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Abstract

We consider non-uniformly expanding maps on compact Riemannian manifolds of arbitrary dimension, possibly having
discontinuities and/or critical sets, and show that under some general conditions they admit an induced Markov tower structure.
Moreover, the decay of the return time function can be controlled in terms of the time generic points need to achieve some
uniform expanding behavior. As a consequence we obtain some rates for the decay of correlations of those maps and conditions
for the validity of the Central Limit Theorem.
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1. Introduction and statement of results

The purpose of this paper is to study the geometrical structure and statistical properties of piecewise smooth
dynamical systems which satisfy some asymptotic expansion properties almost everywhere. We begin with a dis-
cussion of the statistical properties we are interested in, and the precise statement of our assumptions and results
concerning these properties. We then state our main result on the existence of an induced Markov map and present
our main application to class of two-dimensional non-uniformly expandiaga maps
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1.1. Statistical properties

One of the most powerful ways of describing the dynamical features of systems, specially those having a very
complicated geometrical and topological structure of individual orbits, is through invariant probability measures.
Any such measure can be decomposed into ergodic components and, by a simple application of Birkhoff's Ergodic
Theorem, almost every initial condition in each ergodic component has the same statistical distribution in space.
On such a component, a mgps said to bamixingif

|L(f~"(A) N B) — w(A)u(B)| — 0, whenn — oo,

for any measurable sets, B. Standard counterexamples show that in general there is no specific rate at which
this loss of memory occurs: it is always possible to chooseAetsd B for which mixing is arbitrarily slow. It is
sometimes possible however, to define ¢tberelation function

Cn(w,llf)=‘/(¢0f”)1/fdu—/<pdlt/1/fd/x,

and to obtain specific rates of decay which depend only on the fm@p to a multiplicative constant which is
allowed to depend on, V) as long as thebservableg, v belong to some appropriate functional space. Notice
that choosing these observables to be characteristic functions this gives exactly the original definition of mixing.

The precise dynamical features which cause mixing, and in particular the dynamical features which cause
different rates of decay of the correlation function, are still far from understood. Exponential mixing for uni-
formly expanding and uniformly hyperbolic systems has been known since the work of Sinai, Ruelle and Bowen
[27,11,12,10] and may not seem surprising in view of the fact that all quantities involved are exponential. However
the subtlety of the question is becoming more apparent in the light of recent examples which satisfy asymptotic
exponential expansion estimates but only subexponential decay of correlations. The simplest case is that of one
dimensional maps which are expanding everywhere except at some fixegpdointvhich f’(p) = 1. In certain
cases (essentially depending on the second derivative)) there is an absolutely continuous mixing invariant
measure with positive Lyapunov exponent but strictly subexponential [22,20,30,24] (and in some cases even sub-
polynomial [19]) decay of correlations. In this case the indifferent fixed poistbiwing dowrthe mixing process
since nearby points are moving away (and thus “mixing”) at a slower, subexponential, rate rather than the expo-
nential rate at which they move away from other fixed or periodic point.

A more subtle slowing down effect occurs in smooth one-dimensional maps with critical points where the rate
of mixing is essentially determined by the rate of growth of the derivative along the critical orbit [9]. Here, points
close to the critical point shadow its orbit for a certain amount of time slowing down the mixing process like in
the case of an indifferent fixed point if the derivative growth along the critical orbit is subexponential. In this paper
we identify for the first time a general feature which plays an important role in determining the rate of decay of
correlation for the system. This is tldegree of non-uniformitgf the expansivity which measures how close the
system is to being uniformly expanding by quantifying the initial time one has to wait for typical points to start
behaving as though the system were uniformly expanding. The precise definition will be given below.

We also obtain conditions for the validity of the Central Limit Theorem, which states that the probability of a
given deviation of the average values of an observable along an orbit from the asymptotic average is essentially
given by a Normal Distribution: given a Hélder continuous funcifowhich is not a coboundary(£ ¥ o f — ¢
for any ) there existe > 0 such that for every interval C R,

<xex Z( (£ () /d’du)e]]eﬁ/eﬂ/z"zdt.
J

We present our results first of all in the case of local diffeomorphisms and then in the case in which the map might
contain discontinuities and/or critical points.




J.F. Alves et al. / Ann. |. H. Poincaré — AN 22 (2005) 817-839 819

Non-uniformly expanding local diffeomorphismd.et M be a compact Riemannian manifold of dimensior 1
and Leb a normalized Riemannian volume formMdnthat we callLebesgue measureet f: M — M be aC?
local diffeomorphism and suppose that there exists a constart such that for Lebesgue almost all pointe M
the following non-uniform expansivitgondition is satisfied:

o 1n—1 - 1
Ierorlf;;IogHfo,(x) " =x»>o0. ()

This formulation is motivated by the fact that we want to make an assumption aboaveregeexpansionn
every direction. Indeed for a linear map:R¢ — R¢, the condition||A|| > 1 only provides information about
the existence ofomeexpanded direction, whereas the conditjorr | ~1 > 1 (i.e. log|A~1||~1 > 0) is exactly
equivalent to saying thaverydirection is expanded by. Condition(x) implies that theexpansion timéunction

. 1n_l _ 1. A
E(x) =min{ N: ;Zlog”Df ,.(X)|| >§Vn>N
i=0

is defined and finite almost everywhereph We think of this as thevaiting timebefore the exponential derivative
growth kicks in. Our results indicate that a main factor influencing the rate of decay of correlation is rate of decay
of the tail of this function, i.e. the rate of decay of the measure of the set of points which have not yet started
expanding uniformly by time. We remark that the choice a2 in the definition of€ is just for convenience, any

other positive constant smaller thamwould work and would yield the same results.

Theorem 1. Let f: M — M be a transitiveC? local diffeomorphism satisfying conditiqi) and suppose that
there existyy > 1 such that

Leb({cf(x) > n}) < O(n_y).
Then there exists an absolutely continuofisnvariant, probability measurg. Some finite power of is mixing
with respect tqu and the correlation functiod,, for Holder continuous observable dd satisfies

Co <O,

Moreover, ify > 2 then the Central Limit Theorem holds.

The existence and ergodicity of the measurevas proved in [3]. Our construction gives an alternative proof
of the absolute continuity oft and allows us to obtain the estimates on the rate of Decay of Correlation and on
the validity of the Central Limit Theorem. We remark that the questions concerning existence and ergodicity of
an absolutely continuous invariant measure are quite distinct from the questions of the statistical properties with
respect to the measure. Our results apply and are of interest even if an absolutely continuous, feigeai@nt,
probability measure: on M is already known to exist. In fact, in this case conditiein admits a very natural
formulation simply in terms of the average

/|og||Df*l;|*1du ~0.

