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Abstract

We study the existence and non-existence of solutions of the problem

—Au+€e' —-1=u Iing,
{u:O onas, ©.1)

where 2 is a bounded domain iRY, N > 3, andu is a Radon measure. We prove thauif 4nHN*2, then (0.1) has a
unique solution. We also show that the constani@this condition cannot be improved.
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Résume

Nous étudions I'existence et la non existence des solutions de I'équation

—Au+€' —1=u danss,
{ u=0 ur as2, ©2)
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ou £2 est un domaine borné dai¥’, N > 3, et est une mesure de Radon. Nous démontrons quevérifie u < AxHN 2,
alors le probléme (0.2) admet une unique solution. Nous montrons que la constatiémsgl cette condition ne peut pas étre
améliorée.

© 2005 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

Let 2 c RY, N > 2, be a bounded domain with smooth boundary. We consider the problem

{—Au—i—e“—l:u in £2,

u=20 onas2, (1.1)

whereu € M(£2), the space of bounded Radon measure® inWe say that a function is a solution of (1.1) if
u e L1(£2), & e L1(£2) and the following holds:

—qu;Jr/(e”—l);:/gdu V¢ ecg(ﬁ). 1.2)
2 2

2

Herecg(ﬁ) denotes the set of functiogse C2(§2) such thatt =0 ond$2. A measures is agood measuréor
problem (1.1) if (1.1) has a solution. We shall denot&lihe set of good measures. Problem (1.1) has been recently
studied by Brezis, Marcus and Ponce in [1], where the general case of a continuous nondecreasing nonlinearity
g(u), with g(0) = 0, is dealt with. Applying Theorem 1 of [1] to(u) = €' — 1, it follows that for every. € M (£2)
there exists a largest good measdrga for (1.1), which we shall denote Qy*.

In the caseV = 2, the set of good measures for problem (1.1) has been characterized by Vazquez in [9]. More
precisely, a measune is a good measure if and onlyif({x}) < 4z for everyx in £2. Note that anyu € M(£2)
can be decomposed as

o0
w=po+ Y by,
i=1

with uo({x}) = 0 for everyx in £2, andg,, is the Dirac mass concentratedvat Using Vazquez’s result, it is not
difficult to check that (see [1, Example 5])

]
W= po+ ) mindr, o) 8y,
i=1

This paper is devoted to the study of problem (1.1) in the ¢&3e3. First of all, let us recall that if. is a good
measure, then (1.1) has a unique solutiosee [1, Corollary B.1]). This solution can be either obtained as the
limit of the sequenceéu,,) of solutions of

—Au, +min{er —1 n}=u in$2,
u, =0 onos2,

or as the limit of a sequende,,) of solutions of

—Av, +€"n —1=pu, in$2,
v, =0 onos2,
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with u, = p, * 1, where(p,,) is a sequence of mollifiers. If is not a good measure, then both sequeiggsand
(vn) converge to the solutiom* of problem (1.1) with datunp* (see [1]). It has also been proved in [1] that the
setG of good measures is convex and closed with respect to the strong topolddysiy. Moreover, it is easy to
see that ifv < andu € G, thenv € G.

Before stating our results, let us briefly recall the definitions of Hausdorff measure and Hausdorff dimension of
aset. Letr >0, and letA c RN be a Borel set. Give > 0, let

H(A) = inf{Zwsris: KC U By, with r; <8, Vi},
where the infimum is taken over all coverings/ivith open ballsB,, of radiusr; < 8, andw, = 752/ T (s/2+1).
We define the (sphericaf}dimensional Hausdorff measured’ as
S(A) =i S(A
H'(A) al??) Hs(A),
and the Hausdorff dimension df as
dimy (A) =inf{s > 0: H*(A) =0}.

Given a measurg in M(£2), we say that it is concentrated on a Borel get 2 if w(A) = w(E N A) for
every Borel setA C £2. Given a measurg in M(£2), and a Borel seE C §2, the measure.|_ E is defined by
ul_E(A)=pu(E N A) for every Borel sefA C £2.

One of our main results is the following

Theorem 1.Letu € M(2). If u < 4xHN—2, that s, if w(A) < 4rHN~2(A) for every Borel sefi C §2 such that
HN=2(A) < oo, then there exists a unique solutiorof (1.1).

As a corollary of Theorem 1, we have
Corollary 1. Letpu € M(2). If u < 47HN~2, thenu* = u.

