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Abstract

We study and give the definition of the exact Lagrangian controllability of the viscous Burgers equation and prove a local result.
We give similar results for the heat equation in dimension 1.

Résumé

On définit et étudie la contrôlabilité exacte lagrangienne de l’équation de Burgers dissipative, et prouve un résultat local. On
donne des résultats similaires en dimension 1 pour l’équation de la chaleur.
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1. Introduction

We consider here the problem of the motion of a fluid in dimension 1, modeled by the viscous Burgers equation on
a bounded interval. We assume that the velocity of the fluid is prescribed at one extremity of the interval; this quantity
will be referred to as “the control”. The controllability of the motion of a given set of fluid particles is considered here
by means of the aforementioned control.

2. Formulation of the problem

Let us give a precise framework of our problem.
Let I = (0,1) be the interval in which there is a fluid whose velocity u is assumed to satisfy the classical viscous

Burgers equation on an interval of time [0, T ] where T > 0:

ut +
(

u2

2

)
x

− uxx = 0, ∀(t, x) ∈ (0, T ) × I, (2.1)
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u(t, x = 0) = 0, ∀t ∈ (0, T ), (2.2)

u(t = 0, x) = 0, ∀x ∈ (0,1). (2.3)

As we have said in Section 1 the control t ∈ (0, T ) �→ u(t, x = 1) defines the last boundary condition required to
study Eq. (2.1) with boundary Dirichlet conditions, thus we will also impose that for some function h : [0, T ]→R (the
control)

u(t, x = 1) = h(t), ∀t ∈ (0, T ). (2.4)

Definition 2.1. For any h : [0, T ]→R, we will say that u is a solution of Ph if it satisfies (2.1)–(2.4).

Notice that for the sake of simplicity we have made the choice of the rest for the initial state of the fluid, which
seems to us more physically relevant for our problem, but we will indicate some extensions later (see Section 5 and
the following ones). Let us also note that we have to define in which space we consider the solution to the problem Ph.
This will be considered later.

Now let us (presumably) consider and define the flow of u by

φ(h) : [0, T ] × R→R,

∂tφ(h)(t, x) = z
(
t, φ(h)(t, x)

)
, (2.5)

φ(h)(0, x) = x,

where, for t � 0

z(t, x) = 0, x � 0,

z(t, x) = u(t, x), x ∈ (0,1),

z(t, x) = h(t), x � 1,

where u is solution of Ph. Of course one has to take care of the fact that φ(h) might not exist, but if u is proven to be
regular up to the boundary then (2.5) defines the usual flow of the extension z of u to [0, T ) × R. Otherwise one has
to use the theory of DiPerna and Lions [12]. In this paper all boundary controls h that are considered will be shown to
be regular enough so that the preceding flow is well-defined, and in particular in Theorem 3.1 further, the regularity
of h is in fact stronger than the one announced.

The question addressed here is the following one:

Question 2.1. Given two closed intervals I1, I2, both included in (0,1), does it exist a function h : [0, T ]→R such
that if u the solution of Ph, φ(h) given by (2.5) satisfies: for any x ∈ I1, φ(h)(T , x) ∈ I2 and φ(h)(T , ·) : I1→I2 is a
homeomorphism?

Definition 2.2. If the answer to Question 2.1 is true for any couple (I1, I2) of closed intervals included in (0,1) we
will say the Lagrangian controllability holds for the viscous Burgers equation.

What is thus meant by the Lagrangian controllability is the controllability in Lagrangian coordinates, that is to say,
roughly speaking, that one follows the particles of fluid and tries to modify the final position of some given set of
particles by acting on one end of the channel containing the fluid.

3. Statement of the main result

The main result of this paper is the following:
Let us denote I1 = [α1, α2], I2 = [β1, β2].
Then we prove the local Lagrangian controllability of the viscous Burgers equation:
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Theorem 3.1. There exists ε > 0 such that if for i = 1,2 |αi − βi | < ε, there exists h ∈ H 1(0, T ) for which φ(h)

defined by (2.5) satisfies φ(h)(T ,α1) = β1 φ(h)(T ,α2) = β2. Moreover one can impose∥∥∥max
i=1,2

∣∣φ(h)(· , αi) − αi

∣∣∥∥∥
L∞(0,T )

→0

when ε→0.