Indeed Birkhoff’s Ergodic Theorem then implies that the limit
n—1

1 1 - -
A:ntmwzglogHDfﬂ%x)H 1=/Iog||Df Y dp >0

exists foru-almost everyr € M. In particular the expansion time functigiix) is also defined and finite almost
everywhere and the conclusions of the Theorem hold under the given conditions on the rate of decay of the measure
of {€(x) > n}.
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Maps with critical points and discontinuities.We can generalize our results to the case in whyicis a local
diffeomorphism outside eritical/singular setS ¢ M satisfying the following geometrical non-degeneracy condi-
tions which essentially say thgtbehaves like a power of the distarteeS: there are constant® > 1 andg > 0
such that for every e M\ S

IDf vl
[vll

Moreover the functions log d8tf and log|| Df ~2|| arelocally Lipschitzat pointsx € M \ S with Lipschitz constant
depending on dist(xS5): for everyx, y € M \ S with dist(x, y) <dist(x,S)/2 we have

1
Edist(x, S)P < < Bdist(x,8)™# forallve T M; (S1)

=T 1 dist(x, y)
|log|| Df )| —log| Df ()| < Bidist(x,S)ﬂ’ (S2)
llog|detDf (x) 1|  log|detDf ()| < BoStx.Y) . (S3)

dist(x,S)#’
We assume that orbits hasw approximatioror subexponential recurrende the critical set in the following
sense. Letls(x, S) denote th&s-truncateddistance frome to S defined asls (x, S) =d(x, S) if d(x,S) <8 and
ds(x,S) = 1 otherwise. Then, given anry> 0 there exist$ > 0 such that for Lebesgue almost everg M
1 n—1
limsup="» " —logdist(f/(x),S) <e. ()
n—>+oo0 I
j=0
Again this is an asymptotic statement and we have no a-priori knowledge about how fast this limit is approached
or with what degree of uniformity for different poinis Since some control of the recurrence at finite times is
important for our construction we introduce ttegurrence timdunction
1 n—1
R(x)=min{ N >1: =" —logdist(f/(x),S) <2e, ¥n >N .
n
i=0
Condition (xx) implies that theecurrence timdunction is defined and finite almost everywherein Before we
state our results in this case, it will be useful to introduce for eaghl the set

I, = {x: Ex)>norR(x) >n}.

This is the set of points which at timehave not yet achieved either the uniform exponential growth or the uniform
subexponential recurrence given by conditigas and (xx). To be rigorous one should explicit the dependence
of R(x) and I, on e andé. However, condition(xx) is not needed in all strength. Actually, we only need that
condition in Lemma 2.2 to assure the existence of hyperbolic times. For this, it is enough to fix sodé
conveniently chosen; see [3, Lemma 5.4] for details.

Theorem 2. Let f : M — M be a transitiveC? local diffeomorphism outside a critical/singular s@satisfying the
non-degeneracy conditions stated above. Supposeftisatisfies the non-uniform expansivity conditig) and
the slow approximation conditiofxx*) to the critical set and suppose that there exists 1 such that

Leb(I3,) < O(n~7).

Then there exists an absolutely continuogisnvariant, probability measurg.. Some finite power of is mixing
with respect tqu and the correlation functiod,, for Holder continuous observables @ satisfies

Cy <O(n77F1).

Moreover, ify > 2 then the Central Limit Theorem holds.
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Notice that the assumptions of Theorem 2 contain those of Theorem 1 as a special casg wifeM/e have
stated the two results separately because the local diffeomorphism case is sufficiently interesting on its own and
to emphasize the fact that the recurrence condition only applies to the case in which a critical and/or singular set
exists. Both theorems extend to arbitrary dimension the results of [4] in which similar results were obtained for
one-dimensional maps.

We remark also that even though conditigs) is not needed in all its strength for the proof (it is sufficient
that the statement holds for somsufficiently small depending on expansivity ratand on the constant®, g in
the non-degeneracy conditions for the critical set), it is nevertheless more natural than it might appear at first sight.
For example, if an ergodicf -invariant, absolutely continuous probability measuris given, then this condition
just amounts to supposing that this invariant measure does not give too much weight to neighbourlSaodbef
sense that

/||Og diSt(x,S)| du < oo.

Indeed, as for the expansivity condition, this immediately implies) by Birkhoff’s Ergodic Theorem. Notice
moreover that this integrability condition is satisfied if the singulaksanhd the Radon—Nykodim derivative af
with respect to Lebesgue satisfy some mild regularity conditions.

1.2. Markov structure

Our strategy for proving the results stated above is to establish the existenddaokav towerstructure: a
ball A ¢ M and a countable partitioR of A into topological balls with smooth boundaries with the property that
each element/ of P has an associated return tiRéU ) so thatf ®(Y)(U) = A with some uniform bounds on the
volume distortion between one return and the next. Moreover we set up a combinatorial and probabilistic argument
which allows us to obtain estimates for the tail LERG n}) of the return time function in terms of the tail of the
expansivity and recurrence functions defined above.

Main Theorem 1. Let f : M — M be a transitiveC? local diffeomorphism outside a critical/singular s¢satisfy-
ing the non-degeneracy conditions stated above. Suppos¢ saisfies the non-uniform expansivity conditign
and the slow approximation conditiai=). Then there exists a balk ¢ M \ S, a countable partitiorP (mod 0)
of A into topological ballsU with smooth boundaries, and a return time functi®nA — N piecewise constant
on elements dP satisfying the following properties

(1) Markov:for eachU € P andR = R(U), fR:U — A is aC? diffeomorphisn{and in particular a bijection)
Thus the induced map

F:A— A given byF(x) = fR®(x)

is defined almost everywhere and satisfies the classical Markov property.
(2) Uniform expansivityThere exists. > 1 such that for almost alt € A we have

|IDF)~ Yt =4

In particular the separation time(x, y) given by the maximum integer such ttt(x) and F/ (y) belong to
the same element of the partitigh for all i < s(x, y), is defined and finite for almost every pair of points
x,y € A.

(3) Bounded volume distortiorithere exist a constank > 0 such that for any pair of points, y € A with
oo > s(x,y) > 1we have

detDF (x)

_ 1| < Ki-sF@.FO).
detDF(y) =




822 J.F. Alves et al. / Ann. |. H. Poincaré — AN 22 (2005) 817-839

Moreover, assuming polynomial decaylab(7;,) we have the same decay of return times:
(4) if there existgy > 0 such thatLeb(7;,) < O(n~7), thenLeb({R > n}) <On™7).

In the particular case that Léb,) decays faster than any polynomial we obtsiper-polynomial decafpr the
tail of return times: Leb{R > n}) < O®m ™) for everyy > 0.

We remark that the significance of the existence of a Markov Tower structures goes well beyond the conse-
guences this has for the statistical properties of the map. It can be thought of as a partial generalization, to the
framework of non-uniformly expanding maps, of the remarkable (and classical) Theorem of Bowen that any uni-
formly hyperbolic compact invariant set for@ diffeomorphisms admits a finite Markov partition ([11] see also
[6,7,27]). Besides the intrinsic interest of such a statement, this fact has been used innumerable times in relation tc
all kinds of results concerning uniformly hyperbolic systems. There has been some success in the direct general
ization of this result, for example to systems with discontinuities [14,21]. However the constructions always give
rise to countable partitions and any conclusions about the invariant measures and other statistical properties the
depends on a corresponding ergodic theory for countable subshifts which is much less developed than the finite
case, although some results exist, see for example [13,23,25,26].