The proof of Theorem 1 relies on a decomposition lemma for Radon measures (see Section 3 below) and on the
following sharp estimate concerning the exponential summability for solutions of the Laplace equation. We denote

by MN/2(§2) the Morrey space with expone@t equipped with the normi - || x> (see Definition 1 below).

Theorem 2.Let f be a function inVIV/2(£2), and letu be the solution of
—Au=f 1ing2,

1.
u=~0 onoas. (1.3)
Then, for every < a < 2Nwy, it holds
2
/ g@Nov-a/iflvil ¢ VO gy )N (1.4)
o

2

This theorem is the counterpart in the caée: 3 of a result proved, foN =2 and f € L1(£2), by Brezis and
Merle in [2]. Note that, forN = 2, the space N/2(£2) coincides withL1(£2).
As a consequence of Theorem 1, we have that the set of good me@siaetains all measurgs which satisfy
w <4nHN=2.1f N =2, then the result of Vazquez states that the converse is also true. In our caseNtBa8is
this isfalse. After this work was completed, A.C. Ponce found explicit examples of good measures which are not
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< 4nHN~2 (see [7, Theorems 2 and 3]). The existence of such measures was conjectured by L. Véron in a personal
communication.
We now present some necessary conditions a measaré has to satisfy. We start with the following

Theorem 3.Let u € M(£2). If u(A) > 0 for some Borel seA C 2 such thatdimy; (A) < N — 2, then(1.1) has
no solution.

Observe that in the case of dimensiin= 2, no measurg satisfies the assumptions of Theorem 3.
As a consequence of Theorem 3 we have

Corollary 2. Leti € M(£2). If uT is concentrated on a Borel satC 2 withdimy, (A) < N —2,thenu* = —u~.

The next theorem, which is one of the main results of this paper, states that there exists no solution qf (1.1) if
is strictly larger than 474" ~2 on an(N — 2)-rectifiable set.

Theorem 4.Let u € M(£2). Assume there exist> 0 and an(N — 2)-rectifiable sett c §2, with HN~2(E) > 0,
such thatul_ E > (4m + ) H¥—2|_ E. Then,(1.1) has no solution.

Corollary 3. Assumeu = a(x)HVN =2 E, whereE C 2 is (N — 2)-rectifiable ande is HVN 2| E-integrable.
Then,u* = min{4r, a(x)yHN 2_E.

In Theorem 4 (and also in Corollary 3), the assumption #ha (N — 2)-rectifiable is important. In fact, one
can find(N — 2)-unrectifiable set§ c §2, with 0 < HV~2(F) < oo, such thav = « HN~2_ F is a good measure
for everya > 0 (see [7]).

As a consequence of the previous results, we can derive some informatioh dmthis extent, let. € M (£2).
Since ¢ — 1 is bounded for: < 0, ™ will play no role in the existence-nonexistence theory for (1.1). Therefore,
we only have to deal witlx ™, which we recall can be uniquely decomposed as

't =p1+ 2+ ps, (1.5)
where

n1(A)=0 for every Borel sefi C £2 such thatt" ~?(A) < oo, (1.6)

ua=a(x)HN"2_E for some Borel seE C £, and somé{" ~2-measurable, (1.7)

u3($2\F)=0 for some Borel sef C 2 with HV~2(F) =0. (1.8)

By a result of Federer (see [4] and also [6, Theorem 15.6]), th& s=tn be uniquely decomposed as a disjoint
union E = E1 U E3, whereEq is (N — 2)-rectifiable andE, is purely (N — 2)-unrectifiable. In particular,

p2=a(X)HN 2 E1+a(x)HN 2L Es. (1.9)

Combining Corollaries 1-3, we establish the following

Theorem 5.Givenu € M(£2), decomposg™ as in(1.5)—(1.9). Then,
wr=(nD)" + (u2)* + (na)* — . (1.10)

In addition,



D. Bartolucci et al. / Ann. I. H. Poincaré — AN 22 (2005) 799-815 803

(n1)* = pa, (1.11)
(u2)* = (a()HV 2L E1)" + (@()HN 2L Ep)", (1.12)
(@YHN 2L E1)" = min{dr, a ()} HY 2L Eq, (1.13)
(2 YHN 2L Eo)* > min{dn, a(x)}HV 2L Es, (1.14)
(13)*(A) =0 for every Borel seti C £2 with dimy (A) < N — 2. (1.15)

In view of the examples presented in [7], one can find measure for which equality in (1.14) fails and
such that(uz)*(F) > 0 for some Borel seF C §2, with HV—2(F) = 0.

