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Abstract

We consider nonlinear parabolic systems of the form ut = −∇V (u) + uxx , where u ∈ R
n, n � 1, x ∈ R, and the potential V is

coercive at infinity. For such systems, we prove a result of global convergence toward bistable fronts which states that invasion of a
stable homogeneous equilibrium (a local minimum of the potential) necessarily occurs via a traveling front connecting to another
(lower) equilibrium. This provides, for instance, a generalization of the global convergence result obtained by Fife and McLeod
[P. Fife, J.B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Rat. Mech.
Anal. 65 (1977) 335–361] in the case n = 1. The proof is based purely on energy methods, it does not make use of comparison
principles, which do not hold any more when n > 1.
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1. Introduction

We consider a nonlinear parabolic system of the form

ut = −∇V (u) + uxx, (1)

where the space variable x belongs to R and u = (u1, . . . , un) ∈ R
n, n � 1. Our main assumption is that the nonlin-

earity in (1) is the gradient of a scalar function V : Rn → R, which will be referred to as the potential. We assume that
V is of class Ck , k � 3, and that V (u) → +∞ when ‖u‖ → +∞.

The aim of this paper is to provide some insight into the global dynamics of this class of systems. Our approach
is based on the (formal) gradient structure of system (1). If u(x, t) is a solution of (1), let us consider the energy
functional

E
[
u(., t)

] =
∫
R

(
ux(x, t)2

2
+ V

(
u(x, t)

))
dx (2)
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where u2
x = (u1)

2
x + · · · + (un)

2
x . Then, at least formally,

d

dt
E

[
u(., t)

] = −
∫
R

ut (x, t)2 dx � 0 (3)

(and the system (1) can formally be rewritten in the form: ut (., t) = − δ
δu

E[u(., t)]).
If the system (1) was considered on a bounded domain, then the integrals in (2) and (3) would converge, and

the decrease of the energy would enable to show that any solution converges toward the set of stationary solutions.
But since we consider an unbounded domain and since we are interested in global perturbations of traveling wave
solutions, we cannot restrict ourselves to solutions of finite energy, therefore we will have to deal with the formal
character of the gradient structure.

The key point, on which the whole proof relies, is that this formal gradient structure exists not only in the laboratory
frame, but also in any frame traveling at a constant velocity [7]. Indeed, for any c ∈ R, if we let x = ct + y and
v(y, t) = u(ct + y, t), then system (1) becomes

vt − cvy = −∇V (v) + vyy, (4)

and if we consider the energy

Ec

[
v(., t)

] =
∫
R

ecy

(
vy(y, t)2

2
+ V

(
v(y, t)

))
dy, (5)

then, at least formally,

d

dt
Ec

[
v(., t)

] = −
∫
R

ecyvt (y, t)2 dy (6)

(and the system (4) can formally be rewritten in the form: vt (., t) = −e−cy δ
δv

Ec[v(., t)]).
This formal gradient structure indicates that, in any frame traveling with constant velocity c, any solution should (in

a certain sense) converge toward solutions which are stationary in this frame, or equivalently toward waves traveling at
velocity c in the laboratory frame. More precisely, one should find convergence toward traveling fronts (i.e. traveling
waves connecting homogeneous equilibria), since those are essentially the only bounded waves traveling at nonzero
velocity (see Proposition 3 below). In short, this formal gradient structure seems to be sufficient to yield by itself
global convergence toward traveling fronts. Nevertheless, it seems that none of the known results concerning global
convergence toward traveling fronts for systems of the form (1) was ever obtained as a consequence of this formal
gradient structure only.

Global stability of traveling fronts of dissipative systems is an old question that gave rise to a considerable amount
of work and results (see [29] and references therein), but mostly devoted to systems satisfying a comparison principle
(also called maximum principle). This hypothesis states that a certain order among solutions is preserved by the
semi-flow, a constraint that can be strong enough to yield global stability results.

Two cases can be naturally distinguished, called monostable or bistable, depending on the stability of the equi-
librium which is “invaded” by the front (the equilibrium behind the front is usually stable). In the monostable case,
global convergence results go back to the seminal work of Kolmogorov, Petrovskii, and Piskunov [19], and in the
bistable case, they go back to the work of Fife and McLeod in the late seventies [7]. Both are concerned with par-
abolic equations of the form (1) when the variable u is scalar. In this case the equation admits the formal gradient
structure recalled above and also satisfies a comparison principle (which does not hold any more when u is higher-
dimensional). Whereas in [19] the proof does not make use of the gradient structure, in [7] both ingredients, the formal
gradient structure and the maximum principle are used. Those results gave rise to numerous generalizations to more
general cases [29,27,4,23,24,2] where in general there exists no gradient structure but still a comparison principle.

In the present paper we shall consider in some sense the opposite case, that is the case of systems with arbitrary
number of components, for which in general no maximum principle is available, but we choose the nonlinearity in
such a way that a gradient structure exists. Our main purpose will be to prove a result of global convergence toward
traveling fronts invading a stable equilibrium (bistable case). In the absence of comparison principle we shall use only
energy arguments derived from the formal gradient structure recalled above. In particular, this will provide a proof of



E. Risler / Ann. I. H. Poincaré – AN 25 (2008) 381–424 383
Fife and McLeod’s result which does not make use of any comparison principle. Unfortunately we were not able to
treat the monostable case by similar techniques (see [22] for another attempt).

Notations and preliminary results

Let us denote by X the uniformly local Sobolev space H 1
ul(R,R

n) (its definition is recalled in Section 2 below).
We are going to study the semi-flow of the parabolic system (1) in this space, which is the most appropriate for our
approach. However, due to the smoothing properties of the system, the choice of the functional framework is not
crucial, and other spaces could be used as well. For instance, all statements in this introduction remain true if we
suppose that X denotes the more familiar Banach space C1

b(R,R
n) of functions in C1(R,R

n) which are uniformly
bounded, together with their first derivative.

We assume that the potential function V is strictly coercive at infinity in the following sense:

(H1) there exist constants εV > and CV > 0 such that, for any u ∈ R
n, we have u · ∇V (u) � εV u2 − CV .

System (1) defines a local semi-flow on X, and due to hypothesis (H1) this semi-flow is actually global (see
Section 2 and Lemma 6 in Appendix A). Let us denote by (St )t�0 this semi-flow (in other words u(x, t) = (Stu0)(x)

denotes the solution of (1) with initial data u(x,0) = u0(x)).
We are interested in the long time behavior of solutions which are close, for x large positive, to a stable homoge-

neous equilibrium (a local minimum of V ) which, without loss of generality, we assume to be at 0:

(H2) V (0) = 0, ∇V (0) = 0, and D2V (0) > 0 (the Hessian of V at 0 is positive definite).

The class of solutions will shall consider is the following (invariant) subset of X:

A= {
u0 ∈ X | lim sup

t→+∞
lim sup
x→+∞

∣∣(Stu0)(x)
∣∣ = 0

}
.

This class is of course nonempty (it contains the homogeneous stationary solution u ≡ 0), actually it contains any
initial data that are sufficiently close to 0 for x large positive, as is shown by the following proposition.

Proposition 1. Assume that V satisfies (H1) and (H2). Then there exists δ > 0 such that any u0 ∈ X satisfying

lim sup
x→+∞

x+1∫
x

(
u0(x)2 + u′

0(x)2)dx � δ

belongs to A.

It follows in particular from this proposition that A is open in X (see Corollary 2 in Section 3). Let us consider the
following (invariant) subset of A:

Ainv = {
u0 ∈ A | there exists ε > 0 such that lim sup

t→+∞
sup
x�εt

∣∣(Stu0)(x)
∣∣ > 0

}
.

Roughly speaking, the bulk of a solution belonging to Ainv travels to the right at a nonzero mean velocity, and therefore
“invades” the domain, far to the right in space, where this solution is very close to 0. For instance traveling waves,
connecting to 0 at +∞ and to any other equilibrium at −∞ and with positive velocity, belong to this class.

The following proposition (due to Thierry Gallay) provides a sufficient condition in order initial data to belong
to Ainv.

Proposition 2. Assume that V satisfies (H1) and (H2). Then any u0 ∈ A such that

0∫
−L

(
u′

0(x)2

2
+ V

(
u0(x)

))
dx → −∞ when L → +∞

belongs to Ainv.
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To state our results, the following notations and preliminary result on traveling waves will be required.
Let λmin (resp. λmax) denote the smallest (resp. the largest) of the eigenvalues of the Hessian D2V (0). We have

0 < λmin � λmax. For the remaining of this paper, we choose and fix r0 > 0 sufficiently small so that, for any v ∈ R
n

satisfying |v| � r0, any eigenvalue λ of D2V (v) satisfies

λmin

2
� λ � 2λmax. (7)

Take any c > 0. A function (x, t) 	→ φ(x − ct) (i.e. a wave traveling at velocity c) is a solution of the system (1) if
and only if φ(·) is a solution of the differential system

φ′′(y) = −cφ′(y) + ∇V
(
φ(y)

)
, y ∈ R (8)

(equation of motion of a particle of unit mass moving in potential −V (·) with viscous damping c).
For any ν ∈ R

n × R
n, let y 	→ φc,ν(y) denote the maximal solution of the differential system (8) with initial data

(φc,ν(0),φ′
c,ν(0)) = ν. Let S(r0) = {v ∈ R

n | |v| = r0}, and let

Wc = {
ν ∈ S(r0) × R

n | φc,ν(·) is defined up to +∞ and sup
y�0

∣∣φc,ν(y)
∣∣ � r0

}
,

Wb
c = {

ν ∈Wc | φc,ν(·) is defined on R and sup
y∈R

∣∣φc,ν(y)
∣∣ < +∞}

.

The set Wc thus provides us with a parametrization of the trajectories on the stable manifold of 0 for the differential
system (8), for the value c of the velocity. The next proposition states some properties of the sets Wc and Wb

c , in
particular it shows that Wc can be parametrized by S(r0) and that Wb

c provides us with a parametrization of the fronts
traveling at velocity c and connecting to 0 at +∞.

Proposition 3. Take c > 0.

(1) For any ν ∈Wc, we have φc,ν(x) → 0 and φ′
c,ν(x) → 0 when x → +∞.

(2) The set Wc is the graph of a C1-map: S(r0) → R
n (and consequently a (n − 1)-dimensional compact C1-

submanifold of R
2n).

(3) The set Wb
c is a compact subset of R

2n (possibly empty), and, for any ν ∈ Wb
c , there exists h ∈ ]–∞;0[ such that

the set

Σcrit,h = {
u ∈ R

n | V (u) = h and ∇V (u) = 0
}

is nonempty and such that

dist
(
φc,ν(x),Σcrit,h

) → 0 and φ′
c,ν(x) → 0 when x → −∞.

Main results

Using the above notations, our main result is the following (Fig. 1).

Theorem 1. Assume that V satisfies (H1) and (H2). Then, for any u0 ∈Ainv, there exists c > 0 such that Wb
c 
= ∅, and

there exists a C1-function R+ → R, t 	→ x̄(t) and a C1-map R+ → Wc, t 	→ ν(t) such that the following statements
hold:

(i) x̄′(t) → c, ν′(t) → 0, and dist(ν(t),Wb
c ) → 0 when t → +∞,

(ii) for any L > 0,

sup
y∈[−L;+∞[

∣∣(Stu0)
(
x̄(t) + y

) − φc,ν(t)(y)
∣∣ → 0 when t → +∞.

Remarks. (a) This result means that, if the domain, far to the right in space, where the solution is close to 0 is
“invaded” at a nonzero mean velocity (i.e. if initial data belong to Ainv), then this “invasion” necessarily occurs at
a constant asymptotic velocity c, and the solution around the interface is close, for t large, to a front traveling at
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Fig. 1. Illustration of the main result.

velocity c. However, our assumptions do not imply convergence toward a single front. With the notations of the
theorem, let us denote by L(u0) the ω-limit set of the function t 	→ ν(t), i.e.

L(u0) =
⋂
t>0

ν
([t;+∞[).

This set is a nonempty compact connected subset of R
2n, it is included in Wb

c , and it depends only on u0, not on a
particular choice of the function ν(·). If L(u0) is reduced to a singleton {ν0}, then, using the notations of Theorem 1,
the following more precise conclusion holds: for any L > 0,

sup
y∈[−L;+∞[

∣∣(Stu0)
(
x̄(t) + y

) − φc,ν0(y)
∣∣ → 0 when t → +∞

(in other words the solution converges, around the interface, toward the profile φc,ν0 of a single traveling front).
Transversality arguments (see Section A.4 in Appendix A) show that the following property holds generically (i.e.

for V in a Gδ-dense subset of the set of functions of class Ck satisfying (H1) and (H2)):

(G) “for any c > 0, the set Wb
c is either empty or totally disconnected (i.e. its connected components are reduced to

singletons)”.

If property (G) holds, then, for any u0 ∈Ainv, the set L(u0) is necessarily reduced to a singleton. It would be interesting
to construct examples where L(u0) is not reduced to a singleton, and on the other hand to provide sufficient conditions
under which L(u0) must be reduced to a singleton (“V(.) analytic” might be such a sufficient condition, see [16]).

(b) This result, together with Propositions 1 and 2, furnishes the essential step in order to generalize to systems the
result of global convergence toward a traveling front in a bistable potential proved by Fife and MacLeod [7] in the
scalar case dimu = 1. We will indicate (Section A.6 in Appendix A), how, in the particular case of a bistable potential,
the conclusions of Theorem 1 can be strengthened to obtain global convergence toward traveling fronts uniformly on
R, and not only on semi-infinite intervals of the form [−L;+∞[ as in Theorem 1. Another purely variational proof
of Fife and McLeod’s result (in the simplest possible case) can be found in [11].

We refer to [26] (see also [25]) for a more complete result, describing the asymptotic behavior of all bistable
solutions (i.e. solutions which are close to local minima of the potential both at −∞ and at +∞ in space), and
generalizing the other global convergence results proved by Fife and McLeod, namely the result of global convergence
toward a cascade of traveling fronts [8] and the results about the global behavior in a bistable potential [6].

(c) As a direct consequence of Theorem 1 we have the following corollary.

Corollary 1. If 0 is not a global minimum of V (namely if minu∈Rn V (u) < V (0)) then there exists c > 0 such that
Wb

c is nonempty.

In other words there exists a nonconstant bounded solution y 	→ φ(y) to the differential system (8) satisfying
φ(y) → 0 when y → +∞ (i.e. a wave traveling at a positive velocity and connecting to 0 at +∞). If moreover we
make the generic hypothesis that the set of critical points of V is finite, then according to Proposition 3 above φ(y)

necessarily converges toward one of these critical points when y → −∞ (heteroclinic connection). This result has
to be compared to classical results of existence of homoclinic or heteroclinic connections that can be obtained by



386 E. Risler / Ann. I. H. Poincaré – AN 25 (2008) 381–424
calculus of variation techniques (see for instance [1]); the novelty is that the equilibria that are connected here do
not belong to the same level set of V . Similar results of existence of traveling waves have recently been obtained by
variational methods (S. Heinze, [14]). And of course, many other results of existence of multidimensional traveling
waves have been obtained in other contexts by other methods, see for instance [3,30,28].

(d) For u0 ∈ Ainv, let us denote by c[u0] the velocity c defined by Theorem 1, and, for u0 ∈ A \Ainv, let us write
c[u0] = 0. The techniques developed thereafter in the proof of Theorem 1 will provide us with all required tools in
order to establish the following result (compare to the approach developed by C.B. Muratov in [22]).

Theorem 2. The function c :A → R+, u0 	→ c[u0] is lower semi-continuous (for the usual topology on R+ and the
topology induced by ‖ . . .‖H 1

ul(R) on A).

As a consequence, for any c0 � 0, the set {u0 ∈ A | c[u0] > c0} is open (in A, or equivalently in H 1
ul(R)). In

particular Ainv is open.
Now take a traveling front φc,ν , ν ∈ Wb

c , c > 0, and assume that it is unstable, more precisely that there exists a
globally defined solution (x, t) 	→ u(x, t), (x, t) ∈ R

2, of Eq. (1), satisfying

sup
x∈R

∣∣u(x, t) − φc,ν(x − x0 − ct)
∣∣ → 0 when t → −∞ for some x0 ∈ R,

and which differs from a translate of the front (namely such that (x, t) 	→ u(x, t) and (x, t) 	→ φc,ν(x − x0 − ct)

are not equal). Observe that, if φc,ν is linearly unstable for the semi-flow of equation (1), then any solution in its
unstable manifold satisfies these conditions. Then, if we write u0(x) = u(x,0), x ∈ R, we have u0 ∈A, and according
to Theorem 2, we must have c[u0] � c.

In such a case, we actually expect that c[u0] > c (indeed, the energy Ec[φc,ν] equals zero, see [11], therefore
Ec[u0] should be negative). If this could be proved, this would show the existence of at least one front traveling at the
velocity c[u0] (thus different from φc,ν ). As a consequence, this would yield that among the traveling fronts invading
0, the “fastest” ones cannot be unstable in the sense above (and probably that they must be – locally – stable). This
would be in high contrast with respect to the “KPP” monostable case (where the “slowest” traveling front is in a
certain sense the only stable one, [19]).

