
Ann. I. H. Poincaré – AN 25 (2008) 369–380
www.elsevier.com/locate/anihpc

Regularity results for degenerate elliptic systems ✩

Michael Pingen

Fachbereich Mathematik, University of Duisburg-Essen, Lotharstr. 65, 47048 Duisburg, Germany

Received 22 December 2006; accepted 12 February 2007

Available online 1 September 2007

Abstract

We prove regularity results for certain degenerate quasilinear elliptic systems with coefficients which depend on two different
weights. By using Sobolev- and Poincaré inequalities due to Chanillo and Wheeden [S. Chanillo, R.L. Wheeden, Weighted Poincaré
and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985) 1191–1226; S. Chanillo,
R.L. Wheeden, Harnack’s inequality and mean-value inequalities for solutions of degenerate elliptic equations, Comm. Partial
Differential Equations 11 (1986) 1111–1134] we derive a new weak Harnack inequality and adapt an idea due to L. Caffarelli
[L.A. Caffarelli, Regularity theorems for weak solutions of some nonlinear systems, Comm. Pure Appl. Math. 35 (1982) 833–838]
to prove a priori estimates for bounded weak solutions. For example we show that every bounded weak solution of the system
−Dα(aαβ(x,u,∇u)Dβui) = 0 with |x|2|ξ |2 � aαβξαξβ � |x|τ |ξ |2, |x| < 1, τ ∈ (1,2) is Hölder continuous. Furthermore we
derive a Liouville theorem for entire solutions of the above systems.

Résumé

Nous prouvons des résultats de régularité pour certains systèmes elliptiques quasi linéaires dégénérés avec des coefficients
dépendant de deux poids différents. En employant des inégalités de Sobolev- et Poincaré dues à Chanillo et Wheeden [S. Chanillo,
R.L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math.
107 (1985) 1191–1226 ; S. Chanillo, R.L. Wheeden, Harnack’s inequality and mean-value inequalities for solutions of degenerate
elliptic equations, Comm. Partial Differential Equations 11 (1986) 1111–1134] nous déduisons une nouvelle inégalité de Harnack
et adaptons une idée due à L. Caffarelli [L.A. Caffarelli, Regularity theorems for weak solutions of some nonlinear systems,
Comm. Pure Appl. Math. 35 (1982) 833–838] pour prouver des évaluations a priori pour des solutions limitées et faibles. Par
exemple, chaque solution limitée et faible du système −Dα(aαβ(x,u,∇u)Dβui) = 0 avec |x|2|ξ |2 � aαβξαξβ � |x|τ |ξ |2, |x| < 1,
τ ∈ (1,2) est continue selon Hölder. De plus, nous déduisons un théorème de Liouville pour les solutions entières des systèmes
ci-dessus.
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1. Introduction

We consider weak solutions of degenerate elliptic systems of the form

−Dα

(
Aαβ(x,u,∇u)Dβui

) = f i(x,u,∇u) (i = 1, . . . ,m) (1)

in a domain Ω ⊂ R
n, where aαβ(x) := Aαβ(x,u(x),∇u(x)) are measurable and symmetric coefficients and

f (x,u,∇u) is a measurable function. Here and in the sequel, we use the summation convention: repeated Greek
indices are to be summed from 1 to n, repeated Latin indices from 1 to m. We assume there exist measurable weights
v(x),w(x) > 0 a.e. in Ω with the property

w(x)|ξ |2 � aαβ(x)ξαξβ � v(x)|ξ |2 ∀ξ ∈ R
n. (2)

Furthermore we require the following structure conditions:

1. supΩ |u| � M < ∞.
2. |f (x,u,p)| � aQ(x,p) and u(x) ·f (x,u,p) � a∗Q(x,p) for a.e. x ∈ Ω and for all p ∈ R

n×m with some a � 0,
a∗ ∈ R, where Q(x,p) := aαβ(x)pi

αpi
β .

The notion of a weak solution of (1) will be defined in Section 4; to prove regularity for weak solutions of (1) the
weights v and w have to satisfy three further conditions, which we will state exactly in Section 2. Roughly speaking w

and z := v2

w
have to be doubling weights and have to fulfill a weighted Poincaré- and a weighted Sobolev inequality. We

will show that the weights v(x) = |x| and w(x) = |x|τ with τ ∈ [1,2) in B1(0) ⊂ R
n, n � 3 satisfy these conditions.

