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Abstract

We consider non-uniformly expanding maps on compact Riemannian manifolds of arbitrary dimension, possibly
discontinuities and/or critical sets, and show that under some general conditions they admit an induced Markov tower
Moreover, the decay of the return time function can be controlled in terms of the time generic points need to achie
uniform expanding behavior. As a consequence we obtain some rates for the decay of correlations of those maps and
for the validity of the Central Limit Theorem.
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1. Introduction and statement of results

The purpose of this paper is to study the geometrical structure and statistical properties of piecewise
dynamical systems which satisfy some asymptotic expansion properties almost everywhere. We begin w
cussion of the statistical properties we are interested in, and the precise statement of our assumptions a
concerning these properties. We then state our main result on the existence of an induced Markov map an
our main application to class of two-dimensional non-uniformly expandingViana maps.
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1.1. Statistical properties

One of the most powerful ways of describing the dynamical features of systems, specially those havin
complicated geometrical and topological structure of individual orbits, is through invariant probability mea
Any such measure can be decomposed into ergodic components and, by a simple application of Birkhoff’s
Theorem, almost every initial condition in each ergodic component has the same statistical distribution in
On such a component, a mapf is said to bemixing if∣∣µ(

f −n(A) ∩ B
) − µ(A)µ(B)

∣∣ → 0, whenn → ∞,

for any measurable setsA,B. Standard counterexamples show that in general there is no specific rate at
this loss of memory occurs: it is always possible to choose setsA andB for which mixing is arbitrarily slow. It is
sometimes possible however, to define thecorrelation function

Cn(ϕ,ψ) =
∣∣∣∣
∫

(ϕ ◦ f n)ψ dµ−
∫

ϕ dµ

∫
ψ dµ

∣∣∣∣,
and to obtain specific rates of decay which depend only on the mapf (up to a multiplicative constant which
allowed to depend onϕ,ψ ) as long as theobservablesϕ,ψ belong to some appropriate functional space. No
that choosing these observables to be characteristic functions this gives exactly the original definition of m

The precise dynamical features which cause mixing, and in particular the dynamical features whic
different rates of decay of the correlation function, are still far from understood. Exponential mixing fo
formly expanding and uniformly hyperbolic systems has been known since the work of Sinai, Ruelle and
[27,11,12,10] and may not seem surprising in view of the fact that all quantities involved are exponential. H
the subtlety of the question is becoming more apparent in the light of recent examples which satisfy asy
exponential expansion estimates but only subexponential decay of correlations. The simplest case is tha
dimensional maps which are expanding everywhere except at some fixed pointp for which f ′(p) = 1. In certain
cases (essentially depending on the second derivativef ′′(p)) there is an absolutely continuous mixing invaria
measure with positive Lyapunov exponent but strictly subexponential [22,20,30,24] (and in some cases e
polynomial [19]) decay of correlations. In this case the indifferent fixed point isslowing downthe mixing process
since nearby points are moving away (and thus “mixing”) at a slower, subexponential, rate rather than th
nential rate at which they move away from other fixed or periodic point.

A more subtle slowing down effect occurs in smooth one-dimensional maps with critical points where t
of mixing is essentially determined by the rate of growth of the derivative along the critical orbit [9]. Here,
close to the critical point shadow its orbit for a certain amount of time slowing down the mixing process
the case of an indifferent fixed point if the derivative growth along the critical orbit is subexponential. In this
we identify for the first time a general feature which plays an important role in determining the rate of de
correlation for the system. This is thedegree of non-uniformityof the expansivity which measures how close
system is to being uniformly expanding by quantifying the initial time one has to wait for typical points to
behaving as though the system were uniformly expanding. The precise definition will be given below.

We also obtain conditions for the validity of the Central Limit Theorem, which states that the probabilit
given deviation of the average values of an observable along an orbit from the asymptotic average is es
given by a Normal Distribution: given a Hölder continuous functionφ which is not a coboundary (φ �= ψ ◦ f − ψ

for anyψ ) there existsσ > 0 such that for every intervalJ ⊂ R,

µ

{
x ∈ X:

1√
n

n−1∑
j=0

(
φ
(
f j (x)

) −
∫

φ dµ

)
∈ J

}
→ 1

σ
√

2π

∫
J

e−t2/2σ2
dt.

We present our results first of all in the case of local diffeomorphisms and then in the case in which the ma
contain discontinuities and/or critical points.
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Non-uniformly expanding local diffeomorphisms.Let M be a compact Riemannian manifold of dimensiond � 1
and Leb a normalized Riemannian volume form onM that we callLebesgue measure. Let f :M → M be aC2

local diffeomorphism and suppose that there exists a constantλ > 0 such that for Lebesgue almost all pointsx ∈ M

the followingnon-uniform expansivitycondition is satisfied:

lim inf
n→∞

1

n

n−1∑
i=0

log
∥∥Df −1

f i(x)

∥∥−1 � λ > 0. (∗)

This formulation is motivated by the fact that we want to make an assumption about theaverageexpansionin
every direction. Indeed for a linear mapA :Rd → R

d , the condition‖A‖ > 1 only provides information abou
the existence ofsomeexpanded direction, whereas the condition‖A−1‖−1 > 1 (i.e. log‖A−1‖−1 > 0) is exactly
equivalent to saying thateverydirection is expanded byA. Condition(∗) implies that theexpansion timefunction

E(x) = min

{
N :

1

n

n−1∑
i=0

log
∥∥Df −1

f i(x)

∥∥−1 � λ

2
∀n � N

}

is defined and finite almost everywhere inM . We think of this as thewaiting timebefore the exponential derivativ
growth kicks in. Our results indicate that a main factor influencing the rate of decay of correlation is rate o
of the tail of this function, i.e. the rate of decay of the measure of the set of points which have not yet
expanding uniformly by timen. We remark that the choice ofλ/2 in the definition ofE is just for convenience, an
other positive constant smaller thanλ would work and would yield the same results.

Theorem 1. Let f :M → M be a transitiveC2 local diffeomorphism satisfying condition(∗) and suppose tha
there existsγ > 1 such that

Leb
({
E(x) > n

})
�O

(
n−γ

)
.

Then there exists an absolutely continuous,f -invariant, probability measureµ. Some finite power off is mixing
with respect toµ and the correlation functionCn for Hölder continuous observable onM satisfies

Cn �O
(
n−γ+1).

Moreover, ifγ > 2 then the Central Limit Theorem holds.

The existence and ergodicity of the measureµ was proved in [3]. Our construction gives an alternative pr
of the absolute continuity ofµ and allows us to obtain the estimates on the rate of Decay of Correlation a
the validity of the Central Limit Theorem. We remark that the questions concerning existence and ergod
an absolutely continuous invariant measure are quite distinct from the questions of the statistical proper
respect to the measure. Our results apply and are of interest even if an absolutely continuous, ergodic,f -invariant,
probability measureµ on M is already known to exist. In fact, in this case condition(∗) admits a very natura
formulation simply in terms of the average∫

log
∥∥Df −1

∥∥−1 dµ > 0.

Indeed Birkhoff’s Ergodic Theorem then implies that the limit

λ = lim
n→∞

1

n

n−1∑
i=0

log
∥∥Df −1

f i(x)

∥∥−1 =
∫

log
∥∥Df −1

∥∥−1 dµ > 0

exists forµ-almost everyx ∈ M . In particular the expansion time functionE(x) is also defined and finite almo
everywhere and the conclusions of the Theorem hold under the given conditions on the rate of decay of the
of {E(x) > n}.