(e) A natural generalization concerns the hyperbolic system

αutt + ut + ∇V (u) = uxx, α > 0, (9)

obtained by adding some inertia to the initial parabolic system. In this case there still exists a (formal) decreasing
energy, but no comparison principle holds as soon as α is above a certain value, even when dimu = 1. This case was
recently studied by Thierry Gallay and Romain Joly, and similar results of global convergence toward bistable fronts
were obtained [9,10]. Despite formal similarity, this case presents significant differences (no regularization, finite
speed of propagation) with respect to the “parabolic case” considered here.

On the other hand, we do not know if our results can be extended to systems of the form

ut = −∇V (u) + Duxx,

where D is a positive definite symmetric matrix, since in this case we could not find gradient structures in frames
traveling at nonzero velocity.

1.1. Idea of the proof and organization of the paper

As sketched at the beginning of the introduction, the formal scheme of the proof is quite simple: in any frame trav-
eling at a constant velocity c ∈ R, the formal gradient structure (6) indicates that any solution should converge toward
solutions which are stationary in this frame, or equivalently toward waves traveling at velocity c in the laboratory
frame, and this is roughly speaking what we want to prove. Nevertheless, in order to transform this scheme into a
proof, we have to deal with the following two issues.

First, in contrast to the scalar case treated by Fife and McLeod [7], the velocity is not a priori known. There might
indeed exist several fronts, traveling with different velocities, and invading the same homogeneous equilibrium, and
our hypotheses do not tell us a priori to which of these fronts our solution will converge. On the other hand, Theorem 1
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shows a posteriori that the asymptotic velocity at which invasion occurs is unique; thus if we place ourselves in a frame
traveling at another velocity, there is no hope to get from the formal relaxation scheme sketched above more than
convergence toward “trivial” traveling waves, that is spatially homogeneous equilibria. Our strategy will be to adapt
the velocity of the moving frame in order to keep track of the position of the “interface” (the domain of space where
the solution escapes from the invaded equilibrium), and therefore to obtain at end convergence toward “nontrivial”
traveling waves.

Second, in order the energy integral (5) to converge, we have to replace the weight ecy by a function belonging
to L1(R). This induces new terms in the right-hand side of (6). These new terms correspond to “fluxes of energy”
through the domains of space where the weight differs from ecy . The sign of these terms is arbitrary, and because of
them the energy functional is not always decreasing. In order to recover some decrease, it is thus necessary to control
these terms. To be more precise, assume for instance that c > 0. In this case we can choose the weight function as
equal to ecy at the left of some point y0; the “fluxes of energy” are thus zero on ]–∞;y0], but we cannot avoid nonzero
fluxes somewhere between y0 and +∞. In other words the issue actually consists in controlling fluxes of energy “far
to the right” in space.

In the scalar case n = 1, the comparison principle provides a powerful tool in order to deal with both issues, as was
proved by Fife and McLeod. Their method consists in constructing appropriate sub- and super-solutions, converging
toward translates of the front (which, in their case, is unique). This trivially solves the first issue mentioned above
(keep track of the interface), but this also solves the second issue, since the bounds provided by the sub- and the
super-solution give a sufficiently nice control of the solution “far to the right”, and therefore of the above mentioned
fluxes of energy.

In the vector case n � 2, systems of the form ut = F(u) + uxx , F : Rn → R
n, satisfy a comparison principle if the

following conditions hold:

∂Fi/∂uj � 0, 1 � i, j � n, i 
= j (10)

(see [29]). For functions F of the form F = −∇V , these conditions read: ∂2V/∂ui∂uj � 0, i 
= j , and are thus clearly
not satisfied in general.

As a consequence, no comparison principle exists in general for systems of the form (1) (when n � 2). Nevertheless,
we are going to show that, for such systems, both issues mentioned above can be tackled by “purely energetic”
methods.

Our starting point will be to introduce a quantity x̃(t), called the invasion point, which is defined roughly speaking
as the first point starting from the right end of space where the solution reaches a certain distance from 0 (its definition
is roughly similar to that of x̄(t)). This invasion point is used in the sequel in order to materialize the position of the
interface we want to keep track of. Then, our purpose throughout the proof is to win on two counts – the control of this
invasion point, and the control of the fluxes of energy far to the right in space – any progress on one of these counts
providing us with the opportunity to win on the other.

An introduction to this proof can be found in the shorter paper [11], where the same variational scheme is applied
in the simplest possible case, namely the scalar case considered by Fife and McLeod with additional assumptions on
initial data. These assumptions enable to get rid of the second issue (the fluxes of energy) and to apply the variational
scheme (including the control of an invasion point) with much less technicalities.

The paper is organized as follows: Section 2 is devoted to preliminary material about existence of solutions and
smoothing properties. In Section 3 we get a preliminary rough control of the invasion point x̃(t), namely we prove
that its mean velocity is finite (more precisely bounded from above by a bound depending only on V ), and at the same
time we prove Proposition 1. For this purpose only energy functionals in the laboratory frame are required.

The proof of Theorem 1 really begins in the short Section 4, where the invasion point x̃(t) is defined, and where
the scene is set up.

The crucial step – computations on weighted energy functionals in a traveling frame – is carried out in Section 5.
There we choose a weight function, write down the approximate decrease (decrease up to “fluxes of energy”) of the
so-defined localized energy, and we introduce a firewall functional which, thanks to the rough preliminary control of
the invasion point obtained in Section 3, enables us to get some control of these fluxes of energy.

These computations are applied in Section 6, in order to get some better control of the behavior of the invasion
point x̃(t). There we prove that the limit limt→+∞ x̃(t)/t exists – in other words the mean velocity of invasion exists
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and is unique (a more uniform control, necessary for the next step, is actually reached). In the proof this velocity is
denoted by c̃ but it corresponds to the velocity denoted by c in Theorem 1.

At this point we have at our disposal enough information – enough control of the behavior of the invasion point,
and enough control of the fluxes of energy – in order to apply the formal relaxation scheme sketched above, and we
do this in Section 7. The conclusion is that, in a frame traveling at velocity c̃, the solution is asymptotically stationary
on any bounded interval around x̃(t). The proof of Theorem 1 then follows naturally, and is completed in Section 8.

Appendix A is made of several sections. In Section A.1 we prove the existence of an attracting ball in H 1
ul(R) for

the semi-flow of (1). Proposition 2 (sufficient condition in order invasion to occur) is proved in Section A.2. Sec-
tion A.3 is devoted to the proof of some properties of the differential system (8) (governing the profiles of waves
traveling at constant velocity), in particular those stated in Proposition 3. Counting arguments on the phase space
of (8) are given in Section A.4. Section A.5 is devoted to the proof of Theorem 2 (lower semi-continuity of the
function u0 	→ c[u0]). Finally, in Section A.6, the particular case of a bistable potential is considered, and a state-
ment strengthening the conclusions of Theorem 4 and generalizing Fife and McLeod’s global convergence result is
proved.

2. Preliminaries

Uniformly local Sobolev spaces

For sake of generality and clarity, following [21,5,12], we shall study the semi-flow of the parabolic system (1) in
the uniformly local Sobolev space H 1

ul(R) introduced by Kato [17], which is the natural “energy space” containing
solutions of physical interest such as traveling waves. Of course, due to smoothing properties of the semi-flow recalled
below, this framework is by no means essential, and the presentation can be easily adapted in order to avoid any
reference to H 1

ul(R) or L2
ul(R) (it suffices to systematically replace H 1 by C1, H 1

ul by C1
b , L2 by C0, and L2

ul by C0
b ).

However these uniformly local Sobolev spaces are the most appropriate for our approach based on energy functionals,
and we believe the arguments are more clearly expressed using them. They are also the most appropriate for further
generalization to equations having no smoothing properties [9,10]. Their definition and basic properties of the semi-
flow are recalled now (we refer to [15,21,13,20,12] for more details).

For s ∈ N, the uniformly local Sobolev space Hs
ul(R,R

n) is defined as the set:{
u : R → R

n | u ∈ Hs
loc

(
R,R

n
)
, ‖u‖Hs

ul(R,Rn) < +∞, lim
x→0

‖Txu − u‖Hs
ul(R,Rn) = 0

}
,

where Txu(y) = u(y − x) and

‖u‖Hs
ul

(
R,Rn

) = sup
x∈R

‖u|[x,x+1]‖Hs([x,x+1],Rn).

This space Hs
ul(R,R

n) is a Banach space, and the space C∞
b (R,R

n) (the space of C∞-functions that are bounded
together with all their derivatives) is dense in Hs

ul(R,R
n).

For simplicity, we shall simply write Hs
ul(R) instead of Hs

ul(R,R
n). We shall write L2

ul(R) for H 0
ul(R).

We shall denote by Cs
b(R) the Banach space of functions: R → R

n, of class Cs , and which are uniformly bounded,
together with their s first derivatives, and by ‖ . . .‖Cs

b(R) the usual norm on this space (the norm ‖ . . .‖Cs
b([−L;+∞[),

used in remark (b) following Theorem 1, is defined similarly).

Existence of solutions and regularity

Since V is assumed to be of class Ck , k � 3, the map v ∈ R
n 	→ ∇V (v) is of class at least C2, and therefore the

nonlinearity u(.) 	→ −∇V (u(.)) in (1) is locally Lipschitz in H 1
ul(R). Thus local existence of solutions in that space

follows from general results [15]. More precisely, for any u0 ∈ H 1
ul(R), the system (1) has a unique (mild) solution in

C0([0;Tmax[,H 1
ul(R)) with initial data u0. This solution depends continuously on u0 and is defined up to a (unique)

maximal time of existence Tmax = Tmax(u0) ∈ ]0;+∞].
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Moreover, hypothesis (H1) yields the existence of an attracting ball in H 1
ul(R) for the so-defined semi-flow, as

stated in Lemma 6 (Section A.1 in Appendix A). As a consequence, this semi-flow (St )t�0 is actually global, i.e. for
any u0 ∈ H 1

ul(R), Tmax(u0) = +∞ and we have

sup
t�0

‖Stu0‖H 1
ul(R) < +∞. (11)

In addition, the system (1) has smoothing properties [15]. Due to these properties, since V is of class Ck , k � 3, any
solution t 	→ Stu0 in C0([0;+∞[,H 1

ul(R)) actually belongs to

C0(]0;+∞[ ,Ck+1
b (R)

) ∩ C1(]0;+∞[,Ck−1
b (R)

)
,

and, for any ε > 0, we have

sup
t�ε

‖Stu0‖Ck+1
b (R)

< +∞ and sup
t�ε

∥∥∥∥d(Stu0)

dt
(t)

∥∥∥∥
Ck−1

b (R)

< +∞. (12)

The following weaker properties will be specifically required:

sup
t�ε

‖Stu0‖C2
b (R) < +∞, (13)

sup
t�ε

∥∥∥∥d(Stu0)

dt
(t)

∥∥∥∥
C1

b (R)

< +∞, (14)

and, according to Lemma 6 in Section A.1 (in Appendix A), there exists R0 > 0, depending only on V , and, for any
R > 0, there exists T (R) > 0, depending only on V and R, such that, if ‖u0‖H 1

ul(R) � R, then

sup
t�T (R)

‖Stu0‖C0
b (R) � R0. (15)

Compactness

The following compactness argument will be used several times. Take any u0 ∈ H 1
ul(R), and let u(x, t) = (Stu0)(x),

t � 0, x ∈ R denote the solution of the system (1) with initial data u0. Take any sequences (xn)n∈N and (tn)n∈N, xn ∈ R,
tn � 0, tn → +∞ when n → +∞, and let us define functions wn and ŵn by

wn(y) = u(xn + y, tn) and ŵn(y) = ut (xn + y, tn), n ∈ N, y ∈ R.

According to the regularity properties above, by compactness and a diagonal extraction procedure, there exists w∞ ∈
H 2

ul(R) and ŵ∞ ∈ L2
ul(R) such that, up to extracting a subsequence, for any L > 0,

wn → w∞ in H 2([−L;L]) and ŵn → ŵ∞ in L2([−L;L]), (16)

and passing to the limit in (1) we have

ŵ∞ = −∇V (w∞) + w′′∞.

Of course due to the regularity properties above, the same compactness results hold for stronger norms, but this
formulation will be sufficient for our purpose.

Notations

We shall denote by “·” (resp. by “| . . . |”) the usual Euclidean scalar product (resp. Euclidean norm) in R
n.

Small constants will be denoted by denoted by ε, ε1, ε2, . . . , and large constants either by C,C1,C2, . . . , or by
K1,K2, . . . . We used the two letters C and K in order to shed light on important constants – those denoted by
K1,K2, . . . – that will be used at several places in the paper.

Let us mention here that, according to assertion (7) corresponding to the choice of r0, for all v ∈ R
n satisfying

|v| � r0, we have

λmin

2
v2 � v · ∇V (v) � 2λmaxv

2 and
λmin

4
v2 � V (v) � λmaxv

2. (17)
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3. Upper bound on the invasion speed

We assume that V satisfies hypotheses (H1) and (H2), we give ourselves u0 ∈ H 1
ul(R), and we note u(x, t) =

(Stu0)(x), t � 0, x ∈ R the solution of the system (1) for initial data u0. According to (11), the quantity
supx∈R,t�0 |u(x, t)| is finite. We give ourselves a constant R > 0 such that

sup
x∈R,t�0

∣∣u(x, t)
∣∣ � R. (18)

For any function x 	→ η(x) ∈ W 2,1(R,R), a direct calculation shows that

d

dt

∫
R

η(x)

(
ux(x, t)2

2
+ V

(
u(x, t)

))
dx = −

∫
R

ηu2
t dx −

∫
R

η′ux · ut dx, t > 0, (19)

and

d

dt

∫
R

η(x)
u(x, t)2

2
dx = −

∫
R

ηu · ∇V (u)dx −
∫
R

ηu2
x dx +

∫
R

η′′ u2

2
dx, t > 0. (20)

According to hypotheses (H1) and (H2), for α0 > 0 sufficiently small, we have

α0V (v) � −v2

4
, v ∈ R

n. (21)

Let us fix α0 ∈ ]0;1] satisfying this property, and let β0 = min(1,
√

λmin/2 ). Let ψ0(x) = e−β0|x|, and, for ξ ∈ R, let
us denote by Tξψ0 the map x 	→ ψ0(x − ξ). Let

Ψ0(ξ, t) =
∫
R

Tξψ0(x)

(
α0

(
ux(x, t)2

2
+ V

(
u(x, t)

)) + u(x, t)2

2

)
dx, ξ ∈ R, t � 0.

According to (21), Ψ0 is coercive in the following sense:

Ψ0(ξ, t) � min(α0/2,1/4)

∫
R

Tξψ0
(
u2

x + u2)dx � 0, ξ ∈ R, t � 0. (22)

Since |ψ ′
0| � β0ψ0 and ψ ′′

0 � β2
0ψ0 (indeed ψ ′′

0 equals β2
0ψ0 plus a Dirac mass of negative weight), we have,

according to (19) and (20),

∂Ψ0

∂t
(ξ, t) �

∫
R

Tξψ0

((
α0β

2
0

4
− 1

)
u2

x + β2
0

2
u2 − u · ∇V (u)

)
dx, t > 0,

which yields (just adding and subtracting the same quantity),

∂Ψ0

∂t
(ξ, t) � −

∫
R

Tξψ0

((
1 − α0β

2
0

4

)
u2

x + λmin

4(α0λmax + 1/2)

(
α0V (u) + u2

2

))
dx

+
∫
R

Tξψ0

(
λmin

4(α0λmax + 1/2)

(
α0V (u) + u2

2

)
+ β2

0

2
u2 − u · ∇V (u)

)
dx. (23)

For t � 0, let

Sfar(t) = {
x ∈ R | ∣∣u(x, t)

∣∣ > r0
}
.

According to (17), and since β2
0/2 � λmin/4, we see that the expression below the last integral of the right-hand side

of inequality (23) is nonpositive when x ∈ R \ Sfar(t). Thus we deduce from (23) and (18) that

∂Ψ0

∂t
(ξ, t) � −ε1Ψ0(ξ, t) + K1

∫
Tξψ0 dx, ξ ∈ R, t > 0, (24)
Sfar(t)
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where ε1 > 0 is a constant depending only on V , namely

ε1 = min

(
2

α0

(
1 − α0β

2
0

4

)
,

λmin

4(α0λmax + 1/2)

)
and K1 > 0 is a constant depending only on V and R, namely

K1 = max
|v|�R

(
λmin

4(α0λmax + 1/2)

(
α0V (v) + v2

2

)
+ β2

0

2
v2 − v · ∇V (v)

)
.

For any v ∈ H 1
ul(R), we have

v(0)2 = ψ0(0)v(0)2 � 1

2

∫
R

∣∣(ψ0v
2)′

(x)
∣∣dx = 1

2

∫
R

∣∣ψ ′
0v

2 + 2ψ0v · v′∣∣dx

� 1

2

∫
R

ψ0
(
v2 + 2|v · v′|)dx �

∫
R

ψ0
(
v2 + v′2)dx (25)

(recall that β0 � 1). According to (22), this shows that

min(α0/2,1/4)
∣∣u(x, t)

∣∣2 � Ψ0(x, t), x ∈ R, t � 0.

