

Available online at www.sciencedirect.com

Ann. I. H. Poincaré – AN 22 (2005) 799–815

www.elsevier.com/locate/anihpc

Semilinear equations with exponential nonlinearity and measure data

Équations semi linéaires avec non linéarité exponentielle et données mesures

Daniele Bartolucci^a, Fabiana Leoni^b, Luigi Orsina^b, Augusto C. Ponce^{c,d,*}

^a *Dipartimento di Matematica, Università di Roma "Tre", Largo S. Leonardo Murialdo 1, 00146 Roma, Italy*

^b *Dipartimento di Matematica, Università di Roma "La Sapienza", Piazza A. Moro 2, 00185 Roma, Italy*

^c *Laboratoire Jacques-Louis Lions, université Pierre et Marie Curie, boîte courier 187, 75252 Paris cedex 05, France* ^d *Rutgers University, Department of Mathematics, Hill Center, Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854, USA*

Received 27 July 2004; accepted 15 December 2004

Available online 22 April 2005

Abstract

We study the existence and non-existence of solutions of the problem

$$
\begin{cases}\n-\Delta u + e^u - 1 = \mu & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,\n\end{cases}
$$
\n(0.1)

where Ω is a bounded domain in \mathbb{R}^N , $N \ge 3$, and μ is a Radon measure. We prove that if $\mu \le 4\pi \mathcal{H}^{N-2}$, then (0.1) has a unique solution. We also show that the constant 4π in this condition cannot be improved.

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

Nous étudions l'existence et la non existence des solutions de l'équation

$$
\begin{cases}\n-\Delta u + e^u - 1 = \mu & \text{dans } \Omega, \\
u = 0 & \text{sur } \partial \Omega,\n\end{cases}
$$
\n(0.2)

Corresponding author.

E-mail addresses: bartolu@mat.uniroma3.it, bartoluc@mat.uniroma1.it (D. Bartolucci), leoni@mat.uniroma1.it (F. Leoni), orsina@mat.uniroma1.it (L. Orsina), ponce@ann.jussieu.fr, augponce@math.rutgers.edu (A.C. Ponce).

^{0294-1449/\$ –} see front matter © 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserveddoi:10.1016/j.anihpc.2004.12.003

où *Ω* est un domaine borné dans \mathbb{R}^N , $N \ge 3$, et *μ* est une mesure de Radon. Nous démontrons que si *μ* vérifie $\mu \le 4\pi \mathcal{H}^{N-2}$, alors le problème (0.2) admet une unique solution. Nous montrons que la constante 4*π* dans cette condition ne peut pas être améliorée.

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

MSC: 35J60; 35B05

Keywords: Nonlinear elliptic equations; Exponential nonlinearity; Measure data

1. Introduction

Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$, be a bounded domain with smooth boundary. We consider the problem

$$
\begin{cases}\n-\Delta u + e^u - 1 = \mu & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,\n\end{cases}
$$
\n(1.1)

where $\mu \in \mathcal{M}(\Omega)$, the space of bounded Radon measures in Ω . We say that a function μ is a solution of (1.1) if $u \in L^1(\Omega)$, $e^u \in L^1(\Omega)$ and the following holds:

$$
-\int_{\Omega} u\Delta\zeta + \int_{\Omega} (e^u - 1)\zeta = \int_{\Omega} \zeta d\mu \quad \forall \zeta \in C_0^2(\overline{\Omega}).
$$
\n(1.2)

Here $C_0^2(\overline{\Omega})$ denotes the set of functions $\zeta \in C^2(\overline{\Omega})$ such that $\zeta = 0$ on $\partial \Omega$. A measure μ is a *good measure* for problem (1.1) if (1.1) has a solution. We shall denote by G the set of good measures. Problem (1.1) has been recently studied by Brezis, Marcus and Ponce in [1], where the general case of a continuous nondecreasing nonlinearity *g(u)*, with *g(0)* = 0, is dealt with. Applying Theorem 1 of [1] to *g(u)* = $e^u - 1$, it follows that for every $\mu \in \mathcal{M}(\Omega)$ there exists a largest good measure $\leq \mu$ for (1.1), which we shall denote by μ^* .

In the case $N = 2$, the set of good measures for problem (1.1) has been characterized by Vázquez in [9]. More precisely, a measure μ is a good measure if and only if $\mu({x}) \le 4\pi$ for every *x* in Ω . Note that any $\mu \in M(\Omega)$ can be decomposed as

$$
\mu = \mu_0 + \sum_{i=1}^{\infty} \alpha_i \delta_{x_i},
$$

with $\mu_0({x}) = 0$ for every *x* in Ω , and δ_{x_i} is the Dirac mass concentrated at x_i . Using Vázquez's result, it is not difficult to check that (see [1, Example 5])

$$
\mu^* = \mu_0 + \sum_{i=1}^{\infty} \min\{4\pi, \alpha_i\} \delta_{x_i}.
$$

This paper is devoted to the study of problem (1.1) in the case $N \ge 3$. First of all, let us recall that if μ is a good measure, then (1.1) has a unique solution *u* (see [1, Corollary B.1]). This solution can be either obtained as the limit of the sequence (u_n) of solutions of

$$
\begin{cases}\n-\Delta u_n + \min\{e^{u_n} - 1, n\} = \mu & \text{in } \Omega, \\
u_n = 0 & \text{on } \partial\Omega,\n\end{cases}
$$

or as the limit of a sequence (v_n) of solutions of

$$
\begin{cases}\n-\Delta v_n + e^{v_n} - 1 = \mu_n & \text{in } \Omega, \\
v_n = 0 & \text{on } \partial \Omega,\n\end{cases}
$$

with $\mu_n = \rho_n * \mu$, where (ρ_n) is a sequence of mollifiers. If μ is not a good measure, then both sequences (u_n) and *(vn)* converge to the solution *u*[∗] of problem (1.1) with datum *µ*[∗] (see [1]). It has also been proved in [1] that the set G of good measures is convex and closed with respect to the strong topology in M*(Ω)*. Moreover, it is easy to see that if $\nu \le \mu$ and $\mu \in \mathcal{G}$, then $\nu \in \mathcal{G}$.

Before stating our results, let us briefly recall the definitions of Hausdorff measure and Hausdorff dimension of a set. Let $s \ge 0$, and let $A \subset \mathbb{R}^N$ be a Borel set. Given $\delta > 0$, let

$$
\mathcal{H}_{\delta}^{s}(A) = \inf \bigg\{ \sum_{i} \omega_{s} r_{i}^{s} \colon K \subset \bigcup_{i} B_{r_{i}} \text{ with } r_{i} < \delta, \ \forall i \bigg\},
$$

where the infimum is taken over all coverings of *A* with open balls B_r of radius $r_i < \delta$, and $\omega_s = \pi^{s/2} / \Gamma(s/2 + 1)$. We define the (spherical) *s*-dimensional Hausdorff measure in \mathbb{R}^N as

$$
\mathcal{H}^s(A) = \lim_{\delta \downarrow 0} \mathcal{H}^s_{\delta}(A),
$$

and the Hausdorff dimension of *A* as

$$
\dim_{\mathcal{H}}(A) = \inf \big\{ s \geqslant 0 : \mathcal{H}^s(A) = 0 \big\}.
$$

Given a measure μ in $\mathcal{M}(\Omega)$, we say that it is concentrated on a Borel set $E \subset \Omega$ if $\mu(A) = \mu(E \cap A)$ for every Borel set $A \subset \Omega$. Given a measure μ in $\mathcal{M}(\Omega)$, and a Borel set $E \subset \Omega$, the measure $\mu \subset E$ is defined by $\mu \Box E(A) = \mu(E \cap A)$ for every Borel set $A \subset \Omega$.

