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Abstract

In this paper we prove a sufficient condition, in terms of the behavior of a ground state of a singular p-Laplacian problem with
a potential term, such that a nonzero subsolution of another such problem is also a ground state. Unlike in the linear case (p = 2),
this condition involves comparison of both the functions and of their gradients.
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1. Introduction

Positivity properties of quasilinear elliptic equations, in particular those with the p-Laplacian term in the principal
part, have been extensively studied over the recent decades (see for example [2,3,6,10] and the references therein).
Fix p ∈ (1,∞), and a domain Ω ⊆ R

d . In this paper we use positivity properties of such equations to prove a general
Liouville comparison principle for equations of the form

−�p(u) + V |u|p−2u = 0 in Ω,

where �p(u) := ∇ · (|∇u|p−2∇u) is the p-Laplacian, and V ∈ L∞
loc(Ω;R) is a given potential. Throughout this paper

we assume that

Q(u) :=
∫
Ω

(|∇u|p + V |u|p)
dx � 0 (1.1)

for all u ∈ C∞
0 (Ω).

* Corresponding author.
E-mail addresses: pincho@techunix.technion.ac.il (Y. Pinchover), tertikas@math.uoc.gr (A. Tertikas), kyril.tintarev@math.uu.se

(K. Tintarev).

© 2007 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
0294-1449/$ – see front matter
doi:10.1016/j.anihpc.2006.12.004

© 2007 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.



358 Y. Pinchover et al. / Ann. I. H. Poincaré – AN 25 (2008) 357–368
Definition 1.1. We say that a function v ∈ W
1,p

loc (Ω) is a (weak) solution of the equation

1

p
Q′(v) := −�p(v) + V |v|p−2v = 0 in Ω, (1.2)

if for every ϕ ∈ C∞
0 (Ω)∫

Ω

(|∇v|p−2∇v · ∇ϕ + V |v|p−2vϕ
)

dx = 0. (1.3)

We say that a real function v ∈ C1
loc(Ω) is a supersolution (resp. subsolution) of Eq. (1.2) if for every nonnegative

ϕ ∈ C∞
0 (Ω)∫
Ω

(|∇v|p−2∇v · ∇ϕ + V |v|p−2vϕ
)

dx � 0 (resp. � 0). (1.4)

Remark 1.2. It is well known that any weak solution of (1.2) admits Hölder continuous first derivatives, and that any
nonnegative solution of (1.2) satisfies the Harnack inequality [12,13,15].

Definition 1.3. We say that the functional Q has a weighted spectral gap in Ω if there is a positive continuous function
W in Ω such that

Q(u) �
∫
Ω

W |u|p dx ∀u ∈ C∞
0 (Ω). (1.5)

Definition 1.4. Let Q be a nonnegative functional on C∞
0 (Ω). We say that a sequence {uk} ⊂ C∞

0 (Ω) of nonnegative
functions is a null sequence of the functional Q in Ω , if there exists an open set B � Ω (i.e., B is compact in Ω) such
that

∫
B

|uk|p dx = 1, and

lim
k→∞Q(uk) = lim

k→∞

∫
Ω

(|∇uk|p + V |uk|p
)

dx = 0. (1.6)

We say that a positive function v ∈ C1
loc(Ω) is a ground state of the functional Q in Ω if v is an L

p

loc(Ω) limit of a
null sequence of Q.

Remark 1.5. The requirement that {uk} ⊂ C∞
0 (Ω), can clearly be weakened by assuming only that {uk} ⊂ W

1,p

0 (Ω).
Also the requirement that

∫
B

|uk|p dx = 1 can be replaced by
∫
B

|uk|p dx � 1, where fk � gk means that there exists
a positive constant C such that C−1gk � fk � Cgk for all k ∈ N.

The following theorem was proved in [10].

Theorem 1.6. Let Ω ⊆ R
d be a domain, V ∈ L∞

loc(Ω), and p ∈ (1,∞). Suppose that the functional Q is nonnegative
on C∞

0 (Ω). Then

(a) Q has either a weighted spectral gap or a ground state.
(b) If Q admits a ground state v, then v > 0 and v satisfies (1.2).
(c) The functional Q admits a ground state if and only if (1.2) admits a unique positive supersolution.

