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Abstract

We study an incompressible ideal fluid with a free surface that is subject to surface tension; it is not assumed that th
irrotational. We derive a priori estimates for smooth solutions and prove a short-time existence result. The bounds are
by combining estimates of energy type with estimates of vorticity type and rely on a careful study of the regularity prop
the pressure function. An adequate artificial coordinate system is used instead of the standard Lagrangian coordinates
assumption on the vorticity, a solution to the Euler equations is obtained as a vanishing viscosity limit of solutions to app
Navier–Stokes systems.

1. Introduction

The investigation of fluids with a free boundary has recently attracted much interest, and numerical
became possible on the basis of analytical results. Typically, one obtains local existence results that cl
well-posedness of the equations and identify the adequate function spaces to work with. This was done for
prominent equations describing incompressible fluids: Navier–Stokes equations, Euler equations for irro
flow, general Euler equations. In addition, surface tension may be included or neglected.

Depending on the equation, different techniques are used to derive a priori estimates. For the incom
Navier–Stokes equations with surface tension we mention [1] and [13] for fundamental contributions. Es
for the solutions can be based on the regularizing effect of the viscosity in this case.

For the Euler equations, no regularizing effect can be exploited in the fluid body; surface tension, if in
has a regularizing effect on the free surface. Existence results for the irrotational Euler equations without
tension were achieved in [18] and [19]. For results on the irrotational motion of ideal fluids with surface t
see [2,17].
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For the general incompressible Euler equations only partial results are available. For vanishing surface
an existence result was obtained in the two-dimensional case in [8]. The three-dimensional case is stud
under a sign condition. The need for such an additional condition is known from [5]. Including surface te
only the two-dimensional case was treated [11].

Despite the lack of affirmative results, it seems to be a common belief that, even in three dimensions, t
larizing effect of surface tension is strong enough in order to control the nonlinearities of the system (comp
This is confirmed with our Theorem 1, where a priori estimates for solutions are shown. On the other hand,
not known any iteration procedure which improves approximate solutions in such a way that a fixed point t
can be applied. In fact, in order to turn our estimates into an existence result, we can not use an iteration,
approximate the equations by a Navier–Stokes system. Since our estimates are independent of the viscos
a local existence result in Theorem 2.

We have to deal with the fact that the Navier–Stokes equations with the natural free boundary condition
general not produce approximate solutions to the Euler equation in regular function spaces. We therefore
impose an artificial boundary condition that relates to the Euler equation. We treat here the case that the
vanishes on the boundary initially (and thus for all times), which provides a tractable condition for the N
Stokes approximation. The condition of vanishing vorticity on the boundary was not needed in the two-dime
case studied in [11], but a smallness condition for the initial velocity was imposed there. For the analysis o
problems see [3,9,12], and [7,14] for two-phase problems.

Methods in the proof. The fundamental inequality for solutions of the Euler equations is conservation of e
In the case of a positive surface tension the energy consists of kinetic energy (integral of the squared
and potential energy (proportional to the area or length of the free surface). Energy conservation follows
integration by parts after testing the equation with the solution. In order to find a priori estimates in sp
higher regularity (as they are needed for the treatment of the free boundary), it is standard to try the followi
differentiates the equations with respect to time and multiplies with the differentiated solution. The same
with tangential spatial derivatives. The combination of both should give estimates of energy type for deriva

It turns out that this procedure does not work without further estimates in our case. Due to the nonli
the differentiation produces error terms which are of higher order than the positive terms and can there
be controlled. The principal idea in this work is to combine the energy estimates with bounds based on
ticity transport equation. The latter can be used to improve velocity and pressure estimates by half a de
Fundamental is the control of highest time derivatives of the pressure in Sobolev spaces of negative order

The need for the combination of energy and vorticity estimates leads to a difficulty in finding approx
solutions which are needed for the existence result. A discretization of the Euler equations can preserv
estimates, but we will in general lose the bounds that are based on the vorticity equation. Similarly, an i
scheme can be constructed to keep the energy bounds, but we did not succeed in keeping additionally the
bounds. Our solution to this problem consist in using the Navier–Stokes equations to construct approxim
lutions. The Navier–Stokes system has the same structure as the Euler equations and allows to keep th
estimates.

Equations and main results.We consider the Euler equations inN space dimensions,N = 2 or N = 3. We
normalize the equations to have all physical constants equal to 1. They read

∂tv + (v · ∇)v + ∇p = 0, (1.1)

divv = 0, (1.2)

in the time dependent domainΩt . We assume that the free boundary is parametrized as the graph of a
functionh. Then the kinematic boundary condition and the balance of forces (with surface tension) can be
as
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∂th − v3 + ∇xh · (v1, v2) = 0, (1.3)

∇x ·
( ∇xh√

1+ |∇xh|2
)

+ p = 0. (1.4)

We wrote here the equations forN = 3. To treat both dimensions simultaneously, we write forN = 2: x for x1, y

for x2, and∇x for ∂x1. For N = 3: x for (x1, x2), y for x3, and∇x for (∂x1, ∂x2). Later on we will often omit the
index of∇x when the operator acts on a function ofx andt . The domainΩt is defined by a functionh(x, t) as

Ωt := {
(x, y)

∣∣ x ∈ [0,1]N−1
per , −1 < y < h(x, t)

}
, (1.5)

and the free boundary is

Γt := {(
x,h(x, t)

) ∣∣ x ∈ [0,1]N−1
per

}
. (1.6)

We use the flat torus[0,1]N−1
per as horizontal domain, which means that we impose periodicity conditions on th

eral boundaries. We will always writen = nt for the exterior normal ofΩt on the free boundary,n(x,h(x, t), t) =
(−∇h(x, t),1)/

√
1+ |∇h(x, t)|2. We writeHN−1 for the N − 1-dimensional Hausdorff-measure, in particu

HN−1(Γt ) is the length ofΓt for N = 2, and the area of the free surfaceΓt for N = 3.
A very useful consequence of (1.1) is the transport equation for the vorticityω := curlv, in the caseN = 2 we

identify the vorticity with the scalar quantityω = ∂2v1 − ∂1v2.

∂tω + (v · ∇)ω = 0 for N = 2,

∂tω + (v · ∇)ω − (ω · ∇)v = 0 for N = 3.
(1.7)

The important observation is that this equation admits regularity estimates ofω. The only restriction to such est
mates is the regularity of the normal velocity on the boundary. This connection is made precise in Proposi

One obtains the (zero-order) energy estimate when testing equation (1.1) withv. We find

∂t

1

2

∫
Ωt

|v|2 + ∂tHN−1(Γt ) = 0. (1.8)

This equation provides a pointwise (in time) estimate for the kinetic and the potential energy. In a line
setting, we expect (1.8) to provide bounds forv ∈ L∞(0, T ;L2), h ∈ L∞(0, T ;H 1([0,1]N−1)). Differentiating
the equation and testing with derivatives of the solution we expect to find estimates for derivatives of the s
in the same spaces. We call such estimateshigher order energy estimates.

In order to define a norm for the functionv, it is necessary to transform the variable to a reference domain
parametrize the time dependent domainΩt over the rectangleR := [0,1]N−1

per × (−1,0) by a mapX(·, t),
X(·, t) :R → Ωt one-to-one, X(x, y, t) = (

x,Y (x, y, t)
)
. (1.9)

We writeS := [0,1]N−1
per × {0} ≡ [0,1]N−1

per for the pre-image of the free surface. To make a choice we setY(·, t)
to be the harmonic function onR with valuesh(·, t) on S, and constant value−1 on [0,1]N−1

per × {−1}. We will

always be in the case thath(·, t) ∈ H 4(S,R) is small in the Lipschitz norm. In particular, the derivative∂yY will
be close to 1 pointwise (compare [6], p. 346), and thereforeX(·, t) :R → Ωt is one-to-one.

We use the following norms for the primary variables.

v ◦ X ∈ L∞(
0, T ;Hk+3/2(R)

) ∩ · · · ∩ Wk,∞(
0, T ;H 3/2(R)

) ∩ Wk+1,∞(
0, T ;L2(R)

)
, (1.10)

p ◦ X ∈ L∞(
0, T ;Hk+3/2(R)

) ∩ · · · ∩ Wk−1,∞(
0, T ;H 2+1/2(R)

) ∩ Wk,∞(
0, T ;H 1(R)

)
∩ Wk+1,∞(

0, T ;H−1/2∗ (R)
)
, (1.11)

h ∈ L∞(
0, T ;Hk+2(S)

) ∩ · · · ∩ Wk+1,∞(
0, T ;H 1(S)

)
. (1.12)

For a definition ofH−1/2∗ (R) see Lemma 7.
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We next state our first theorem. It provides the a priori bounds for solutions and is proved by combin
energy estimates of Section 2 with the improved velocity and pressure estimates of Proposition 3. The stat
loosely speaking, that the solution is as good as the initial values allow. More precisely, the norm of the solu
be estimated by the norm of the initial values, where the appropriate norm for initial values is obtained by
the infimum of the time-dependent norm over all continuations of the initial values. The precise definition i
in Assumption 5 on page 769, we abbreviate the norm of initial values(v0, h0) of Assumption 5 by‖(v0, h0)‖IV .
In the statements we useR+ = (0,∞).

Theorem 1. For k ∈ N, k � 3, there existη > 0 andT0 ∈ C(R+,R+) such that the following holds. Every solutio
(v,p,h) of the Euler equations with free boundary(1.1)–(1.4)on (0, T ) in the function spaces of(1.10)–(1.12)for
indexk + 1 with ‖h(·,0)‖H2(S)∩C0,1(S) � η andT � T0(‖(v0, h0)‖IV ) satisfies

‖v‖ + ‖p‖ + ‖h‖ � C (1.13)

in the norms of(1.10)–(1.12). The positive numberC depends only on‖(v0, h0)‖IV .

Our second theorem provides the existence of solutions. It is proved in Section 4 via uniform (inν) estimates
for a Navier–Stokes system.

Theorem 2. For k ∈ N, k � 3, there existsη > 0 such that the following holds. Let(v0, h0) beC∞ initial values
with ‖h0‖H2(S)∩C0,1(S) � η and with initial vorticity curlv0 vanishing on the free boundaryΓ0. Then there exis
T > 0 and a solution of the Euler equations(1.1)–(1.4)on the time interval(0, T ).

Moreover, the valueT > 0 depends only on the norms of the initial values as given by Assumption5. The
solution is a vanishing viscosity limit of solutions of a Navier–Stokes approximation.