One of our main results is the following

Theorem 1. Let $\mu \in \mathcal{M}(\Omega)$. If $\mu \leq 4\pi \mathcal{H}^{N-2}$, that is, if $\mu(A) \leq 4\pi \mathcal{H}^{N-2}(A)$ for every Borel set $A \subset \Omega$ such that $\mathcal{H}^{N-2}(A) < \infty$, then there exists a unique solution *u* of (1.1).

As a corollary of Theorem 1, we have

Corollary 1. *Let* $\mu \in \mathcal{M}(\Omega)$ *. If* $\mu \leq 4\pi \mathcal{H}^{N-2}$ *, then* $\mu^* = \mu$ *.*

The proof of Theorem 1 relies on a decomposition lemma for Radon measures (see Section 3 below) and on the following sharp estimate concerning the exponential summability for solutions of the Laplace equation. We denote by $M^{N/2}(\Omega)$ the Morrey space with exponent $\frac{N}{2}$ equipped with the norm $\|\cdot\|_{N/2}$ (see Definition 1 below).

Theorem 2. Let f be a function in $M^{N/2}(\Omega)$, and let u be the solution of

$$
\begin{cases}\n-\Delta u = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.\n\end{cases}
$$
\n(1.3)

Then, for every $0 < \alpha < 2N\omega_N$ *, it holds*

$$
\int_{\Omega} e^{((2N\omega_N - \alpha)/\|f\|_{N/2})|u|} \leq \frac{(N\omega_N)^2}{\alpha} \text{diam}(\Omega)^N.
$$
\n(1.4)

This theorem is the counterpart in the case $N \ge 3$ of a result proved, for $N = 2$ and $f \in L^1(\Omega)$, by Brezis and Merle in [2]. Note that, for $N = 2$, the space $M^{N/2}(\Omega)$ coincides with $L^1(\Omega)$.

As a consequence of Theorem 1, we have that the set of good measures G contains all measures μ which satisfy $\mu \leq 4\pi \mathcal{H}^{N-2}$. If $N = 2$, then the result of Vázquez states that the converse is also true. In our case, that is $N \geq 3$, this is *false*. After this work was completed, A.C. Ponce found explicit examples of good measures which are not

 $\leq 4\pi \mathcal{H}^{N-2}$ (see [7, Theorems 2 and 3]). The existence of such measures was conjectured by L. Véron in a personal communication.

We now present some necessary conditions a measure $\mu \in \mathcal{G}$ has to satisfy. We start with the following

Theorem 3. Let $\mu \in \mathcal{M}(\Omega)$. If $\mu(A) > 0$ for some Borel set $A \subset \Omega$ such that $\dim_{\mathcal{H}}(A) < N - 2$, then (1.1) has *no solution.*

Observe that in the case of dimension $N = 2$, no measure μ satisfies the assumptions of Theorem 3. As a consequence of Theorem 3 we have

Corollary 2. Let $\mu \in \mathcal{M}(\Omega)$. If μ^+ is concentrated on a Borel set $A \subset \Omega$ with $\dim_{\mathcal{H}}(A) < N-2$, then $\mu^* = -\mu^-$.

The next theorem, which is one of the main results of this paper, states that there exists no solution of (1.1) if μ is strictly larger than $4\pi \mathcal{H}^{N-2}$ on an $(N-2)$ -rectifiable set.

Theorem 4. Let $\mu \in \mathcal{M}(\Omega)$. Assume there exist $\varepsilon > 0$ and an $(N - 2)$ -rectifiable set $E \subset \Omega$, with $\mathcal{H}^{N-2}(E) > 0$. *such that* $\mu \Box E \geq (4\pi + \varepsilon) \mathcal{H}^{N-2} \Box E$. Then, (1.1) *has no solution.*

Corollary 3. Assume $\mu = \alpha(x)H^{N-2} \sqcup E$, where $E \subset \Omega$ is $(N-2)$ -rectifiable and α is $H^{N-2} \sqcup E$ -integrable. *Then,* $\mu^* = \min\{4\pi, \alpha(x)\}\mathcal{H}^{N-2} \sqcup E$.

In Theorem 4 (and also in Corollary 3), the assumption that *E* is $(N-2)$ -rectifiable is important. In fact, one can find $(N-2)$ -unrectifiable sets $F \subset \Omega$, with $0 < H^{N-2}(F) < \infty$, such that $\nu = \alpha H^{N-2} \subset F$ is a good measure for *every* $\alpha > 0$ (see [7]).

As a consequence of the previous results, we can derive some information on μ^* . To this extent, let $\mu \in \mathcal{M}(\Omega)$. Since $e^u - 1$ is bounded for $u < 0$, μ^- will play no role in the existence-nonexistence theory for (1.1). Therefore, we only have to deal with μ^+ , which we recall can be uniquely decomposed as

$$
\mu^+ = \mu_1 + \mu_2 + \mu_3,\tag{1.5}
$$

where

 $\mu_1(A) = 0$ for every Borel set $A \subset \Omega$ such that $\mathcal{H}^{N-2}(A) < \infty$, (1.6)

 $\mu_2 = \alpha(x)\mathcal{H}^{N-2} \sqcup E$ for some Borel set $E \subset \Omega$, and some \mathcal{H}^{N-2} -measurable α , (1.7)

$$
\mu_3(\Omega \setminus F) = 0 \quad \text{for some Borel set } F \subset \Omega \text{ with } \mathcal{H}^{N-2}(F) = 0. \tag{1.8}
$$

By a result of Federer (see [4] and also [6, Theorem 15.6]), the set *E* can be uniquely decomposed as a disjoint union $E = E_1 \cup E_2$, where E_1 is $(N - 2)$ -rectifiable and E_2 is purely $(N - 2)$ -unrectifiable. In particular,

$$
\mu_2 = \alpha(x)\mathcal{H}^{N-2} \sqcup E_1 + \alpha(x)\mathcal{H}^{N-2} \sqcup E_2.
$$
\n(1.9)

Combining Corollaries 1–3, we establish the following

Theorem 5. *Given* $\mu \in \mathcal{M}(\Omega)$ *, decompose* μ^+ *as in* (1.5)–(1.9)*. Then,*

$$
\mu^* = (\mu_1)^* + (\mu_2)^* + (\mu_3)^* - \mu^-. \tag{1.10}
$$

In addition,

$$
(\mu_1)^* = \mu_1,\tag{1.11}
$$

$$
(\mu_2)^* = (\alpha(x)\mathcal{H}^{N-2} \sqcup E_1)^* + (\alpha(x)\mathcal{H}^{N-2} \sqcup E_2)^*,
$$
\n(1.12)

$$
\left(\alpha(x)\mathcal{H}^{N-2}\!\sqcup E_1\right)^* = \min\{4\pi, \alpha(x)\}\mathcal{H}^{N-2}\!\sqcup E_1,\tag{1.13}
$$

$$
\left(\alpha(x)\mathcal{H}^{N-2}\!\sqcup E_2\right)^*\geqslant\min\{4\pi,\alpha(x)\}\mathcal{H}^{N-2}\!\sqcup E_2,\tag{1.14}
$$

$$
(\mu_3)^*(A) = 0 \quad \text{for every Borel set } A \subset \Omega \text{ with } \dim_{\mathcal{H}}(A) < N - 2. \tag{1.15}
$$

In view of the examples presented in [7], one can find measures $\mu \geqslant 0$ for which equality in (1.14) fails and such that $(\mu_3)^*(F) > 0$ for some Borel set $F \subset \Omega$, with $\mathcal{H}^{N-2}(F) = 0$.

The plan of the paper is as follows. In the next section we will prove Theorem 2. In Section 3 we will present a decomposition result for Radon measures. Theorem 1 will then be proved in Section 4. Theorems 3 and 4 will be established in Section 5. The last section will be devoted to the proof of Theorem 5 and Corollaries 1–3.