820 J.F. Alves et al. / Ann. I. H. Poincaré – AN 22 (2005) 817–839

di-

t

oached
s is

form
nce
hat
Maps with critical points and discontinuities.We can generalize our results to the case in whichf is a local
diffeomorphism outside acritical/singular setS ⊂ M satisfying the following geometrical non-degeneracy con
tions which essentially say thatf behaves like a power of the distanceto S : there are constantsB > 1 andβ > 0
such that for everyx ∈ M \ S

1

B
dist(x,S)β � ‖Df (x)v‖

‖v‖ � B dist(x,S)−β for all v ∈ TxM; (S1)

Moreover the functions log detDf and log‖Df −1‖ arelocally Lipschitzat pointsx ∈ M \S with Lipschitz constan
depending on dist(x,S): for everyx, y ∈ M \ S with dist(x, y) <dist(x,S)/2 we have∣∣log

∥∥Df (x)−1
∥∥ − log

∥∥Df (y)−1
∥∥∣∣ � B

dist(x, y)

dist(x,S)β
; (S2)

∣∣log
∣∣detDf (x)−1

∣∣ − log
∣∣detDf (y)−1

∣∣∣∣ � B
dist(x, y)

dist(x,S)β
; (S3)

We assume that orbits haveslow approximationor subexponential recurrenceto the critical set in the following
sense. Letdδ(x,S) denote theδ-truncateddistance fromx to S defined asdδ(x,S) = d(x,S) if d(x,S) � δ and
dδ(x,S) = 1 otherwise. Then, given anyε > 0 there existsδ > 0 such that for Lebesgue almost everyx ∈ M

lim sup
n→+∞

1

n

n−1∑
j=0

− logdistδ
(
f j (x),S

)
� ε. (∗∗)

Again this is an asymptotic statement and we have no a-priori knowledge about how fast this limit is appr
or with what degree of uniformity for different pointsx. Since some control of the recurrence at finite time
important for our construction we introduce therecurrence timefunction

R(x) = min

{
N � 1:

1

n

n−1∑
i=0

− logdistδ
(
f j (x),S

)
� 2ε, ∀n � N

}
.

Condition(∗∗) implies that therecurrence timefunction is defined and finite almost everywhere inM . Before we
state our results in this case, it will be useful to introduce for eachn � 1 the set

Γn = {
x: E(x) > n orR(x) > n

}
.

This is the set of points which at timen have not yet achieved either the uniform exponential growth or the uni
subexponential recurrence given by conditions(∗) and(∗∗). To be rigorous one should explicit the depende
of R(x) andΓn on ε andδ. However, condition(∗∗) is not needed in all strength. Actually, we only need t
condition in Lemma 2.2 to assure the existence of hyperbolic times. For this, it is enough to fix someε and δ

conveniently chosen; see [3, Lemma 5.4] for details.

Theorem 2. Letf :M → M be a transitiveC2 local diffeomorphism outside a critical/singular setS satisfying the
non-degeneracy conditions stated above. Suppose thatf satisfies the non-uniform expansivity condition(∗) and
the slow approximation condition(∗∗) to the critical set and suppose that there existsγ > 1 such that

Leb(Γn) �O
(
n−γ

)
.

Then there exists an absolutely continuous,f -invariant, probability measureµ. Some finite power off is mixing
with respect toµ and the correlation functionCn for Hölder continuous observables onM satisfies

Cn �O
(
n−γ+1).

Moreover, ifγ > 2 then the Central Limit Theorem holds.
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Notice that the assumptions of Theorem 2 contain those of Theorem 1 as a special case whereS = ∅. We have
stated the two results separately because the local diffeomorphism case is sufficiently interesting on its
to emphasize the fact that the recurrence condition only applies to the case in which a critical and/or sing
exists. Both theorems extend to arbitrary dimension the results of [4] in which similar results were obtai
one-dimensional maps.

We remark also that even though condition(∗∗) is not needed in all its strength for the proof (it is sufficie
that the statement holds for someε sufficiently small depending on expansivity rateλ and on the constantsB,β in
the non-degeneracy conditions for the critical set), it is nevertheless more natural than it might appear at fi
For example, if an ergodic,f -invariant, absolutely continuous probability measureµ is given, then this condition
just amounts to supposing that this invariant measure does not give too much weight to neighbourhoods oS in the
sense that∫ ∣∣logdist(x,S)

∣∣dµ < ∞.

Indeed, as for the expansivity condition, this immediately implies(∗∗) by Birkhoff’s Ergodic Theorem. Notice
moreover that this integrability condition is satisfied if the singular setS and the Radon–Nykodim derivative ofµ

with respect to Lebesgue satisfy some mild regularity conditions.

1.2. Markov structure

Our strategy for proving the results stated above is to establish the existence of aMarkov towerstructure: a
ball ∆ ⊂ M and a countable partitionP of ∆ into topological balls with smooth boundaries with the property
each elementU of P has an associated return timeR(U) so thatf R(U)(U) = ∆ with some uniform bounds on th
volume distortion between one return and the next. Moreover we set up a combinatorial and probabilistic a
which allows us to obtain estimates for the tail Leb({R > n}) of the return time function in terms of the tail of th
expansivity and recurrence functions defined above.

Main Theorem 1. Letf :M → M be a transitiveC2 local diffeomorphism outside a critical/singular setS satisfy-
ing the non-degeneracy conditions stated above. Suppose thatf satisfies the non-uniform expansivity condition(∗)

and the slow approximation condition(∗∗). Then there exists a ball∆ ⊂ M \ S , a countable partitionP (mod 0)
of ∆ into topological ballsU with smooth boundaries, and a return time functionR :∆ → N piecewise constan
on elements ofP satisfying the following properties:

(1) Markov: for eachU ∈ P andR = R(U), f R :U → ∆ is a C2 diffeomorphism(and in particular a bijection).
Thus the induced map

F :∆ → ∆ given byF(x) = f R(x)(x)

is defined almost everywhere and satisfies the classical Markov property.
(2) Uniform expansivity:There existŝλ > 1 such that for almost allx ∈ ∆ we have∥∥DF(x)−1

∥∥−1 � λ̂.

In particular the separation times(x, y) given by the maximum integer such thatF i(x) andF i(y) belong to
the same element of the partitionP for all i � s(x, y), is defined and finite for almost every pair of poin
x, y ∈ ∆.

(3) Bounded volume distortion:There exist a constantK > 0 such that for any pair of pointsx, y ∈ ∆ with
∞ > s(x, y) � 1 we have∣∣∣∣detDF(x)

detDF(y)
− 1

∣∣∣∣ � Kλ̂−s(F (x),F (y)).
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Moreover, assuming polynomial decay ofLeb(Γn) we have the same decay of return times:

(4) if there existsγ > 0 such thatLeb(Γn) �O(n−γ ), thenLeb({R > n}) �O(n−γ ).

In the particular case that Leb(Γn) decays faster than any polynomial we obtainsuper-polynomial decayfor the
tail of return times: Leb({R > n}) �O(n−γ ) for everyγ > 0.

We remark that the significance of the existence of a Markov Tower structures goes well beyond the
quences this has for the statistical properties of the map. It can be thought of as a partial generalizatio
framework of non-uniformly expanding maps, of the remarkable (and classical) Theorem of Bowen that a
formly hyperbolic compact invariant set for aC2 diffeomorphisms admits a finite Markov partition ([11] see a
[6,7,27]). Besides the intrinsic interest of such a statement, this fact has been used innumerable times in r
all kinds of results concerning uniformly hyperbolic systems. There has been some success in the direct
ization of this result, for example to systems with discontinuities [14,21]. However the constructions alwa
rise to countable partitions and any conclusions about the invariant measures and other statistical prope
depends on a corresponding ergodic theory for countable subshifts which is much less developed than
case, although some results exist, see for example [13,23,25,26].

A significant break-through was achieved recently by Young in [29,30] where the general problem o
ing the existence of Markov partitions was essentially reformulated in terms of proving the existence ofMarkov
Towersor induced Markov mapsas defined above. One important advantage of these structures is that sta
information about the system is deduced from statistical information about the return times and not enc
some kind of transition matrix which would in general be very hard to determine. Moreover the actual cons
of Markov Towers has at least two significant advantages. Firstly, one can choose conveniently some sma
of the dynamical phase space, instead of having to construct a partition of the entire space, and useapproximate
information about the remaining part of the space to construct a return map. Secondly, one does not nee
iterate of the map to have special (Markov) properties, but is allowed to wait a certain amount of time un
property is obtained. Most importantly, only some approximate (statistical) information is required concern
length of this waiting time.

1.3. Viana maps

An important class of non-uniform expanding dynamical systems (with critical sets) in dimension great
one was introduced by Viana in [28]. This has served as a model for some relevant results on the ergodic p
of non-uniformly expanding maps in higher dimensions; see [1–3,5].