In order to state Lemma 1 below, which is the essential step in the proof of Proposition 1, the following notations are
required. Let

ε2 = min(α0/2,1/4)r2
0

(
thus

∣∣u(x, t)
∣∣ �

√
Ψ0(x, t)/ε2r0

)
, (26)

L = 2

β0
log

2K1

ε1ε2β0

(
equivalently K1

− L
2∫

−∞
ψ0(x)dx = ε1ε2

2

)
,

and let us define the function χ : R → R ∪ {+∞} by:

χ(y) = +∞ for y < 0, χ(y) = ε2

(
1 − y

2L

)
for 0 � y � L,

χ(y) = ε2

2
for y � L

(see Fig. 2). For x ∈ R and t � 0, let us consider the property P(x, t) defined as follows:

P(x, t) holds ⇔ Ψ0(y, t) � χ(y − x) for all y ∈ R.

In other words P(x, t) holds when the solution is, at time t0, sufficiently close to 0 at the right of x in space.

Lemma 1. There exists a constant cmax(R) > 0, depending only on V , R, such that, for any x0 ∈ R and t0 � 0,

P(x0, t0) holds ⇒ P
(
x0 + cmax(R)(t − t0), t

)
holds for all t > t0.

Fig. 2. Graph of function χ .
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Proof. Let c > 0 to be chosen below, take any x0 ∈ R and t0 � 0, and let us assume that P(x0, t0) holds and that the
set {

t > t0 | P(
x0 + cmax(R)(t − t0), t

)
does not hold

}
is nonempty. Let t1 � t0 denote the infimum of this set, and let us write x1 = x0 + c(t1 − t0).

According to (24) (or to the continuity of Ψ0(x, t) with respect to t ), P(x1, t1) holds. We are going to show that, if
c is sufficiently large, then there exists ε > 0 such that, for s ∈ [0; ε], P(x1 + cs, t1 + s) holds; since this last statement
is contradictory to the definition of t1, this will prove the lemma.

Let us write χ̃(x, s) = χ(x − x1 − cs), x ∈ R, s � 0. By definition of P(., .), for any s � 0,

P(x1 + cs, t1 + s) holds ⇐⇒ sup
x�x1+cs

Ψ0(x, t1 + s) − χ̃ (x, s) � 0.

Since P(x1, t1) holds, we have supx�x1+L/2 Ψ0(x, t1) � 3ε2/4, and thus, according to (26),

sup
x�x1+L/2

∣∣u(x, t1)
∣∣ �

√
3

2
r0 < r0.

Thus, by continuity of the semi-flow in H 1
ul(R), there exists ε > 0 such that, for all s ∈ [0; ε],

sup
x�x1+L/2

∣∣u(x, t1 + s)
∣∣ � r0.

As a consequence, according to (24) and to the choice of L, we have, for all x � x1 + L,

∂Ψ0

∂t
(x, t1 + s) � −ε1

(
Ψ0(x, t1 + s) − ε2/2

)
, 0 � s � ε,

and since

Ψ0(x, t1) − ε2/2 � 0,

this shows that

Ψ0(x, t1 + s) − ε2/2 � 0 thus Ψ0(x, t1 + s) − χ̃ (x, s) � 0 (27)

for 0 � s � ε and x � x1 + L. On the other hand, according to (24) (and since
∫

R
ψ0(x)dx = 2

β0
), we have

∂Ψ0

∂t
(x, t) � 2K1

β0
, x ∈ R, t � 0,

whereas

∂χ̃

∂s
(x, s) = cε2

2L
, x ∈ ]x1 + cs;x1 + cs + L[, s � 0.

This shows that, if we choose c = 4LK1
ε2β0

, then we have, for all x ∈ [x1;x1 + L],
Ψ0(x, t1 + s) � χ̃ (x, s), s ∈ [0; ε].

In view of (27), this shows that P(x1 + cs, t1 + s) holds for s ∈ [0; ε] (and this is contradictory to the definition of s1).
Thus the conclusions of the lemma hold with

cmax(R) = 4LK1

ε2β0
. �

Proposition 1 follows from the next corollary.

Corollary 2. The three following assertions are equivalent.

(i) There exists t0 > 0 and x0 ∈ R such that P(x0, t0) holds.
(ii) For any c > cmax(R0), limt→+∞ lim supx�ct |u(x, t)| = 0.

(iii) limt→+∞ lim supx→+∞ |u(x, t)| = 0 (i.e. u0 ∈ A).
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Proof. (ii) ⇒ (iii) is obvious and (iii) ⇒ (i) follows from (13) (bound on ‖x 	→ u(x, t)‖C2
b (R)).

It remains to prove (i) ⇒ (ii). For this purpose, let us assume that (i) holds. Then, according to the previous lemma
and to (15), up to changing the values of x0 and t0, we can suppose that supx∈R,t�t0

|u(x, t)| � R0. Then, according
to (29), we have, for any t � t0,

Sfar(t) ⊂ ]
–∞;x0 + cmax(R0)(t − t0)

]
.

Take any c′ > cmax(R0). According to (24), for any t � t0 and x � x0 + c′(t − t0), we have

∂Ψ0(x, t)

∂t
� −ε1Ψ0(x, t) + K1β

−1
0 e−β0

(
c′−cmax(R0)

)
(t−t0),

and this shows that

sup
x�x0+c′(t−t0)

Ψ0(x, t) → 0 when t → +∞.

This proves (i) and thus finishes the proof. �
In view of this corollary (or of Proposition 1) the set A is, on one hand, obviously nonempty and on the other hand,

according to (13) (bound on ‖x 	→ u(x, t)‖C2
b (R)), open in X.

Notation. In the following, we shall simply write cmax for cmax(R0), where R0 is the constant introduced in (15)
(Section 2).

4. Setup

The aim of this section is to setup the frame for the proof of Theorem 1 (this section and the next Sections 5, 6, 7,
and 8 are devoted to this proof). We assume that V satisfies hypotheses (H1) and (H2), we give ourselves u0 ∈ Ainv,
and we note u(x, t) = (Stu0)(x), t � 0, x ∈ R the solution of the system (1) with initial data u0.

Up to changing the origin of time, we can assume (according to (15)) that, for any t � 0,

sup
x∈R, t�0

∣∣u(x, t)
∣∣ � R0. (28)

Moreover, according to Corollary 2 (and still up to changing the origin of time), we can assume (using the notations
of the previous section) that there exists x0 ∈ R such that P(x0,0) holds. Then, according to Lemma 1, for any t � 0,
P(x0 + cmaxt, t) holds. Remark that, if P(x, t) holds, then P(y, t) holds for all y � x, so that, for any t � 0, the set{

x ∈ R | P(x, t) holds
}

is a (nonempty) interval, unbounded from above, and which cannot be equal to R (or else, because of Lemma 1, it
would remain equal to R for all times t ′ � t , and, in view of (22) and (24), this would be contradictory to u0 ∈ Ainv).

Let us denote by x̃(t) the infimum of this set. This point represents the first point, starting from +∞ in space,
where the solution reaches a certain distance from 0 (in the sense corresponding to P(. , .)). In the following, we will
refer to this point as to the “invasion point”. According to Lemma 1, we have

x̃(t + s) � x̃(t) + cmaxs t � 0, s � 0. (29)

By continuity of Ψ0(x, t) with respect to x, the property P(x̃(t), t) holds, and as a consequence, according to (26),
we have∣∣u(x, t)

∣∣ � r0 for all x � x̃(t), t � 0. (30)

For any s � 0, let

X̃(s) = sup
t�0

x̃(t + s) − x̃(t).

According to (29), we have X̃(s) � cmaxs, s � 0. Let us write

c̃− = lim inf
t→+∞ x̃(t)/t, c̃+ = lim sup x̃(t)/t, and c∗ = lim sup X̃(s)/s.
t→+∞ s→+∞
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We have c̃− � c̃+ � c∗ � cmax. Moreover, since the initial data u0 belong to Ainv, we have

c̃+ > 0.

Indeed, if conversely we had c̃+ � 0, then, for any ε > 0, we would have, according to (24) (and proceeding as in the
proof of Corollary 2),

sup
x�εt

Ψ0(x, t) → 0 when t → +∞,

and, in view of (22), this would contradict u0 ∈ Ainv.
Our first task will be to prove that the three mean velocities c̃−, c̃+, and c∗ are equal.

5. Weighted functionals in a traveling frame

We keep the notations and hypotheses of the previous section and we give ourselves four parameters:

tinit � 0, xinit ∈ R, 0 < c � cmax, and y0 ∈ R.

The following computations will be used several times in the following (four times actually, in Sections 6, 7, A.2,
and A.5), for various choices of these parameters. Let us consider the function v(y, s) = u(x, t), where the variables
y and s are defined as follows:

x = xinit + cs + y, t = tinit + s

(in other words, we place ourselves in a frame traveling at velocity c, with tinit as the origin of times and xinit as the
origin of space). The parameter y0 will be used thereafter.

According to (1), v(y, s) satisfies the following differential system

vs − cvy = −∇V (v) + vyy.

The aim of this section is to give a concrete meaning to the following formal expression of “decrease of energy”:

d

ds

∫
R

ecy

(
vy(y, s)2

2
+ V

(
v(y, s)

))
dy = −

∫
R

ecyvs(y, s)2 dy.

For any function (y, s) 	→ η(y, s), such that, for any s ∈ R, y 	→ η(y, s) ∈ W 2,1(R,R) and y 	→ ηs(y, s) ∈
L1(R,R) (where ηs = ∂sη), a direct calculation shows that, for all s > 0,

d

ds

∫
R

η(y, s)

(
vy(y, s)2

2
+ V

(
v(y, s)

))
dy

= −
∫
R

ηv2
s dy +

∫
R

ηs

(
v2
y

2
+ V (v)

)
dy +

∫
R

(cη − ηy)vy · vs dy (31)

and

d

ds

∫
R

η(y, s)
v(y, s)2

2
dy = −

∫
R

η
(
v2
y + v · ∇V (v)

)
dy +

∫
R

(ηs + ηyy − cηy)
v2

2
dy. (32)

Let us introduce the following three constants:

α = min

(
1, α0,

1

(cmax + 1)2

)
, β = min

(
1,

λmin

8(cmax + 1)

)
, γ = min

(
λmin

8λmax
,

λmin

8(cmax + 1)

)
,

where α0 > 0 is the constant introduced in Section 3.
Let us consider the function ϕ(y, s) defined by:

ϕ(y, s) = ecy for y � y0 + γ s and ϕ(y, s) = e−βye(c+β)(y0+γ s) for y � y0 + γ s
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Fig. 3. Graphs of the weight functions ϕ(y, s) and ψ(y, s).

(see Fig. 3) and let us define the energy functional

Φ(s) =
∫
R

ϕ(y, s)

(
vy(y, s)2

2
+ V

(
v(y, s)

))
dy, s � 0,

and the corresponding energy dissipation functional

D(s) =
∫
R

ϕ(y, s)vs(y, s)2 dy, s � 0.

We have

ϕs = cϕ − ϕy = 0, y < y0 + γ s,

and

ϕs = γ (c + β)ϕ, cϕ − ϕy = (c + β)ϕ, y > y0 + γ s.

Thus we see from (31) that

Φ ′(s) � −
∫
R

ϕv2
s dy +

+∞∫
y0+γ s

ϕ

(
γ (c + β)

(
v2
y

2
+ V (v)

)
+ v2

s

2
+ (c + β)2

2
v2
y

)
dy.

Let C1 = sup0<|w|�R0
V (w)/w2 (we have 0 < C1 < +∞). The last inequality yields

Φ ′(s) � −1

2
D(s) + C2

+∞∫
y0+γ s

ϕ
(
v2
y + v2)dy, (33)

where C2 > 0 is a constant depending only on V , namely (since c � cmax, and according to (28))

C2 = max

(
γ (cmax + β) + (cmax + β)2

, γ (cmax + β)C1

)
.

2 2
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In order to get some control of the second term of the right-hand side of inequality (33), we now introduce another
functional. Let us consider the function ψ(y, s) defined by:

ψ(y, s) = e(c+β)ye−β(y0+γ s) for y � y0 + γ s,

and

ψ(y, s) = ϕ(y, s) = e−βye(c+β)(y0+γ s) for y � y0 + γ s,

and let us define the firewall functional

Ψ (s) =
∫
R

ψ(y, s)

(
α

(
vy(y, s)2

2
+ V

(
v(y, s)

)) + v(y, s)2

2

)
dy, s � 0.

Since α � α0, the following coercivity property holds:

Ψ (s) � min(α/2,1/4)

∫
R

ψ
(
v2
y + v2)dy, (34)

thus inequality (33) gives

Φ ′(s) � −1

2
D(s) + K2Ψ (s), s � 0, (35)

where

K2 = C2

min(α/2,1/4)

(the firewall functional Ψ (s) provides us with a bound on the “pollution” term of (33)). Inequality (35) is a key
ingredient that will be used extensively in the following sections.

The aim of the next computations is to provide some control of Ψ (s). We have

|ψs | � γ (c + β)ψ, |cψ − ψy | � (c + β)ψ, and ψyy − cψy � β(c + β)ψ

(indeed ψyy − cψy equals β(c + β)ψ plus a Dirac mass of negative weight at y = y0 + γ s). Thus, according to (31)
and (32), we have

Ψ ′(s) �
∫
R

ψ

(
v2
y

(
αγ (c + β)

2
+ α(c + β)2

4
− 1

)
+ αγ (c + β)

∣∣V (v)
∣∣ − v · ∇V (v) + (γ + β)(c + β)

2
v2

)
dy.

According to the values of α, β , and γ , this inequality yields

Ψ ′(s) �
∫
R

ψ

(
−v2

y

2
+ λmin

8λmax

∣∣V (v)
∣∣ − v · ∇V (v) + λmin

8
v2

)
dy,

and thus (as in Section 3 we just add and subtract the same quantity)

Ψ ′(s) �
∫
R

ψ

(
−v2

y

2
− λmin

4(αλmax + 1/2)

(
αV (v) + v2

2

))
dy

+
∫
R

ψ

(
λmin

4(αλmax + 1/2)

(
αV (v) + v2

2

)
+ λmin

8λmax

∣∣V (v)
∣∣ − v · ∇V (v) + λmin

8
v2

)
dy. (36)

Let

Sfar(s) = {
y ∈ R | ∣∣v(y, s)

∣∣ > r0
}
, s � 0.

According to (17), we see that the expression below the second integral of the right-hand side of (36) is nonpositive
when y ∈ R \ Sfar(s). Thus we deduce from (36) that

Ψ ′(s) � −ε3Ψ (s) + C3Θ(s), s � 0, (37)
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where

Θ(s) =
∫

Sfar(s)

ψ(y, s)dy, ε3 = min

(
1

α
,

λmin

4(αλmax + 1/2)

)
,

and C3 > 0 is a constant depending only on V , namely, according to (28)),

C3 = max
|w|�R0

(
λmin

4(αλmax + 1/2)

(
αV (v) + v2

2

)
+ λmin

8λmax

∣∣V (v)
∣∣ − v · ∇V (v) + λmin

8
v2

)
.

Let us write

ỹ(s) = x̃(t) − xinit − cs, s � 0.

According to (30), we have Sfar(s) ⊂ ]–∞; ỹ(s)]. Since (by definition of ψ(. , .)) we have ψ(y, s) � e(c+β)y ×
e−β(y0+γ s), we get

Θ(s) � β−1e−βy0 exp
(
(c + β)ỹ(s) − βγ s

)
, s � 0. (38)

Thus, if we moreover assume that

xinit = x̃(tinit), (39)

then we have ỹ(s) � X̃(s) − cs, and thus (38) yields

Θ(s) � β−1e−βy0e− βγ
2 s exp

(
(c + β)

(
X̃(s) − c∗s

) +
(

(c + β)(c∗ − c) − βγ

2

)
s

)
, s � 0.

Thus, if we moreover assume that

(c + β)(c∗ − c) � βγ

4
, (40)

then the previous inequality yields

Θ(s) � C4e
−βy0e− βγ

2 s , s � 0,

where C4 > 0 is a constant depending only on V and the function X̃(.), namely

C4 = β−1 exp

(
sup
s�0

(cmax + β)
(
X̃(s) − c∗s

) − βγ

4
s

)
< +∞.