2. Proof of Theorem 2

We first recall the definition of the Morrey space $M^p(\Omega)$; see [5].

Definition 1. Let $p \ge 1$ be a real number. We say that a function $f \in L^1(\Omega)$ belongs to the Morrey space $M^p(\Omega)$ if

$$
\|f\|_{p} = \sup_{B_r} \frac{1}{r^{N(1-1/p)}} \int_{\Omega \cap B_r} |f(y)| dy < +\infty,
$$

where the supremum is taken over all open balls $B_r \subset \mathbb{R}^N$.

The following theorem is well-known (for the proof, see for example [5, Section 7.9]).

Theorem 6. *Let* $f \in M^p(\Omega)$ *for some* $p \geq \frac{N}{2}$ *, and let u be the solution of*

$$
\begin{cases}\n-\Delta u = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.\n\end{cases}
$$

If $p > \frac{N}{2}$, then u belongs to $L^{\infty}(\Omega)$. If $p = \frac{N}{2}$, then $e^{\beta|u|}$ is uniformly bounded in $L^1(\Omega)$ norm, for every β < $\beta_0 = 2N\omega_N/(\mathbf{e} \cdot ||f||_{N/2}).$

Theorem 2 in the Introduction improves the upper bound β_0 given in [5]. It turns out that the constant $\frac{2N\omega_N}{\|f\|_{N/2}}$ is sharp. Indeed we have the following

Example 1. Let $E = \{x = (x_1, x_2, ..., x_N) \in \mathbb{R}^N : x_1 = x_2 = 0\}$, and let $\mu = 4\pi \mathcal{H}^{N-2} \sqcup E$. Define $\mu_n = \rho_n * \mu$, where (ρ_n) is a sequence of mollifiers, and let u_n be the solution of

$$
\begin{cases}\n-\Delta u_n = \mu_n & \text{in } B_2(0), \\
u_n = 0 & \text{on } \partial B_2(0).\n\end{cases}
$$

By standard elliptic estimates, $u_n \to u$ in $W_0^{1,q}(B_2(0))$, for every $q < \frac{N}{N-1}$ and a.e., where *u* is the solution of

$$
\begin{cases}\n-\Delta u = 4\pi \mathcal{H}^{N-2} \mathcal{L} & \text{in } B_2(0), \\
u = 0 & \text{on } \partial B_2(0).\n\end{cases}
$$

Using the Green representation formula, and setting $\rho(x) = \text{dist}(x, E)$, one can prove that $u(x)$ behaves as $-2 \ln \rho(x)$, for any *x* in a suitable neighborhood of $E \cap B_1(0)$. Moreover, it is easy to verify that

$$
\|\mu_n\|_{N/2} \to 2N\omega_N \quad \text{as } n \to \infty.
$$

Then, by Fatou's lemma

$$
\liminf_{n\to+\infty}\int\limits_{B_2(0)}e^{(2N\omega_N/\|\mu_n\|_{N/2})u_n}\geqslant\int\limits_{B_2(0)}e^u=+\infty.
$$

We now turn to the proof of Theorem 2. We start with the following well-known

Lemma 1. *Let* $f:[0,d] \to \mathbb{R}^+$ *be a* C^1 *-function, and*

$$
g(r) = \sup_{t \in [0,r]} f(t).
$$

Then, g is absolutely continuous on [0*, d*]*, and its derivative satisfies the following inequality*:

$$
0 \leqslant g'(r) \leqslant \left[f'(r)\right]^+ \quad a.e., \tag{2.1}
$$

where s^+ = max{*s*, 0} *is the positive part of* $s \in \mathbb{R}$.

Proof. First of all, observe that since f is continuous, then so is g. We now prove that, for every $x < y$ in [0, d], there exist $\tilde{x} \leq \tilde{y}$ in [*x*, *y*] such that

$$
0 \le g(y) - g(x) \le \left[f(\tilde{y}) - f(\tilde{x}) \right]^+.
$$
\n(2.2)

Indeed, if $g(y) = g(x)$, then it is enough to choose $\tilde{x} = x$ and $\tilde{y} = y$. If $g(y) > g(x)$, then let us define

 $\tilde{x} = \max\{z \ge x : g(z) = g(x)\}$ and $\tilde{y} = \min\{z \le y : g(z) = g(y)\}.$

Clearly, since *g* is nondecreasing, we have $\tilde{x} \leq \tilde{y}$. In order to prove (2.2), simply observe that $f(\tilde{x}) = g(x)$ and $f(\tilde{y}) = g(y)$. Indeed, if for example $f(\tilde{x}) \neq g(x)$, then it must be $f(\tilde{x}) < g(x)$, and this implies that $g(z) = g(x)$ for some $z > x$, thus contradicting the definition of \tilde{x} .

Since f is absolutely continuous, (2.2) implies that g is absolutely continuous, as required, so that $g'(r)$ exists for almost every *r*. We now establish (2.1). Starting from (2.2), and applying the mean value problem to *f* , we have that there exists $\tilde{\xi} \in [\tilde{x}, \tilde{y}]$ such that

$$
0 \leq g(y) - g(x) \leq [f(\tilde{y}) - f(\tilde{x})]^{+} = [f'(\tilde{\xi})]^{+} (\tilde{y} - \tilde{x}) \leq [f'(\tilde{\xi})]^{+} (y - x).
$$

Dividing by *y* − *x*, and letting *y* \rightarrow *x*, the result follows. \Box

Proof of Theorem 2. We split the proof into two steps:

Step 1. Given $f \in C_c^{\infty}(\Omega)$, $f \ge 0$, let

$$
v(x) = \frac{1}{N(N-2)\omega_N} \int_{\Omega} \left(\frac{1}{|x - y|^{N-2}} - \frac{1}{d^{N-2}} \right) f(y) \, dy \quad \forall x \in \Omega,
$$
\n(2.3)

where *d* is the diameter of Ω . Then, for every $0 < \alpha < 2N\omega_N$, it holds

$$
\int_{\Omega} e^{((2N\omega_N - \alpha)/\|f\|_{N/2})v(x)} dx \leq \frac{(N\omega_N)^2}{\alpha} d^N.
$$
\n(2.4)

Let us set

$$
v(x,r) = \int\limits_{B_r(x)} f(y) \, dy \quad \forall x \in \Omega.
$$

In particular,

$$
\nu(x,r) \leq \omega_N r^N \|f\|_{L^\infty} \quad \text{and} \quad \nu'(x,r) = \int\limits_{\partial B_r(x)} f(y) \, d\sigma(y) \leq N \omega_N r^{N-1} \|f\|_{L^\infty},\tag{2.5}
$$

where ' denotes the derivative with respect to *r* and $d\sigma$ is the $(N - 1)$ -dimensional measure on $\partial B_r(x)$. Then,

$$
v(x) = \frac{1}{N(N-2)\omega_N} \int_0^d \left(\frac{1}{r^{N-2}} - \frac{1}{d^{N-2}}\right) \left(\int_{\partial B_r(x)} f(y) d\sigma(y)\right) dr
$$

=
$$
\frac{1}{N(N-2)\omega_N} \int_0^d \left(\frac{1}{r^{N-2}} - \frac{1}{d^{N-2}}\right) v'(x, r) dr.
$$

Integrating by parts, we have

$$
v(x) = \frac{1}{N(N-2)\omega_N} \left(\frac{1}{r^{N-2}} - \frac{1}{d^{N-2}}\right) v(x,r) \Big|_0^d + \frac{1}{N\omega_N} \int_0^d \frac{v(x,r)}{r^{N-1}} dr.
$$