This class of maps can be described as follows. Leta0 ∈ (1,2) be such that the critical pointx = 0 is pre-
periodic for the quadratic mapQ(x) = a0 − x2. Let S1 = R/Z andb :S1 → R be a Morse function, for instanc
b(s) = sin(2πs). For fixed smallα > 0, consider the map

f̂ :S1 × R −→ S1 × R,

(s, x) �−→ (
ĝ(s), q̂(s, x)

)
whereq̂(s, x) = a(s) − x2 with a(s) = a0 + αb(s), andĝ is the uniformly expanding map of the circle defined
ĝ(s) = ds (modZ) for some large integerd . In fact,d was chosen greater or equal to 16 in [28], but recent re
in [18] showed that some estimates in [28] can be improved andd = 2 is enough. It is easy to check that forα > 0
small enough there is an intervalI ⊂ (−2,2) for which f̂ (S1 × I ) is contained in the interior ofS1 × I . Thus, any
mapf sufficiently close tof̂ in theC0 topology hasS1 × I as a forward invariant region. We consider from h
on these maps restricted toS1 × I .

Taking into account the expression off̂ it is not difficult to check that it behaves like a power of the dista
close to the critical set{x = 0}. Moreover, there is a small neighbourhoodN of f̂ in theC3 topology of maps from
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S1 × I into itself, such that anyf ∈ N also behaves like a power of the distance close to its critical set, wh
close to{x = 0}. The most important results forf ∈N are summarized below:

(1) f is non-uniformly expanding and its orbits have slow approximation to the critical set [28,2];
(2) there are constantsC,c > 0 such that Leb(Γn) � Ce−c

√
n for everyn � 1 [28,2];

(3) f is topologically mixing and has a unique ergodic absolutely continuous invariant (thus SRB) measur
(4) the density of the SRB measure varies continuously in theL1 norm withf [5];
(5) f is stochastically stable [2].

As a consequence of our theorems, we obtain the following result:

Theorem 3. Anyf ∈N has super-polynomial decay of correlations and Central Limit Theorem holds forf .

The decay of correlations for Viana maps has remained unknown for several years. Some results h
obtained in [8] for the (stretched exponential) decay of correlations of a skew product system closely re
Viana maps, but these results do not apply immediately to Viana maps themselves. One of the initial pur
the present work was precisely to attempt to make this additional step. In some sense our results go muc
as they apply to non-uniformly expanding systems in much greater generality. We have paid a price how
we do not succeed in obtaining stretched exponential estimates in this case. An optimal estimate for the
correlations of Viana maps continues to be elusive, perhaps indicating that there is some additional subtle
we do not yet understand.

1.4. Remarks

Before starting the proof of the Main Theorem we discuss our basic strategy and the main technica
involved in the construction. We also mention some recent work related to the research presented here.

Strategy. We start by choosing essentially arbitrarily a pointp with dense pre-images and some sufficiently sm
ball ∆0 around this point. This will be the domain of definition of our induced map. We then attempt to imple
the naive strategy of iterating∆0 until we find some good return iteraten0 such thatf n0(∆0) completely covers
∆0 and some bounded distortion property is satisfied. There exists then some topological ballU ⊂ ∆0 such that
f n0(U) = ∆0. This ball is then by definition an element of the final partition of∆0 for the induced Markov map
and has an associated return timen0. We then continue iterating the complement∆0 \ U until more good returns
occur. Most of the paper is dedicated to showing that this strategy can indeed be implemented in a succes
yielding a partition (mod 0) of∆0 into piecewise disjoint subsets, and an associated return time function wh
Lebesgue integrable. The construction also yields substantial information about the tail of the return time f
i.e. the decay of the measure of the set of points whose return time is larger thann. Indeed the main motivatio
for this paper is to show that the rate of decay of this tail is closely related to the rate at which the derivativ
orbits approaches the asymptotic expansion rate.

Technical issues. There are two main technical difficulties, distinct but related to each other, in carrying o
plan suggested above. The first has to do with the geometry of the returns to∆0, and in particular of the geometr
of the set of points which does not return at a given time. Such a set can be visualized as a ball∆0 containing
an increasing number of smaller topological balls corresponding to the elements of the final partition whi
return times smaller thann. The exact location and shape of these smaller disks is quite difficult to control
the location and shape of their images at timen. Therefore some care is required, as well as the introductio
some auxiliary partitions and waiting times, to make sure that the set of points returning at timenis disjoint from
the set of points which have already returned at some earlier time. These geometrical issues are essentia
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to the higher dimensional nature of the dynamics and arise also in the uniformly expanding case. This
been treated in [29] and we follow essentially the same strategy and notation here. We still give all the de
completeness and to make sure that any further problems associated to the non-uniformity of the expa
dealt with as well.

The second technical problem, on the other hand, is precisely due to the strictly non-uniform nature of
sion in our situation. The process of defining the set{R � n} of points which have an associated return time l
than or equal ton, as a union of disjoint topological disks in∆0, gives rise to very “small” regions in the compl
ment{R > n}, i.e. regions which are squeezed into strange shapes by the geometry of the previous retu
important to control the extent to which this can happen and to show that even these small regions eventu
large enough so that they can cover∆0 and thus contain an element of the partition for the induced map. In
uniformly hyperbolic case, once the suitable definitions and notation have been introduced, a relatively stra
ward calculation shows this to be the case and shows that in fact this growth of small regions to uniform
scale occurs uniformly exponentially fast. In our context we only have much more abstract information ab
eventual expansion at almost every point and therefore this part of the argument is more subtle.

We shall use the idea ofHyperbolic Timesto show that our assumptions imply that almost every point h
basis of (arbitrarily small) neighbourhoods which at some time are mapped to uniformly large scale with b
distortion. It follows that the speed at which this large scale is achieved is not uniform but rather depend
distribution of hyperbolic times associated to points in the regions in question, which can be arbitrarily lar
conclude that the final return time function for the Markov induced map is related to the statistics of hyp
times. Since hyperbolic times are naturally related to speed at which some uniform expansion estimates
hold, this yields our desired conclusions.

One of the key issues we have to address is the relation between the statistics of hyperbolic times, th
distribution of points having hyperbolic time at some given time, and the geometrical structure of sets arisi
the construction of the partition described above; see Corollary 2.3, Eq. (6) and Proposition 6.1. We are
implement a partially successful strategy in this respect: in the polynomial case we establish an essentially
link between the rate of decay of the expansion/recurrence function and the rate of decay of correlations. Th
of the argument does not immediately extend to the exponential case.

Related work. In addition to the references given above we mention some related work of Buzzi and M
Deschamps [15–17] in which the decay of correlations on towers associated to some uniformly and non-u
expanding maps are also studied. There is an empty intersection between the results presented there an
of the present paper, as the assumptions there are quite different from ours and provide a different poin
on causes for various rates of decay of correlations. Huyi also addresses specifically the question of wh
maps should have slow decay of correlations in the context of multidimensional maps with an indifferen
point [31].

Overview of the paper. The paper is completely dedicated to the proof of the Main Theorem on the existe
the Markov tower and the associated tail estimates. By recent results of Young [29,30] the rate of decay o
of the return time function in this framework has direct implications for the rates of decay of correlations a
Central Limit Theorem and therefore Theorems 1 and 2 follow by an application of her results.

In Section 2 we give several estimates related to the time it takes for small domains to grow to some fi
while preserving some bounded distortion properties. In Section 3 we give the precise algorithm for cons
the Markov Tower and describe the associated combinatorial information. The final three Sections 4,
are dedicated to proving that this algorithm effectively results in a countable partition (mod 0) with the re
properties.
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2. Growing to large scale

In this section we give the basic growth estimates on which the algorithm for the construction of the M
Tower is based. First of all we define the notion of Hyperbolic Time and show that almost all points have an
basis of neighbourhoods which grow to some fixed size with bounded distortion for some corresponding
sequence of hyperbolic times. The set of hyperbolic times depends on the point and the first hyperbolic ti
given point can be arbitrarily large in general, although we do have some degree of control since it is relate
values of the expansivity and recurrence functionsE andR at that point. Next we prove a useful and non-obvio
consequence of our assumptions, namely that if we fix someε > 0 then there exist someNε depending only on
ε such that any ball of radiusε has some subset which grows to a fixed size with bounded distortion withiNε

iterates. Finally we show that our “base”∆0 can be chosen in such a way that any other sufficiently large
contains a subset which is mapped bijectively to∆0 with bounded distortion and within some fixed number
iterates. A combination of these estimate will play a crucial role in obtaining control of the tail of the return
to ∆0.

