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Abstract

We prove the existence of a first nonprincipal eigenvalue for an asymmetric Neumann problem with weights involving the
p-Laplacian (cf. (1.2) below). As an application we obtain a first nontrivial curve in the corresponding Fučik spectrum (cf. (1.4)
below). The case where one of the weights has meanvalue zero requires some special attention in connexion with the (PS) condition
and with the mountain pass geometry.

Résumé

Nous démontrons l’existence d’une première valeur propre non principale pour un problème de Neumann asymétrique avec
poids faisant intervenir le p-laplacien (cf. (1.2) ci-dessous). Comme application nous obtenons une première courbe non triviale
dans le spectre de Fučik correspondant (cf. (1.4) ci-dessous). Le cas où l’un des poids est de moyenne nulle demande une attention
particulière en liaison avec la condition de Palais–Smale et avec la géométrie du col.
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1. Introduction

In a previous work [2], we investigated the eigenvalues of the following asymmetric Dirichlet problem with
weights:

−�pu = λ
[
m(x)(u+)p−1 − n(x)(u−)p−1] in Ω, u = 0 on ∂Ω, (1.1)

where �p is the p-Laplacian, Ω is a bounded domain in R
N and m,n satisfy some summability conditions together

with m+ �≡ 0, n+ �≡ 0. We proved the existence of a first nonprincipal positive eigenvalue for (1.1). Various appli-
cations were given to the study of the Fučik spectrum and to the study of nonresonance. The construction of this
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distinguished eigenvalue was obtained by applying a version of the mountain pass theorem to the functional
∫
Ω

|∇u|p
restricted to the manifold {u ∈ W

1,p

0 (Ω):
∫
Ω

[m(u+)p + n(u−)p] = 1}. In this process the (PS) condition was shown
to hold at all levels and the geometry of the mountain pass was derived from the observation that ϕ1(m) and −ϕ1(n)

were strict local minima (where ϕ1(m) denotes the normalized positive first eigenfunction of the Dirichlet p-Laplacian
with weight m).

Our purpose in the present paper is to investigate the corresponding Neumann problem:

−�pu = λ
[
m(x)(u+)p−1 − n(x)(u−)p−1] in Ω,

∂u

∂ν
= 0 on ∂Ω, (1.2)

where ν denotes the unit exterior normal. When trying to adapt the preceding approach to the present situation, the
relevant functional is still

∫
Ω

|∇u|p but now restricted to the manifold

Mm,n :=
{
u ∈ W 1,p(Ω): Bm,n(u) :=

∫
Ω

[
m(u+)p + n(u−)p

] = 1

}
. (1.3)

A first difficulty arises in connexion with the (PS) condition. It turns out that the (PS) condition remains satisfied at
all levels when

∫
Ω

m �= 0 and
∫
Ω

n �= 0, but it is not satisfied anymore at level 0 when
∫
Ω

m = 0 or
∫
Ω

n = 0. In this
latter case, which we will call the singular case, we do not know whether the (PS) condition still holds at all positive
levels (see Remark 3.4). However one can show that the Palais–Smale condition of Cerami (abbreviated into (PSC))
holds at all positive levels. Another difficulty arises when dealing with problem (1.2), which is now connected with
the geometry of the functional. It turns out that in the singular case, at least one of the two natural candidates for
local minimum fails to belong to the manifold Mm,n. To bypass this difficulty we will consider a minimax procedure
defined from a family of paths having free endpoints (cf. (3.1)).

The existence of a first nonprincipal positive eigenvalue for (1.2) is derived in Section 3. The argument uses
a version of the mountain pass theorem for a C1 functional restricted to a C1 manifold and which satisfies the (PSC)
condition at certain levels. Section 4 is devoted to such a theorem. In Section 5 we briefly indicate some properties of
the eigenvalue constructed in Section 3 as a function of the weights m,n and in Section 6 we apply our results to the
study of the Fučik spectrum. Recall that the latter is defined as the set Σ of those (α,β) ∈ R

2 such that

−�pu = αm(x)(u+)p−1 − βn(x)(u−)p−1 in Ω,
∂u

∂ν
= 0 on ∂Ω, (1.4)

has a nontrivial solution. As in the Dirichlet case we obtain for (1.4) the existence in Σ of hyperbolic-like first curves.
Note however that contrary to what was happening in the Dirichlet case, the asymptotic behaviour of these first curves
does not depend on the supports of the weights (at least when the weights are bounded, cf. Proposition 6.4 and
Remark 6.5).

In the preliminary Section 2 we collect some results relative to the usual eigenvalue problem

−�pu = λm(x)|u|p−2u in Ω,
∂u

∂ν
= 0 on ∂Ω. (1.5)

We also recall there some general definitions relative to (PS) and (PSC) conditions.

2. Preliminaries

Throughout this paper Ω will be a bounded domain in R
N with Lipschitz boundary and the weights m,n will be

assumed to belong to Lr(Ω) with r > N
p

if p � N and r = 1 if p > N . We also assume unless otherwise stated

m+ and n+ �≡ 0 in Ω. (2.1)

Solutions of (1.2) or of related equations are always understood in the weak sense, i.e. u ∈ W 1,p(Ω) with∫
Ω

|∇u|p−2∇u∇ϕ = λ

∫
Ω

[
m(u+)p−1 − n(u−)p−1]ϕ, ∀ϕ ∈ W 1,p(Ω).

Regularity results from [13] on general quasilinear equations imply that such a solution u is locally Hölder continuous
in Ω ; moreover the derivation of the L∞ estimates in [1] can be adapted to the present situation to show that u ∈
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L∞(Ω). Note that if in addition m,n ∈ L∞(Ω) and Ω is of class C1,1, then u ∈ C1,α(Ω) for some 0 < α < 1
(cf. [12]).