Optimal regularity results for weak solutions of uniformly elliptic systems of type (1) are well known and due to
Hildebrandt and Widman [9], Wiegner [17,18] and Caffarelli [3]. For the case of equal weights, i.e. v = w, which be-
long to the Muckenhoupt class A2 (see Section 2 for explicit definitions), Fabes, Kenig and Serapioni [7] have proven
Hölder continuity for weak solutions of an elliptic equation. For certain different weights, Chanillo and Wheeden
[5] proved regularity for weak solutions of elliptic equations, while for degenerate elliptic systems only very little is
known. Baldes [1] and Baoyao [2] proved some results for equal weights, e.g. weak solutions of systems with bounded
weights v = w ∈ A2 are Hölder continuous provided the smallness condition a∗ + aM < 1 holds. The results in this
paper are of much more general nature than in [1] or [2], and, in fact, are the first regularity results for singular systems
with different weights.

Our proof uses an idea of L. Caffarelli [3] who proved a priori estimates for weak solutions of certain uniformly el-
liptic systems. His main tool was a weak Harnack inequality for supersolutions of a uniformly elliptic linear equation;
we will prove such a Harnack inequality for solutions of degenerate (in the above sense) elliptic equations in Sec-
tion 3. The proof of this Harnack inequality is based upon a method of Trudinger [16] in which a Harnack inequality
for solutions of some mildly degenerate elliptic equations was shown. Our regularity result reads as follows:

Theorem 1.1. Let u be a bounded, weak solution of (1) in Ω ⊂ R
n. The coefficients aαβ are required to fulfill (2) with

admissible weights w and v (see Section 2). Under the assumption a∗ + aM < 2 u is Hölder continuous and for every
Ω ′ � Ω there exist constants C = C(n,a, a∗,M,Ω,Ω ′) > 0 and α = α(n, a, a∗,M) > 0, such that

[u]α,Ω ′ � C. (3)

In the last section we also show a Liouville theorem for entire solutions of elliptic systems, whose coefficients are
degenerate in an arbitrary large compact subset of R

n and uniformly elliptic outside this compact set, more precisely:

Theorem 1.2. Let u be a bounded, weak solution of (1) in R
n. The coefficients aαβ are assumed to be of type (2) in a

ball BR(0) ⊂ R
n with admissible weights w and v and to be uniformly elliptic outside this ball. If a∗ + aM < 2, then

u = const. a.e. in R
n.

This result extends a Liouville theorem for uniformly elliptic systems due to Hildebrandt and Widman [10] and
Meier [11].
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2. The Muckenhoupt classes Ap and conditions for the weights

The Muckenhoupt classes are defined in the paper [12] by Muckenhoupt in connection with Hardy functions. Let
w ∈ L1

loc(R
n) be a nonnegative function.

Definition 2.1. Let 1 < p < ∞. The weight w is an element of Ap , if

sup
BR⊂Rn

(
1

|BR|
∫
BR

w(x)dx

)(
1

|BR|
∫
BR

w(x)
−1
p−1 dx

)p−1

=: Cp < ∞, (4)

w is to be said of class A∞, if for every ε > 0 there exists a δ > 0 with the property that for every measurable E ⊂ BR

with |E| < δ|BR| the inequality w(E) � εw(BR) holds, where w(E) = ∫
E

w(x)dx.

From [13] and [6] we infer A∞ = ⋃
p>1 Ap . A result due to Muckenhoupt and Wheeden [14], p. 223 implies the

doubling property for any w ∈ A∞:

w(B2R) � Kw(BR) with some K > 0. (5)

We require the following conditions for the weights w and z = v2

w
(cf. [5]):

(1) w,z ∈ D∞, i.e. the doubling property holds: w(B2R) � Cw(BR) and z(B2R) � Cz(BR) with a constant C > 0
independent of R.

(2) The following Poincaré inequality holds: There exists a k > 1 such that for all BR ⊂ Ω and all f ∈ C1(BR) the
inequality(

1

z(BR)

∫
BR

∣∣∣∣f − 1

z(BR)

∫
BR

f zdx

∣∣∣∣2k

z dx

) 1
2k

� CR

(
1

w(BR)

∫
BR

|∇f |2w dx

) 1
2

(6)

holds with a constant C independent of f .
(3) The following Sobolev inequality holds: There exists a k > 1 such that for all BR ⊂ Ω and all f ∈ C1

0(BR) the
inequality(

1

z(BR)

∫
BR

|f |2kz dx

) 1
2k

� CR

(
1

w(BR)

∫
BR

|∇f |2w dx

) 1
2

(7)

holds with a constant C independent of f .