Let us mention that this theorem is also true in the dimension 1 on a bounded interval for the heat equation, which
can be seen as a simplification of the viscous Burgers equation where the nonlinear transport term is neglected, and
the proof is similar. The same result also holds true globally for the heat equation (Theorem 3.2 below) and has been
proven in [23]. We will thus point out in Section 3.1 what makes the difference in the present work with the work [23]
for the heat equation.

Remark 1. Due to the regularity (u ∈ W 1,1(0, T ;H 1(0,1))) that will appear in the proof of Theorem 3.1 (namely
Theorem 4.1 and the following comments) the flow of u is well-defined and is at time T a diffeomorphism; it thus
gives a positive local answer to Question 2.1.

3.1. Previous known result: The case of the heat equation

In this section we discuss the interest of the present main theorem (Theorem 3.1) in comparison with previous
known results on the Lagrangian controllability.

Let us recall the following theorem proven in [23]:

Theorem 3.2. Let w : [0, T ] × I→R satisfying

wt − wxx = 0 in (0, T ) × (0,1),

w(t = 0, x) = 0, x ∈ (0,1),

w(t, x = 0) = 0, t ∈ (0, T ),

t ∈ (0, T ) �→ w(t, x = 1) is the control,

then for any I1 and I2 closed intervals included in (0,1), one can choose t→w(t, x = 1) in L2(0, T ) such that the
corresponding flow of w, Ψ satisfies: Ψ (T , ·) is a diffeomorphism from I1 onto I2.

Of course this theorem does not require that I1 and I2 should be close to each other, but, in the present work we
were not able to prove a corresponding global result as Theorem 3.2 for the viscous Burgers equation which is the
model with which we deal here.

As we said it, the proof of Theorem 3.1 given in the present paper also applies to the case of the heat equation
provided that I1 and I2 are close enough to each other:

• Therefore, at a primary sight, localizing the result of Theorem 3.2 might appear as a weakening of the ability of
deforming intervals in the case of the heat equation.
First to go in this direction let us mention that in fact, the proof given in [23] of Theorem 3.2 showed that, again
for the flow of the heat equation, one can prescribe any preserving order homeomorphism between I1 and I2.
To assert this one just has to note that, at it is explained below, one drives every particle located initially in I1
into the region where the control acts. In this region one can modify the position of the particles according to any
preserving order homeomorphism, and then perform the method given in [23].

• But second, however, it is important to mention that to obtain Theorem 3.2, we used in [23] what is related to,
in the literature of controllability, as an “implicit control”, meaning that you will not give explicitly what will be
your device to steer the system. The method in [23] also deeply uses the exact zero controllability of the heat
equation (see [15,18,27]).
For the model (the viscous Burgers equation) treated in this paper, such results are not true (see [16,20,18]) thus we
have introduced another method which only works for the moment being for the local Lagrangian controllability
in the case of the viscous Burgers equation and also in the case of the heat equation.
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Explicit controls can be constructed for other (Eulerian) control systems by minimizing procedures, see e.g.
[14,26,31], but to our knowledge, neither in the framework of [23], nor in the present context.
Moreover, the minimizing procedure is a way to prove some controllability results for linear or almost linear
partial differential equations (see e.g. [14]), whereas the type of controllability (i.e. the Lagrangian controllability)
that we consider in Theorem 3.1 is highly nonlinear and for the moment being, suffers a lack of minimizing
methods allowing to prove the existence of a control leading to the desired result.

• Besides, the argument presented further in Section 4 to obtain Theorem 3.1 relies on a local inverse property which
can be, at least theoretically, approximated by a fixed point method and thus may be the threshold to numerical
computations.

• Local controllability can also be particularly interesting regarding applications when one wants to treat the disper-
sion of particles whose interactions with the fluid are neglected (for example some particular types of pollution
where the particles of pollutant are moved by the stream of the fluid), and you do not want to spread the particles
too far from the region where they are initially located. Being able to give a local result is then interesting since
the conclusion of Theorem 3.1 asserts that the interval I1 will not be moved too far away contrary to the argument
in the proof of Theorem 3.2 in [23] where you “flush” I1 in the control zone.