Remarks on the theorems. (1) On the initial data we only impose smallness ofh, i.e. we only demand that th
initial parametrization of the domainΩ0 is close to the identity, independent of the velocity.(2) The bounds for the
pressure in(1.11) improve the estimates for the height function and provide bounds for

h ∈ L∞(
0, T ;Hk+3(S)

) ∩ · · · ∩ Wk−1,∞(
0, T ;H 4(S)

) ∩ Wk,∞(
0, T ;H 2+1/2(S)

)
. (1.14)

(3) The assumption on the initial values to beC∞ in the existence result can be circumvented by an approxima
argument, sinceT depends only on the norms of the initial values.

The key in the proof of both theorems is the following proposition. It states that the variableh (i.e. the evolution
of the domain) controls the other primary variablesv andp. The proof exploits the vorticity equation (1.7) and
presented in Section 3.

Proposition 3. For k ∈ N, k � 3, there existη > 0 andT0 ∈ C(R+,R+) such that the following holds. Let(v,p,h)

be a smooth solution of the Euler equations on(0, T ) with T � T0(‖(v0, h0)‖IV ), ‖h(·, t)‖H2(S)∩C0,1(S) � η for all
t ∈ [0, T ]. Then the velocity fieldv and the pressurep satisfy a bound

‖v‖ + ‖p‖ � C
(‖h‖,∥∥(v0, h0)

∥∥
IV

)
. (1.15)

Here the norm ofv is that of (1.10) without theWk+1,∞-estimate. The norm ofp is that of (1.11) without the
Wk,∞-estimate.C depends on the norm ofh in (1.12).
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2. Growth inequalities for regular energies

Our aim in this section is to derive the energy estimates for derivatives of the physical variables. They
the desired estimates forh, but they do not provide sufficient regularity of the velocity. Instead, the(k + 1)-st order
energy estimate refers to the spaces

v ◦ X ∈ L∞(
0, T ;Hk+1(R)

) ∩ · · · ∩ Wk+1,∞(
0, T ;L2(R)

)
, (2.1)

h ∈ L∞(
0, T ;Hk+2(S)

) ∩ · · · ∩ Wk+1,∞(
0, T ;H 1(S)

)
. (2.2)

In order to control error terms we must use Proposition 3. It improves the estimates forv by half an order to thos
of (1.10), and yields bounds forp as in (1.11).

When differentiating the solution we have to perform all derivatives in tangential directions to the free bo
in space and time, either in temporal or in a horizontal direction. This way we can exploit differentiated bo
conditions in the calculations. With the scalar fieldYt := ∂tY ◦ X−1 we introduce avertical material derivativeas

D̂tu(x, y, t) := ∂tu(x, y, t) + ∂yu(x, y, t)Yt (x, y, t).

This quantity is a total time derivative ofu in the moving co-ordinatesX in the sense that the following chain-ru
holds. The functionu ◦ X has the time derivative

∂t (u ◦ X) = d

dt
(u ◦ X) = (∂tu) ◦ X + (∇(x,y)u) ◦ X · ∂tX = (∂tu) ◦ X + (∂yu) ◦ X∂tY = D̂tu ◦ X, (2.3)

or, equivalently,

∂t (u ◦ X)(x, y, t) = D̂tu
(
x,Y (x, y, t), t

)
,

for all (x, y) ∈ R and allt . Note that on the boundary holds the equality

Yt

(
x,h(x, t), t

) = ∂tY (x,1, t)= ∂th(x, t) = vn

√
1+ |∇h|2. (2.4)

We can introduce these derivatives of the solution as new variables. We define

vt := D̂tv, pt := D̂tp.

We wish to emphasize at this point that we understandvt andpt as new variables — at no point of this article
subscript indicates a derivative. Instead,Yt , vt , ft , gt , fxi

, and other functions will be new variables, their nam
chosen to remind us their definition or their meaning (e.g.ft an error term introduced through time differentiatio

We can also introduce variables corresponding to higher derivatives in the formD̂k
t v, D̂k

t p. Moreover, the sam
idea can also be used for spatial derivatives. We setYi := ∂xi

Y ◦ X−1, and introduce atangential derivativeas

D̂xi
u(x, y, t) := ∂xi

u(x, y, t) + ∂yu(x, y, t)Yi(x, y, t).

Note that

Yi

(
x,h(x, t), t

) = ∂xi
Y (x,1, t)= ∂xi

h(x, t) (2.5)

on the boundary. We can also introduce higher derivatives of the formD̂k
xi

v, D̂k
xi

p as new variables.
The goal of this section is to derive equations for the functions(D̂k

t v, D̂k
t p) and(D̂k

xi
v, D̂k

xi
p). The equations

will have the same structure as the initial system. We can therefore repeat the testing procedure applied
just that now we will, for example, multiply the equation for̂Dk

t v with the functionD̂k
t v. This will provide the

high-order energy estimates of (2.1) and (2.2).
We will make use of the following observation. The testing procedure does not exactly provide the estimah

as in (2.2), but we will rather find estimates for weightedL2-norms of derivatives ofh, the weight being a functio
of

√
1+ |∇h|2 as in e.g. (2.7) or (2.10). Nevertheless, by the assumption in Theorem 1, the bound|∇h| � η holds
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initially. As long ash continues to satisfy the bound|∇h| � 2η, the weighted energies are equivalent to stand
Sobolev norms and we find theL2-type estimates. Now the energy-bounds imply that|∇h(·, t)|∞ can only grow
linearly in time, therefore|∇h| � 2η remains valid on a time interval of a length determined by the initial val
The precise argument is used in the conclusion of the theorem with estimate (2.25).

2.1. First derivatives in 2D

The vertical material derivative does not commute with standard derivatives. This is the source of the
order error terms. We have the commutator

[∂i, D̂t ]u := ∂i(∂t + Yt∂y)u − (∂t + Yt∂y)∂iu = ∂iYt ∂yu,

and herei can stand forx1, x2, y, or t . Using the standard abbreviationD
Dt

= ∂t + (v ·∇), the equation forvt = D̂1
t v

andpt = D̂1
t p reads

D

Dt
vt = ∂t D̂t v + (v · ∇)D̂tv

= D̂t

D

Dt
v + ∂tYt ∂yv − (D̂t v · ∇)v + (v · ∇)Yt∂yv

= −D̂t∇p + ∂tYt ∂yv − (D̂t v · ∇)v + (v · ∇)Yt∂yv

= −∇D̂tp + ∇Yt∂yp + ∂tYt∂yv − (D̂tv · ∇)v + (v · ∇)Yt∂yv

=: −∇pt + f 1
t .

Testing this equation withvt and using

divvt =
N∑

j=1

∂jYt∂yvj =: g1
t

we find

∂t

1

2

∫
Ωt

|vt |2 +
∫
Γt

ptvt · n =
∫
Ωt

f 1
t · vt +

∫
Ωt

g1
t pt . (2.6)

We already see that our choice of coordinates will make it necessary to control highest time derivative
pressure. Such an estimate can not be derived from the energy itself.

We next want to identify, up to error terms, the boundary integral on the left-hand side of (2.6) with th
derivative of an energy. We calculate for the first factor

pt

(
x,h(x, t), t

) = (D̂tp)
(
x,h(x, t), t

) (2.3)= d

dt
p
(
x,h(x, t), t

)
(1.4)= −∂t∇ ·

( ∇h√
1+ |∇h|2

)

= −∇ ·
(

∂t∇h√
1+ |∇h|2 − ∇h〈∇h, ∂t∇h〉√

1+ |∇h|2 3

)

(2D)= −∇ ·
(

∂t∇h√
1+ |∇h|2 3

)
.

With the notationD̂tn = ∂t (n ◦ X), or, evaluated in a point,

D̂tn
(
x,h(x, t), t

) = d [(−∇h(x, t),1
)/√

1+ ∣∣∇h(x, t)
∣∣2],
dt
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we now calculate for the second factor

vt · n = D̂tv · n = D̂t (v · n) − v · D̂tn

(1.3)= ∂t

(
∂th√

1+ |∇h|2
)

− v · D̂tn

= ∂2
t h√

1+ |∇h|2 − ∂th〈∇h, ∂t∇h〉√
1+ |∇h|2 3

− v · ∂t

(
(−∇h,1)√
1+ |∇h|2

)

=: ∂2
t h√

1+ |∇h|2 + δ1
t .

We therefore find for the integral∫
Γt

ptvt · n =
∫
S

ptvt · n
√

1+ |∇h|2

= −
∫
S

∇ ·
(

∂t∇h√
1+ |∇h|2 3

)(
∂2
t h√

1+ |∇h|2 + δ1
t

)√
1+ |∇h|2

=
∫
S

(
∂t∇h√

1+ |∇h|2 3

)
· ∇

(
∂2
t h + δ1

t

√
1+ |∇h|2

)

= ∂t

1

2

∫
S

|∂t∇h|2√
1+ |∇h|2 3

+ 3

2

∫
S

|∂t∇h|2 〈∇h, ∂t∇h〉√
1+ |∇h|2 5

+
∫
S

(
∂t∇h√

1+ |∇h|2 3

)
· ∇

(
δ1
t

√
1+ |∇h|2

)
.

For the integrand of the second integral we introduce the abbreviation

ε1
t := −3

2
|∂t∇h|2 〈∇h, ∂t∇h〉√

1+ |∇h|2 5
.

We can now introduce the first order energy

E1
t (v, h) := 1

2

∫
Ωt

|vt |2 + 1

2

∫
S

|∂t∇h|2√
1+ |∇h|2 3

, (2.7)

and estimate (2.6) can be written as

∂tE
1
t =

∫
Ωt

f 1
t · vt +

∫
Ωt

g1
t pt +

∫
S

ε1
t −

∫
S

(
∂t∇h√

1+ |∇h|2 3

)
· ∇

(
δ1
t

√
1+ |∇h|2

)
. (2.8)

We will see that all terms on the right-hand side can be treated as error terms. Our next aim must ther
to analyze the quality of the integrals on the right-hand side. To this end we use jets: Given aHk function u =
u(x, y, t), the symbolDku denotes the vector of all derivatives ofu up to orderk. The symbol̄∂ku is used for the
jet of functionsu = u(x, t). By P(ξ1, . . . , ξn) we denote the class of polynomials in the variablesξ1, . . . , ξn, and

additionally in
√

1+ |∇h|2±1
. We inspect the error terms and find

f 1
t ∈P(D1v,D1Yt ,∇p), g1

t ∈P(∇v,∇Yt ), δ1
t ∈P(∂̄2h,v), ε1

t ∈P(∂̄2h). (2.9)
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The calculations leading to (2.8) can be repeated for the tangential derivativesD̂xi
v andD̂xi

p. We exploit that the
derivative has a tangential direction when calculating

(D̂xi
p)

(
x,h(x, t), t

) = d

dxi

p
(
x,h(x, t), t

)
.