Fabes, Kenig and Serapioni [7] showed that in the case v = w ∈ A2 conditions (2) and (3) are satisfied. In the case of
different weights, Chanillo and Wheeden [4] proved that condition (2) and (3) hold, if w ∈ A2, z ∈ D∞ and if there is
a q > 2 such that for all balls BR , whose centers are in B2R , the balance condition

s

[
z(BsR)

z(BR)

] 1
q

� C

[
w(BsR)

w(BR)

] 1
2

(8)

holds for all s ∈ (0,1).

3. A weak Harnack inequality

To give a definition of a weak solution of a degenerate elliptic equation

Dα

(
aαβ(x)Dβu

) = 0 (9)

with coefficients aαβ(x) which satisfy (2) we first need to define the space H 1
2 (Ω,v,w), where v and w are weights

with the properties (1)–(3) of Section 2.
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Definition 3.1. H 1
2 (Ω,v,w) is defined as completion of C1(Ω) with respect to the norm

‖u‖1,2,Ω =
√√√√∫

Ω

aαβ(x)DαuiDβui dx +
∫
Ω

u2v dx.

H̊ 1
2 (v,w,Ω) denotes the completion of C1

c (Ω) with respect to the norm

‖u‖1,2,0,Ω =
√√√√∫

Ω

aαβ(x)DαuiDβui dx.

Remark. It is possible to estimate ‖ · ‖1,2,Ω as follows:∫
Ω

|∇u|2w dx +
∫
Ω

u2v dx � ‖u‖2
1,2,Ω �

∫
Ω

|∇u|2v dx +
∫
Ω

u2v dx < ∞.

If uk ∈ C1(Ω) is a sequence with uk → u in H 1
2 (Ω,v,w), then uk and ∇uk converge in L2(Ω,v) and L2(Ω,w)

resp. If limk→∞ ∇uk = v, define ∇u := v; ∇u is well defined (cf. [5], §2).

Definition 3.2. u ∈ H 1
2 (Ω,v,w) is a weak subsolution of (9), if∫

Ω

aαβ(x)DβuDαφ dx � 0 (10)

holds for every φ ∈ H̊ 1
2 (Ω,v,w),φ � 0. u is called a weak supersolution, if −u is a weak subsolution and u is called

a weak solution, if u is a weak subsolution and a weak supersolution.

The main result of this section is

Theorem 3.3. Let u be a nonnegative weak supersolution of (9) in Ω ⊂ R
n. Then for any ball BR ⊂ Ω with

z(BR)
w(BR)

� C1 and any α,β, γ satisfying 0 < α < β < 1,0 < γ < k the estimate(
1

z(BβR)

∫
BβR

|u|γ z dx

) 1
γ

� C(n,α,β, γ,C1) inf
BαR

u (11)

holds, where k > 1 is the constant from the Sobolev- and Poincaré inequalities.

The proof of Theorem 3.3 is divided into three lemmatas, extended proofs of these lemmatas can be found in [15].
All these lemmatas are based on a method developed by Trudinger [16].

Lemma 3.4. Let u be a weak subsolution of (9) in Ω ⊂ R
n. Then for every BR ⊂ Ω with z(BR)

w(BR)
� C1 we have for any

0 < α < β < 1 the estimate

sup
BαR

u � C(n,α,β,C1)

(
1

z(BβR)

∫
BβR

|u+|2z dx

) 1
2

. (12)

Proof. For δ � 1 and 0 < N < ∞ we define

F(u) = FN
δ (u) =

{
(u+)δ, u � N,

δNδ−1u − (δ − 1)Nδ, u > N.

Use φ(x) = η2(x)F (u), η � 0, η ∈ C1
c (BR) as test function in (10). We arrive at∫

η2F ′(u)|∇u|2w dx � 2
∫

η|ηx |F |∇u|v dx. (13)
Ω Ω
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The inequality F(u) � u+F ′(u) is easily derived; by using this relation, the Hölder inequality yields∫
Ω

η2(x)F ′(u)|∇u|2w dx � C

∫
Ω

η2
x(u

+)2F ′z dx. (14)

Define

G(u) :=
u∫

0

∣∣F ′(t)
∣∣ 1

2 dt =
{√

δ 2
δ+1 |u+| δ+1

2 , u � N,
√

δN
δ−1

2 |u|, u > N.