Concerning the more specific fluid-structure interaction controllability problems, we refer to [2] and [13] as well
as (e.g.) [5] and [11] for the existence of the model in dimension 2 or 3, and to [28] and [33] for the existence of the
model in dimension 1.

We have to mention that before studying the Lagrangian controllability (i.e. Question 2.1 addressed in Section 2)
of fluid models, the Eulerian controllability (i.e. controlling the speed of fluids) seems to be the first goal since what
one might expect is that knowing the velocity of a fluid allows you theoretically to know the position of the fluid itself.

For fluid models in dimension 2 or 3, the controllability of the velocity has been, if not totally understood, nowa-
days, quite deeply studied.

In [7,8] the (Eulerian) exact and approximate controllability of the Euler and Navier–Stokes equations have been
derived with different type of boundary conditions. By means of Carleman estimates, the papers [17,24,25] deal also
with the local exact zero controllability of the Navier–Stokes equations.

For the Burgers equation it has been proven in [20] that it is not controllable even in large time, as well as for the
non-viscous Burgers equation in [1] and [22].

Thus the result presented in this work may suggest that the relationship between the Eulerian controllability and
the Lagrangian one is not clear.

One may also mention, to emphasize the last remarks, that a direct Lagrangian approach has been recently proven
to be more efficient than the Eulerian one for computations of inverse problems in oceanography in [30].

4. Proof of Theorem 3.1

The previous section has enlightened the independence between the Eulerian and the Lagrangian controllability, but
the proof of Theorem 3.1 may rely on some approximate controllability properties of the linearized Burgers equation
around the zero trajectory (namely the heat equation) as it will be shown below, which is usually a very difficult
argument used in the Eulerian controllability for higher dimensional fluid models.

In order to prove this theorem, we will proceed as follows: we will move locally around the null solution of the
Burgers equation in two directions which will be correctly chosen in order to steer α1 and α2 by the flow to any points
sufficiently closed to them.

Let us therefore consider two elements h1 and h2 of H 1(0, T ) and let us consider u1 and u2 be respectively the
solutions of Ph1 and Ph2 whose existence is now quite straightforward. More precisely with less regularity one can
prove (see for instance [20])

Theorem 4.1. There exists a continuous function K � 0 with K(0) = 0 such that for any h ∈ H 1/2(0, T ) there exists
a unique u ∈ X := H 1(0, T ;L2(0,1)) ∩ L2(0, T ;H 2(0,1)) solution of Ph, moreover one has

‖u‖X � K
(‖h‖H 1/2(0,T )

)
.
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For other general controllability questions on the viscous Burgers equation including existence and regularity
results we also refer to [18].

For λ and μ two real numbers we consider h(t) = λh1(t) + μh2(t) where h1 and h2 are W 3,∞(0, T ) with
h

(k)
i (0) = 0 with k = 0,1,2. Let u ∈ X be the solution of Ph, it is clear that u ∈ W 1,1(0, T ;H 1(0,1)).

Let us remark that according to the regularity of u (u ∈ W 1,1(0, T ;H 1(0,1))), φ(h)(T , ·) will be a diffeomorphism
from [α1, α2] onto [φ(h)(T ,α1),φ(h)(T ,α2)]. Since φ(0) = Id and according to the regularity of φ that we will use
further, the second part of Theorem 3.1 will then be true.

Let us define the following C1 map.