Hyperbolic times: growing to uniform scale in variable time.Let B > 1 andβ > 0 be as in the hypothese
(S1)–(S3). In what followsb is any fixed constant satisfying 0< b < min{1/2,1/(4β)}. Givenσ < 1 andδ > 0,
we say thatn is a(σ, δ)-hyperbolic timefor a pointx ∈ M if for all 1 � k � n,

n−1∏
j=n−k

∥∥Df
(
f j (x)

)−1∥∥ � σk and distδ
(
f n−k(x),S

)
� σbk.

For eachn � 1 we define

Hn = Hn(σ, δ) = {
x ∈ M: n is a(σ, δ)-hyperbolic time forx

}
.

We give two well-established results which show that (i) ifn is a hyperbolic time forx, the mapf n is a diffeomor-
phism with uniformly bounded volume distortion on a neighborhood ofx which is mapped to a disk of uniform
radius; (ii) almost every point has lots of hyperbolic times. We say thatf n hasvolume distortionbounded byD on
a setV if, for everyx, y ∈ V ,

1

D
� |detDf n(x)|

|detDf n(y)| � D.

Lemma 2.1. Givenσ < 1 andδ > 0, there existδ1,D1, κ > 0, depending only onσ, δ and on the mapf , such that
for anyx ∈ M andn � 1 a (σ, δ)-hyperbolic time forx, there exists a neighborhoodVn(x) of x with the following
properties:

(1) f n mapsVn(x) diffeomorphically onto the ballB(f n(x), δ1);
(2) for 1� k < n andy, z ∈ Vn(x), dist(fn−k(y), f n−k(z)) � σk/2 dist(fn(y), f n(z));
(3) f n has volume distortion bounded byD1 onVn(x);
(4) Vn(x) ⊂ B(x, κ−n).

Proof. For the proofs of items (1)–(3) see Lemma 5.2 and Corollary 5.3 in [3]. Item (4) is an immediate
quence of item (2). �

We shall often refer to the setsVn(x) ashyperbolic pre-ballsand to their imagesf n(Vn(x)) ashyperbolic balls.
Notice that the latter are indeed balls of radiusδ1.

Lemma 2.2. There existsθ > 0 andδ > 0 depending only onf andλ such that for Lebesgue almost everyx ∈ M

andn � E(x) there exist(σ, δ)-hyperbolic times1 � n1 < · · · < nl � n for x with l � θn.
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Proof. See Lemma 5.4 of [3]. Let us remark for the sake of completeness that the proof of the lemm
σ = e−λ/4. �
Corollary 2.3. For everyn � 1 and everyA ⊂ M \ Γn with positive Lebesgue measure we have

1

n

n∑
j=1

Leb(A∩ Hj)

Leb(A)
� θ.

Proof. Taken � 1 andA ⊂ M \ Γn with positive Lebesgue measure. Observe thatn � E(x) for all x ∈ A, by
definition ofE(x). Let ξn be the measure in{1, . . . , n} defined byξn(J ) = #J/n, for each subsetJ . Then, using
Fubini’s theorem

1

n

n∑
j=1

Leb(A∩ Hj) =
∫ (∫

A

χ(x, i)d Leb(x)

)
dξn(i) =

∫
A

(∫
χ(x, i)dξn(i)

)
d Leb(x),

whereχ(x, i) = 1 if x ∈ Hi andχ(x, i) = 0 otherwise. Now, Lemma 2.2 means that the integral with respe
dξn is larger thanθ > 0. So, the last expression above is bounded from below byθ Leb(A). �
Growing to uniform scale in uniform time.Now we show a simple (albeit slightly counterintuitive) fact that a
ε ball has a subset which grows to fixed size within some uniformly bounded maximum number of iterates

Lemma 2.4. For eachε > 0 there existsNε > 0 such that any ballB ⊂ M of radiusε > 0 contains a hyperbolic
pre-ballVn ⊂ B with n � Nε.

Proof. Givenε > 0 and a ballB(z, ε), chooseN ′
ε large enough so that any hyperbolic pre-ballVn associated to a

hyperbolic timen � N ′
ε will be contained in a ball of radiusε/10 (N ′

ε ∼ κ−1 log(10ε−1)). Now notice that each
point has an infinite number of hyperbolic times and therefore we have that

Leb

(
M

∖ n⋃
j=N ′

ε

Hj

)
→ 0 asn → ∞.

Therefore it is possible to choose

Nε = min

{
n � N ′

ε: Leb

(
M

∖ n⋃
j=N ′

ε

Hj

)
� εd/10

}

whered is the dimension ofM . This ensures that there is a pointx̂ ∈ B(z, ε/2) with a hyperbolic timen � Nε and
associated hyperbolic pre-ballVn(x) ⊂ B(z, ε). �
Returning to a given domain.Now we derive an useful consequence of the transitivity off . Givenδ > 0, we say
that a subsetA of M is δ-denseif any point inM is at a distance smaller thanδ from A.

Lemma 2.5. Given δ > 0 there isp ∈ M and N0 ∈ N such that
⋃N0

j=0 f −j ({p}) is δ dense inM and disjoint
fromS .

Proof. Observe that the properties off imply that the images and preimages of sets with zero Lebesgue me
still have zero Lebesgue measure. Hence, the set

B =
⋃

f −n

( ⋃
f −m(S)

)

n�0 m�0
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has Lebesgue measure equal to zero. On the other hand, sincef is transitive, we have by [3] that there is a uniq
SRB measure forµ, which is an ergodic and absolutely continuous with respect to Lebesgue measure, and
support is the whole manifoldM . Moreover, the ergodicity ofµ implies thatµ almost every point inM has a dense
orbit. Sinceµ is absolutely continuous with respect to Leb, then there is a positive Lebesgue measure s
points inM with dense orbit. Thus there must be some pointq ∈ M \ B with dense orbit. TakeN0 ∈ N for which
q,f (q), . . . , f N0(q) is δ-dense. The pointp = f N0(q) satisfies the conclusions of the lemma.�

We fix once and for allp ∈ M andN0 ∈ N for which
⋃N0

j=0 f −j ({p}) is δ1/3 dense inM and disjoint from the
critical setS . Recall thatδ1 > 0 is the radius of hyperbolic balls given by Lemma 2.1. Take constantsε > 0 and
δ0 > 0 so that√

δ0 � δ1/2 and 0< ε � δ0.

Lemma 2.6. There exist a constantD0 > 0 depending only onf,σ, δ1 and the pointp, such that for any ballB ⊂ M

of radiusδ1 (in particular for any hyperbolic ball), there exist an open setV ⊂ B and an integer0 � m � N0 for
which

(1) f m mapsV diffeomorphically ontoB(p,2
√

δ0);
(2) f m|V has volume distortion bounded byD0.

Proof. Since
⋃N0

j=0 f −j ({p}) is δ1/3 dense inM and disjoint fromS , choosingδ0 > 0 sufficiently small we have

that each connected component of the preimages ofB(p,2
√

δ0) up to timeN0 are bounded away from the critic
setS and are contained in a ball of radiusδ1/3.

This immediately implies that any ballB ⊂ M of radiusδ1 contains a preimageV of B(p,2
√

δ0) which is
mapped diffeomorphically ontoB(p,2

√
δ0) in at mostN0 iterates. Moreover, since the number of iterations

the distance to the critical region are uniformly bounded, the volume distortion is uniformly bounded.�
Remark 2.7. It will be useful to emphasize thatδ0 andN0 have been chosen in such a way that all the conne
component of the preimages ofB(p,2

√
δ0) up to timeN0 satisfy the conclusions of the lemma. In particular, th

are uniformly bounded away from the critical setS , and so there is some constantC0 > 1 depending only onf
andδ1 such that

1

C0
�

∥∥Df m(x)
∥∥,

∥∥(
Df m(x)

)−1∥∥ � C0

for all 1� m � N0 andx belonging to anm-preimage ofB(p,2
√

δ0).