Our main purpose in this preliminary section is to collect some results relative to the eigenvalue problem (1.5).
Clearly 0 is a principal eigenvalue of (1.5), with the constants as eigenfunctions. The search for another principal

eigenvalue involves the following quantity:

λ∗(m) = inf

{∫
Ω

|∇u|p: u ∈ W 1,p(Ω) and
∫
Ω

m|u|p = 1

}
. (2.2)

By (2.1), λ∗(m) < ∞.

Proposition 2.1.

(i) Suppose
∫
Ω

m < 0. Then λ∗(m) > 0 and λ∗(m) is the unique nonzero principal eigenvalue; this eigenvalue is
simple and admits an eigenfunction which can be chosen > 0 in Ω ; moreover the interval ]0, λ∗(m)[ does not
contain any other eigenvalue.

(ii) Suppose
∫
Ω

m > 0. Then λ∗(m) = 0 and 0 is the unique nonnegative principal eigenvalue.

(iii) Suppose
∫
Ω

m = 0. Then λ∗(m) = 0 and 0 is the unique principal eigenvalue.

Proposition 2.1 is proved in [10] (see also [6,11]) when m ∈ L∞(Ω), but the arguments can easily be adapted to
the present situation. We observe in this respect that in the case of an unbounded weight, Harnack’s inequality as
given in [13,9] should be used instead of Vazquez maximum principle [14] to derive in case (i) that the eigenfunction
can be chosen > 0 in Ω . See [4] for similar considerations in the Dirichlet case. In case (i) or (ii) of Proposition 2.1,
the positive eigenfunction associated to λ∗(m) and normalized so as to satisfy the constraint in (2.2) will be denoted
by ϕm. The infimum (2.2) is then achieved at ϕm. In case (iii) the fact that λ∗(m) = 0 is easily verified by considering
the sequence

vk = (1 + ψ/k)1/p

[∫
Ω

m(1 + ψ/k)]1/p
, (2.3)

where ψ is any fixed smooth function with ψ � 0 and
∫
Ω

mψ > 0. Note that in that case (iii), the infimum (2.2) is not
achieved (since no constant satisfies the constraint in that case).

Let us conclude this section with some general definitions relative to the (PS) condition. Let E be a real Banach
space and let M := {u ∈ E: g(u) = 1} where g ∈ C1(E,R) and 1 is a regular value of g. Let f ∈ C1(E,R) and
consider the restriction f̃ of f to M . The differential f̃ ′ at u ∈ M , has a norm which will be denoted by ‖ f̃ ′(u) ‖∗
and which is given by the norm of the restriction of f ′(u) ∈ E∗ to the tangent space of M at u

Tu(M) := {
v ∈ E: 〈g′(u), v〉 = 0

}
,

where 〈, 〉 denotes the pairing between E∗ and E. A critical point of f̃ is a point u ∈ M such that ‖ f̃ ′(u) ‖∗= 0; f̃ (u)

is then called a critical value of f̃ .
We recall that f̃ is said to satisfy the (PS)c condition (resp. (PSC)c condition) at level c ∈ R if for any sequence

uk ∈ M such that f̃ (uk) → c and ‖ f̃ ′(uk) ‖∗→ 0 (resp. f̃ (uk) → c and (1 + ‖uk‖E) ‖ f̃ ′(uk)‖∗ → 0), one has that
uk admits a convergent subsequence. We will also say that f̃ satisfies the (PS)c condition along bounded sequences
if for any bounded sequence uk ∈ M such that f̃ (uk) → c and ‖ f̃ ′(uk) ‖∗→ 0, one has that uk admits a convergent
subsequence. Condition (PSC)c was introduced in [3] as a weakening of the classical (PS)c condition.

Going back to case (iii) of Proposition 2.1, one can see that the functional
∫
Ω

|∇u|p restricted to the manifold Mm,n

(cf. (1.3)) does not satisfy the (PS)0 condition. Indeed the sequence vk from (2.3) provides an unbounded (PS)0
sequence. That the (PSC)0 condition does not hold neither will follow from Proposition 4.3.

3. A first nontrivial eigenvalue

The assumptions on m,n in this section are those indicated at the beginning of Section 2. We look for nonnegative
eigenvalues λ of (1.2).
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Clearly the only nonnegative principal eigenvalue of (1.2) are 0, λ∗(m) and λ∗(n). Moreover multiplying by u+
or u−, one easily sees that if (1.2) with λ � 0 has a solution which changes sign, then λ > max{λ∗(m),λ∗(n)}. Proving
the existence of such a solution which changes sign, and which in addition corresponds to a minimum value of λ, is
our purpose in this section.

As indicated in the introduction we will use a variational approach and consider the functional A(u) := ∫
Ω

|∇u|p
on W 1,p(Ω), the manifold Mm,n defined in (1.3) and the restriction Ã of A to Mm,n. In this context one easily verifies
that λ > 0 is an eigenvalue of (1.2) if and only if λ is a critical value of Ã. The case of the eigenvalue λ = 0 is
particular: it is a critical value of Ã iff Mm,n contains a constant function, i.e. iff

∫
Ω

m > 0 or
∫
Ω

n > 0. It follows in
particular from these considerations that if

∫
Ω

m �= 0, then λ∗(m) is a critical value of Ã corresponding to the critical

point ϕm, and similarly for λ∗(n) and −ϕn if
∫
Ω

n �= 0.
To state our main result let us introduce the following family of paths in Mm,n:

Γ := {
γ ∈ C

([0,1],Mm,n

)
: γ (0) � 0 and γ (1) � 0

}
. (3.1)

Lemma 3.1. Γ is nonempty.

Proof. Choose u ∈ W 1,p(Ω) such that
∫
Ω

m(u+)p > 0 and
∫
Ω

n(u−)p > 0, which is possible by (2.1), and define
γ1(t) := t1/pu+ − (1 − t)1/pu− for t ∈ [0,1]. Using the fact that u+ and u− have disjoint supports, one obtains

Bm,n

(
γ1(t)

) = t

∫
Ω

m(u+)p + (1 − t)

∫
Ω

n(u−)p � min

{∫
Ω

m(u+)p,

∫
Ω

n(u−)p
}

> 0.