Θ : R × R→R × R, (4.1)

(λ,μ) �→ (
φ(λh1 + μh2)(T ,α1),φ(λh1 + μh2)(T ,α2)

)
. (4.2)

Of course the fact that it is C1 is in general not clear, but here it suffices to see that due to the regularizing property
of the dissipative term in (2.1), u will be as regular in space and time as hi and then will depend regularly of hi (and
thus λ and μ); this last regularity is in general false (see [6,9,29]) particularly for hyperbolic systems, for which one
might lose regularity properties. In our case one thus has only to use the regularity of solutions of ordinary differential
equations with respect to the parameters, see [4]. Then one gets after straightforward computations

∂Θ

∂λ
(0,0) =

( T∫
0

v1(s, α1)ds,

T∫
0

v1(s, α2)ds

)
, (4.3)

∂Θ

∂μ
(0,0) =

( T∫
0

v2(s, α1)ds,

T∫
0

v2(s, α2)ds

)
(4.4)

where for i = 1,2 vi satisfies

vit − vixx = 0 in (0, T ) × (0,1), (4.5)

vi(t, x = 0) = 0, ∀t ∈ (0, T ), (4.6)

vi(t, x = 1) = hi, ∀t ∈ (0, T ), (4.7)

vi(t = 0, x) = 0, ∀x ∈ (0,1). (4.8)

In order to briefly justify (4.3) (or (4.4)) it suffices to write

Φ(λh1 + μh2)(T ,α1) = α1 +
T∫

0

uλh1+μh2

(
s,Φ(λh1 + μh2)(s, α1)

)
ds

and differentiate this identity with respect to λ and μ at (0,0) (here uλh1+μh2 denotes the solution of Pλh1+μh2 ).
Let A be the matrix whose rows are given by the right-hand sides of (4.3) and (4.4).
Proving that Θ is a local diffeomorphism will ensure our result. It might seem clear that A is an invertible linear

matrix for many choices of h1 and h2, but we are going to present a remark relying on the approximate controllability
of the heat equation that we believe to be interesting and that asserts partially the proof.

For that, one considers for g ∈ L2(0,1) the solution ξ ∈ H 1(0, T ;L2(0,1)) ∩ C(0, T ;H 1
0 (0,1)) of the following

backward heat equation

ξt + ξxx = g in (0, T ) × (0,1), (4.9)

ξ(t, x = 0) = ξ(t, x = 1) = 0, ∀t ∈ (0, T ), (4.10)

ξ(t = T ,x) = 0, ∀x ∈ (0,1). (4.11)

Now let us make the following computations:
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1∫
0

T∫
0

v1(s, y)ds g(y)dy =
T∫

0

1∫
0

v1(s, y)g(y)dy ds (4.12)

=
T∫

0

1∫
0

v1(s, y)(ξt + ξxx)(s, y)dy ds

=
T∫

0

1∫
0

(−v1t (s, y) + v1xx(s, y)
)
ξ(s, y)dy ds +

T∫
0

h1(s)ξx(s,1)ds

=
T∫

0

h1(s)ξx(s,1)ds. (4.13)

Now assume that the left-hand side of (4.12) is zero for every h1, then due to (4.13) one has

ξx(s,1) = 0, for a.e. s (4.14)

(let us recall that due to (4.9) s �→ ξx(s,1) makes sense in L2(0, T )).
Then ξ satisfies (4.9), (4.10), (4.14), thus one can apply Holmgren’s unique continuation theorem (see [21]) to ξt

(which eliminates g which does not depend on t ) to conclude that ξt = 0. According to (4.11) one gets ξ = 0.
Thus the maps

H 1(0, T ) → L2(0,1),

h1 �→
(

y �→ ∫ T

0 v1(s, y)ds

)
(4.15)

has a dense image in L2(0,1). The same argument shows that

H 1(0, T ) → L2(0,1),

h2 �→
(

y �→
T∫

0

v2(s, y)ds

)

has a dense image in L2(0,1). Thus one can choose h1 and h2 (as small as one wants) such that for almost every α1
and almost every α2 the rank of the matrix A is 2.

According to the local inverse mapping theorem, one concludes that Θ is a local diffeomorphism from a neigh-
borhood of (0,0) in R

2 to a neighborhood of (α1, α2). Thus we have proven Theorem 3.1 for a generic set of pairs
(α1, α2).