3. The partitioning algorithm

We now describe the construction of the (mod 0) partition of∆0 = B(p, δ0). The basic intuition is that we wa
for some iteratef k(∆0) to cover∆0 completely, and then define the subsetU ⊂ ∆0 such thatf k :U → ∆0 is
a diffeomorphism, as an element of the partition with return timek. We then continue to iterate the complem
∆0 \ U until this complement covers again∆0 and repeat the same procedure to define more elements of th
partition with higher return times. Using the fact that small regions eventually become large due to the exp
condition (and the lemmas given above), it follows that this process can be continued and that Lebesgu
every point eventually belongs to some element of the partition and that the return time function depend
time that it takes small regions to become large on average and this turns out to depend precisely on the
expansivity condition function.
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The formalization of this argument requires several technical constructions which we explain below. T
struction is inductive and we give precisely the general step of the induction below. For the sake of a
visualization of the process, and to motivate the definitions, we start with the first step.

First step of the induction. First of all we introduce neighborhoods ofp

∆0
0 = ∆0 = B(p, δ0), ∆1

0 = B(p,2δ0), ∆2
0 = B(p,

√
δ0) and ∆3

0 = B(p,2
√

δ0).

For 0< σ < 1 given by Lemma 2.1, let

Ik = {
x ∈ ∆1

0: δ0
(
1+ σk/2) < dist(x,p) < δ0

(
1+ σ (k−1)/2)}, k � 1,

be a partition (mod 0) into countably many rings of∆1
0 \ ∆0. TakeR0 some large integer to be determined belo

we ignore any dynamics occurring up to timeR0. Let k � R0 + 1 be the first time that∆0 ∩ Hk �= ∅. For j < k

we define formally the objects∆j ,Aj ,A
ε
j whose meaning will become clear in the next paragraph, byAj = Aε

j =
∆j = ∆0. Let (U3

k,j )j be the connected components off −k(∆3
0)∩Aε

k−1 contained in hyperbolic pre-ballsVm with

k − N0 � m � k which are mapped diffeomorphically onto∆3
0 by f k . Now let

Ui
k,j = U3

k,j ∩ f −k∆i
0, i = 0,1,2,

and setR(x) = k for x ∈ U0
k,j . Now take

∆k = ∆k−1 \ {R = k}.
We define also a functiontk :∆k → N by

tk(x) =
{

s if x ∈ U1
k,j andf k(x) ∈ Is for somej ;

0 otherwise.

Finally let

Ak = {
x ∈ ∆k: tk(x) = 0

}
, Bk = {

x ∈ ∆k: tk(x) > 0
}

and

Aε
k = ∆k ∩

⋃
x∈Ak∩Hk+1

(
f |Vk+1(x)

)−1
B

(
f k+1(x), ε

)
.

Note that this is a small neighborhood ofAk ∩ Hk+1 whose iterates at timek + 1 are at a distance smaller thanε

from f k+1(Ak ∩ Hk+1).

General step of the induction.The general inductive step of the construction now follows by repeating the
ments above with minor modifications. More precisely we assume that sets∆i , Ai , Aε

i Bi , {R = i} and functions
ti : ∆i → N are defined for alli � n − 1. Fori � R0 we just letAi = Aε

i = ∆i = ∆0, Bi = {R = i} = ∅ andti ≡ 0.
Now let (U3

n,j )j be the connected components off −n(∆0) ∩ Aε
n−1 contained in hyperbolic pre-ballsVm, with

n − N0 � m � n, which are mapped onto∆3
0 by f n. Take

Ui
n,j = U3

n,j ∩ f −n∆i
0, i = 0,1,2,

and setR(x) = n for x ∈ U0
n,j . Take also

∆n = ∆n−1 \ {R = n}.
The definition of the functiontn :∆n → N is slightly different in the general case.

tn(x) =




s if x ∈ U1
n,j \ U0

n,j andf n(x) ∈ Is for somej ,

0 if x ∈ An−1 \ ⋃
j U1

n,j ,

tn−1(x) − 1 if x ∈ Bn−1 \ ⋃
U1 .
j n,j
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Finally let

An = {
x ∈ ∆n: tn(x) = 0

}
, Bn = {

x ∈ ∆n: tn(x) > 0
}

and

Aε
n = ∆n ∩

⋃
x∈An∩Hn+1

(
f |Vn+1(x)

)−1
B

(
f n+1(x), ε

)
.

At this point we have completely described the inductive construction of the setsAn, Aε
n, Bn and{R = n}.

We conclude this section with a remark concerning the role of the setsBn as a kind of shield protecting the se
of the partition constructed up to timen, and some observations to motivate the last two sections.

A remark on the construction.Associated to each componentU0
n−k of {R = n − k}, for somek > 0, we have

a collar U1
n−k \ U0

n−k around it; knowing that the new components of{R = n} do not “intersect too much
U1

n−k \ U0
n−k is important for preventing overlaps on sets of the partition. We will see that this is indee

case as long asε > 0 is taken small enough.

Lemma 3.1. If ε > 0 is sufficiently small, thenU1
n ∩ {tn−1 > 1} = ∅ for eachU1

n .

Proof. Take somek > 0 and letU0
n−k be a component of{R = n − k}. Let Qk be the part ofU1

n−k that is mapped
by f n−k ontoIk and assume thatQk intersects someU3

n . Recall that, by construction,Qk is precisely the part o
U1

n−k on whichtn−1 takes the value 1, andU3
n is contained in a hyperbolic pre-ballVm with k − N0 � m � k.

Let q1 andq2 be any two points in distinct components (inner and outer, respectively) of the boundaryQk .
Assuming thatq1, q2 ∈ U3

n , thenq1, q2 ∈ Vm, and so by Lemma 2.1 and Remark 2.7

dist
(
f n−k(q1), f

n−k(q2)
)
� C0σ

(k−N0)/2 dist
(
f n(q1), f

n(q2)
)
. (1)

We also have

dist
(
f n−k(q1), f

n−k(q2)
)
� δ0

(
1+ σ (k−1)/2) − δ0

(
1+ σk/2) = δ0σ

k/2(σ−1/2 − 1
)
,

which combined with (1) gives

dist
(
f n(q1), f

n(q2)
)
� C−1

0 σN0/2δ0
(
σ−1/2 − 1

)
.

On the other hand, sinceU3
n ⊂ Aε

n−1 by construction ofU3
n , taking

ε < C−1
0 σN0/2δ0

(
σ−1/2 − 1

)
we haveU3

n ∩ {tn−1 > 1} = ∅. This impliesU1
n ∩ {tn−1 � 1} = ∅. �

4. The induced map

In this section we briefly discuss the first and fourth items and prove the second and third items in the st
of the Main Theorem.

The Markov property. The construction detailed in Section 3 provides an algorithm for the definition of a fa
of topological balls contained in∆ and satisfying the Markov property as required. In the next two section
show that this algorithm does indeed produce a partition mod 0 of∆ and obtain estimates for the rate of decay
the tail of the return times.
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Uniform expansivity. Recall that by construction, the return timeR(U) for U an element of the partitionP of ∆,
is formed by a certain numbern of iterations given by the hyperbolic time of a hyperbolic pre-ballVn ⊃ U , and a
certain numberm � N0 of additional iterates which is the time it takes to go fromf n(Vn) which could be anywher
in M , to f n+m(Vn) which covers∆ completely. By choosingR0 sufficiently large it then follows from Remark 2.
that there exists a constantλ̂ > 1 and a timen0 such that for any hyperbolic timen � n0 and any pointx ∈ Vn and
1� m � N0, we have∥∥(

Df n+m(x)
)−1∥∥−1 � λ̂ > 1.

We immediately have the uniform expansivity property of the Main Theorem∥∥(
DFx)

−1
∥∥−1 = ∥∥(

Df R(x)
x

)−1∥∥−1 � λ̂ > 1.

In particular, this implies that for anyx, y ∈ ∆ which have the same combinatorics, i.e. which remain in the s
elements of the partitionP for some numbers(x, y) of iterates of the induced mapF , we have

dist(x, y) � λ̂−s(x,y). (2)

Distortion estimates. The distortion estimate required for our Main Theorem follows immediately from (2) a
and the following more classical formulation of the bounded distortion property:

Lemma 4.1. There exists a constant̃B > 0 such that for anyx, y belonging to the same elementU ∈P with return
timeR, we have

log

∣∣∣∣detDF(x)

detDF(y)

∣∣∣∣ = log

∣∣∣∣detDf R(x)

detDf R(y)

∣∣∣∣ � B̃ dist
(
f R(x), f R(y)

)
.