Example 1.7. Consider the functional Q(u) := ∫
Rd |∇u|p dx. It follows from [7, Theorem 2] that if d � p, then Q

admits a ground state ϕ = constant in R
d . On the other hand, if d > p, then

u(x) := [
1 + |x|p/(p−1)

](p−d)/p
, v(x) = constant

are two positive supersolutions of the equation −�p(u) = 0 in R
d . Therefore, Theorem 1.6(c) implies that if d > p,

then Q has a weighted spectral gap in R
d . See also Example 3.2.
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In a recent paper [9], Theorem 1.6 was used in order to prove, for p = 2, the following Liouville-type statement.

Theorem 1.8. ([9]) Let Ω be a domain in R
d , d � 1. Consider two strictly elliptic Schrödinger operators defined on

Ω of the form

Pj := −∇ · (Aj∇) + Vj , j = 0,1, (1.7)

where Vj ∈ L
p

loc(Ω;R) for some p > d/2, and Aj :Ω → R
d2

are measurable symmetric matrices such that for any
K � Ω there exists μK > 1 such that

μ−1
K Id � Aj(x) � μKId ∀x ∈ K. (1.8)

(Here Id is the d-dimensional identity matrix, and the matrix inequality A � B means that B − A is a nonnegative
matrix on R

d .)

Assume that the following assumptions hold true.

(i) The operator P1 admits a ground state ϕ in Ω .
(ii) P0 � 0 on C∞

0 (Ω), and there exists a real function ψ ∈ H 1
loc(Ω) such that ψ+ �= 0, and P0ψ � 0 in Ω , where

u+(x) := max{0, u(x)}.
(iii) The following matrix inequality holds

(ψ+)2(x)A0(x) � Cϕ2(x)A1(x) a.e. in Ω, (1.9)

where C > 0 is a positive constant.

Then the operator P0 admits a ground state in Ω , and ψ is the corresponding ground state. In particular, ψ is (up
to a multiplicative constant) the unique positive supersolution of the equation P0u = 0 in Ω .

The purpose of this paper is to find an analog of Theorem 1.8 when p �= 2. The main statement is as follows.

Theorem 1.9. Let Ω be a domain in R
d , d � 1, and let p ∈ (1,∞). For j = 0,1, let Vj ∈ L∞

loc(Ω), and let

Qj(u) :=
∫
Ω

(∣∣∇u(x)
∣∣p + Vj (x)

∣∣u(x)
∣∣p)

dx u ∈ C∞
0 (Ω).

Assume that the following assumptions hold true.

(i) The functional Q1 admits a ground state ϕ in Ω .
(ii) Q0 � 0 on C∞

0 (Ω), and the equation Q′
0(u) = 0 in Ω admits a subsolution ψ ∈ W

1,p

loc (Ω) satisfying ψ+ �= 0.
(iii) The following inequality holds almost everywhere in Ω

ψ+ � Cϕ, (1.10)

where C > 0 is a positive constant.
(iv) The following inequality holds almost everywhere in Ω ∩ {ψ > 0}

|∇ψ |p−2 � C|∇ϕ|p−2, (1.11)

where C > 0 is a positive constant.

Then the functional Q0 admits a ground state in Ω , and ψ is the ground state. In particular, ψ is (up to a multiplicative
constant) the unique positive supersolution of the equation Q′

0(u) = 0 in Ω .

Remark 1.10. Condition (1.11) is redundant for p = 2. For p �= 2 it is equivalent to the assumption that the following
inequality holds in Ω :{ |∇ψ+| � C|∇ϕ| if p > 2,

|∇ψ+| � C|∇ϕ| if p < 2,
(1.12)

where C > 0 is a positive constant.
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Remark 1.11. This theorem holds if, in addition to (1.10), one assumes instead of |∇ψ |p−2 � C|∇ϕ|p−2 in
Ω ∩ {ψ > 0} (see (1.11)), that the following inequality holds true almost everywhere in Ω ∩ {ψ > 0}

ψ2|∇ψ |p−2 � Cϕ2|∇ϕ|p−2, (1.13)

where C > 0 is a positive constant. This can be easily observed by repeating the proof of Theorem 1.9 with the
equivalent energy functional represented in the form (2.14) instead of (2.13).