A significant break-through was achieved recently by Young in [29,30] where the general problem of prov-
ing the existence of Markov partitions was essentially reformulated in terms of proving the existéMaeko/
Towersor induced Markov mapas defined above. One important advantage of these structures is that statistical
information about the system is deduced from statistical information about the return times and not encoded in
some kind of transition matrix which would in general be very hard to determine. Moreover the actual construction
of Markov Towers has at least two significant advantages. Firstly, one can choose conveniently some small region
of the dynamical phase space, instead of having to construct a partition of the entire space,apptaxsmate
information about the remaining part of the space to construct a return map. Secondly, one does not need a singls
iterate of the map to have special (Markov) properties, but is allowed to wait a certain amount of time until this
property is obtained. Most importantly, only some approximate (statistical) information is required concerning the
length of this waiting time.

1.3. Viana maps

An important class of non-uniform expanding dynamical systems (with critical sets) in dimension greater than
one was introduced by Viana in [28]. This has served as a model for some relevant results on the ergodic propertie:
of non-uniformly expanding maps in higher dimensions; see [1-3,5].

This class of maps can be described as follows.dget (1,2) be such that the critical point = 0 is pre-
periodic for the quadratic ma@ (x) = ag — x2. Let S1 = R/Z andb: ST — R be a Morse function, for instance,

b(s) = sin(27xs). For fixed smalk > 0, consider the map

f:SlxR—>S1xR,
(5, 0) > (£(9), 4 (s, %))

whereg (s, x) = a(s) — x2 with a(s) = ag + ab(s), andg is the uniformly expanding map of the circle defined by
g(s) =ds (modZ) for some large integet. In fact,d was chosen greater or equal to 16 in [28], but recent results
in [18] showed that some estimates in [28] can be improvediaa® is enough. It is easy to check that tor- 0
small enough there is an intervllc (—2, 2) for which f(S1 x I) is contained in the interior 1 x 1. Thus, any
map f sufficiently close tof in the C° topology hass! x I as a forward invariant region. We consider from here
on these maps restricted §6 x 1.

Taking into account the expression ffit is not difficult to check that it behaves like a power of the distance
close to the critical seftc = 0}. Moreover, there is a small neighbourhabdof f in the C3 topology of maps from
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S x I into itself, such that any’ € A/ also behaves like a power of the distance close to its critical set, which is
close to{x = 0}. The most important results fgf ¢ A" are summarized below:

(1) f is non-uniformly expanding and its orbits have slow approximation to the critical set [28,2];

(2) there are constant, ¢ > 0 such that Leb(J] < Ce~“V" for everyn > 1 [28,2];

(3) f istopologically mixing and has a unique ergodic absolutely continuous invariant (thus SRB) measure [1,5];
(4) the density of the SRB measure varies continuously ir.theorm with 7 [5];

(5) f is stochastically stable [2].

As a consequence of our theorems, we obtain the following result:
Theorem 3. Any f € N has super-polynomial decay of correlations and Central Limit Theorem holdg.for

The decay of correlations for Viana maps has remained unknown for several years. Some results have been
obtained in [8] for the (stretched exponential) decay of correlations of a skew product system closely related to
Viana maps, but these results do not apply immediately to Viana maps themselves. One of the initial purposes of
the present work was precisely to attempt to make this additional step. In some sense our results go much further
as they apply to non-uniformly expanding systems in much greater generality. We have paid a price however, as
we do not succeed in obtaining stretched exponential estimates in this case. An optimal estimate for the decay of
correlations of Viana maps continues to be elusive, perhaps indicating that there is some additional subtlety which
we do not yet understand.

1.4. Remarks

Before starting the proof of the Main Theorem we discuss our basic strategy and the main technical issues
involved in the construction. We also mention some recent work related to the research presented here.

Strategy. We start by choosing essentially arbitrarily a pginvith dense pre-images and some sufficiently small

ball Ag around this point. This will be the domain of definition of our induced map. We then attempt to implement
the naive strategy of iteratingo until we find some good return iteratg such thatf”°(Ap) completely covers

Ap and some bounded distortion property is satisfied. There exists then some topologi€atbalp such that
f"(U) = Ap. This ball is then by definition an element of the final partition/af for the induced Markov map

and has an associated return timpe We then continue iterating the complemeni \ U until more good returns

occur. Most of the paper is dedicated to showing that this strategy can indeed be implemented in a successful way,
yielding a partition (mod 0) ofAg into piecewise disjoint subsets, and an associated return time function which is
Lebesgue integrable. The construction also yields substantial information about the tail of the return time function,
i.e. the decay of the measure of the set of points whose return time is larger.thrateed the main motivation

for this paper is to show that the rate of decay of this tail is closely related to the rate at which the derivative along
orbits approaches the asymptotic expansion rate.

Technical issues. There are two main technical difficulties, distinct but related to each other, in carrying out the
plan suggested above. The first has to do with the geometry of the retutps &md in particular of the geometry

of the set of points which does not return at a given time. Such a set can be visualized ag\@ dmitaining

an increasing number of smaller topological balls corresponding to the elements of the final partition which have
return times smaller tham. The exact location and shape of these smaller disks is quite difficult to control, as is

the location and shape of their images at timélherefore some care is required, as well as the introduction of
some auxiliary partitions and waiting times, to make sure that the set of points returning aididisjoint from

the set of points which have already returned at some earlier time. These geometrical issues are essentially related
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to the higher dimensional nature of the dynamics and arise also in the uniformly expanding case. This case has
been treated in [29] and we follow essentially the same strategy and notation here. We still give all the details, for
completeness and to make sure that any further problems associated to the non-uniformity of the expansion are
dealt with as well.

The second technical problem, on the other hand, is precisely due to the strictly non-uniform nature of expan-
sion in our situation. The process of defining the {§ek n} of points which have an associated return time less
than or equal ta, as a union of disjoint topological disks ifig, gives rise to very “small” regions in the comple-
ment{R > n}, i.e. regions which are squeezed into strange shapes by the geometry of the previous returns. It is
important to control the extent to which this can happen and to show that even these small regions eventually grow
large enough so that they can covts and thus contain an element of the partition for the induced map. In the
uniformly hyperbolic case, once the suitable definitions and notation have been introduced, a relatively straightfor-
ward calculation shows this to be the case and shows that in fact this growth of small regions to uniformly large
scale occurs uniformly exponentially fast. In our context we only have much more abstract information about the
eventual expansion at almost every point and therefore this part of the argument is more subtle.

We shall use the idea dyperbolic Timegdo show that our assumptions imply that almost every point has a
basis of (arbitrarily small) neighbourhoods which at some time are mapped to uniformly large scale with bounded
distortion. It follows that the speed at which this large scale is achieved is not uniform but rather depends on the
distribution of hyperbolic times associated to points in the regions in question, which can be arbitrarily large. We
conclude that the final return time function for the Markov induced map is related to the statistics of hyperbolic
times. Since hyperbolic times are naturally related to speed at which some uniform expansion estimates begin tc
hold, this yields our desired conclusions.

One of the key issues we have to address is the relation between the statistics of hyperbolic times, the spatia
distribution of points having hyperbolic time at some given time, and the geometrical structure of sets arising from
the construction of the partition described above; see Corollary 2.3, Eq. (6) and Proposition 6.1. We are able to
implement a partially successful strategy in this respect: in the polynomial case we establish an essentially optimal
link between the rate of decay of the expansion/recurrence function and the rate of decay of correlations. The nature
of the argument does not immediately extend to the exponential case.