The plan of the paper is as follows. In the next section we will prove Theorem 2. In Section 3 we will present a
decomposition result for Radon measures. Theorem 1 will then be proved in Section 4. Theorems 3 and 4 will be
established in Section 5. The last section will be devoted to the proof of Theorem 5 and Corollaries 1-3.

2. Proof of Theorem 2
We first recall the definition of the Morrey space’id2); see [5].
Definition 1. Let p > 1 be a real number. We say that a functipe L1(£2) belongs to the Morrey space/N2)
if
||f||p—5;prN(1T/p) | £ |dy <+oo,
’ 20B,

where the supremum is taken over all open bBJls~ RV .
The following theorem is well-known (for the proof, see for example [5, Section 7.9]).

Theorem 6.Let f € MP(£2) for somep > 5, and letu be the solution of

—Au=f ing,
u=0 onoas2.

If p> %, thenu belongs toL>®(2). If p = &, thenefl“l is uniformly bounded irL1(s2) norm, for everys <
Bo= 2NwN/(eI|fI|N/2)-

Theorem 2 in the Introduction improves the upper bogadjiven in [5]. It turns out that the constaﬁﬁﬂ
N/2
is sharp. Indeed we have the following

Example 1.Let E = {x = (x1, x2, ..., xn) € RV: x1 = x, =0}, and letu = 4nHN 2| E. Defineu, = p, * 11,
where(p,) is a sequence of mollifiers, and ket be the solution of

—Auy, =, in B2(0),
u, =0 ono B (0).

By standard elliptic estimates, — u in Wol"’(Bz(O)), for everyq < NL_l and a.e., where is the solution of

—Au=47HN"2_E in B»(0),
u=0 on 9 B»(0).
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Using the Green representation formula, and setpiig) = dist(x, E), one can prove that(x) behaves as
—2Inp(x), for anyx in a suitable neighborhood @& N B1(0). Moreover, it is easy to verify that

”M””N/Z — 2Nwy asn — 0.

Then, by Fatou’s lemma

iminf [ e@Von/lual2un / & — 400,

n—-400
B2(0) B2(0)

We now turn to the proof of Theorem 2. We start with the following well-known

Lemma 1.Let f:[0,d] — R* be aC*-function, and

g(r)= sup f(z).

te[0,r]
Then,g is absolutely continuous d, d], and its derivative satisfies the following inequality:
0<gM <[] ae, (2.1)
wheres™ = maxs, 0} is the positive part of € R.

Proof. First of all, observe that sincg is continuous, then so ig. We now prove that, for every < y in [0, d],
there existt < y in [x, y] such that

0< g —g) <[ — r®]" (2.2)
Indeed, ifg(y) = g(x), then it is enough to choose= x andy = y. If g(y) > g(x), then let us define
X= max{z >x:g(z)= g(x)} and y= min{z <yl glr) = g(y)},

Clearly, sinceg is nondecreasing, we havwe< y. In order to prove (2.2), simply observe thafx) = g(x) and
(3 = g(y). Indeed, if for examplef (¥) # g(x), then it must bef (¥) < g(x), and this implies thag (z) = g(x)
for somez > x, thus contradicting the definition af

Since f is absolutely continuous, (2.2) implies thats absolutely continuous, as required, so &) exists
for almost every-. We now establish (2.1). Starting from (2.2), and applying the mean value problg¢mwe
have that there existse [, ] such that

0<g() —gW<[fGH-r®O] =[r®el 6-H<[F&] & -».
Dividing by y — x, and lettingy — x, the result follows. O

Proof of Theorem 2. We split the proof into two steps:
Step 1. Giverf € C(£2), f >0, let

1 1 1
v(x) = N —2om /(|x v — dN_2>f(y)dy Vx € £2, (2.3)
2

whered is the diameter of2. Then, for every 0< « < 2N wy, it holds

2

/ e(@Noy—a)/ 1720 g « MO v (2.4)
o

2
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Let us set
vix,r)= / f(y)dy VxeSf.
By (x)
In particular,
vee.r) <onrVliflie and V() = / £ do () < NowrV 3 £ . (25)