The path γ2(t) := γ1(t)/(Bm,n(γ1(t)))
1/p is thus well defined and clearly belongs to Γ . �

Define now the minimax value

c(m,n) := inf
γ∈Γ

max
u∈γ [0,1]

Ã(u), (3.2)

which is finite by Lemma 3.1.

Theorem 3.2. c(m,n) is an eigenvalue of (1.2) which satisfies

max
{
λ∗(m),λ∗(n)

}
< c(m,n). (3.3)

Moreover there is no eigenvalue of (1.2) between max{λ∗(m),λ∗(n)} and c(m,n).

The rest of this section is devoted to the proof of Theorem 3.2. As indicated in the introduction, some difficulty
arises in connexion with the (PS) condition.

Proposition 3.3.

(i) Ã satisfies (PS)c along bounded sequences for all c � 0.
(ii) Ã satisfies (PSC)c for all c > 0.

(iii) If
∫
Ω

m �= 0 and
∫
Ω

n �= 0, then Ã satisfies (PS)c for all c � 0.

Remark 3.4. One can show that if p = 2, then Ã satisfies (PS)c for all c > 0, but the case p �= 2 remains undecided.
On the other hand, if

∫
Ω

m = 0 or
∫
Ω

n = 0, then Ã does not satisfy (PSC)0. This latter fact can be seen as in Section 2:
assuming

∫
Ω

m = 0, one first observes that vk from (2.3) provides an unbounded (PS)0 sequence for Ã, and then one
applies Proposition 4.3 below; similar argument when

∫
Ω

n = 0.

Proof of Proposition 3.3. (i) Let uk ∈ Mm,n be a bounded (PS)c sequence for Ã. So
∫
Ω

|∇uk|p → c and∣∣∣∣
∫

|∇uk|p−2∇uk∇ξ

∣∣∣∣ � εk‖ξ‖ ∀ξ ∈ Tuk
Mm,n, (3.4)
Ω
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where εk → 0 and ‖ · ‖ denotes the W 1,p(Ω) norm. For a subsequence and some u0 ∈ W 1,p(Ω), one has that uk ⇀ u0
in W 1,p(Ω). Let us write for w ∈ W 1,p(Ω)

ak(w) := w −
[∫
Ω

(
m(u+

k )p−1 − n(u−
k )p−1)w]

uk ∈ Tuk
Mm,n.

Taking ξ = ak(w) in (3.4), one deduces∣∣∣∣
∫
Ω

|∇uk|p−2∇uk∇w −
[∫
Ω

(
m(u+

k )p−1 − n(u−
k )p−1)w]∫

Ω

|∇uk|p
∣∣∣∣ � εk

∥∥ak(w)
∥∥ � Dεk

(‖uk‖p + 1
)‖w‖

for some constant D; taking now w = uk − u0 in the above, one obtains∫
Ω

|∇uk|p−2∇uk∇(uk − u0) → 0.

It then follows from the (S+) property that uk → u0 in W 1,p(Ω), which yields the conclusion of part (i).
(ii) Let now uk ∈ Mm,n be a (PSC)c sequence for Ã, with c > 0. So

∫
Ω

|∇uk|p → c and (3.4) is replaced by∣∣∣∣
∫
Ω

|∇uk|p−2∇uk∇ξ

∣∣∣∣ � εk

1 + ‖uk‖‖ξ‖ ∀ξ ∈ Tuk
Mm,n (3.5)

where εk → 0. We will show that uk remains bounded so that part (i) applies and yields the conclusion of part (ii). Let
us assume by contradiction that, for a subsequence, ‖uk‖ → ∞. Write vk = uk/‖uk‖. For a further subsequence and
some v0 ∈ W 1,p(Ω), one has that vk ⇀ v0 in W 1,p(Ω). Since

∫
Ω

|∇uk|p remains bounded, one has
∫
Ω

|∇vk|p → 0
and it follows easily that v0 ≡ cst �= 0 and that vk → v0 in W 1,p(Ω). On the other hand, taking ξ = ak(w) in (3.5)
and dividing by ‖uk‖p−1, one gets∣∣∣∣

∫
Ω

|∇vk|p−2∇vk∇w −
[∫
Ω

(
m(v+

k )p−1 − n(v−
k )p−1)w]∫

Ω

|∇uk|p
∣∣∣∣

� εk

‖uk‖
1 + ‖uk‖

∥∥∥∥ w

‖uk‖p
−

[∫
Ω

(
m(v+

k )p−1 − n(v−
k )p−1)w]

vk

∥∥∥∥.

This implies that v0 is a solution of

−�pv0 = c
[
m(v+

0 )p−1 − n(v−
0 )p−1] in Ω,

∂v0

∂ν
= 0 on ∂Ω, (3.6)

where c is the level appearing in the (PSC)c sequence. Since v0 ≡ cst , the right-hand side of (3.6) is ≡ 0, and since
c > 0, one gets m(v+

0 )p−1 − n(v−
0 )p−1 ≡ 0. This relation with a nonzero constant v0 implies m ≡ 0 or n ≡ 0, which

contradicts (2.1).
(iii) Let us finally consider the case where

∫
Ω

m �= 0,
∫
Ω

n �= 0, and let uk ∈ Mm,n be a (PS)c sequence for Ã

with c � 0. We will show that uk remains bounded so that part (i) applies and yields the conclusion. Assume that
for a subsequence ‖uk‖ → +∞. For a further subsequence one obtains as above that vk → v0 in W 1,p(Ω) with v0
a nonzero constant. But Bm,n(uk) = 1 and so, dividing by ‖uk‖p and going to the limit, one obtains∫

Ω

[
m(v+

0 )p + n(v−
0 )p

] = 0.