With (14) we infer∫
Ω

η2|∇G|2w dx � C

∫
Ω

η2
x(u

+G′)2z dx.

In connection with the Sobolev inequality and G � u+G′ this estimate implies(
1

z(BR)

∫
BR

|ηG|2kz dx

) 1
2k

� CR

√
z(BR)

w(BR)︸ ︷︷ ︸
�√

C1

(
1

z(BR)

∫
BR

η2
x(u

+G′)2z dx

) 1
2

. (15)

Set q := δ+1
2 and take the qth root of (15). Then choose � and σ in a way that α � � < σ � β and η in a way that

supp η ⊂ BσR , η ≡ 1 in B�R , |ηx | � 2
(σ−�)R

. If N = ∞ we see G(u) =
√

δ
q

(u+)q ; by using the doubling property for
z we obtain(

1

z(B�R)

∫
B�R

(u+)2kqz dx

) 1
2kq

�
(

Cq

σ − �

) 1
q
(

1

z(BβR)

∫
BσR

(u+)2qz dx

) 1
2q

. (16)

Iteration of (16):
Define q0 := 1, qi := kqi−1 = ki , furthermore set �i = α + (β − α)1+i , σi = �i−1. With this choice of qi and �i

we infer

sup
BαR

u �
∞∏
l=0

(
Cql

�l − �l+1

) 1
ql

(
1

z(BβR)

∫
BβR

(u+)2z dx

) 1
2

. (17)

We can estimate the infinite product in (17) by using the geometric sum. Thus, we have

sup
BαR

u � C(n,α,β,C1)

(
1

z(BβR)

∫
BβR

|u+|2z dx

) 1
2

.

This completes the proof of Lemma 3.4. �
Lemma 3.5. Under the hypotheses of Theorem 3.3 and α < β , we have

1

infBαR
u

� exp

(
C − 1

z(BβR)

∫
BβR

loguzdx

)
. (18)

Proof. W.l.o.g. we assume u � ε > 0 (in case u � 0 we use Levi’s Theorem to derive the assertion). Testing (10) with
the function φ(x) = η(x)u−1(x), η ∈ C1

c (Ω), η � 0 yields the estimate∫
aαβ(x)DβuDαηu−1 dx −

∫
aαβ(x)DβuDαuηu−2 dx � 0.
Ω Ω
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Set v := log( t
u
), where t denotes a positive constant which will be specified later. We see that v is a weak subsolution

of (9) and with Lemma 3.4 we infer

sup
BαR

v � C

(
1

z(BβR)

∫
BβR

|v+|2z dx

) 1
2

. (19)

To estimate the right-hand side of (19) we test (10) with φ(x) = η2(x)u−1(x), η ∈ C1
c (Ω). With (2) and the Hölder

inequality we arrive at∫
Ω

η2u−2|∇u|2w dx � C

∫
Ω

η|ηx‖∇u|u−1v dx � C

(∫
Ω

η2
xz dx

) 1
2
(∫

Ω

η2|∇u|2u−2w dx

) 1
2

.

It follows
∫
Ω

η2u−2|∇u|2w dx � C
∫
Ω

η2
xz dx.

Choose η in a way that η ≡ 1 in BβR , supp η ⊂ BR , |ηx | � 2
(1−β)R

. From the last inequality we conclude together

with the doubling property and the fact |∇v|2 = u−2|∇u|2 the estimate∫
BβR

|∇v|2w dx � C

(
1

R2

∫
BβR

z dx

)
.

We define t by means of log t = 1
z(BβR)

∫
BβR

loguzdx, then the weighted mean value of v is zero and the Poincaré
inequality in connection with the above inequality yields(

1

z(BβR)

∫
BβR

|v|2kz dx

) 1
2k

� C

√
z(BβR)

w(BβR)

(
1

z(BβR)

∫
BβR

z dx

) 1
2

� C(n,β,C1).

Combining this estimate with (19) we infer

sup
BαR

v = log t + log

(
1

infBαR
u

)
� C.