Remark 1.12. Suppose that 1 < p < 2, and assume that the ground state ϕ > 0 of the functional Q1 is such that w = 1
is a ground state of the functional

E
ϕ
1 (w) =

∫
Ω

ϕp|∇w|p dx, (1.14)

that is, there is a sequence {wk} ⊂ C∞
0 (Ω) of nonnegative functions satisfying E

ϕ
1 (wk) → 0, and

∫
B

|wk|p = 1 for
a fixed B � Ω (this implies that wk → 1 in L

p

loc(Ω)). In this case, the conclusion of Theorem 1.9 holds if there is
a nonnegative subsolution ψ+ of Q′

0(u) = 0 satisfying (1.10) alone, without any assumption on the gradients (like
(1.11) or (1.13)). This statement follows from the proof of Theorem 1.9 together with the trivial inequality∫

Ω

v2|∇w|2(w|∇v| + v|∇w|)p−2 dx �
∫
Ω

vp|∇w|p dx

which actually holds pointwise. We use this observation in Example 3.2.

Remark 1.13. By Picone identity, a nonnegative functional Q can be represented as the integral of a nonnegative
Lagrangian L. Although the expression for L contains an indefinite term (see (2.2)), it admits a two-sided estimate
by a simplified Lagrangian with nonnegative terms (see Lemma 2.2). We call the functional associated with this
simplified Lagrangian the simplified energy. It plays a crucial role in the proof of Theorem 1.9.

Remark 1.14. Condition (1.11) is essential when p > 2, and presumably also when p < 2. When p > 2, Ω = R
d and

V is radially symmetric, Proposition 4.2 shows that the simplified energy functional is not equivalent to either of its
two terms that lead to conditions (1.10) and (1.11), respectively (see also Remark 4.1).

The outline of the paper is as follows. In Section 2 we study the representation of Q as a functional with a positive
Lagrangian, and derive the equivalent simplified energy. Theorem 1.9 is proved in Section 3, and Section 4 is devoted
to the irreducibility of the simplified energy to either of its terms. In Section 5, we study a connection between the
ground states of the functional Q and of its linearization.

2. Picone identity

Let v > 0, v ∈ C1
loc(Ω), and u � 0, u ∈ C∞

0 (Ω). Denote

R(u, v) := |∇u|p − ∇
(

up

vp−1

)
· |∇v|p−2∇v, (2.1)

and

L(u, v) := |∇u|p + (p − 1)
up

vp
|∇v|p − p

up−1

vp−1
∇u · |∇v|p−2∇v. (2.2)

Then the following (generalized) Picone identity holds [5,2,3]

R(u, v) = L(u, v). (2.3)

Write L(u, v) = L1(u, v) + L2(u, v), where

L1(u, v) := |∇u|p + (p − 1)
up

p
|∇v|p − p

up−1

p−1
|∇u||∇v|p−1, (2.4)
v v
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and

L2(u, v) := p
up−1

vp−1
|∇v|p−2(|∇u||∇v| − ∇u · ∇v

)
� 0. (2.5)

From the obvious inequality tp + (p − 1) − pt � 0, we also have that L1(u, v) � 0. Therefore, L(u, v) � 0 in Ω . Let
v ∈ C1

loc(Ω) be a positive solution (resp. subsolution) of (1.2). Using (2.3) and (1.3) (resp. (1.4)), we infer that for
every u ∈ C∞

0 (Ω), u � 0,

Q(u) =
∫
Ω

L(u, v)dx, resp. Q(u) �
∫
Ω

L(u, v)dx. (2.6)

Let now w := u/v, where v is a positive solution of (1.2) and u ∈ C∞
0 (Ω), u � 0. Then 2.6 implies

Q(vw) =
∫
Ω

[|v∇w + w∇v|p − wp|∇v|p − pwp−1v|∇v|p−2∇v · ∇w
]

dx. (2.7)

Similarly, if v is a nonnegative subsolution of (1.2), then

Q(vw) �
∫
Ω

[|v∇w + w∇v|p − wp|∇v|p − pwp−1v|∇v|p−2∇v · ∇w
]

dx. (2.8)

A need to study the linearized operator arises at a certain step in this paper. This linearized operator is a Schrödinger
operator of the form

Pu := (−∇ · (A∇) + V
)
u in Ω. (2.9)

We assume that V ∈ L∞
loc(Ω;R), and A :Ω → R

d2
is a measurable (symmetric) matrix valued function satisfying

(1.8). We consider the quadratic form

a[u] :=
∫
Ω

(
A∇u · ∇u + V |u|2)dx (2.10)

on C∞
0 (Ω) associated with the operator P . We have the following version of Picone identity (see [10]).