Thus, provided that conditions (39) and (40) are fulfilled, (37) yields, for any s̄ � 0,

Ψ (s̄) � −ε3

s̄∫
0

Ψ (s)ds + Ψ (0) + 2C3C4

βγ
e−βy0,

and thus, since 0 � Ψ (s̄),

+∞∫
0

Ψ (s)ds � ε−1
3 Ψ (0) + K3e

−βy0, K3 = 2C3C4

ε3βγ
(41)

(this constant K3 depends on V and the function X̃(.), but not on the parameters tinit, xinit, c, y0).
Finally, observe that

dD
ds

=
∫
R

ϕs

v2
s

2
dy −

∫
R

ϕvs · D2V (v)vs dy −
∫
R

ϕv2
ys dy +

∫
R

(cϕ − ϕy)vs · vys dy,

and thus
dD � CD(s), s � 0, (42)

ds
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where C is a constant depending only on V , namely, according to (28),

C = γ (cmax + β) + 2λ̄ + cmax + β

2
, λ̄ = sup

{
λ | λ eigenvalue of D2V (w), |w| � R0

}
.

Inequalities (35), (41), and (42) are the basic ingredients for the arguments that will be used in the following.

6. Control of the invasion point

The aim of this section is to prove the following proposition, which provides a control of the invasion point that
will be useful for the relaxation argument in the next section.

Proposition 4. We have c̃− = c̃+ = c∗.

Proof. Let us proceed by contradiction and suppose that c̃− < c∗.
Take any c > 0 satisfying

0 < c � cmax, c̃− < c < c∗ < c + γ, and (c + β)(c∗ − c) � βγ

4
(43)

(any c smaller than c∗ but sufficiently close to c∗ is convenient, recall that c∗ > 0 since c̃+ > 0).
Take a sequence (sn)n∈N, satisfying sn → +∞ and X̃(sn)/sn → c∗ when n → +∞. For each n, by definition of

X̃(.), one can find a time tn � 0 such that x̃(tn + sn) − x̃(tn) � X̃(sn) − 1.
The strategy of the proof is to exploit the fact that, in certain frames traveling at the velocity c, the invasion point

makes large excursions to the right (between times tn and tn + sn, indeed x̃(tn + sn)− x̃(tn) ∼ c∗sn � csn) followed by
returns (indeed there are arbitrarily large values of t such that x̃(t) ∼ c−t � ct). We are going to show that these large
excursions followed by returns are incompatible with the approximate decrease of the energy functional Φ established
in (35). Roughly speaking, a large amount of dissipation must occur during an excursion far to the right, whereas Φ

must be bounded from below (in view of its definition) when the invasion point is to the left of the origin of the
traveling frame, and, provided that the total amount of the flux of energy is bounded, this is contradictory to (35).

Take and fix n ∈ N. We are going to apply the computations of Section 5 with the following set of parameters (see
Fig. 4):

tinit = tn, xinit = x̃(tinit), c (chosen above), and y0 = 0.

Let us denote by v(n)(y, s), Φ(n)(s), D(n)(s), Ψ (n)(s), and ỹ(n)(s) the quantities defined in Section 5 (with the
same notations except the “(n)” exponent), for this set of parameters.

Since y0 = 0, and according to the bound (11) on ‖x 	→ u(x, t)‖H 1
ul(R), the quantity Φ(n)(0) is bounded from above,

uniformly with respect to n ∈ N.

Fig. 4. Proof of Proposition 4.
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Since ỹ(n)(s) = x̃(tn + s) − x̃(tn) − cs, we have lim infs→+∞ ỹ(n)(s)/s = c̃− − c < 0, thus

lim inf
s→+∞ ỹ(n)(s) = −∞.

According to the definition of ỹ(n)(.) and to (30), we have V (v(n)(y, s)) � 0 for y � ỹ(n)(s), and this shows that

Φ(n)(s) �
(

min|w|�R0
V (w)

) ỹ(n)(s)∫
−∞

ecy dy, (44)

and finally that lim sups→+∞ Φ(n)(s) � 0.
Since y0 = 0 and according to (11) the quantity Ψ (n)(0) is bounded from above, uniformly with respect to

n ∈ N. Moreover, since xinit = x̃(tinit) and according to (43), inequality (41) holds, and it shows that the quantity∫ +∞
0 Ψ (n)(s)ds is bounded from above, uniformly with respect to n ∈ N.

According to (35), this shows that the quantity

+∞∫
0

D(n)(s)ds

is finite, and bounded from above uniformly with respect to n ∈ N. In view of (42), this shows that the quantity D(n)(s)

itself is bounded, uniformly with respect to s ∈ [1,+∞[ and to n ∈ N.
On the other hand, we have, by definition of D(n)(s),

D(n)(sn) �
γ sn∫

−∞
ecyv(n)

s (y, sn)
2 dy,

which becomes, writing y = ỹ(n)(sn) + z,

D(n)(sn) � ecỹ(n)(sn)

γ sn−ỹ(n)(sn)∫
−∞

eczv(n)
s

(
ỹ(n)(sn) + z, sn

)2 dz. (45)

We have ỹ(n)(sn) = x̃(tn + sn) − x̃(tn) − csn, thus, according to the choice of tn,

X̃(sn) − 1 − csn � ỹ(n)(sn) � X̃(sn) − csn,

and thus ỹ(n)(sn) ∼ (c∗ − c)sn when n → +∞; in particular, according to (43),

ecỹ(n)(sn) → +∞ and γ sn − ỹ(n)(sn) → +∞ when n → +∞.

According to the above mentioned bound on D(n)(s), (45) shows that, for any L > 0,∥∥z 	→ v(n)
s

(
ỹ(n)(sn) + z, sn

)∥∥
L2([−L;L]) → 0 when n → +∞. (46)

We have

v(n)
s

(
ỹ(n)(sn) + z, sn

) = ut

(
x̃(tn + sn) + z, tn + sn

) + cux

(
x̃(tn + sn) + z, tn + sn

)
, z ∈ R.

For n ∈ N, let us define the functions wn and ŵn by

wn(z) = u
(
x̃(tn + sn) + z, tn + sn

)
, ŵn(z) = ut

(
x̃(tn + sn) + z, tn + sn

)
, z ∈ R.

By compactness (see Section 2), there exists w∞ ∈ H 2
ul(R) and ŵ∞ ∈ L2

ul(R) such that, up to extracting a subse-
quence, we have, for any L > 0, wn → w∞ in H 2([−L;L]) and ŵn → ŵ∞ in L2([−L;L]) when n → +∞.

Assertion (46) shows that ŵ∞ + cw′∞ = 0. But observe that the sequences wn, ŵn, and therefore their limits w∞,
ŵ∞, do not depend on c, and thus, that the identity ŵ∞ + cw′∞ = 0 holds not only for one value of c, but for a
whole interval of values (actually for any c satisfying (43)). As a consequence, we get ŵ∞ = 0 and w′∞ = 0, thus
w∞ is constant, and passing to the limit in (1), we get ∇V (w∞) ≡ 0. On the other hand, according to (30) we have
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|w∞(0)| � r0, and according to (17) this finally yields w∞ ≡ 0. Finally, the fact that w∞ ≡ 0 and w′∞ ≡ 0 is, for n

sufficiently large, contradictory to the definition of x̃(tn + sn), and this finishes the proof. �
In the following, the velocity c̃− = c̃+ = c∗ will be denoted by c̃ (recall that, since u0 ∈Ainv, we must have c̃+ > 0,

thus c̃ > 0).

7. Relaxation

We keep the notations of the previous section. The aim of this section is to prove the following proposition.

Proposition 5. For any L > 0, we have∥∥y 	→ ut

(
x̃(t) + y, t

) + c̃ux

(
x̃(t) + y, t

)∥∥
L2([−L;L]) → 0 when t → +∞.

Proof. Let us proceed by contradiction and suppose that we can find L0 > 0, ε0 > 0, and a sequence (tn)n∈N, tn →
+∞ when n → +∞, such that, for any n ∈ N,∥∥y 	→ ut

(
x̃(tn) + y, tn

) + c̃ux

(
x̃(tn) + y, tn

)∥∥
L2([−L0;L0]) � ε0. (47)

Let us write wn(y) = u(x̃(tn) + y, tn), n ∈ N, y ∈ R.
By compactness (see Section 2), one can find w∞ ∈ H 2

ul(R) such that, up to extracting a subsequence, we have, for
any L > 0, wn → w∞ in H 2([−L;L]).

For any fixed n ∈ N, we have tp − tn → +∞ when p → +∞ and

x̃(tp) − x̃(tn)

tp − tn
→ c̃ when p → +∞.

For n ∈ N
∗, let

p(n) = min

{
p ∈ N | tp − tn � n and

∣∣∣∣ x̃(tp) − x̃(tn)

tp − tn
− c̃

∣∣∣∣ � 1

n

}

(any sequence n 	→ p(n) satisfying tp(n) − tn → +∞ and
x̃(tp(n))−x̃(tn)

tp(n)−tn
→ c̃ when n → +∞ would be convenient).

For n ∈ N, let sn = tp(n) − tn, and let

cn = x̃(tp(n)) − x̃(tn)

sn
.

We have sn → +∞ and cn → c̃ when n → +∞, and, according to (29), we have cn � cmax for all n ∈ N
∗. Let us take

n ∈ N
∗ sufficiently large so that

c̃/2 < cn � cmax and (cn + β)(c̃ − cn) � βγ/4. (48)

We are going to apply the computations of Section 5 with the following set of parameters (see Fig. 5):

tinit = tn, xinit = x̃(tinit), c = cn, and y0 � 0 to be chosen below.

Let us denote by v(n)(y, s), ϕ(n)(y, s), Φ(n)(s), D(n)(s), ψ(n)(y, s), Ψ (n)(s), and ỹ(n)(s) the quantities that were
defined in Section 5 (with the same notations except the “(n)” exponent), for this set of parameters. Observe that

v(n)(y,0) = wn(y), v(n)(y, sn) = wp(n)(y), and ỹ(n)(sn) = 0.

Claim 1. There exists εdissip > 0 such that, for any n sufficiently large, we have, uniformly with respect to y0 � 0,

1

2

sn∫
0

D(n)(s)ds � εdissip.
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Fig. 5. Proof of Proposition 5.

Remark that the quantity D(n)(s) is, by definition, increasing with y0. As a consequence, it is sufficient to prove
this claim in the case y0 = 0. Thus, let us assume, just for the proof of this claim, that y0 = 0. If this claim was not
true, then there would exist a sequence (nk)k∈N of positive integers, nk → +∞ when k → +∞, such that

snk∫
0

D(nk)(s)ds → 0 when k → +∞.

According to (42), this would yield

D(nk)(snk
) → 0 when k → +∞,

and, since

D(nk)(snk
) �

γ snk∫
−∞

ecnk
yv(nk)

s (y, snk
)2 dy,

this would show that the function y 	→ v
(nk)
s (y, snk

) converges toward 0 in L2([−L;L]) when k → +∞, for any
L > 0. Since

v(nk)
s (y, snk

) = ut

(
x̃(tp(nk)) + y, tp(nk)

) + cnk
ux

(
x̃(tp(nk)) + y, tp(nk)

)
this would be contradictory to (47). Claim 1 is proved.

The conclusions of Proposition 5 will immediately follow from the four following claims, which are proved there-
after.

Claim 2. The integral∫
R

ec̃y

(
w′∞(y)2

2
+ V

(
w∞(y)

))
dy

converges (let us denote by Φ(∞) its value).

Claim 3. For n sufficiently large (depending on y0), we have Φ(n)(0) � Φ(∞) + εdissip/4.

Claim 4. For n sufficiently large, we have, uniformly with respect to y0 � 0, Φ(n)(sn) � Φ(∞) − εdissip/4.

Claim 5. For y0 sufficiently large, and for n sufficiently large (depending on y0), we have

K2

sn∫
0

Ψ (n)(s)ds � εdissip/4,

(the constant K2 was introduced in inequality (35)).



402 E. Risler / Ann. I. H. Poincaré – AN 25 (2008) 381–424
It is thus possible to choose y0 sufficiently large, and n sufficiently large depending on the choice of y0, in such a
way that the conclusions of Claims 1, 3, 4, and 5 be simultaneously satisfied. These conclusions are contradictory to
(35), and this proves Proposition 5.

Proof of Claim 2. Let us assume, just for the proof of this claim, that y0 = 0. Then, since cn � c̃/2, and according to
(11), the quantities Φ(n)(0) and Ψ (n)(0) are bounded from above, uniformly with respect to n, and, in view of (41),
we see that

∫ sn
0 Ψ (n)(s)ds is bounded from above, uniformly with respect to n. According to (35), this shows that

there exists a constant C > 0 (independent of n), such that, for n sufficiently large, we have C � Φ(n)(sn). Besides,
since ỹ(n)(sn) = 0, we have

Φ(n)(sn) �
γ sn∫

−∞
ecny

(
w′

p(n)(y)2

2
+ V

(
wp(n)(y)

))
dy,

thus, for any L > 0, we have, for n sufficiently large (depending on L),

C �
L∫

−∞
ecny

(
w′

p(n)(y)2

2
+ V

(
wp(n)(y)

))
dy,

and, passing to the limit when n → +∞,

C �
L∫

−∞
ec̃y

(
w′∞(y)2

2
+ V

(
w∞(y)

))
dy.

Since L is any and C does not depend on L, Claim 2 is proved. �
Proof of Claim 3. Let us recall that

ϕ(n)(y, s) = ecny for y � y0 + γ s and ϕ(n)(y, s) = e−βye(cn+β)(y0+γ s) for y � y0 + γ s.

Let us write

ϕ(∞)(y) = ec̃y for y � y0 and ϕ(∞)(y) = e−βye(c̃+β)y0 for y � y0,

and, for y ∈ R,

f (n)(y) = ϕ(n)(y,0)

(
w′

n(y)2

2
+ V

(
wn(y)

))
,

f (∞)(y) = ϕ(∞)(y)

(
w′∞(y)2

2
+ V

(
w∞(y)

))
,

f̄ (∞)(y) = ec̃y

(
w′∞(y)2

2
+ V

(
w∞(y)

))
.

We have

Φ(n)(0) =
∫
R

f (n)(y)dy, Φ(∞) =
∫
R

f̄ (∞)(y)dy �
∫
R

f (∞)(y)dy

(indeed, according to (30), we have |w∞(y)| � r0 and thus V (w∞(y)) � 0 for y � 0).
Since cn � c̃/2, we see that, for any fixed y0 � 0, the functions ϕ(n)(y,0) converge exponentially toward 0 when

y → ±∞, and this convergence is uniform with respect to n. Thus, for any fixed y0 � 0, we have

f (n)(.) → f (∞)(.) in L1(R) when n → +∞,

and Claim 3 follows. �
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Proof of Claim 4. Let

g(n)(y) = ϕ(n)(y, sn)

(
w′

p(n)(y)2

2
+ V

(
wp(n)(y)

))
.

We have

Φ(n)(sn) =
∫
R

g(n)(y)dy.

Take L > 0 such that
L∫

−∞
f̄ (∞)(y)dy � Φ(∞) − εdissip

8
.

Since ϕ(n)(y, sn) = ecny for y � y0 + γ sn, thus in particular for y � γ sn, and since cn � c̃/2, we see that

g(n)(.) → f̄ (∞)(.) in L1(]–∞;L]) when n → +∞, uniformly with respect to y0 � 0.

Since Φ(n)(sn) �
∫ L

−∞ g(n)(y)dy (indeed, according to (30), we have |wp(n)(y)| � r0 and thus V (wp(n)(y)) � 0 for
y � 0), this proves Claim 4. �
Proof of Claim 5. Since xinit = x̃(tinit) and according to (48), estimate (41) holds, and according to this estimate, we
have

K2

sn∫
0

Ψ (n)(s)ds � K2ε
−1
3 Ψ (n)(0) + K2K3e

−βy0 .

For y0 sufficiently large, we have

K2K3e
−βy0 � εdissip

8
.

We are going to prove that, for y0 sufficiently large, and for n sufficiently large (depending on y0), we have

Ψ (n)(0) � ε4, where ε4 = ε3εdissip

8K2
,

and this will prove Claim 5. Recall that

ψ(n)(y,0) = e(cn+β)ye−βy0 for y � y0 and ψ(n)(y,0) = e−βye(cn+β)y0 for y � y0.

Let us write

ψ(∞)(y) = e(c̃+β)ye−βy0 for y � y0 and ψ(∞)(y) = e−βye(c̃+β)y0 for y � y0,

and, for y ∈ R,

h(n)(y) = ψ(n)(y,0)

(
α

(
w′

n(y)2

2
+ V

(
wn(y)

)) + wn(y)2

2

)
,

h(∞)(y) = ψ(∞)(y)

(
α

(
w′∞(y)2

2
+ V

(
w∞(y)

)) + w∞(y)2

2

)
,

and

h̄(∞)(y) = ec̃y

(
α

(
w′∞(y)2

2
+ V

(
w∞(y)

)) + w∞(y)2

2

)
.

According to the choice of α, these three functions are nonnegative. We have

Ψ (n)(0) =
∫

h(n)(y)dy.
R
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Let

Ψ (∞) =
∫
R

h(∞)(y)dy, Ψ̄ (∞) =
∫
R

h̄(∞)(y)dy.

According to Claim 2, the integral
∫

R
h̄(∞)(y)dy converges (indeed, for y � 0, we have |w∞(y)| � r0, and thus,

according to (17), w∞(y)2 and V (w∞(y)) are of the same order of magnitude).
We have h(∞) � h̄(∞), and, for y � y0/2, we have h(∞)(y) � e−βy0/2h̄(∞)(y). Thus,

Ψ (∞) � e−βy0/2Ψ̄ (∞) +
+∞∫

y0/2

h̄(∞)(y)dy.