To prove the theorem in the general case let us proceed as follows: take for z ∈ (0,1), and let us consider G(· , · , z)
be the unique element in H 1(0, T ;H 1/2−ν(0,1)) ∩ C(0, T ;H 3/2−ν(0,1) ∩ H 1

0 (0,1)) (for all ν > 0) satisfying

Gt(· , · , z) + Gxx(· , · , z) = δz(·), ∀(t, x) ∈ (0, T ) × (0,1), (4.16)

G(t = T ,x, z) = 0, ∀x ∈ (0,1), (4.17)

where δz is the Dirac mass at x.
Let us remark that G(· , · , z) will have the same spatial regularity of Green’s function at z ∈ (0,1) of the Laplace

equation in (0,1) and thus will be regular on [0, T ] × (0,1) \ {z}.
Then, according to the preceding remark and the a priori regularity ∀ν > 0,

G(· , · , z) ∈ H 1(0, T ;H 1/2−ν(0,1)
) ∩ C

(
0, T ;H 3/2−ν(0,1) ∩ H 1

0 (0,1)
)
,

one has using (4.16), (4.17)

T∫
vi(s, αj )ds =

T∫
hi(s)Gx(s,1, αj )ds, ∀(i, j) ∈ {1,2}. (4.18)
0 0
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Since α1 	= α2 the functions Gx(· ,1, α1) and Gx(· ,1, α2) are not proportional (and are at least in C1([0, T ])). Let
us forget for a moment that h1 and h2 are assumed to be vanish at t = 0, then we take hi = Gx(· ,1, αi) and have

det(A) =
T∫

0

Gx(s,1, α1)
2 ds

T∫
0

Gx(s,1, α2)
2 ds −

( T∫
0

Gx(s,1, α1)Gx(s,1, α2)ds

)2

which is positive according to the Cauchy–Schwarz inequality in L2([0, T ]).
Now for α > 0 we take a nonnegative function ρα in C∞([0, T ]) such that ρ

(i)
α (0) = 0 for i = 0,1,2 and ρα(x) = 1

for x � α and ‖ρα‖∞ � 1. When α→0 ραGx(· ,1, αi)→Gx(· ,1, αi) in L∞(0, T ).
Taking hi = ραGx(· ,1, αi) will give again, for α > 0 small enough, det(A) > 0.
A hi in the appropriate space for which det(A) is not zero.
Let us point out that once one couple (h1, h2) is found to ensure that det(A) 	= 0 one may (by bilinearity of the

determinant) choose h1 and h2 as small as one may want.

5. The case of initial moving fluid

We have assumed in Theorem 3.1 that u satisfies the initial condition (2.3). This is not essential in the sense that if
u(t = 0) is not zero one can prove, along the same lines of the proof of Theorem 3.1, the following result:

Theorem 5.1. Let u0 ∈ C2(0,1) satisfy u0(0) = 0 and u0(1) = 0. For h ∈ H 1(0, T ) let v denotes the solution of

vt +
(

v2

2

)
x

− vxx = 0 in (0, T ) × (0,1), (5.1)

v(t, x = 0) = 0, ∀t ∈ (0, T ), (5.2)

v(t, x = 1) = h(t), ∀t ∈ (0, T ), (5.3)

v(t = 0, x) = u0(x), ∀x ∈ (0,1). (5.4)

Let Φ(h) denotes the flow of v and Ψ denotes the flow of the solution u of (2.1), (2.2), u(t,1) = 0, ∀t ∈ (0, T ),
u(0, x) = u0(x), ∀x ∈ (0,1).

Then there exists ε > 0 such that for any β1 ∈ (0,1) and β2 ∈ (0,1) such that∣∣β1 − Ψ (T ,α1)
∣∣ < ε,

∣∣β2 − Ψ (T ,α2)
∣∣ < ε

there exists h ∈ H 1(0, T ) such that Φ(h)(T ,α1) = β1 and Φ(h)(T ,α2) = β2.

Let us sketch the proof: as we already said it, it is essentially the same as the one of Theorem 3.1, but one has to
take care of the fact that due to u0, when h = 0 the flow of v is not trivial and thus there is the a “drift” (comparable to
finite dimensional control systems with drifts – see e.g. [6,32] for full descriptions of such finite dimensional control
systems) in the Lagrangian controllability question. This explains that [β1, β2] has to be close to the image of [α1, α2]
by Φ(0)(T , ·) = Ψ (T , ·) in the formulation of Theorem 5.1.

