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Abstract

We study the large time behavior of solutions of the Cauchy problem for the Hamilton–Jacobi equation ut + H(x,Du) = 0 in
Rn × (0,∞), where H(x,p) is continuous on Rn × Rn and convex in p. We establish a general convergence result for viscosity
solutions u(x, t) of the Cauchy problem as t → ∞.

Résumé

Nous étudions le comportement en temps grand des solutions du problème de Cauchy pour l’équation de Hamilton–Jacobi
ut + H(x,Du) = 0 dans Rn × (0,∞), où H(x,p) est continu dans Rn × Rn et convexe en p. Nous établissons un résultat de
convergence général pour les solutions de viscosité u(x, t) du problème de Cauchy quand t → ∞.
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1. Introduction and the main results

In recent years, there has been much interest on the asymptotic behavior of viscosity solutions of the Cauchy
problem for Hamilton–Jacobi equations or viscous Hamilton–Jacobi equations. Namah and Roquejoffre [25] and
Fathi [14] were the first those who established fairly general convergence results for the Hamilton–Jacobi equation
ut (x, t)+H(x,Du(x, t)) = 0 on a compact manifold M with smooth strictly convex Hamiltonian H . Fathi’s approach
to this large time asymptotic problem is based on weak KAM theory [13,15,16] which is concerned with the Hamilton–
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Jacobi equation as well as with the Lagrangian or Hamiltonian dynamical structures behind it. Barles and Souganidis
[6,7] took another approach, based on PDE techniques, to the same asymptotic problem. The weak KAM approach
due to Fathi to the asymptotic problem has been developed and further improved by Roquejoffre [27] and Davini
and Siconolfi [12]. Motivated by these developments the author jointly with Y. Fujita and P. Loreti (see [18,19])
has recently investigated the asymptotic problem for viscous Hamilton–Jacobi equations with Ornstein–Uhlenbeck
operator

ut − �u + αx · Du + H(Du) = f (x) in Rn × (0,∞),

and the corresponding Hamilton–Jacobi equations

ut + αx · Du + H(Du) = f (x) in Rn × (0,∞),

where H is a convex function on Rn, � denotes the Laplace operator, and α is a positive constant, and has established
a convergence result similar to those obtained by [6,7,14,27,12].

In this paper we investigate the Cauchy problem

ut + H(x,Du) = 0 in Rn × (0,∞), (1.1)

u(·,0) = u0, (1.2)

where H is a scalar function on Rn × Rn, u ≡ u(x, t) is the unknown scalar function on Rn × [0,∞), ut = ∂u/∂t ,
Du = (∂u/∂x1, . . . , ∂u/∂xn), and u0 is a given function on Rn describing the initial data. The function H(x,p) is
assumed here to be convex in p, and we call H the Hamiltonian and then the function L, defined by

L(x, ξ) = sup
p∈Rn

(
ξ · p − H(x,p)

)
,

the Lagrangian. We refer to [26] for general properties of convex functions.
We are also concerned with the additive eigenvalue problem:

H(x,Dv) = c in Rn, (1.3)

where the unknown is a pair (c, v) ∈ R × C(Rn) for which v is a viscosity solution of (1.3). This problem is also
called the ergodic control problem due to the fact that PDE (1.3) appears as the dynamic programming equation in
ergodic control of deterministic optimal control theory. We remark that the additive eigenvalue problem (1.3) appears
in the homogenization of Hamilton–Jacobi equations. See for this [24].

For notational simplicity, given φ ∈ C1(Rn), we will write H [φ](x) for H(x,Dφ(x)) or H [φ] for the function:
x �→ H(x,Dφ(x)) on Rn. For instance, (1.3) may be written as H [v] = c in Rn.

We make the following assumptions on the Hamiltonian H .

(A1) H ∈ C(Rn × Rn).

(A2) H is coercive, that is, for any R > 0,

lim
r→∞ inf

{
H(x,p) | x ∈ B(0,R), p ∈ Rn \ B(0, r)

} = ∞.

(A3) For any x ∈ Rn, the function: p �→ H(x,p) is strictly convex in Rn.
(A4) There are functions φi ∈ C0+1(Rn) and σi ∈ C(Rn), with i = 0,1, such that for i = 0,1,

H
(
x,Dφi(x)

)
� −σi(x) almost every x ∈ Rn,

lim|x|→∞σi(x) = ∞, lim|x|→∞(φ0 − φ1)(x) = ∞.

By adding a constant to the function φ0, we assume henceforth that

φ0(x) � φ1(x) for x ∈ Rn.

We introduce the class Φ0 of functions by

Φ0 =
{
u ∈ C

(
Rn

) ∣∣ inf
n
(u − φ0) > −∞

}
.

R
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We call a modulus a function m : [0,∞) → [0,∞) if it is continuous and nondecreasing on [0,∞) and if m(0) = 0.
The space of all absolutely continuous functions γ : [S,T ] → Rn will be denoted by AC([S, T ],Rn). For x, y ∈ Rn

and t > 0, C(x, t) (resp., C(x, t;y,0)) will denote the spaces of all curves γ ∈ AC([0, t],Rn) satisfying γ (t) = x

(resp., γ (t) = x and γ (0) = y). For any interval I ⊂ R and γ : I → Rn, we call γ a curve if it is absolutely continuous
on any compact subinterval of I .

We will establish the following theorems.

Theorem 1.1. Let u0 ∈ Φ0 and assume that (A1)–(A4) hold. Then there is a unique viscosity solution u ∈ C(Rn ×
[0,∞)) of (1.1) and (1.2) satisfying

inf
{
u(x, t) − φ0(x) | (x, t) ∈ Rn × [0, T ]} > −∞ (1.4)

for any T ∈ (0,∞). Moreover the function u is represented as

u(x, t) = inf

{ t∫
0

L
(
γ (s), γ̇ (s)

)
ds + u0

(
γ (0)

) ∣∣∣γ ∈ C(x, t)

}
(1.5)

for (x, t) ∈ Rn × (0,∞).
Note that L(x, ξ) � −H(x,0) for all x ∈ Rn and hence inf{L(x, ξ) | (x, ξ) ∈ B(0,R) × Rn} > −∞ for all R > 0.

Note as well that for any (x, t) ∈ Rn × (0,∞) and γ ∈ C(x, t) the function: s �→ L(γ (s), γ̇ (s)) is measurable. There-
fore it is natural and standard to set

t∫
0

L
(
γ (s), γ̇ (s)

)
ds = ∞,

with γ ∈ C(x, t), if the function: s �→ L(γ (s), γ̇ (s)) on [0, t] is not integrable. In this sense the integral in formula
(1.5) always makes sense.

Theorem 1.2. Let (A1)–(A4) hold. Then there is a solution (c, v) ∈ R×Φ0 of (1.3). Moreover the constant c is unique
in the sense that if (d,w) ∈ R × Φ0 is another solution of (1.3), then d = c.

The above theorem determines uniquely a constant c, which we will denote by cH , for which (1.3) has a viscosity
solution in the class Φ0. The constant cH is called the additive eigenvalue (or simply eigenvalue) or critical value for
the Hamiltonian H . This definition may suggest that c depends on the choice of (φ0, φ1). Actually, it depends only
on H , but not on the choice of (φ0, φ1), as the characterization of cH in Proposition 3.4 below shows. It is clear that
if (c, v) is a solution of (1.3), then (c, v + K) is a solution of (1.3) for any K ∈ R. As is well-known (see [24]), the
structure of solutions of (1.3) is, in general, much more complicated than this one-dimensional structure.

After completing the first version of this paper the author learned that Barles and Roquejoffre [5] had studied the
large time behavior of solutions of (1.1) and (1.2) and obtained, among other results, a generalization of the main
result in [25] to unbounded solutions.

Theorem 1.3. Let (A1)–(A4) hold and u0 ∈ Φ0. Let u ∈ C(Rn × [0,∞)) be the viscosity solution of (1.1) and (1.2)
satisfying (1.4). Then there is a viscosity solution v0 ∈ Φ0 of (1.3), with c = cH , such that as t → ∞,

u(x, t) + ct − v0(x) → 0 uniformly on compact subsets of Rn.

We call the function v0(x) − ct obtained in the above theorem the asymptotic solution of (1.1) and (1.2). See
Theorem 8.1 for a representation formula for the function v0.

In order to prove Theorem 1.3, we take an approach close to and inspired by the generalized dynamical approach
introduced by Davini and Siconolfi [12]. However our approach does not depend on the Aubry set for the Lagrangian
L and is much simpler than the generalized dynamical approach by [12].

In the following we always assume that (A1)–(A4) hold.
The paper is organized as follows: in Section 2 we collect some basic observations needed in the following sections.

Section 3 is devoted to the additive eigenvalue problem and to establishing Theorem 1.2. In Section 4 we establish a
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comparison theorem for (1.1) and (1.2), from which the uniqueness part of Theorem 1.1 follows. Section 5 deals with
the existence of a viscosity solution u of the Cauchy problem (1.1)–(1.2) together with an estimate on the modulus
of continuity of u. In Section 6 we prove the existence of extremal curves for variational problems associated with
the Lagrangian L. Section 7 combines the results in the preceding sections, to prove Theorem 1.3. In Section 8 we
show a representation formula for the asymptotic solution for large time of (1.1) and (1.2) and introduce and study
the Aubry set for the Hamiltonian H (or more appropriately for Lagrangian L). In Section 9 we give two sufficient
conditions for H to satisfy (A4) and a two-dimensional example in which the Aubry set contains a nonempty disk
consisting of nonequilibrium points. In Appendix A we show in a general setting that value functions (or in other
words the action functional) associated with Hamiltonian H are viscosity solutions of the Hamilton–Jacobi equation
H = 0. A proposition concerning the Aubry set is presented in Appendix A.

2. Preliminaries

In this section we collect some basic observations which will be needed in the following sections.
We will be concerned with functions f on Rn × Rn. We write D1f and D2f for the gradients of f , respectively,

in the first n variables and in the last n variables. Similarly, we use the symbols D±
1 f and D±

2 f to denote the sub-
and superdifferentials of f in the first or last n variables.

We remark that, since H(x, ·) is convex for any x ∈ Rn, for any u ∈ C0+1(Ω), where Ω ⊂ Rn × (0,∞) is open, it
is a viscosity subsolution of (1.1) in Ω if and only if it satisfies (1.1) almost everywhere (a.e. for short) in Ω . A similar
remark holds true for the stationary problem (1.3).

Also, as is well known, the coercivity assumption (A2) on H guarantees that if v ∈ C(Ω), where Ω is an open
subset of Rn, is a viscosity subsolution of (1.3) in Ω , then it is locally Lipschitz in Ω .

Another remark related to the convexity of H is that given nonempty, uniformly bounded, family S of subsolutions
of (1.3) in Ω , where Ω is an open subset of Rn, the pointwise infimum u(x) := inf{v(x) | v ∈ S} gives a viscos-
ity subsolution u of (1.3) in Ω . For instance, this can be checked by invoking the notion of semicontinuous viscosity
solutions due to Barron and Jensen [8,9]. Indeed, due to this theory (see also [3,4,21]), v ∈ C0+1(Ω) is a viscosity sub-
solution of (1.3) if and only if H(x,p) � c for all p ∈ D−v(x) and all x ∈ Ω . It is standard to see that if p ∈ D−u(x)

for some x ∈ Ω , then there are sequences {xk}k∈N ⊂ Ω , {vk}k∈N ⊂ S , and {pk}k∈N ⊂ Rn such that pk ∈ D−vk(xk)

for all k ∈ N and (xk,pk, vk(xk)) → (x,p,u(x)) as k → ∞. Here, we have H(xk,pk) � c for all k ∈ N and conclude
that H(x,p) � c for all p ∈ D−u(x) and all x ∈ Ω . If, instead, S is a family of viscosity supersolutions of (1.3) in Ω ,
then a classical result in viscosity solutions theory assures that u, defined as the pointwise infimum of all functions
v ∈ S , is a viscosity supersolution of (1.3) in Ω . In particular, if S is a family of viscosity solutions of (1.3) in Ω , then
the function u, defined as the pointwise infimum of v ∈ S , is a viscosity solution of (1.3) in Ω . We refer the reader to
[3,4,11] for the general theory of viscosity solutions.

Proposition 2.1. For each R > 0 there exist constants δR > 0 and CR > 0 such that L(x, ξ) � CR for all (x, ξ) ∈
B(0,R) × B(0, δR).

Proof. Fix any R > 0. By the continuity of H , there exists a constant MR > 0 such that H(x,0) � MR for all
x ∈ B(0,R). Also, by the coercivity of H , there exists a constant ρR > 0 such that H(x,p) > MR + 1 for all (x,p) ∈
B(0,R)× ∂B(0, ρR). We set δR = ρ−1

R . Let ξ ∈ B(0, δR) and x ∈ B(0,R). Let q ∈ B(0, ρR) be the minimum point of
the function: f (p) := H(x,p)− ξ ·p on B(0, ρR). Noting that f (0) = H(x,0) � MR and f (p) > MR +1− δRρR =
MR for all p ∈ ∂B(0, ρR), we see that q ∈ intB(0, ρR) and hence ξ ∈ D−

2 H(x,q), which implies that L(x, ξ) =
ξ · q − H(x,q). Consequently, we get

L(x, ξ) � δRρR − min
p∈Rn

H(x,p) = 1 − min
B(0,R)×Rn

H.

Now, choosing CR > 0 so that 1 − minB(0,R)×Rn H � CR , we obtain

L(x, ξ) � CR for all (x, ξ) ∈ B(0,R) × B(0, δR). �
Proposition 2.2. Let (x, ξ) ∈ Rn × Rn. Then (x, ξ) ∈ int domL if and only if ξ ∈ D−H(x,p) for some p ∈ Rn.
2
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Proof. Fix x̂, ξ̂ ∈ Rn. Suppose first that ξ̂ ∈ D−
2 H(x̂, p̂) for some p̂ ∈ Rn. Define the function f on Rn × Rn by

f (x,p) = H(x,p) − ξ̂ · p + L(x̂, ξ̂ ).