This shows that, for y0 sufficiently large, we have

Ψ (∞) � ε4/2.

Since cn � c̃/2, we see that, for any fixed y0 � 0, the functions ψ(n)(y,0) converge exponentially toward 0 when
y → ±∞, and this convergence is uniform with respect to n. Thus, for any fixed y0 � 0, we have

h(n)(.) → h(∞)(.) in L1(R) when n → +∞,

and this shows that, for y0 sufficiently large, and for n sufficiently large depending on y0, we have Ψ (n)(0) � ε4,
which is the desired bound. This finishes the proof of Claim 5, and thus of Proposition 5. �
8. Convergence

We keep the notations of the previous section. For t � 0 let x̄(t) ∈ [−∞;+∞] denote the supremum of the set{
x ∈ R | |u(x, t)| > r0

}
(with the convention that x̄(t) = −∞ if this set is empty). According to (30) we have x̄(t) � x̃(t), and thus x̄(t) < +∞,
for all t � 0.

The conclusions of Theorem 1 will follow naturally from Proposition 5, through the four following lemmas.

Lemma 2. For t sufficiently large x̃(t) − x̄(t) is bounded from above.

Proof. Suppose by contradiction that the converse is true, i.e. that there exists a sequence (tn)n∈N satisfying tn → +∞
and x̃(tn) − x̄(tn) → +∞ when n → +∞. For n ∈ N, let us write

wn(y) = u
(
x̃(tn) + y, tn

)
, ŵn(y) = ut

(
x̃(tn) + y, tn

)
, y ∈ R.

By compactness (Section 2), there exists w∞ ∈ H 2
ul(R) and ŵ∞ ∈ L2

ul(R) such that, up to extracting a subsequence,
for any L > 0,

wn → w∞ in H 2([−L;L]) and ŵn → ŵ∞ in L2([−L;L]).
According to Proposition 5, we have ŵ∞ + c̃w′∞ = 0, and passing to the limit in (1), we see that w∞ is a solution of

w′′ + c̃w′ − ∇V (w) = 0. (49)

Moreover, according to the definition of x̄(.), we have |w∞(y)| � r0 for all y ∈ R. According to Lemma 9 in Sec-
tion A.3, this yields w∞ ≡ 0, which is contradictory to the definition of x̃(.). �

We use the notations S(r0), Wc̃, Wb
c̃

, and φc̃,ν(.) (for ν ∈ R
2n) of the introduction. According to the above lemma,

we have, for t sufficiently large, −∞ < x̄(t), and, by definition of x̄(t), |u(x̄(t), t)| ≡ r0 (in other words u(x̄(t), t) ∈
S(r0)).

According to Proposition 3, the set Wc̃ is the graph of a map: S(r0) → R
n, of class C1. Let us denote by fc̃ this

map. For t large enough, let

ν(t) = (
u
(
x̄(t), t

)
, fc̃

(
u
(
x̄(t), t

))) ∈ Wc̃ (50)

(this choice is convenient, but, as mentioned in introduction, not the only possible one).
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Lemma 3. We have

dist
(
ν(t),Wb

c̃

) → 0 when t → +∞,

and, for any L > 0

sup
y∈[−L;L]

∣∣u(
x̄(t) + y, t

) − φc̃,ν(t)(y)
∣∣ → 0 when t → +∞.

Proof. Take any sequence tn → +∞, and, for n ∈ N, let us write

wn(y) = u
(
x̄(tn) + y, tn

)
, y ∈ R.

Proceeding as in the proof of the previous lemma, we see that there exists a solution w∞ of (49) such that, up
to extracting a subsequence, for any L > 0, wn → w∞ in H 2([−L;L]). Moreover, according to (28), we have
supy∈R |w∞(y)| � R0, and, according to the definition of x̄(.), we have |w∞(0)| = r0 and |w∞(y)| � r0 for y � 0.
This shows that, if we write ν∞ = (w∞(0),w′∞(0)), then we have

ν∞ ∈Wb
c̃ , w′∞(0) = fc̃

(
w∞(0)

)
, w∞ = φc̃,ν∞ , (51)

and of course ν(tn) → ν∞ when n → +∞.
The proof by contradiction of the lemma follows from these observations. Indeed, if the first assertion did not hold,

there would exist ε0 > 0 and a sequence tn → +∞ such that dist(ν(tn),Wb
c̃
) � ε0 for all n ∈ N, and in view of the

above conclusions this is impossible.
Similarly, if the second assertion did not hold, there would exist ε0 > 0, L0 > 0, and a sequence tn → +∞ such

that, for all n ∈ N,

sup
y∈[−L0;L0]

∣∣u(
x̄(tn) + y, tn

) − φc̃,ν(tn)(y)
∣∣ � ε0.

After extracting a subsequence as above, this would yield

sup
y∈[−L0;L0]

∣∣w∞(y) − φc̃,ν∞(y)
∣∣ � ε0

which is contradictory to (51). �
Lemma 4. For t sufficiently large the function t 	→ x̄(t) and the map t 	→ ν(t) are of class C1 and we have x̄′(t) → c̃

and ν′(t) → 0 when t → +∞.

Proof. According to (13), we see that the conclusions of Lemma 3 yield

u
(
x̄(t), t

) · ux

(
x̄(t), t

) − φc̃,ν(t)(0) · φ′
c̃,ν(t)(0) → 0 when t → +∞.

According to Lemma 9 (Section A.3) and since Wc is compact (Proposition 3), this shows that there exists ε > 0 such
that, for t sufficiently large, we have

u
(
x̄(t), t

) · ux

(
x̄(t), t

)
� −ε. (52)

Let us write G(x, t) = (u(x, t)2 − r2
0 )/2, x ∈ R, t � 0. According to the regularity of the solution (Section 2),

the so-defined function G is of class C1 with respect to x and t , and we have G(x̄(t), t) ≡ 0 and ∂G/∂x(x̄(t), t) =
u(x̄(t), t) ·ux(x̄(t), t). Thus, according to (52) and to the implicit function theorem, for t sufficiently large the function
t 	→ x̄(t) is of class C1 and we have

x̄′(t) = − u(x̄(t), t) · ut (x̄(t), t)

u(x̄(t), t) · ux(x̄(t), t)
.

On the other hand, according to Proposition 5 and to the regularity properties (13) and (14), we must have ut (x̄(t), t)+
c̃ux(x̄(t), t) → 0 when t → +∞, and this shows that

x̄ ′(t) → c̃ when t → +∞.

As a consequence, the function t 	→ u(x̄(t), t) is, for t sufficiently large, also of class C1, and its derivative goes to 0
when t → +∞. In view of the expression (50) of ν(t), and since the map fc̃ is of class C1, the same properties hold
for the function t 	→ ν(t), and this finishes the proof. �
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Lemma 5. For any L > 0, we have

sup
y∈[−L;+∞[

∣∣u(
x̄(t) + y, t

) − φc̃,ν(t)(y)
∣∣ → 0 when t → +∞.

Proof. Let us proceed by contradiction and suppose that there exists ε > 0 and L0 > 0 and a sequence tn → +∞
such that, for any n ∈ N,

sup
y∈[−L0;+∞[

∣∣u(
x̄(tn) + y, tn

) − φc̃,ν(tn)(y)
∣∣ � ε.

On the other hand, according to Lemma 3, for any L > 0,

sup
y∈[−L;L]

∣∣u(
x̄(tn) + y, tn

) − φc̃,ν(tn)(y)
∣∣ → 0 when n → +∞.

This shows that, for any L � L0 and for n sufficiently large (depending on L),

sup
y∈]L;+∞[

∣∣u(
x̄(tn) + y, tn

) − φc̃,ν(tn)(y)
∣∣ � ε. (53)

According to Lemmas 9 and 11 in Section A.3, for any ν ∈Wc̃, we have∣∣φc̃,ν(y)
∣∣ → 0 when y → +∞,

and this convergence is uniform with respect to ν ∈ Wc̃. Thus (53) shows that there exists a sequence yn → +∞ such
that, for n large enough, |u(x̄(tn) + yn, tn)| � ε/2.

Using the notations of Section 4, this shows that there exists ε′ > 0 such that, for n large enough, Ψ0(x̄(tn) +
yn, tn) � ε′. Let us write

Ψ0,n(s) = Ψ0
(
x̄(tn) + yn, tn − s

)
, 0 � s � tn.

Inequality (24) yields

Ψ ′
0,n(s) = −∂Ψ0

∂t

(
x̄(tn) + yn, tn − s

)
� ε1Ψ0,n(s) − K1

∫
Sfar(tn−s)

Tx̄(tn)+ynψ0(x)dx, 0 � s � tn.

According to Lemma 4, for n large enough, the function t 	→ x̄(t) is of class C1 and satisfies x̄′(t) > 0 for t ∈ [tn/2; tn].
Thus, for s ∈ [0; tn/2], we have Sfar(tn − s) ⊂]–∞; x̄(tn)], and the last term in the above inequality is arbitrarily small
if n is sufficiently large. Finally, for n large enough, we see that, since Ψ0,n(0) � ε′, Ψ0,n(.) grows exponentially on
[0; tn/2], in particular Ψ0,n(tn/2) is arbitrarily large if n is large, which is in contradiction with (11), and proves the
lemma. �

The proof of Theorem 1 is complete.
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Appendix A

A.1. Attracting ball in H 1
ul(R)

Lemma 6. Assume that V satisfies hypothesis (H1). Then there exists a constant R1 > 0, depending only on V , such
that, for any R > 0, there exists T (R) > 0 such that, for any u0 ∈ H 1

ul(R) satisfying ‖u0‖H 1
ul(R) � R, the solution

t 	→ Stu0 of the parabolic system (1) with initial data u0 is defined up to +∞ in time, and, for any t � T (R), we have

‖Stu0‖H 1
ul(R) � R1.

Proof. Recall that hypothesis (H1) asserts the existence of positive constants εV and CV such that u · ∇V (u) �
εV u2 − CV for all u ∈ R

n. Remark that, according to inequality (20), this hypothesis immediately shows that the L2
ul-

norm of any global solution is eventually bounded by a constant depending only on V . The existence of an attracting
ball in H 1

ul(R) requires more care.
Hypothesis (H1) guarantees that V is bounded from below on R

n; let us write V (u) = V (u) − minv∈Rn V (v) � 0,
u ∈ R

n.
Take any u0 ∈ H 1

ul(R), and let Tmax ∈ ]0;+∞] denote the upper bound of the maximal time interval where the
solution t 	→ Stu0 with initial data u0 is defined. Let u(x, t) = (Stu0)(x), t ∈ [0;Tmax[, x ∈ R.

Let β1 = min(1,
√

εV ), and let us write ψ1(x) = e−β1|x|, and Tξψ1(x) = ψ1(x − ξ), (ξ, x) ∈ R
2. For 0 � t < Tmax

and ξ ∈ R, let

Ψ1(ξ, t) =
∫
R

Tξψ1(x)

(
ux(x, t)2

2
+ V

(
u(x, t)

) + u(x, t)2

2

)
dx,

H(ξ, t) =
∫
R

Tξψ1(x)
(
ux(x, t)2 + u(x, t)2)dx.

Take any t ∈ ]0;Tmax[. According to (19), (20), and (H1), we have

∂Ψ1

∂t
(ξ, t) � −εH(ξ, t) + 2CV /β1, ξ ∈ R,

where ε = min(3/4, εV /2) (we have used the fact that
∫

R
ψ1(x)dx = 2/β1). Let us write C5 = ε−1(1 + 2CV /β1).

Thus, if H(ξ, t) � C5, then ∂Ψ1/∂t (ξ, t) � −1.
Let L > 0 to be chosen below. There exists a constant C6 > 0, depending on V (.), L, C5, such that, if H(ξ, t) � C5,

then

ξ+L∫
ξ−L

Tξψ1

(
u2

x

2
+ V (u) + u2

2

)
dx � C6

and thus, at least one of the two following inequalities holds:

ξ−L∫
−∞

Tξψ1

(
u2

x

2
+ V (u) + u2

2

)
dx �

(
Ψ1(ξ, t) − C6

)
/2,

+∞∫
ξ+L

Tξψ1

(
u2

x

2
+ V (u) + u2

2

)
dx �

(
Ψ1(ξ, t) − C6

)
/2.

Let us suppose for instance that the first of these two last inequalities holds. Observe that Tξ−Lψ1 = eβ1LTξψ1 on
]–∞;x − L]. Thus, since the expression below the integral is nonnegative, we have

Ψ1(ξ − L, t) � eβ1L
(
Ψ1(ξ, t) − C6

)
/2.
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Let us choose L = β−1
1 log 3, thus eβ1L = 3. The last inequality shows that, if Ψ1(ξ, t) � 3C6 +2, then Ψ1(ξ −L, t) �

Ψ1(ξ, t) + 1.
In short, we have shown that, for any ξ ∈ R and t ∈ [0;Tmax[, if Ψ1(ξ, t) � 3C6 + 2, then either ∂Ψ1/∂t (ξ, t) � −1

or supx∈R Ψ1(x, t) � Ψ1(ξ, t) + 1. This shows that, as long as supx∈R Ψ1(x, t) is larger than 3C6 + 2, this supremum
decreases with time (at least at speed 1). In view of the coercivity of Ψ1, this finishes the proof. �
A.2. A sufficient condition for invasion to occur

The aim of this paragraph is to prove Proposition 2. The idea of this proof is due to Thierry Gallay. First we need the
following preliminary lemma (this result was explained to me by J.-F. Burnol, to whom I am grateful for interesting
discussions on Tauberian theorems).

Lemma 7. For any h ∈ L∞(R), if

0∫
−L

h(x)dx → −∞ when L → +∞, then

0∫
−∞

ecxh(x)dx → −∞ when c → 0+.

Proof. Let

H(x) =
0∫

x

h(y)dy, and I (c) =
0∫

−∞
ecxh(x)dx.

We have H ′(x) = −h(x). Integrating by parts, we get

I (c) =
0∫

−∞
cecxH(x)dx.

If H(x) � −M < 0 for x � −L < 0, then we obtain

I (c) � −Me−cL + (
1 − e−cL

)
max

x∈[−L;0]
H(x).

The right-hand side converges toward −M when c → 0+, which proves the result. �
Remark. The same result still holds for a function h ∈ L1

ul(R).

Now let us prove Proposition 2. Let us give ourselves u0 ∈ A satisfying the hypothesis of this proposition, and let
u(x, t) = (Stu0)(x), t � 0, x ∈ R, denote the solution of (1) with initial data u0.

Lemma 8. For any t � 0, we have

0∫
−L

(
ux(x, t)2

2
+ V

(
u(x, t)

))
dx → −∞ when L → +∞.

Proof. For L � 0, let us consider the function ϕL : R → R defined by

ϕL(x) = ex+L for x � −L, ϕL(x) = 1 for −L � x � 0, and ϕL(x) = e−x for 0 � x.

Let

ΦL(t) =
∫

ϕL(x)

(
ux(x, t)2

2
+ V

(
u(x, t)

))
dx, t � 0.
R
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According to (19), we have

Φ ′
L(t) �

∫
]−∞;−L]∪[L;+∞[

ϕL(x)
ux(x, t)2

4
dx, t > 0.

Thus, according to (11), we see that Φ ′
L(t) is bounded from above, uniformly with respect to t � 0 and L � 0. The

result follows. �
We pursue the proof of Proposition 2. For t � 0, let us define x̄(t) ∈ [−∞;+∞] as in Section 8. Since u0 ∈ A, we

can suppose, up to changing the origin of time, that x̄(t) < +∞ for all t � 0, and, according to (15), we can suppose
that ∣∣u(x, t)

∣∣ � R0, x ∈ R, t � 0.

According to the above lemmas, we have

0∫
−∞

ecx

(
ux(x,0)2

2
+ V

(
u(x,0)

))
dx → −∞ when c → 0+. (54)

In order to prove the proposition, it is sufficient to prove that lim supt→+∞ x̄(t)/t > 0. Let us proceed by contradiction
and suppose the converse. Let us consider the following set of parameters:

tinit = 0, xinit = 0, 0 < c � cmax (to be chosen later), and y0 = 0.

As in Section 5, we can define quantities Φ(s), Ψ (s), and Θ(s), corresponding to this set of parameters. Let ȳ(s) =
x̄(s) − cs, s � 0. We have ȳ(s) � x̄(s) and thus (compare to (38) in Section 5)

Θ(s) � β−1 exp
(−βγ s + (c + β)x̄(s)

)
which yields

Θ(s) � C7e
− βγ

2 s

where C7 > 0 is a constant which does not depend on c, namely

C7 = β−1 sup
s�0

exp

(
(cmax + β)x̄(s) − βγ

2
s

)
.