Introducing the energy

E1
xi

(v, h) := 1

2

∫
Ωt

|D̂xi
v|2 + 1

2

∫
S

|∂xi
∇h|2√

1+ |∇h|2 3
, (2.10)

we find the estimate

∂tE
1
xi

=
∫
Ωt

f 1
xi

· vxi
+

∫
Ωt

g1
xi

pxi
+

∫
S

ε1
xi

−
∫
S

(
∂xi

∇h√
1+ |∇h|2 3

)
· ∇

(
δ1
xi

√
1+ |∇h|2

)
. (2.11)

Here the error termsf 1
xi

, g1
xi

, δ1
xi

, andε1
xi

have the structure (2.9) just as their temporal counterparts.
The sum of the two energies (three forN = 3), E1

t + ∑
i E

1
xi

, can yield bounds forh ∈ L∞(0, T ;H 2(S)) ∩
W1,∞(0, T ;H 1(S)). This coincides with (2.2) fork = 0. On this basis Proposition 3 can provide bounds fov

andp. Once the error integrals can be estimated by these norms, (2.8) and (2.11) yield the desired a priori

2.2. Higher derivatives in 2D

In this subsection we use an inductive procedure to calculate the equations and the estimates for high
tives. We start from the equation on levelk,

D

Dt
D̂k

t v + ∇D̂k
t p = f k

t , (2.12)

as it was derived fork = 1 in 2.1. A further differentiation ofv yields the same equation for̂Dk+1
t v and the

expression forf k+1
t .

D

Dt
D̂k+1

t v = ∂t D̂t D̂
k
t v + (v · ∇)D̂t D̂

k
t v

= D̂t ∂t D̂
k
t v + ∂tYt ∂yD̂

k
t v + D̂t

[
(v · ∇)D̂k

t v
] − (D̂tv · ∇)D̂k

t v + (v · ∇)Yt∂yD̂
k
t v

= D̂t

D

Dt
D̂k

t v + ∂tYt ∂yD̂
k
t v − (D̂t v · ∇)D̂k

t v + (v · ∇)Yt∂yD̂
k
t v

(2.12)= −D̂t∇D̂k
t p + D̂tf

k
t + ∂tYt ∂yD̂

k
t v − (D̂tv · ∇)D̂k

t v + (v · ∇)Yt∂yD̂
k
t v

= −∇D̂t D̂
k
t p + D̂tf

k
t + ∇Yt∂yD̂

k
t p + ∂tYt ∂yD̂

k
t v − (D̂t v · ∇)D̂k

t v + (v · ∇)Yt∂yD̂
k
t v

=: −∇D̂k+1
t p + f k+1

t .

By induction we can conclude for the structure off k+1
t

f k+1
t ∈P(1)

(
Dk+1v,Dk+1Yt ,D

k∇p
) ∀k � 1,

f k+1
t ∈P(1,1)

(
Dk+1v,Dk+1Yt ,D

k∇p
) ∀k � 3.

Here we use the following short notation for polynomials:P(1) is the class of all polynomials that are affine
all entries that represent highest derivatives.P(1,1) denotes polynomials that are affine in all entries that repre
highest or next to highest derivatives.

Concerning the divergence we start from the equation

div D̂k
t v = gk

t . (2.13)
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nction.
Again,gk
t was calculated fork = 1 in the last subsection. We derive

div D̂k+1
t v = D̂t div D̂k

t v +
∑
j

∂jYt ∂yD̂
k
t vj = D̂tg

k
t +

∑
j

∂jYt ∂yD̂
k
t vj =: gk+1

t .

By induction follows

gk+1
t ∈P(1)

(
Dk∇v,Dk∇Yt

) ∀k � 1,

gk+1
t ∈P(1,1)

(
Dk∇v,Dk∇Yt

) ∀k � 3.

We now test (2.12) on levelk + 1 with D̂k+1
t v and find

∂t

1

2

∫
Ωt

∣∣D̂k+1
t v

∣∣2 +
∫
Γt

D̂k+1
t pD̂k+1

t v · n =
∫
Ωt

f k+1
t · D̂k+1

t v +
∫
Ωt

gk+1
t D̂k+1

t p. (2.14)

We again want to identify the boundary integral on the left-hand side as the time derivative of a positive fu
Starting from

(
D̂k

t p
)(

x,h(x, t), t
) (2D)= −∇ ·

(
∂k
t ∇h√

1+ |∇h|2 3

)
+ ρk

t , (2.15)

whereρk
t = ρk

t (x, t) is considered as a function ofx andt , we derive the expression forρk+1
t as

D̂k+1
t p

(
x,h(x, t), t

) = d

dt

[
(D̂k

t p)
(
x,h(x, t), t

)]
(2.15)= −∂t∇ ·

(
∂k
t ∇h√

1+ |∇h|2 3

)
+ ∂tρ

k
t

= −∇ ·
(

∂k+1
t ∇h√

1+ |∇h|2 3
− 3

∂k
t ∇h〈∇h, ∂t∇h〉√

1+ |∇h|2 5

)
+ ∂tρ

k
t

=: −∇ ·
(

∂k+1
t ∇h√

1+ |∇h|2 3

)
+ ρk+1

t .

Starting induction withρ1
t = 0 we find

ρk+1
t ∈P(1)(∂̄k∇2h, ∂̄k∇h, ∂̄kh) ∀k � 1,

ρk+1
t ∈P(1,1)(∂̄k∇2h, ∂̄k∇h, ∂̄kh) ∀k � 3.

We finally calculate the velocity, starting from equation

D̂k
t v · n = ∂k+1

t h√
1+ |∇h|2 + δk

t (2.16)

on the boundary. The derivativêDt uses only the boundary values and we calculate

D̂k+1
t v · n = D̂t

(
D̂k

t v
) · n = D̂t

(
D̂k

t v · n) − D̂k
t v · D̂tn = ∂t

(
∂k+1
t h√

1+ |∇h|2 + δk
t

)
− D̂k

t v · D̂tn

= ∂k+2
t h√

1+ |∇h|2 − ∂k+1
t h〈∇h, ∂t∇h〉√

1+ |∇h|2 3
+ ∂t δ

k
t − D̂k

t v · ∂t

(
(−∇h,1)√
1+ |∇h|2

)

=: ∂k+2
t h√

2
+ δk+1

t .

1+ |∇h|
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nd are
In the analysis of error terms introduced byδk
t some care is required. The expression∂k

t δ1
t appears inδk+1

t . This is
the only term of orderk + 2 in h. We recall

δ1
t = F · ∂t∇h with F ∈P(∂̄1h,v).

For the other contributions we find

δk+1
t − ∂k

t δ1
t ∈ P(1)(∂̄k+1h,Dkv) ∀k � 2,

δk+1
t − ∂k

t δ1
t ∈ P(1,1)(∂̄k+1h,Dkv) ∀k � 3.

Concerning the second entry we emphazise that the polynomial is expressed in terms ofDkv(x,h(x, t), t).
We are now in a position to derive energy estimates ink-th order. We introduce the abbreviation

εk+1
t := −3

2
|∂k+1

t ∇h|2 ∇h · ∂t∇h√
1+ |∇h|2 5

and note that fork � 2

εk+1
t ∈P(2,0)(∂̄k+1∇h),

whereP(2,0) denotes the class of polynomials that are quadratic in the entries for highest derivatives a
independent of entries for next to highest derivatives. Combining the above equalities we get∫

Γ

D̂k+1
t pD̂k+1

t v · n =
∫
S

D̂k+1
t pD̂k+1

t v · n
√

1+ |∇h|2

=
∫
S

[
−∇ ·

(
∂k+1
t ∇h√

1+ |∇h|2 3

)
+ ρk+1

t

](
∂k+2
t h√

1+ |∇h|2 + δk+1
t

)√
1+ |∇h|2

=
∫
S

(
∂k+1
t ∇h√

1+ |∇h|2 3

)
· ∇

(
∂k+2
t h + δk+1

t

√
1+ |∇h|2

)
+

∫
S

ρk+1
t

(
∂k+2
t h + δk+1

t

√
1+ |∇h|2

)

= ∂t

1

2

∫
S

|∂k+1
t ∇h|2√

1+ |∇h|2 3
−

∫
S

εk+1
t +

∫
S

(
∂k+1
t ∇h√

1+ |∇h|2 3

)
· ∇

(
δk+1
t

√
1+ |∇h|2

)

+
∫
S

ρk+1
t

(
∂k+2
t h + δk+1

t

√
1+ |∇h|2

)
.

For the high-regularity energy

Ek+1
t (v, h) := 1

2

∫
Ωt

∣∣D̂k+1
t v

∣∣2 + 1

2

∫
S

|∂k+1
t ∇h|2√

1+ |∇h|2 3
(2.17)

the estimate (2.14) reads now

∂tE
k+1
t =

∫
Ωt

f k+1
t · D̂k+1

t v +
∫
Ωt

gk+1
t D̂k+1

t p +
∫
S

εk+1
t −

∫
S

(
∂k+1
t ∇h√

1+ |∇h|2 3

)
· ∇

(
δk+1
t

√
1+ |∇h|2

)

−
∫

ρk+1
t

(
∂k+2
t h + δk+1

t

√
1+ |∇h|2

)
. (2.18)
S
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energy

e

3

n,
Without repeating the calculations we note that the same inequality holds for tangential derivatives. For the

Ek+1
xi

(v, h) := 1

2

∫
Ωt

|D̂k+1
xi

v|2 + 1

2

∫
S

|∂k+1
xi

∇h|2√
1+ |∇h|2 3

(2.19)

holds

∂tE
k+1
xi

=
∫
Ωt

f k+1
xi

· D̂k+1
xi

v +
∫
Ωt

gk+1
xi

D̂k+1
xi

p +
∫
S

εk+1
xi

−
∫
S

(
∂k+1
xi

∇h√
1+ |∇h|2 3

)
· ∇

(
δk+1
xi

√
1+ |∇h|2

)

−
∫
S

ρk+1
xi

(
∂k+2
xi

h + δk+1
xi

√
1+ |∇h|2

)
. (2.20)

For k � 3 the error terms satisfy

f k+1
xi

∈ P(1,1)
(
Dk+1v,Dk+1Yi,D

k∇p
)
,

gk+1
xi

∈ P(1,1)
(
Dk∇v,Dk∇Yi

)
,

ρk+1
xi

∈ P(1,1)(∂̄k∇2h, ∂̄k∇h, ∂̄kh),

δk+1
xi

− ∂k
xi

δ1
xi

∈ P(1,1)(∂̄k+1h,Dkv),

εk+1
xi

∈ P(2,0)(∂̄k+1∇h),

with

δ1
xi

= Fi · ∂xi
∇h for Fi ∈ P(∂̄1h,v).