Lemma 2.1. Let ψ be a (real valued) solution of the equation Pψ = 0 in Ω . Then for any v ∈ C∞
0 (Ω) we have

a[ψv] =
∫
Ω

ψ2A∇v · ∇v dx. (2.11)

Moreover, if ψ ∈ H 1
loc(Ω) is a nonnegative subsolution of the equation Pψ = 0 in Ω , then for any nonnegative

v ∈ C∞
0 (Ω) we have

a[ψv] �
∫
Ω

ψ2A∇v · ∇v dx. (2.12)

So, in the linear case, the quadratic form induces a convenient weighted (Dirichlet-type) norm

‖v‖2 :=
∫
Ω

ψ2A∇v · ∇v dx on C∞
0 (Ω).

Recall that in the quasilinear case (p �= 2), the Lagrangian L in Picone’s identity and (2.7) contain indefinite terms.
Therefore, it is more convenient to replace identity (2.7) by two-sided inequalities with a simpler expression which
we call the simplified energy.

Lemma 2.2. Let v ∈ C1
loc(Ω) be a positive solution of (1.2) and let w ∈ C1

0(Ω) be a nonnegative function. Then

Q(vw) �
∫

v2|∇w|2(w|∇v| + v|∇w|)p−2 dx. (2.13)
Ω
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Moreover, for all p �= 2

Q(vw) � C

∫
Ω

|∇w|2(w|∇v|v 2
p−2 + v

p
p−2 |∇w|)p−2 dx (2.14)

In particular, for p > 2 we have

Q(vw) �
∫
Ω

(
vp|∇w|p + v2|∇v|p−2wp−2|∇w|2)dx. (2.15)

If v is only a nonnegative subsolution of (1.2), then

Q(vw) � C

∫
Ω∩{v>0}

v2|∇w|2(w|∇v| + v|∇w|)p−2 dx. (2.16)

If p �= 2, then

Q(vw) � C

∫
Ω∩{v>0}

|∇w|2(w|∇v|v 2
p−2 + v

p
p−2 |∇w|)p−2 dx. (2.17)

Moreover, for p > 2 we have

Q(vw) � C

∫
Ω

(
vp|∇w|p + v2|∇v|p−2wp−2|∇w|2)dx. (2.18)

Proof. Let 1 < p < ∞. We need the following elementary algebraic vector inequality (cf. [4,14])

|a + b|p − |a|p − p|a|p−2a · b � |b|2(|a| + |b|)p−2 (2.19)

for all a, b ∈ R
d .

Indeed, let t = |b|/|a| and θ = (a · b)/(|a||b|). Note that for −1 � θ � 1

lim
t→∞

|t2 + 2 θt + 1|p/2 − 1 − p θt

t2(1 + t)p−2
= 1 uniformly, (2.20)

and

lim
t→0+

|t2 + 2 θt + 1|p/2 − 1 − p θt

t2(1 + t)p−2
= p

2

(
1 + (p − 2)θ2) > Cp > 0. (2.21)

Finally, we claim that for t > 0 and −1 � θ � 1 we have

f (t, θ) := ∣∣t2 + 2 θt + 1
∣∣p/2 − 1 − p θt > 0. (2.22)

Indeed, set s := (t2 + 2 θt + 1)1/2 � 0, then

f (t, θ) = [
sp + (p − 1) − ps

] + p
[(

t2 + 2 θt + 1
)1/2 − 1 − θ t

]
.

Clearly, for s � 0 we have, g(s) := [sp + (p − 1) − ps] � 0, and g(s) = 0 if and only if s = 1, which holds if and
only if t = −2θ .

On the other hand, let

h(t, θ) := p
[(

t2 + 2 θt + 1
)1/2 − 1 − θ t

]
.

Then h(t, θ) � 0, and h(t, θ) = 0 if and only if θ = ±1. Note that if θ = −1 and t = −2θ , then we have f (2,−1) =
2p > 0. Thus, f (t, θ) > 0 for all t > 0 and −1 � θ � 1.

Therefore, for 1 < p < ∞, relations (2.20)–(2.22) imply∣∣t2 + 2 θt + 1
∣∣p/2 − 1 − p θt � t2(1 + t)p−2.

Thus, (2.19) holds true for all a, b ∈ R
d .
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Set now a := w|∇v|, b := v|∇w|. Then we obtain (2.13) and (2.16) by applying (2.19) to (2.7) and (2.8), respec-
tively. �

The following Allegretto–Piepenbrink-type theorem was proved in [10].