This is a contradiction since v0 is a nonzero constant and
∫
Ω

m �= 0,
∫
Ω

n �= 0. �
We now turn to the geometry of Ã. The situation here is again simpler in the nonsingular case where the following

proposition applies.
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Proposition 3.5. If
∫
Ω

m �= 0, then ϕm ∈ Mm,n is a strict local minimum of Ã, with in addition for some ε0 > 0 and
all 0 < ε < ε0,

Ã(ϕm) = λ∗(m) < inf
{
Ã(u): u ∈ Mm,n ∩ ∂B(ϕm, ε)

}
, (3.7)

where B(ϕm, ε) denotes the ball in W 1,p(Ω) of center ϕm and radius ε. Similar conclusion for −ϕn if
∫
Ω

n �= 0.

Proof. We only sketch it since it is adapted from [2]. One first shows that for some ε0 > 0,

Ã(ϕm) < Ã(u) ∀u ∈ Mm,n ∩ B(ϕm, ε0), u �= ϕm. (3.8)

To prove (3.8) one distinguishes two cases: (i) λ∗(m) = 0 or (ii) λ∗(m) > 0. In case (i) one chooses ε0 such that
Mm,n ∩ B(ϕm, ε0) only contains ϕm as constant function. This clearly implies (3.8). In case (ii) one assumes by
contradiction the existence of a sequence uk ∈ Mm,n with uk �= ϕm,uk → ϕm in W 1,p(Ω) and Ã(uk) � λ∗(m). One
then deduces, as on p. 585 of [2], that uk changes sign for k sufficiently large. One also has

λ∗(m)

∫
Ω

[
m(u+

k )p + n(u−
k )p

] = λ∗(m) � Ã(uk) � λ∗(m)

∫
Ω

m(u+
k )p +

∫
Ω

|∇u−
k |p

and consequently

λ∗(m)

∫
Ω

n+(u−
k )p � λ∗(m)

∫
Ω

n(u−
k )p �

∫
Ω

|∇u−
k |p.

Since uk → ϕm, |u−
k > 0| → 0 where |u−

k > 0| denotes the measure of the set where u−
k is > 0. The desired contra-

diction then follows from Lemma 3.6 below. Thus (3.8) is proved.
The fact that (3.8) implies (3.7) follows from Lemma 6 in [2], after observing that it suffices in this lemma that the

functional satisfies (PS) along bounded sequences, a property which holds here by Proposition 3.3. This concludes
the proof of Proposition 3.5 when

∫
Ω

m �= 0. Similar arguments when
∫
Ω

n �= 0. �
Lemma 3.6. Let vk ∈ W 1,p(Ω) with vk � 0, vk �≡ 0 and |vk > 0| → 0. Let nk be bounded in Lr(Ω). Then∫

Ω

nkv
p
k

/∫
Ω

|∇vk|p → 0.

Proof. Without loss of generality, one can assume ‖vk‖ = 1. So for a subsequence, vk ⇀ v in W 1,p(Ω) and vk → v

in Lp(Ω). The assumption on |vk > 0| implies v ≡ 0 and consequently
∫
Ω

|∇vk|p → 1. The conclusion then follows
since, by Hölder inequality,

∫
Ω

nkv
p
k → 0. �

In the singular case, one at least of the two local minima provided by Proposition 3.5 is missing. The search for
suitable endpoints of paths which allow the application of a mountain pass argument will be based on the following
lemmas (see in particular Lemma 3.10).

Lemma 3.7. Inequality (3.3) holds.

Proof. The inequality � easily follows from the definition of λ∗(m) and λ∗(n). Indeed for any γ ∈ Γ , γ (1) belongs
to Mm,n, is � 0 and so satisfies the constraint in the definition (2.2) of λ∗(m). Consequently c(m,n) � λ∗(m), and
a similar argument applies to λ∗(n). To prove the strict inequality assume by contradiction that for instance λ∗(m) =
c(m,n). So, there exists a sequence γk ∈ Γ such that

max
t∈[0,1]

Ã
(
γk(t)

) → λ∗(m). (3.9)

Put uk := γk(1). Since uk � 0, one has

λ∗(m) �
∫

|∇uk|p � max
t∈[0,1]

Ã
(
γk(t)

) → λ∗(m), (3.10)
Ω
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and consequently
∫
Ω

|∇uk|p → λ∗(m). Let us now distinguish two cases: either (i) ‖uk‖ remains bounded or (ii) for
a subsequence ‖uk‖ → ∞.

In case (i), for a subsequence and for some u0 ∈ W 1,p(Ω), one has that uk ⇀ u0 in W 1,p(Ω). Since uk � 0, one
has ∫

Ω

m|u0|p = 1, (3.11)

and so

λ∗(m) �
∫
Ω

|∇u0|p � lim inf
∫
Ω

|∇uk|p = λ∗(m),

which implies that
∫
Ω

|∇u0|p = λ∗(m). Consequently uk → u0 in W 1,p(Ω). If
∫
Ω

m = 0, then λ∗(m) = 0 and so
u0 ≡ cst , which leads to a contradiction with (3.11). So

∫
Ω

m �= 0 and we conclude that u0 = ϕm. Let us now choose
ε > 0 such that (3.7) holds and B(ϕm, ε) does not contain any function v with v � 0, which is clearly possible. For k

sufficiently large uk = γk(1) ∈ B(ϕm, ε), while γk(0) /∈ B(ϕm, ε) since γk(0) � 0. It follows that the path γk intersects
∂B(ϕm, ε) and consequently

max
t∈[0,1]

Ã
(
γk(t)

)
� inf

{
Ã(u): u ∈ Mm,n ∩ ∂B(ϕm, ε)

}
> λ∗(m).