2.3. Analysis of error terms

From now on we always assumek � 3. We will use the sum of all the higher energies as a total energy,

Ek+1(t) := Ek+1
t (t) + · · · + Ek+1

x1
(t) + Ek+1

x2
(t). (2.21)

The dots indicate that also energies of mixed derivatives (spatial and temporal) are used. At -independent estimat
for the energyEk+1(t) yields immediately a bound for the functionh,

‖h‖L∞(0,T ;Hk+2(S)) + · · · + ‖h‖Wk+1,∞(0,T ;H1(S)) � C sup
τ∈[0,T ]

Ek+1(τ ),

where we assume that|∇h(·, t)|L∞ � 2η remains satisfied for allt ∈ [0, T ]. Based on this estimate, Proposition
yields the estimate

‖v ◦ X‖L∞(0,T ;Hk+3/2(R)) + · · · + ‖v ◦ X‖Wk,∞(0,T ;H3/2(R)) + ‖v ◦ X‖Wk+1,∞(0,T ;L2(R)) � Cv, (2.22)

whereCv depends only on supτ∈[0,T ] Ek+1(τ ). Note that theWk+1,∞ estimate is not taken from the propositio

but directly from the energyEk+1
t . The corresponding regularity of the pressure is

‖p ◦ X‖L∞(0,T ;Hk+3/2(R)) + · · · + ‖p ◦ X‖Wk−1,∞(0,T ;H2+1/2(R))

+‖p ◦ X‖Wk,∞(0,T ;H1(R)) + ‖p ◦ X‖ k+1,∞ −1/2 � Cp, (2.23)

W (0,T ;H∗ (R))
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whereCp depends only on supτ∈[0,T ] Ek+1(τ ). Here theWk,∞ estimate is not taken from the proposition; inste
we use Eq. (1.1) for∇p and conclude from the estimate forv. We emphasize at this point that we will use in t
following only the estimate

Dk+1(p ◦ X) ∈ L∞(
0, T ;H−1/2∗ (R)

)
.

The final a priori estimate follows now by using the estimates (2.22) and (2.23) in the energy growth ineq
(2.18) and (2.20). It suffices to check that for boundedv, p, andh, time integrals of the right-hand side in (2.1
are bounded by a small number forT > 0 small.

For the two integrals∫
Ωt

f k+1
t · D̂k+1

t v and
∫
S

εk+1
t

the bound is immediate; the integrands are products of twoL2-functions with otherL∞-functions; the norms of al
factors are bounded by the energies.

The term

Ip :=
T∫

0

∫
Ωt

gk+1
t D̂k+1

t p

poses a severe problem if one has only energy estimates forv andp. Our improved estimates imply that

gk+1
t ◦ X ∼ Dk∇(v ◦ X) ∈ L∞(

0, T ;H 1/2(R)
)
,

and∂k+1
t (p ◦ X) ∈ L∞(0, T ;H−1/2∗ (R)), that is,

D̂k+1
t p ◦ X = Q0 +

N−1∑
j=1

∂xj
Qj with Qj ∈ L∞(

0, T ;H 1/2(R)
)
.

The pairing

H 1/2(R) × H 1/2(R) � (g,Q) �→
∫
R

g∂xj
Q

is a bounded map. This implies thatIp is small for bounded energies andT > 0 small.
Other critical terms in the estimate are

I1 :=
T∫

0

∫
S

ρk+1
t ∂k+2

t h,

I2 :=
T∫

0

∫
S

(
∂k+1
t ∇h√

1+ |∇h|2 3

)
· ∇

(
δk+1
t

√
1+ |∇h|2

)
.

In the analysis of these terms we have to represent the highest order expressions as derivatives. With po
Pij ∈ P(∂̄k−1h) we write the highest order terms ofρk+1

t as∂xi
∂xj

∂k
t hPij (∂̄

k−1h). We calculate for the integral

I ′
1 =

T∫ ∫
∂xi

∂xj
∂k
t hPij (∂̄

k−1h)∂k+2
t h
0 S
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we
=
T∫

0

∫
S

∂t

[
∂xi

∂xj
∂k
t hPij (∂̄

k−1h)∂k+1
t h

] −
T∫

0

∫
S

∂t

[
∂xi

∂xj
∂k
t hPij (∂̄

k−1h)
]
∂k+1
t h

= −
∫
S

∂xj
∂k
t h∂xi

[
Pij (∂̄

k−1h)∂k+1
t h

]∣∣∣T
0

+
T∫

0

∫
S

∂t

[
∂xj

∂k
t h∂xi

Pij (∂̄
k−1h)

]
∂k+1
t h

+
T∫

0

∫
S

∂t

[
∂xj

∂k
t hPij (∂̄

k−1h)
]
∂xi

∂k+1
t h.

Concerning the first integral we use that‖∂xi
∂k+1
t h(T )‖2

L2 is bounded by the energy. The other factor has a t

derivative inL∞(0, T ;L2) bounded by the energy. We find

I ′
1 � C1

(
1+

∣∣∣sup
τ

Ek+1(τ )

∣∣∣1/2) + C2T
(
1+

∣∣∣sup
τ

Ek+1(τ )

∣∣∣m)
, (2.24)

with C1 andC2 depending only on the initial values andm > 0. Note that also the second and third integral sat
the bound.

For the integralI2 we must exploit that the highest order terms are divergences.δ1
t is a multiple of∂t∇h,

therefore the highest order terms are

I ′
2 =

T∫
0

∫
S

∂k+1
t ∇hPi(∂̄

k−1h)∂k+1
t ∂xi

∇h =
T∫

0

∫
S

Pi(∂̄
k−1h)∂xi

(
1

2
|∂k+1

t ∇h|2
)

= −
T∫

0

∫
S

∂xi
Pi(∂̄

k−1h)
1

2
|∂k+1

t ∇h|2.

This integral again satisfies (2.24).
A critical term of lower order is generated by time derivatives ofv contained inδk+1

t . Such terms read

T∫
0

∫
S

∂k+1
t ∇hP (∂̄k−1h) · ∇D̂k

t v.

For this integral we use the estimate for boundary values of∇D̂k
t v expressed in (3.6) and can estimate as in (2.

Conclusion of Theorem 1 in the caseN = 2. Estimate (2.18) together with (2.20) and their counterparts for m
derivatives allow now to conclude the proof of Theorem 1. Since the energy estimates imply theL2-type estimates
of (2.22) and (2.23) only for uniformly bounded|∇h|, we setTη := sup{t ∈ [0, T ]: |∇h(·, τ )|∞ � 2η ∀τ � t}.

As a preparation we observe that theL∞-bound of∂tE
k+1(t) implies the continuity of the energy on[0, Tη].

We now estimate the energy by its initial values and the supremum of its time derivatives and find

sup
τ∈[0,t]

Ek+1(τ ) � C + tΦ
(

sup
τ∈[0,t]

Ek+1(τ )
)

for all t ∈ [0, Tη], for a constantC and a polynomialΦ depending only on the norms of the initial values. Here
absorbed the factorC1|supτ∈[0,T ] Ek+1(τ )|1/2 of (2.24) in the left-hand side. Fort < T0, T0 > 0 small (depending
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on the initial values throughC andΦ), the supremum of the energies can only be either smaller thanC + 1 or
larger thanC + 2. Continuity of the energy then implies the uniform bound

sup
τ∈[0,t]

Ek+1(τ ) � C + 1 (2.25)

for all t ∈ [0,min{Tη,T0}]. In order to conclude the uniform estimate on a time interval that depends only o
norms of the initial values, it remains to estimateTη from below. The bound‖∂t∇h‖∞ � C on [0,min{Tη,T0}]
implies‖∇h(·, t)‖∞ � η + Ct for t ∈ [0,min{Tη,T0}], and henceTη � min{η/C,T0}. In particular, the value o
min{Tη,T0} depends only on the norm of the initial values.

2.4. Estimates in the three-dimensional case

In our approach there is not much difference between the casesN = 2 andN = 3. In the two-dimensional cas
the expression forpt on page simplifies in the last line. This lead toρ1

t = 0 in Eq. (2.15). In the three-dimension
case the equation is replaced by(

D̂k+1
t p

)(
x,h(x, t), t

) (3D)= −∇ · A1 + ρ̄k+1
t

with

A1 := ∂k+1
t ∇h√

1+ |∇h|2 − ∇h〈∇h, ∂k+1
t ∇h〉√

1+ |∇h|2 3
.

In the testing procedurêDk+1
t p is multiplied with

A2 := ∂k+2
t h + δk+1

t

√
1+ |∇h|2,

and integrated overS. We evaluate the two terms that appear additionally in the three-dimensional case. Ag
have to interpret the error terms as divergences. Multiplication of the second term ofA1 and the first term of∇A2
yields

−
√

1+ |∇h|2
−3

∇h〈∇h, ∂k+1
t ∇h〉 · ∂k+2

t ∇h = −
√

1+ |∇h|2
−3

∂t

1

2
〈∇h, ∂k+1

t ∇h〉2 + P(∂̄k+1h)

for a polynomialP ∈ P(1,1)(∂̄k+1h). Integration over[0, T ] yields the contribution∫
S

√
1+ |∇h|2

−3 1

2
〈∇h, ∂k+1

t ∇h〉2
∣∣T
0 � C + ∥∥∇h(T )

∥∥2
L∞(S)

Ek+1(T ).

Since we assumed that‖∇h(T )‖L∞(S) is initially small, it remains small on[0, T ], and we can absorb the abo
error term in the energy estimate.

Concerning the multiplication of the second terms ofA1 and∇A2 we evaluate the highest order expression,
contributionFi∂

k+1
t ∂xi

h of δk+1
t .

−〈∇h, ∂k+1
t ∇h〉〈∇h,∇(Fi∂

k+1
t ∂xi

h)
〉 = −Fi∂xi

1

2
〈∇h, ∂k+1

t ∇h〉2 + P(∂̄k+1∇h, ∂̄1Fi).

After an integration by parts this expression is bounded by the energy and the time integral is small.
The product of the first term ofA1 with the second term of∇A2 is treated in the same way,

〈
∂k+1
t ∇h,∇(Fi∂

k+1
t ∂xi

h)
〉 = Fi∂xi

1

2
|∂k+1

t ∇h|2 + P(∂̄k+1∇h, ∂̄1Fi).
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Conclusion of Theorem 1.Based on this analysis of the error terms, the estimate of Theorem 1 follows
(2.18) and (2.20) just as in the two-dimensional case.

3. Regularity properties of velocity and pressure

In this section we present the proof of Proposition 3. We will use the results on fractional Sobolev spa
interpolation that are collected in Appendix.

3.1. Estimates for the velocity

Based on the transport equation forω = curlv we will derive estimates forv. They will improve the energy
estimates by half an order. We will work on a fixed domain using the domain transformationX(·, t) :R → Ωt . The
first step of the proof is an integration lemma: Given div(v)and curl(v), the functionv is one order more regula
than these data.