Proof. Recall that by construction, the return timeR(U) for U an element of the partitionP of ∆, is formed by a
certain numbern of iterations given by the hyperbolic time of a hyperbolic pre-ballVn ⊃ U , and a certain numbe
m � N0 of additional iterates which is the time it takes to go fromf n(Vn) which could be anywhere inM , to
f n+m(Vn) which covers∆ completely. Some standard formal manipulation based on the chain rule gives

log

∣∣∣∣detDf R(x)

detDf R(y)

∣∣∣∣ = log

∣∣∣∣detDf R−n(f n(x))

detDf R−n(f n(y))

∣∣∣∣ + log

∣∣∣∣detDf n(x)

detDf n(y)

∣∣∣∣.
Sincef i(x) andf i(y) are uniformly bounded away fromS for n � i � R (recall Remark 2.7), we may write

log

∣∣∣∣detDf R−n(f n(x))

detDf R−n(f n(y))

∣∣∣∣ � B1 dist
(
f R(x), f R(y)

)
whereB1is some constant not depending onx, y or R. On the other hand, by construction ofVn (see the proof o
Lemma 5.2 in [3]), there must be somez ∈ Vn for which n is a hyperbolic time and such that, for 0� j < n, the
distance fromf j (z) to eitherf j (x) or f j (y) is smaller than dist(f n(x), f n(y))σ (n−j)/2, which is much smalle
thanσb(n−j) � dist(f j (z),S). Thus, by (S3) we have

log

∣∣∣∣detDf n(x)

detDf n(y)

∣∣∣∣ �
n−1∑
j=0

log

∣∣∣∣detDf (f j (x))

detDf (f j (y))

∣∣∣∣ � dist
(
f n(x), f n(y)

) n−1∑
j=0

2B
σ(n−j)/2

σbβ(n−j)
.

Sincebβ < 1/2, there must be someB2 > 0 such that

log

∣∣∣∣detDf n(x)

n

∣∣∣∣ � B2 dist
(
f n(x), f n(y)

)
.

detDf (y)



J.F. Alves et al. / Ann. I. H. Poincaré – AN 22 (2005) 817–839 831

y of
that

r

Using again thatf i(y) andf i(y) are uniformly bounded away fromS (for n � i � R (cf. Remark 2.7)) it follows
that

dist
(
f n(x), f n(y)

)
� B2 dist

(
f R(x), f R(y)

)
,

whereB2 is some constant not depending onx, y or R. This completes the proof of the lemma.�
Looking ahead: probabilistic estimates.For proving the Main Theorem we only need to study the deca
Leb(∆n) in terms of Leb(Γn). That is our purpose in the next two sections. We will show in Proposition 5.4
there is a constanta0 > 0 such that

Leb(Bn) � a0 Leb(An). (3)

We will also show in Proposition 5.1 that there areN = N(ε) � 1 and a constantc0 > 0 for which

Leb

(
N⋃

i=0

{
R = n + i

})
� c0 Leb(An−1 ∩ Hn). (4)

Taking into account that∆n = An ∪ Bn, it easily follows from (3) and (4) that there is a constantb0 > 0 such that

Leb

(
N⋃

i=0

{
R = n + i

})
� b0

Leb(An−1 ∩ Hn)

Leb(An−1)
Leb(∆n−1).

This immediately implies that

Leb(∆n+N) �
(

1− b0
Leb(An−1 ∩ Hn)

Leb(An−1)

)
Leb(∆n−1). (5)

It is no restriction to assume thatR0 > 2(N+1) and we do it. Take any largen and letk0 � 1 be the smallest intege
for which n − 1 − k0(N + 1) � R0. The above assumption onR0 andN implies thatn − (k0 + 1)(N + 1) � 1.
Now we consider the partition of{n − (k0 + 1)(N + 1), . . . , n− 1} into the sets

JN = {
n − 1, n− 1− (N + 1), . . . , n− 1− k0(N + 1)

}
,

...

J1 = {
n − N,n − N − (N + 1), . . . , n− N − k0(N + 1)

}
,

J0 = {
n − (N + 1), n− 2(N + 1), . . . , n− (k0 + 1)(N + 1)

}
.

Applying (5) repeatedly we arrive at the following set ofN + 1 inequations:

Leb(∆n+N) �
∏

j∈JN

(
1− b0

Leb(Aj ∩ Hj+1)

Leb(Aj )

)
Leb(∆0),

...

Leb(∆n) �
∏
j∈J0

(
1− b0

Leb(Aj ∩ Hj+1)

Leb(Aj )

)
Leb(∆0).

Multiplying the terms in the inequations above and ignoring factors fromn − (k0 + 1)(N + 1) to R0 − 1 on the
right hand side (observe that those factors are smaller than 1), we obtain

N∏
Leb(∆n+j ) �

n−1∏ (
1− b0

Leb(Aj−1 ∩ Hj)

Leb(Aj−1)

)
Leb(∆0)

N+1.
j=0 j=R0



832 J.F. Alves et al. / Ann. I. H. Poincaré – AN 22 (2005) 817–839

avior of

hen

w
ets

ll
e

f

Taking into account that(∆n)n forms a decreasing sequence of sets we finally have

Leb(∆n+N) � exp

(
− b0

N + 1

n∑
j=R0

Leb(Aj−1 ∩ Hj)

Leb(Aj−1)

)
Leb(∆0). (6)

In Section 6 we will prove the Main Theorem by considering several different cases, according to the beh
the proportions Leb(An−1 ∩ Hn)/Leb(An−1). It is not hard to check that if the average

1

n

n∑
j=1

Leb(Aj−1 ∩ Hj)

Leb(Aj−1)

is bounded away from 0 for largen, then Leb(∆n) decays exponentially fast to 0. This happens, for instance, w
f is uniformly expanding.

5. Transitional metric estimates

The goal of this section is to prove several estimates relating the Lebesgue measure of the setsAn, Aε
n, Bn and

{R = n}. The first result shows that a fixed proportion ofAn−1 havingn as a hyperbolic time gives rise to ne
elements of the partition with return time not exceedingn too much. We discuss the relative proportion of the s
An andBn in ∆n.

Proposition 5.1. There existc0 > 0 andN = N(ε) such that for everyn � 1

Leb

(
N⋃

i=0

{R = n + i}
)

� c0 Leb(An−1 ∩ Hn).

Proof. Taker = 5δ0C
N0
0 , whereN0 andC0 are given by Lemma 2.6 and Remark 2.7, respectively. Let{zj } be a

maximal set inf n(An−1 ∩ Hn) with the property thatB(zj , r) are pairwise disjoint. By maximality we have⋃
j

B(zj ,2r)⊃ f n(An−1 ∩ Hn).

Let Zj be the set of pointsx ∈ Hn ∩ An−1 such thatf n(x) = zj . Observe thatf n sends the hyperbolic pre-ba
Vn(x) associated tox ∈ Zj diffeomorphically onto a ball of radiusδ1 aroundzj as in Lemma 2.1. Note that th
hyperbolic pre-ballsVn(x) with x ∈ Zj are pairwise disjoint.

Let us fixx ∈ Zj . GivenB ⊂ B(zj , δ1), we will simply denote(f n|Vn(x))−1(B) by f −n
x (B). Our aim now is to

prove thatf −n
x (B(zj , r)) contains some component of{R = n + kj } with 0 � kj � Nε + N0. We start by showing

that

tn+kj
|f −n

x

(
B(zj , ε)

)
is not identically 0 for some 0� kj � Nε + N0. (7)

Assume by contradiction thattn+kj
|f −n

x (B(zj , ε)) = 0 for all 0� kj � Nε +N0. This implies thatf −n
x (B(zj , ε)) ⊂

Aε
n+kj

for all 0� kj � Nε +N0. Using Lemma 2.4 we may find a hyperbolic pre-ballVm ⊂ B(zj , ε) with m � Nε.