Theorem 2.3. ([10, Theorem 2.3]) Let Q be a functional of the form (1.1). Then the following assertions are equivalent

(i) The functional Q is nonnegative on C∞
0 (Ω).

(ii) Eq. (1.2) admits a global positive solution.
(iii) Eq. (1.2) admits a global positive supersolution.

The next lemma is well known for p = 2 (see for example [1, Lemma 2.9]).

Lemma 2.4. Let v ∈ C1
loc(Ω) be a subsolution of Eq. (1.2). Then v+ is also a subsolution of (1.2).

Proof. Fix ϕ ∈ C∞
0 (Ω), ϕ � 0. As in [1, Lemma 2.9], define for ε > 0

vε := (
v2 + ε2)1/2

, and ϕε := vε + v

2vε

ϕ.

Then vε → |v|, ∇vε → ∇|v|, and ϕε → (sgnv+)ϕ as ε → 0. An elementary computation shows that

∇vε · ∇ϕ � ∇v · ∇
(

vϕ

vε

)
,

and therefore,

∇
(

vε + v

2

)
· ∇ϕ � ∇v · ∇ϕε.

Since ∫
Ω

(|∇v|p−2∇v · ∇ϕε + V |v|p−2vϕε

)
dx � 0, (2.23)

it follows that∫
Ω

(
|∇v|p−2∇

(
vε + v

2

)
· ∇ϕ + V |v|p−2vϕε

)
dx � 0. (2.24)

Letting ε → 0 we obtain∫
Ω

(|∇v+|p−2∇v+ · ∇ϕ + V |v+|p−2v+ϕ
)

dx � 0. � (2.25)

3. Proof of the main result

Proof of Theorem 1.9. By Lemma 2.4, we may assume that ψ � 0.
Let {uk} be a null sequence for Q1, that is Q1(uk) → 0 and, for some nonempty open set B � Ω ,

∫
B

u
p
k dx = 1.

Without loss of generality, we may assume that B ⊂ suppψ . Let wk := uk/ϕ. From (2.13) it follows that with some
C > 0∫

Ω

ϕ2|∇wk|2
(
wk|∇ϕ| + ϕ|∇wk|

)p−2 dx � CQ1(uk) → 0.

Fix α,β ∈ R+, then the function f : R2+ → R+ defined by

f (s, t) := α2t2(βs1/(p−2) + αt
)p−2
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is nondecreasing monotone function in each variable separately. Hence, assumptions (1.10) and (1.11) imply that∫
Ω

ψ2|∇wk|2
(
wk|∇ψ | + ψ |∇wk|

)p−2 dx → 0.

Together with (2.13) this implies that Q0(ψwk) → 0. On the other hand, since wk → 1 in L
p

loc(Ω), it follows that
ψwk → ψ in L

p

loc(Ω). Consequently,
∫
B

ϕpw
p
k dx = 1 implies that

∫
B

ψpw
p
k dx � 1. In light of Remark 1.5, we

conclude that ψ is a ground state of Q0. �
Example 3.1. Assume that 1 � d � p � 2, p > 1, Ω = R

d , and consider the functional Q1(u) := ∫
Rd |∇u|p dx. By

Example 1.7, the functional Q1 admits a ground state ϕ = constant in R
d .

Let Q0 be a functional of the form (1.1) satisfying Q0 � 0 on C∞
0 (Rd). Let ψ ∈ W

1,p

loc (Rd), ψ+ �= 0 be a subso-
lution of the equation Q′

0(u) = 0 in R
d , such that ψ+ ∈ L∞(Rd). It follows from Theorem 1.9 that ψ is the ground

state of Q0 in R
d . In particular, ψ is (up to a multiplicative constant) the unique positive supersolution and unique

bounded solution of the equation Q′
0(u) = 0 in R

d . Note that there is no assumption on the behavior of the potential
V0 at infinity. This result generalizes some striking Liouville theorems for Schrödinger operators on R

d that hold for
d = 1,2 and p = 2 (see [9, Theorems 1.4–1.6]).

Example 3.2. Let d > 1, d �= p, and Ω := R
d \ {0} be the punctured space. Let c∗

p,d := |(p − d)/p|p be the Hardy
constant, and consider the functional

Q(u) :=
∫
Ω

(
|∇u|p − c∗

p,d

|u|p
|x|p

)
dx, u ∈ C∞

0 (Ω). (3.1)

By Hardy’s inequality, Q is nonnegative on C∞
0 (Ω). The proof of Theorem 1.3 in [11] shows that Q admits a null

sequence. It can be easily checked that the function v(r) := |r|(p−d)/p is a positive solution of the corresponding
radial equation:

−|v′|p−2
[
(p − 1)v′′ + d − 1

r
v′

]
− c∗

p,d

|v|p−2v

rp
= 0, r ∈ (0,∞).