9B, (x)

where’ denotes the derivative with respectitanddo is the(N — 1)-dimensional measure @B, (x). Then,

d
v(x) = ! /( 17 - 17 )( / f(y)da(y))dr
N(N - 2)wn rN-2  gN-2
0

9By (x)

1 1 1 /
N N(N - 2)on JN—2 7 gN-2 v'(x, r)dr.
0

Integrating by parts, we have

B 1 11
YO = NN 2 <rN2 dN2> ’

1 v(x,r)
v(x) = N—a)N/ﬂdr
0
Define now
v(x,t)
Y(x,r)= SUp ——5.
1e[0,r] tN=2

It follows from Lemma 1 that/ (x, -) is absolutely continuous. Then, integrating by parts,

d d
1 y,r) 1 d\\'
U(X) < N—a)N/ . dr= _N—a)N (ln(:)) w(x,r)dr
0

0
d
1 d\|* 1 d\
=——w(x,r)|n<—) +—/In(—)w (x,r)dr.
r)lo Non r
0

NCL)N

By (2.5),

lim ¥ (x,r) In<g> =0,
r—0 r
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and then, observing that(x, d) > v(x,d)/dVN =2 = ||f||L1/dN‘2 >0,

d d
1 d\ (V&) v
v(x)SN—wN/h’l<?>t// (x,r)dr_ Na)N In( )w( d)
0 0

Therefore, for any G o < 2Nwy,

d
e(@Noy-a)/If 2 < expy /‘ 2Noy —a §(x,d) In(ﬁ) y'een o\
Iflinz  Noy ¥ (x.d)

Since ‘fb((;‘;)) dr is a probability measure oi®, ), Jensen’s inequality implies

d
) 4\ @V =/ IF InD W d/NON) (1)
g(@Noy—a)/|| flln/2)v(x) g/(—)

0

V(x,d)
Clearly,
AN
W(x,d)<ySEU£1/f(y,d)=I|fIIN/2 and ¥ (x, a’)/ .
Thus,
N—-a/Noy d /
e(@Noy—a)/I iy e ¢ ¢ V) g (2.6)
1A r2-o/Noy
0
Now, by (2.1) we have
I+
Y < [(”(" ”) ] T,
so that
1 1
/vf(x Pde< - 2/< / f(y)da(y))dx—rN—_Z/( / f(y+x>da(y>)dx
2 9B (x) 2 09B-(0)

1
= N2 / </f(y +X)dX) do(y) S Nonr|fll

9B.(0) £
Hence, from (2.6),

d
2
/e(<2NwN—a>/ufuN/z)v<x> dngdeN—a/NwN/ . dr__ (Non)” y
rl—a/Noy o
0

2
which is (2.4). This concludes the proof of Step 1.

Step 2Proof of Theorem 2 completed.
Let f € MN/2(2). Clearly, it suffices to prove the theorem fgr> 0. By extendingf to be identically zero
outsides2, we have
/ f(dy< ||f||N/2rN_2 for every ballB, c R". (2.7)
By
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Let (o) C C°(B1), pn = 0, be a sequence of mollifiers. Takg) C C2°(£2) to be such that & ¢, < 1in §2, and
Ln(x) =1if d(x,32) > 2. Setf, = £ (py * f). We claim that

Ifally, , < I Vn =1 (2.8)

N/2
In fact, given any balB, (z) ¢ RY, we have

ffn<x)dx< /(pn*fxx)dx: f <fpn(x—y)f(y)dy>dX=/( / f(y)dy)pna)dr.
B (2) B, (2) B(z) RN RN By(z—1)
Since (2.7) holds, we get

N-2 _ N-2
/ fn(X)dX<||f||N/2r /pn(t)dt—llfllN/zr )
B, (2) RN
which is precisely (2.8).
Let u,, be the unique solution of
—Au, = f, ing,
u, =0 onos2.

We shall denote by, the function given by (2.3), witty replaced byf,. Note that, by the standard maximum
principle, 0< u, < v, in 2,Vr > 1. Given O< o < 2N wy, it follows from (2.8) and the previous step that

(Noy)?
o

N/2

/ e(@Noy=a)/I fllv2un () g < / e(@Noy =)/ fullw2un @) g < FLARV 2.9)

2 2

Sincef, — fin L1(£2), standard elliptic estimates imply that — « in L1(£2) and a.e. Thus, as— oo in (2.9),
it follows from Fatou’s lemma that@Nev—o)/IfIv2u ¢ 11(2) and

2
/ @Noy—a/Iflxu g, « NON” 4y
o
2

This concludes the proof of the theorenta

3. A useful decomposition result
Our goal in this section is to establish the following:
Lemma 2.Letu € M(RN), u > 0. Givens > 0, there exists an open sgtc RV such that

(@) w(B\A) < 2NwyrN—2for every ballB, ¢ RN with0 < r < §;
(b) for every compact set C A,

1(N2s(K)) = 4mHY 2(K).
whereNos (K) denotes the neighborhood &f of radius25.