By considering the definition of t we finally arrive at(
inf
BαR

u
)−1

� exp

(
C − 1

z(BβR)

∫
BβR

loguzdx

)
. �

Lemma 3.6. Under the hypotheses of Theorem 3.3 and α < β , we have(
1

z(BαR)

∫
BαR

|u|γ z dx

) 1
γ

� exp

(
C + 1

z(BβR)

∫
BβR

loguzdx

)
. (20)

Proof. We may again assume u � ε > 0. Set f = v− = log(u
t
)+ (for the definition of t see the proof of Lemma 3.5)

and test the weak formulation with φ(x) = η2(x)u−1(x)(f δ(x) + (2δ)δ), where δ � 1, η ∈ C1
c (BR), η � 0. By using

the ellipticity condition we conclude∫
Ω

η2u−2(f δ + (2δ)δ − δf δ−1)|∇u|2w dx � C

∫
Ω

η|ηx |u−1(f δ + (2δ)δ
)|∇u|v dx.

Now we use the inequality δf δ−1 � 1
2 (f δ + (2δ)δ) in connection with |∇f |2 = u−2|∇u|2 and the Hölder inequality

to infer∫
η2(f δ + (2δ)δ

)|∇f |2w dx � C

∫
η2

x

(
f δ + (2δ)δ

)
z dx.
Ω Ω
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By using once again δf δ−1 � 1
2 (f δ + (2δ)δ) and taking the elementary inequality f δ + (2δ)δ � 2(f δ+1 + (2δ)δ) into

account we obtain

δ

∫
Ω

η2f δ−1|∇f |2w dx � C

∫
Ω

η2
x

(
f δ+1 + (2δ)δ

)
z dx. (21)

Let q := δ+1
2 > 1, by applying the Sobolev inequality to ηf q ∈ H̊ 1

2 (BR, v,w) we find under consideration of (21)

(
1

z(BR)

∫
BR

|ηf q |2kz dx

) 1
2k

� CR

(
1

w(BR)

∫
BR

(
η2

xf
δ+1 + η2(δ + 1)2f δ−1|∇f |2)w dx

) 1
2

� C
√

qR

√
z(BR)

w(BR)︸ ︷︷ ︸
�√

C1

(
1

z(BR)

∫
BR

(ηxf
q)2z dx + (2δ)δ sup

BR

|ηx |2
) 1

2

.

Choose � and σ in a way that α � � < σ � β and η in a way that supp η ⊂ BσR , η ≡ 1 in B�R and |ηx | � 2
(σ−�)R

.
With this choice of �,σ and η, taking the qth root in the last estimate yields(

1

z(B�R)

∫
B�R

f 2qkz dx

) 1
2kq

� Cq
1
q (σ − �)

− 1
q

[
Cq +

(
1

z(BσR)

∫
BσR

f 2qz dx

) 1
2q

]
. (22)

Now set qi = ki � 1, �i = α + 2−i (β − α), σi = �i + 2−i (β − α), we obtain(
1

z(B�iR)

∫
B�i

R

f 2ki+1
z dx

) 1
2ki+1

� (C2iki)
1
ki

[
Cki +

(
1

z(BσiR)

∫
BσiR

f 2ki

z dx

) 1
2ki

]
.

In the next step we iterate this inequality; after i − 1 iteration steps we arrive at(
1

z(B�iR)

∫
B�iR

f 2ki+1
z dx

) 1
2ki+1

�
i∑

j=1

Ckj
i∏

l=j

(Ckl2l )
1
kl +

i∏
j=1

(Ckj 2j )
1
kj

(
1

z(BβR)

∫
BβR

f 2kz dx

) 1
2k

. (23)

We estimate the series and products in (23) and then we find with the doubling property and the Hölder inequality the
following estimate for all p > 2k:(

1

z(BαR)

∫
BαR

f pz dx

) 1
p

� C

[
p +

(
1

z(BβR)

∫
BβR

f 2kz dx

) 1
2k

]
. (24)

By considering the power series expansion of ep0f for p0 ∈ (0, e−1) we infer by using (24) and the Stirling approxi-
mation n! ≈ √

2πn(n
e )n for large n the estimate

1

z(BαR)

∫
BαR

ep0f z dx � Ce
( 1

z(BβR)

∫
BβR

f 2kz dx)
1

2k

. (25)

Since f = v− the right-hand side of (25) is bounded by the proof of Lemma 3.5. Thus(
1

z(BαR)

∫
BαR

ep0f z dx

) 1
p0 � C. (26)