Lemma 4. Let the evolution of the domain be given by a functionh with bounded norm

h ∈ L∞(
0, T ;Hk+2(S)

) ∩ · · · ∩ Wk+1,∞(
0, T ;H 1(S)

)
(3.1)

and small in the norm

h ∈ L∞(
0, T ;H 2(S)

) ∩ L∞(
0, T ;C0,1(S)

)
. (3.2)

We assume furthermore that the vorticity satisfies bounds for

Dk(ω ◦ X) ∈ L∞(
0, T ;H 1/2(R)

)
, (3.3)

Dk(ω ◦ X)|S ∈ L∞(
0, T ;L2(S)

)
. (3.4)

Then the unique solutionv of

divv = 0, curlv = ω in Ωt,

v · n = ∂th√
1+ |∇xh|2 onΓt ,

has bounded derivatives

Dk∇(v ◦ X) ∈ L∞(
0, T ;H 1/2(R)

)
, (3.5)

Dk∇(v ◦ X)|S ∈ L∞(
0, T ;L2(S)

)
. (3.6)

Proof. We present the proof in the two-dimensional case. The three-dimensional case follows the same l
requires only some additional notational effort.

Interior estimates. As a first step we rewrite the equations with an unknown functionu living on the fixed do-
mainR. We useB = (bij )ij , the inverse matrix ofDX :R → R

N×N . On the boundary holds

DX =
[

1 0
∂xh ∂yY

]
, B = 1

∂yY

[
∂yY 0
−∂xh 1

]
. (3.7)

Instead of showing the estimates for(v ◦ X), by the regularity ofh andY it is sufficient to show the estimates f
the new independent variableu = (ui)i

ui :=
∑

bij vj ◦ X. (3.8)

j
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ance
To verify the equivalence of norms ofv ◦ X and ofu one exploits that for some constantC all functionsf andg

onR satisfy

‖f · g‖H1/2(R) � C‖f ‖L∞∩H3/2‖g‖H1/2. (3.9)

This follows with an interpolation: the mapK : g �→f ·g is bounded inL(L2(R),L2(R)) and inL(H 1(R),H 1(R)).
For the latter we use in three space dimensions the embeddingsH 1/2 ⊂ L3 andH 1 ⊂ L6.

In order to derive equations foru we evaluate∑
ij

bij ∂i(vj ◦ X) =
∑
ijk

bij (∂kvj ) ◦ X∂iXk =
∑
jk

(∂kvj ) ◦ Xδjk = 0,

∂2u1 − ∂1u2 = ∂2

(∑
j

b1j vj ◦ X

)
− ∂1

(∑
j

b2j vj ◦ X

)

=
∑
j

∂2b1j vj ◦ X +
∑
jk

b1j (∂kvj ) ◦ X∂2Xk −
∑
j

∂1b2j vj ◦ X −
∑
jk

b2j (∂kvj ) ◦ X∂1Xk,

u2|S =
∑
j

(b2j vj ◦ X)|S = 1

∂yY
(v2 − ∂xhv1).

We find foru the equations

divu =
∑
ij

(∂ibij )(DX · u)j in R,

curlu = ω ◦ X + F1(DxB,D2
xX) · u + F2(B,DX) · ∇u in R,

u2 = ∂th

∂yY
onS,

whereF1,F2 are polynomials withF2 ≡ 0 for h ≡ 0. We now consider these equations at a fixed time inst
t ∈ [0, T ], and omit the indext in the following. We decompose the solutionu in two parts,u = ū + ũ, whereū

solves

div ū = 0 in R,

curlū = 0 in R,

ū · ey = ∂th

∂yY
onS.

We can writeū = ∇Φ for an harmonic functionΦ. We infer thatū has the regularity of continuations of∂th and
∂xh, i.e.

‖ū‖Hk+3/2(R) � C
{‖∂th‖Hk+1(S) + ‖∇h‖Hk+1(S)

}
� C. (3.10)

The remainder̃u solves

div ũ =
∑
ij

(∂ibij )(DX · u)j in R,

curlũ = ω ◦ X + F1(DxB,D2
xX) · u + F2(B,DX) · ∇u in R,

ũ2 = 0 onS.

With the help of standardL2 div–curl estimates we conclude that for everym � k

‖ũ‖Hm+1(R) � C1‖ω ◦ X‖Hm(R) + δ‖u‖Hm+1(R) + C2‖u‖Hm(R). (3.11)
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Hereδ > 0 is arbitrary small forh small in the norm of (3.2). After an interpolation of the standard estimate
conclude additionally

‖ũ‖Hk+3/2(R) � C1‖ω ◦ X‖Hk+1/2(R) + δ‖u‖Hk+3/2(R) + C2‖u‖Hk+1(R).

Here we use again (3.9).
The original equation forv immediately implies an estimate for theH 1-norm of v, which we use to start th

induction overm in Eq. (3.11). The induction and Eq. (3.10) yield the desired spatial estimate foru.
In order to derive bounds on time derivatives we only have to differentiate the equations foru with respect to

time and proceed as above. This concludes the proof of the interior estimates.

Boundary estimates.As a first step we claim that the harmonic functionY satisfies a bound for

Dk+1∇Y |S ∈ L∞(
0, T ;L2(S)

)
. (3.12)

Y is the harmonic extension of the functionh; this implies bounds forDk+1Y ∈ L∞(0, T ;H 3/2(S)), and therefore
a bound for

Dk+1Y |S ∈ L∞(
0, T ;H 1(S)

)
.

This implies the result for allk + 2-nd derivatives that contain a derivative in horizontal directionx. For purely
normal derivatives we use

∂k+2
y Y = −∂k

y ∂2
xY,

and find the result (3.12).
Foru we follow a similar path. The trace theorem and the inner estimates yield bounds for

(Dku)|S ∈ L∞(
0, T ;H 1(S)

)
,

which is a bound for∂xD
ku|S ∈ L∞(0, T ;L2(S)). For normal derivatives ofDku we have to exploit the equation

for divergence and curl.

∂yD
ku2 = Dk∂yu2 = −Dk∂xu1 + Dk divu ∈ L∞(

0, T ;L2(S)
)
.

We used (3.12) here. For derivatives ofu1 on the boundary we calculate

∂yD
ku1 = Dk∂yu1 = Dk∂xu2 + Dk curlu.

Using (3.4), (3.12), and an iterative improvement as in (3.11) this concludes the proof.�
In order to describe our compatibility assumption on the initial values we have to introduce the con

formal time derivatives. Given only the initial values(v0, h0) we can calculate the initial pressurep0 from its
boundary values (determined byh0 and (1.4)), and
p0 = div((v0 · ∇)v0). The initial pressure now determines t
initial time derivative ofv by (1.1). The boundary values ofv0 determine the initial time derivative ofh by (1.3).
Differentiating the equations we can also find higher time derivatives; they depend only on the initial values(v0, h0)

and are denoted bỹ∂m
t v0, ∂̃m

t p0, and∂̃m
t h0. From Eq. (1.7) we can determine∂̃m

t ω0.

Assumption 5. Let the initial values be such that the formal time derivatives forv,p,h andω are bounded in

∂̃m
t v0 ∈ Hk+3/2−m(Ω0) ∀m � k, ∂̃k+1

t v0 ∈ L2(Ω0),

(∂̃m
t ∇v0) ◦ X|S ∈ Hk−m(S) ∀m � k,

∂̃m
t h0 ∈ Hk+2−m(S) ∀m � k + 1.
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of Eq.

o norms

the
Note that the above estimates automatically implies bounds forω = curlv:

∂̃m
t ω0 ∈ Hk+1/2−m(Ω0) ∀m � k,

(∂̃m
t ω0) ◦ X|S ∈ Hk−m(S) ∀m � k.

The next step in our analysis is to exploit the vorticity equation.

Lemma 6. We consider a time dependent domain, given by a functionh with bounded norm

h ∈ L∞(
0, T ;Hk+2(S)

) ∩ · · · ∩ Wk+1,∞(
0, T ;H 1(S)

)
. (3.13)

Letω = curlv solve(1.7)and assume that the initial values are bounded in the norms of Assumption5.
Then, for a possibly smallerT > 0, the vorticityω ◦ X satisfies bounds in the spaces of(3.3), (3.4), i.e. bounds

for

Dk(ω ◦ X) ∈ L∞(
0, T ;H 1/2(R)

)
,

Dk(ω ◦ X)
∣∣
S

∈ L∞(
0, T ;L2(S)

)
.

Proof. The primary goal is to find a priori estimates for the transport equation

∂tω + (v · ∇)ω = f in Ωt ,

ω(0)= ω0 in Ω0,

for a given domain evolution and for a given velocity fieldv satisfying the boundary condition (1.3).

Interior estimates. We differentiate the transport equationm times with respect tot and obtain[
∂t + (v · ∇)

]
D̂m

t ω = [
∂t , D̂

m
t

]
ω + [

(v · ∇), D̂m
t

]
ω + D̂m

t f = D̂m
t f + F

(
DmYt ,D

mv,Dmω
)
, (3.14)

whereF is a polynomial that is linear in the set of highest and second but highest derivatives. Multiplication
(3.14) withD̂m

t ω and integration overΩt yields with the transport theorem∫
Ωt

1

2

∣∣D̂m
t ω

∣∣2 ∣∣∣∣τ
t=0

� C sup
t∈(0,T )

{∫
Ωt

∣∣D̂m
t ω

∣∣2(·, t)}1/2∥∥D̂m
t f ◦ X + F

(
DmYt ,D

mv,Dmω
) ◦ X

∥∥
L1(0,T ;L2)

.

The same calculation can be done with spatial derivatives ofω. We will use the estimate withm = k andm =
k + 1, in the latter case we assume that at least one derivative is spatial. Using the equivalence of the tw
‖DmΘ ◦ X‖L2 and‖Dm(Θ ◦ X)‖L2 for Θ , we find by the regularity ofh∥∥Dm(ω ◦ X)

∥∥
L∞L2 � Cv

{∥∥Dmω(0)
∥∥

L2 + ∥∥Dm(f ◦ X)
∥∥

L1L2

+ 1+ ∥∥Dm(v ◦ X)
∥∥

L1L2 + ∥∥Dm(ω ◦ X)
∥∥

L1L2

}
. (3.15)

The constantCv depends only on the norm‖Dk−1(v ◦X)‖L∞L2. Exploiting‖Θ‖L1(0,T ;L2) � T ‖Θ‖L∞(0,T ;L2) and
choosingT small (depending onCv) we can absorb the last term into the left-hand side.∥∥Dm(ω ◦ X)

∥∥
L∞L2 � CCv

{∥∥Dmω(0)
∥∥

L2 + ∥∥Dm(f ◦ X)
∥∥

L1L2 + 1+ ∥∥Dm(v ◦ X)
∥∥

L1L2

}
. (3.16)

We next interpolate this estimate form = k andm = k + 1 in order to obtain an estimate ofk-th derivatives
in H 1/2.