Related work. In addition to the references given above we mention some related work of Buzzi and Maume-
Deschamps [15-17] in which the decay of correlations on towers associated to some uniformly and non-uniformly
expanding maps are also studied. There is an empty intersection between the results presented there and the on
of the present paper, as the assumptions there are quite different from ours and provide a different point of view
on causes for various rates of decay of correlations. Huyi also addresses specifically the question of why certain
maps should have slow decay of correlations in the context of multidimensional maps with an indifferent fixed
point [31].

Overview of the paper. The paper is completely dedicated to the proof of the Main Theorem on the existence of
the Markov tower and the associated tail estimates. By recent results of Young [29,30] the rate of decay of the tail
of the return time function in this framework has direct implications for the rates of decay of correlations and the
Central Limit Theorem and therefore Theorems 1 and 2 follow by an application of her results.

In Section 2 we give several estimates related to the time it takes for small domains to grow to some fixed size
while preserving some bounded distortion properties. In Section 3 we give the precise algorithm for constructing
the Markov Tower and describe the associated combinatorial information. The final three Sections 4, 5 and 6
are dedicated to proving that this algorithm effectively results in a countable partition (mod 0) with the required
properties.
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2. Growingtolargescale

In this section we give the basic growth estimates on which the algorithm for the construction of the Markov
Tower is based. First of all we define the notion of Hyperbolic Time and show that almost all points have an infinite
basis of neighbourhoods which grow to some fixed size with bounded distortion for some corresponding infinite
sequence of hyperbolic times. The set of hyperbolic times depends on the point and the first hyperbolic time for a
given point can be arbitrarily large in general, although we do have some degree of control since it is related to the
values of the expansivity and recurrence functi6rendR at that point. Next we prove a useful and non-obvious
consequence of our assumptions, namely that if we fix somé then there exist som¥, depending only on
¢ such that any ball of radius has some subset which grows to a fixed size with bounded distortion within
iterates. Finally we show that our “basely can be chosen in such a way that any other sufficiently large ball
contains a subset which is mapped bijectivelyAg with bounded distortion and within some fixed number of
iterates. A combination of these estimate will play a crucial role in obtaining control of the tail of the return times
to Ag.

Hyperbolic times growing to uniform scale in variable time.Let B > 1 and8 > 0 be as in the hypotheses
(S1)—(S3). In what follows is any fixed constant satisfying9b < min{1/2,1/(48)}. Giveno < 1 and$ > 0,
we say that is a (o, §)-hyperbolic tim€for a pointx € M ifforall 1 <k <n,

n—1
[T Ipr(fi) | <o* and disg(f"*x).8) >0

j=n—k
For eachn > 1 we define
H, = Hy(0,8) = {x € M: nis a(o, §)-hyperbolic time forx }.

We give two well-established results which show that (i) if a hyperbolic time fox, the mapf™” is a diffeomor-
phism with uniformly bounded volume distortion on a neighborhood @fhich is mapped to a disk of uniform
radius; (ii) almost every point has lots of hyperbolic times. We say fAdtasvolume distortiorbounded byD on
asetV if, foreveryx,y eV,

1 |detDf"(x)|
—<—————<D
D " [detDf"(y)|

Lemma 2.1. Giveno < 1 andsé > 0, there exists, D1, k > 0, depending only oa, § and on the mag, such that
foranyx € M andn > 1 a (o, §)-hyperbolic time forx, there exists a neighborhodd, (x) of x with the following
properties

(1) f" mapsV, (x) diffeomorphically onto the balB( /" (x), 81);

(2) for 1<k <nandy, z € V,(x), dist(f" (), f**(2) <o*/2dist(f" (), f"(2));
(3) f" has volume distortion bounded B4 on V,,(x);

(4) V,(x) C B(x, k™).

Proof. For the proofs of items (1)—(3) see Lemma 5.2 and Corollary 5.3 in [3]. Iltem (4) is an immediate conse-
guence of item (2). O

We shall often refer to the set4 (x) ashyperbolic pre-ballsand to theirimageg” (V,,(x)) ashyperbolic balls
Notice that the latter are indeed balls of radius

Lemma 2.2. There exist® > 0 ands§ > 0 depending only orf andx such that for Lebesgue almost everg M
andn > £(x) there exist(o, §)-hyperbolic timed <n1 < --- <n; < nfor x with[ > 6n.
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Proof. See Lemma 5.4 of [3]. Let us remark for the sake of completeness that the proof of the lemma gives

oc=eM4 O

Corollary 2.3. For everyn > 1 and everyA C M \ I, with positive Lebesgue measure we have
1 i Leb(AN Hj)
n Leb(A)

= U.

j=1

Proof. Taken > 1 andA Cc M \ I,, with positive Lebesgue measure. Observe that £(x) for all x € A, by
definition of £(x). Let &, be the measure ifl, ..., n} defined byg, (J) = #J /n, for each subsef. Then, using
Fubini’s theorem

%ZLeb(Aﬂ Hﬂ:/(/x(x,i)d Leb(x)) dén(i)=/</x(x,i)d§n(i)>d Leb(x),
Jj=1 A A

wherex (x,i) =1 if x € H; and x (x, i) = 0 otherwise. Now, Lemma 2.2 means that the integral with respect to
dg, is larger tharg > 0. So, the last expression above is bounded from belowlbgb(A). O

Growing to uniform scale in uniform time.Now we show a simple (albeit slightly counterintuitive) fact that any
¢ ball has a subset which grows to fixed size within some uniformly bounded maximum number of iterates.

Lemma 2.4. For eache > 0 there existsV, > 0 such that any balB c M of radiuse > 0 contains a hyperbolic
pre-ball V,, ¢ B withn < N,.

Proof. Givene > 0 and a ballB(z, ¢), chooseN large enough so that any hyperbolic pre-dallassociated to a
hyperbolic timen > N will be contained in a ball of radius/10 (N ~ « ~1log(10s~1)). Now notice that each
point has an infinite number of hyperbolic times and therefore we have that

Leb(M\ LnJ Hj>—>0 asn — oo.

J=N;
Therefore it is possible to choose
N, = min[n > N, Leb<M\ U Hj> < gd/lo}
J=N;
whered is the dimension oM. This ensures that there is a paing B(z, ¢/2) with a hyperbolic time: < N, and
associated hyperbolic pre-bafl (x) C B(z,¢). O

Returning to a given domain.Now we derive an useful consequence of the transitivity oGivens > 0, we say
that a subseft of M is §-densdf any point in M is at a distance smaller tharfrom A.

Lemma 2.5. Givens > 0 there isp € M and Ng € N such thatUi.Vio Ff=I({p}) is 8 dense inM and disjoint
from S.

Proof. Observe that the properties gfimply that the images and preimages of sets with zero Lebesgue measure
still have zero Lebesgue measure. Hence, the set

B=J f‘”(U f‘"’(&)

n=0 m>0
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has Lebesgue measure equal to zero. On the other hand fsiatensitive, we have by [3] that there is a unique

SRB measure fopr, which is an ergodic and absolutely continuous with respect to Lebesgue measure, and whose
support is the whole manifolsf . Moreover, the ergodicity gf implies thatw almost every point i/ has a dense

orbit. Sinceu is absolutely continuous with respect to Leb, then there is a positive Lebesgue measure subset of
points inM with dense orbit. Thus there must be some pgiatM \ B with dense orbit. Také&/p € N for which

q. £(q), ..., fNo(q) is 8-dense. The poing = fo(¢) satisfies the conclusions of the lemman

We fix once and for alp € M andNg € N for which U?’io f=I({p}) is 81/3 dense inv and disjoint from the
critical setS. Recall thats; > 0 is the radius of hyperbolic balls given by Lemma 2.1. Take constast® and
30 > 0 so that

V30« 81/2 and 0O<e < do.