By (2.5),

$$
\lim_{r \to 0} \frac{v(x, r)}{r^{N-2}} = 0,
$$

and so

$$
v(x) = \frac{1}{N\omega_N} \int\limits_0^d \frac{v(x,r)}{r^{N-1}} dr.
$$

Define now

$$
\psi(x, r) = \sup_{t \in [0, r]} \frac{\nu(x, t)}{t^{N-2}}.
$$

It follows from Lemma 1 that $\psi(x, \cdot)$ is absolutely continuous. Then, integrating by parts,

$$
v(x) \leq \frac{1}{N\omega_N} \int_0^d \frac{\psi(x, r)}{r} dr = -\frac{1}{N\omega_N} \int_0^d \left(\ln\left(\frac{d}{r}\right)\right)' \psi(x, r) dr
$$

= $-\frac{1}{N\omega_N} \psi(x, r) \ln\left(\frac{d}{r}\right) \Big|_0^d + \frac{1}{N\omega_N} \int_0^d \ln\left(\frac{d}{r}\right) \psi'(x, r) dr.$

By (2.5),

$$
\lim_{r \to 0} \psi(x, r) \ln\left(\frac{d}{r}\right) = 0,
$$

and then, observing that $\psi(x, d) \geq \nu(x, d)/d^{N-2} = ||f||_{L^1} / d^{N-2} > 0$,

$$
v(x) \leq \frac{1}{N\omega_N} \int\limits_0^d \ln\left(\frac{d}{r}\right) \psi'(x,r) \, \mathrm{d}r = \int\limits_0^d \frac{\psi(x,d)}{N\omega_N} \ln\left(\frac{d}{r}\right) \frac{\psi'(x,r)}{\psi(x,d)} \, \mathrm{d}r.
$$

Therefore, for any $0 < \alpha < 2N\omega_N$,

$$
e^{((2N\omega_N-\alpha)/\|f\|_{N/2})v(x)} \leqslant \exp\left(\int\limits_0^d \frac{2N\omega_N-\alpha}{\|f\|_{N/2}}\frac{\psi(x,d)}{N\omega_N}\ln\left(\frac{d}{r}\right)\frac{\psi'(x,r)}{\psi(x,d)}\,dr\right).
$$

Since $\frac{\psi'(x,r)}{\psi(x,d)}$ dr is a probability measure on $(0,d)$, Jensen's inequality implies

$$
e^{((2N\omega_N-\alpha)/\|f\|_{N/2})v(x)} \leq \int\limits_0^d \left(\frac{d}{r}\right)^{((2N\omega_N-\alpha)/\|f\|_{N/2})(\psi(x,d)/N\omega_N)} \frac{\psi'(x,r)}{\psi(x,d)}\,dr.
$$

Clearly,

$$
\psi(x, d) \le \sup_{y \in \Omega} \psi(y, d) = ||f||_{N/2}
$$
 and $\psi(x, d) \ge \frac{||f||_{L^1}}{d^{N-2}}$.

Thus,

$$
e^{((2N\omega_N - \alpha)/\|f\|_{N/2})v(x)} \leq \frac{d^{N-\alpha/N\omega_N}}{\|f\|_{L^1}} \int_0^d \frac{\psi'(x, r)}{r^{2-\alpha/N\omega_N}} dr.
$$
 (2.6)

Now, by (2.1) we have

$$
\psi'(x,r) \leqslant \left[\left(\frac{\nu(x,r)}{r^{N-2}} \right)' \right]^+ \leqslant \frac{\nu'(x,r)}{r^{N-2}},
$$

so that

$$
\int_{\Omega} \psi'(x, r) dx \le \frac{1}{r^{N-2}} \int_{\Omega} \left(\int_{\partial B_r(x)} f(y) d\sigma(y) \right) dx = \frac{1}{r^{N-2}} \int_{\Omega} \left(\int_{\partial B_r(0)} f(y + x) d\sigma(y) \right) dx
$$

$$
= \frac{1}{r^{N-2}} \int_{\partial B_r(0)} \left(\int_{\Omega} f(y + x) dx \right) d\sigma(y) \le N \omega_N r \|f\|_{L^1}.
$$

Hence, from (2.6) ,

$$
\int_{\Omega} e^{((2N\omega_N - \alpha)/\|f\|_{N/2})v(x)} dx \leq N\omega_N d^{N-\alpha/N\omega_N} \int_{0}^{d} \frac{dr}{r^{1-\alpha/N\omega_N}} = \frac{(N\omega_N)^2}{\alpha} d^N
$$

which is (2.4). This concludes the proof of Step 1.

Step 2. Proof of Theorem 2 completed.

Let $f \in M^{N/2}(\Omega)$. Clearly, it suffices to prove the theorem for $f \ge 0$. By extending *f* to be identically zero outside *Ω*, we have

$$
\int_{B_r} f(y) dy \le ||f||_{N/2} r^{N-2} \quad \text{for every ball } B_r \subset \mathbb{R}^N.
$$
\n(2.7)

Let $(\rho_n) \subset C_c^{\infty}(B_1)$, $\rho_n \ge 0$, be a sequence of mollifiers. Take $(\zeta_n) \subset C_c^{\infty}(\Omega)$ to be such that $0 \le \zeta_n \le 1$ in Ω , and $\zeta_n(x) = 1$ if $\tilde{d}(x, \partial \Omega) \ge \frac{1}{n}$. Set $f_n = \zeta_n(\rho_n * f)$. We claim that

$$
||f_n||_{N/2} \le ||f||_{N/2} \quad \forall n \ge 1.
$$
 (2.8)

In fact, given any ball $B_r(z) \subset \mathbb{R}^N$, we have

$$
\int\limits_{B_r(z)} f_n(x) dx \leq \int\limits_{B_r(z)} (\rho_n * f)(x) dx = \int\limits_{B_r(z)} \left(\int\limits_{\mathbb{R}^N} \rho_n(x-y) f(y) dy \right) dx = \int\limits_{\mathbb{R}^N} \left(\int\limits_{B_r(z-t)} f(y) dy \right) \rho_n(t) dt.
$$

Since (2.7) holds, we get

$$
\int_{B_r(z)} f_n(x) dx \le ||f||_{N/2} r^{N-2} \int_{\mathbb{R}^N} \rho_n(t) dt = ||f||_{N/2} r^{N-2},
$$

which is precisely (2.8) .

Let u_n be the unique solution of

$$
\begin{cases}\n-\Delta u_n = f_n & \text{in } \Omega, \\
u_n = 0 & \text{on } \partial \Omega.\n\end{cases}
$$

We shall denote by v_n the function given by (2.3), with *f* replaced by f_n . Note that, by the standard maximum principle, $0 \le u_n \le v_n$ in Ω , $\forall n \ge 1$. Given $0 < \alpha < 2N\omega_N$, it follows from (2.8) and the previous step that

$$
\int_{\Omega} e^{((2N\omega_N - \alpha)/\|f\|_{N/2})u_n(x)} dx \leq \int_{\Omega} e^{((2N\omega_N - \alpha)/\|f_n\|_{N/2})v_n(x)} dx \leq \frac{(N\omega_N)^2}{\alpha} d^N \quad \forall n \geq 1.
$$
\n(2.9)

Since $f_n \to f$ in $L^1(\Omega)$, standard elliptic estimates imply that $u_n \to u$ in $L^1(\Omega)$ and a.e. Thus, as $n \to \infty$ in (2.9), it follows from Fatou's lemma that $e^{((\tilde{Z}N\omega_N-\alpha)/\|f\|_{N/2})\tilde{u}} \in L^1(\Omega)$ and

$$
\int_{\Omega} e^{((2N\omega_N-\alpha)/\|f\|_{N/2})u(x)} dx \leqslant \frac{(N\omega_N)^2}{\alpha} d^N.
$$

This concludes the proof of the theorem. \Box

3. A useful decomposition result

Our goal in this section is to establish the following:

Lemma 2. *Let* $\mu \in \mathcal{M}(\mathbb{R}^N)$, $\mu \geq 0$. Given $\delta > 0$, there exists an open set $A \subset \mathbb{R}^N$ such that

- (a) $\mu(B_r \backslash A) \leq 2N \omega_N r^{N-2}$ for every ball $B_r \subset \mathbb{R}^N$ with $0 < r < \delta$;
- (b) *for every compact set* $K \subset A$ *,*

$$
\mu\big(N_{2\delta}(K)\big)\geqslant 4\pi\mathcal{H}^{N-2}_{\delta}(K),
$$

where $N_{2\delta}(K)$ *denotes the neighborhood of* K *of radius* 2 δ *.*

Proof. Given a sequence of open sets $(A_k)_{k\geqslant0}$, for each $k\geqslant1$ we let

$$
R_k = \sup \{ r \in [0, \delta) : \mu(B_r \setminus A_{k-1}) \ge 2N\omega_N r^{N-2} \text{ for some ball } B_r \subset \mathbb{R}^N \}. \tag{3.1}
$$

We now construct the sequence (A_k) inductively as follows. Let $A_0 = \phi$. We have two possibilities. If $R_1 = 0$, then we take $A_k = \phi$ for every $k \ge 1$. Otherwise, $R_1 > 0$ and there exists $r_1 \in (\frac{R_1}{2}, R_1]$ and $x_1 \in \mathbb{R}^N$ such that

$$
\mu\big(B_{r_1}(x_1)\big)\geqslant 2N\omega_Nr_1^{N-2}.
$$

Let $A_1 = B_{r_1}(x_1)$. If $R_2 = 0$, then we let $A_k = \phi$ for every $k \ge 2$. Assume $R_2 > 0$. In this case, we may find $r_2 \in (\frac{R_2}{2}, R_2]$ and $x_2 \in \mathbb{R}^N$ such that

$$
\mu\big(B_{r_2}(x_2)\backslash A_1\big)\geqslant 2N\omega_Nr_2^{N-2}.
$$

Proceeding by induction, we obtain a sequence of balls $B_{r_1}(x_1), B_{r_2}(x_2), \ldots$ and open sets

$$
A_k = B_{r_1}(x_1) \cup \cdots \cup B_{r_k}(x_k) \tag{3.2}
$$

such that

$$
\frac{R_k}{2} < r_k \leqslant R_k \tag{3.3}
$$

and

$$
\mu\big(B_{r_k}(x_k)\setminus A_{k-1}\big)\geqslant 2N\omega_N r_k^{N-2}\quad \forall k\geqslant 1.
$$
\n(3.4)

Note that $R_k \to 0$ as $k \to \infty$. In fact, by (3.3) and (3.4) we have

$$
\frac{N\omega_N}{2^{N-3}}\sum_{k=1}^{\infty}R_k^{N-2}\leq 2N\omega_N\sum_{k=1}^{\infty}r_k^{N-2}\leq \sum_{k=1}^{\infty}\mu\big(B_{r_k}(x_k)\setminus A_{k-1}\big)=\mu\bigg(\bigcup_{k}B_{r_k}(x_k)\bigg)\leq \|\mu\|_{\mathcal{M}}.
$$

In particular, $\sum_{k} R_{k}^{N-2} < \infty$, which implies the desired result. Let

$$
A = \bigcup_{j=1}^{\infty} A_j = \bigcup_{k=1}^{\infty} B_{r_k}(x_k).
$$

We claim that *A* satisfies (a) and (b).

Proof of (a). Given $B_r \subset \mathbb{R}^N$ such that $0 < r < \delta$, let $k \geq 1$ be sufficiently large so that $R_k < r$. By the definition of R_k , we have $\mu(B_r \setminus A_k) \le 2N \omega_N r^{N-2}$. Since $A_k \subset A$, we have $B_r \setminus A \subset B_r \setminus A_k$ and the result follows.

Proof of (b). Given a compact set $K \subset A$, let

$$
J = \{ j \geq 1 : B_{r_j}(x_j) \cap K \neq \phi \}.
$$

In particular,

$$
K \subset \bigcup_{j \in J} B_{r_j}(x_j).
$$

Moreover, since $r_j < \delta$, we have $B_{r_j}(x_j) \subset N_{2\delta}(K)$ for every $j \in J$. Thus,

$$
\mu(N_{2\delta}(K)) \ge \mu\left(\bigcup_{j\in J} B_{r_j}(x_j)\right) \ge \mu\left(\bigcup_{j\in J} \left[B_{r_j}(x_j)\setminus A_{j-1}\right]\right)
$$

=
$$
\sum_{j\in J} \mu\left(B_{r_j}(x_j)\setminus A_{j-1}\right) \ge 2N\omega_N \sum_{j\in J} r_j^{N-2} \ge \frac{2N\omega_N}{\omega_{N-2}} \mathcal{H}_{\delta}^{N-2}(K).
$$

Since $2N\omega_N/\omega_{N-2} = 4\pi$, we get

$$
\mu\big(N_{2\delta}(K)\big)\geqslant 4\pi\mathcal{H}^{N-2}_{\delta}(K).
$$

This concludes the proof of Lemma 2. \Box

4. Proof of Theorem 1

We first observe that, as a consequence of Theorem 2, we have the following

Proposition 1. Let $\mu \in \mathcal{M}(\Omega)$ be such that

$$
\mu^+(\Omega \cap B_r) \leqslant 2N\omega_N r^{N-2} \quad \text{for every ball } B_r \subset \mathbb{R}^N.
$$

Then, μ *is a good measure for* (1.1).

Proof. Since $\mu \le \mu^+$, it is enough to show that μ^+ is a good measure. Thus, without loss of generality, we may assume that $\mu \ge 0$. Moreover, extending μ to be identically zero outside Ω , we may also assume that $\mu \in \mathcal{M}(\mathbb{R}^N)$ and

 $\mu(B_r) \leq 2N\omega_N r^{N-2}$ for every ball $B_r \subset \mathbb{R}^N$.

We shall split the proof of Proposition 1 into two steps:

Step 1. Assume there exists $\varepsilon > 0$ such that

$$
\mu(B_r) \leq 2N\omega_N(1-\varepsilon)r^{N-2}
$$
 for every ball $B_r \subset \mathbb{R}^N$.

Then, μ is a good measure.

Let $(\rho_n) \subset C_c^{\infty}(B_1)$, $\rho_n \ge 0$, be a sequence of mollifiers. Set $\mu_n = \rho_n * \mu$. Proceeding as in the proof of Theorem 2, Step 2, we have

$$
\|\mu_n\|_{N/2} \leq 2N\omega_N(1-\varepsilon) \quad \forall n \geq 1.
$$

Let v_n be the unique solution of

$$
\begin{cases}\n-\Delta v_n = \mu_n & \text{in } \Omega, \\
v_n = 0 & \text{on } \partial \Omega.\n\end{cases}
$$

Applying Theorem 2 to $\alpha = 2N\omega_N - ||\mu_n||_{N/2} \ge 2N\omega_N \epsilon > 0$, we conclude that

$$
\int_{\Omega} e^{v_n} \leqslant C \quad \forall n \geqslant 1,\tag{4.1}
$$

for some constant $C > 0$ independent of *n*. By standard elliptic estimates $v_n \to v$ a.e., where *v* is a solution for

$$
\begin{cases}\n-\Delta v = \mu & \text{in } \Omega, \\
v = 0 & \text{on } \partial \Omega.\n\end{cases}
$$

Hence, by Fatou's lemma and (4.1), it follows that $e^v \in L^1(\Omega)$. Since

 $- \Delta v + e^{v} - 1 = \mu + e^{v} - 1$ in Ω ,

 $\mu + e^{\nu} - 1$ is a good measure. In particular, $\mu \le \mu + e^{\nu} - 1$ and $\nu \ge 0$, imply that μ is a good measure as well.