Therefore, ϕ(x) := |x|(p−d)/p is the ground state of the equation

−�p(u) − c∗
p,d

|u|p−2u

|x|p = 0 in Ω. (3.2)

Note that ϕ /∈ W
1,p

loc (Rd) for p �= d . In particular, ϕ is not a positive supersolution of the equation �p(u) = 0 in R
d .

Let Q0 be a functional of the form (1.1) satisfying Q0 � 0 on C∞
0 (Ω). Let ψ ∈ W

1,p

loc (Ω), 1 < p < ∞, p �= d ,
ψ+ �= 0, be a subsolution of the equation Q′

0(u) = 0 in Ω satisfying

ψ+(x) � C|x|(p−d)/p, x ∈ Ω. (3.3)

When p > 2, we require in addition that the following inequality is satisfied

ψ+(x)2
∣∣∇ψ+(x)

∣∣p−2 � C|x|2−d , x ∈ Ω. (3.4)

It follows from Theorem 1.9, Remark 1.11 and Remark 1.12 that ψ is the ground state of Q0 in Ω . The reason why
(3.4) is stated only for p > 2 hinges on the fact that for p � 2,

C−1Q0(ϕw) � E
ϕ
1 (w) =

∫
Ω

|x|p−d |∇w|p dx, (3.5)

and for all p > 1 the functional E
ϕ
1 has a ground state 1. The null sequence convergent to this ground state is given

by [11], relation (2.2) with R → ∞. Therefore, Remark 1.12 applies.

Next, we present a family of functionals Q0 for which the conditions of Example 3.2 are satisfied.
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Example 3.3. Let d � 2, 1 < p < d , α � 0, and Ω := R
d \ {0}. Let

Wα(x) := −
(

d − p

p

)p
α dp/(d − p) + |x| p

p−1

(α + |x| p
p−1 )p

.

Note that if α = 0 this is the Hardy potential as in the Example 3.2. If Q0 is the functional (1.1) with the potential
V := Wα , then

ψα(x) := (
α + |x| p

p−1
)− (d−p)(p−1)

p2

is a solution of Q′
0(u) = 0 in Ω , and therefore Q0 � 0 on C∞

0 (Ω). Moreover, one can use the calculations of Exam-
ple 3.2 to show that ψα is a ground state of Q0. Indeed, we note first that ψ = ψα satisfies (3.3). If d

d−1 < p < d , then

ψα satisfies also (3.4) and therefore, it is a ground state in this case. In the remaining case p � d
d−1 � 2, Example 3.2

concludes that ψα is a ground state from the property of the functional (3.5).

4. The simplified energy

In this section we give examples showing that none of the terms in the simplified energy (2.15) for p > 2 is
dominated by the other, so that (2.15) cannot be further simplified. In particular, neither condition (1.10) nor condition
(1.11) in Theorem 1.9 can be omitted.

Let p > 2, and fix v > 0, v ∈ C1
loc(Ω). For w ∈ C∞

0 (Ω) we denote

Ev
1 (w) :=

∫
Ω

vp|∇w|p dx, (4.1)

and

Ev
2 (w) :=

∫
Ω

v2|∇v|p−2wp−2|∇w|2 dx. (4.2)

Remark 4.1. Suppose that V = 0 in Ω , and assume that Q has a weighted spectral gap in Ω . In this case, the
constant function v = 1 is a positive solution of (1.2) which is not a ground state in Ω . Clearly, Ev

2 = 0 on C∞
0 (Ω).

Therefore, the inequality Q(vu) � CEv
2 (u) for u ∈ C∞

0 (Ω) is generally false, or in other words, the first term in the
simplified energy (2.15) is necessary. The above assumptions are satisfied if Q′ is the p-Laplacian operator, and either
int (Rd \ Ω) �= ∅, or Ω = R

d and p < d (see Example 1.7).

In the following proposition we restrict our consideration to the case Ω = R
d and a radial positive solution v.

Proposition 4.2. Let Ω = R
d and p > 2.