According to (37), and proceeding as in Section 5, this yields

+∞∫
0

Ψ (s)ds � ε−1
3 Ψ (0) + 2C3C7

ε3βγ
. (55)

According to (11) and since y0 = 0, Ψ (0) is bounded from above by a constant which does not depend on c, and, in
view of (55), the same is true for the quantity

∫ +∞
0 Ψ (s)ds.

Now, on one hand, since ȳ(s) → −∞ when t → +∞, we see that lim infs→+∞ Φ(s) � 0 (see (44) in the proof
of Proposition 4), and on the other hand, (54) shows that Φ(0) → −∞ when c → 0+. This shows that, for c > 0
sufficiently close to 0, and for s > 0 sufficiently large (depending on c), we have

Φ(s) � Φ(0) + K2

s∫
0

Ψ (s)ds,

and this is contradictory to (35). Proposition 2 is proved.
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A.3. The profiles of traveling wave solutions

The aim of this section is to prove some properties satisfied by the solutions of Eq. (58) governing the profiles of
fronts traveling at constant velocity; these properties are used throughout the paper.

We assume that V satisfies (H1) and (H2). Let r0 be as in introduction. For technical reasons, it is convenient to
take and fix r ′

0 > r0, with similar properties, i.e. such that, for any v ∈ R
n satisfying |v| � r ′

0, any eigenvalue λ of
D2V (v) satisfies

λmin

4
� λ. (56)

As a consequence, for any v ∈ R
n satisfying |v| � r ′

0, we have

λmin

4
v2 � v · ∇V (v). (57)

Take any c > 0, and let us consider the differential system (governing the profiles of fronts traveling at the veloc-
ity c):

φ′′ = −cφ′ + ∇V (φ). (58)

Lemma 9. Let x 	→ φ(x) be any solution of (58), defined on a maximal interval I of the form ]x−;+∞[, −∞ �
x− < 0, and satisfying |φ(x)| < r ′

0 for all x � 0, and φ(.) 
≡ 0. Then we have

• φ(x) · φ′(x) < 0 for all x � 0, and
• (φ(x),φ′(x)) → (0,0) when x → +∞.

If moreover x− = −∞ and supx∈R |φ(x)| < +∞, then we have

sup
x∈R

|φ(x)| � √
2CV /εV (59)

(where CV and εV are the constants of hypothesis (H1)), and there exists h < 0 such that

dist
(
φ(x),Σcrit,h

) → 0 and φ′(x) → 0 when x → +∞,

where Σcrit,h = {v ∈ R
n | V (v) = h and ∇V (v) = 0} (in particular supx∈R |φ(x)| > r ′

0).

Proof. Let x 	→ φ(x) be any solution of the differential system (58), defined on a maximal interval I of the form
]x−;+∞[, −∞ � x− < 0, and satisfying |φ(x)| < r ′

0 for all x � 0, and φ(.) 
≡ 0. Let us write

E(x) = φ′(x)2

2
− V

(
φ(x)

)
, Q(x) = φ(x)2

2
, x ∈ I. (60)

We have

E′ = −cφ′2 and Q′′ + cQ′ = φ′2 + φ · ∇V (φ). (61)

Thus E(x) is decreasing with x. Since |φ(.)| < r ′
0 on R+, E(.) is bounded from below on R+, thus it converges

toward a finite limit when x → +∞, and this shows that φ′(.) is square integrable on R+. On the other hand, E(.) is
bounded from above on R+ (because it is decreasing), and as a consequence the same is true for |φ′(.)|, and thus for
|φ′′(.)|. Thus φ′(x) → 0 when x → +∞. In view (58) this shows that φ(x) must converge toward the set of critical
points of V , thus (in view of (57)) toward 0, when x → +∞.

According to (61) and (57), we have

Q′′ + cQ′ � λmin

2
Q on R+. (62)

Since Q(x) → 0 and Q′(x) → 0 when x → +∞, integrating this inequality between any x ∈ R+ and +∞ yields

−Q′(x) − cQ(x) � λmin

2

+∞∫
Q(y)dy,
x
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and since Q � 0 and φ 
≡ 0, this shows that Q′(x) < 0, and thus finishes the proof of the first assertion.
Now let us assume that x− = −∞ and that supx∈R |φ(x)| < +∞. According to (61) and to hypothesis (H1), we

have

Q′′ + cQ′ � εV Q − CV + φ′2 on R. (63)

Integrating this equation between any x ∈ R− and 0 yields

Q′(0) − Q′(x) + c
(
Q(0) − Q(x)

)
�

0∫
x

(
εV Q(y) − CV + φ′2(y)

)
dy. (64)

Since E(x) decreases with x and converges toward 0 when x → +∞, there exists E−∞ ∈ [0;+∞] such that E(x) →
E−∞ when x → −∞ (actually, since φ 
≡ 0, we must have E−∞ > 0).

If we had E−∞ = +∞, then, since V is bounded from below, we would have |φ′(x)| → +∞ when x → −∞,
and, in view of (64), and since Q � 0, this would yield Q′(x) → −∞ when x → −∞, and thus Q(x) → +∞ when
x → −∞, which is impossible since |φ(.)| was supposed to be bounded.

Thus E−∞ < +∞, and since |φ(.)| is uniformly bounded, this shows that |φ′(.)| is also uniformly bounded. Thus,
in view of (58), |φ′′(.)| is uniformly bounded, and since according to (61) φ′(.) is square-integrable on R, we must
have φ′(x) → 0 when x → −∞, and, in view of (58), φ(.) necessarily converges toward the set of critical points of
V belonging to the level set {v ∈ R

n|V (v) = −E−∞}.
It remains to prove that Q(x) � CV /εV for all x ∈ R. Let us proceed by contradiction and suppose the converse,

i.e. that there exists x0 ∈ R such that Q(x0) > CV /εV . Let us write q(x) = Q(x0 + x) − CV /εV , x ∈ R. We have
q(0) > 0, and, according to (63), we have

q ′′ + cq ′ � εV q on R. (65)

Claim. If q ′(0) � 0 (resp. q ′(0) < 0) then q(x) → +∞ when x → +∞ (resp. when x → −∞).

Let us assume first that q ′(0) � 0. In this case let x 	→ p(x) denote the solution of the differential equation p′′ +
cp′ = εV p with initial data p(0) = q(0)/2 and p′(0) = q ′(0) � 0, and let r = q − p. According to (65) we have

r ′′ + cr ′ � εV r, on R. (66)

Clearly p(x) → +∞ when x → +∞. We have r(0) = q(0)/2 > 0 and r ′(0) = 0, and we claim that r(x) > 0 for all
x ∈ R+. If the converse was true there would exist x0 > 0 such that r(x0) = 0 and r(x) > 0 for x ∈ [0;x0[. Then,
integrating (66) between 0 and x0, we would get

r ′(x0) − cr(0) � εV

x0∫
0

r(y)dy

and thus r ′(x0) > 0, which is impossible. Thus r(x) > 0 for all x ∈ R+, and thus q(x) → +∞ when x → +∞.
Now let us assume that q ′(0) < 0. In this case we claim that q ′(x) < q ′(0) for all x < 0. Indeed, according to (65),

we have q ′′(0) < 0, thus q ′(x) < q ′(0) holds at least for x < 0 sufficiently close to 0. If this did not hold for all x < 0
then there would exist x0 < 0 such that q ′(x0) = q ′(0) and q ′(x) < q ′(0) for all x ∈ ]x0;0[. Then, integrating (65)
between x0 and 0 would yield

c

0∫
x0

q ′(y)dy � εV

0∫
x0

q(y)dy > 0,

which is impossible. Thus q(x) → +∞ when x → −∞, and the claim is proved.
Since this claim is contradictory to the hypothesis supx∈R |φ(x)| < +∞, the lemma is proved. �
Let φc,ν(.) (for ν ∈ R

2n), Wc, and Wb
c be as in introduction. Let B(r ′

0) = {v ∈ R
n | |v| < r ′

0}, and let

W s,loc
c (0) = {

ν ∈ R
2n | φc,ν(.) is defined up to + ∞ and φc,ν(x) ∈ B(r ′

0) for all x � 0
}
.
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Lemma 10. The set W
s,loc
c (0) is the graph of a C1-map fc :B(r ′

0) → R
n.

Proof. For r > 0, let B(r) = {u ∈ R
n | |u| < r}, and let S(r) = {u ∈ R

n | |u| = r}.
Linearizing the differential system (58) at (0,0), we get

φ′′ = −cφ′ + D2V (0)φ ⇔
(

φ

ψ

)′
=

(
0 1

D2V (0) −c

)(
φ

ψ

)
. (67)

To any eigenvector φ0 of D2V (0), corresponding to an eigenvalue μ, correspond two eigenvectors (φ0, λ±φ0) for
(67), corresponding to the two eigenvalues λ± = (−c ± √

c2 + 4μ)/2. Since μ > 0, we have λ− < 0 < λ+. Thus
(0,0) is a hyperbolic equilibrium of (58), and its stable and unstable manifold both have dimension n. Let us denote
by W s

c (0) and W u
c (0) these manifolds. Since V is of class Ck , k � 3, then these manifolds are of class (at least) Ck−1,

thus at least C1 ([18]).

Claim 1. The set W
s,loc
c (0) is an open subset of W s

c (0).

Indeed, according to the local stable manifold theorem, for ε > 0 small enough, the set{
ν ∈ R

2n | φc,ν(.) is defined up to + ∞ and satisfies |φc,ν(x)| < ε for all x � 0
}

is an open neighborhood of (0,0) in W s
c (0), and Claim 1 immediately follows.

For ν ∈ W s
c (0), let TνW

s
c (0) denote the (n-dimensional) tangent space to W s

c (0) at ν.

Claim 2. For all ν ∈ W
s,loc
c (0), the space TνW

s
c (0) is transverse to {0} × R

n.

Indeed, take any ν ∈ W
s,loc
c (0). If ν = (0,0), then the conclusion of the claim follows from the above expression of

the eigenvectors of (67). Let us assume that ν 
= (0,0), let us take any pair (φ0, φ
′
0) ∈ R

2n, and let x 	→ φ(x) denote
the solution of the linear differential system

φ′′(x) = −cφ′(x) + D2V
(
φc,ν(x)

)
φ(x) (68)

with initial data (φ(0),φ′(0)) = (φ0, φ
′
0). The pair (φ0, φ

′
0) belongs to TνW

s
c (0) if and only if (φ(x),φ′(x)) → (0,0)

when x → +∞. Let us assume that we are in this case, and let us write Q(x) = φ(x)2/2. Since |φc,ν(x)| < r ′
0 for all

x � 0, (68) yields

Q′′(x) + cQ′(x) � λmin

2
Q(x), x � 0.

Since Q(x) → 0 and Q′(x) → 0 when x → +∞, integrating this equation between any x ∈ R+ and +∞ yields

−Q′(x) − cQ(x) � λmin

2

+∞∫
x

Q(y)dy,

and thus, since Q(.) � 0 and φ 
≡ 0, Q′(x) < 0, and this proves the claim.
Let us consider the map

π1 :W s,loc
c (0) → B(r ′

0), (u, v) ∈ R
n × R

n 	→ u.

According to Claim 2 above, for any (u, v) ∈ W
s,loc
c (0), π1 defines a local diffeomorphism between a neighborhood

of (u, v) in W
s,loc
c (0) and a neighborhood of u in B(r ′

0). In particular, the image set of π1 is open. It remains to prove
that this diffeomorphism is global.

Claim 3. The map π1 is surjective, i.e. π1(W
s,loc
c (0)) = B(r ′

0).

As mentioned above, π1 defines a local diffeomorphism between a neighborhood V of (0,0) in W
s,loc
c (0) and a

neighborhood U of 0 in R
n. Let us denote by f :U → V the inverse of this local diffeomorphism, and take ε > 0 small

enough so that S(ε) ⊂ U .
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Take any u ∈ S(ε) and let us write Qu(x) = φc,f (u)(x)2/2. According to Lemma 9, we have Q′
u(0) < 0, and,

according to (62), we see that there exists xu(r
′
0) < 0 such that the function

x 	→ ∣∣φc,f (u)(x)
∣∣

is strictly decreasing on the interval [xu(r
′
0);0], and defines a diffeomorphism (of class Ck+1 since V is of class Ck)

between [xu(r
′
0);0] and [ε; r ′

0]. Let r 	→ xu(r) denote its the inverse. Then, for any r ∈ [ε; r ′
0[, we have(

φc,f (u)

(
xu(r)

)
, φ′

c,f (u)

(
xu(r)

)) ∈ W s,loc
c (0), thus φc,f (u)

(
x(u, r)

) ∈ π1
(
W s,loc

c (0)
)
.

Let us consider the one-parameter family (gr)r∈[ε;r ′
0[ of maps: S(1) → S(1), defined by

gr(v) = 1

r
φc,f (εv)

(
xv(r)

)
.

We have gε = IdS(1), so that, for any r ∈ [ε; r ′
0[, the map gr is isotopic to IdS(1), thus surjective (because otherwise we

could construct a retraction of the n − 1-dimensional sphere S(1) to a point, and as is well known this is impossible).
This shows that S(r) ∈ π1(W

s,loc
c (0)) for all r ∈ [ε; r ′

0[, and thus proves Claim 3.

Thus π1 defines a covering of B(r ′
0) by W

s,loc
c (0), and since W

s,loc
c (0) is connected and B(r ′

0) is simply connected,
this covering must be one to one. If we denote by f̄ its inverse, and by π2 the map: R

n × R
n → R

n, (u, v) 	→ v, then
we see that W

s,loc
c (0) is the graph of the map π2 ◦ f̄ :B(r ′

0) → R
n. The lemma is proved. �

It immediately follows from this lemma that Wc is a compact subset of R
2n.

Recall that the potential function V is assumed to be of class Ck , k � 3.

Lemma 11. 1) The solutions of the differential system (58) are of class Ck+1, and we have

sup
ν∈Wc

∥∥x � 0 	→ φc,ν(x)
∥∥
Ck+1

b
([0;+∞[) < +∞.

2) The convergence∣∣φc,ν(x)
∣∣ → 0 when x → +∞, ν ∈Wc

is uniform with respect to ν ∈Wc .
3) The set Wb

c is compact.

Proof. Since V is of class Ck , the solutions of (58) are clearly of class Ck+1. By definition of Wc we have
supν∈Wc

supx�0 |φc,ν(x)| < +∞ and, according to Lemma 10, supν∈Wc
|φ′

c,ν(0)| < +∞. Thus, if we write Ec,ν(x) =
φ′

c,ν(x)2/2 − V (φc,ν(x)), we have, since these quantities are decreasing with x, supν∈Wc
supx�0 Ec,ν(x) < +∞, and

therefore supν∈Wc
supx�0 |φ′

c,ν(x)| < +∞. In view (58), this yields supν∈Wc
supx�0 |φ′′

c,ν(x)| < +∞, and the proof
of assertion 1 follows by differentiation of the system (58) and by induction.

Assertion 2 immediately follows from the compactness of Wc and from the fact that, according to the first assertion
of Lemma 9, for any ν ∈ Wc, the function x 	→ |φc,ν(x)| is (strictly) decreasing on R+.

Assertion 3 immediately follows from the compactness of Wc and from the uniform bound (59) stated in
Lemma 9. �

In view of these three lemmas, Proposition 3 is proved.

A.4. Transversality arguments

Consider the following hypotheses:

(G1) the set {c > 0 |Wb
c 
= ∅} is discrete (it has no accumulation point in R

∗+),
(G2) for any c ∈ {c > 0 | Wb

c 
= ∅}, the set Wb
c is reduced to a singleton {ν0}, and the corresponding traveling front

φc,ν0 is bistable (i.e. φc,ν0(x) converges toward a stable homogeneous equilibrium when x → −∞).
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These hypotheses hold generically with respect to the potential function V . To formulate more rigorously this
statement, let us introduce the following notations.

Let Ck
b (Rn,R) denote the Banach space of functions: R

n → R of class Ck , k � 3, which are uniformly bounded
together with their derivatives up to order k. Observe that, for any W ∈ Ck

b(Rn,R), the potential function V (u) =
u2/2 + W(u) satisfies hypothesis (H1) (it is quadratic at infinity). Let us consider the affine Banach space

V =
{
V ∈ Ck

(
R

n,R
) | the function W(u) = V (u) − u2

2
belongs to Ck

b

(
R

n,R
)}

equipped with the distance induced by the usual norm on Ck
b(Rn,R) and with the topology induced by this distance.

Let

Ṽ = {
V ∈ V | ∇V (0) = 0 and D2V (0) > 0

}
(the subset of V made of potentials satisfying hypothesis (H2)). This set is a Baire space (for the above mentioned
topology) i.e. any countable intersection of dense open subsets of Ṽ is still dense in Ṽ (such an intersection is called
a residual subset of Ṽ).

The following result is based on classical transversality arguments (Sard–Smale theorem), we refer to [26] for its
proof.

Theorem 3. The set ṼG is residual in Ṽ .

In other words hypotheses (G1) and (G2) hold generically with respect to V (observe that, according to the a
priori bound (59) on traveling fronts, the constraint on the “quadraticity at infinity” of the potentials considered in this
theorem – which enables to parametrize them by a Banach space – does not weaken this statement). As a consequence,
the weaker hypothesis (G) stated in introduction (see remark (a) following the statement of Theorem 1) also holds
generically.