Step 2. Proof of the proposition completed.

Let $\alpha_n \uparrow 1$. For every $n \geq 1$, the measure $\alpha_n \mu$ satisfies the assumptions of Step 1. Thus, $\alpha_n \mu \in \mathcal{G}$, $\forall n \geq 1$. Since $\alpha_n\mu \to \mu$ strongly in $\mathcal{M}(\Omega)$ and $\mathcal G$ is closed in $\mathcal M(\Omega)$, we have $\mu \in \mathcal G$. \Box

We recall the following result:

Lemma 3. *If* $\mu_1, \ldots, \mu_k \in \mathcal{M}(\Omega)$ *are good measures for* (1.1)*, then so is* sup_{*i*} μ_i *.*

Proof. If $k = 2$, this is precisely [1, Corollary 4]. The general case easily follows by induction on k . \Box

We then have a slightly improved version of Proposition 1:

Proposition 2. Let $\mu \in \mathcal{M}(\Omega)$. Assume there exists $\delta > 0$ such that

 $\mu^+(Q \cap B_r) \leq 2N\omega_N r^{N-2}$ *for every ball* $B_r \subset \mathbb{R}^N$ *with* $r \in (0, \delta)$ *.*

Then, μ *is a good measure for* (1.1).

Proof. Let $B_\delta(x_1), \ldots, B_\delta(x_k)$ be a finite covering of Ω . For each $i = 1, \ldots, k$, let $\mu_i = \mu \sqcup B_\delta(x_i) \in \mathcal{M}(\Omega)$. It is easy to see that μ_i satisfies the assumptions of Proposition 1, so that each μ_i is a good measure for (1.1). Thus, by the previous lemma, $\sup_i \mu_i \in \mathcal{G}$. Since $\mu \leq \sup_i \mu_i$, we conclude that μ is also a good measure for (1.1). \Box

We can now present the

Proof of Theorem 1. As above, since $\mu \leq \mu^+$, it suffices to show that μ^+ is a good measure. In particular, we may assume that $\mu \ge 0$. Moreover, it suffices to establish the theorem for a measure μ such that $\mu \le (4\pi - \varepsilon) \mathcal{H}^{N-2}$ for some $\varepsilon > 0$. The general case follows as in Step 2 of Proposition 1.

We first extend μ to be identically zero outside Ω . By Lemma 2, there exists an open set $\hat{A}_1 \subset \mathbb{R}^N$ such that (a) and *(b)* hold with $\delta = 1$ and $A = \hat{A}_1$. By induction, given an open set $\hat{A}_{k-1} \subset \mathbb{R}^N$, we apply Lemma 2 to $\mu \subset \hat{A}_{k-1}$ and $\delta_k = \frac{1}{k}$ to obtain an open set $\hat{A}_k \subset \hat{A}_{k-1}$ such that

 (a_k) $\mu \Box \hat{A}_{k-1}(B_r \setminus \hat{A}_k) \leq 2N\omega_N r^{N-2}$ for every ball $B_r \subset \mathbb{R}^N$ with $0 < r < \frac{1}{k}$;

(b_k) for every compact set *K* ⊂ \hat{A}_k ,

$$
\mu\big(N_{2/k}(K)\big)\geqslant \mu\,\square\,\hat{A}_{k-1}\big(N_{2/k}(K)\big)\geqslant 4\pi\,\mathcal{H}_{1/k}^{N-2}(K).
$$

By Proposition 2, each measure $\mu \Box \Omega \setminus \hat{A}_1$, $\mu \Box \hat{A}_1 \setminus \hat{A}_2$, ..., $\mu \Box \hat{A}_{k-1} \setminus \hat{A}_k$ is good. We now invoke Lemma 3 to conclude that

$$
\mu \sqcup \Omega \setminus \hat{A}_k = \sup \{ \mu \sqcup \Omega \setminus \hat{A}_1, \mu \sqcup \hat{A}_1 \setminus \hat{A}_2, \ldots, \mu \sqcup \hat{A}_{k-1} \setminus \hat{A}_k \}
$$

is a good measure for every $k \geq 1$. Let $\hat{A} = \bigcap_k \hat{A}_k$. Since $\mu \sqcup \Omega \setminus \hat{A}_k \to \mu \sqcup \Omega \setminus \hat{A}$ strongly in $\mathcal{M}(\Omega)$ and the set $\mathcal G$ of good measures is closed with respect to the strong topology, we conclude that $\mu \Box \Omega \setminus \hat{A}$ is also a good measure for (1.1).

We now claim that $\mu(\hat{A}) = 0$. In fact, let $K \subset \hat{A}$ be a compact set. In particular, $K \subset \hat{A}_k$. By (b_k) , we have

$$
\mu\big(N_{2/k}(K)\big) \geqslant 4\pi \mathcal{H}_{1/k}^{N-2}(K) \quad \forall k \geqslant 1.
$$

As $k \to \infty$, we conclude that

$$
\mu(K) \geqslant 4\pi \mathcal{H}^{N-2}(K). \tag{4.2}
$$

In particular, $\mathcal{H}^{N-2}(K) < \infty$. Recall that, by assumption,

$$
\mu(K) \leqslant 4\pi (1 - \varepsilon) \mathcal{H}^{N-2}(K). \tag{4.3}
$$

Combining (4.2) and (4.3), we get $\mu(K) = 0$. Since $K \subset \hat{A}$ is arbitrary, we conclude that $\mu(\hat{A}) = 0$. Therefore, $\mu = \mu \Box \Omega \setminus \overline{A}$ and so μ is a good measure. This concludes the proof of Theorem 1. \Box

5. Proofs of Theorems 3 and 4

In this section we derive some necessary conditions for a measure to be good for problem (1.1). Let us start with a regularity property for solutions of elliptic equations with measure data.

Lemma 4. *Let* $v \in M(\Omega)$ *and let u be the solution of the Dirichlet problem*

$$
\begin{cases}\n-\Delta u = v & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.\n\end{cases}
$$
\n(5.1)

$$
If eu \in L1(\Omega), then u+ belongs to W01,p(\Omega) for every p < 2, and
$$

$$
||u^+||_{W_0^{1,p}} \leq C(p, \text{meas } \Omega, ||v||_{\mathcal{M}}, ||eu||_{L^1}) \quad \forall p < 2.
$$
 (5.2)

Proof. Let $v_n = \rho_n * v$, where (ρ_n) is a sequence of mollifiers, and let u_n be the solution of

$$
\begin{cases}\n-\Delta u_n = v_n & \text{in } \Omega, \\
u_n = 0 & \text{on } \partial \Omega.\n\end{cases}
$$
\n(5.3)

Then it is well-known that the sequence (u_n) converges to *u* in $W_0^{1,q}(\Omega)$, for every $q < \frac{N}{N-1}$ (see [8]).