Lemma 2.6. There exist a constardg > 0 depending only orf, o, §1 and the pointp, such that for any balB ¢ M
of radiusé (in particular for any hyperbolic bal), there exist an open s&t C B and an intege < m < Ng for
which

(1) f™ mapsV diffeomorphically ontaB(p, 2v/30);
(2) f™|V has volume distortion bounded IBp.

Proof. Sinceuyio =/ ({p}) is 81/3 dense inM and disjoint fromS, choosingsg > 0 sufficiently small we have

that each connected component of the preimagéx pf 2./8¢) up to timeNg are bounded away from the critical
setS and are contained in a ball of radiéy/3.

This immediately implies that any ball ¢ M of radiuss; contains a preimag& of B(p, 24/80) which is
mapped diffeomorphically ont&(p, 24/30) in at mostNy iterates. Moreover, since the number of iterations and
the distance to the critical region are uniformly bounded, the volume distortion is uniformly bounded.

Remark 2.7. It will be useful to emphasize thay and No have been chosen in such a way that all the connected
component of the preimages Bf p, 2+/30) up to time N satisfy the conclusions of the lemma. In particular, they
are uniformly bounded away from the critical sgtand so there is some constary > 1 depending only ory
andéi such that

1 -1

Co < || D" @) | (DF™ @) < Co

s

for all 1 < m < No andx belonging to am:-preimage ofB(p, 2+/80).

3. Thepartitioning algorithm

We now describe the construction of the (mod 0) partitiomet= B(p, §p). The basic intuition is that we wait
for some iteratef*(Ag) to cover Ag completely, and then define the subset- A such thatf*:U — Ag is
a diffeomorphism, as an element of the partition with return timé/e then continue to iterate the complement
Ao \ U until this complement covers agaity and repeat the same procedure to define more elements of the final
partition with higher return times. Using the fact that small regions eventually become large due to the expansivity
condition (and the lemmas given above), it follows that this process can be continued and that Lebesgue almost
every point eventually belongs to some element of the partition and that the return time function depends on the
time that it takes small regions to become large on average and this turns out to depend precisely on the tail of the
expansivity condition function.
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The formalization of this argument requires several technical constructions which we explain below. The con-
struction is inductive and we give precisely the general step of the induction below. For the sake of a better
visualization of the process, and to motivate the definitions, we start with the first step.

First step of the induction. First of all we introduce neighborhoods pf
AS=Ao=B(p,80), AS=B(p,2%), A3=B(p,vso) and A%=B(p,2v50).
For0< o < 1given by Lemma 2.1, let
I = {x € A} 0(1+0*/?) <dist(x, p) < o(L+0%D2)}, k=1,
be a partition (mod 0) into countably many ringsA% \ Ap. Take Rg some large integer to be determined below;

we ignore any dynamics occurring up to tilkg. Let k > Rg + 1 be the first time thatn\o N Hy £ @. For j <k
we define formally the objectd ;, A;, Aj. whose meaning will become clear in the next paragraph oy Aj. =

Aj = Ap. Let (U,ij)j be the connected componentsfoT"(Ag) N A7_, contained in hyperbolic pre-ballg, with
k — No < m < k which are mapped diffeomorphically ormf; by f*. Now let

Ui j=U2;nfray =012,
and setR (x) =k for x € U,gj. Now take

Ay = Ap—1 \ {R =k}.
We define also a function : Ay — N by

fe(x) = {s if x e U,}/ and f*(x) € I, for somej;

0 otherwise.

Finally let

AkZ{XEAkZ tk(x)ZO}, BkZ{XEAkZ tk(x)>0}
and

-1
Ai=an | (flveaw) B @), e).

x€ArNHi41

Note that this is a small neighborhood 4f N H;.;1 whose iterates at time+ 1 are at a distance smaller than
from fAH1 (AL N Hig).

General step of the induction.The general inductive step of the construction now follows by repeating the argu-
ments above with minor modifications. More precisely we assume thatisets;, A7 B;, {R = i} and functions
ti: A; — N are defined for all <n — 1. Fori < Rowe justletA; = AY = A; = Ao, B ={R =i} =0 ands; =0.
Now let (U,f’j)j be the connected components j6f"(Ag) N A7 _, contained in hyperbolic pre-ballg,,, with
n — Nog < m < n, which are mapped ontng by f". Take
Ui ;=U2;nf"Ay i=0,1.2,
and setR(x) =n for x € U,?’j. Take also
Ap=A4,_1 \ {R = I’l}.
The definition of the functiom, : A,, — N is slightly different in the general case.

i 1 0 ;
s if xeU, ;\U, ; andf"(x) € I, for somej,
th(x)=1{0 ifxeA,1\U, Uy

th-1(x) =1 if x € B,1\U; Unlyj.
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Finally let
Ap={x €A, t,(x) =0}, B, ={x € Ay t,(x) >0}
and

A=200 U (Flvaw) B 6).

XEAHOH)H»l

At this point we have completely described the inductive construction of theigets’,, B, and{R = n}.
We conclude this section with a remark concerning the role of theBseds a kind of shield protecting the sets
of the partition constructed up to time and some observations to motivate the last two sections.

A remark on the construction.Associated to each componelmffk of {R =n — k}, for somek > 0, we have
a collar Unl_k \ U,?_k around it; knowing that the new components {& = n} do not “intersect too much”

Unl_k \ U,?_k is important for preventing overlaps on sets of the partition. We will see that this is indeed the
case as long as> 0 is taken small enough.

Lemma3.1. If ¢ > 0is sufficiently small, thet/! N {1,_1 > 1} = @ for eachU?.

Proof. Take some > 0 and IetUr?fk be a component dfR =n — k}. Let O be the part oUnlfk that is mapped

by "% onto I, and assume thad; intersects somél,?. Recall that, by constructior; is precisely the part of
Unl_k on whicht,_1 takes the value 1, arld,f’ is contained in a hyperbolic pre-baf}, with k — Ng < m < k.

Let g1 andgz be any two points in distinct components (inner and outer, respectively) of the bound@gy of
Assuming thaty1, g2 € U,?, theng1, g2 € V,,, and so by Lemma 2.1 and Remark 2.7

dist( /" (q0), " *(q2)) < Coo * /2 dist( 1" (g1), " (g2))- (1)
We also have

dist( /" (q0), /" (a2)) > do(1+0* V%) = 5o(1+ 0M/?) = 800" /2 (072 — 1),
which combined with (1) gives

dist(f"(q1), f"(q2)) = Cy *o™0/250(c Y2 - 1).
On the other hand, sindé2 c A°_; by construction ol/2, taking

e < CalaNO/zéo(Gfl/z — 1)

we haveU3 N {t,_1 > 1} = @. This impliesUl N {t,_1 > 1}=0. O

4, Theinduced map

In this section we briefly discuss the first and fourth items and prove the second and third items in the statement
of the Main Theorem.