Note that the function f (x̂, ·) attains the minimum value 0 at p̂ and it is strictly convex on Rn. Fix r > 0 and set

m = min
p∈∂B(p̂,r)

f (x̂,p),

and note, because of the strict convexity of f (x̂, ·), that m > 0. Note also that the function: x �→ minp∈∂B(p̂,r) f (x,p)

is continuous on Rn. Hence there is a constant δ > 0 such that

min
{
f (x,p) | x ∈ B(x̂, δ),p ∈ ∂B(p̂, r)

}
>

m

2
, (2.1)

max
{
f (x, p̂) | x ∈ B(x̂, δ)

}
<

m

4
. (2.2)

Fix any (x, ξ) ∈ B(x̂, δ) × B(0, m
4 ) and consider the affine function g(p) := r−1ξ(p − p̂) + m

4 . We show that

f (x,p) > g(p) for all p ∈ Rn \ B(p̂, r). (2.3)

To see this, we fix any p ∈ Rn \ B(p̂, r) and set q = p̂ + r(p − p̂)/|p − p̂| ∈ ∂B(p̂, r). Then, by (2.1), we have

f (x, q) >
m

2
.

Using the convexity of f (x, ·) and noting that q = (1 − r/|p − p̂|)p̂ + (r/|p − p̂|)p, we get

f (x, q) �
(

1 − r

|p − p̂|
)
f (x, p̂) + r

|p − p̂|f (x,p)

and hence, by using (2.2), we get

f (x,p) � r−1|p − p̂|f (x, q) + (
1 − r−1|p − p̂|)f (x, p̂)

> r−1|p − p̂|m
2

+ (
1 − r−1|p − p̂|)m

4
= m

4

(
1 + r−1|p − p̂|). (2.4)

On the other hand, we have

g(p) � m

4

(
r−1|p − p̂| + 1

)
.

This combined with (2.4) shows that (2.3) is valid.
Next, observing that f (x, p̂) − g(p̂) < m

4 − g(p̂) = 0 by (2.2) and using (2.3), we see that the function:
p �→ f (x,p) − g(p) attains its global minimum at a point in B(p̂, r). Fix such a minimum point px,ξ ∈ B(p̂, r),
which is indeed uniquely determined by the strict convexity of f (x, ·). We have

0 ∈ D−
2 f (x,px,ξ ) − Dg(px,ξ ) = D−

2 H(x,px,ξ ) − xi − r−1ξ.

That is,

ξ̂ + r−1ξ ∈ D−
2 H(x,px,ξ ),

which is equivalent to saying that

px,ξ ∈ D−
2 L

(
x, ξ̂ + r−1ξ

)
.

In particular, we have (x, ξ̂ + r−1ξ) ∈ dom L and (x̂, ξ̂ ) ∈ int dom L.

Next, we suppose that (x̂, ξ̂ ) ∈ int dom L. Then it is an easy consequence of the Hahn–Banach theorem that there
is a p̂ ∈ Rn such that xi ∈ D−

2 H(x̂, p̂). �
Remark. Let (x, ξ) ∈ int domL. According to the above theorem (and its proof), there is a unique p(x, ξ) ∈
D−

2 L(x, ξ). That is, on the set int domL, the multi-valued map D−
2 L can be identified with the single-valued func-

tion: (x, ξ) �→ p(x, ξ). By the above proof, we see moreover that for each r > 0 there is a constant δ > 0 such that
p(y,η) ∈ B(p(x, ξ), r) for all (y, η) ∈ B(x, δ) × B(ξ, δ). From this observation, we easily see that the function:
(x, ξ) �→ p(x, ξ) is continuous on int domL. Indeed, one can show that L is differentiable in the last n variables and
D2L is continuous on int domL.
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Proposition 2.3. Let K ⊂ Rn × Rn be a compact set. Set

S = {
(x, ξ) ∈ Rn × Rn | ξ ∈ D−

2 H(x,p) for some p ∈ Rn such that (x,p) ∈ K
}
.

Then S is a compact subset of Rn × Rn and S ⊂ int domL.

Proof. We choose a constant R > 0 so that K = B(0,R) × B(0,R).
To see that S is compact, we first check that S ⊂ R2n is a closed set. Let {(xk, ξk)}k∈N ⊂ S be a sequence converging

to (x0, ξ0) ∈ R2n. For each k ∈ N there corresponds a point pk ∈ B(0,R) such that

ξk ∈ D−
2 H(xk,pk).

This is equivalent to saying that

ξk · pk = L(xk, ξk) + H(xk,pk). (2.5)

We may assume by replacing the sequence {(xk, ξk,pk)} by one of its subsequences if necessary that {pk} is conver-
gent. Let p0 ∈ B(0,R) be the limit of the sequence {pk}. Since L is lower semicontinuous, we get from (2.5) in the
limit as k → ∞,

ξ0 · p0 � L(x0, ξ0) + H(x0,p0),

which implies that ξ0 ∈ D−
2 H(x0,p0). Hence, we have (x0, ξ0) ∈ S and see that S is closed.

Next we show that S is bounded. Since H ∈ C(R2n) and the function: p �→ H(x,p) is convex for any x ∈ Rn,
we see that there is a constant M > 0 such that the functions: p �→ H(x,p), with x ∈ B(0,R), is equi-Lipschitz
continuous on B(0,R) with a Lipschitz bound M . This implies that

|ξ | � M for all (x, ξ) ∈ S,

since if (x, ξ) ∈ S, then ξ ∈ D−
2 H(x,p) for some p ∈ B(0,R) and |ξ | � M . Thus we have seen that S ⊂ B(0,R) ×

B(0,M). The set S is bounded and closed in R2n and therefore it is compact.
Finally, we apply Proposition 2.2 to (x, ξ) ∈ S, to see that (x, ξ) ∈ int domL. �

Proposition 2.4. Let Ω be an open subset of Rn, φ ∈ C0+1(Ω), and γ ∈ AC([a, b],Rn), where a, b ∈ R satisfy a < b.
Assume that γ ([a, b]) ⊂ Ω . Then there is a function q ∈ L∞(a, b,Rn) such that

d

dt
φ ◦ γ (t) = q(t) · γ̇ (t) a.e. t ∈ (a, b),

q(t) ∈ ∂cφ
(
γ (t)

)
a.e. t ∈ (a, b).

Here ∂cφ denotes the Clarke differential of φ (see [10]), that is,

∂cφ(x) =
⋂
r>0

co
{
Dφ(y) | y ∈ B(x, r), φ is differentiable at y

}
for x ∈ Ω.

Proof. We may assume without loss of generality that Ω = Rn. Let ρ ∈ C∞(Rn) be a standard mollification kernel,
i.e., ρ � 0, stpρ ⊂ B(0,1), and

∫
Rn ρ(x)dx = 1.

Set ρk(x) := knρ(kx) and φk(x) := ρk ∗ φ(x) for x ∈ Rn and k ∈ N. Here the symbol “∗” indicates the usual
convolution of two functions. Set

ψ(t) = φ ◦ γ (t), ψk(t) = φk ◦ γ (t), and qk(t) = Dφk ◦ γ (t) for t ∈ [a, b], k ∈ N.

We have ψ̇k(t) = qk(t) · γ̇ (t) a.e. t ∈ (a, b), and, by integration,

ψk(t) − ψk(a) =
t∫

a

qk(s) · γ̇ (s)ds for all t ∈ [a, b]. (2.6)

Passing to a subsequence if necessary, we may assume that for some q ∈ L∞(a, b,Rn),

qk → q weakly star in L∞(
a, b,Rn

)
as k → ∞.
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Therefore, from (2.6) we get in the limit as k → ∞,

ψ(t) − ψ(a) =
t∫

a

q(s) · γ̇ (s)ds for all t ∈ [a, b].

This shows that

ψ̇(t) = q(t) · γ̇ (t) a.e. t ∈ (a, b).

Noting that {qk} is weakly convergent to q in L2(a, b,Rn), by Mazur’s theorem, we may assume that there is a
sequence {pk} such that

pk → q strongly in L2(a, b,Rn
)

as k → ∞,

pk ∈ co{qj | j � k} for all k ∈ N.

We may further assume that

pk(t) → q(t) a.e. t ∈ (a, b) as k → ∞.

We fix a set I ⊂ (a, b) of full measure so that

pk(t) → q(t) for all t ∈ I as k → ∞. (2.7)

Now, for any x ∈ Rn and any k ∈ N, noting that

Dφk(x) =
∫

Rn

ρk(x − y)Dφ(y)dy,

we find that

Dφk(x) ∈ co
{
Dφ(y) | y ∈ B

(
x, k−1), φ is differentiable at y

}
.

From this, we get

qk(t) ∈ co
{
Dφ(x) | x ∈ B

(
γ (t), k−1), φ is differentiable at x

}
for all t ∈ [a, b],

and therefore

pk(t) ∈ co
{
Dφ(x) | x ∈ B

(
γ (t), k−1), φ is differentiable at x

}
for all t ∈ [a, b]. (2.8)

Combining (2.7) and (2.8), we get

q(t) ∈
⋂
r>0

co
{
Dφ(x) | x ∈ B

(
γ (t), r

)
, φ is differentiable at x

}
for all t ∈ I.

That is, we have

q(t) ∈ ∂cφ
(
γ (t)

)
a.e. t ∈ (a, b). �

Proposition 2.5. Let Ω be an open subset of Rn and w ∈ C0+1(Rn) be such that H(x,Dw(x)) � f (x) in Ω in
the viscosity sense, where f ∈ C(Ω). Let a, b ∈ R be such that a < b and let γ ∈ AC([a, b],Rn). Assume that
γ ([a, b]) ⊂ Ω . Then

w
(
γ (b)

) − w
(
γ (a)

)
�

b∫
a

L
(
γ (s), γ̇ (s)

)
ds +

b∫
a

f
(
γ (s)

)
ds.

Proof. By Proposition 2.4, there is a function q ∈ L∞(a, b,Rn) such that

d

ds
w

(
γ (s)

) = q(s) · γ̇ (s) and q(s) ∈ ∂cw
(
γ (s)

)
a.e. s ∈ (a, b).

Noting that H(x,p) � f (x) for all p ∈ ∂cw(x) and all x ∈ Ω , we calculate that
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w
(
γ (b)

) − w
(
γ (a)

) =
b∫

a

d

ds
w

(
γ (s)

)
ds =

b∫
a

q(s)γ̇ (s)ds �
b∫

a

[
L

(
γ (s), γ̇ (s)

) + H
(
γ (s), q(s)

)]
ds

�
b∫

a

[
L

(
γ (s), γ̇ (s)

) + f
(
γ (s)

)]
ds. �

3. Additive eigenvalue problem

In this section we prove Theorem 1.2. Our proof below is parallel to that in [24].

Lemma 3.1. There is a function ψ0 ∈ C1(Rn) such that

H
(
x,Dψ0(x)

)
� −C0 for all x ∈ Rn, (3.1)

ψ0(x) � φ0(x) for all x ∈ Rn (3.2)

for some constant C0 > 0.

Proof. We choose a modulus ρ so that

H(x,p) � 0 for all (x,p) ∈ B(0, r) × [
Rn \ B

(
0, ρ(r)

)]
and all r � 1,

‖Dφ0‖L∞(B(0,r)) � ρ(r) for all r � 1.

Because of this choice, we have

φ0(x) − φ0
(|x|−1x

)
�

|x|∫
1

ρ(r)dr for all x ∈ Rn \ B(0,1).

We define the function ψ0 ∈ C1(Rn) by

ψ0(x) = max
B(0,1)

φ0 +
|x|∫

0

ρ(r)dr.

It is now easily seen that

φ0(x) � ψ0(x) for all x ∈ Rn, (3.3)∣∣Dψ0(x)
∣∣ = ρ

(|x|) for all x ∈ Rn,

H
(
x,Dψ0(x)

)
� 0 for all x ∈ Rn \ B(0,1).

Choosing a constant C0 > 0 so that

C0 � max
x∈B(0,1)

∣∣H (
x,Dψ0(x)

)∣∣,
we have

H
(
x,Dψ0(x)

)
� −C0 for all x ∈ Rn.

This together with (3.3) completes the proof. �
We need the following comparison theorem.

Theorem 3.2. Let Ω be an open subset of Rn. Let ε > 0. Let u,v :Ω → R be, respectively, an upper semicontinuous
viscosity subsolution of

H [u] � −ε in Ω, (3.4)
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and a lower semicontinuous viscosity supersolution of

H [v] � 0 in Ω. (3.5)

Assume that v ∈ Φ0 and u � v on ∂Ω . Then u � v on Ω .

The main idea in the following proof how to use the convexity property of H is similar to that in [1].

Proof. We may choose an R > 0 so that H(x,Dφ1(x)) � −ε a.e. in Ω \ B(0,R) and then a constant A0 > 0 so that
φ1(x) + A0 > u(x) for all x ∈ B(0,R).

Fix any A � A0 and define uA ∈ C(Ω) by uA(x) = min{φ1(x) + A,u(x)}. For almost all x ∈ Ω , we have

DuA(x) =
{

Du(x) if u(x) � φ1(x) + A,

Dφ1(x) if u(x) � φ1(x) + A.

Hence, for almost all x ∈ Ω , if u(x) � φ1(x) + A, then H(x,DuA(x)) = H(x,Du(x)) � −ε, and if u(x) �
φ1(x) + A, then |x| > R and hence H(x,DuA(x)) = H(x,Dφ1(x)) � −ε. Therefore, uA is a viscosity subsolution
of (3.4).

Since v ∈ Φ0 and uA(x) � φ1(x) + A for all x ∈ Rn, we have

lim|x|→∞
(
v(x) − uA(x)

) = ∞,

and we see that there is a constant M > 0 such that

uA(x) � v(x) for all x ∈ Ω \ B(0,M).

By a standard comparison theorem applied in Ω ∩B(0,2M), we obtain uA(x) � v(x) for all x ∈ Ω ∩B(0,2M), from
which we get uA(x) � v(x) for all x ∈ Ω . Noting that, for each x ∈ Ω , we have uA(x) = u(x) if A is sufficiently
large, we conclude that u(x) � v(x) for all x ∈ Ω . �
Theorem 3.3. (1) There is a solution (c, v) ∈ R × Φ0 of (1.3). (2) If (c, v), (d,w) ∈ R × Φ0 are solutions of (1.3),
then c = d .

Proof. We start by showing assertion (2). Let (c, v), (d,w) ∈ R × Φ0 be solutions of (1.3). Suppose that c �= d . We
may assume that c < d . Also, we may assume by adding a constant to v that v(x0) > w(x0) at some point x0 ∈ Rn.
On the other hand, by Theorem 3.2, we have v � w for all x ∈ Rn, which is a contradiction. Thus we must have c = d .