For h ∈ W 3,∞(0, T ) the flow Φ(h) of v satisfies

∀t ∈ [0, T ], ∀x ∈ (0,1), Φ(h)(t, x) = x +
t∫

0

v
(
s,Φ(h)(s, x)

)
ds. (5.5)

If one differentiates Eq. (5.5) with respect to h at h = 0 in the direction h ∈ W 3,∞(0, T ) one gets that g(h) :=
∂Φ
∂h

(0) · h satisfies

g(h)(0, x) = 0, (5.6)

∂g(h)

∂t
(t, x) = ∂v

∂h
(0) · h(

s,Φ(0)(t, x)
) + ∂v

∂x

∣∣∣∣ (
t,Φ(0)(t, x)

)
g(h)(t, x). (5.7)
h=0
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Let us point out that we have Φ(0) = Ψ . Therefore according to (5.6) and (5.7), one gets

g(h)(T , x) =
T∫

0

g(h)
(
s,Ψ (s, x)

)
e− ∫ s

T ux(ρ,Ψ (ρ,x))dρ ds, (5.8)

where g(h) satisfies

g(h)t − g(h)xx + uxg(h) + g(h)xu = 0 in (0, T ) × (0,1), (5.9)

g(h)(t, x = 0) = 0, ∀t ∈ (0, T ), (5.10)

g(h)(t, x = 1) = h(t), ∀t ∈ (0, T ), (5.11)

g(h)(t = 0, x) = 0, ∀x ∈ (0,1). (5.12)

If we can prove that for two different h1 and h2 the matrix(
g(h1)(T ,α1) g(h1)(T ,α2)

g(h2)(T ,α1) g(h2)(T ,α2)

)
is invertible we can conclude as in the proof of Theorem 3.1.

Instead of (4.16) one considers G(· , · , z) the solution of (4.17) and

Gt(t, x, z) + Gxx(t, x, z) + uGx(t, x, z) = δz(t, x)e− ∫ t
T ux(ρ,Ψ (ρ,z))dρ ds, ∀(t, x) ∈ (0, T ) × (0,1),

G(· , x, z) = 0, x ∈ {0,1}. (5.13)

and, similarly to (4.18), one gets

g(hi )(T ,αj ) =
T∫

0

hi (s)Gx(s,1, αj )ds. (5.14)

One can therefore conclude as in the proof of the theorem by the following argument:
Let μ : R → R be a C∞ map with support in [−1,1] such that 0 � μ � 1 and

∫
[−1,1] μdx = 1, and let us define

μα(x) := μ(αx)/α, Gα
x (t, x, z) :=

T∫
0

μ(t − s)Gx(s, x, z)ds.

Again by considering hi = ραGα
x (· ,1, αi) for i = 1,2 for α > 0 small enough (ρα has been defined in the proof of

Theorem 3.1) which tends to Gx(· ,1, αi) in L∞(0, T ) will give

det

(
g(h1)(T ,α1) g(h1)(T ,α2)

g(h2)(T ,α1) g(h2)(T ,α2)

)
for α small enough since as in the proof of Theorem 3.1 for hi = Gx(s,1, αj ) the above determinant is positive.

6. Prescribing the homeomorphism

As it is recalled in Section 3.1, it has been proven in [23] that one can prescribe any preserving order homeomor-
phism between I1 and I2 in the framework of the heat equation.

In our present model, it would mean that if H : I1→I2 is a homeomorphism which preserves order then there exists
h such that φ(h)(· , T ) =H.