In the remainder of the proof we have to estimate ‖u
t
‖Lγ (z,BαR) by ‖u

t
‖Lp0 (z,Bα′R) (α < α′ < β). For this, we remark

that −u is a subsolution of (9); by modifying the function F(u) appearing in the proof of Lemma 3.4 in the sense
that δ ∈ (−1,0) we see that the estimate (16) holds also for q ∈ (0, 1 ). For the iteration process we set q0 := γ ,
2 2k
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qi := qi−1
k

→ 0, i → ∞. After finitely many iteration steps we achieve 2qi < p0 < e−1. From (26) and (16) (for

q ∈ (0,1/2)) we infer with the definition of t(
1

z(BαR)

∫
BαR

uγ z dx

) 1
γ

� exp

(
C + 1

z(BβR)

∫
BβR

loguzdx

)
. �

Proof of Theorem 3.3. Multiply (18) and (20). �
4. Results for weak solutions of degenerate elliptic systems

Now we define what we will understand under a weak solution of a system of type (1):

Definition 4.1. u ∈ H 1
2 (Ω,v,w,R

m) is called a weak solution of (1), if∫
Ω

aαβ(x)DβuDαφ dx =
∫
Ω

f (x,u,∇u)φ dx (27)

holds for all φ ∈ H̊ 1
2 (Ω,v,w,R

m).

For the proof of Theorem 1.1 we now can use an idea of L. Caffarelli [3]. In fact we only have to replace the weak
Harnack inequality for weak supersolutions of uniformly elliptic equations by the weak Harnack inequality proven in
Section 3 (Theorem 3.3).

Examples.

1) v(x) = w(x) = |x|α , x ∈ BR(0) ⊂ R
n and α > −n. If α ∈ (−n,n) it is easy to show that v = w ∈ A2 and if

α > −n + 2 we can interpret |x|α as a weight which arises from a quasiconformal mapping (cf. [7], pp. 105–
112). This weight has also the properties which were needed in the proof of Theorem 3.3 (cf. [7]) and so it is an
admissible weight for the system (1).

2) v(x) = w(x) = (log |x|)k , x ∈ B1/2(0) ⊂ R
n, k ∈ 2N.

3) v(x) = w(x) = |x|α(log |x|)2, x ∈ B1/2(0) ⊂ R
n, α ∈ (−n,n).

4) v(x) = |x|, w(x) = |x|τ , τ ∈ (1,2), x ∈ B1(0) ⊂ R
n, n � 3. It is obvious that w ∈ A2, z = |x|2−τ ∈ D∞. In view

of a result due to Chanillo and Wheeden [4] it is enough to show that the balance condition (8) holds. We remark
that for α > 0 and a ∈ BR(0) there are positive constants c1 and c2 with the property

c1R
n
(
R + |a|)α �

∫
BR(a)

|x|α dx � c2R
n
(
R + |a|)α

. (28)

From (28) we infer z(BR)
w(BR)

� C1; for q ∈ (2, 2n
n+τ−2 ] we have for any s ∈ (0,1) the estimates

s

[
z(BsR(a))

z(BR(a))

] 1
q

� Css
n
q and

[
w(BsR(a))

w(BR(a))

] 1
2

� s
n
2 s

τ
2 .

Since ss
n
q � Cs

n+τ
2 the validity of (8) is shown.

Liouville theorem for entire solutions. Here, we assume the coefficients aαβ(x) satisfy the estimate

1

C
s(x)|ξ |2 � aαβ(x)ξαξβ � Ct(x)|ξ |2 (29)

with C � 1 and

s(x) =
{

w(x), |x| < L,

1, |x| � L,
t (x) =

{
v(x), |x| < L,

1, |x| � L,

where w and v are weights which satisfy the conditions of Section 2.
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The proof of the Liouville Theorem uses an idea of Meier [11], who proved the corresponding Liouville theorem
for uniformly elliptic systems. First we have to consider some lemmatas:

Lemma 4.2. Let u be a bounded, weak solution of (1) in a domain Ω ⊂ R
n. If a∗ < 1 and ξ ∈ R

m is a vector with
|ξ | � 1−a∗

a
, then −Dα(aαβ(x)Dβ |u − ξ |2) � 0 in Ω .

Proof. We use φ = η(u− ξ), η ∈ C∞
c (Ω), η � 0 as a test function in the weak formulation (27) and take the structure

conditions of the introduction into account. �
With the notation z1(x) := t2(x)

s(x)
we can formulate the next lemmatas.