In order to show existence of a solution of (1.3), we let λ > 0 and consider the problem

λvλ(x) + H
(
x,Dvλ(x)

) = λφ0(x) in Rn. (3.6)

Let ψ0 ∈ C1(Rn) and C0 > 0 be from Lemma 3.1. We may assume by replacing C0 by a larger number if necessary
that σ0(x) � −C0 for all x ∈ Rn. Note that H [φ0] � C0 in Rn in the viscosity sense.

We define the functions v±
λ on Rn by

v+
λ (x) = ψ0(x) + λ−1C0 and v−

λ (x) = φ0(x) − λ−1C0.

It is easily seen that v+
λ and v−

λ are viscosity supersolution and a viscosity subsolution of (3.6). In view of (3.2), we
have v−

λ (x) < v+
λ (x) for all x ∈ Rn. By the Perron method in viscosity solutions theory, we find that the function vλ

on Rn given by

vλ(x) = sup
{
w(x) | v−

λ � w � v+
λ in Rn, λw + H [w] � λφ0 in Rn in the viscosity sense

}
(3.7)

is a viscosity solution of (3.6). Because of the definition of vλ, we have

φ0(x) − λ−1C0 � vλ(x) � ψ0(x) + λ−1C0 for all x ∈ Rn. (3.8)

Using the left-hand side inequality of (3.7), we formally calculate that

λφ0(x) = λvλ(x) + H
(
x,Dvλ(x)

)
� λφ0(x) − C0 + H

(
x,Dvλ(x)

)
,
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and therefore, H(x,Dvλ(x)) � C0. Indeed, this last inequality holds in the sense of viscosity solutions. This together
with the coercivity of H yields the local equi-Lipschitz continuity of the family {vλ}λ>0. As a consequence, the family
{vλ − vλ(0)}λ>0 ⊂ C(Rn) is locally uniformly bounded and locally equi-Lipschitz continuous on Rn.

Going back to (3.7), we see that

λφ0(x) − C0 � λvλ(x) � λψ0(x) + C0 for all x ∈ Rn.

In particular, the set {λvλ(0)}λ∈(0,1) ⊂ R is bounded. Thus we may choose a sequence {λj }j∈N ⊂ (0,1) such that, as
j → ∞,

λj → 0, −λjvλj
(0) → c,

vλj
(x) − vλj

(0) → v(x) uniformly on bounded sets ⊂ Rn

for some real number c and some function v ∈ C0+1(Rn). Since∣∣λ(
vλ(x) − vλ(0)

)∣∣ � λLR|x| for all x ∈ B(0,R),

all R > 0, and some constants LR > 0, we find that

−λjvλj
(x) → c uniformly on bounded sets ⊂ Rn as j → ∞.

By a stability property of viscosity solutions, we deduce that v is a viscosity solution of (1.3) with c in hand.
Now, we show that v ∈ Φ0. Fix any λ ∈ (0,1). As we have observed above, there is a constant C1 > 0, independent

of λ, such that |λvλ(0)| � C1. Set wλ(x) = vλ(x) − vλ(0) for x ∈ Rn. Note that wλ is a viscosity solution of

H(x,Dwλ) � λ(φ0 − wλ) − C1 in Rn. (3.9)

We may choose a constant R > 0 so that H(x,Dφ0(x)) � −C1 − 1 a.e. in Rn \ B(0,R), and also a constant C2 > 0,
independent of λ ∈ (0,1), so that max{|φ0(x)|, |wλ(x)|} � C2 for all x ∈ B(0,R). Set w = φ0 − 2C2. Obviously we
have w � wλ in B(0,R), and H(x,Dw(x)) = H(x,Dφ0(x)) � −C1 − 1 a.e. x ∈ Rn \ B(0,R). We set Ω = {x ∈
Rn | w(x) > wλ(x)} and observe that Ω ⊂ Rn \ B(0,R). We have φ0(x) − wλ(x) = w(x) + 2C2 − wλ(x) > 2C2 > 0
for all x ∈ Ω . Hence we see from (3.8) that wλ is a viscosity solution of H(x,Dwλ(x)) � −C1 in Ω . It is clear that
w(x) = wλ(x) for all x ∈ ∂Ω . Noting that wλ ∈ Φ0, we may apply Theorem 3.2, to obtain w � wλ in Ω , which shows
that Ω = ∅, i.e., w � wλ on Rn. Sending λ → 0, we get φ0 − 2C2 � v in Rn, which shows that v ∈ Φ0, completing
the proof. �
Proposition 3.4. The additive eigenvalue cH is characterized as

cH = inf
{
a ∈ R | there exists a viscosity solution v ∈ C

(
Rn

)
of H [v] � a in Rn

}
.

Proof. We write d for the right-hand side of the above formula. Let φ ∈ Φ0 be a viscosity solution of H [φ] = cH

in Rn. If a � cH , then H [φ] � a in Rn in the viscosity sense. Thus we have d � cH . Suppose that d < cH . Then there
is a constant e ∈ (d, cH ) and a viscosity solution of H [ψ] � e in Rn. By Theorem 3.2, we see that ψ + C � φ in Rn

for any C ∈ R, which is clearly a contradiction. Thus we have d = cH . �
4. A comparison theorem for the Cauchy problem

In this section we establish the following comparison theorem. Let T ∈ (0,∞).

Theorem 4.1. Let Ω be an open subset of Rn. Let u,v :Ω ×[0, T ) → R. Assume that u,−v are upper semicontinuous
on Ω × [0, T ) and that u and v are, respectively, a viscosity subsolution and a viscosity supersolution of

ut + H(x,Du) = 0 in Ω × (0, T ). (4.1)

Moreover, assume that

lim
r→∞ inf

{
v(x, t) − φ1(x) | (x, t) ∈ (

Ω \ B(0, r)
) × [0, T )

} = ∞, (4.2)

and that u � v on (Ω × {0}) ∪ (∂Ω × [0, T )). Then u � v in Ω × [0, T ).
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Proof. We choose a constant C > 0 so that

H
(
x,Dφ1(x)

)
� C a.e. x ∈ Rn,

and define the function w ∈ C(Rn × R) by

w(x, t) := φ1(x) − Ct.

Observe that wt + H(x,Dw(x, t)) � 0 a.e. (x, t) ∈ Rn+1.
We need only to show that for all (x, t) ∈ Ω and all A > 0,

min
{
u(x, t),w(x, t) + A

}
� v(x, t). (4.3)

Fix any A > 0. We set wA(x, t) = w(x, t) + A for (x, t) ∈ Rn+1. The function wA is a viscosity subsolution of (4.1).
By the convexity of H(x,p) in p, the function ū defined by ū(x, t) := min{u(x, t),wA(x, t)} is a viscosity subsolution
of (4.1). Because of assumption (4.2), we see that there is a constant R > 0 such that ū(x, t) � v(x, t) for all (x, t) ∈
(Ω \ B(0,R)) × [0, T ). We set ΩR := Ω ∩ intB(0,2R), so that ū(x, t) � v(x, t) for all x ∈ ∂ΩR × [0, T ). Also, we
have ū(x,0) � u(x,0) � v(x,0) for all x ∈ ΩR .

Next we wish to use standard comparison results. However, H does not satisfy the usual assumptions for compar-
ison. We thus take the sup-convolution of ū in the variable t and take advantage of the coercivity of H . That is, for
each ε ∈ (0,1) we set

uε(x, t) := sup
s∈[0,T )

(
u(x, s) − (t − s)2

2ε

)
for all (x, t) ∈ ΩR × R.

For each δ > 0, there is a γ ∈ (0,min{δ, T /2}) such that ū(x, t) − δ � v(x, t) for all (x, t) ∈ ΩR × [0, γ ]. As is well
known, there is an ε ∈ (0, δ) such that uε is a viscosity subsolution of (4.1) in ΩR × (γ, T − γ ) and uε(x, t) − 2δ �
v(x, t) for all (x, t) ∈ (ΩR × [0, γ ]) ∪ (∂ΩR × [γ,T − γ ]). Observe that the family of functions: t �→ uε(x, t) on
[γ,T − γ ], with x ∈ ΩR , is equi-Lipschitz continuous, with a Lipschitz bound Cε > 0, and therefore that for each
t ∈ [γ,T − γ ], the function z :x �→ uε(x, t) in ΩR satisfies H(x,Dz(x)) � Cε a.e., which implies that the family of
functions: x �→ uε(x, t), with t ∈ [γ,T − γ ], is equi-Lipschitz continuous in ΩR .

Now, we may apply a standard comparison theorem, to get uε(x, t) � v(x, t) for all (x, t) ∈ ΩR ×[γ,T −γ ], from
which we get ū(x, t) � v(x, t) for all (x, t) ∈ Ω × [0, T ). This completes the proof. �
5. Cauchy problem

Let c ≡ cH be the (additive) eigenvalue for H . In this and the following sections we assume without loss of
generality that c = 0. Indeed, if we set Hc(x, y) = H(x,y) − c and Lc(x, y) = L(x, y) + c for (x, y) ∈ R2n, then the
stationary Hamilton–Jacobi equation H [v] = c for v is exactly Hc[v] = 0 for v and the evolution equation ut +H [u] =
0 for u is the equation wt + Hc[w] = 0 for w(x, t) := u(x, t) + ct . Note moreover that Lc is the Lagrangian of the
Hamiltonian Hc , i.e., Lc(x, ξ) = sup{ξ · p − Hc(x,p) | p ∈ Rn} for all x, ξ ∈ Rn. With these relations in mind, by
replacing H and L by Hc and Lc , respectively, we may assume that c = 0.

We make another normalization. We fix a viscosity solution φ ∈ Φ0 of H [φ] = 0 in Rn. We choose a constant r > 0
so that σi(x) � 0 for all x ∈ Rn \ B(0, r). There is a constant M > 0 such that φ(x) − M � φ1(x) for all x ∈ B(0, r).
We set ζ1(x) = min{φ(x) − M,φ1(x)} for x ∈ Rn. Since lim|x|→∞(φ − φ1)(x) = ∞, we have ζ1(x) = φ1(x) for all
x ∈ Rn \ B(0,R) and some R > r . Note that H(x,Dζ1(x)) = H(x,Dφ(x)) = 0 a.e. in B(0, r), H(x,Dζ1(x)) �
max{H(x,Dφ(x)),H(x,Dφ1(x))} � 0 a.e. in B(0,R) \ B(0, r), and H(x,Dζ1(x)) = H(x,Dφ1(x)) = −σ1(x) a.e.
in Rn \ B(0,R). Therefore, by replacing φ1 and σ1 by ζ1 and max{σ1,0}, respectively, we may assume that σ1 � 0
in Rn. Similarly, we define the function ζ0 ∈ C0+1(Rn) by setting ζ0(x) = min{φ(x) − M,φ0(x)} and observe that
H [ζ0] � 0 in Rn in the viscosity sense and that supRn |ζ0 − φ0| < ∞, which implies that u ∈ Φ0 if and only if
infRn(u − ζ0) > −∞. Henceforth we write φ0 for ζ0. A warning is that the function σ0 = 0 corresponds to the current
φ0 and does not have the property: lim|x|→∞ σ0(x) = ∞.

In this section we prove Theorem 1.1 together with some estimates on the continuity of the solution of (1.1) and
(1.2) which satisfies (1.4).
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Our strategy here for proving the existence of a viscosity solution of (1.1) and (1.2) which satisfies (1.4) is to prove
that the function u on Rn × (0,∞) given by

u(x, t) = inf

{ t∫
0

L
(
γ (s), γ̇ (s)

)
ds + u0

(
γ (0)

) ∣∣∣γ ∈ C(x, t)

}
(5.1)

is a viscosity solution of (1.1) by using the dynamic programming principle.
In this section u always denotes the function on Rn × [0,∞) whose value u(x, t) given by (5.1) for t > 0 and by

u0(x) for t = 0.

Lemma 5.1. There exists a constant C0 > 0 such that

u(x, t) � φ0(x) − C0 for all (x, t) ∈ Rn × [0,∞).

Proof. We choose C0 > 0 so that u0(x) � φ0(x) − C0 for all x ∈ Rn. Fix any (x, t) ∈ Rn × (0,∞). For each ε > 0
there is a curve γ ∈ C(x, t) such that

u(x, t) + ε >

t∫
0

L
(
γ (s), γ̇ (s)

)
ds + u0

(
γ (0)

)
.

By Proposition 2.5, since H [φ0] � 0 a.e., we have

u(x, t) + ε > φ0
(
γ (t)

) − φ0
(
γ (0)

) + u0
(
γ (0)

)
� φ0(x) − C0,

which shows that u(x, t) � φ0(x) − C0. �
Lemma 5.2. We have

u(x, t) � u0(x) + L(x,0)t for all (x, t) ∈ Rn × (0,∞).

Proof. Fix any (x, t) ∈ Rn × (0,∞). By choosing the curve γx(t) ≡ x in formula (5.1), we find that

u(x, t) �
t∫

0

L
(
γx(s), γ̇x(s)

)
ds + u0

(
γx(0)

)

=
t∫

0

L(x,0)ds + u0(x) = u0(x) + L(x,0)t. �

Proposition 5.3 (Dynamic Programming Principle). For t > 0, s > 0, and x ∈ Rn, we have

u(x, s + t) = inf

{ t∫
0

L
(
γ (r), γ̇ (r)

)
dr + u

(
γ (0), s

) ∣∣∣γ ∈ C(x, t)

}
. (5.2)

We omit giving the proof of this proposition and we refer to [23] for a proof in a standard case.

Lemma 5.4. For each R > 0 there exists a modulus mR such that

u(x, t) � u0(x) − mR(t) for all (x, t) ∈ B(0,R) × (0,∞).

Proof. Fix any R > 0. We choose C > 0 and then ρ > R so that φ1(x) + C � u0(x) + 1 for all x ∈ B(0,R) and
φ1(x) + C � u0(x) − 1 for all x ∈ Rn \ B(0, ρ). Fix any ε ∈ (0,1) and choose a function uε ∈ C1(Rn) so that
|uε(x) − u0(x)| � ε for all x ∈ Rn.
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We set

φε(x) = min
{
φ1(x) + C,uε(x)

}
for x ∈ Rn,

and note that φε(x) = uε(x) for x ∈ B(0,R) and φε(x) = φ1(x) − C for x ∈ Rn \ B(0, ρ). Next we choose an M > 0
so that |H(x,Dφε(x))| � M for all x ∈ B(0, ρ) and observe that H(x,Dφε(x)) � M a.e. x ∈ Rn.