(a) Dependence onω0. We study the casef ≡ 0 andv fixed in order to study the (linear) dependence of
solutionω uponω0. The map

J :ω0 ◦ X0 �→ (
(ω ◦ X)(0), . . . , ∂̃k

t (ω ◦ X)(0)
)
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is bounded in the function spaces

J :Hm(R) → Hm(R) × · · · × Hm−k(R)

for m = k andm = k + 1. (3.16) yields that for everyτ � T andl � k the map

Sl :Hm(R) × · · · × Hm−k(R) � (
(ω ◦ X)(0), . . . , ∂̃k

t (ω ◦ X)(0)
) �→ ∂l

t (ω ◦ X)(τ) ∈ Hm−l(R)

is bounded. The interpolation betweenk andk + 1 yields that the linear mapsSl ◦ J are also bounded as maps

Sl ◦ J :Hk+1/2(R) → Hk+1/2−l (R). (3.17)

This provides the regularity in dependence of the initial data.
(b) Dependence onf . We now assumeω0 = 0 and investigate the dependence ofω on f . For fixedf with

bounded norms

Dk(f ◦ X) ∈ L1(0, T ;Hm−k(R)
)
,

we automatically have a bound for

∂l
t f (0)◦ X0 ∈ Hm−1−l(R)

for everyl � k −1. These expressions enter in the calculation of formal time derivatives ofω in t = 0. The estimate
(3.16) yields that for everyl � k the linear map

Ul :
(
f ◦ X, . . . , ∂k

t (f ◦ X)
) �→ ∂l

t (ω ◦ X)(τ)

is bounded in the spaces

Ul :L1Hm(R) × · · · × L1Hm−k(R) → Hm−l(R).

With another interpolation betweenm = k andm = k + 1 we find the result for thef -dependence.
Our interpolated estimate now reads∥∥Dk(ω ◦ X)

∥∥
L∞H1/2(R)

� CCv

{∥∥Dkω(0)◦ X0
∥∥

H1/2(R)
+ ∥∥Dk(f ◦ X)

∥∥
L1H1/2(R)

+ ∥∥Dk∇(v ◦ X)
∥∥

L1L2(R)

}
. (3.18)

In order to treat the norm ofv on the right-hand side we use Lemma 4.∥∥Dk∇(v ◦ X)
∥∥

L1L2 � T
∥∥Dk∇(v ◦ X)

∥∥
L∞L2 � T C

(
1+ ∥∥Dk(ω ◦ X)

∥∥
L∞H1/2 + ∥∥Dk(ω ◦ X)|S

∥∥
L∞L2

)
.

For smallT and with the boundary estimate below we can absorb the last term in estimate (3.18).
In the two-dimensional casef vanishes; in the three-dimensional case we havef = (ω · ∇)v and we must

exploit Lemma 4 in its full strength. It yields∥∥Dk(f ◦ X)
∥∥

L1H1/2 � C′
v

∥∥Dk∇(v ◦ X)
∥∥

L1H1/2

� T C′
v

(
1+ ∥∥Dk(ω ◦ X)

∥∥
L∞H1/2 + ∥∥Dk(ω ◦ X)|S

∥∥
L∞L2(S)

)
.

Together with the boundary estimate below, (3.18) provides an estimate for

ζ := ∥∥Dk(ω ◦ X)
∥∥

L∞H1/2(R)
+ ∥∥Dk(ω ◦ X)|S

∥∥
L∞L2(S)

of the form

ζ � Cv(C1 + C2T ζ ).
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We exploit thatCv contains only lower order derivatives ofv and can therefore be estimated in terms of its ini
values and an integral over its temporal derivative, whence

Cv � C3 + C4T Φ(ζ )

for some polynomialΦ. We combine the last two inequalities and find with a new constantC1 and a new polyno
mial Φ

ζ � C1 + T Φ(ζ ).

EnlargingC1 if necessary, we can assume that on a small time interval(0, ε) there holdsζ � C1 (we assumed
that the initial values are smooth). ChoosingT small (depending only on the norms of the initial values as
Assumption 5), we conclude thatζ can never exceed the valueC1 + 1.

Boundary estimates.As for the interior estimates we start from (3.14) and multiply again withD̂k
t ω, but this time

we will integrate only over the boundariesΓt . We have to choose an appropriate parametrization ofΓt , namely

γt :S → R
N with ∂tγt (x) = v

(
γt (x), t

)
. (3.19)

With this parametrization we find

d

dt

∫
S

g(·, t) ◦ γt =
∫
S

[
D

Dt
g(·, t)

]
◦ γt .

We setg = 1
2|D̂k

t ω|2 and integrate over time.∫
S

1

2

∣∣D̂k
t ω

∣∣2 ◦ γt

∣∣∣∣τ
t=0

=
τ∫

0

∫
S

[
D̂k

t ω · (D̂k
t f + F(DkYt ,D

kv,Dkω)
)] ◦ γ

� C sup
t∈(0,T )

{∫
S

∣∣D̂k
t ω

∣∣2 ◦ X

}1/2∥∥(
D̂k

t f ◦ X + F
(
DkYt ,D

kv,Dkω
) ◦ X

)∣∣
S

∥∥
L1(0,T ;L2(S))

by equivalence ofL2-norms with the different parametrizations. The same calculation can be done for
derivatives. Again using norm equivalence we find∥∥Dk(ω ◦ X)

∥∥
L∞(0,T ;L2(S))

� Cv

{∥∥Dkω(0)◦ X
∥∥

L2(S)
+ ∥∥Dk(f ◦ X)

∥∥
L1L2(S)

+ ∥∥Dk(v ◦ X)
∥∥

L1L2(S)
+ ∥∥Dk(ω ◦ X)

∥∥
L1L2(S)

}
.

The proof is finished as in the lines after (3.18): the last term can be absorbed in the left-hand side, the se
last term is of lower order, for the term containingf we exploit the boundary estimates of Lemma 4.�
3.2. Estimates for the pressure

The estimates for the pressure are based not only on the regularity ofv expressed in (3.5), but also on the ene
estimates∥∥∂k+1

t (v ◦ X)
∥∥ ∞ 2 + ‖∂k+1

t ∂xh‖L∞(0,T ;L2(S)) � C.

L (0,T ;L (R))
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We write the Euler equation as∇p = −∂tv − (v∇)v. The regularity ofv implies that the right-hand side ha
the k-th time derivative bounded inL∞(0, T ;L2(R)), and mixed (or purely spatial)k-th derivatives bounded i
L∞(0, T ;H 1/2(R)). We infer the following estimate for the pressure.

‖p ◦ X‖L∞(0,T ;Hk+3/2(R)) + · · · + ‖p ◦ X‖Wk−1,∞(0,T ;H2+1/2(R)) + ‖p ◦ X‖Wk,∞(0,T ;H1(R)) � C0. (3.20)

It remains to show the estimate for thek + 1 time derivative which is verified in the following lemma.

Lemma 7. Under the assumptions of Proposition3 the pressure satisfies the estimate

‖p ◦ X‖
Wk+1,∞(0,T ;H−1/2∗ (R))

� C, (3.21)

whereC depends only on the norm ofh and on the constantC0 of (3.20). In this estimateH−1/2∗ (R) denotes the
space of functionsg of the form

g = Q0 +
N−1∑
j=1

∂xj
Qj ,

with Q0 ∈ L2(R), Q1, . . . ,QN−1 ∈ H 1/2(R).

Proof. Step 1. An equation foru := ∂k+1
t (p ◦ X). The first step in the proof is to derive an equation foru. We

begin by transforming the Laplace operator on the domainΩt to the domainR, that is, for functions of the form
f ◦ X :R → R. We setB = (bij )ij = (DX)−1 andA = BBT. Then forf ∈ C2(Ω,R) andX :R → Ω one-to-one
we can calculate

∇ · (A∇(f ◦ X)
) =

∑
ijkl

∂i

(
bilbjl(∂kf ) ◦ X∂jXk

) =
∑
ik

∂i

(
bik(∂kf ) ◦ X

)
=

∑
ikl

bik(∂l∂kf ) ◦ X∂iXl +
∑
ik

∂ibik(∂kf ) ◦ X

=
∑

k

(∂2
k f ) ◦ X +

∑
ikl

∂ibik∂l(f ◦ X)blk

= (
f ) ◦ X + divB · BT · ∇(f ◦ X).

With the operatorLw := ∇ · (A∇w) − divB · BT · ∇w we can write this equality as

L(f ◦ X) = (
f ) ◦ X. (3.22)

We can now derive the equation foru, exploiting
p = −div[(v · ∇)v] = −∑
ij ∂ivj ∂j vi .

Lu = L∂k+1
t (p ◦ X)

= L(∂k+1
t p ◦ X) +L

(∑
i

k∂k
t ∂ip ◦ X∂tXi

)
+ · · · +L

(∑
i

∂ip ◦ X∂k+1
t Xi

)

= (
∂k+1
t p) ◦ X + k

(



∑
i

∂k
t ∂ip∂tXi ◦ X−1

)
◦ X + · · · +L

(∑
i

∂ip ◦ X∂k+1
t Xi

)

= −
(

∂k+1
t

∑
ij

∂ivj ∂j vi

)
◦ X − k

∑
i

(
∂k
t ∂i

[∑
lj

∂lvj ∂j vl

]
∂tXi ◦ X−1

)
◦ X + · · ·

+L
(∑

∂ip ◦ X∂k+1
t Xi

)
.

i



774 B. Schweizer / Ann. I. H. Poincaré – AN 22 (2005) 753–781

itions
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We conclude that

Lu = divF1 + F2, (3.23)

with F2 in L∞(0, T ;L2(R)). The functionF1 includes the term∂k+1
t v, first derivatives of∂k

t v, first derivatives of
∂k+1
t Xi , and first derivatives of∂k

t p. ThereforeF1 ∈ L∞(0, T ;L2(R)).
The boundary values ofu are

u = ∂k+1
t ∇ ·

( ∇h√
1+ |∇h|2

)
. (3.24)

Step 2. A decomposition ofu. In this and the next step of the proof we do not indicate the boundary cond
on the lower boundary of the rectangleR.

We decomposeu into a boundary contribution and a remainder of higher regularity,

u = ū + ũ, (3.25)

with ū :R × I → R being the solution of

Lū = 0 in R,

ū = ∇ · ∂k+1
t

( ∇h√
1+ |∇h|2

)
=: ∇ · g onS.