Proof. Given a sequence of open sé#g ) >0, for eachk > 1 we let

Ry = sup{r €[0,8): (B, \Ax_1) > 2Nwyr" =2 for some ballB, ¢ RV}. (3.1)



808 D. Bartolucci et al. / Ann. I. H. Poincaré — AN 22 (2005) 799-815

We now construct the sequeng#y,) inductively as follows. LefAg = ¢. We have two possibilities. IR1 = 0, then
we takeA; = ¢ for everyk > 1. Otherwise R1 > 0 and there existg € (%, R1] andx; € RY such that

% (Brl (xl)) 2Na)NrN 2,

Let A; = By, (x1). If R2 =0, then we letA; = ¢ for everyk > 2. AssumeR; > 0. In this case, we may find
r2 € (%2, Ryl andxz € RV such that

1(Br,(x2)\A1) > 2Neoyry 2.
Proceeding by induction, we obtain a sequence of l#lléx1), B,,(x2), ... and open sets

A =By (x1)U---U By, (x¢) (3.2)
such that

Ry

> <rp < Ry (3.3)
and

11 (Br i)\ Ak—1) = 2Nayr) 2 Vi > 1. (3.4)

Note thatR;, — 0 ask — oo. In fact, by (3.3) and (3.4) we have

Na)
ON ZRN 2<2NwNZr,§V 2<Z“ (Br (xi)\ Ax—1) (UBrk(xk)> < el

k=1 k=1 k=1

In particular,y", R 2
Let

o0 oo
A=JAj =B (0.
j=1 k=1

We claim thatA satisfies (a) and (b).

< 00, which implies the desired result.

Proof of (a). Given B, ¢ R" such that O< r < 8, letk > 1 be sufficiently large so thak; < r. By the definition
of Ry, we haveu (B, \Ay) < 2NwnrVN 2. SinceA; C A, we haveB,\A C B,\ A and the result follows.

Proof of (b). Given a compact se&t C A, let
J={j>1 B, (x))NK #¢}.
In particular,
kK c B, x)).
jeJ
Moreover, since; < §, we haveB,]. (xj) C Nos(K) for everyj e J. Thus,

1(Nas(K)) > (UBr,(xp) (U[Br,(xp\A,-_l])

jed jelJ
2Na)N

:ZM(Brj(xj)\Aj—l)>2Na)NZr;V 22 _Z(K).
jel jeJ
Since 2Nay /wn—2 = 47, we get
1(N2s(K)) = 4nHY 2(K).

This concludes the proof of Lemma 20
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4. Proof of Theorem 1
We first observe that, as a consequence of Theorem 2, we have the following

Proposition 1.Let u € M(£2) be such that
ut(@2NB,)<2Nawyr¥=2 forevery ballB, c RV.
Then,u is a good measure fdil.1).
Proof. Sinceu < u', itis enough to show that™ is a good measure. Thus, without loss of generality, we may

assume that > 0. Moreover, extending to be identically zero outsid®, we may also assume thate M([RY)
and

w(B,) <2NwyrM =2 for every ballB, c RV.
We shall split the proof of Proposition 1 into two steps:
Step 1Assume there exists> 0 such that
w(B,) <2Nwy(1—e)r¥=2 for every ballB, c RY.

Then,u is a good measure.
Let (pon) C C(B1), pn = 0, be a sequence of mollifiers. Sef, = p, * u. Proceeding as in the proof of
Theorem 2, Step 2, we have

lunllne <2Non(1—e) Vn 1.
Let v, be the unique solution of

—Av, =u, ing2,
v, =0 onoas.

Applying Theorem 2 tax = 2Nwy — ||unlln/2 = 2Nwye > 0, we conclude that

/e”" <C Vn>1, 4.1)
2
for some constant > 0 independent ot. By standard elliptic estimates — v a.e., where is a solution for

—Av=pu ing2,
v=0 onoas2.