Using $T_k(u_n^+) = \min\{k, \max\{u_n, 0\}\}\$ as a test function in (5.3), we have

$$
\int_{\Omega} \left|\nabla T_k(u_n^+)\right|^2 dx = \int_{\Omega} T_k(u_n^+) \nu_n dx \leqslant k \| \nu_n \|_{L^1} \leqslant k \| \nu \|_{\mathcal{M}}.
$$

Letting $n \to \infty$, by weak lower semicontinuity we obtain

$$
\int_{\Omega} |\nabla T_k(u^+)|^2 dx \leq k \|v\|_{\mathcal{M}}.
$$
\n(5.4)

On the other hand, assumption $e^u \in L^1(\Omega)$ implies, for every $k > 0$,

$$
e^k
$$
 meas $\{u > k\}$ $\leq \int_{\{u > k\}} e^u dx \leq ||e^u||_{L^1},$

and so

$$
\text{meas}\{u > k\} \leqslant e^{-k} \|e^u\|_{L^1}.\tag{5.5}
$$

For every $\eta > 1$ we have

$$
\left\{|\nabla u^+| > \eta\right\} = \left\{\begin{array}{c}|\nabla u| > \eta \\ u > k\end{array}\right\} \cup \left\{\begin{array}{c}|\nabla u| > \eta \\ 0 \leqslant u \leqslant k\end{array}\right\},\right.
$$

so that, by (5.4) and (5.5),

$$
\text{meas}\left\{|\nabla u^+| > \eta\right\} \leqslant \text{meas}\left\{u > k\right\} + \text{meas}\left\{\frac{|\nabla u| > \eta}{0 \leqslant u \leqslant k}\right\}
$$

$$
\leqslant e^{-k} \|\mathbf{e}^u\|_{L^1} + \frac{1}{\eta^2} \int_{\Omega} |\nabla T_k(u^+)|^2 \, \mathrm{d}x \leqslant C \left(e^{-k} + \frac{k}{\eta^2}\right),
$$

where $C = \max\{\Vert e^u \Vert_{L^1}, \Vert v \Vert_{\mathcal{M}}\}.$ Minimizing on *k*, we find

$$
\operatorname{meas}\left\{|\nabla u^+| > \eta\right\} \leqslant C \frac{1 + 2\ln \eta}{\eta^2}.
$$

Therefore, $|\nabla u^+|$ belongs to the Marcinkiewicz space of exponent *p*, for every $p < 2$. Since Ω is bounded, it follows that $|\nabla u^+| \in L^p(\Omega)$, for every $p < 2$, and that (5.2) holds. \Box

Theorem 3 can now be obtained as a consequence of the above results.

Proof of Theorem 3. By inner regularity, it is enough to prove that if $\mu \in \mathcal{M}(\Omega)$ is a good measure for problem (1.1), then $\mu(K) \le 0$ for every compact set $K \subset \Omega$ with $\dim_{\mathcal{H}}(K) < N - 2$.

By Lemma 3, if μ is a good measure, then so is $\mu^+ = \sup{\{\mu, 0\}}$. Let $\nu \ge 0$ be the solution of problem (1.1) with datum μ^+ . In particular, *v* satisfies

$$
\int_{\Omega} \nabla v \nabla \zeta + \int_{\Omega} (e^v - 1)\zeta = \int_{\Omega} \zeta \, d\mu^+ \quad \forall \zeta \in C_c^{\infty}(\Omega). \tag{5.6}
$$

Take now a compact set $K \subset \Omega$ with dim_H $(K) < N - 2$, and let q be such that $2 < q < N - \dim_{\mathcal{H}}(K)$. Then the *q*-capacity of *K* is zero (see e.g. [3]), and there exists a sequence of smooth functions $\zeta_n \in C_c^{\infty}(\Omega)$ such that

 $0 \le \zeta_n \le 1$ in Ω , $\zeta_n = 1$ in K , $\zeta_n \to 0$ in $W_0^{1,q}(\Omega)$ and a.e. (5.7)

Using ζ_n as test function in (5.6) yields

Br(x)

$$
0 \leq \mu^+(K) \leq \int_{\Omega} \zeta_n \,d\mu^+ = \int_{\Omega} \nabla v \, \nabla \zeta_n + \int_{\Omega} (e^v - 1) \, \zeta_n.
$$

Since, by Lemma 4, $v \in W_0^{1,q'}(\Omega)$, the right-hand side tends to 0 as $n \to \infty$. Hence, $\mu^+(K) = 0$, which implies $\mu(K) \leq 0$, as desired. \square

Before presenting the proof of Theorem 4, we need some preliminary lemmas. The first one is well-known (see e.g. [3]).

Lemma 5. *If* $f \in L^1(\mathbb{R}^N)$ *, then, for every* $0 \le s \le N$ *,* lim *r*→0 1 *rs* - $|f(y)| dy = 0$ H^s-a.e. in \mathbb{R}^N .

In the following, we will denote the angular mean of a function $w \in L^1(\mathbb{R}^N)$ on the sphere centered at $x \in \mathbb{R}^N$ with radius $r > 0$ by

$$
\overline{w}(x,r) = \int_{\partial B_r(x)} w \, d\sigma = \frac{1}{N \omega_N r^{N-1}} \int_{\partial B_r(x)} w \, d\sigma. \tag{5.8}
$$

The next result provides an estimate of the asymptotic behavior, as $r \to 0$, of the angular mean of a function in terms of its Laplacian.

Lemma 6. *Let* $w \in L^1(\mathbb{R}^N)$ *be such that* $\Delta w \in \mathcal{M}(\mathbb{R}^N)$ *. Set* $\mu = -\Delta w$ *. Then,*

$$
\frac{1}{N\omega_N}\liminf_{r\to 0}\frac{\mu(B_r(x))}{r^{N-2}}\leqslant \liminf_{r\to 0}\frac{\overline{w}(x,r)}{\ln(1/r)}\leqslant \limsup_{r\to 0}\frac{\overline{w}(x,r)}{\ln(1/r)}\leqslant \frac{1}{N\omega_N}\limsup_{r\to 0}\frac{\mu(B_r(x))}{r^{N-2}}.
$$

Proof. We claim that, for every $0 < r < s < 1$, we have

$$
\overline{w}(x,r) - \overline{w}(x,s) = \frac{1}{N\omega_N} \int\limits_r^s \frac{\mu(B_\rho(x))}{\rho^{N-1}} d\rho.
$$
\n(5.9)

Indeed, if $\mu \in L^1(\mathbb{R}^N)$, then, integrating by parts, we have

$$
\int_{B_{\rho}(x)} \mu(y) dy = -N\omega_N \rho^{N-1} \overline{w}'(x,\rho),
$$
\n(5.10)

where \prime denotes the derivative with respect to ρ . Integrating (5.10) from r to s we have

$$
\overline{w}(x,r) - \overline{w}(x,s) = \frac{1}{N\omega_N} \int\limits_r^s \frac{1}{\rho^{N-1}} \bigg(\int\limits_{B_\rho(x)} \mu(y) \,dy \bigg) d\rho,
$$

which is precisely (5.9) if $\mu \in L^1(\mathbb{R}^N)$. The general case then follows by regularizing via convolution and taking the limit. Thus, from (5.9) we have

$$
\frac{1}{N\omega_N}\inf_{0<\rho
$$

Dividing by $\ln(1/r)$ and letting $r \to 0$ yields

$$
\frac{1}{N\omega_N}\inf_{0<\rho
$$

and the conclusion follows by letting $s \to 0$. \Box

An immediate consequence of Lemmas 5 and 6 is the following

Corollary 4. *Let* $w \in L^1(\mathbb{R}^N)$ *be such that* $\Delta w \in L^1(\mathbb{R}^N)$ *. Then,*

$$
\lim_{r \to 0} \frac{\overline{w}(x,r)}{\ln(1/r)} = 0 \quad \text{for } \mathcal{H}^{N-2}\text{-a.e. } x \in \mathbb{R}^N.
$$

We can now prove Theorem 4.