Now, sincef m(Vm) is a ballB of radiusδ1 it follows from Lemma 2.6 that there is someV ⊂ B andm′ � N0
with f m′

(V ) = ∆0. Thus, takingkj = m + m′ we have that 0� kj � Nε + N0 andf −n
x (Vm) is an element o

{R = n+kj } insidef −n
x (B(zj , ε)). This contradicts the fact thattn+kj

|f −n
x (B(zj , ε)) = 0 for all 0� kj � Nε +N0,

and so (7) holds.
Let kj be the smallest integer 0� kj � Nε + N0 for which tn+kj

|f −n(B(zj , ε)) is not identically 0.
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Since

f −n
x

(
B(zj , ε)

) ⊂ Aε
n−1 ⊂ {tn−1 � 1},

there must be some elementU0
n+kj

(j, x) of {R = n + kj } for which

f −n
x

(
B(zj , ε)

) ∩ U1
n+kj

(j, x) �= ∅.

Recall that by definitionf n+kj sendsU1
n+kj

(j, x) diffeomorphically onto∆1
0, the ball of radius 2δ0 aroundp.

From timen to n + kj we may have some final “bad” period of length at mostN0 where the derivative off may
contract, however being bounded from below by 1/C0 in each step. Thus, the diameter off n(U1

n+kj
(j, x)) is at

most 4δ0C
N0
0 . SinceB(zj , ε) intersectsf n(U1

n+kj
(j, x)) andε < δ0 < δ0C

N0
0 , we have by definition ofr

f −n
(
B(zj , r)

) ⊃ U0
n+kj

(j, x).

Thus we have shown thatf −n
x (B(zj , r)) contains some component of{R = n + kj } with 0 � kj � Nε + N0.

Moreover, sincen is a hyperbolic time forxj , we have by the distortion control given by Lemma 2.1

Leb(f−n
x (B(zj ,2r)))

Leb(f−n
x (B(zj , r)))

� D1
Leb(B(zj ,2r))

Leb(B(zj , r))
(8)

and

Leb(f−n
x (B(zj , r)))

Leb(U0
n+kj

(j, x))
� D1

Leb(B(zj , r))

Leb(fn(U0
n+kj

(j, x)))
. (9)

Here we are implicitly assuming that 2r < δ1. This can be done just by takingδ0 small enough. Note that th
estimates onN0 andC0 do not change when we diminishδ0.

From timen to timen+kj we have at mostkj = m1+m2 iterates withm1 � Nε, m2 � N0 andf n(U0
n+kj

(j, x)))

containing some pointwj ∈ Hm1. By the definition of(σ, δ)-hyperbolic time we have that distδ(f
i(wj ),S) � σbNε

for every 0� i < m1, which by the uniform distortion control implies that there is some constantD = D(ε) > 0
such that|det(Df i(x))| � D for 0 � i < m1 and x ∈ f n(U0

n+kj
(j, x)). On the other hand, since the firstN0

preimages of∆0 are uniformly bounded away fromS we also have someD′ > 0 such that|det(Df i(x))| � D′ for
every 0� i � m2 andx belonging to ani preimage of∆0. Hence,

Leb
(
f n

(
U0

n+kj
(j, x)

))
� 1

DD′ Leb(∆0),

which combined with (9) gives

Leb
(
f −n

x

(
B(zj , r)

))
� C Leb

(
U0

n+kj
(j, x)

)
,

with C only depending onD1, D, D′, δ0 and the dimension ofM . We also deduce from (8) that

Leb
(
f −n

x

(
B(zj ,2r)

))
� C′ Leb

(
f −n

x

(
B(zj , r)

))
with C′ only depending onD1 and the dimension ofM . Finally let us compare the Lebesgue measure of the⋃N

i=0

{
R = n + i

}
andAn−1 ∩ Hn. We have

Leb(An−1 ∩ Hn) �
∑
j

∑
x∈Zj

Leb
(
f −n

x

(
B(zj ,2r)

))
� C′ ∑

j

∑
x∈Zj

Leb
(
f −n

x

(
B(zj , r)

))
.

On the other hand,

∑
j

∑
x∈Z

Leb
(
f −n

x

(
B(zj , r)

))
� C

∑
j

∑
x∈Z

Leb
(
U0

n+kj
(j, x)

)
� C Leb

(
N⋃

i=0

{R = n + i}
)

.

j j
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We just have to takec0 = (CC′)−1. �
Let us prove now a couple of useful lemmas. The first one gives a lower bound for the flow of mass fromBn−1

to An, and second one gives a lower bound for the flow of mass fromAn−1 to Bn and{R = n}.

Lemma 5.2. There existsa1 > 0 such that for everyn � 1

Leb(Bn−1 ∩ An) � a1 Leb(Bn−1).

Moreover,a1 is bounded away from0 independently fromδ0.

Proof. It is enough to see this for each component ofBn−1 at a time. LetC be a component ofBn−1 andQ be its
outer ring corresponding totn−1 = 1. Observe that by Lemma 3.1 we haveQ = C ∩ An. Moreover, there must b
somek < n and a componentU0

k of {R = k} such thatf k mapsC diffeomorphically onto
⋃∞

i=k Ii andQ ontoIk ,
both with uniform bounded distortion (not depending onδ0 or n). Thus, it is sufficient to compare the Lebesg
measures of

⋃∞
i=k Ii andIk . We have

Leb(Ik)

Leb(
⋃∞

i=k Ii)
≈ [δ0(1+ σ (k−1)/2)]d − [δ0(1+ σk/2)]d

[δ0(1+ σ (k−1)/2)]d − δd
0

≈ 1− σ 1/2.

Clearly this proportion does not depend onδ0. �
The second item of the lemma below is apparently counterintuitive, since our main goal is to make the p

∆0 have small return times. However, this is needed for keeping Leb(An) uniformly much bigger than Leb(Bn).
This will help us in the statistical estimates of the last section.

Lemma 5.3. There existb1 = b1(δ0) > 0 andc1 = c1(δ0) > 0 with b1 + c1 < 1 such that for everyn � 1

(1) Leb(An−1 ∩ Bn) � b1 Leb(An−1);
(2) Leb(An−1 ∩ {R = n}) � c1 Leb(An−1).

Moreover,b1 → 0 andc1 → 0 asδ0 → 0.

Proof. It is enough to prove this for each neighborhood of a componentU0
n of {R = n}. Observe that by con

struction we haveU3
n ⊂ Aε

n−1, which means thatU2
n ⊂ An−1, becauseε < δ0 <

√
δ0. Using the uniform bounde

distortion off n onU3
n given by Lemma 2.4 and Lemma 2.6 (cf. Remark 2.7) we obtain

Leb(U1
n \ U0

n )

Leb(U2
n \ U1

n )
≈ Leb(∆1

0 \ ∆0
0)

Leb(∆2
0 \ ∆1

0)
≈ δd

0

δ
d/2
0

� 1,

which gives the first estimate. Moreover,

Leb(U0
n )

Leb(U2
n \ U1

n )
≈ Leb(∆0

0)

Leb(∆2
0 \ ∆1

0)
≈ δd

0

δ
d/2
0

� 1,

and this gives the second one.�
The next result is a consequence of the estimates we obtained in the last two lemmas. The proof is es

the same of the uniformly hyperbolic case; see [29]. Here we need to be more careful on the estimates.
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Proposition 5.4. There existsa0 = a0(δ0) > 0 such that for everyn � 1

Leb(Bn) � a0 Leb(An).

Moreover,a0 → 0 asδ0 → 0.

Proof. We have by Lemma 5.3

Leb(An−1 ∩ An) � η Leb(An−1), (10)

whereη = 1− b1 − c1. We define

â = b1 + c1

a1
and a0 = (1+ a1)b1 + c1

a1η
.

The fact thata0 → 0 whenδ0 → 0 is a consequence ofb1 → 0 andc1 → 0 whenδ0 → 0 anda1 being bounded
away from 0. Observe that 0< η < 1 andâ < a0. Now the proof of the proposition follows by induction. The res
obviously holds forn up toR0. Assuming that it holds forn − 1 � R0 we will show that it also holds forn, by
considering separately the cases Leb(Bn−1) > â Leb(An−1) and Leb(Bn−1) � â Leb(An−1).