The next counting arguments provide a rough justification of Theorem 3.
Let Σcrit = {u ∈ R

n | ∇V (u) = 0}. Take any c > 0 and u0 ∈ Σcrit. Linearizing the differential system (58) at (u0,0)

gives

φ′′ = −cφ′ + Dφ ⇔
(

φ

ψ

)′
=

(
0 1
D −c

)(
φ

ψ

)
, (69)

where D = D2V (u0). To any eigenvector φ0 of D, corresponding to an eigenvalue μ, correspond two eigenvectors
(φ0, λ±φ0) for (69), corresponding to the two eigenvalues λ± = (−c ± √

c2 + 4μ)/2 (or, if c2 + 4μ = 0, a Jordan
Block Vect{(φ0,−(c/2)φ0), (0, φ0)} corresponding to the double eigenvalue −c/2). In particular,

• if μ > 0, then λ+ ∈ R
∗+ and λ− ∈ R

∗−,
• if μ < 0 and c > 0, then λ± (which can be real or complex conjugate) have strictly negative real parts.

Let us assume that the Hessian D2V (u0) is not degenerate (i.e. 0 is not an eigenvalue of D2V (u0)). Let us denote by
i(u0) the number of negative eigenvalues of D2V (u0), and let W s

c (u0) and W u
c (u0) denote the stable and the unstable

manifolds of the equilibrium (u0,0) for the flow (in R
2n) of (58). In view of the above computations we have

dimW s
c (u0) = n + i(u0) and dimW u

c (u0) = n − i(u0).

Let us assume that u0 
= 0, and let us consider the intersection I (c) = W u
c (u0) ∩ W s

c (0). The generic dimension of the
intersection of I (c) with an hyper-surface transverse to the flow is:(

n − i(u0) − 1
) + (n − 1) − (2n − 1) = −i(u0) − 1.

As a consequence the generic dimension of the intersection of
⋃

c>0 I (c) with an hyper-surface transverse to the flow
is −i(u0). Generically, this intersection should thus be empty if i(u0) > 0, and made of isolated points if i(u0) = 0.
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A.5. Lower semi-continuity of the velocity c[u0]

The aim of this paragraph is to prove Theorem 2, which states that the function: A→ R, u0 	→ c[u0] (with c[u0] =
0 if u0 ∈A \Ainv) is lower semi-continuous.

The proof is rather similar to that of Proposition 4 in Section 6. The idea is, once again, to proceed by contradiction,
and to exhibit “large excursions to the right followed by returns” for the invasion point of certain solutions (see the
proof of Proposition 4 for more explanatory comments).

Thus let us proceed by contradiction and suppose that the above function is not lower semi-continuous. Then there
exists u∞,0 ∈ A and a sequence (un,0)n∈N, un,0 ∈A, such that ‖un,0 − u∞,0‖H 1

ul(R) → 0 when n → +∞ and

lim sup
n→+∞

c[un,0] < c[u∞,0].

Let us write c̄∞ = c[u∞,0]. Since (by definition of c[.]) c[un,0] � 0 for all n ∈ N, we necessarily have c̄∞ > 0 (in
other words u∞,0 ∈Ainv). Up to extracting a subsequence, we can suppose that there exists c∞ ∈ [0; c̄∞[ such that

c[un,0] → c∞ when n → +∞. (70)

For n ∈ N∪{∞}, let un(x, t) = (Stun,0)(x), t � 0, x ∈ R denote the solution of the parabolic system (1) with initial
data un,0. According to Theorem 1, there exists a function R+ → R, t 	→ x̄∞(t) and a map R+ → Wc̄∞ , t 	→ ν∞(t),
both of class C1, such that the following statements hold:

x̄′∞(t) → c̄∞, ν′∞(t) → 0, and dist
(
ν∞(t),Wb

c̄∞
) → 0 when t → +∞, (71)

and, for any L � 0,

sup
y∈[−L;+∞[

∣∣u∞
(
x̄∞(t) + y, t

) − φc̄∞,ν∞(t)(y)
∣∣ → 0 when t → +∞. (72)

Take any μ in the limit set L(u∞,0) = ⋂
t�0 ν∞([t;+∞[) ⊂ Wb

c̄∞ , and take any sequence (tk)k∈N, tk � 0, tk →
+∞ when k → +∞, such that ν∞(tk) → μ when k → +∞.

According to (71), (72), (11), and assertion 2 of Lemma 11 (the convergence φc̄∞,ν(x) → 0 when x → +∞ is
uniform with respect to ν ∈Wc̄∞ ), for any L � 0, the function

t 	→ sup
y∈[−L;+∞[

∣∣u∞
(
x̄∞(tk) + c̄∞t + y, tk + t

) − φc̄∞,μ(y)
∣∣

converges toward 0 when k → +∞, uniformly on compact subsets of R+.
According to the continuity of the semi-flow in H 1

ul(R), there exists a sequence (nk)k∈N of integers, nk → +∞
when k → +∞, such that∥∥x 	→ unk

(x, tk) − u∞(x, tk)
∥∥

H 1
ul(R)

→ 0 when k → +∞.

Let us write

u1,k(x, t) = unk

(
x̄∞(tk) + x, tk + t

)
, k ∈ N, x ∈ R, t � 0.

The two last assertions show that, for any L � 0, the function

t 	→ sup
y∈[−L;+∞[

∣∣u1,k(c̄∞t + y, t) − φc̄∞,μ(y)
∣∣ (73)

converges toward 0 when k → +∞, uniformly on compact subsets of R+.
For k ∈ N and t � 0, let x̄k(t) ∈ [−∞;+∞] denote the supremum of the set {x ∈ R | |u1,k(x, t)| > r0} (with the

convention that x̄k(t) = −∞ if this set is empty). According to Lemma 9, we see from (73) that the function

t 	→ x̄k(t) − c̄∞t (74)

converges toward 0 when k → +∞, uniformly on compact subsets of R+.
For k ∈ N, let

ck = c[unk,0], c∗
k = sup

x̄k(t)

t
.

t�1
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According to Theorem 1 we have

x̄k(t)

t
→ ck when t → +∞, (75)

and, in view of (74), we have

lim inf
k→+∞ c∗

k � c̄∞. (76)

Claim 1. We have lim supk→+∞ c∗
k � cmax.

For k ∈ N, let us define a function R+ → [−∞;+∞], t 	→ x̃k(t), corresponding to the solution (x, t) 	→ u1,k(x, t)

of the system (1), as the function t 	→ x̃(t) was defined in Section 4, for the solution (x, t) 	→ u(x, t) considered there.
We have x̄k(t) � x̃k(t), t � 0.

According to (73), we have lim supk→+∞ x̃k(0) < +∞, and the results of Sections 3 and 4 apply to this function
t 	→ x̃k(t). According to (15), for k sufficiently large, we have, for all t � 0,

sup
x∈R

∣∣u1,k(x, t)
∣∣ � R0, (77)

and in this case, according to (29), we have

x̃k(t) � x̃k(0) + cmaxt, t � 0.

Take any ε > 0. According to these assertions, there exists T > 0 such that, for any k sufficiently large,

sup
t�T

x̄k(t)

t
� cmax + ε,

and, according to (74), there exists k0 ∈ N, depending on T , such that, for any k � k0,

sup
1�t�T

x̄k(t)

t
� c̄∞ + ε � cmax + ε,

and this proves Claim 1.
According to this claim and to (76), there exists c∗∞ ∈ [c̄∞; cmax] such that, up to extracting a subsequence,

c∗
k → c∗∞ when k → +∞. (78)

Claim 2. There exists a sequence (sk)k∈N, sk � 0, sk → +∞ when k → +∞, such that

x̄k(sk)

sk
→ c∗

k when k → +∞. (79)

Indeed, according to (74), for any q ∈ N
∗, the set{

k ∈ N | sup
1�t�q

∣∣∣∣ x̄k(t)

t
− c̄∞

∣∣∣∣ >
1

q
and |c∗

k − c∗∞| > 1

q

}

is finite. Let mq ∈ N denote the maximum of this set (with the convention that mq = 0 is this set is empty), and let
m′

q = mq + q . The sequence (m′
q)q∈N∗ is strictly increasing, and m′

q → +∞ when q → +∞.
Take any q ∈ N

∗ and any k ∈ N satisfying m′
q � k < m′

q+1. By definition of m′
q , we have

x̄k(q)

q
� c̄∞ − 1

q
� sup

1�t�q

x̄k(t)

t
− 2

q

and thus

sup
q�t

x̄k(t)

t
� sup

1�t

x̄k(t)

t
− 2

q
= c∗

k − 2

q
� c∗∞ − 3

q
.

This shows that there exists sk � q such that x̄k(sk)/sk � c∗∞ − 4/q , and proves Claim 2.



E. Risler / Ann. I. H. Poincaré – AN 25 (2008) 381–424 417
The remaining of the proof is similar to the end of the proof of Proposition 4. Take any c > 0 satisfying

0 < c � cmax, c∞ < c < c∗∞ < c + γ, and (c + β)(c∗∞ − c) � βγ

4
(80)

(any c smaller than c∗∞ but sufficiently close to c∗∞ is convenient).
Take k ∈ N

∗ sufficiently large so that

ck < c and (c + β)(c∗
k − c) � βγ

2
, (81)

and such that (77) holds. We are going to apply the computations of Section 5 to the solution (x, t) 	→ u1,k(x, t), with
the following set of parameters:

tinit = 0, xinit = 0, c (chosen above), and y0 = 0.

Let us denote by v(k)(y, s), Φ(k)(s), D(k)(s), Ψ (k)(s), and Θ(k)(s) the quantities corresponding to those defined in
Section 5 (with the same notations except the “(k)” exponent), for the solution (x, t) 	→ u1,k(x, t) and for this set
of parameters (according to (77) and, since according to (80) 0 < c � cmax, the hypotheses required to apply these
computations are satisfied).

According to the existence of an attracting ball in H 1
ul(R) (Lemma 6) and since y0 = 0, Φ(k)(0) is bounded from

above, independently of k.
For s � 0, let ȳ(k)(s) = x̄k(x)− cs. Since (according to (81)) ck < c, we have ȳ(k)(s) → −∞ when s → +∞, and,

since |v(k)(y, s)| � r0 for y � ȳ(k)(s), this yields lim infs→+∞ Φ(k)(s) � 0 (see (44) in the proof of Proposition 4).
Again, since |v(k)(y, s)| � r0 for y � ȳ(k)(s), we have (compare to (38) in Section 5)

Θ(k)(s) � β−1e(c+β)ȳ(k)(s)−βγ s .

We have ȳ(k)(s) = (x̄k(s) − c∗
k s) + (c∗

k − c)s, thus, according to the definition of c∗
k ,

ȳ(k)(s) � sup
0�s�1

x̄k(s) + (c∗
k − c)s � C + (c∗

k − c)s, s � 0,

where C > 0 is a constant independent of k. In view of (81), this yields

Θ(k)(s) � C8e
− βγ

2 s , s � 0,

where C8 > 0 is a constant independent of k. According to (37), and proceeding as in Section 5, this yields
+∞∫
0

Ψ (k)(s)ds � ε−1
3 Ψ (k)(0) + 2C3C8

βγ
.

Since, according to Lemma 6 and to the fact that y0 = 0, Ψ (k)(0) is bounded from above uniformly with respect to k,
this inequality shows that the same is true for the quantity

∫ +∞
0 Ψ (k)(s)ds.

According to (35), this shows that the quantity
+∞∫
0

D(k)(s)ds

is also bounded from above uniformly with respect to k. As a consequence, according to (42), D(k)(s) must in turn be
bounded, uniformly with respect to k and to s � 1.

On the other hand, we have, by definition of D(k)(s),

D(k)(sk) �
γ sk∫

−∞
ecyv(k)

s (y, sk)
2 dy,

which becomes, writing y = ȳ(k)(sk) + z,

D(k)(sk) � ecȳ(k)(sk)

γ sk−ȳ(k)(sk)∫
eczv(k)

s

(
ȳ(k)(sk) + z, sk

)2 dz. (82)
−∞
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We have

ȳ(k)(sk) = sk

(
x̄k(sk)

sk
− c

)
and γ sk − ȳ(k)(sk) �

(
γ − (c∗

k − c)
)
sk

thus, according to (78), (79), and (80),

ȳ(k)(sk) → +∞ and γ sk − ȳ(k)(sk) → +∞ when k → +∞.

In view of (82), and according to the bound from above (uniform with respect to s � 1 and to k) on D(k)(s), this shows
that, for any L > 0,∥∥z 	→ v(k)

s

(
ȳ(k)(sk) + z

)∥∥
L2([−L;L]) → 0 when k → +∞. (83)

We have

v(k)
s

(
ȳ(k)(sk) + z

) = ∂tu1,k

(
x̄k(sk) + z, sk

) + c∂xu1,k

(
x̄k(sk) + z, sk

)
, z ∈ R.

Let us define the functions wk and ŵk by

wk(z) = u1,k

(
x̄k(sk) + z, sk

)
, ŵk(z) = ∂tu1,k

(
x̄k(sk) + z, sk

)
, z ∈ R.

By compactness (see Section 2), there exists w∞ ∈ H 2
ul(R) and ŵ∞ ∈ L2

ul(R) such that, up to extracting a subse-
quence, we have, for any L > 0, wk → w∞ in H 2([−L;L]) and ŵk → ŵ∞ in L2([−L;L]), when k → +∞.

Assertion (83) shows that ŵ∞ + cw′∞ = 0, and we can make the same remark as at the end of the proof of
Proposition 4, namely that the sequences wk , ŵk , and therefore their limits w∞, ŵ∞, do not depend on c, and thus
that the identity ŵ∞ + cw′∞ = 0 actually holds for a whole interval of values of c (namely for any c satisfying (80)).
This yields w′∞ ≡ 0, thus w∞ ≡ 0, which is in contradiction with the definition of x̄k(sk). This finishes the proof of
Theorem 2.

A.6. Case of a bistable potential

The aim of this paragraph is to consider the particular case of a bistable potential (more precisely, of a potential
satisfying hypotheses (H4–H6) below), and, in this case, to reinforce the conclusions of Theorem 1, namely to obtain
convergence toward a traveling front uniformly on R (in contrast with Theorem 1, where convergence was stated on a
semi-infinite interval of the form [−L;+∞[).

The result (Theorem 4 below) furnishes a generalization of one of the global convergence results proved by Fife
and McLeod in the case where dimu = 1, namely their result of global convergence toward a single bistable front in
a bistable potential [7]. Again, our proof does not make use of any comparison principle (which by the way does not
exist in general under the assumed hypotheses).

We assume that the potential V satisfies hypotheses (H1) and (H2) stated in introduction, and we make the follow-
ing supplementary hypotheses.

(H3) There exists m ∈ R
n such that V (m) < 0, ∇V (m) = 0, D2V (m) is positive definite, and such that{

u ∈ R
n | V (u) < 0 and ∇V (u) = 0

} = {m}
(in other words m is the unique global minimum of V , and is the only critical point of V where V takes a strictly
negative value).

(H4) Any solution x 	→ v(x) of the differential system v′′ = ∇V (v), satisfying (v(x), v′(x)) → (m,0) when x →
+∞ and v 
≡ m, is unbounded.

Remarks. (a) In the scalar case n = 1 (as in [7]) hypothesis (H4) is a consequence of (H3).
(b) The result stated below (Theorem 4) remains true if we replace hypothesis (H4) by the weaker hypothesis:

(H4′) there exists no solution x 	→ v(x) of the differential system v′′ = ∇V (v) satisfying (v(x), v′(x)) → (m,0)

when x → ±∞ (i.e. homoclinic to the equilibrium (m,0)) except the trivial solution v ≡ m.
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We have chosen to adopt the more restrictive hypothesis (H4) for convenience, because this slightly simplifies the
proof (we refer to [25] and [26] for a treatment under the weaker hypothesis (H4′)).

Take any u0 ∈ H 1
ul(R) and let u(x, t) = (Stu0)(x), t � 0, x ∈ R denote the solution of the parabolic system (1) with

initial data u0. We make the following hypotheses:

lim sup
x→+∞

∣∣u(x, t)
∣∣ → 0 when t → +∞ (84)

(namely u0 ∈A), and

lim sup
x→−∞

∣∣u(x, t) − m
∣∣ → 0 when t → +∞. (85)

As shown by Proposition 1, there exists δ > 0 such that hypothesis (84) (resp. (85)) is implied by the (stronger)
statement

lim sup
x→+∞

x+1∫
x

(
u0(y)2 + u′

0(y)2)dy � δ

(
resp. lim sup

x→−∞

x+1∫
x

((
u0(y) − m

)2 + u′
0(y)2)dy � δ

)
.