Hence, by Fatou’s lemma and (4.1), it follows thateL1(£2). Since
—Av+€e —-1=pu+e"—1 ing,
u~+ e’ —1isagood measure. In particular< « + €' — 1 andv > 0, imply that . is a good measure as well.

Step 2Proof of the proposition completed.

Letw, 1 1. For every: > 1, the measure,, u satisfies the assumptions of Step 1. Thtig € G, Vn > 1. Since
a, 0 — w strongly inM(£2) andg is closed inM(£2), we haveu € G. O

We recall the following result:

Lemma 3.1f 1, ..., ur € M(£2) are good measures f@..1), then so isup w;.
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Proof. If k =2, this is precisely [1, Corollary 4]. The general case easily follows by inductidn om
We then have a slightly improved version of Proposition 1:

Proposition 2. Let u € M(£2). Assume there exists> 0 such that
wt(@2nB,) <2NwyrV=? forevery ballB, c RN with r € (0, §).
Then,u is a good measure fdi.1).
Proof. Let Bs(x1), ..., Bs(xx) be a finite covering of2. For each =1, ...k, let u; = L Bs(x;) € M(£2). It

is easy to see that; satisfies the assumptions of Proposition 1, so that gaét a good measure for (1.1). Thus,
by the previous lemma, spp; € G. Sincep < sup p;, we conclude that is also a good measure for (1.1)0

We can now present the

Proof of Theorem 1. As above, sincg < u™, it suffices to show that* is a good measure. In particular, we may
assume that > 0. Moreover, it suffices to establish the theorem for a meagwsech thatw < (4n — &) HN 2
for somee > 0. The general case follows as in Step 2 of Proposition 1.

We first extend. to be identically zero outsid®. By Lemma 2, there exists an open datc RV such thata)
and(b) hold withs =1 andA = A1 By induction, given an open sdf_1 Cc RN, we apply Lemma 2 tol Ag_q
ands; = 1 to obtain an open seﬂtk - Ak 1 such that

(&) L Ar_1(B\Ay) < 2NwyrN=2for every ballB, c RN with 0 < r < ;
(by) for every compact sek C Ay,

n(Nojk(K)) = LA 1(N2/k(K)) > 4ﬂ7‘l1/k 2(K).
By Proposition 2, each measue 2\ A1, u|_ A1\Ao, ..., uL_ Ar_1\ A is good. We now invoke Lemma 3 to
conclude that
o 2\Ap =supul 2\A1, ulA1\Az, ..., nl Ar_1\Ag)

is a good measure for eveby> 1. LetA = (), Ay. Sincel £2\A; — ul 2\ A strongly inM(£2) and the seg
of good measures is closed with respect to the strong topology, we concluge tha A is also a good measure
for (1.1).

We now claim thaf(A) = 0. In fact, letk C A be a compact set. In particuld, C A. By (by), we have

u(Nz/k(K)) = 4nHy 2(K) V> 1.
As k — oo, we conclude that
w(K) = 4rHN?(K). (4.2)
In particular,H¥ ~2(K) < co. Recall that, by assumption,
w(K) <4rn @ — e)HN2(K). (4.3)

Combining (f1.2) and (4.3), we get(K) = 0. SinceK C Ais arbitrary, we conclude that(A) = 0. Therefore,
w=pl_ 2\A and sou is a good measure. This concludes the proof of Theorenti.
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5. Proofs of Theorems 3 and 4

In this section we derive some necessary conditions for a measure to be good for problem (1.1). Let us start with
a regularity property for solutions of elliptic equations with measure data.

Lemma 4.Letv € M(£2) and letu be the solution of the Dirichlet problem

—Au=v in$2,
u=0 onas2.

If & e L1(£2), thenu™ belongs toW&"’(Q) for everyp < 2, and
et o < C(p. meas. vl l'l2) Vp <2. (5.2)

(5.1)

Proof. Letv, = p, x v, where(p,) is a sequence of mollifiers, and ket be the solution of

—Au, =v, in$,
{un =0 onoas. (5:3)

Then it is well-known that the sequenge,) converges ta in W&’q(fz), for everyg < % (see [8]).
Using Ty (u;") = min{k, max{u,, 0}} as a test function in (5.3), we have