This contradicts (3.9).
In case (ii) we put vk = uk/‖uk‖. For a subsequence and some v0 ∈ W 1,p(Ω), vk ⇀ v0 in W 1,p(Ω). Since∫

Ω
|∇uk|p remains bounded, we obtain

∫
Ω

|∇vk|p → 0 and so v0 ≡ cst ; also v0 �≡ 0 since ‖vk‖ = 1 implies ‖v0‖ = 1.

Moreover
∫
Ω

m|v0|p = 0 since
∫
Ω

m|uk|p = 1. We have reached a contradiction if
∫
Ω

m �= 0. So let us assume from
now on that

∫
Ω

m = 0. We first observe that for any γ ∈ Γ there exists t0 = t0(γ ) ∈ [0,1] such that∫
Ω

m
(
γ (t0)

+)p =
∫
Ω

n
(
γ (t0)

−)p = 1

2
. (3.12)

Consider now wk := γk(t0(γk)). We have now instead of (3.10)

0 �
∫
Ω

|∇wk|p � max
t∈[0,1]

Ã
(
γk(t)

) → λ∗(m) = 0. (3.13)

We again distinguish two cases: either ‖wk‖ remains bounded, or for a subsequence ‖wk‖ → ∞. In the first case,
for a subsequence and some w0 ∈ W 1,p(Ω), wk ⇀ w0 in W 1,p(Ω). It follows from (3.13) that w0 ≡ cst and that
wk → w0 in W 1,p(Ω). A contradiction then follows from∫

Ω

m(w+
0 )p =

∫
Ω

n(w−
0 )p = 1

2
.

In the second case we put zk := wk/‖wk‖. For a subsequence and some z0 ∈ W 1,p(Ω), zk ⇀ z0 in W 1,p(Ω). It
follows from (3.13) that z0 ≡ cst and that zk → z0 in W 1,p(Ω); consequently ‖z0‖ = 1. If z0 > 0 then |wk < 0| =
|zk < 0| → 0; moreover wk changes sign and by (3.12)∫

Ω
n+|w−

k |p∫
Ω

|∇w−
k |p � 1/2∫

Ω
|∇wk|p → +∞.

This yields a contradiction with Lemma 3.6. A similar argument applies if z0 < 0. �
Lemma 3.8. For any d > 0, the set

O := {
u ∈ Mm,n: u � 0 and Ã(u) < d

}
is arcwise connected. Similar conclusion if u � 0 is replaced by u � 0.
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Note that by the definition of c(m,n), {u ∈ Mm,n: Ã(u) < d} is not arcwise connected when max{λ∗(m),λ∗(n)} <

d < c(m,n).

Proof of Lemma 3.8. Since O is empty if d � λ∗(m), we can assume from now on d > λ∗(m). We first consider the
case where

∫
Ω

m �= 0. Using Lemma 3.9 below, one constructs a weight n̂ ∈ Lr(Ω) such that n̂+ �≡ 0, n̂ � m,
∫
Ω

n̂ < 0
and λ∗(n̂) > d . When m− �≡ 0, it suffices in this construction to take n̂ = εm+ − m− with ε > 0 sufficiently small;
when m− = 0 i.e. m � 0, it suffices to take n̂ = εm − kχB with ε sufficiently small and k sufficiently large, where χB

is the characteristic function of a ball B � Ω such that m+ �≡ 0 on Ω \ B . We then consider the manifold Mm,n̂ and
the sublevel set

Ô := {
u ∈ Mm,n̂: A(u) < d

}
.

By part (iii) of Proposition 3.3, the restriction Â of A to Mm,n̂ satisfies (PS)c for all c � 0. Lemma 14 from [2] then
implies that any (nonempty) component of Ô contains a critical point of Â. But the first two critical levels λ∗(m),λ∗(n̂)

of Â verify λ∗(m) < d < λ∗(n), and consequently Â admits only one critical point in Ô. We can conclude in this way
that Ô is arcwise connected.

Let now u1, u2 ∈ O. Since they are � 0, they also belong to Ô. Let γ be a path in Ô from u1 to u2 and consider
the path

γ1(t) := |γ (t)|
(
∫
Ω

m|γ (t)|p)1/p
.

By the choice of n̂,∫
Ω

m
∣∣γ (t)

∣∣p �
∫
Ω

[
m

(
γ (t)+

)p + n̂
(
γ (t)−

)p] = 1, (3.14)

and consequently γ1 is a well defined path in Mm,n, which clearly goes from u1 to u2 and is made of nonnegative
functions. Moreover, by (3.14),

A
(
γ1(t)

) = A(γ (t))∫
Ω

m|γ (t)|p � A
(
γ (t)

)
< d

for all t , and we conclude that the path γ1 lies in O.
Consider now the case where

∫
Ω

m = 0. Let u1, u2 ∈ O. One starts by decreasing a little bit the weight m into
a weight m̂ ∈ Lr(Ω) such that m̂ � m,

∫
Ω

m̂ < 0,
∫
Ω

m̂u
p

1 > 0,
∫
Ω

m̂u
p

2 > 0 and∫
Ω

|∇u1|p∫
Ω

m̂u
p

1

< d,

∫
Ω

|∇u2|p∫
Ω

m̂u
p

2

< d,

which is clearly possible since λ∗(m) < d . Put

v1 := u1

(
∫
Ω

m̂u
p

1 )1/p
and v2 := u2

(
∫
Ω

m̂u
p

2 )1/p
.

By the first part of this proof, there exists a path γ in Mm̂,m̂ which goes from v1 to v2, is made of nonnegative functions
and is such that A(γ (t)) < d for all t . Consider now the path

γ1(t) := γ (t)

(
∫
Ω

m|γ (t)|p)1/p
.