(3.26)

Note that we have a bound forg ∈ L∞(0, T ;L2(S)). The remainder̃u satisfies by linearity of the equations

Lũ = divF1 + F2 in R,

ũ = 0 onS.
(3.27)

Testing this equation with̃u we immediately conclude the regularityũ ∈ L∞(0, T ;H 1(R)). It remains to verify a
bound for

ū ∈ L∞(
0, T ;H−1/2∗ (R)

)
. (3.28)

We try to approximatēu as
∑N−1

i=1 ∂iUi with Ui solving

LUi = 0 in R,

Ui = gi onS.
(3.29)

Ui has the regularityUi ∈ L∞(0, T ;H 1/2(R)), therefore the contribution
∑N−1

i=1 ∂iUi has the desired estimate

L∞(0, T ;H−1/2∗ (R)). The remainderV := ū − ∑N−1
i=1 ∂iUi solves the system

LV =
(N−1∑

i=1

∂iL
)

Ui in R,

V = 0 onS.

(3.30)

It remains to show thatV ∈ L∞(0, T ;L2(R)) is bounded.
Step 3. Regularity ofV . We have to study solutionsV of

∇ · (A∇V ) = ∇ · (B∇U) in R,

V = 0 onS,

with smoothA andB, U ∈ H 1/2(R), andU |S = g ∈ L2(S). In order to show a bound forV ∈ L2(R) we take an
arbitraryw ∈ L2(R) and study theL2-product〈V,w〉.

Givenw we solve the dual problem

∂j (aij ∂iϕ) = w in R,

ϕ = 0 onS.
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Then withψ = (aij ∂iϕ)j we find∫
R

V w =
∫
R

V div(ψ) = −
∫
R

∇V · ψ =
∫
R

∂i(aij ∂jV )ϕ = −
∫
R

(B∇U) · ∇ϕ

=
∫
R

U∇ · (BT∇ϕ) +
∫
S

Un · (BT∇ϕ) � C
(‖U‖L2(R) + ‖U |S‖L2(S)

)‖ϕ‖H2(R).

Since‖ϕ‖H2(R) can be bounded in terms of‖w‖L2(R), this yields anL2 estimate forV ,

‖V ‖L2(R) � C
(‖U‖L2(R) + ‖U |S‖L2(S)

)
.

This concludes the proof.�

4. A Navier–Stokes approximation

In the previous sections we have derived a priori estimates for smooth solutions of the incompressib
equations (E). Once we can approximate (E) by a system (Eε) that has smooth solutions, we can conclude
existence of solutions to (E) — we only have to verify that solutions of (Eε) satisfy the same a priori estimates.

Our estimates are derived using both, the energy estimates forv andh, and the estimates for the vorticityω.
If we approximate the equations forv in a generic way, e.g. with a Galerkin scheme, we lose the structure i
equations forω. Then the a priori estimates can not be reproduced for the approximation. Our solution
problem is to use an approximating system (Eε) that has the same structure as (E) — we choose the Navier–Stoke
equations.

In this section we do all calculations in the two-dimensional caseN = 2. The method works in the same w
for N = 3.

The Navier–Stokes equations read

∂tv + (v · ∇)v + ∇p = ε
v, (4.1)

divv = 0, (4.2)

in the time dependent domainΩt . Two of the physical boundary conditions are the kinematic relation and ba
of normal forces.

∂th − v2 + ∂xh · v1 = 0, (4.3)

∂x ·
(

∂xh√
1+ |∂xh|2

)
+ p = 2ε(∂nv) · n. (4.4)

On the fixed boundary we use the normal conditionv · n = 0. It remains to choose tangential boundary conditi
on upper and lower boundary. We will not use the physical equation, but introduce an artificial conditi
impose on the free boundary and on the bottom the condition

ω = 0. (4.5)

The equation for the vorticityω := curlv reads

∂tω + (v · ∇)ω = ε
ω. (4.6)

The boundary condition (4.5) helps to exploit this vorticity equation. Note that with a no-slip condition o
bottom we could not hope to approximate the solution of the Euler equations in smooth function spaces.



776 B. Schweizer / Ann. I. H. Poincaré – AN 22 (2005) 753–781

ns. We
il-
ary

tions of

tial unit

ves of
of lower

to time.
We will derive estimates for the Navier–Stokes system by following the ideas used for the Euler equatio
will see that Proposition 3 remains valid: The reconstruction ofv from ω in Lemma 4 uses only the incompressib
ity and the kinematic condition. The regularity properties ofω in Lemma 6 can be reproduced due to our bound
condition. Lemma 7 remains valid with slight modifications in the statement and in the proof.

The a priori estimates follow if we can repeat the differentiated energy estimates of Section 2 for solu
the Navier–Stokes equations. This is not obvious due to the artificial tangential boundary condition.

4.1. First energy estimate

Multiplication of (4.1) withv and integrating overΩt yields∫
Ωt

(∂t + v · ∇)
1

2
|v|2 +

∫
Γt

pvn = −ε

∫
Ωt

|∇v|2 + ε

∫
Γt

∂nv · v.

By the transport theorem and by expanding the product under the last integral we find with the tangen
vectorτ

d

dt

1

2

∫
Ωt

|v|2 + ε

∫
Ωt

|∇v|2 +
∫
Γt

[
p − ε(∂nv)n

]
vn = ε

∫
Γt

(∂nv)τ vτ .

We calculate for the right-hand side∫
Γt

(∂nv)τ vτ
ω=0=

∫
Γt

(∂τ v)nvτ =
∫
Γt

[
∂τ (vn) − v · ∂τ n

]
vτ

(P.I.)= −
∫
Γt

vn∂τ (vτ ) −
∫
Γt

v · (∂τ n)vτ

=
∫
Γt

vn(∂nv)n −
∫
Γt

vn∂τ τ · v −
∫
Γt

v · (∂τ n)vτ .

The energy estimate is now

∂t

1

2

∫
Ωt

|v|2 + ∂tHN−1(Γt ) + ε

∫
Ωt

|∇v|2 = −
∫
Γt

vn∂τ τ · v −
∫
Γt

v · (∂τ n)vτ . (4.7)

This equation does not yield estimates for the energy since the right-hand side contains second derivatih.
Nevertheless, for derivatives of the solution we can expect that the error terms on the right-hand side are
order.

4.2. Higher order energy estimates

Just as we did for the Euler equations we can differentiate the Navier–Stokes equations with respect
Again, in order to find total time derivatives of boundary values we use the vertical material derivativeD̂1

t =
∂t + Yt∂y .

The equation forvt = D̂1
t v andpt = D̂1

t p reads

D

Dt
vt = −∇pt + ε
vt + f 1

t + εF 1
t .

It coincides with the Euler case except for the expressionF 1
t , produced by the commutator

F 1
t = −[
,Yt∂y]v.
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The divergence divvt = g1
t remains unchanged. The energy estimate reads in its first form

∂t

1

2

∫
Ωt

|vt |2 +
∫
Γ

ptvt · n + ε

∫
Ωt

|∇vt |2 − ε

∫
Γ

∂nvt · vt =
∫
Ωt

(f 1
t + εF 1

t ) · vt +
∫
Ωt

g1
t pt . (4.8)

In order to recover the expressionpt − 2ε(∂nvt )n as a factor of(vt )n we have to follow the ideas of Subsection 4
Differentiating the equationω = 0 yields

D̂t

[
(∂nv)τ

] = D̂t

[
(∂τ v)n

]
,

or, using the Leibniz rule

(D̂tn · ∇v)τ + (∂nvt )τ − (∂nYt∂yv)τ + (∂nv) · D̂t τ = (D̂t τ · ∇v)n + (∂τ vt )n − (∂τ Yt∂yv)n + (∂τ v) · D̂tn.

We can therefore replace one integral by∫
Γ

(∂nvt )τ (vt )τ =
∫
Γ

(∂τ vt )n(vt )τ +
∫
Γ

π̄1
t ,

with the error term

π̄1
t = (vt )τ

[
(D̂t τ · ∇v)n − (∂τ Yt∂yv)n + (∂τ v) · D̂tn − (D̂tn · ∇v)τ + (∂nYt∂yv)τ − (∂nv) · D̂t τ

]
.

We proceed with an integration by parts of the operator∂τ .∫
Γ

(∂τ vt )n(vt )τ = −
∫
Γ

(vt )n(∂τ vt )τ +
∫
Γ

π̃1
t ,

with the error term

π̃1
t = −(vt )n∂τ τ · vt − vt · ∂τ n(vt )τ .

The third step was to exploit incompressibility,(∂τ v)τ = −(∂nv)n. An application ofD̂t yields

(D̂t τ · ∇v)τ + (∂τ vt )τ − (∂τ Yt∂yv)τ + (∂τ v) · D̂t τ = −(D̂tn · ∇v)n − (∂nvt )n + (∂nYt∂yv)n − (∂nv) · D̂tn.

We finally find∫
Γ

(∂nvt )τ (vt )τ =
∫
Γ

(vt )n(∂nvt )n +
∫
Γ

π1
t ,

with

π1
t = π̄1

t + π̃1
t + (vt )n

[
(D̂t τ · ∇v)τ − (∂τ Yt∂yv)τ + (∂τ v) · D̂t τ

+ (D̂tn · ∇v)n − (∂nYt∂yv)n + (∂nv) · D̂tn
]
.

We have therefore recovered the boundary integral over[pt − 2ε(∂nvt )n] · (vt )n. The error term is an integra
overπ1

t with

π1
t ∈ P(∂̄1∇h,D1v,D1Yt ).

We again want to identify, up to error terms, the boundary integrals on the left-hand side of (4.8) with th
derivative of an energy. We evaluate
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pt

(
x,h(x, t), t

) − 2ε(∂nvt )n

(2.3)= d

dt

[
p
(
x,h(x, t), t

) − 2ε(∂nv)n
] + 2ε

[
(D̂tn · ∇v)n − (∂nYt∂yv)n + ∂nv · D̂tn

]
= −∇ ·

(
∂t∇h√

1+ |∇h|2 3

)
+ εσ 1

t

with

σ 1
t := 2

[
(D̂tn · ∇v)n − (∂nYt∂yv)n + ∂nv · D̂tn

]
.

The equation

vt · n = ∂2
t h√

1+ |∇h|2 + δ1
t

remains unchanged. We find for the boundary integral∫
Γ

[
pt − 2ε(∂nvt )n

]
(vt )n =

∫
S

(
−∇ · ∂t∇h√

1+ |∇h|2 3
+ εσ 1

t

) (
∂2
t h + δ1

t

√
1+ |∇h|2

)

= ∂t

1

2

∫
S

|∂t∇h|2√
1+ |∇h|2 3

−
∫
S

ε1
t +

∫
S

εσ 1
t · (vt )n

√
1+ |∇h|2

+
∫
S

(
∂t∇h√

1+ |∇h|2 3

)
· ∇

(
δ1
t

√
1+ |∇h|2

)
.