2

f|VTk(u;f)| dx = / Tic(u;) vy dox < kv ll 2 < KJv ] g
2 2

Lettingn — oo, by weak lower semicontinuity we obtain

/|VTk(u+)|2dx<k||u||M. (5.4)
2

On the other hand, assumpticheL1(£2) implies, for everyk > 0,

e measgu > k} < / e dx < [|€]| 1,
{u>k}
and so
measgu > k} < e ¥| e 1. (5.5)

For everyn > 1 we have

+ _JVul>n [Vul>n
{|Vu |>7)}—{ u>k }U{Oguék ’

so that, by (5.4) and (5.5),

mead|Vu™t| > n} < meagu > k} + mea (|)V<ML|¢><7<}
_k 1 + 2 —k k
<etlelp+ 5 [ [VI@H|"dy<Cle™ + ).
n n
Q
whereC = maxX{||€'| 1, [Vl a}. Minimizing onk, we find

1+42Inyp

meag|Vut|>n} <C 2
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Therefore,|Vu™| belongs to the Marcinkiewicz space of expongntfor every p < 2. Since £2 is bounded, it
follows that|Vu™| € L?(£2), for everyp < 2, and that (5.2) holds. O

Theorem 3 can now be obtained as a consequence of the above results.

Proof of Theorem 3. By inner regularity, it is enough to prove thatf e M(£2) is a good measure for prob-
lem (1.1), themu(K) < O for every compact st C §2 with dimy (K) < N — 2.

By Lemma 3, ifu is a good measure, then sqi%$ = sup{u,0}. Letv > 0 be the solution of problem (1.1) with
datump ™. In particular,v satisfies

/VuV;+[(e”—1);:f§d;ﬁ Vi e CE(2). (5.6)
2

Take now a compact sé&t C §2 with dimy, (K) < N — 2, and letg be such that 2 ¢ < N — dimy(K). Then the
g-capacity ofK is zero (see e.g. [3]), and there exists a sequence of smooth fungtiensz®(£2) such that

0<z, <1 ing, Hh=1 ink, Hn—0 in W&’q(fz) and a.e. (5.7)
Using¢, as test function in (5.6) yields

0<u+(1<)</¢ndu+=/wvcn+/(e”—1)cn.
2 2 2

Since, by Lemma 4y < Wg’q,(Q), the right-hand side tends to 0 as— oco. Hence,u*(K) = 0, which implies
w(K) <0, as desired. O

Before presenting the proof of Theorem 4, we need some preliminary lemmas. The first one is well-known (see
e.g. [3]).

Lemma5.1f f e LY(RY), then, foreven <s < N,

1 _
lim — f |f(|dy=0 H'-a.e.inR".
r—0rs

By (x)

In the following, we will denote the angular mean of a functiore L1(R") on the sphere centeredaat RY
with radiusr > 0 by

wx,r)= ][wdozé / w do. (5.8)

NoyrN-1
9By (x) 9By (x)
The next result provides an estimate of the asymptotic behavier-a$€, of the angular mean of a function in
terms of its Laplacian.

Lemma 6.Letw € LY(RY) be such thathw € M(RV). Setu = —Aw. Then,

. w(Br(x) w(x,r) w(x,r) 1 w(Br(x))
—= iminf X219 iming <li < | .
Neoy Mgt =~=z— sliminf 2775 SImsUpia ™ S Noy IMSUP—75=

Proof. We claim that, for every & r < s < 1, we have

w(x,r)—w(x,s) = No /M(B (x)) dp. (5.9
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Indeed, if € LY(RY), then, integrating by parts, we have

/ u(y)dy=—Naoyp" 1w’ (x, p), (5.10)

By (x)

where’ denotes the derivative with respectdolntegrating (5.10) from to s we have

_ _ 1 [ 1
w(x,r)—w(x,s)=N—W/W< / M(y)dy>dp,

r B, (x)

which is precisely (5.9) ifx € LL(RY). The general case then follows by regularizing via convolution and taking
the limit. Thus, from (5.9) we have

1. w(B,(x)) s _ = 1 m(By(x)) s
T ol (L5 ) in(2) < e = < i sup (HRER in(3).

Dividing by In(1/r) and lettingr — 0 yields
Lt inf <M> < liminf wix, r) <limsu v, r) < 1 su (M)

pN=2 )] = %0 In(/r) T 200 IN(A/r) T Nowy ozps\ pN2

Nwpy 0<p<s

and the conclusion follows by letting— 0. O
An immediate consequence of Lemmas 5 and 6 is the following

Corollary 4. Letw € LY(RY) be such thanw e LY(RN). Then,

w(x,r)

m =0 forH Y 2aexcRV.
Ao in(L/r) H *e

We can now prove Theorem 4.