Lemma 4.3. Let B4L(0) ⊂ Ω and u be a bounded, weak, nonnegative supersolution of Dα(aαβ(x)Dβu) = 0 in
Ω ⊂ R

n with coefficients aαβ(x) of the form (29), furthermore let z1(BL)
s(BL)

� C1. Then we have for any R > 0 with
B4R(0) ⊂ Ω the estimate

1

z1(B2R)

∫
B2R(0)

uz1 dx � C(n,C1) inf
BR(0)

u.

Proof. If B4R(0) ⊂ BL(0), the lemma is a direct consequence of Theorem 3.3 with γ = 1 and suitable α,β . If
BL(0) ⊂ B4R(0) we can prove similarly to [8], pp. 195–198 a Harnack inequality for supersolutions of Lu = 0 with
uniformly elliptic coefficients on annular regions B4S − BS (S � L), i.e.

1

z1(Bβ1S − Bβ2S)

∫
Bβ1S−Bβ2S

uz1 dx � C inf
Bα1S−Bα2S

u (30)

with 1 < β2 < α2 < α1 < β1 < 4.
The main difference in the proof of (30) compared with [8] is to construct suitable test functions on the correspond-

ing annular regions.
Choose α,α1, β,β1 in a way that 1 < α < α1 < 2, α1 < β1 < β < 4 and Bα1L ⊂ Bβ1R . We conclude

1

z1(BβR)

∫
BβR

uz1 dx = 1

z1(BβR − BαL) + z1(BαL)

[ ∫
BβR−BαL

uz1 dx +
∫

BαL

uz1 dx

]

� 1

z1(BβR − BαL)

∫
BβR−BαL

uz1 dx + C
1

z1(B2L)

∫
B2L

uz1 dx

� C inf
Bβ1R−Bα1L

u + C inf
Bα1L

u � C inf
BR

u.

Here, we used (30) and Theorem 3.3.
If BL(0) ⊂ B2R(0) we choose β = 2, β1 = 3/2, α1 = 5/4, α = 9/8 to arrive at the assertion. If BL(0) �⊂ B2R(0) we

choose some β ∈ (2,4) with BL(0) ⊂ BβR(0); the doubling property of z1 yields the desired estimate. �
Lemma 4.4. Let u be a weak solution of −Dα(aαβDβu) � 0 in B4R(0) ⊂ R

n with coefficients of the form (29). If
z1(BR)
s(BR)

� C1, then there is a constant δ(n,C1) ∈ (0,1) with the property

sup
BR(0)

u � (1 − δ) sup
B4R(0)

u + δ
1

z1(BR)

∫
BR(0)

uz1 dx.

Proof. From Lemma 4.3 we infer for the nonnegative supersolution supB4R(0) u − u the estimate

1

z1(B2R)

∫ (
sup
B4R

u − u
)
z1 dx � C inf

BR

(
sup
B4R

u − u
)
.

B2R
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With the help of the doubling property we can estimate the left-hand side from below by

C̃
1

z1(BR)

∫
BR

(
sup
B4R

u − u
)
z1 dx

and we infer

C̃

C
sup
B4R

u − C̃

C

1

z1(BR)

∫
BR

uz1 dx � sup
B4R

u − sup
BR

u. �

Lemma 4.5. Let u be a bounded, weak solution of (1) in R
n with coefficients aαβ(x) of the form (29). If z1(BR)

s(BR)
� C1

for some R � L
2 and a∗ < 1, then we have

(i) limR→∞ 1
z1(BR)

∫
BR(0)

u(x)z1 dx =: ū∞ exists and |ū∞| = supRn |u| = M .

(ii) limR→∞ 1
z1(BR)

∫
BR(0)

|u − ū∞|2z1 dx = 0.

(iii) supRn |u − ξ | = |ū∞ − ξ | ∀ξ ∈ R
m with |ξ | � 1−a∗

a
.