Fix any (x, t) ∈ Rn × (0,∞) and select a curve γ ∈ C(x, t) so that

u(x, t) + ε >

t∫
0

L
(
γ (s), γ̇ (s)

)
ds + u0

(
γ (0)

)
.

Using Proposition 2.5, we get

u(x, t) + ε > φε

(
γ (t)

) − φε

(
γ (0)

) − Mt + u0
(
γ (0)

)
� φε(x) − Mt − uε

(
γ (0)

) + u0
(
γ (0)

)
,

which shows that u(x, t) � u0(x) − Mt − 2ε for all (x, t) ∈ B(0,R) × [0,∞). Writing Mε for M in view of its
dependence on ε and setting mR(t) = inf{2ε + Mεt | ε ∈ (0,1)} for t � 0, we find a modulus mR for which u(x, t) �
u0(x) − mR(t) for all (x, t) ∈ B(0,R) × [0,∞). �
Theorem 5.5. The function u is continuous in Rn × [0,∞) and is a viscosity solution of (1.1).

This theorem together with Lemma 5.1 and Theorem 4.1 completes the proof of Theorem 1.1.

Proof. We define the upper and lower semicontinuous envelopes u∗ and u∗ of u, respectively, by

u∗(x, t) = lim
r→+0

sup
{
u(y, s) | (y, s) ∈ Rn × [0,∞), |y − x| + |s − t | < r

}
,

u∗(x, t) = lim
r→+0

inf
{
u(y, s) | (y, s) ∈ Rn × [0,∞), |y − x| + |s − t | < r

}
.

We now invoke some results established in Appendix A. That is, we apply Theorems A.1 and A.2 together with
remark after these theorems, to conclude that u∗ and u∗ are a viscosity subsolution and a viscosity supersolution
of (1.1), respectively.

We observe by Lemmas 5.2 and 5.4 that u∗(x,0) = u∗(x,0) = u0(x) for all x ∈ Rn and by Lemma 5.1 that
u∗(x, t) � φ0(x) − C0 for all (x, t) ∈ Rn × [0,∞) and some constant C0 > 0. We apply Theorem 4.1, to conclude
that u∗ � u∗ in Rn × [0,∞), which implies that u = u∗ = u∗ ∈ C(Rn × [0,∞)), completing the proof. �
Lemma 5.6. For each R > 0 there exists a constant CR > 0 such that u(x, t) � CR for all (x, t) ∈ B(0,R) × [0,∞).

Proof. Fix a viscosity solution φ ∈ Φ0 of (1.3). Fix any R > 0. We choose a constant C > 0 and then a constant
ρ > R so that φ1(x) + C > φ(x) for all x ∈ B(0,R) and φ1(x) + C � φ(x) for all x ∈ Rn \ B(0, ρ).

Next we choose a constant K > 0 so that min{φ(x),φ1(x) + C} + K � u0(x) for all x ∈ B(0, ρ) and set
v(x, t) = min{u(x, t), φ1(x) + C + K} for (x, t) ∈ Rn × [0,∞). Observe that v is a viscosity subsolution of (1.1)
and that v(x,0) � u0(x) � φ(x)+K for x ∈ B(0, ρ) and v(x,0) � φ1(x)+C +K � φ(x)+K for x ∈ Rn \B(0, ρ).
Therefore, since w(x, t) := φ(x)+K is a viscosity solution of (1.1), by Theorem 4.1 we obtain v(x, t) � φ(x)+K for
all (x, t) ∈ Rn ×[0,∞). In particular, since φ1(x)+C+K > φ(x)+K for all x ∈ B(0,R), we get u(x, t) � φ(x)+K

for all (x, t) ∈ B(0,R) × [0,∞), from which we conclude that u(x, t) � CR for all (x, t) ∈ B(0,R) × [0,∞), with
CR := maxB(0,R) φ + K . �
Lemma 5.7. For each R > 0 there exists a modulus lR such that |u(x, t) − u(y, s)| � lR(|x − y| + |t − s|) for all
(x, t), (y, s) ∈ B(0,R) × [0,∞).

Proof. Fix any ε ∈ (0,1) and choose a function v0 ∈ C1(Rn) so that |v0(x) − u0(x)| � ε for all x ∈ Rn. Let v ∈
C(Rn × [0,∞)) be the unique solution of (1.1)–(1.2) satisfying (1.4), with v in place of u. Existence and uniqueness
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of such a solution is guaranteed by Theorem 1.1. By Theorem 4.1, we have |u(x, t) − v(x, t)| � ε for all (x, t) ∈
Rn × [0,∞).

We wish to show that for each R > 0 the function v is Lipschitz continuous on B(0,R) × [0,∞).
For each ρ > 0 we choose a constant Aρ > 0 so that∣∣H (

x,Dv0(x)
)∣∣ � Aρ for all x ∈ B(0, ρ). (5.3)

In view of Lemma 5.6, for each R > 0 we may choose a constant CR > 0 so that φ1(x) + CR > u(x, t) + 1 for all
(x, t) ∈ B(0,R) × [0,∞). In view of Lemma 5.1, we may choose a constant C0 > 0 so that u(x, t) � φ0(x) − C0 for
all (x, t) ∈ Rn × [0,∞).

Fix any R > 0 and then ρ > R so that

φ0(x) − 2 − C0 � φ1(x) + CR for all x ∈ Rn \ B(0, ρ). (5.4)

We define w ∈ C(Rn × [0,∞)) by w(x, t) = min{v0(x) − Aρt,φ1(x) + CR}.
Note that for any (x, t) ∈ (Rn \ B(0, ρ)) × [0,A−1

ρ ),

v0(x) − Aρt � u0(x) − 2 � φ0(x) − 2 − C0 � φ1(x) + CR,

and therefore w(x, t) = φ1(x) + CR . Consequently, we have

wt(x, t) + H
(
x,Dw(x, t)

)
� 0 a.e. (x, t) ∈ Rn × (

0,A−1
ρ

)
.

That is, w is a viscosity subsolution of (1.1) in Rn × (0,A−1
ρ ). Observe as well that w(x,0) � v0(x) for all x ∈ Rn. We

may now apply Theorem 3.1, to conclude that w(x, t) � v(x, t) for all (x, t) ∈ Rn × [0,A−1
ρ ). Since φ1(x) + CR >

v0(x) for all x ∈ B(0,R) by our choice of CR , we see that w(x, t) = v0(x) − Aρt for all (x, t) ∈ B(0,R) × [0,∞).
Thus, setting KR = Aρ , we see that for any R > 0,

v0(x) − KRt � v(x, t) for all (x, t) ∈ B(0,R) × [
0,K−1

R

]
. (5.5)

Next we fix any R > 0 and 0 < h < K−1
ρ , where Kρ is a constant for which (5.5) holds with ρ in place of R, and

define z ∈ C(Rn × [0,∞)) by z(x, t) = min{v(x, t) − Kρh,φ1(x) + CR}. Observe that z is a viscosity subsolution
of (1.1), that z(x,0) � v(x,0) − Kρh � v(x,h) for x ∈ B(0, ρ) by (5.5), that if x ∈ Rn \ B(0, ρ), then

z(x,0) � φ1(x) + CR < φ0(x) − 2 − C0 � u(x,h) − 2 < v(x,h).

Now, by comparison, we get z(x, t) � v(x, t +h) for all (x, t) ∈ Rn×[0,∞). Noting that if x ∈ B(0,R), then v(x, t)−
Kρh � u(x, t)+ 1 < φ1(x)+CR , we find that v(x, t)−Kρh = z(x, t) � v(x, t +h) for all (x, t) ∈ B(0,R)×[0,∞).
Setting MR = Kρ , we thus obtain

v(x, t) + MRt � v(x, t + h) + MR(t + h)

for all (x, t) ∈ B(0,R)×[0,∞) and h ∈ [0,M−1
R ]. We now conclude that for any R > 0 and x ∈ B(0,R), the function:

t �→ v(x, t) + MRt is nondecreasing on [0,∞).
Fix any R > 0 and observe that H(x,Dv(x, t)) � MR in intB(0,R) in the viscosity sense, which implies together

with (A2) the Lipschitz continuity of v(x, t) in x ∈ B(0,R) uniformly in t � 0, that is, there exists a constant LR > 0
such that |v(x, t) − v(y, t)| � LR|x − y| for all x, y ∈ B(0,R) and t � 0.

Now, we note that infB(0,R)×Rn H > −∞. We may assume by replacing LR by a larger constant if necessary that
MR � LR and H(x,p) � −LR for all (x,p) ∈ B(0,R) × Rn. Noting that v is a viscosity solution of vt � LR in
intB(0,R) × (0,∞), we see that for any x ∈ B(0,R) the function: t �→ v(x, t) − LRt is nonincreasing on [0,∞). In
conclusion, we find that |v(x, t)−v(y, s)| � LR(|x−y|+|t −s|) for all (x, t), (y, s) ∈ B(0,R)×[0,∞) and moreover
that |u(x, t)−u(y, s)| � 2ε+LR(|x −y|+ |t − s|) for all (x, t), (y, s) ∈ B(0,R)×[0,∞). This ensures the existence
of a modulus lR such that |u(x, t) − u(y, s)| � lR(|x − y| + |t − s|) for all (x, t), (y, s) ∈ B(0,R) × [0,∞). �
Theorem 5.8. For each R > 0 the function u is bounded and uniformly continuous on B(0,R) × [0,∞).

Proof. The required boundedness of u follows from Lemmas 5.1 and 5.6, and hence Lemma 5.7 concludes the
proof. �
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6. Extremal curves

We are assuming as before that cH = 0. Eq. (1.3) reads

H
(
x,Du(x)

) = 0 in Rn. (6.1)

Henceforth S−
H , S+

H , and SH denote the sets of continuous viscosity subsolutions, of continuous viscosity supersolu-
tions, and of continuous viscosity solutions of (6.1), respectively.

Let φ ∈ S−
H and I ⊂ R be an interval. Note by Proposition 2.5 that if [a, b] ⊂ I and γ ∈ AC([a, b],Rn), then

φ
(
γ (b)

) − φ
(
γ (a)

)
�

b∫
a

L
(
γ (t), γ̇ (t)

)
dt.

We call any γ ∈ C(I,Rn) an extremal curve for φ on I if for any interval [a, b] ⊂ I , we have γ ∈ AC([a, b],Rn) and

b∫
a

L
(
γ (s), γ̇ (s)

)
ds = φ

(
γ (b)

) − φ
(
γ (a)

)
.

Let E(I,φ) denote the set of all extremal curves for φ on I .
In this section we are concerned with existence of extremal curves.

Theorem 6.1. Let S,T ∈ R satisfy S < T . Let x ∈ Rn and φ ∈ SH ∩ Φ0. Then there exists a curve γ ∈ E([S,T ], φ)

such that γ (T ) = x.

Theorem 6.1 has the following consequence.

Corollary 6.2. Let x ∈ Rn and φ ∈ SH ∩ Φ0. Then there exists a curve γ ∈ E((−∞,0], φ) such that γ (0) = x.

Proof. Due to Theorem 6.1, for each y ∈ Rn we may choose a curve γy ∈ E([−1,0], φ) such that γy(0) = y. We
define the sequence {ξj }j∈N ⊂ Rn inductively as ξ1 = γx(−1), ξ2 = γξ1(−1), ξ3 = γξ2(−1), . . . , and the curve
γ ∈ C((−∞,0],Rn) by

γ (t) =

⎧⎪⎪⎨⎪⎪⎩
γx(t) for t ∈ (−1,0],
γξ1(t + 1) for t ∈ (−2,−1],
γξ2(t + 2) for t ∈ (−3,−2],
...

It is not hard to check that γ ∈ E((−∞,0], φ). Also, it is obvious that γ (0) = x. �
We need the following lemmas for the proof of Theorem 6.1.

Lemma 6.3. Let T > 0 and let {γk}k∈N ⊂ AC([0, T ],Rn) be a sequence converging to a function γ ∈ C([0, T ],Rn)

in the topology of uniform convergence. Assume that

lim inf
k→∞

T∫
0

L
(
γk(t), γ̇k(t)

)
dt < ∞.

Then γ ∈ AC([0, T ],Rn) and

T∫
0

L
(
γ (t), γ̇ (t)

)
dt � lim inf

k→∞

T∫
0

L
(
γk(t), γ̇k(t)

)
dt. (6.2)

The following lemma will be used in the proof of Lemma 6.3.
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Lemma 6.4. Let T > 0, C > 0, and R > 0. Let γ ∈ AC([0, T ],Rn) be such that

T∫
0

L
(
γ (t), γ̇ (t)

)
dt � C and γ (t) ∈ B(0,R) for all t ∈ [0, T ].

Then for each ε > 0 there exits a constant Mε > 0 depending only on ε, T , C, R, and H , such that for all measurable
B ⊂ [0, T ],∫

B

∣∣γ̇ (t)
∣∣dt � ε + Mε|B|, (6.3)

where |B| denotes the Lebesgue measure of B ⊂ R.

Proof. We choose a constant C1 > 0 so that H(x,0) � C1 for all x ∈ B(0,R), which guarantees that L(x, ξ) � −C1
for all (x, ξ) ∈ B(0,R) × Rn. For each ε > 0 we set

M(ε) = max
{∣∣H(x,p)

∣∣ ∣∣ (x,p) ∈ B(0,R) × B
(
0, ε−1)},

so that for (x, ξ) ∈ B(0,R) × Rn,

L(x, ξ) � max
{
ξ · p − H(x,p) | p ∈ B

(
0, ε−1)} � ε−1|ξ | − M(ε).

Now, let B ⊂ [0, T ] be a measurable set, and observe that∫
B

(
L

(
γ (t), γ̇ (t)

) + C1
)

dt �
T∫

0

(
L

(
γ (t), γ̇ (t)

) + C1
)

dt � C + C1T ,

from which we get∫
B

(
ε−1

∣∣γ̇ (t)
∣∣ + C1 − M(ε)

)
dt � C + C1T .