Proof of Theorem 4. By contradiction, assume that is a good measure for problem (1.1), so that
(4 + e)HN2_ E is also a good measure. Letbe the solution of (1.1) with daturtdn + e) HN 2 E
and letv the solution of

{ —Av=(Ar+eHV 2 E inQ,
v=0 onos2.

SinceE is (N — 2)-rectifiable, then (see [6])

HY2(EN B, (x) _

— wn_p forHN2aexcE.
o=

lim

r—0

Thus, from Lemma 6 we obtain

im v(x,r) (@Ar+eoy-2 An+t+e

- for HVN 2-aexcE. 5.11
r20In(L/r) Now o H *e (.11)

On the other hand, the functian= v — u satisfies-Aw =€ — 1€ L1(£2), so that, by Corollary 4,

w(x,r) b v(x,r)—u(x,r)

lim —~ = =0 forH¥ ?aexcs. 5.12
Ain/r) b Ind/n orfiT e e (6.12)
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Combining (5.11) and (5.12) we deduce
. u(x,r) 4+ ¢
lim =
r—0 In(l/r) 2

Thus, forHY —2-a.e.x € E, there exist$ = §(x) > 0 such that

>2 forHV %-aexcE.

l”r‘]((’;/ rr )) ~2 Vre(0,5). (5.13)
Since
) )
/ e”(y)dyz/A( / e da> dr:Na)N/rN_l( ][ e“da) dr,
Bs(x) 0 B (x) 0 9B, (x)

by Jensen’s inequality and (5.13), it follows that
8 8

: — N
/ e“mdy}Na)N/rN*le“(x") dr}Na)N/rN73dr:—NwN28N72.
Bs(x) 0 0

Consequently, a&— 0, we obtain

L 1
Ilgnlgfm / ¢Mdy>0 forHV 2aexckE,
Bs(x)

which contradicts Lemma 5 beiffg¥ —%(E) > 0. O

6. Proof of Theorem 5
We first establish Corollaries 1-3.

Proof of Corollary 1. Let i € M(£2) be such thap < 4xHN=2. It follows from Theorem 1 that is a good
measure. Sincg™* is the largest good measugeu, we must havew = p*. O

Proof of Corollary 2. By Corollary 10 in [1], for everyu € M(£2) we have
p=uhH () = = (6.1)
Assume that there exists a Borel seic 2, with dimy (A) < N — 2, such thatu™ = u* L A. We claim that
(uh)*=0.
By contradiction, suppose that*)* # 0. Since 0< (u™)* < u™, the measuréu™)* is also concentrated

on A. In addition, (1 )* # 0 implies(u™)*(A) > 0. Applying Theorem 3, we conclude th@t™)* is not a good
measure, which is a contradiction. Thgg;")* = 0. It then follows from (6.1) thai* = —u~. O

Proof of Corollary 3. Without loss of generality we can assume that) > 0 for H¥2-a.e. inx € E. Let
v = min{4r, a(x)yHN 2 E. Sincev < 4nHN~2, Theorem 1 implies that is a good measure. Clearly,< u:
thus,v < u*. Sincep* < u = a(x)HN =2 E, there exists ari{" ~2-measurable functio, such thatu* =
Bx)HN=2|_ E. Assume by contradiction th#t£ min{4x, «}. Since

minfdr, a} < B < «,
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we conclude that there exists> 0 and a Borel sef ¢ E, with Y ~2(F) > 0, such that
(47 +e)<B HN2-ae. onF.

SinceE is (N — 2)-rectifiable andF C E, thenF is also(N — 2)-rectifiable (see e.g. [6, Lemma 15.5]). Moreover,
(Ar +e)HN 2L F <BHN 2L F < u*.

Thus, (47 + ) HVN =2 F is a good measure. But this contradicts Theorem 4. Thereforemin{4x, o} and so
ur=v. 0O

We now present the

Proof of Theorem 5. Clearly, the measurgs;, 12, w3z and—u~ are singular with respect to each other; (1.10)
then follows from Theorem 8 in [1]. For the same reason, (1.12) holds. Next, Corollaries 1-3 imply (1.11), (1.13)
and (1.15). Finally, since mig@r, o} HY 2| E, is a good measure by Theorem 1, we have (1.14).
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