Proof of Theorem 4. By contradiction, assume that μ is a good measure for problem (1.1), so that *(*4 π + *ε*) \mathcal{H}^{N-2} *L E* is also a good measure. Let *u* be the solution of (1.1) with datum $(4\pi + \varepsilon)\mathcal{H}^{N-2}$ *L E* and let *v* the solution of

$$
\begin{cases}\n-\Delta v = (4\pi + \varepsilon)\mathcal{H}^{N-2} \sqcup E & \text{in } \Omega, \\
v = 0 & \text{on } \partial\Omega.\n\end{cases}
$$

Since *E* is $(N - 2)$ -rectifiable, then (see [6])

$$
\lim_{r \to 0} \frac{\mathcal{H}^{N-2}(E \cap B_r(x))}{r^{N-2}} = \omega_{N-2} \quad \text{for } \mathcal{H}^{N-2}\text{-a.e. } x \in E.
$$

Thus, from Lemma 6 we obtain

$$
\lim_{r \to 0} \frac{\overline{v}(x, r)}{\ln(1/r)} = \frac{(4\pi + \varepsilon)\omega_{N-2}}{N\omega_N} = \frac{4\pi + \varepsilon}{2\pi} \quad \text{for } \mathcal{H}^{N-2}\text{-a.e. } x \in E.
$$
\n(5.11)

On the other hand, the function $w = v - u$ satisfies $-\Delta w = e^u - 1 \in L^1(\Omega)$, so that, by Corollary 4,

$$
\lim_{r \to 0} \frac{\overline{w}(x,r)}{\ln(1/r)} = \lim_{r \to 0} \frac{\overline{v}(x,r) - \overline{u}(x,r)}{\ln(1/r)} = 0 \quad \text{for } \mathcal{H}^{N-2}\text{-a.e. } x \in \Omega. \tag{5.12}
$$

Combining (5.11) and (5.12) we deduce

$$
\lim_{r \to 0} \frac{\overline{u}(x,r)}{\ln(1/r)} = \frac{4\pi + \varepsilon}{2\pi} > 2 \quad \text{for } \mathcal{H}^{N-2}\text{-a.e. } x \in E.
$$

Thus, for \mathcal{H}^{N-2} -a.e. $x \in E$, there exists $\delta = \delta(x) > 0$ such that

$$
\frac{\overline{u}(x,r)}{\ln(1/r)} > 2 \quad \forall r \in (0,\delta). \tag{5.13}
$$

Since

$$
\int\limits_{B_\delta(x)} e^{u(y)} dy = \int\limits_0^\delta \left(\int\limits_{\partial B_r(x)} e^u d\sigma \right) dr = N\omega_N \int\limits_0^\delta r^{N-1} \left(\int\limits_{\partial B_r(x)} e^u d\sigma \right) dr,
$$

by Jensen's inequality and (5.13), it follows that

$$
\int\limits_{B_\delta(x)} e^{u(y)} dy \geq N\omega_N \int\limits_0^{\delta} r^{N-1} e^{\overline{u}(x,r)} dr \geq N\omega_N \int\limits_0^{\delta} r^{N-3} dr = \frac{N\omega_N}{N-2} \delta^{N-2}.
$$

Consequently, as $\delta \rightarrow 0$, we obtain

$$
\liminf_{\delta \to 0} \frac{1}{\delta^{N-2}} \int\limits_{B_\delta(x)} e^{u(y)} dy > 0 \quad \text{for } \mathcal{H}^{N-2}\text{-a.e. } x \in E,
$$

which contradicts Lemma 5 being $\mathcal{H}^{N-2}(E) > 0$. □

6. Proof of Theorem 5

We first establish Corollaries 1–3.

Proof of Corollary 1. Let $\mu \in \mathcal{M}(\Omega)$ be such that $\mu \leq 4\pi \mathcal{H}^{N-2}$. It follows from Theorem 1 that μ is a good measure. Since μ^* is the largest good measure $\leq \mu$, we must have $\mu = \mu^*$. \Box

Proof of Corollary 2. By Corollary 10 in [1], for every $\mu \in \mathcal{M}(\Omega)$ we have

$$
\mu^* = (\mu^+)^* + (-\mu^-)^* = (\mu^+)^* - \mu^-. \tag{6.1}
$$

Assume that there exists a Borel set $A \subset \Omega$, with dim_H $(A) < N - 2$, such that $\mu^+ = \mu^+ \subset A$. We claim that $(\mu^+)^* = 0.$

By contradiction, suppose that $(\mu^+)^* \neq 0$. Since $0 \leq (\mu^+)^* \leq \mu^+$, the measure $(\mu^+)^*$ is also concentrated on *A*. In addition, $(\mu^+)^* \neq 0$ implies $(\mu^+)^*(A) > 0$. Applying Theorem 3, we conclude that $(\mu^+)^*$ is not a good measure, which is a contradiction. Thus, $(\mu^+)^* = 0$. It then follows from (6.1) that $\mu^* = -\mu^-$. \Box

Proof of Corollary 3. Without loss of generality we can assume that $\alpha(x) \geq 0$ for \mathcal{H}^{N-2} -a.e. in $x \in E$. Let $\nu = \min\{4\pi, \alpha(x)\}$ H^{N-2} $\Box E$. Since $\nu \leq 4\pi$ H^{N-2}, Theorem 1 implies that ν is a good measure. Clearly, $\nu \leq \mu$; thus, $\nu \le \mu^*$. Since $\mu^* \le \mu = \alpha(x)\mathcal{H}^{N-2} \sqcup E$, there exists an \mathcal{H}^{N-2} -measurable function β , such that $\mu^* =$ $\beta(x)$ $\mathcal{H}^{N-2} \square E$. Assume by contradiction that $\beta \neq \min\{4\pi, \alpha\}$. Since

 $\min\{4\pi, \alpha\} \leq \beta \leq \alpha,$

we conclude that there exists $\varepsilon > 0$ and a Borel set $F \subset E$, with $\mathcal{H}^{N-2}(F) > 0$, such that

$$
(4\pi + \varepsilon) \leqslant \beta \quad \mathcal{H}^{N-2}\text{-a.e. on } F.
$$

Since *E* is $(N-2)$ -rectifiable and *F* ⊂ *E*, then *F* is also $(N-2)$ -rectifiable (see e.g. [6, Lemma 15.5]). Moreover, $(4\pi + \varepsilon)\mathcal{H}^{N-2} \sqcup F \leqslant \beta\mathcal{H}^{N-2} \sqcup F \leqslant \mu^*$.

Thus, $(4\pi + \varepsilon)\mathcal{H}^{N-2} \subseteq F$ is a good measure. But this contradicts Theorem 4. Therefore, $\beta = \min\{4\pi, \alpha\}$ and so $\mu^* = \nu$. \Box

We now present the

Proof of Theorem 5. Clearly, the measures μ_1 , μ_2 , μ_3 and $-\mu^-$ are singular with respect to each other; (1.10) then follows from Theorem 8 in [1]. For the same reason, (1.12) holds. Next, Corollaries 1–3 imply (1.11) , (1.13) and (1.15). Finally, since min { 4π , α } $\mathcal{H}^{N-2} \subset E_2$ is a good measure by Theorem 1, we have (1.14). \Box

Acknowledgements

The fourth author (A.C.P.) was partially supported by CAPES, Brazil, under grant no. BEX1187/99-6. A.C.P. gratefully acknowledges the invitation and the warm hospitality of the Math. Dept. at the University of Rome 1, where part of this work was carried out.

References

- [1] H. Brezis, M. Marcus, A.C. Ponce, Nonlinear elliptic equations with measures revisited, Ann. of Math. Stud., Princeton University Press, in press.
- [2] H. Brezis, F. Merle, Uniform estimates and blow-up behavior for solutions of −*u* = *V (x)* e*^u* in two dimensions, Comm. Partial Differential Equations 16 (1991) 1223–1253.
- [3] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992.
- [4] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969.
- [5] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
- [6] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.
- [7] A.C. Ponce, How to construct good measures, Proceedings of the Fifth European Conference on Elliptic and Parabolic Problems. A special tribute to the work of Haïm Brezis.
- [8] G. Stampacchia, Équations elliptiques du second ordre à coefficientes discontinus, Les Presses de l'Université de Montréal, Montréal, 1966.
- [9] J.L. Vázquez, On a semilinear equation in \mathbb{R}^2 involving bounded measures, Proc. Roy. Soc. Edinburgh Sect. A 95 (1983) 181–202.