Hence we have∫
B

∣∣γ̇ (t)
∣∣dt � ε(C + C1T ) + εM(ε)|B|,

which shows that (6.3) holds with Mε = δM(δ), where δ = ε(C + C1T )−1. �
Proof of Lemma 6.3. We choose a constant R > 0 so that |γk(t)| � R for all t ∈ [0, T ] and all k ∈ N. Passing to a
subsequence of {γk}k∈N if necessary, we may assume that there is a constant C > 0 such that

T∫
0

L
(
γk(t), γ̇k(t)

)
dt � C for all k ∈ N.

Now, by Lemma 6.4, for each ε > 0 we may choose a constant M(ε) > 0 so that for any measurable B ⊂ [0, T ]
and for all k ∈ N,∫

B

∣∣γ̇k(t)
∣∣dt � ε + M(ε)|B|. (6.4)

We deduce from (6.4) that for any ε > 0 and any mutually disjoint intervals [ai, bi] ⊂ [0, T ], with i = 1,2, . . . ,m,

m∑∣∣γ (bi) − γ (ai)
∣∣ � ε + M(ε)

m∑
(bi − ai),
i=1 i=1
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which shows that γ ∈ AC([0, T ],Rn) and∫
B

∣∣γ̇ (t)
∣∣dt � ε + M(ε)|B| (6.5)

for any measurable subset B of [0, T ].
Next let f ∈ AC([0, T ],Rn) and observe by using integration by parts that as k → ∞

T∫
0

f (t) · γ̇k(t)dt = (f · γk)(T ) − (f · γk)(0) −
T∫

0

ḟ (t) · γk(t)dt

→ (f · γ )(T ) − (f · γ )(0) −
T∫

0

ḟ (t) · γ (t)dt

=
T∫

0

f (t) · γ̇ (t)dt.

Now we introduce the Lagrangian Lα , with α > 0, as follows. Fix α > 0 and define the function Hα : R2n → (0,∞]
by

Hα(x,p) = H(x,p) + |p|2
α

+ δB(0,α)(p),

where δC denotes the indicator function of C ⊂ Rn defined by δC(p) = 0 if p ∈ C and = ∞ otherwise. Next define the
function Lα : R2n → R as the Lagrangian of Hα , that is, Lα(x, ξ) = sup{ξ · p − Hα(x,p) | p ∈ Rn} for (x, ξ) ∈ R2n.
It is easy to see that, for all (x, ξ) ∈ R2n, Lα(x, ξ) � Lβ(x, ξ) � L(x, ξ) if α < β , that limα→∞ Lα(x, ξ) = L(x, ξ)

for all (x, ξ) ∈ R2n, and that for any (x, ξ) ∈ R2n, if p ∈ D−
2 Lα(x, ξ), then |p| � α. Also, as is well known, for any

α > 0, Lα is differentiable in the last n variables everywhere and Lα and D2Lα are continuous on R2n. In view of the
monotone convergence theorem, in order to prove (6.2), we need only to show that for any α > 0,

T∫
0

Lα

(
γ (t), γ̇ (t)

)
dt � lim inf

k→∞

T∫
0

L
(
γk(t), γ̇k(t)

)
dt. (6.6)

To show (6.6), we fix α > 0 and note by convexity that for a.e. t ∈ (0, T ) and any k ∈ N,

Lα

(
γk(t), γ̇k(t)

)
� Lα

(
γk(t), γ̇ (t)

) + D2Lα

(
γk(t), γ̇ (t)

) · (γ̇k(t) − γ̇ (t)
)
.

Since ∣∣Lα

(
γk(t), γ̇ (t)

)∣∣ �
∣∣Lα

(
γk(t),0

)∣∣ + α
∣∣γ̇ (t)

∣∣ � max
x∈B(0,R)

∣∣Lα(x,0)
∣∣ + α

∣∣γ̇ (t)
∣∣ ∈ L1(0, T ),

by the Lebesgue dominated convergence theorem, we get

lim
k→∞

T∫
0

Lα

(
γk(t), γ̇ (t)

)
dt =

T∫
0

Lα

(
γ (t), γ̇ (t)

)
dt.

Next, we set fk(t) = D2Lα(γk(t), γ̇ (t)) and f (t) = D2Lα(γ (t), γ̇ (t)) for t ∈ [0, T ] and k ∈ N. Then fk, f ∈
L∞(0, T ,Rn) for all k ∈ N, and |fk(t)| � α and |f (t)| � α a.e. t ∈ (0, T ) for all k ∈ N. We may choose a sequence
{gj }j∈N ⊂ AC([0, T ],Rn) so that gj (t) → f (t) a.e. t ∈ (0, T ) as j → ∞ and |gj (t)| � α for all t ∈ [0, T ], j ∈ N.
Note that fk(t) → f (t) a.e. t ∈ (0, T ) as k → ∞ and recall that the almost everywhere convergence implies the
convergence in measure. For each ε > 0 we set

μ(ε, k) = ∣∣{t ∈ (0, T )
∣∣ ∣∣(fk − f )(t)

∣∣ > ε
}∣∣ for k ∈ N,

ν(ε, j) = ∣∣{t ∈ (0, T )
∣∣ ∣∣(gj − f )(t)

∣∣ > ε
}∣∣ for j ∈ N,
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and observe that limk→∞ μ(ε, k) = limj→∞ ν(ε, j) = 0 for any ε > 0.
Fix any ε > 0, δ > 0, and k, j ∈ N. Observing that∣∣{t ∈ (0, T )

∣∣ ∣∣(fk − gj )(t)
∣∣ > 2ε

}∣∣ � μ(ε, k) + ν(ε, j)

and using (6.5) with ε replaced by δ or 1, we get∣∣∣∣∣
T∫

0

(fk − gj )(t) · γ̇k(t)dt

∣∣∣∣∣ �
∫

|fk−gj |>2ε

2α
∣∣γ̇k(t)

∣∣dt +
∫

|fk−gj |�2ε

2ε
∣∣γ̇k(t)

∣∣dt

� 2α
[
δ + M(δ)

(
μ(ε, k) + ν(ε, j)

)] + 2ε
(
1 + M(1)T

)
.

Similarly we get∣∣∣∣∣
T∫

0

(gj − f )(t) · γ̇ (t)dt

∣∣∣∣∣ �
∫

|gj −f |>ε

2α
∣∣γ̇ (t)

∣∣dt +
∫

|gj −f |�ε

ε
∣∣γ̇ (t)

∣∣dt

� 2α
(
δ + M(δ)ν(ε, j)

) + ε
(
1 + M(1)T

)
.

Hence we have∣∣∣∣∣
T∫

0

(fk · γ̇k − f · γ̇ )dt

∣∣∣∣∣ � 4α
(
δ + M(δ)

(
μ(ε, k) + ν(ε, j)

)) + 3ε
(
1 + M(1)T

)

+
∣∣∣∣∣

T∫
0

gj · (γ̇k − γ̇ )dt

∣∣∣∣∣.
Now, since gj ∈ AC([0, T ],Rn), we have

lim
k→∞

T∫
0

gj · (γ̇k − γ̇ )dt = 0,

and hence

lim sup
k→∞

∣∣∣∣∣
T∫

0

(fk · γ̇k − f · γ̇ )dt

∣∣∣∣∣ � 4α
(
δ + M(δ)ν(ε, j)

) + 3ε
(
1 + M(1)T

)
for any ε > 0, δ > 0, and j ∈ N. Sending j → ∞ and then ε, δ → 0, we see that

lim
k→∞

T∫
0

D2Lα

(
γk(t), γ̇ (t)

) · γ̇k(t)dt =
T∫

0

D2Lα

(
γ (t), γ̇ (t)

) · γ̇ (t)dt.

Finally, noting by the Lebesgue dominated convergence theorem that

lim
k→∞

T∫
0

D2Lα

(
γk(t), γ̇ (t)

) · γ̇ (t)dt =
T∫

0

D2Lα

(
γ (t), γ̇ (t)

) · γ̇ (t)dt,

we obtain

lim
k→∞

T∫ (
Lα

(
γk(t), γ̇ (t)

) + D2Lα

(
γk(t), γ̇ (t)

) · (γ̇k(t) − γ̇ (t)
))

dt =
T∫

Lα

(
γ (t), γ̇ (t)

)
dt
0 0
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and moreover

T∫
0

Lα

(
γ (t), γ̇ (t)

)
dt � lim inf

k→∞

T∫
0

Lα

(
γk(t), γ̇k(t)

)
dt � lim inf

k→∞

T∫
0

L
(
γk(t), γ̇k(t)

)
dt,

completing the proof. �
Lemma 6.5. Let φ ∈ S−

H ∩ Φ0. Let S < T , R > 0, and C � 0. Let γ ∈ AC([S,T ],Rn) satisfy γ (T ) ∈ B(0,R) and

φ
(
γ (T )

) − φ
(
γ (S)

) + C >

T∫
S

L
(
γ (t), γ̇ (t)

)
dt.

Then there exists a constant M > 0 depending only on φ, φ1, R, and C such that γ (t) ∈ B(0,M) for all t ∈ [S,T ].

Proof. Fix any t ∈ [S,T ). By Proposition 2.5, we have

φ
(
γ (t)

) − φ
(
γ (S)

)
�

t∫
S

L
(
γ (s), γ̇ (s)

)
ds.

Hence we get

φ
(
γ (T )

) − φ
(
γ (t)

) + C �
T∫

S

L
(
γ (s), γ̇ (s)

)
ds − φ

(
γ (t)

) + φ
(
γ (S)

)

�
T∫

S

L
(
γ (s), γ̇ (s)

)
ds −

t∫
S

L
(
γ (s), γ̇ (s)

)
ds =

T∫
t

L
(
γ (s), γ̇ (s)

)
ds.

Recall by our normalization that φ1 ∈ S−
H . Using Proposition 2.5 again, we get

φ1
(
γ (T )

) − φ1
(
γ (t)

)
�

T∫
t

L
(
γ (s), γ̇ (s)

)
ds.

Therefore we get

(φ − φ1)
(
γ (t)

)
� (φ − φ1)

(
γ (T )

) + C. (6.7)

Set C1 = maxB(0,R)(φ − φ1). Since lim|x|→∞(φ − φ1)(x) = ∞, there exists a constant M > R such that
infRn\B(0,M)(φ − φ1) > C1 + C. Fix such a constant M , and observe by (6.7) that γ (t) ∈ B(0,M). �
Proof of Theorem 6.1. Fix any φ ∈ SH ∩ Φ0 and T > S. We may assume without loss of generality that S = 0.

Note that the function u(x, t) := φ(x) on Rn × [0,∞) is a viscosity solution of (1.1). By formula (5.1), we have
for any (x, T ) ∈ Rn × (0,∞),

φ(x) = inf

{ T∫
0

L
(
γ (t), γ̇ (t)

)
dt + φ

(
γ (0)

) ∣∣∣γ ∈ C(x, T )

}
. (6.8)

Fix any x ∈ Rn. According to the above identity, for each k ∈ N we may choose a curve γk ∈ C(x, T ) so that

φ(x) + 1

k
>

T∫
L

(
γk(t), γ̇k(t)

)
dt + φ

(
γk(0)

)
. (6.9)
0
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We use Lemma 6.5 to see that there is a constant R > 0 such that γk(t) ∈ B(0,R) for all t ∈ [0, T ] and all k ∈ N.
It now follows from (6.9) that there exists a constant C > 0 such that

T∫
0

L
(
γk(t), γ̇k(t)

)
dt � C for all k ∈ N.

Applying Lemma 6.4, we find that ‖γ̇k‖L1(0,T ) � M for all k ∈ N and for some M > 0.
From these observations, we see that the sequence {γk}k∈N is uniformly bounded and equi-continuous on [0, T ].

By the Ascoli–Arzela theorem, we may assume by passing to a subsequence if necessary that the sequence {γk}k∈N
is convergent to a function γ ∈ C([0, T ],Rn) in the topology of uniform convergence. Lemma 6.3 together with (6.9)
now guarantees that γ ∈ C(x, T ) and that

T∫
0

L
(
γ (t), γ̇ (t)

)
dt � φ(x) − φ

(
γ (0)

)
. (6.10)

Fix any a, b ∈ R so that 0 � a < b � T . Using (6.7) or Proposition 2.5, we have

φ
(
γ (a)

) − φ
(
γ (0)

)
�

a∫
0

L
(
γ (t), γ̇ (t)

)
dt,

φ
(
γ (b)

) − φ
(
γ (a)

)
�

b∫
a

L
(
γ (t), γ̇ (t)

)
dt,

φ
(
γ (T )

) − φ
(
γ (b)

)
�

T∫
b

L
(
γ (t), γ̇ (t)

)
dt.

These together with (6.10) yield

φ
(
γ (b)

) − φ
(
γ (a)

) =
b∫

a

L
(
γ (t), γ̇ (t)

)
dt,

which shows that γ ∈ E([0, T ], φ). The proof is now complete. �
We give a useful property of extremal curves in the following proposition.

Proposition 6.6. Let T > 0, φ ∈ S−
H , and γ ∈ E([0, T ], φ). Then there exists a function q ∈ L∞(0, T ,Rn) such that

L
(
γ (t), γ̇ (t)

) = q(t) · γ̇ (t) a.e. t ∈ (0, T ), (6.11)

H
(
γ (t), q(t)

) = 0 a.e. t ∈ (0, T ), (6.12)

q(t) ∈ ∂cφ
(
γ (t)

)
a.e. t ∈ (0, T ). (6.13)

Proof. Fix T > 0, φ ∈ S−
H , and γ ∈ E([0, T ], φ). By Proposition 2.4, there is a function q ∈ L∞(0, T ,Rn) such that

d

dt
φ
(
γ (t)

) = q(t) · γ̇ (t) a.e. t ∈ (0, T ), (6.14)

q(t) ∈ ∂cφ
(
γ (t)

)
a.e. t ∈ (0, T ). (6.15)

Hence we get

H
(
γ (t), q(t)

)
� 0 a.e. t ∈ (0, T ). (6.16)

Integrating (6.14) over (0, T ) and using (6.16), we compute that
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φ
(
γ (T )

) − φ
(
γ (0)

) =
T∫

0

q(t) · γ̇ (t)dt �
T∫

0

[
L

(
γ (t), γ̇ (t)

) + H
(
γ (t), q(t)

)]
dt

=
T∫

0

L
(
γ (t), γ̇ (t)

)
dt = φ

(
γ (T )

) − φ
(
γ (0)

)
,

which shows that
T∫

0

q(t) · γ̇ (t)dt =
T∫

0

[
L

(
γ (t), γ̇ (t)

) + H
(
γ (t), q(t)

)]
dt =

T∫
0

L
(
γ (t), γ̇ (t)

)
dt. (6.17)

In particular, we get

T∫
0

H
(
γ (t), q(t)

)
dt = 0,

which together with (6.16) yields

H
(
γ (t), q(t)

) = 0 a.e. t ∈ (0, T ).