Assume first that Leb(Bn−1) > â Leb(An−1). We may write

Leb(Bn−1) = Leb(Bn−1 ∩ An) + Leb(Bn−1 ∩ Bn),

which by Lemma 5.2 gives

Leb(Bn−1 ∩ Bn) � (1− a1)Leb(Bn−1). (11)

Since we also have

Leb(Bn) = Leb(Bn ∩ Bn−1) + Leb(Bn ∩ An−1),

it follows from (11) and Lemma 5.3 that

Leb(Bn) � (1− a1)Leb(Bn−1) + b1 Leb(An−1),

which according to the case we are considering leads to

Leb(Bn) � (1− a1)Leb(Bn−1) + b1a1

b1 + c1
Leb(Bn−1) < Leb(Bn−1). (12)

On the other hand, we have Leb(An) = Leb(An ∩ An−1) + Leb(An ∩ Bn−1), which together with Lemma 5.2 an
(10) gives Leb(An) � η Leb(An−1) + a1 Leb(Bn−1). Again by the case we are considering we have

Leb(An) � η Leb(An−1) + a1â Leb(An−1) � Leb(An−1). (13)

Inequalities (12) and (13), together with the inductive hypothesis, yield the result in this first case.
Assume now that Leb(Bn−1) � â Leb(An−1). Since we have

Leb(Bn) = Leb(Bn ∩ Bn−1) + Leb(Bn ∩ An−1),

it follows from Lemma 5.3 that

Leb(Bn) � Leb(Bn−1) + b1 Leb(An−1).

Hence

Leb(Bn)

Leb(An)
<

Leb(Bn−1) + b1 Leb(An−1)

η Leb(An−1)
� â + b1

η
= a0,

which gives the result also in this case.�
It will be useful to establish the following consequence of the last two results.
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Corollary 5.5. There existsc2 > 0 such that for everyn � 1

Leb(∆n) � c2 Leb(∆n+1).

Proof. By Lemma 5.3 we have

Leb(∆n+1) � Leb(An+1) � (1− b1 − c1)Leb(An).

On the other hand, by Proposition 5.4,

Leb(∆n) = Leb(An) + Leb(Bn) � (1+ a−1
0 )Leb(An).

It is enough to takec2 = (1+ a−1
0 )/(1− b1 − c1). �

6. Asymptotic metric estimates

We start this section by recalling thatθ > 0 was obtained in Lemma 2.2 and gives a lower bound for
frequency of hyperbolic times; it only depends on the non-uniform expansion coefficientλ and the mapf .

Before we go into the main proposition of this section which will enable us to conclude the proof of the
Theorem, let us impose one more requirement on the choice ofδ0: let γ > 0 be some positive number (to b
specified later) and take 0< α < (θ/12)γ+1. Then we chooseδ0 > 0 small so thata0 = a(δ0) < 2α.

We define for eachn � 1

En =
{
j � n:

Leb(Aj−1 ∩ Hj)

Leb(Aj−1)
< α

}
,

and

F =
{
n ∈ N:

#En

n
> 1− θ

12

}
.

Proposition 6.1. Take anyn ∈ F with n � R0 > 12/θ. If Leb(An) � 2 Leb(Γn), then there is some0< k = k(n) <

n for which

Leb(An)

Leb(Ak)
<

(
k

n

)γ

.

Proof. We have forj � n

Leb(An ∩ Hj)

Leb(An)
� Leb(An \ Γn)

Leb(An)
· Leb((An \ Γn) ∩ Hj)

Leb(An \ Γn)
� 1

2
· Leb((An \ Γn) ∩ Hj)

Leb(An \ Γn)
,

which together with the conclusion of Corollary 2.3 for the setAn \ Γn gives

1

n

n∑
j=1

Leb(An ∩ Hj)

Leb(An)
� θ

2
. (14)

Let

Gn =
{
j ∈ En:

Leb(Aj−1)

Leb(An)
>

θ

12α

}
.

Sincen ∈ F , we have

1

n

n∑ Leb(An ∩ Hj)

Leb(An)
� θ

12
+ 1

n

∑ Leb(An ∩ Hj)

Leb(An)
� θ

12
+ 1

n

∑ Leb(An ∩ Hj)

Leb(An)
+ #Gn

n
.

j=1 j∈En j∈En\Gn
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Now, for j ∈ En \ Gn,

Leb(An ∩ Hj)

Leb(An)
= Leb(An ∩ Hj)

Leb(Aj−1)
· Leb(Aj−1)

Leb(An)

�
(

Leb(An ∩ Aj−1 ∩ Hj)

Leb(Aj−1)
+ Leb((An \ Aj−1) ∩ Hj)

Leb(Aj−1)

)
Leb(Aj−1)

Leb(An)

�
(

Leb(Aj−1 ∩ Hj)

Leb(Aj−1)
+ a0

)
θ

12α
.

For this last inequality we used the fact that(An \ Aj−1) ⊂ Bj−1 andj /∈ Gn. Hence

1

n

n∑
j=1

Leb(An ∩ Hj)

Leb(An)
� θ

12
+ 1

n

∑
j∈En\Gn

Leb(Aj−1 ∩ Hj)

Leb(Aj−1)

θ

12α
+ a0

θ

12α
+ #Gn

n

<
θ

12
+ α

θ

12α
+ a0

θ

12α
+ #Gn

n
.

By the choice ofa0 we have that the third term in the last sum above is smaller thanθ/6. So, using (14) we obtai

#Gn

n
>

θ

6
. (15)

Now, defining

k = max(Gn) − 1,

we have

Leb(An) <
12α

θ
Leb(Ak).

It follows from (15) thatk + 1 > θn/6, and sok/n > θ/12, becausen � R0 > 12/θ. Since we have chose
α < (θ/12)γ+1, it follows that(

k

n

)γ

>
12

θ

(
θ

12

)γ+1

>
12α

θ
.

This completes the proof of the result.�
Now we are ready to conclude the proof of our Main Theorem, namely the decay estimate on the tail o

times. Observe that by Proposition 5.4 we have Leb(∆n) � Leb(An), and so it is enough to derive the tail estim
for Leb(An) in the place of Leb({R > n}) = Leb(∆n).

Given any large integern, we consider the following situations:

(1) If n ∈ N \ F , then by (6) and Corollary 5.5 we have

Leb(∆n) � cN
2 exp

(
− b0θα

12(N + 1)
(n − R0)

)
Leb(∆0).

(2) If n ∈ F , then we distinguish the following two cases:
(a) If Leb(An) < 2 Leb(Γn), then nothing has to be done.
(b) If Leb(An) � 2 Leb(Γn), then we apply Proposition 6.1 and get somek1 < n for which

Leb(An) <

(
k1

n

)γ

Leb(Ak1).
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1 (2002)

Preprint,
The only situation we are left to consider is (2)(b). In such case, eitherk1 is in situation (1) or (2)(a), or by
Proposition 6.1 we can findk2 < k1 for which

Leb(Ak1) <

(
k2

k1

)γ

Leb(Ak2).

Arguing inductively we show that there is a sequence of integers 0< ks < · · · < k1 < n for which one of the
following cases eventually holds.

Leb(An) <

(
ks

n

)γ

cN
2 exp

(
− b0θα

12(N + 1)
(ks − R0)

)
Leb(∆0). (I)

Leb(An) <

(
ks

n

)γ

Leb(Γks ). (II)

Leb(An) <

(
R0

n

)γ

Leb(∆0). (III)

Case (III) corresponds to falling into situation (2)(b) repeatedly untilks � R0. Observe that until nowγ > 0 is
arbitrary.

Now we check that our construction always gives rise to a partition Leb 0 of∆0, independently of the wa
the Leb(Γn) goes to 0. One easily sees that the only case we have to consider is (II). Ifks � √

n, then Leb(An) <

Leb(Γ√
n). Otherwise, Leb(An) � Leb(∆0)/nγ/2. In both cases Leb(An) → 0 whenn → ∞.

Let us finally prove item (4) of our Main Theorem. As before, we just have to consider case (II) above. A
that Leb(Γn) � O(n−γ ) for someγ > 0. In this case there must be someC > 0 such thatkγ Leb(Γk) � C for all
k ∈ N, which applied toks in case (II) leads to Leb(An) �O(n−γ ).
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