The Markov property. The construction detailed in Section 3 provides an algorithm for the definition of a family
of topological balls contained it and satisfying the Markov property as required. In the next two sections we
show that this algorithm does indeed produce a partition modA ahd obtain estimates for the rate of decay of
the tail of the return times.
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Uniform expansivity. Recall that by construction, the return tilRéU ) for U an element of the partitio® of A,

is formed by a certain numberof iterations given by the hyperbolic time of a hyperbolic pre-balb U, and a
certain numbem < Ng of additional iterates which is the time it takes to go frgft(V,) which could be anywhere
in M, to f*"(V,,) which coversA completely. By choosingg sufficiently large it then follows from Remark 2.7
that there exists a constant- 1 and a timezg such that for any hyperbolic time > ng and any poink € V,, and
1< m < Ng, we have

[rmen) TR 1
We immediately have the uniform expansivity property of the Main Theorem
[(DF0H = |(DAFO) T A 1

In particular, this implies that for any, y € A which have the same combinatorics, i.e. which remain in the same
elements of the partitio® for some numbes(x, y) of iterates of the induced map, we have

dist(x, y) < A5y, 2

Distortion estimates. The distortion estimate required for our Main Theorem follows immediately from (2) above
and the following more classical formulation of the bounded distortion property:

Lemma 4.1. There exists a constait > 0 such that for any, y belonging to the same elemeite P with return
time R, we have

detDF(x)|
detDF(y)|

detDfR(x)

n Ai R R
dotD Ty | < B 00. 1 00).

Proof. Recall that by construction, the return tilrR¢U) for U an element of the partitio® of A, is formed by a
certain numben of iterations given by the hyperbolic time of a hyperbolic pre-balb U, and a certain number
m < N of additional iterates which is the time it takes to go frgifi(V,,) which could be anywhere iV, to
£ (V,) which coversA completely. Some standard formal manipulation based on the chain rule gives

detDf®(x)|  |detDf®="(f"(x)) detDf"(x)
detDfR(y)| " |detDfR-—n(fn(y)) detDf(y) |

Since f(x) and f!(y) are uniformly bounded away frof for » < i < R (recall Remark 2.7), we may write

detDf " (f" (x))
detDf R=n(f"(y))

where B1is some constant not depending.arny or R. On the other hand, by construction bf (see the proof of
Lemma 5.2 in [3]), there must be some& V,, for which n is a hyperbolic time and such that, for0; < n, the
distance fromf/ (z) to either £/ (x) or f7(y) is smaller than digtf" (x), f"(y))o #~/2, which is much smaller
thana?=1 < dist(f/(z), S). Thus, by (S3) we have

n—1

< log
j=0

SincebB < 1/2, there must be song > 0 such that

detDf (x)
detDf"(y)

< Budist(fR ), £R(»)

on=i/2

detDf" (x) <dist( /" (x), /" () ZZB o bB—))°

detDf (f/(x))
detDf" (y)

detDf (f/(y))

< Bodist(f" (x), f"(3))-
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Using again thaif’ (y) and £ (y) are uniformly bounded away frof (for n < i < R (cf. Remark 2.7)) it follows
that

dist(f" (x), ") < B2dist( £ (x), (),

whereBs is some constant not depending.ary or R. This completes the proof of the lemmar

Looking ahead: probabilistic estimatesFor proving the Main Theorem we only need to study the decay of
Leb(4,) in terms of Leb(}). That is our purpose in the next two sections. We will show in Proposition 5.4 that
there is a constaniy > 0 such that

Leb(B,) < ap Leb(A,). 3

We will also show in Proposition 5.1 that there &fe= N (¢) > 1 and a constanfy > 0 for which

N
Leb(U{R:n+i}) > coleb(A,—1 N H,). (4)

i=0
Taking into account that\, = A, U B,, it easily follows from (3) and (4) that there is a constagt- 0 such that

N
. Leb(A,—1N Hy,)
Leb R = > bg—————F—=Leb(A,—1).
e <1L=Jo{ n+l}) O lebA_ ) © (A1)

This immediately implies that
Leb(An—l N Hy)
Leb(A,-1)

Itis no restriction to assume th&y > 2(N + 1) and we do it. Take any largeand letkg > 1 be the smallest integer
for whichn — 1 — kg(N + 1) < Rp. The above assumption a®y and N implies thatn — (ko + 1)(N + 1) > 1.
Now we consider the partition ¢f: — (ko + 1)(N + 1), ...,n — 1} into the sets

Leb(An i) < (1— bo ) Leb(Ay_1). 5)

In={n—-1n—-1-(N+1),....n—1—ko(N + 1)},

Ji={n—N.n—N—-(N+1),....n—N —ko(N + 1)},
Jo={n—(N+1),n—2(N+1),...,n— (ko+ 1)(N + 1)}.
Applying (5) repeatedly we arrive at the following set®f+ 1 inequations:

Leb(Aj NHji1)

Leb(A,n) < [ (1—bo Leb(A)
J

Je€In

) Leb(4o),

Leb(Aj NHji1)

Leba,) < [ (1— bo Leb(A;)

Jj€Jo

) Leb(4).

Multiplying the terms in the inequations above and ignoring factors fiom(kg + 1)(N + 1) to Rg — 1 on the
right hand side (observe that those factors are smaller than 1), we obtain

n—1

1_[ (1_ bow> Leb(Ao)N+1.

N
1_[ Leb(A,+)) < Leb(A;_1)

Jj=0 J=Ro
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Taking into account thata,,),, forms a decreasing sequence of sets we finally have

n

bo Z Leb(Aj,]_ﬂHj)

N+14 Leb(4; 1)

Leb(A,4n) < eXp<— ) Leb(4o). (6)

In Section 6 we will prove the Main Theorem by considering several different cases, according to the behavior of
the proportions Leb(A-1 N H,)/Leb(A,_1). Itis not hard to check that if the average

1 X”: Leb(A;_1 N H))
ni Leb(A;_1)

is bounded away from O for largg then Leb(4,) decays exponentially fast to 0. This happens, for instance, when
£ is uniformly expanding.

5. Transitional metric estimates

The goal of this section is to prove several estimates relating the Lebesgue measure ofAhe 4gfs, and
{R = n}. The first result shows that a fixed proportion4f_1 havingn as a hyperbolic time gives rise to new
elements of the partition with return time not exceedingpo much. We discuss the relative proportion of the sets
A, andB, in A,,.

Proposition 5.1. There existg > 0and N = N (¢) such that for every > 1

N
Leb(U{R =n+ i}) > coLeb(A,—1 N Hy).
i=0

Proof. Taker = 580C6V°, whereNg andCy are given by Lemma 2.6 and Remark 2.7, respectively{tgtbe a
maximal set inf" (A,_1 N H,) with the property thaB(z;, r) are pairwise disjoint. By maximality we have

JBGj.2r) D f(An-1n Hy).
J

Let Z; be the set of points € H, N A,_1 such thatf"(x) = z;. Observe thaif” sends the hyperbolic pre-ball
Va(x) associated ta € Z; diffeomorphically onto a ball of radiu& aroundz; as in Lemma 2.1. Note that the
hyperbolic pre-balld/, (x) with x € Z; are pairwise disjoint.