By the choice of m̂,∫
Ω

m
∣∣γ (t)

∣∣p �
∫
Ω

m̂
∣∣γ (t)

∣∣p = 1, (3.15)

and consequently γ1 is a well defined path in Mm,n, which clearly goes from u1 to u2 and is made of nonnegative
functions. Moreover, by (3.15),

A
(
γ1(t)

) = A(γ (t))∫
m|γ (t)|p � A

(
γ (t)

)
< d
Ω
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for all t . This concludes the proof of Lemma 3.8 for O with u � 0. Similar argument in the case u � 0. �
Lemma 3.9. Let mk ∈ Lr(Ω) with m+

k �≡ 0 and mk → m in Lr(Ω) where m � 0, m �≡ 0. Then λ∗(mk) → +∞.

Proof. Suppose by contradiction that for a subsequence, λ∗(mk) → λ < +∞. Let ϕk be the positive eigenfunction
associated to λ∗(mk) and normalized by ‖ϕk‖pr ′ = 1, where ‖ · ‖q denotes the Lq(Ω) norm. One has∫

Ω

|∇ϕk|p = λ∗(mk)

∫
Ω

mkϕ
p
k � λ∗(mk)‖m+

k ‖r .

It follows that for a subsequence, ϕk ⇀ ϕ in W 1,p(Ω), with ‖ϕ‖pr ′ = 1. Moreover, by the above inequality,∫
Ω

|∇ϕk|p → 0, which implies ϕ ≡ cst �= 0 (call it A) and ϕk → ϕ in W 1,p(Ω). Consequently, for k sufficiently
large so that

∫
Ω

mk < 0, one has

0 <
1

λ∗(m)

∫
Ω

|∇ϕk|p =
∫
Ω

mkϕ
p
k → Ap

∫
Ω

m < 0,

a contradiction. �
Lemma 3.10. There exists u1 � 0 and u2 � 0 in Mm,n such that Ã(u1) < c(m,n) and Ã(u2) < c(m,n). Moreover, for
any such choice of u1, u2, one has

c(m,n) = inf
γ∈Γ

max
u∈γ [0,1]

Ã(u) (3.16)

where

Γ := {
γ ∈ C

([0,1],Mm,n

)
: γ (0) = u2 and γ (1) = u1

}
.

Proof. If
∫
Ω

m �= 0, one takes u1 = ϕm and the inequality Ã(u1) < c(m,n) follows from Lemma 3.7. Similarly with
u2 = −ϕn in case

∫
Ω

n �= 0. If now
∫
Ω

m = 0, one takes u1 = vk for k sufficiently large, where vk is defined in (2.3).
Indeed Ã(vk) → 0 and by Lemma 3.7, 0 < c(m,n), so that Ã(vk) < c(m,n) for k sufficiently large. Similar argument
for the choice of u2 in case

∫
Ω

n = 0.
It remains to prove (3.16). Call c̄ the right-hand side of (3.16). One clearly has c(m,n) � c̄. To prove the converse

inequality, let ε > 0 and take γε ∈ Γ such that

max
u∈γε[0,1]

Ã(u) < c(m,n) + ε.

By Lemma 3.8 there exits a path η1 in Mm,n joining γε(1) and u1, made of nonnegative functions, and such that

max
u∈η1[0,1]

Ã(u) < c(m,n) + ε.

Similarly there exists a path η2 in Mm,n joining γε(0) and u2, made of nonpositive functions, and such that

max
u∈η2[0,1]

Ã(u) < c(m,n) + ε.

Gluing together η2, γε and η1, one gets a path in Mm,n joining u2 and u1, and such that Ã remains < c(m,n) + ε

along this path. This implies c̄ < c(m,n) + ε. Since ε > 0 is arbitrary, the conclusion follows. �
We are now ready to give the

Proof of Theorem 3.2. Inequality (3.3) was established in Lemma 3.7. To prove that c(m,n) is an eigenvalue, we
pick u1, u2 as in Lemma 3.10 and we will show that c̄, the right-hand side of (3.16), is a critical value of Ã. If

∫
Ω

m �= 0
and

∫
Ω

n �= 0, then Ã satisfies (PS)c for all c � 0 and the classical mountain pass theorem for a C1 functional on a C1

manifold (cf. e.g. Proposition 4 from [2]) yields the conclusion. If either
∫
Ω

m = 0 or
∫
Ω

n = 0, then we only know
that Ã satisfies (PSC)c for all c > 0. It is then Theorem 4.1 from the following section which yields the conclusion.
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It remains to show that there is no eigenvalue between max{λ∗(m),λ∗(n)} and c(m,n). Assume by contradiction
the existence of such an eigenvalue λ and let u be the corresponding nontrivial solution of (1.2). We know that u

changes sign (since λ > max{λ∗(m),λ∗(n)}); moreover

0 <

∫
Ω

|∇u+|p = λ

∫
Ω

m(u+)p, 0 <

∫
Ω

|∇u−|p = λ

∫
Ω

n
(
u−p)

,

and we can normalize u so that u ∈ Mm,n. The functions

u1 := u+

(
∫
Ω

m(u+)p)1/p
, u2 := −u−

(
∫
Ω

n(u−)p)1/p

belongs to Mm,n, with u1 � 0, u2 � 0. We will construct a path γ in Mm,n joining u1 and u2, and such that Ã remains
equal to λ along that path. This will give a contradiction with the definition of c(m,n). To construct γ we first go
from u1 to u by the path

γ1(t) := u+ − tu−

(Bm,n(u+ − tu−))1/p

and then from u to u2 by the path

γ2(t) := tu+ − u−

(Bm,n(tu+ − u−))1/p
.

It is easily verified that the path constructed in this way is well defined and satisfies all the required conditions. �
Remark 3.11. Reproducing the end of the above proof with λ replaced by c(m,n), we conclude that the infimum in
(3.2) is achieved.

4. A mountain pass theorem

Our purpose in this section is to derive a mountain pass theorem for a C1 functional on a C1 manifold and which
satisfies the (PSC) condition.