Similarly, since

q(t) · γ̇ (t) � L
(
γ (t), γ̇ (t)

) + H
(
γ (t), q(t)

) = L
(
γ (t), γ̇ (t)

)
a.e. t ∈ (0, T ),

we see from (6.17) that

q(t) · γ̇ (t) = L
(
γ (t), γ̇ (t)

)
a.e. t ∈ (0, T ).

Thus the function q satisfies conditions (6.11), (6.12), and (6.13). �
7. Proof of Theorem 1.3

This section will be devoted to proving Theorem 1.3. As before, the eigenvalue cH is assumed to be zero in this
section.

Let {St }t�0 be the semi-group of mappings on Φ0 defined by Stu0 = u(·, t), where u is the unique viscosity solution
of (1.1) and (1.2) satisfying (1.4).

The following proposition is a variant of [12, Lemma 5.2].

Proposition 7.1. Let K be a compact subset of Rn. Then there exist a constant δ ∈ (0,1) and a modulus ω for which
if u0 ∈ Φ0, φ ∈ S−

H , γ ∈ E([0, T ], φ), γ ([0, T ]) ⊂ K , T > τ � 0 and τ/(T − τ) � δ, then

ST u0
(
γ (T )

) − Sτu0
(
γ (0)

)
� φ

(
γ (T )

) − φ
(
γ (0)

) + τT

T − τ
ω

(
τ

T − τ

)
.

We need the following lemma for the proof of Proposition 7.1.

Lemma 7.2. Let K be a compact subset of Rn. Then there exist a constant δ ∈ (0,1) and a modulus ω such that for
any T > 0, φ ∈ S−

H , γ ∈ E([0, T ], φ) satisfying γ ([0, T ]) ⊂ K , and λ ∈ [−δ, δ],
(1 + λ)−1L

(
γ (t), (1 + λ)γ̇ (t)

)
� L

(
γ (t), γ̇ (t)

) + |λ|ω(|λ|) a.e. t ∈ (0, T ).

Proof. Set Q = {(x,p) ∈ K × Rn | H(x,p) � 0}. It is clear that Q is a compact subset of R2n. Define the set
S ⊂ Rn × Rn by

S := {
(x, ξ) ∈ Q | ξ ∈ D−H(x,p) for some p ∈ Rn such that (x,p) ∈ Q

}
.
2
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By Proposition 2.3, the set S is a compact subset of int domL. Thus we may choose a constant ε > 0 so that

Sε := {
(x, ξ) ∈ R2n

∣∣ dist
(
(x, ξ), S

)
� ε

} ⊂ int domL.

We choose an R > 0 so that S ⊂ B(0,R) (the ball on the right-hand side is a ball in R2n) and set δ = min{1/2, ε/R},
so that for any (x, ξ) ∈ S and any λ ∈ (−δ, δ), (x, (1 + λ)ξ) ∈ Sε. Let ω0 be a modulus of continuity of the uniformly
continuous function D2L on Sε .

Fix T > 0, φ ∈ S−
H , γ ∈ E([0, T ], φ) such that γ ([0, T ]) ⊂ K , and λ ∈ [−δ, δ]. According to Proposition 6.6, there

is a function q ∈ L∞(0, T ,Rn) such that

H
(
γ (t), q(t)

) = 0 and γ̇ (t) ∈ D−
2 H

(
γ (t), q(t)

)
a.e. t ∈ (0, T ). (7.1)

Therefore we have (γ (t), γ̇ (t)) ∈ S a.e. t ∈ (0, T ). Hence, for any μ ∈ (−δ, δ), we have(
γ (t), (1 + μ)γ̇ (t)

) ∈ Sε a.e. t ∈ (0, T ).

Consequently, for any μ ∈ (−δ, δ), we have∣∣D2L
(
γ (t), γ̇ (t)

) − D2L
(
γ (t), (1 + μ)γ̇ (t)

)∣∣ � ω0
(|μ||γ̇ |) a.e. t ∈ (0, T ).

In view of (7.1), we have

L
(
γ (t), γ̇ (t)

) = γ̇ (t) · q(t) − H
(
γ (t), q(t)

) = γ̇ (t) · D2L
(
γ (t), γ̇ (t)

)
a.e. t ∈ (0, T ).

Now we compute that for a.e. t ∈ (0, T ),

L
(
γ (t), (1 + λ)γ̇ (t)

) = L
(
γ (t), γ̇ (t)

) + λD2L
(
γ (t), (1 + θtλ)γ̇ (t)

) · γ̇ (t) (7.2)

(for some θt ∈ (0,1), and furthermore)

� L
(
γ (t), γ̇ (t)

) + λD2L
(
γ (t), γ̇ (t)

) · γ̇ (t) + |λ|∣∣γ̇ (t)
∣∣ω0

(|λ|∣∣γ̇ (t)
∣∣)

= (1 + λ)L
(
γ (t), γ̇ (t)

) + |λ|∣∣γ̇ (t)
∣∣ω0

(|λ|∣∣γ̇ (t)
∣∣).

Setting ω(r) = 2Rω0(Rr), for a.e. t ∈ (0, T ), we have

(1 + λ)−1L
(
γ (t), (1 + λ)γ̇ (t)

)
� L

(
γ (t), γ̇ (t)

) + |λ|ω(|λ|). �
Proof of Proposition 7.1. Let δ ∈ (0,1) and ω be those from Lemma 7.2. Fix any u0 ∈ Φ0, φ ∈ S−

H , γ ∈ E([0, T ], φ)

such that γ ([0, T ]) ⊂ K , and T > τ � 0 such that τ(T − τ)−1 � δ. Set u(x, t) = Stu0(x) for (x, t) ∈ Rn × [0,∞).
Set ε = τ/(T − τ) ∈ [0, δ].

Setting Tε = (1 + ε)−1T , observing that

u
(
γ (T ), T

) = u
(
γ (T ), Tε + εTε

)
= inf

{ Tε∫
0

L
(
η(t), η̇(t)

)
dt + u

(
η(0), εTε

) ∣∣∣η ∈ C
(
γ (T ), Tε

)}
,

and choosing η(t) := γ ((1 + ε)t) in the above formula, we get

u
(
γ (T ), T

)
�

Tε∫
0

L
(
γ
(
(1 + ε)t

)
, (1 + ε)γ̇

(
(1 + ε)t

))
dt + u

(
γ (0), εTε

)
.

By making the change of variables s = (1 + ε)t in the above inequality, we get

u
(
γ (T ), T

)
�

T∫
(1 + ε)−1L

(
γ (s), (1 + ε)γ̇ (s)

)
ds + u

(
γ (0), εTε

)
.

0
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Using Lemma 7.2, we see immediately that

u
(
γ (T ), T

)
�

T∫
0

L
(
γ (s), γ̇ (s)

)
ds + u

(
γ (0), εTε

) + εω(ε)T .

Observing that εTε = τ , we get

u
(
γ (T ), T

)
�

T∫
0

L
(
γ (s), γ̇ (s)

)
ds + u

(
γ (0), τ

) + τT

T − τ
ω

(
τ

T − τ

)
.

Recalling that γ ∈ E([0, T ], φ), we obtain

u
(
γ (T ), T

) − u
(
γ (0), τ

)
� φ

(
γ (T )

) − φ
(
γ (0)

) + τT

T − τ
ω

(
τ

T − τ

)
. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. We fix any u0 ∈ Φ0 and define the functions u± : Rn → R by

u+(x) = lim sup
t→∞

Stu0(x), u−(x) = lim inf
t→∞ Stu0(x).

Since the function u(x, t) := Stu0(x) is bounded and uniformly continuous on B(0,R) × [0,∞) for any R > 0 by
Theorem 5.8, we see that u± ∈ C(Rn) and that u+(x) = lim sup∗

t→∞ u(x, t) and u−(x) = lim inf∗t→∞u(x, t) for all
x ∈ Rn. As is standard in viscosity solutions theory, we have u+ ∈ S−

H and u− ∈ S+
H . Moreover, by the convexity of

H(x, ·), we have u− ∈ S−
H . Also, from Lemma 5.1 we see that u± ∈ Φ0.

To conclude the proof, it is enough to show that u+(x) = u−(x) for all x ∈ Rn.
We fix any x ∈ Rn. By Corollary 6.2, we find an extremal curve γ ∈ E((−∞,0], u−) such that γ (0) = x. By

Lemma 6.5, we may choose a constant R > 0 so that γ (t) ∈ B(0,R) for all t ∈ (−∞,0]. By the definition of u+,
we may choose a divergent sequence {tj } ⊂ (0,∞) such that limj→∞ u(x, tj ) = u+(x). Noting that the sequence
{γ (−tj )} ⊂ B(0,R), we may assume by replacing {tj } by one of its subsequences if necessary that γ (−tj ) → y as
j → ∞ for some y ∈ B(0,R).

Fix any ε > 0, and choose a τ > 0 so that u−(y) + ε > u(y, τ ). Let δ ∈ (0,1) and ω be those from Proposition 7.1.
Let j ∈ N be so large that τ(tj − τ)−1 � δ. We now apply Proposition 7.1, to get

u(x, tj ) = u
(
γ (0), tj

)
� u

(
γ (−tj ), τ

) + u−(
γ (0)

) − u−(
γ (−tj )

) + τ tj

tj − τ
ω

(
τ

tj − τ

)
.

Sending j → ∞ yields

u+(x) � u(y, τ ) + u−(x) − u−(y) < u−(y) + ε + u−(x) − u−(y) = u−(x) + ε,

from which we conclude that u+(x) � u−(x). This completes the proof. �
8. A formula for asymptotic solutions and Aubry sets

In the previous section we have proved Theorem 1.3 which states that the viscosity solution u of (1.1) and (1.2)
satisfying (1.4) approaches to v0(x) − ct in C(Rn) as t → ∞, where (c, v0) ∈ R × Φ0 is a solution of (1.3). In this
section we give a formula for the function v0.

Let c = cH . Following [17] with small variations in the presentation, we introduce the Aubry set for H [u] = c.
First of all, we define the function dH ∈ C(Rn × Rn) by

dH (x, y) = sup
{
v(x) | v ∈ C

(
Rn

)
, H [v] � c in Rn, v(y) = 0

}
(8.1)

where the inequality H [v] � c should be understood in the viscosity sense, and AH as the set of those y ∈ Rn for
which the function dH (·, y) is a viscosity solution of H [u] = c in Rn. We call AH the Aubry set for H or for H [u] = c.
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Theorem 8.1. For any x ∈ Rn,

v0(x) = inf
{
dH (x, y) + dH (y, z) + u0(z) | y ∈ AH , z ∈ Rn

}
. (8.2)

We need several properties of the function dH and the Aubry set AH for the proof of Theorem 8.1 and present
them here.

Henceforth we assume as usual that c = 0 and that φ0, φ1 ∈ S−
H .

Since the equation, H [v] = 0 in Rn, has a viscosity solution in the class Φ0 by Theorem 3.3 (or 1.2), the set{
v ∈ S−

H | v(y) = 0
}

is nonempty and, because of the coercivity assumption on H , it is locally equi-Lipschitz continuous. Therefore, the
function dH (·, y) defined by (8.1) is locally Lipschitz continuous on Rn and vanishes at x = y for any y ∈ Rn.
Since the pointwise supremum of a family of viscosity subsolutions of (8.1) defines a function which is a viscosity
subsolution of (8.1), for any y ∈ Rn, we have dH (·, y) ∈ S−

H . In view of the Perron method, we deduce that, for any
y ∈ Rn, the function dH (·, y) is a viscosity solution of (8.1) in Rn \ {y}. Thus we see that

y ∈ Rn \AH if and only if ∃p ∈ D−
1 dH (y, y) such that H(y,p) < 0. (8.3)

For any y, z ∈ Rn, the function w(x) := dH (x, y)− dH (z, y) is a viscosity subsolution of (8.1) and satisfies w(z) = 0.
Therefore we have w(x) � dH (x, z). That is, we have the triangle inequality for dH :

dH (x, y) � dH (x, z) + dH (z, y) for all x, y, z ∈ Rn.

Also, we see by the definition of dH that v(x) − v(y) � dH (x, y) for any v ∈ S−
H and x, y ∈ Rn

Proposition 8.2. The following formula is valid for all x, y ∈ Rn:

dH (x, y) = inf

{ t∫
0

L
(
γ (s), γ̇ (s)

)
ds

∣∣∣ t > 0, γ ∈ C(x, t;y,0)

}
. (8.4)

Proof. We write ρ(x, y) for the right-hand side of (8.4) in this proof.
Let x, y ∈ Rn, t > 0, and γ ∈ C(x, t;y,0). Since dH (·, y) ∈ S−

H , by Proposition 2.5, we have

dH (x, y) = dH

(
γ (t), y

) − dH

(
γ (0), y

)
�

t∫
0

L
(
γ (s), γ̇ (s)

)
ds,

from which we get dH (x, y) � ρ(x, y) for all x, y ∈ Rn.
Next we show that for each y ∈ Rn the function ρ(·, y) is locally Lipschitz continuous on Rn.
Fix any R > 0. By Proposition 2.1, there are constants εR > 0 and CR > 0 such that L(x, ξ) � CR for all (x, ξ) ∈

B(0,R)×B(0, εR). Fix any x, y ∈ B(0,R) and δ > 0, and set T := (δ +|x −y|)/εR and ξ = εR(x −y)/(δ +|x −y|).
Define the curve γ ∈ C(x, T ;y,0) by γ (s) = y + sξ . Noting that ξ ∈ B(0, εR), we get

ρ(x, y) �
T∫

0

L
(
γ (s), γ̇ (s)

)
ds =

T∫
0

L(y + sξ, ξ)ds � CRT = ε−1
R CR

(
δ + |x − y|).