According to Proposition 2, and since V (m) < 0, hypothesis (85) shows that u0 ∈ Ainv. As a consequence, the con-
clusions of Theorem 1 hold: there exists c > 0 such that Wb

c 
= ∅, and there exists a function: R+ → R, t 	→ x̄(t), and
a map: R+ → Wc, t 	→ ν(t), both of class C1, such that

x̄′(t) → c, ν′(t) → 0, dist
(
ν(t),Wb

c

) → 0 when t → +∞
and, for any L � 0,

sup
y∈[−L;+∞[

∣∣u(
x̄(t) + y, t

) − φc,ν(t)(y)
∣∣ → 0 when t → +∞.

Let us consider the set L = ⋂
t�0 ν([t;+∞[) (the limit set of ν(.)). Since L is compact, there exists a map

π :Wc →L, such that, for any ν ∈ Wc,

dist
(
ν,π(ν)

) = dist(ν,L)

(in particular π(ν) = ν for ν ∈L). Let us choose any such map π (this requires the Axiom’s choice).
Since dist(ν(t),L) → 0 when t → +∞, and according to assertion 2 of Lemma 11 (the convergence φc,ν(x) → 0

when x → +∞ is uniform with respect to ν ∈Wc), we see that, for any L � 0,

sup
y∈[−L;+∞[

∣∣u(
x̄(t) + y, t

) − φc,π
(
ν(t)

)(y)
∣∣ → 0 when t → +∞.

The aim of this paragraph is to prove the following result.

Theorem 4. We have

sup
y∈R

∣∣u(
x̄(t) + y, t

) − φc,π
(
ν(t)

)(y)
∣∣ → 0 when t → +∞.

Remark. If moreover L is reduced to a singleton {ν0}, and if the front φc,ν0 is linearly stable for the semi-flow of (1),
then the conclusion can be made more precise: the solution converges toward a well-defined translate of this front (i.e.
we can choose x̄(t) = x0 + ct , for a certain x0 ∈ R) and the convergence is exponential. If dimu = 1, then hypothesis
(H3) guarantees that we are in this case (see [7]).

Proof. Up to changing the origin of time, we can suppose that

sup
x∈R

∣∣u(x, t)
∣∣ � R0, t � 0 (86)

(for the constant R0 introduced in Section 2). Proceeding as in Section 3, we see that there exists c− > 0 such that

sup
∣∣u(x, t) − m

∣∣ → 0 when t → +∞. (87)

x�−c−t
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Let x̂−(t) = −(c− + 1)t , t � 0. For any L > 0, we have, according to (13),∥∥y 	→ u
(
x̂−(t) + y, t

) − m
∥∥

H 1([−L;L]) → 0 when t → +∞. (88)

Observe that, according to assertion 3 of Proposition 3, for any ν ∈Wb
c , we have

φc,ν(x) → m when x → −∞.

Claim. This convergence is uniform with respect to ν ∈Wb
c .

Indeed, for ν ∈ Wb
c , let Ec,ν(x) = φ′

c,ν(x)2/2 − V (φc,ν(x)). We have E′
c,ν(x) = −cφ′

c,ν(x)2 � 0 and Ec,ν(x) →
−V (m) when x → −∞, and, according to the monotonicity of Ec,ν(.) and to the compactness of Wb

c , this con-
vergence is uniform with respect to ν ∈ Wb

c . On the other hand, since (according to Lemma 9) φc,ν(.) is uniformly
bounded and since −V (m) � Ec,ν(.) � 0, we see that φ′

c,ν(.) and thus φ′′
c,ν(.) are uniformly bounded. Since the

convergence
x∫

−∞
φ′

c,ν(x)2 dx → 0 when x → −∞

is uniform with respect to ν ∈Wb
c , the same must be true for the convergence |φ′

c,ν(x)| → 0 when x → −∞, and thus
also for the convergence V (φc,ν(x)) → V (m) when x → −∞, and this proves the claim.

Let us consider the sequence of times (tn)n∈N defined as follows: t0 = 0, and, for any n ∈ N
∗,

tn = max

(
tn−1 + n, sup

{
t � 0

∣∣ sup
y∈[−2n;0]

∣∣u(
x̄(t) + y, t

) − φc,π
(
ν(t)

)(y)
∣∣ � 1

n

})
.

Take any smooth function θ : R → R satisfying 0 � θ � 1, 0 � θ ′, θ ≡ 0 on ]–∞;0], and θ ≡ 1 on [1;+∞[. Let us
define a function R+ → R, t 	→ x̂+(t) as follows: for any n ∈ N

∗,

x̂+(t) = x̄(t) − (n − 1) − θ

(
t − tn−1

tn − tn−1

)
, tn−1 � t � tn.

This function is of class C1 on R+ (it is as smooth as t 	→ x̄(t)), and, for any n ∈ N
∗ and t ∈ [tn−1; tn], we have

−C

n
� x̂′+(t) − x̄′(t) � 0, C = max

x∈R

θ ′(x) < +∞,

and this shows that x̂′+(t) → c when t → +∞. Moreover, for any n ∈ N
∗, we have

x̄(t) − n � x̂+(t) � x̄(t) − n + 1 for t ∈ [tn−1; tn],
and, according to the definition of tn, to the above claim, and to (13), this shows that, for any L > 0,∥∥y 	→ u

(
x̂+(t) + y, t

) − m
∥∥

H 1([−L;L]) → 0 when t → +∞. (89)

Let

V (u) = V (u) − V (m), u ∈ R

(we have minu∈R V (u) = 0). Let us define a function ϕ : R × R+ → R by:

• ϕ(x, t) = ex−x̂−(t) for x � x̂−(t),
• ϕ(x, t) = 1 for x̂−(t) � x � x̂+(t),
• ϕ(x, t) = ex̂+(t)−x for x̂+(t) � x,

and let us write

Φ(t) =
∫

ϕ(x, t)

(
ux(x, t)2

2
+ V

(
u(x, t)

))
dx, t � 0.
R
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Take T > 0 sufficiently large so that, for t � T , we have −(c− + 1) � x̂′−(t) � x̂′+(t) � c + 1. According to (19), we
have, for t � T ,

Φ ′(t) � −
∫
R

ϕu2
t dx +

∫
]−∞;x̂−(t)]∪[x̂+(t);+∞[

ϕ

(
max(c− + 1, c + 1)

(
u2

x

2
+ V (u)

)
+ u2

t

2
+ u2

x

2

)
dx,

and thus

Φ ′(t) � −1

2
D(t) + Ψ (t), (90)

where

D(t) =
∫
R

ϕ(x, t)ut (x, t)2dx,

Ψ (t) = C

∫
]−∞;x̂−(t)]∪[x̂+(t);+∞[

ϕ(x, t)
((

u(x, t) − m
)2 + ux(x, t)2)dx,

and C > 0 is a constant which depends only on V , namely (according to (86))

C = max

(
max(c− + 1, c + 1) + 1

2
,max(c− + 1, c + 1)

(
max

|v|�R0

V (v)

(v − m)2

))
.

According to (88) and (89), to the definition of ϕ, and to (11), we see that Ψ (t) → 0 when t → +∞. According to
(90) and since Φ � 0, we see that

lim inf
t→+∞ D(t) = 0. (91)

Let μmin (resp. μmax) denote the smallest (resp. the largest) of the eigenvalues of D2V (m) (we have 0 < μmin �
μmax), and take rm > 0 sufficiently small so that, for any v ∈ R

n satisfying |v −m| � rm, any eigenvalue λ of D2V (v)

satisfies
μmin

2
� λ � 2μmax. (92)

According to (91) there exists a sequence (t ′n)n∈N, t ′n � 0, t ′n → +∞ when n → +∞, such that D(t ′n) → 0 when
n → +∞.

Lemma 12. We have

sup
x∈[

x̂−(t ′n);x̂+(t ′n)
]
∣∣u(x, t ′n) − m

∣∣ → 0 when n → +∞.

Proof. Let us proceed by contradiction and suppose that the converse holds. Then there exists ε > 0 such that, up to
extracting a subsequence, supx∈[x̂−(t ′n);x̂+(t ′n)] |u(x, t ′n) − m| > ε for all n ∈ N. Moreover, we can suppose that ε � rm.

For n ∈ N, let xn denote the supremum of the (nonempty) set{
x ∈ [

x̂−(t ′n); x̂+(t ′n)
] ∣∣ ∣∣u(x, t ′n) − m

∣∣ > ε
}
.

According to (89), for n sufficiently large we have |u(xn, t
′
n) − m| = ε and x̂+(t ′n) − xn → +∞ when n → +∞. For

n ∈ N, let us write

wn(x) = u(xn + x, t ′n) and ŵn(x) = ut (xn + x, t ′n).
By compactness (Section 2), there exists w∞ ∈ H 1

ul(R) such that, up to extracting a subsequence, for any L > 0,
wn → w∞ in H 1([−L;L]). According to (91), we see that, for any L > 0, ŵn → 0 in L2([−L;L]). Passing to the
limit in (1), we see that w∞ is a solution of the differential system

w′′ = ∇V (w) (93)

satisfying |w∞(x) − m| � ε � rm for all x � 0.
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Claim. We have (w∞(x),w′∞(x)) → (m,0) when x → +∞.

Let

E(x) = w′∞(x)2

2
− V

(
w∞(x)

)
, Q(x) = (w∞(x) − m)2

2
, x � 0.

According to (92), we have

E′ = 0 and Q′′ = w′2∞ + (w∞ − m) · ∇V (w∞) � μminQ � 0 on R+.

Thus Q′(x) admits a limit (finite or infinite) when x → +∞, and since Q is bounded on R+ we must have Q′(x) → 0
when x → +∞, thus Q′ � 0 on R+. In turn, Q(x) (which is nonnegative) must converge when x → +∞, and in
view of the above inequality, we must have Q(x) → 0 and thus w∞(x) → m when x → +∞. Eq. (93) then shows
that w′′∞(x) → 0 when x → +∞, and this finally yields w′∞(x) → 0 when x → +∞, which proves the claim.

According to hypothesis (H4), this claim shows that w∞ is unbounded, and this is contradictory to the a priori
bound (86) on the solution. The lemma is proved. �

Let β2 = min(1,
√

μmin/2 ), let ψ2(x) = e−β2|x|, let

Ψ2(ξ, t) =
∫

Tξ (x)ψ2

(
ux(x, t)2

2
+ V

(
u(x, t)

) + (u(x, t) − m)2

2

)
dx, ξ ∈ R, t � 0,

and let

S′
far(t) = {

x ∈ R | ∣∣u(x, t) − m
∣∣ > rm

}
, t � 0.

Proceeding as in Section 3, we see that

∂Ψ2

∂t
(ξ, t) � −ε5Ψ2(ξ, t) + C

∫
S′

far(t)

Tξψ2(x)dx, ξ ∈ R, t � 0, (94)

where

ε5 = min

(
3/2,

μmin

4(μmax + 1/2)

)
,

and C > 0 is a constant depending only on V .
According to (91), Lemma 12, and (11), we have

sup
x∈[

x̂−(t ′n);x̂+(t ′n)
] Ψ2(x, t ′n) → 0 when n → +∞.

In view of (87), the following claim completes the proof of Theorem 4.

Claim. We have

sup
x∈[

x̂−(t);x̂+(t)
]Ψ2(x, t) → 0 when t → +∞.

Indeed, let us proceed by contradiction and suppose that the converse is true. Then there exists ε > 0 such that

lim sup
t→+∞

sup
x∈[

x̂−(t);x̂+(t)
]Ψ2(x, t) > ε.

Since V � 0, we have (see (25))

Ψ2(x, t) � r2
m

2
⇒ ∣∣u(x, t) − m

∣∣ � rm.

We can suppose that ε � r2
m/2.
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For n ∈ N, let t ′′n denote the infimum of the (nonempty) set{
t � t ′n | sup

x∈[
x̂−(t);x̂+(t)

]Ψ2(x, t) � ε
}
.

By continuity of Ψ2(x, t) with respect to x and t , for n ∈ N sufficiently large, we have

t ′′n > t ′n, and sup
x∈[x̂−(t ′′n );x̂+(t ′′n )]

Ψ2(x, t ′′n ) = ε,

and there exists x′′
n ∈ [x̂−(t ′′n ); x̂+(t ′′n )] such that Ψ2(x

′′
n, t ′′n ) = ε. Moreover, by definition of t ′′n (as an infimum), we

must have
∂Ψ2

∂t
(x′′

n, t ′′n ) � 0, (95)

and, according to (88) and (89), we must have x̂+(t ′′n ) − x′′
n → +∞ and x′′

n − x̂−(t ′′n ) → +∞ when n → +∞, and as
a consequence we see that, for n sufficiently large, (95) is contradictory to (94). This finishes the proof of the claim,
and thus of Theorem 4. �
References

[1] A. Ambrosetti, M.L. Bertotti, Homoclinics for second order conservative systems, in: M. Miranda (Ed.), PDE’s and Related Subjects, Trento,
Italy, 1990, in: Pitman Res. Notes Math. Ser., vol. 269, 1992, pp. 21–37.

[2] H. Berestycki, F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math. 55 (2002) 949–1032.
[3] H. Berestycki, B. Larrrouturou, P.L. Lions, Multi-dimensional traveling wave solutions of a flame propagation model, Arch. Rat. Mech.

Anal. 111 (1990) 33–49.
[4] X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations 2

(1997) 125–160.
[5] E. Feireisl, Bounded, locally compact global attractors for semilinear damped wave equations on R

n, J. Diff. Int. Eq. 9 (1996) 1147–1156.
[6] P. Fife, Long Time Behavior of Solutions of Bistable Nonlinear Diffusion Equations, Arch. Rat. Mech. Anal. 70 (1979) 31–46.
[7] P. Fife, J.B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Rat. Mech. Anal. 65 (1977)

335–361.
[8] P. Fife, J.B. McLeod, A phase plane discussion of convergence to traveling fronts for nonlinear diffusion, Arch. Rat. Mech. Anal. 75 (1981)

281–314.
[9] Th. Gallay, Convergence to traveling waves in damped hyperbolic equations, in: B. Fiedler, K. Gröger, J. Sprekels (Eds.), International

Conference on Differential Equations, vol. 1, Berlin 1999, World Scientific, 2000, pp. 787–793.
[10] Th. Gallay, R. Joly, Global stability of travelling fronts for a damped wave equation with bistable nonlinearity, Preprint.
[11] Th. Gallay, E. Risler, A variational proof of global stability for bistable traveling waves, Diff. Int. Equ. 20 (8) (2007) 901–926.
[12] Th. Gallay, S. Slijepcevic̀, Energy flow in extended gradient partial differential equations, J. Dyn. Diff. Equ. 13 (2001) 4.
[13] J. Ginibre, G. Velo, The Cauchy problem in local spaces for the complex Ginzburg–Landau equation, II. Contraction methods, Comm. Math.

Phys. 187 (1997) 45–79.
[14] S. Heinze, A variational approach to traveling waves, Technical Report 85, Max Planck Institute for Mathematical Sciences, Leipzig, 2001.
[15] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, 1981.
[16] M.A. Jendoubi, Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity, J. Diff.

Equ. 144 (1998) 302–312.
[17] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rat. Mech. Anal. 58 (1975) 181–205.
[18] A. Kelley, The stable, center stable, center, center unstable and unstable manifolds, J. Diff. Equ. 3 (1967) 546–570.
[19] A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov, A study of the equation of diffusion with increase in the quantity of matter, and its applica-

tion to a biological problem, Bjul. Moskovskovo Gos. Univ. 17 (1937) 1–72.
[20] A. Mielke, The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearity 10 (1997)

199–222.
[21] A. Mielke, G. Schneider, Attractors for modulation equations on unbounded domains – existence and comparison, Nonlinearity 8 (1995)

743–768.
[22] C.B. Muratov, A global variational structure and propagation of disturbances in reaction–diffusion systems of gradient type, Disc. Cont. Dyn.

Syst. Ser. B 4 (2004) 867–892.
[23] T. Ogiwara, H. Matano, Monotonicity and convergence results in order preserving systems in the presence of symmetry, Disc. Cont. Dyn.

Syst. 5 (1999) 1–34.
[24] T. Ogiwara, H. Matano, Stability analysis in order-preserving systems in the presence of symmetry, Proc. Roy. Soc. Edinburgh Sect. A 129 (2)

(1999) 395–438.
[25] E. Risler, A global relaxation result for bistable solutions of spatially extended gradient-like systems in one unbounded spatial dimension, in

preparation.
[26] E. Risler, Global behavior of bistable solutions of nonlinear parabolic systems with a gradient structure, in preparation.



424 E. Risler / Ann. I. H. Poincaré – AN 25 (2008) 381–424
[27] J.-M. Roquejoffre, Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders, Ann. Inst.
H. Poincare Anal. Non Lineaire 14 (1997) 499–552.

[28] J.-M. Vega, Multidimensional traveling fronts in a model from combustion theory and related problems, Diff. Int. Eq. 6 (1993) 131–155.
[29] A.I. Volpert, V.A. Volpert, V.A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, vol. 140,

AMS, Providence, RI, 1994.
[30] X. Xin, Existence and uniqueness of traveling waves in a reaction–diffusion equation with combustion nonlinearity, Indiana Univ. Math.

J. 40 (3) (1991) 985–1008.