Proof. (i) In view of Lemma 4.2 we have −Dα(aαβ(x)Dβ |u − ξ |2) � 0 ∀ξ ∈ R
m with |ξ | � 1−a∗

a
. From Lemma 4.4

we infer by letting R → ∞ the estimate supRn |u − ξ |2 � limR→∞ 1
z1(BR)

∫
BR(0)

|u − ξ |2z1 dx. It’s obvious that the
reverse inequality is also true. Thus,

lim
R→∞

1

z1(BR)

∫
BR(0)

|u − ξ |2z1 dx = sup
Rn

|u − ξ |2. (31)

Since
1

z1(BR)

∫
BR(0)

|u − ξ |2z1 dx = 1

z1(BR)

∫
BR(0)

|u|2z1 dx − 2ξ · 1

z1(BR)

∫
BR(0)

uz1 dx + |ξ |2

we see in view of (31) that limR→∞ ξ · 1
z1(BR)

∫
BR(0)

uz1 dx exists and we infer

sup
Rn

|u − ξ |2 = M2 + |ξ |2 − 2ξ · lim
R→∞

1

z1(BR)

∫
BR(0)

uz1 dx. (32)

Set τ := 1−a∗
aM

and choose ū∞ ∈ R
m in a way that |ū∞| = M and supRn |u + τ ū∞| = (1 + τ)M . With ξ := −τ ū∞ we

observe from (32)

M2 = lim
R→∞ ū∞

1

z1(BR)

∫
BR(0)

uz1 dx.

Since |ū∞|, | 1
z1(BR)

∫
BR(0)

uz1 dx| � M we conclude assertion (i).
(ii) We have

1

z1(BR)

∫
BR(0)

|u − ū∞|2z1 dx = |ū∞|2 + 1

z1(BR)

∫
BR(0)

|u|2z1 dx − 2ū∞ · 1

z1(BR)

∫
BR(0)

uz1 dx.

By letting R → ∞ we infer from the proof of (i)

lim
R→∞

1

z1(BR)

∫
BR

|u − ū∞|2z1 dx = M2 + M2 − 2M2 = 0.

(iii) (32) and (i) yield for every ξ ∈ R
m with |ξ | � 1−a∗

a
the equation

sup
n

|u − ξ |2 = |ū∞|2 + |ξ |2 − 2ξ · ū∞ = |ū∞ − ξ |2. �

R
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Now we can start with the proof of Theorem 1.2:

Proof of Theorem 1.2. Define for t ∈ [0,1] the function ut := u − t ū∞ with ū∞ = limR→∞ 1
z1(BR)

∫
BR(0)

uz1 dx.

Furthermore, set Mt := supRn |ut | (note: Mt depends continuously on t ) and let I := {t ∈ [0,1];Mt � (1 − t)M0}. We
denote by T the biggest number in I and we assume T < 1.

uT = u − T ū∞ is a weak solution of a system of type (1) with |f | � aQ(x,∇u) and (u − T ū∞) · f � (a∗ +
aT |ū∞|)Q(x,∇u). Since ū∞ has been chosen in the direction of u, we infer with a∗

T := a∗ + aT |ū∞| the estimates

a∗
T + a sup

Rn

|u − T ū∞| < 2 and a∗
T < 1.

Define t := min(1, T + 1−a∗
T

aM
); with this t we have T < t � 1 and |(t − T )ū∞| � 1−a∗

T

a
. With ξ := (t − T )ū∞ we

conclude from Lemma 4.5(iii) supRn |u − t ū∞| = supRn |uT − ξ | = (1 − t)|ū∞| and therefore Mt � (1 − t)M0. This
means t ∈ I , but since T < t this is a contradiction to our assumption that T is the biggest number in I . We infer
T = 1 and the proof is complete. �
Examples.

1) Let L > 0 and τ ∈ (−n,∞). Choose

aαβ(x) =
{ |x|τ δαβ, |x| < L,

δαβ, |x| � L.

With the same argument as above we see that these coefficients are admissible.
2) Let k ∈ 2N and

aαβ(x) =

⎧⎪⎨
⎪⎩

log(|x|)kδαβ, |x| < 1

2
,

δαβ, |x| � 1

2
.

3) Let τ ∈ (−n,n) and

aαβ(x) =

⎧⎪⎨
⎪⎩

|x|τ log(|x|)2δαβ, |x| < 1

2
,

δαβ, |x| � 1

2
.

4) Let τ ∈ (1,2) and choose coefficients aαβ(x) with

s(x)|ξ |2 � aαβ(x)ξαξβ � t (x)|ξ |2,
where

s(x) =
{ |x|τ , |x| < 1

1, |x| � 1
and t (x) =

{ |x|, |x| < 1,

1, |x| � 1.

By using the same methods as above, it is easy to see that these weights satisfy (8) and z1(BR)
s(BR)

� C1 for all balls
BR(a) ⊂ B1(0).
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