Letting δ → 0 yields ρ(x, y) � ε−1
R CR|x − y|, which, in particular, shows that ρ(x, x) � 0. It is easy to see that for

any x, y, z ∈ Rn, ρ(x, y) � ρ(x, z) + ρ(z, y). Therefore, for any x, y, z ∈ B(0,R), we have |ρ(x, y) − ρ(z, y)| �
ε−1
R CR|x − z|.

In order to prove that ρ(x, y) � dH (x, y) for all x, y ∈ Rn, it is sufficient to show that for any y ∈ Rn, the function
v := ρ(·, y) is a viscosity subsolution of H [v] = 0 in Rn. This is a consequence of a well-known observation on value
functions like v. Indeed, Theorem A.1 in Appendix A applied to the current v, with S = {y} and Ω = Rn, assures that
v ∈ S−

H . �
Proposition 8.3. The Aubry set AH is a nonempty compact subset of Rn.
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We need two lemmas to show Proposition 8.3.

Lemma 8.4. For any compact K ⊂ Rn \ AH there are a function φK ∈ S−
H ∩ Φ0 and a constant δ > 0 such that

H [φK ] � −δ in a neighborhood of K in the viscosity sense.

Proof. Let y ∈ Rn \ AH . There is a function ϕ ∈ C1(Rn) such that ϕ(y) = 0, ϕ(x) < dH (x, y) for all x ∈ Rn \ {y},
and H(y,Dϕ(y)) < 0. With a sufficiently small constant δ > 0, we set

ψ(x) = max
{
ϕ(x) + δ, dH (x, y)

}
for all x ∈ Rn,

to get a function having the properties: (i) H [ψ] � 0 in Rn in the viscosity sense, (ii) H [ψ] � −ε in intB(y, ε) in
the viscosity sense, and (iii) ψ ∈ Φ0. Thus we see that for each y ∈ Rn \ AH there is a pair (ψy, εy) ∈ Φ0 × (0,∞)

such that H [ψy] � 0 in Rn in the viscosity sense and H [ψy] � −εy in intB(y, εy) in the viscosity sense. By a
compactness argument, we find a finite sequence {yj }mj=1 such that K ⊂ ⋃m

j=1 intB(yj , εj ), where εj := εyj
. We set

ε = min{εj | j = 1,2, . . . ,m} and

φK(x) = 1

m

m∑
j=1

ψj (x) for all x ∈ Rn, where ψj := ψyj
.

It is easily seen that φK ∈ Φ0 ∩ S−
H and H [φK ] � −ε/m in a neighborhood of K in the viscosity sense. �

Lemma 8.5. Let φ ∈ C0+1(Rn) be a viscosity solution of H [φ] � 0 in Rn, y a point in Rn, and ε > 0 a constant.
Assume that H [φ] � −ε a.e. in B(y, ε). Then y /∈AH .

Proof. Let φ, y, and ε be as above. We argue by contradiction and suppose that y ∈ AH . Set u = dH (·, y). By
continuity, there is a constant δ > 0 such that the function v ∈ C0+1(Rn), defined by v(x) = φ(x) + δ min{|x − y|, ε},
satisfies H [v] � 0 a.e. in Rn. By the definition of dH , we have u(x) � v(x) − v(y) for all x ∈ Rn, which shows that
u(x) > φ(x)−φ(y) for all x ∈ ∂B(y, ε/2) and u(y) = φ(y)−φ(y) = 0. We approximate φ by a sequence of functions
φk ∈ C1(Rn), with k ∈ N, obtained by mollifying φ. Here, of course, the uniform convergence φk(x) → φ(x) is
assumed on any compact subsets of Rn as k → ∞. We may assume as well that H [φk] � −ε/2 on B(y, ε/2). Noting
that as k → ∞,

lim
k→∞ min

x∈∂B(y,ε/2)

(
u(x) − φk(x) − φk(y)

) → min
x∈∂B(y,ε/2)

(
u(x) − φ(x) − φ(y)

)
> u(y) = 0,

we deduce that if k is sufficiently large, then u − φk attains a local minimum at a point xk ∈ B(y, ε/2). For such a k,
since H [u] � 0 in Rn in the viscosity sense, we get

H
(
xk,Dφk(xk)

)
� 0.

On the other hand, by our choice of φk , we have

H
(
x,Dφk(x)

)
� −ε

2
for all x ∈ B

(
y,

ε

2

)
,

and, in particular, H(xk,Dφk(xk)) � −ε/2. Thus we get a contradiction, which proves that y /∈ AH . �
Proof of Proposition 8.3. We begin by showing that AH �= ∅. For this, we suppose that AH = ∅ and will get a
contradiction. There is a constant R > 0 such that H [φ1] � −1 in Rn \B(0,R) in the viscosity sense. By Lemma 8.4,
there are a function ψ ∈ Φ0 and a constant ε ∈ (0,1) such that H [ψ] � 0 a.e. in Rn and H [ψ] � −ε a.e. in B(0,R).
By setting v = 1

2 (ψ + φ1), we get a function v ∈ C0+1(Rn) which satisfies H [v] � −ε/2 a.e. in Rn. Hence, by the
definition of the additive eigenvalue c, we have c � −ε/2, which contradicts our assumption that c = 0.

Using again the fact that φ1 ∈ S−
H satisfies H [φ1] � −1 in Rn \ B(0,R) in the viscosity sense, we see from

Lemma 8.5 that AH ⊂ B(0,R).
It remains to show that AH is a closed set. Let {yk} ⊂ AH be a sequence converging to y ∈ Rn. Because of the

coercivity assumption (A2), the sequence {dH (·, yk)} is locally equi-Lipschitz on Rn. In particular, there is a constant
C > 0 such that max{dH (yk, y), dH (y, yk)} � C|yk − y| for all k ∈ N. By the triangle inequality for dH , we have∣∣dH (x, y) − dH (x, yk)

∣∣ � max
{
dH (yk, y), dH (y, yk)

}
� C|yk − y| for all x ∈ Rn.
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Consequently, as k → ∞, we have dH (x, yk) → dH (x, y) uniformly for x ∈ Rn. By the stability of the viscosity
property under uniform convergence, we find that dH (·, y) ∈ SH , proving that y ∈ AH and therefore that AH is a
closed set. �
Theorem 8.6. Let v ∈ S−

H and w ∈ S+
H ∩ Φ0. Assume that v � w on AH . Then v � w on Rn.

Proof. Fix any ε > 0. Choose a compact neighborhood V of AH so that v(x) � w(x)+ε for all x ∈ V . Fix a constant
R > 0 so that H [φ1] � −1 a.e. in Rn\B(0,R). By Lemma 8.4, there are a function ψ ∈ C0+1(Rn) such that H [ψ] � 0
a.e. in Rn and H [ψ] � −δ a.e. in B(0,R) \ V for some constant δ ∈ (0,1). We set g(x) = 1

2 (φ1(x) + ψ(x)) for all
x ∈ Rn and observe that H [g] � − δ

2 a.e. in Rn \ V . Let λ ∈ (0,1) and set vλ(x) = (1 − λ)v(x) + λg(x) − 2ε for
x ∈ Rn. Observe that H [vλ] � −λδ

2 in Rn \ V and that for λ ∈ (0,1) sufficiently small, vλ(x) � w(x) for all x ∈ V .
We apply Theorem 3.2, to get vλ(x) � w(x) for all x ∈ Rn \ V and all λ sufficiently small. That is, if λ ∈ (0,1) is
sufficiently small, then we have vλ(x) � w(x) for all x ∈ Rn. From this, we find that v(x) � w(x) for all x ∈ Rn. �

The above theorem has the following corollary.

Corollary 8.7. Let u ∈ SH . Then

u(x) = inf
{
u(y) + dH (x, y) | y ∈ AH

}
for all x ∈ Rn. (8.5)

We refer to [15,17] for previous results related to Corollary 8.7. Also we refer to [22] for a recent result which
generalizes the above representation formula.

Proof. We write v(x) for the right-hand side of (8.6). Since v is defined as the pointwise infimum of a family of
viscosity solutions, the function v is a viscosity solution of H [v] = 0 in Rn. Since u(x) − u(y) � dH (x, y) for all
x, y ∈ Rn, we see that u(x) � v(x) for all x ∈ Rn. On the other hand, for any x ∈ AH , we have u(x) = u(x) +
dH (x, x) � v(x). Hence Theorem 8.6 guarantees that u(x) � v(x) for all x ∈ Rn. �

We are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. We write w(x) for the right-hand side of (8.2) and set w0(x) = inf{dH (x, y)+u0(y) | y ∈ Rn}
for x ∈ Rn. Also we write u(x, t) = Stu0(x) for (x, t) ∈ Rn × [0,∞).

By the definition of w0, it is clear that w0(x) � u0(x) for all x ∈ Rn. Since dH (·, y) ∈ S−
H for all y ∈ Rn, we see

that w0 ∈ S−
H . Noting that the function z(x, t) := w0(x) is a viscosity subsolution of (1.1), we find by Theorem 4.1

that z(x, t) � u(x, t) for all (x, t) ∈ Rn × [0,∞), which implies that w0 � v0 on Rn. Since w � w0 � v0 on AH , by
Theorem 8.6 we obtain w � v0 on Rn.

Next we fix any x ∈ Rn, y ∈ AH , and z ∈ Rn. Note that dH (·, y) ∈ SH ∩ Φ0. By Corollary 6.2, we may choose a
curve γ ∈ E((−∞,0], dH (·, y)) so that γ (0) = x. By Lemma 6.5, there is a constant M > 0 such that γ (t) ∈ B(0,M)

for all t � 0. We choose any divergent sequence {tj }j∈N ⊂ (0,∞) such that {γ (−tj )}j∈N is convergent. Let x0 ∈ Rn

be the limit of the sequence {γ (−tj )}.
Arguing as in the last part of the proof of Theorem 1.3, with dH (·, y) in place of u−, we obtain

u(x, tj ) � dH (x, y) − dH

(
γ (−tj ), y

) + u
(
γ (−tj ), t

) + t tj

tj − t
ω

(
t

tj − t

)
for any t > 0 if j is large enough, where ω is the modulus from Proposition 7.1. Sending j → ∞ yields

v0(x) � dH (x, y) − dH (x0, y) + u(x0, t) for t > 0.

By the variational formula (5.1), we have

u(x0, t) �
t∫
L

(
ξ(s), ξ̇ (s)

)
ds + u0

(
ξ(0)

)
for any ξ ∈ C(x0, t).
0
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Hence we have

v0(x) � dH (x, y) − dH (x0, y) +
t∫

0

L
(
ξ(s), ξ̇ (s)

)
ds + u0

(
ξ(0)

)
for all t > 0 and ξ ∈ C(x0, t). Consequently, we have

v0(x) � dH (x, y) − dH (x0, y) +
t∫

0

L
(
ξ(σ ), ξ̇ (σ )

)
dσ +

s∫
0

L
(
η(σ ), η̇(σ )

)
dσ + u0(z)

for any t > 0, s > 0, ξ ∈ C(x0, t;y,0), and η ∈ C(y, s; z,0). Therefore, by Proposition 8.2, we get

v0(x) � dH (x, y) − dH (x0, y) + dH (x0, y) + dH (y, z) + u0(z)

= dH (x, y) + dH (y, z) + u0(z).

Thus we have v0(x) � w(x) for all x ∈ Rn. The proof is now complete. �
9. Examples

We give two sufficient conditions for H to satisfy (A.4).
Let H0 ∈ C(Rn × Rn) and f ∈ C(Rn). Set H(x,p) = H0(x,p) − f (x) for (x,p) ∈ Rn × Rn. We assume that

lim|x|→∞f (x) = ∞, (9.1)

and that there exists a δ > 0 such that

sup
Rn×B(0,δ)

|H0| < ∞. (9.2)

Fix such a δ > 0 and set

Cδ = sup
Rn×B(0,δ)

|H0|.

Then we define φi ∈ C0+1(Rn), with i = 0,1, by setting

φ0(x) = − δ

2
|x| and φ1(x) = −δ|x|,

and observe that for i = 0,1,

H0
(
x,Dφi(x)

)
� Cδ for all x ∈ Rn \ {0}.

Hence, for i = 0,1, we have

H0
(
x,Dφi(x)

)
� 1

2
f (x) + Cδ − 1

2
min
Rn

f for all x ∈ Rn \ {0}.
If we set

σi(x) = 1

2
f (x) − Cδ + 1

2
min
Rn

f for x ∈ Rn and i = 0,1,

then H satisfies (A.4) with these φi and σi , i = 0,1. It is clear that if H0 satisfies (A.1)–(A.3), then so does H .
A smaller φ0 yields a larger space Φ0, and in applications of Theorems 1.1–1.3, it is important to have a larger Φ0.

We are thus interested in finding a smaller φ0. A method better than the above in this respect is as follows. We assume
that (9.1), (9.2), and (A.2) with H0 in place of H hold and that for each x ∈ Rn the function: p �→ H0(x,p) is convex
in Rn. We fix a function θ ∈ C1(Rn) so that

lim θ(x) = ∞ and lim
∣∣Dθ(x)

∣∣ = 0.
|x|→∞ |x|→∞
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For instance, the function θ(x) = log(|x|2 + 1) has these properties. Fix an ε > 0 so that ε|Dθ(x)| � δ/2 for all
x ∈ Rn. Fix any λ ∈ (0,1). Define the function G ∈ C(Rn × Rn) by

G(x,p) = max
{
H0(x,p),H0

(
x,p − εDθ(x)

)} − (1 − λ)f (x) − Cδ + (1 − λ)min
Rn

f.

We note that for each x ∈ Rn the function: p �→ G(x,p) is convex in Rn. Define the function ψ ∈ C0+1(Rn) by

ψ(x) = inf
{
v(x) | v ∈ C0+1(Rn

)
,G[Dv] � 0 a.e. in Rn, v(0) = 0

}
.

Note that v(x) := − δ
2 |x| has the properties: G(x,Dv(x)) � 0 a.e. x ∈ Rn and v(0) = 0. Hence we have ψ(x) � − δ

2 |x|
for all x ∈ Rn. Because of the convexity of G(x,p) in p, we see that ψ is a viscosity solution of G[ψ] � 0 in Rn.
This implies that ψ and ψ − εθ are both viscosity solutions of

H(x,Dv) � −λf (x) + Cδ − (1 − λ)min
Rn

f in Rn.