In fact, we are not able to prove this property here, nevertheless, it is straightforward that the following proposition
holds:

Proposition 6.1. Let us consider for k ∈ N a finite number of points (ai)i=1,...,k , with α1 = a1 < a2 < · · · < ak = α2.
There exists ε > 0 such that if k points (bi)i=1,...,k satisfy maxi=1,...,k |ai − bi | � ε then there exists h ∈ H 1(0, T ) such
that φ(h)(T , ai) = bi for i = 1, . . . , k.
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Proof. It suffices to adapt the proof of Theorem 3.1 by considering the following map

(λi)i=1,...,k ∈ R
k �→

(
φ

(
k∑

j=1

λjhj

)
(T , ai)

)
i=1,...,k

∈ R
k, (6.1)

and then by choosing hj , j = 1, . . . , k, so that the map (6.1) defines a local diffeomorphism in a neighborhood of 0,
which is possible through an analogous argument as the one of Theorem 3.1. �
Remark 2. If one tries to make numerical simulations on how to prescribe any given homeomorphism, in the context
of Theorem 3.1, then one has certainly to use Proposition 6, since numerical homeomorphisms may be described by
discrete maps. So far as we know, these numerical tests have not yet been performed successfully, the main difficulty
being the way one computes the control, even in the case of the heat equation.

7. The semilinear heat equation

One can also deal with semilinear heat equations for which almost the same proof as the one of Theorem 3.1 gives:

Theorem 7.1. Assume that u satisfies

ux − uxx + εu|u|p−1 = 0 in (0, T ) × (0,1) with ε = 1 or ε = −1 (7.1)

instead of (2.1), together with (2.2)–(2.4), then there exists ε > 0 such that if for i = 1,2 |αi − βi | < ε, there exists
h ∈ H 1(0, T ) for which the solution u of (7.1), (2.2)–(2.4) is well-defined on t ∈ (0, T ) and the flow φ(h) of u defined
by (2.5) satisfies φ(h)(T ,α1) = β1 φ(h)(T ,α2) = β2. Moreover one can impose∥∥∥max

i=1,2

∣∣φ(h)(· , αi) − αi

∣∣∥∥∥
L∞(0,T )

→0

when ε→0.

Sketch of the proof. Let us remark that due to some blow-up phenomena that might occur when ε = −1 in (7.1) it
might be strange to get such a result, but the proof of Theorem 3.1 shows that the desired locality implies that one has
to take h1 and h2 very small and thus one can then avoid the blow-up for Eq. (7.1) on [0, T ] by taking h1 and h2 small
enough in W 3,∞(0, T ) (see [3]).

The remaining part of the proof is identical to the one of Theorem (3.1).
We refer to [10] where such a phenomenon (preventing the blow-up meanwhile – and by – controlling) is described

in the classical framework of controllability using stabilization methods and the connectivity of the set of the steady
states of (7.1). �

Let us also mention that in the work [23] partial global results were obtained for the Lagrangian controllability
provided that T is large enough, using again implicit controls and the results in [10]. In the context of Theorem 7.1,
the localization allows to give again an almost explicit control.

8. Some other models: an example and a counter-example

8.1. Other viscous conservation laws equations

The choice of the nonlinearity in the quasilinear equation (2.1) is not essential, and one can easily adapt the proof
to viscous approximations of more general conservation laws. Thus one gets

Theorem 8.1. Assume that u satisfies instead of (2.1) the following equations:

ut − uxx + (
f (u)

)
x

= 0 in (0, T ) × (0,1), (8.1)

together with (2.2)–(2.4), where f is C3, convex, f (0) = f ′(0) = 0, then the result of Theorem 3.1 remains true.
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Remark 3. The assumptions f (0) = f ′(0) = 0 ensure that for the Θ corresponding to (8.1), one stills gets (4.3)
and (4.4).

8.2. The case of the non-viscous Burgers equation

In the case of the non-viscous Burgers equation, namely when (2.1) is replaced by

ut +
(

u2

2

)
x

= 0 (8.2)

for which the boundary controllability has been studied in [1,22], the situation is in some sense clearer: since the good
notion of solution is the one of viscosity solutions, both points α1 and α2 are only possibly moved leftward through
any control h(t) at x = 1 (when h � 0 the solution of (8.2) with (2.2), (2.4) is zero).

Moreover if one replaces (2.2) by another control, i.e.

u(t, x = 0) = h̃(t), ∀t ∈ (0, T ) (8.3)

for some function h̃, we have then a control system (8.2), (2.3), (8.3), (2.4), for which, due to the jump condition at
shocks (see [19]), the result of Theorem 3.1 is not true: basically if α1 is moved leftward, so has to be α2.

