore

-1
2¢d,[\/1+ 19012 .10 X].

Using (4.10) we have the desired estimate.
In the derivation of the interior pressure estimate of Lemma 7 we have a technical change. In Eq. (3.23) appears
an additional term containingp on the right-hand side.

Lu=V-BVFy+divF;+ Fo.

Here B is a smooth matrix field andp containsd’ p; we have regularity bounds fdfo € L2(0, T; HY/?(R)). In
the third step in the proof of Lemma 7 we have seen that this still allows an estimate tof(0, T; L2(R)). This
suffices for the estimate

lpoXi C. (4.13)

. H AR S

On the regularity of formal time derivativesWe approximate the Euler equations with a Navier—Stokes system;
this implies that we change the formal time derivatives of the initial values, since we must now calculate them
using the Navier—Stokes equations. Up to functions of otdigrey coincide with the formal time derivatives of
the Euler system. Choosirsgsmall enough (depending on regular norms of the initial values) we have the formal
time derivatives bounded as demanded in Assumption 5. For the sake of an approximate solution it is sufficient to
demand a smallness efdepending on smooth norms of the initial values.

Unfortunately, the existence result for our Navier—Stokes system can not be quoted from existing literature, we
nevertheless omit the proof. It follows the lines of proofs for the standard Navier—Stokes system. Note that with
the a priori estimate the key ingredient is presented in the work at hand.

Appendix. Factson fractional Sobolev spaces

In this appendix we collect the results on the fractional Sobolev spiiédisat are used in this work.
A result of Calderon concerns the complex interpolation ([16], p. 40):

[H, H 1o = H®, s=(1—O)so+ Os1.

See [15], p. 204 for the corresponding result on bounded domains. The interpolation functor has the property that
a bounded linear map: A; — B; (for j =0,1) is bounded as a map ([16], p. 39)

T :[Ag, A1le — [Bo, Bile.

For a smooth bounded domadh we have the trace theorem ([16], p. 212). kor 1/2 the trace is a bounded
linear function

trace :H* () — H* Y2(30).
The corresponding result for=1/2 does not hold. See [10], p. 55 for the opposite result
Hy'%(2) = HY2(2).

Boundary values can be extended to the interior by a harmonic function.¥dr/2 this extension is a linear
and bounded map

H:H Y2(3082) > H ().



B. Schweizer / Ann. I. H. Poincaré — AN 22 (2005) 753-781 781

See [10], p. 188 for this result. The same reference provides that the map
H*~%2(382) 3 du|; > u € H* (),

whereu denotes the harmonic solution of the boundary value problem, is linear and bounded.

Note that we are working not dR¥~1 x R_., but rather with a periodicity condition in horizontal directions.
The above mentioned results remain valid; compare the remark on page 252 of [16] and the discussion on page 266
in [15].
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