Letus fixx € Z;. GivenB C B(z;, 61), we will simply denote f*|V, (x))~1(B) by S ™(B). Our aim now is to
prove thatf " (B(z;, r)) contains some componenta® = n + k;} with 0 < k; < N, 4+ No. We start by showing
that

twik; | fi " (B(z;. €)) is not identically O for some & k; < N, + No. )

Assume by contradiction tha;+kj | f"(B(zj,¢)) =0forall0< k; < N+ Np. Thisimplies thatf " (B(z;, €)) C
Athkj for all 0 < k; < N, + No. Using Lemma 2.4 we may find a hyperbolic pre-Ball C B(z;, &) with m < Ne.
Now, since f™(V,,) is a ball B of radiusé; it follows from Lemma 2.6 that there is somec B andm’ < Ny
with f”"(V) = Ag. Thus, takingk; = m + m’ we have that G< k; < N, + No and f7"(V,,) is an element of
{R=n+k;}insidef,"(B(z;, ). This contradicts the fact that, x| £, " (B(z;, ¢)) = 0forall 0< k; < Ne + No,
and so (7) holds.

Let k; be the smallest integerQk; < N, 4+ No for which Itk | 7" (B(z), €)) is not identically 0.
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Since
FTM(B(zj,8) C AL 4 Clta-1 < 1),
there must be some eleme[nf+kj (j, x) of {R = n + k;} for which

£ (B ©) N Uy (G 3) # 0.

Recall that by definitionf+i sendsU,ll+kj (j.x) diffeomorphically ontoAJ, the ball of radius 2¢ around p.

From timen to n + k; we may have some final “bad” period of length at mdstwhere the derivative of may
contract, however belng bounded from below bACd in each step. Thus, the dlameterﬂf(U ;) (j,x)) is at

most 4$oC, . No SinceB(z;, &) intersectsf™ (U* nkj (j,x)) ande < §g < SOCOO, we have by definition of

f(Bzj,r) > Un+kj G, x).
Thus we have shown thaf™" (B(z;,r)) contains some component 6R =n + k;} with 0 < k; < N + No.
Moreover, since: is a hyperbolic time fox ;, we have by the distortion control given by Lemma 2.1

Leb(f " (B(z},2r))) < 1Leb(B(zJ~, 2r))

Leb(ﬁf”(B(zj, r))) Leb(B(zj,r))

®)

and
Leb(f,"(B(zj, 1)) <Dy Leb(B(zj,r))
Leb(U ntk; (5 X)) "Leb((U? ntk; (s X))
Here we are implicitly assuming that 2r <.5This can be done just by takinfyg small enough. Note that the

estimates orVg andCq do not change when we diminigh.
From timen to timen +k; we have at most; = my+m; iterates withmy < N, ma < No andf”( +; (j, x)))

containing some poinb; € Hy,. By the definition of(s, §)-hyperbolic time we have that distf! (w;),S) > o bNe
for every 0< i < m1, which by the uniform distortion control implies that there is some condbeatD(¢) > 0
such that|detDf%(x))| < D for 0<i <m1 andx € f*(U° ek (j, x)). On the other hand, since the fir&%

preimages ofAg are uniformly bounded away fro we also have som®’ > 0 such thatdet(Df’ (x))| < D’ for
every 0< i < mg andx belonging to an preimage ofAg. Hence,

9

Leb(f" (U2, (o)) > TD Leb(Ao).
which combined with (9) gives
Leb(/, " (B(zj,1)) < CLeb(Uy), (). ),
with C only depending oD1, D, D’, §p and the dimension af/. We also deduce from (8) that

Leb(f;"(B(zj,2r))) < C'Leb(f;"(B(zj,1)))

with C’ only depending orD4 and the dimension a#/. Finally let us compare the Lebesgue measure of the sets
UYo{R=n+i}andA,_1 N H,. We have

Leb(A,_1 N H,) <Y > Leb(f"(B(zj.2r)) < C' > > Leb(f;"(B(z).7))).

J X€Zj J x€Zj
On the other hand,

N
YD o Leb(f7"(B(zj,n)) <C Yy Leb(Up (j,x) < CLeb(U{R:n+i}>.

Jj xe€Z; Jj xe€Zj i=0
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We just have to takep = (CC")~L. O

Let us prove now a couple of useful lemmas. The first one gives a lower bound for the flow of mags,from
to A,, and second one gives a lower bound for the flow of mass ffigm to B, and{R =n}.
Lemma 5.2. There exista; > 0 such that for every > 1

Leb(Bn—l NA,)=ar Leb(Bn—l)~

Moreovera; is bounded away fror independently fromo.
Proof. Itis enough to see this for each componenBpf ; at a time. LetC be a component aB,,_; andQ be its
outer ring corresponding tg_1 = 1. Observe that by Lemma 3.1 we ha@e= C N A,,. Moreover, there must be
somek <n and a componerit/,? of {R = k} such thatf* mapsC diffeomorphically ontd J:2, I; and Q onto I,

both with uniform bounded distortion (not dependingdgror n). Thus, it is sufficient to compare the Lebesgue
measures of J;2, 1; and ;. We have

Leb(Z) [80(1 4 o ®=D/2)]d _ [59(1+ o*/2))d L2
~ ~l—o0™".
Leb(UiZ, 1) [60(1+ o k=D/2)jd — 5

Clearly this proportion does not dependdyn 0O

The second item of the lemma below is apparently counterintuitive, since our main goal is to make the points in
Ag have small return times. However, this is needed for keepingA,gbuniformly much bigger than Leb¢B.
This will help us in the statistical estimates of the last section.

Lemma 5.3. There exisb; = b1(8g) > 0 andcy = ¢1(8p) > O with b1 + ¢1 < 1 such that for every > 1

(1) LeuAn—l N By) < bl LEb(An—l);
(2) Leb(A,—1N{R =n}) <cileb(A,_1).

Moreover,b; — 0 andc; — 0asdg — O.

Proof. It is enough to prove this for each neighborhood of a compon/élnof {R = n}. Observe that by con-
struction we havé],f’ C A;_,, which means thalt/n2 C A,_1, because < 8o < +/8o. Using the uniform bounded
distortion of £ on U2 given by Lemma 2.4 and Lemma 2.6 (cf. Remark 2.7) we obtain

LebUI\UY) _Leb(45\ 4 58
LebZ\UD) ~ Leb(B\ A 82 7

which gives the first estimate. Moreover,

Leb@?)  Leb(A) &8
Leb(U2\UD ~ Leb(AZ\ A} 5

and this gives the second onet

The next result is a consequence of the estimates we obtained in the last two lemmas. The proof is essentially
the same of the uniformly hyperbolic case; see [29]. Here we need to be more careful on the estimates.
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Proposition 5.4. There existgag = ag(dg) > 0 such that for every > 1
Leb(B,) <aogleb(A,).

Moreover,ag — 0asédg — 0.