• There exists a positive continuous radial function ϕ on R
d such that the simplified energy E

ϕ
1 (w) + E

ϕ
2 (w) has a

weighted spectral gap, but there exist a sequence {uk} ⊂ C∞
0 (Rd) with uk � 0, and an open set B � R

d such that
E

ϕ
1 (uk) → 0 and

∫
B

|uk|p dx = 1.

• Moreover, there exists a positive radial continuous function ψ on R
d such that the simplified energy E

ψ

1 (w) +
E

ψ

2 (w) has a weighted spectral gap, but there exist a sequence {vk} ⊂ C∞
0 (Rd) with vk � 0, and an open set

B � R
d such that E

ψ

2 (vk) → 0 and
∫
B

|vk|p dx = 1.

Proof. Step 1. Let Q be a functional of the form (1.1) on R
d with a radial potential V . By the proof of Theorem 2.3

(see [10, Theorem 2.3]), it follows that a radial functional Q is nonnegative on C∞
0 (Rd) if and only if the equation

Q′(u) = 0 admits a positive radial solution in R
d . On the other hand, from the standard rearrangement argument

it is evident that Q has a weighted spectral gap if and only if it has a radial weighted spectral gap with a radial,
decreasing and fast decaying weight W . Therefore, Q has a weighted spectral gap if and only if there exists a positive
continuous radial potential W such that the Euler–Lagrange equation for the functional Q(u) − ∫

d W |u|p dx has a

R



366 Y. Pinchover et al. / Ann. I. H. Poincaré – AN 25 (2008) 357–368
positive radial solution. But such a solution is a (radial) supersolution of the equation Q′(u) = 0 in R
d which is not

a solution. Therefore, it is sufficient to consider the restrictions of Q and Q′ to radial functions. (So, in fact, we are
dealing with a one-dimensional problem.)

Step 2. We establish for a radial function ϕ a criterion for the existence of null sequences for E
ϕ
1 and E

ϕ
2 using a

change of variable. First, for a positive continuous function ϕ on [0,∞) define ρ1(r) by

ρ1(r) :=
r∫

1

[
ϕp(s)sd−1]−1/(p−1) ds. (4.3)

Assume further that p � d , then ρ1 is well-defined on (0,∞) and ρ1(0) = −∞. Since

dr

dρ1
= (

ϕprd−1)1/(p−1)
,

it follows that for a radially symmetric w ∈ C∞
0 (Rd) we have

E
ϕ
1 (w) =

∫

Rd

ϕp|∇w|p dx = Cd

M1∫
−∞

∣∣w′(ρ1)
∣∣p dρ1, (4.4)

where

M1 = M
ϕ
1 :=

∞∫
1

(
ϕprd−1)−1/(p−1) dr. (4.5)

Recall that from Example 1.7 it follows that for p > 1 the p-Laplacian on (a, b) admits a ground state if and only if
(a, b) = R. Therefore, E

ϕ
1 has a null sequence if and only if M

ϕ
1 = ∞ and p � d (cf. [8, Theorem 3.1]).

Consider now the functional E
ϕ
2 . The substitution u := wp/2 implies that

E
ϕ
2 (w) =

∫

Rd

ϕ2 |∇ϕ|p−2wp−2|∇w|2 dx = (2/p)2
∫

Rd

ϕ2|∇ϕ|p−2|∇u|2 dx. (4.6)

Let

ρ2(r) :=
r∫

1

ϕ(s)−2
∣∣ϕ′(s)

∣∣2−p
s1−d ds, (4.7)

and assume further that d � 2, then ρ2 is well-defined function on (0,∞) and ρ2(0) = −∞.
Using spherical coordinates for radial w, and then the substitution ρ2, we obtain

∫

Rd

ϕ2 |∇ϕ|p−2wp−2|∇w|2 dx = Cd

M2∫
−∞

|u′(ρ2)|2 dρ2,

where

M2 = M
ϕ
2 =

∞∫
1

ϕ−2|ϕ′|2−pr1−d dr. (4.8)

Therefore, E
ϕ
2 has a null sequence (for p > 2 and d � 2) if and only if M

ϕ
2 = ∞ (cf. [8, Theorem 3.1]).