The energy estimate corresponding to (2.8) reads now

∂tE
1
t = −ε

∫
Ωt

|∇vt |2 +
∫
Ωt

f 1
t · vt +

∫
Ωt

g1
t pt +

∫
Ωt

εF 1
t · vt

+
∫
S

ε1
t −

∫
S

(
∂t∇h√

1+ |∇h|2 3

)
· ∇

(
δ1
t

√
1+ |∇h|2

)

−
∫
S

εσ 1
t · (vt )n

√
1+ |∇h|2 + ε

∫
Γ

π1
t . (4.9)

We sketch the analysis of these error terms. On levelk + 1 the energy

sup
τ

Ek+1
t (τ ) + ε

T∫
0

∫
Ωt

|∇vk+1
t |2 dt

controls the norms
√

ε∇(vk+1
t ◦ X) ∈ L2

(
0, T ;L2(R)

)
,√

εvk+1
t |Γ ◦ X ∈ L2

(
0, T ;H 1/2(S)

)
.

(4.10)

The estimates forv obtained from the vorticity equation provide bounds for

∇(vk
t ◦ X) ∈ L∞(

0, T ;H 1/2(R)
)
,

∇(vk
t |Γ ◦ X) ∈ L∞(

0, T ;L2(S)
)
,

(4.11)
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as in the inviscid case (see below). By taking horizontal derivatives we conclude the corresponding spa
mates. With these bounds we can control the highest order terms of

∫
Ωt

εF k+1
t · vk+1

t . The expressionFk+1
t has in

highest order the terms̃Fk+1
t = Pij (D

1v, D̄1Yt )∂i∂j v
k
t . Therefore, after one integration by parts,∫

Ωt

εF̃ k+1
t · vk+1

t =
∫
Ωt

ε∂i∂j v
k
t Pij

(
D1v,D1Yt

) · vk+1
t

= −
∫
Ωt

ε∂j v
k
t ∂i

[
Pij

(
D1v,D1Yt

) · vk+1
t

] +
∫
Γt

ε∂j v
k
t niPij

(
D1v,D1Yt

) · vk+1
t .

These integrals are bounded by the norms of (4.10) and (4.11).
For the boundary integral containingσk+1

t we use that fork � 3

σk+1
t ∈ P(1,0)(∂̄k+1∇h,Dk∇v).

This implies sufficient regularity sinceσk+1
t is multiplied with ∂̄k+2h; for purely temporal estimates we use th√

ε∂k+2
t h, has the regularity of

√
εvk+1

t ◦ X|S .
The other integral that did not appear in the inviscid case is the boundary integral overεπk+1

t . For k � 3 we
have

πk+1
t ∈ P(2,0)(∂̄k+1∇h,Dk+1v,Dk+1Yt ).

The energy estimate includes a bound for∂̄k+1∇h ∈ L∞(I ;L2(S)) and therefore this integral is bounded, too.

4.3. Regularity properties ofv andp

It remains to show the regularity properties ofv andp. The most important observation is that theH
−1/2∗ (R)-

estimate for∂k+1
t p still holds, at least in anL2-sense in time.

Step 1.Lemma 6 remains valid. We multiply (4.6) with−
ω and integrate by parts on the left-hand side. T
boundary terms vanish due to our conditionω = 0 on upper and lower boundary. The right-hand side yield
negative term in the energy inequality. For higher regularity one takesk = 2m tangential or vertical derivatives an
repeats the procedure. For the boundary estimates one exploits once more the special boundary conditio

Step 2.Lemma 4 holds also for the Navier–Stokes approximation: the above bounds forh andω imply estimates
for v as in (3.5), and the traces ofDk∇v are bounded inL∞L2(S).

The proof for the velocity estimates is identical to that in the inviscid case. We only used the knowledge ov

and curlv and the boundary values in order to conclude the regularity ofv.
Step 3.The pressure satisfies a bound

‖p ◦ X‖L2(0,T ;Hk+1/2(R)) + · · · + ‖p ◦ X‖Hk(0,T ;H1/2(R)) � C. (4.12)

This estimate differs from (3.20) in two respects: theL∞-norm in time is replaced by anL2-norm, and the orders o
differentiability are reduced by one. This change does not affect the analysis of error terms concerning the

The proof for the above pressure estimates is based on an equation for
p, that remains unchanged, and t
boundary values forp. Here we have with (4.4) a variation with respect to the inviscid case:

∇x ·
( ∇xh√

1+ |∇xh|2
)

+ p = 2ε(∂nv) · n.

In order to analyzek + 1-st derivatives of the pressure we have to assure thatk + 1-st derivatives of the right-han
side have boundary values inL2(I ;H−1(S)). This follows from the equality

(∂nv
k+1
t )n ◦ X = (∂τ v

k+1
t )τ ◦ X + l.o.t.,
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where l.o.t. denotes terms of lower order inv. In highest order the error term forpk+1
t is therefore

2ε∂x

[√
1+ |∂xh|2

−1
(vk+1

t · τ) ◦ X
]
.

Using (4.10) we have the desired estimate.
In the derivation of the interior pressure estimate of Lemma 7 we have a technical change. In Eq. (3.23)

an additional term containingF0 on the right-hand side.

Lu = ∇ · B∇F0 + divF1 + F2.

HereB is a smooth matrix field andF0 contains∂k
t p; we have regularity bounds forF0 ∈ L2(0, T ;H 1/2(R)). In

the third step in the proof of Lemma 7 we have seen that this still allows an estimate forũ ∈ L2(0, T ;L2(R)). This
suffices for the estimate

‖p ◦ X‖
Hk+1(0,T ;H−1/2∗ (R))

� C. (4.13)

On the regularity of formal time derivatives.We approximate the Euler equations with a Navier–Stokes sys
this implies that we change the formal time derivatives of the initial values, since we must now calculat
using the Navier–Stokes equations. Up to functions of orderε they coincide with the formal time derivatives
the Euler system. Choosingε small enough (depending on regular norms of the initial values) we have the f
time derivatives bounded as demanded in Assumption 5. For the sake of an approximate solution it is suf
demand a smallness ofε depending on smooth norms of the initial values.

Unfortunately, the existence result for our Navier–Stokes system can not be quoted from existing litera
nevertheless omit the proof. It follows the lines of proofs for the standard Navier–Stokes system. Note th
the a priori estimate the key ingredient is presented in the work at hand.

Appendix. Facts on fractional Sobolev spaces

In this appendix we collect the results on the fractional Sobolev spacesHs that are used in this work.
A result of Calderon concerns the complex interpolation ([16], p. 40):

[Hs0,H s1]Θ = Hs, s = (1− Θ)s0 + Θs1.

See [15], p. 204 for the corresponding result on bounded domains. The interpolation functor has the prop
a bounded linear mapT :Aj → Bj (for j = 0,1) is bounded as a map ([16], p. 39)

T : [A0,A1]Θ → [B0,B1]Θ.

For a smooth bounded domainΩ we have the trace theorem ([16], p. 212). Fors > 1/2 the trace is a bounde
linear function

trace :Hs(Ω) → Hs−1/2(∂Ω).

The corresponding result fors = 1/2 does not hold. See [10], p. 55 for the opposite result

H
1/2
0 (Ω) = H 1/2(Ω).

Boundary values can be extended to the interior by a harmonic function. Fors � 1/2 this extension is a linea
and bounded map

H :Hs−1/2(∂Ω) → Hs(Ω).
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See [10], p. 188 for this result. The same reference provides that the map

Hs−3/2(∂Ω) � ∂nu|Γ �→ u ∈ Hs(Ω),

whereu denotes the harmonic solution of the boundary value problem, is linear and bounded.
Note that we are working not onRN−1 × R+, but rather with a periodicity condition in horizontal direction

The above mentioned results remain valid; compare the remark on page 252 of [16] and the discussion on
in [15].

References

[1] J.T. Beale, Large time regularity of viscous surface waves, Arch. Rat. Mech. Anal. 84 (1984) 307–352.
[2] K. Beyer, M. Günther, On the Cauchy problem for a capillary drop. I. Irrotational motion, Math. Methods Appl. Sci. 21 (12)

1149–1183.
[3] X. Chen, A. Friedman, A bubble in ideal fluid with gravity, J. Differential Equations 81 (1989) 136–166.
[4] D. Christodoulou, H. Lindblad, On the motion of the free surface of a liquid, Comm. Pure Appl. Math. 53 (12) (2000) 1536–1602
[5] D.G. Ebin, The equations of motion of a perfect fluid with free boundary are not well posed, Comm. Partial Differential Equat

(1987) 1175–1201.
[6] L.C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, Amer. Math. Soc., 1998.
[7] T. Iguchi, N. Tanaka, A. Tani, On the two-phase free boundary problem for two-dimensional water waves, Math. Ann. 309 (2

199–223.
[8] T. Iguchi, N. Tanaka, A. Tani, On a free boundary problem for an incompressible ideal fluid in two space dimensions, Adv. Ma

Appl. 9 (1) (1999) 415–472.
[9] T. Kato, G. Ponce, Well-posedness of the Euler and Navier–Stokes equations in Lebesgue spaces, Rev. Mat. Iberoamerican

73–88.
[10] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, I, Grundlehren Math. Wiss., vol. 181,

Verlag, 1972.
[11] M. Ogawa, A. Tani, Free boundary problem for an incompressible ideal fluid with surface tension, Math. Models Method

Sci. 12 (12) (2002) 1725–1740.
[12] N. Okazawa, The Euler equation on a bounded domain as a quasilinear evolution equation, Commun. Appl. Nonlinear Anal. 3 (

107–113.
[13] M. Renardy, An existence theorem for a free surface flow problem with open boundaries, Comm. Partial Differential Equations 1

1387–1405.
[14] B. Schweizer, A two-component flow with a viscous and an inviscid fluid, Comm. Partial Differential Equations 25 (2000) 887–9
[15] H. Triebel, Theory of Function Spaces, Monographs Math., vol. 78, Birkhäuser, 1983.
[16] H. Triebel, Theory of Function Spaces II, Monographs Math., vol. 84, Birkhäuser, 1992.
[17] A. Wagner, On the Bernoulli free boundary problem with surface tension, in: I. Athanasopoulos (Ed.), Free boundary problem

and applications, in: CRC Res. Notes Math., vol. 409, Chapman & Hall, 1999, pp. 246–251.
[18] S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math. 130 (1) (1997) 39–72.
[19] S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc. 12 (2) (1999) 445–495.