We put ourselves in the general setting of the end of Section 2: E is a real Banach space, g ∈ C1(E,R), M :=
{u ∈ E: g(u) = 1} with 1 a regular value of g, f ∈ C1(E,R), f̃ the restriction of f to M . The space E in this section
is assumed to be uniformly convex.

Theorem 4.1. Let K be a compact metric space, K0 ⊂ K , and h0 ∈ C(K0,M). Consider the family of extensions
of h0:

H := {
h ∈ C(K,M): h|K0

= h0
}
.

Assume H nonempty as well as the following condition:

max
t∈K0

f
(
h0(t)

)
< max

t∈K
f

(
h(t)

)
for any h ∈H. Define

c := inf
h∈H

max
t∈K

f
(
h(t)

)
. (4.1)

Assume that f̃ satisfies (PSC)c for c given in (4.1). Then c is a critical value of f̃ .

Typically, as in the application in Section 3, K = [0,1] and K0 = {0,1}.

Proof of Theorem 4.1. Arguing as in the proof of Theorem 2.1 in [5] but using the strong form of Ekeland variational
principle (cf. [8,7]) instead of the usual one, one obtains that if h ∈ H and ε > 0 are such that

maxf
(
h(t)

)
< c + ε

, (4.2)

t∈K 2
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then, for each μ > 0, there exists uμ ∈ M with

c � f (uμ) � c + ε

2
,

dist
(
uμ,h(K)

)
� μ,∥∥f̃ ′(uμ)

∥∥∗ � ε

μ
.

We let ε = 1
k

and pick h = hk such that (4.2) holds, which is possible by the definition (4.1) of c. We also take
μ = μk = 1 + ‖hk‖∞, where ‖ · ‖∞ denotes the C(K,E) norm. So there exists uk ∈ M such that

c � f (uk) � c + 1

2k
,

dist
(
uk,hk(K)

)
� 1 + ‖hk‖∞, (4.3)∥∥f̃ ′(uk)

∥∥∗ �
[
k
(
1 + ‖hk‖∞

)]−1
. (4.4)

It follows from (4.3) that

‖uk‖E � dist
(
uk,hk(K)

) + ‖hk‖∞ � 1 + 2‖hk‖∞
and so 1 + ‖uk‖E � 2(1 + ‖hk‖∞). Replacing in (4.4) gives∥∥f̃ ′(uk)

∥∥∗ �
[
2k

(
1 + ‖uk‖E

)]−1
.

Thus uk is a (PSC)c sequence, and the conclusion follows. �
The following additional information will be used later (cf. Proposition 2.3 in [5]).

Proposition 4.2. Let K,K0, h0,H and c be as in Theorem 4.1 and let h ∈H satisfy

max
t∈K

f
(
h(t)

) = c.

Then h(K) contains a critical point of f̃ at level c.

The strong form of Ekeland variational principle can also be used in a way rather similar to the above to derive

Proposition 4.3. Assume f̃ bounded from below and let c := inf{f (u): u ∈ M}. Then f̃ satisfies (PSC)c if and only if
f̃ satisfies (PS)c.

Proof. It clearly suffices to prove that (PSC)c implies (PS)c. Let uk ∈ M satisfy c � f (uk) � c + 1/k with
‖f̃ ′(uk)‖∗ → 0 and ‖uk‖ → ∞ (if ‖uk‖ remains bounded then uk is a (PSC)c sequence and the conclusion fol-
lows immediately). Using the strong form of Ekeland variational principle, we obtain for any k and any μ > 0 the
existence of vμ ∈ M with

c � f (vμ) � c + 1

2k
,

‖vμ − uk‖ � μ,∥∥f̃ ′(vμ)
∥∥∗ � 1

kμ
.

We take μ = ‖uk‖/2 and we write vk instead of vμ. We have

1

2
‖uk‖ � ‖vk‖ � 3

2
‖uk‖,

(
1 + ‖vk‖

)∥∥f̃ ′(vk)
∥∥∗ � 1

k

2

‖uk‖
(

1 + 3

2
‖uk‖

)
� cst

k
, (4.5)

and so, by (PSC)c, vk has a subsequence vnk
which converges. Combining with (4.5) leads to a contradiction with the

fact that ‖uk‖ → ∞. �
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5. Some properties of c(m,n)

We briefly study here the dependence of c(m,n) with respect to m,n. All the weights in this section are assume to
belong to Lr(Ω) and to satisfy (2.1). The results and proofs below are similar to those of Section 4 in [2].

Proposition 5.1. If (mk,nk) → (m,n) in Lr(Ω) × Lr(Ω), then c(mk,nk) → c(m,n).

Proof. It is easily adapted from that of Proposition 22 in [2]. One successively proves upper and lower semicontinuity.
In the latter part it is convenient here to normalize uk so that ‖uk‖pr ′ = 1. �
Proposition 5.2. If m � m̃ and n � ñ a.e., then

c(m̃, ñ) � c(m,n).

If in addition∫
Ω

(m̃ − m)(u+)p +
∫
Ω

(ñ − n)(u−)p > 0

for at least one eigenfunction u associated to c(m,n), then c(m̃, ñ) < c(m,n).

Proof. It is easily adapted from that of Propositions 23 and 25 of [2]. Proposition 4.2 is used to derive the strict
monotonicity. �

Finally let us observe that c(m,n) is homogeneous of degree −1. Some sort of separate sub-homogeneity also
holds, which will be used later:

Proposition 5.3. If 0 < s < ŝ, then

c(ŝm,n) < c(sm,n) and c(m, ŝn) < c(m, sn).

Proof. It is easily adapted from that of Proposition 31 of [2]. Again Proposition 4.2 is used here. �
6. Fučik spectrum

Let m,n ∈ Lr(Ω) with r as before. Unless otherwise stated, we also assume (2.1). The Fučik spectrum Σ =
Σ(m,n) clearly contains the lines {0} × R, R × {0}, R × {λ∗(n)}, {λ∗(m)} × R and also possibly the lines R ×
{−λ∗(−n)} and {−λ∗(−m)} × R. It will be convenient to denote by Σ∗ = Σ∗(m,n) the set Σ(m,n) without these 2,
3 or 4 lines.