9. The case of higher dimensions

In higher dimensions it has been proven in [23] the following

Theorem 9.1. Let Ω be a bounded convex open subset of R
N , with N � 1. Let F1 and F2 be two closed C3 isotopic

subsets of R
N included in Ω . Let also ω an open subset of R

N whose closure is in Ω \F1 ∪F2. Then there exist T > 0
and h ∈ L2((0, T ) × ω) such that if u denotes the weak solution of

ut − �u = h in (0, T ) × Ω, (9.1)

u = 0 on
(
(0, T ) × ∂Ω

) ∪ (0 × Ω), (9.2)

then for every x0 ∈ F1 the solution ν(· , x0) of

∂ν

∂t
(t, x0) = ∇u

(
t, ν(t, x0)

)
, t ∈ (0, T ),

ν(0, x0) = x0

is well defined for t ∈ [0, T ] and satisfies ν(T , x0) ∈ F2, moreover

F1 → F2,

x0 → ν(T , x0)

is into and onto.

Let us recall that F1 and F2 will be said to be C3 isotopic if there exists a C3 map H : [0,1] × Ω→Ω such that
∀t ∈ [0,1] H(t, ·) is a diffeomorphism and H(1,F1) = F2, H(0, ·) = Id.

One may wonder if this or an equivalent result is true for some classical models of fluids in dimension 2 or 3. Of
course the result described in Theorem 9.1 can be related to the motion of the dust in a fluid (the air) but it should be
interesting and more realistic to get such a result for the Stokes or the Navier–Stokes equations.

We are not able yet to prove such a result for the Stokes and Navier–Stokes equations. Let us only mention that if
one considers a formal flow of the solution of the controlled Burgers (vector) equation on a bounded domain Ω of R

3,
namely

vt − �v + (v · ∇)v = 0, (9.3)

v(t, σ ) = h(t, σ ), ∀σ ∈ Σ0, (9.4)

v(t, σ ) = 0, ∀σ ∈ Σ \ Σ0, (9.5)

v(0, x) = 0, x ∈ Ω, (9.6)
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where h is the control acting on a part Σ0 of Σ = ∂Ω , for which we want to study the effect of the control on the
flow of v (i.e. the solution of d

dt
x(t) = v(t, x(t)), x(0) given), then the linearized flow around zero with respect to the

control leads to consider, at least formally in the case when ∂Ω is not regular for example, the map

L2
(
0, T ,L2(Σ0)

3
) → L2(Ω)3,

h �→
(

y �→
T∫

0

u(s, y)ds

)
(9.7)

where the vector valued function u satisfies

ut − �u = 0 in (0, T ) × Ω, (9.8)

u(t, σ ) = h(t, σ ), ∀σ ∈ Σ0, ∀t ∈ (0, T ), (9.9)

u(t, σ ) = 0, ∀σ ∈ Σ \ Σ0, ∀t ∈ (0, T ), (9.10)

u(0, ·) = 0 in Ω. (9.11)

To derive formally 9.7, one simply use the fact that the flow Ψ of v satisfies formally

Ψ (s, x) = x +
s∫

0

v
(
ρ,Ψ (s, x)

)
dρ

and one derives this expression with respect to h at h = 0. The same argument as in the proof of Theorem 3.1 gives
the following

Proposition 9.2. The map

L2(0, T ,L2(Σ0)
3) → L2(Ω)3,

h �→
(

y �→
T∫

0

u(s, y)ds

)

where u satisfies (9.8)–(9.11) has a dense image in L2(Ω)3.

Of course, what seems to us the main difficulties to conclude for the nonlinear problem from Proposition 9.2 is that,
in general, the approximate controllability of the linearized operator is not enough to conclude for the initial control
problems and that we also might lose some topological or geometrical properties of the subset that is being moved by
the flow unless some regularity of v is prescribed or asserted set of R

2 and γ a closed C1 Jordan curve bounding an
open subset of R

2 compactly included in Ω . Let Σ := ∂Ωsuch that if γ ′ is a closed C1 Jordan curve “close enough”
to γ , then for any x0 ∈ γ , the solution of x0→x(T ) being into and onto.
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