Proof. We have by Lemma 5.3

Leb(An—l NA,) =2n Leb(An—l)» (10)
wheren =1 — b1 — ¢1. We define
b1+c1

and ag = W
ax ain
The fact thatsg — 0 whendg — 0 is a consequence éf — 0 andc; — 0 whensp — 0 anda; being bounded
away from 0. Observe that9n < 1 anda < ag. Now the proof of the proposition follows by induction. The result
obviously holds fom up to Rg. Assuming that it holds forn — 1 > Rg we will show that it also holds for, by
considering separately the cases (&b 1) > alLeb(A,—1) and LelfB,_1) < aleb(A,—_1).
Assume first that LefB,_1) > a Leb(A,,_1). We may write

Leb(B,-1) =Leb(B,—1N A,) + Leb(B,—1N By),
which by Lemma 5.2 gives
Leb(B,—1N B,) < (1—a1)Leb(B,_1). (11)
Since we also have
Leb(B,) =Leb(B, N B,-1) +Leb(B, N A,-1),
it follows from (11) and Lemma 5.3 that
Leb(B,) < (1 —a1) Leb(B,-1) + b1Leb(A,_1),
which according to the case we are considering leads to

&:

biay
b1+ c1
On the other hand, we have Lgh,) = Leb(A4, N A,,_1) + Leb(4, N B,_1), which together with Lemma 5.2 and
(10) gives LelgA,,) > nLeb(A,—1) + a1 Leb(B,—1). Again by the case we are considering we have

Leb(A,) > nLeb(4,_1) +a1d Leb(4, 1) > Leb(A,1). (13)

Inequalities (12) and (13), together with the inductive hypothesis, yield the result in this first case.
Assume now that LetB,,_1) <aleb(A,_1). Since we have

Leb(Bn) = Leb(Bn NB,—1)+ Leb(Bn NAp-1),
it follows from Lemma 5.3 that
Leb(B,) < Leb(B, 1) +b1Leb(A, 1).

Leb(B,) < (1—a1)Leb(B,-1) + Leb(B,-1) < Leb(B,-1). (12)

Hence
Leb(B,) Leb(B,_1)+bilLeb(A,_1) o a+bp
< B = aop,
Leb(4,) nLeb(A,-1) n °

which gives the result also in this casen

It will be useful to establish the following consequence of the last two results.



836 J.F. Alves et al. / Ann. |. H. Poincaré — AN 22 (2005) 817-839

Corollary 5.5. There existgo > 0 such that for every > 1
Leb(4,) <c2 Leb(An+1)~

Proof. By Lemma 5.3 we have

Leb(A,+1) > Leb(Ay+1) > (1 — b1 — c1) Leb(Ay).
On the other hand, by Proposition 5.4,

Leb(A,) = Leb(A,) + Leb(B,) < (1+ay ) Leb(A,).
It is enough to take, = (1+ay )/(1 b1 —c1). O

6. Asymptotic metric estimates

We start this section by recalling that> 0 was obtained in Lemma 2.2 and gives a lower bound for the
frequency of hyperbolic times; it only depends on the non-uniform expansion coefficémnt the magy .

Before we go into the main proposition of this section which will enable us to conclude the proof of the Main
Theorem, let us impose one more requirement on the choidg: dét y > 0 be some positive humber (to be
specified later) and take 9« < (6/12)"+1. Then we chooséy > 0 small so thatig = a (o) < 2c.

We define for each > 1

) Leb(Aj_lﬂHj) }
— =7 T g,

E,=1]j<
" {] " Leb(A;-1)

o HE 0
- " on 12

Proposition 6.1. Take any: € F withn > Rg > 12/6. If Leb(A,) > 2Lel(T},), then there is som@ < k = k(n) <
n for which

Leb(A,) (k)V

Leb(Ay) = n

and

Proof. We have forj <n
Leb(4, N H)) _ Leb(A\ ) Leb((A,\F)NH) _ 1 Leb((A\T) N H))
Leb(4,) ~  Leb(A,) Leb(4,\ )~ 2 LebA,\I)
which together with the conclusion of Corollary 2.3 for the 4gt\ I, gives

1 Z Leb(A, N Hj) _? (14)
n 4 Leb(4,) ~ 2
j=1
Let
. Cleb(Aj—) 0
G”‘{ " TLeb(A,) 12a}'

Sincen € F, we have

ZLeb(AnﬂH) _ZLeb(A N Hj) i 1 Z Leb(A, N H;)
}’l
€E,\

Leb(A,) St Leb(4,) st ~ Leb(4,) | n
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Now, for j € E,, \ Gy,
Leb(A, N H;) Leb(A,NH;) Leb(A;_1)

Leb(4,) ~ Leb(4;_1)  Leb(4,)
_ (Leb(An NA;_1NH;j) Leb((An\Aj_l)nHj)> Leb(A;_1)
Leb(A;j_1) Leb(Aj_1) Leb(4,)
LEb(Aj,]_ﬂHj) )i
s ( Leb(A, ) °)12a

For this last inequality we used the fact tiiadt, \ A;_1) C B;_1 and; ¢ G,. Hence

L) L P S
JEENGy -1 ¢ "

0 0 #G,

ST %0 T2 T T,

By the choice ofig we have that the third term in the last sum above is smaller@li@énSo, using (14) we obtain
#G 0
no 7 (15)
n 6
Now, defining

k=maxG,) -1

we have
12
Leb(A,) < —“ Leb(Ay).

It follows from (15) thatk + 1 > 6n/6, and sok/n > 6/12, because > Rp > 12/6. Since we have chosen
o < (/1211 it follows that

K\Y 1276\’ 12«

-] >—| = > —.

n 6 \12 0
This completes the proof of the resulto

Now we are ready to conclude the proof of our Main Theorem, namely the decay estimate on the tail of return
times. Observe that by Proposition 5.4 we have Le)(@Leb(4,), and so it is enough to derive the tail estimate
for Leb(A4,) in the place of LelfR > n}) = Leb(4,).

Given any large integer, we consider the following situations:

(1) If n e N\ F, then by (6) and Corollary 5.5 we have
boba
12(N+1)
(2) If n € F, then we distinguish the following two cases:

(a) If Leb(A,) < 2Leh(I},), then nothing has to be done.
(b) If Leb(A,) > 2Leh(I},), then we apply Proposition 6.1 and get sotnec n for which

Leb(4,) < ¥ exp(— (n— Ro)> Leb(Ag).

14
Leb(A,) < <ﬁ> Leb(A,).
n
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The only situation we are left to consider is (2)(b). In such case, eithés in situation (1) or (2)(a), or by
Proposition 6.1 we can finkb < k1 for which

k2 \7”
Leb(Akl)<(k—) Leb(Ay,).
1

Arguing inductively we show that there is a sequence of integetskQ < --- < k1 < n for which one of the
following cases eventually holds.

ke \7 N boba

Leb(An) < <;> Co exp<—m(ks — R0)> Leb(AO) (l)
ks \Y

Leb(A,) < <;) Leb(1%,). (1
Ro\’

Leb(A,) < <7) Leb(Ap). (

Case (lll) corresponds to falling into situation (2)(b) repeatedly ugtkl Rg. Observe that until now > 0 is
arbitrary.

Now we check that our construction always gives rise to a partition Leb fppindependently of the way
the Lel(I},) goes to 0. One easily sees that the only case we have to consider isij1}: If/n, then Leb(4,) <
Leb(Fﬁ). Otherwise, LebA,) < Leb(Ag)/n?/2. In both cases Lett,) — 0 whenn — cc.

Let us finally prove item (4) of our Main Theorem. As before, we just have to consider case (Il) above. Assume
that Leb(1;) < O(n~7) for somey > 0. In this case there must be sofie- 0 such thak” Leb(I};) < C for all
k € N, which applied tck, in case (ll) leads to Leb(d < O(n™7).
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