We start by looking at the part of Σ∗ which lies in R
+ × R

+. From the properties of λ∗(m),λ∗(n) follows that if
(α,β) ∈ Σ∗ ∩ (R+ × R

+), then α > λ∗(m) and β > λ∗(n).

Theorem 6.1. For any s > 0, the line β = sα in the (α,β) plane intersects Σ∗ ∩ (R+ × R
+). Moreover the first point

in this intersection is given by α(s) = c(m, sn), β(s) = sα(s), where c(·, ·) is defined in (3.2).

Proof. An easy consequence of Theorem 3.2. �
Letting s > 0 varying, we thus get a first curve C := {(α(s), β(s)): s > 0} in Σ∗ ∩ (R+ × R

+).

Proposition 6.2. The functions α(s) and β(s) in Theorem 6.1 are continuous. Moreover α(s) is strictly decreasing
and β(s) is strictly increasing. One also has that α(s) → +∞ as s → 0 and β(s) → +∞ as s → +∞.

Proof. The first two statements are direct consequences of the results of Section 5. The last one easily follows from
Lemma 6.3 below. �
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Lemma 6.3. The lines R × {λ∗(n)} and {λ∗(m)} × R are isolated in Σ∗ ∩ (R+ × R
+).

Proof. Assume by contradiction the existence of a sequence (αk,βk) ∈ Σ∗ ∩ (R+ ×R
+) such that αk → α0, βk → β0

with α0 ∈ R and say β0 = λ∗(n). Let uk be an eigenfunction corresponding to (αk,βk), normalized by ‖uk‖pr ′ = 1.
Note that uk changes sign. By standard arguments one gets that for a subsequence, uk → u in W 1,p(Ω) with u �≡ 0
satisfying

−�pu = α0m(x)(u+)p−1 − λ∗(n)n(x)(u−)p−1 in Ω,
∂u

∂ν
= 0 on ∂Ω. (6.1)

It follows from (6.1) that∫
Ω

|∇u−|p = λ∗(n)

∫
Ω

n(x)(u−)p

and consequently either (i) u− ≡ 0 or (ii) u− is an eigenfunction associated to λ∗(n). In case (i), u � 0, u �≡ 0 and so
u > 0 in Ω , which implies |u−

k > 0| → 0. It then follows from Lemma 3.6 that∫
Ω

βkn(x)(u−
k )p∫

Ω
|∇u−

k |p → 0, (6.2)

which is impossible since by the equation satisfied by uk , the expression in (6.2) is equal to 1. In case (ii), u < 0 in Ω ,
which implies |u+

k > 0| → 0. An argument as above applied to u+
k then leads to a contradiction. �

We now investigate the asymptotics values α∞ := lims→∞ α(s) and β∞ := lims→∞ β(s) of the first curve C. We
will limit ourselves to the study of α∞. Similar results on β∞ can be proved interchanging the roles of m and n.

Proposition 6.4. If p � N , then α∞ = λ∗(m). If p > N and one of the following conditions holds: (i)
∫
Ω

m � 0, or
(ii) m ∈ L∞(Ω), or (iii) supp(n+) � Ω , then α∞ > λ∗(m).

Proof. The arguments are rather similar to those in the proof of Proposition 35 in [2] and we will only indicate below
the main steps as well as the differences.

One starts by introducing

ᾱ := inf

{∫
Ω

|∇u+|p: u ∈ W 1,p(Ω),

∫
Ω

m(u+)p = 1 and
∫
Ω

n(u−)p > 0

}
(6.3)

and shows that α∞ = ᾱ. The proof here is a direct adaption of our argument on p. 599 in [2]. In fact it is simpler since
the required path has just to belong to Γ and so can be constructed directly through a normalized convex combination.

One then considers the case p � N . If
∫
Ω

m �= 0 then the argument on p. 600 in [2] adapts immediately to obtain
ᾱ = λ∗(m). If

∫
Ω

m = 0 one considers the sequence vk defined in (2.3) and applies to each vk the construction on
p. 600 in [2].

One now considers the case p > N Assume by contradiction that ᾱ = λ∗(m) and let (uk) be a minimizing sequence
for ᾱ. We claim that u+

k remains bounded in W 1,p(Ω). Indeed otherwise, one easily sees that for a subsequence
vk := u+

k /‖u+
k ‖ converges uniformly on Ω to a positive constant, which implies vk > 0 (and so uk > 0) in Ω for k

sufficiently large, contradicting the admissibility of uk in definition (6.3). So u+
k remains bounded in W 1,p(Ω) and

it follows by standard arguments that for a subsequence, u+
k converges uniformly on Ω to ϕm when

∫
Ω

m �= 0, to
a positive constant when

∫
Ω

m = 0. In case (i) ϕm is also a positive constant, and we conclude as above that uk is
not admissible in definition (6.3) for k sufficiently large, a contradiction. In case (ii) ϕm ∈ C1(Ω) by [12] and the
strong maximum principle of [14] applies to guarantee that ϕm is positive on Ω ; a contradiction can then be derived
as above. Finally in case (iii) one has ϕm � some ε > 0 on supp(n+), and one deduces again that uk is not admissible
in definition (2.2) for k sufficiently large, a contradiction. �
Remark 6.5. When the weight m is unbounded and

∫
Ω

m < 0, it is unclear whether ϕm is positive on Ω . This is why
we impose condition (iii) in Proposition 6.4.
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We finally observe that the distribution of Σ∗ in the other quadrants of R × R could be studied here in a manner
similar to that in [2].

One could also adapt to the present setting the results of [2] relative to the study of nonresonance.
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