Therefore, in order to prove the proposition it is sufficient to find two positive radial functions ϕ and ψ satisfying
M

ϕ = ∞ and M
ϕ

< ∞, while M
ψ

< ∞ and M
ψ = ∞.
1 2 1 2
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Step 3. Let us simplify now (4.5) and (4.8) in order to investigate when M
ϕ
j are finite or infinite for a specific ϕ and

j = 1,2. Without loss of generality, we assume that the integration in (4.5) and (4.8) is from r0 to ∞, where r0 � 1.
We set first ϕ(r) := r1−d/pη(r), where 2 < p < d . Then (4.5) becomes, up to a constant multiple,

M1 =
∞∫

r0

(
ϕprd−1)−1/(p−1) dr =

∞∫
r0

η−p/(p−1)r−1 dr. (4.9)

Set now

η(r) := [
t (p−1)/(p−2)(log t)γ

](p−2)/p
, where t := log r, and γ > 0.

Then we have

M1 =
∞∫

r0

η−p/(p−1)r−1 dr =
∞∫

t0

[
t (p−1)/(p−2)(log t)γ

](2−p)/(p−1) dt =
∞∫

t0

(log t)γ (2−p)/(p−1)

t
dt.

On the other hand,

M2 =
∞∫

r0

ϕ−2|ϕ′|2−pr1−d dr =
∞∫

r0

∣∣∣∣p − d

p
+ rη′

η

∣∣∣∣
2−p

η−pr−1 dr. (4.10)

Denote

M̃2 :=
∞∫

r0

η−pr−1 dr =
∞∫

t0

t1−p(log t)γ (2−p) dt. (4.11)

Since r|η′|/η � 1, it follows from (4.10) that there exist C > 0 such that

C−1M̃2 � M2 � CM̃2. (4.12)

Consequently, for 0 < γ � (p − 1)/(p − 2) and 2 < p < d , we have M
ϕ
1 = ∞ and M

ϕ
2 < ∞.

On the other hand, fix β ∈ R, β �= 0, and let ψ : (1,∞) → [1,∞), be a smooth monotone function such that
ψ(r) � rβ , and such that ψ ′ satisfies for any n = 1,2, . . . ,

∣∣ψ ′(r)
∣∣ =

{
e−r , r ∈ [2n + 1/4,2n + 3/4],
|β|rβ−1, r ∈ [2n + 1,2n + 2].

Therefore, if β > (p − d)/p, then M
ψ

1 < ∞.

Consider now M
ψ

2 , and recall that 2 < p � d . Consequently, there exist ε > 0 and C > 0 such that the integrand of

M
ψ

2 satisfies

ψ−2|ψ ′|2−pr1−d � Ceεr

on a set of infinite measure. Hence, M
ψ

2 = ∞. �
Remark 4.3. The proof above takes into account that (4.5), (4.8) both converge or both diverge when ϕ(r) is of the
form rα(log r)β , and the differentiation occurs only with respect to γ for ϕ(r) = r1−d/p(log r)(p−1)/p(log log r)γ .

5. Application: ground state of the linearized functional

We consider the linearized problem associated with the functional Q � 0. Let ϕ be a positive solution of the
equation Q′(u) = 0 in Ω , and let

a[u] :=
∫
Ω

(|∇ϕ|p−2|∇u|2 + V (x)ϕp−2u2)dx. (5.1)



368 Y. Pinchover et al. / Ann. I. H. Poincaré – AN 25 (2008) 357–368
Proposition 5.1. Let ϕ be a positive solution of the equation Q′(u) = 0 in Ω satisfying ∇ϕ �= 0.

1. If p > 2 and ϕ is a ground state of Q, then ϕ is a ground state of a.
2. If p < 2 and ϕ is a ground state of a, then ϕ is a ground state of Q.

Proof. Consider first the case p > 2. Assume that ϕ is a ground state of Q. Let {uk} be a null sequence of nonnegative
functions, and let wk := uk/ϕ. By (2.15),∫

Ω

ϕ2|∇ϕ|p−2w
p−2
k |∇wk|2 dx → 0. (5.2)

Set vk := w
p/2
k . Then∫

Ω

ϕ2|∇ϕ|p−2|∇vk|2 dx → 0 (5.3)

which by (2.11) yields

a[ϕvk] → 0.

Taking into account Remark 1.5, we conclude that {ϕvk} is a null sequence for a.
The case p < 2 is similar. If {zk} is a null sequence of nonnegative functions for the form a, then (5.3) is satisfied

with vk := zk/ϕ. This implies (5.2) with wk = v
2/p
k , which by (2.13) yields Q(uk) → 0 with uk = ϕwk . Therefore,

{uk} is a null sequence for Q and the proposition is proved. �
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