With functions φ0 := ψ , φ1 := ψ − εθ , and σ0 = σ1 := λf − Cδ + (1 − λ)minRn f , the function H satisfies all
the conditions of (A.4). As is already noted, the function ψ satisfies the inequality ψ(x) � − δ

2 |x| for all x ∈ Rn.
Moreover, for any γ ∈ (1/2,1), the function v(x) := −γ δ|x| satisfies

G
(
x,Dv(x)

)
� 0 a.e. x ∈ Rn \ B(0,R)

for some constant R ≡ R(γ ) > 0. It is now easy to see that if A > 0 is large enough, then

ψ(x) � min

{
− δ

2
|x|,−γ δ|x| + A

}
for all x ∈ Rn.

Now we examine another class of Hamiltonians H . Let α > 0 and let H0 ∈ C(Rn) be a strictly convex function
satisfying the superlinear growth condition

lim|p|→∞
H0(p)

|p| = ∞.

Let f ∈ C(Rn). We set

H(x,p) = αx · p + H0(p) − f (x) for (x,p) ∈ Rn × Rn.

This class of Hamiltonians H is very close to that treated in [19].
Clearly, this function H satisfies (A.1), (A.2), and (A.3). Let L0 denote the convex conjugate H ∗

0 of H0. By the
strict convexity of H0, we see that L0 ∈ C1(Rn). Define the function ψ ∈ C1(Rn) by

ψ(x) = − 1

α
L0(−αx).

Then we have Dψ(x) = DL0(−αx) and therefore, by the convex duality, H0(Dψ(x)) = Dψ(x) · (−αx)−L0(−αx)

for all x ∈ Rn. Consequently, for all x ∈ Rn, we have

H
(
x,Dψ(x)

) = αx · Dψ(x) + H0
(
Dψ(x)

) − f (x) = −L0(−αx) − f (x).

Now we assume that there is a convex function l ∈ C(Rn) such that

lim|x|→∞
(
l(−αx) + f (x)

) = ∞, (9.3)

lim|ξ |→∞(L0 − l)(ξ) = ∞. (9.4)

Let h denote the convex conjugate of l. We define φ ∈ C0+1(Rn) by φ(x) = − 1
α
l(−αx) for x ∈ Rn. This function φ

is almost everywhere differentiable. Let x ∈ Rn be any point where φ is differentiable. By a computation similar to
the above for ψ , we get

αx · Dφ(x) + h
(
Dφ(x)

) − f (x) � −l(−αx) − f (x). (9.5)

By assumption (9.4), there is a constant C > 0 such that L0(ξ) � l(ξ) − C for all ξ ∈ Rn. This inequality implies that
H0 � h + C in Rn. Hence, from (9.5), we get

H
(
x,Dφ(x)

)
� −l(−αx) − f (x) + C.
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We now conclude that the function H satisfies (A.4), with the functions φ0 = φ, φ1 = ψ , σ0(x) = l(−αx)+f (x)−C,
and σ1(x) = L(−αx) + f (x).

It is assumed here that H0 is strictly convex in Rn, while it is only assumed in [19] that H0 is just convex in Rn, so
that L0 may not be a C1 function. The reason why the strict convexity of H0 is not needed in [19] is in the fact that
Hamiltonians H in this class have a simple structure of the Aubry sets. Indeed, if c is the additive eigenvalue of H ,
then minp∈Rn H(x,p) = c for all x ∈ AH . Given such a simple property of the Aubry set, the proof of Theorem 1.3
can be simplified greatly and does not require the C1 regularity of L0, while such a regularity is needed in the proof of
Lemma 7.2 in the general case. Any x ∈AH is called an equilibrium point if minp∈Rn H(x,p) = c. A characterization
of an equilibrium point x ∈AH is given by the condition that L(x,0) = −c. The property of Aubry sets AH mentioned
above can be stated that the set AH comprises only of equilibrium points.

The following example tells us that such a nice property of Aubry sets is not always the case. Let n = 2 and here
we write (x, y) for a generic point in R2. We choose a function g ∈ C(R2) so that g � 0 in R2, g(x, y) = 0 for
all (x, y) ∈ R2 \ B((0,0),1), and g(x, y) > 0 for all (x, y) ∈ intB((0,0),1). Also, we choose a function h ∈ C(R2)

so that h(x, y) � 0 for all (x, y) ∈ R2, h(x, y) = 0 for all (x, y) ∈ B((0,0),2), and h(x, y) � x2 + y2 − 4 for all
(x, y) ∈ R2. We define the Hamiltonian H ∈ C(R4) by

H(x,y,p, q) = (
p − g(x, y)

)2 + q2 − g(x, y)2 − h(x, y).

It is clear that this Hamiltonian H satisfies (A.1)–(A.3). Note that (9.1) and (9.2) are satisfied with H0(x, y,p, q) =
(p − g(x, y))2 + q2 − g(x, y)2 and f = h. Thus we see that H satisfies (A.4) as well. Note moreover that we may
take the function: (x, y) �→ δ|(x, y)|, with any δ > 0, as φ0 in (A.4).

Note that the zero function z = 0 is a viscosity solution of H [z] � 0 in R2 and that min(p,q)∈R2 H(x,y,p, q) = 0
for all (x, y) ∈ B((0,0),2). Therefore, in view of Proposition 3.4, we deduce that the additive eigenvalue c for H is
zero.

Now we claim that AH = B((0,0),2) \ intB((0,0),1). Since the zero function z = 0 satisfies

H [z] = −h(x, y) < 0

in R2 \ B((0,0),2), we see by Lemma 8.5 that AH ⊂ B((0,0),2). Let φ ∈ C0+1(R2) be any viscosity subsolution of
H [φ] = 0 in R2. Then, since H(x,y,p, q) = (p − g(x, y))2 + q2 − g(x, y)2 for any (x, y,p, q) ∈ R2 × B((0,0),2),
for almost all (x, y) ∈ B((0,0),2) we have

0 � ∂φ

∂x
(x, y) � 2g(x, y). (9.6)

Since g(x, y) = 0 for all (x, y) ∈ B((0,0),2) \ B((0,0),1), we find that Dφ = 0 a.e. in B((0,0),2) \ B((0,0),1) and
therefore that φ(x, y) = a for all (x, y) ∈ B((0,0),2) \ B((0,0),1) and some constant a ∈ R. The first inequality in
(9.6) guarantees that for each y ∈ (−1,1) the function: x �→ φ(x, y) is nondecreasing in (−1,1). These observations
obviously implies that φ(x, y) = a for all (x, y) ∈ B((0,0),2). This shows that for any (x0, y0) ∈ intB((0,0),2), the
function dH (x, y) ≡ 0 in a neighborhood of (x0, y0) and hence it is a viscosity solution of H [u] = 0 in R2. Thus we
see that intB((0,0),2) ⊂AH . By the fact that AH is a closed set, we conclude that AH = B((0,0),2).

Finally we remark that H(x,y, g(x, y),0) = −g(x, y)2 < 0 for all (x, y) ∈ intB((0,0),1), which shows that any
(x, y) ∈ intB((0,0),1) is an element of AH , but not an equilibrium point.

Next we examine another example whose Aubry set does not contain any equilibrium points. As before we consider
the two-dimensional case. We fix α,β ∈ R so that 0 < α < β and choose a function g ∈ C([0,∞)) so that g(r) = 0 for
all r ∈ [α,β], g(r) > 0 for all r ∈ [0, α)∪ (β,∞), and limr→∞ g(r)/r2 = ∞. We define the functions H0,H ∈ C(R4)

by

H0(x, y,p, q) = (p − y)2 − y2 + (q + x)2 − x2,

H(x, y,p, q) = H0(x, y,p, q) − g
(√

x2 + y2
)
.

It is easily seen that this function H satisfies (A.1)–(A.3). Let δ > 0 and set ψ(x, y) = δ(x2 + y2) for (x, y) ∈ R2.
Writing ψx = ∂ψ/∂x and ψy = ∂ψ/∂x, we observe that ψx(x, y) = 2δx, ψy(x, y) = 2δy, and H0(x, y,ψx,ψy) =
4δ2(x2 + y2) for all (x, y) ∈ R2. Therefore, for any δ > 0, if we set φ0(x, y) = −δ(x2 + y2) and φ1(x, y) =
−2δ(x2 + y2) for (x, y) ∈ R2, then (A.4) holds with these φ0 and φ1.
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Noting that the zero function z = 0 is a viscosity subsolution of H [z] = 0 in R2, we find that the addi-
tive eigenvalue c for H is nonpositive. We fix any r ∈ [α,β] and consider the curve γ ∈ AC([0,2π ]) given by
γ (t) ≡ (x(t), y(t)) := r(cos t, sin t). We denote by U the open annulus intB((0,0), β) \ B((0,0), α) for notational
simplicity. Let φ ∈ C0+1(R2) be a viscosity solution of H [φ] = c in Rn. Such a viscosity solution indeed exists ac-
cording to Theorem 3.3. Due to Proposition 2.4, there are functions p,q ∈ L∞(0,2π,R2) such that for almost all
t ∈ (0,2π),

d

dt
φ
(
γ (t)

) = r
(−p(t) sin t + q(t) cos t

)
,(

p(t), q(t)
) ∈ ∂cφ

(
γ (t)

)
.

The last inclusion guarantees that H(x(t), y(t),p(t), q(t)) � c a.e. t ∈ (0,2π). Hence, recalling that α � r � β , we
get

c � H0
(
x(t), y(t),p(t), q(t)

) = p(t)2 − 2y(t)p(t) + q(t)2 + 2x(t)q(t) a.e. t ∈ (0,2π).

We calculate that

φ
(
γ (T )

) − φ
(
γ (0)

) = r

T∫
0

(−p(t) sin t + q(t) cos t
)

dt

� 1

2

T∫
0

(
c − p(t)2 − q(t)2)dt � cT

2
for all T ∈ [0,2π ].

This clearly implies that c = 0 and also that the function: t �→ φ(γ (t)) is a constant. Thus we find that φ(x, y) =
h(x2 + y2) for some function h ∈ C0+1([α,β]).

Next, we show that φ is a constant function in U . At any r ∈ (α,β) and any (x, y) ∈ ∂B((0,0), r), we have

φx(x, y) = 2xh′(x2 + y2) and φy(x, y) = 2yh′(x2 + y2),
and, in particular, yφx(x, y) − xφy(x, y) = 0. Therefore, for almost all (x, y) ∈ U , we have

0 � H0(x, y,φx,φy) = (φx − y)2 − y2 + (φy + x)2 − x2 = φ2
x + φ2

y .

That is, we have

φx(x, y) = φy(x, y) = 0 a.e. (x, y) ∈ U,

which assures that φ is a constant in U .
Now we know that for any y ∈ U , the function: x �→ dH (x, y) is a constant in a neighborhood of y, which guaran-

tees that U ⊂AH and moreover that AH = U .
Finally, we note that H(x,y, y,−x) = H0(x, y, y,−x) = −x2 − y2 < 0 for all (x, y) ∈ U , and conclude that any

(x, y) ∈AH = U is not an equilibrium points.
The following two propositions give sufficient conditions for points of the Aubry set AH to be equilibrium points.

Here we assume as usual that cH = 0.

Proposition 9.1. If y is an isolated point of AH , then it is an equilibrium point.

Proof. Let y be an isolated point of AH . Since dH (·, y) ∈ SH , according to Corollary 6.2, there exists a curve
γ ∈ E((−∞,0], dH (·, y)) such that γ (0) = y.

We show that γ (t) ∈ AH for all t � 0, which guarantees that

γ (t) = y for all t � 0. (9.7)

For this purpose we fix any z ∈ Rn \ AH . By Lemma 8.4 there are two functions φ ∈ S−
H ∩ Φ0 and σ ∈ C(Rn) such

that H [φ] � −σ in Rn in the viscosity sense, σ � 0 in Rn, and σ(z) > 0. By Proposition 2.5, for any fixed t > 0, we
have
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φ(y) − φ
(
γ (−t)

)
�

0∫
−t

L
(
γ (s), γ̇ (s)

)
ds −

0∫
−t

σ
(
γ (s)

)
ds

= dH (y, y) − dH

(
γ (−t), y

) −
0∫

−t

σ
(
γ (s)

)
ds.

Accordingly we have

0∫
−t

σ
(
γ (s)

)
ds + dH

(
γ (−t), y

)
� φ

(
γ (−t)

) − φ
(
γ (0)

)
� dH

(
γ (−t), y

)
.

Hence we get

0∫
−t

σ
(
γ (s)

)
ds � 0,

which implies that γ (s) �= z for all s � 0. Thus we conclude that (9.7) holds.
Now we have

0 = dH (y, y) − dH

(
γ (−1), y

) =
0∫

−1

L
(
γ (t), γ̇ (t)

)
dt = L(y,0),

which shows that y is an equilibrium point. �
Proposition 9.2. Assume that there exists a viscosity solution w ∈ C(Rn) of H(x,Dw) = minp∈Rn H(x,p) in Rn.
Then AH consists only of equilibrium points.

For instance, if H(x,0) � H(x,p) for all (x,p) ∈ R2n, then w = 0 satisfies H(x,Dw(x)) = minp∈Rn H(x,p) for
all x ∈ Rn in the viscosity sense. If H has the form H(x,p) = αx · p + H0(p) − f (x) as before, then H attains a
minimum as a function of p at a unique point q satisfying αx + D−H0(q) � 0, or equivalently q = DL0(−αx), that
is,

min
p∈Rn

H(x,p) = αx · q + H0(q) − f (x),

where L0 denotes the convex conjugate H ∗
0 of H0. Therefore, in this case, the function w(x) := −(1/α)L0(−αx) is a

viscosity solution of H [w] = minp∈Rn H(x,p) in Rn. In these two cases, the Aubry sets consist only of equilibrium
points.

Proof. Since cH = 0, we have minp∈Rn H(x,p) � 0 for all x ∈ Rn. Note that the function σ(x) := −minp∈Rn H(x,p)

is continuous on Rn and that w is a viscosity solution of H [w] = −σ in Rn. Applying Lemma 8.5, we see that if
y ∈ Rn and minp∈Rn H(y,p) < 0, then y /∈ AH . That is, if y ∈ AH , then minp∈Rn H(y,p) = 0, which is equivalent
that y is an equilibrium point. �
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Appendix A

We show here that value functions, associated with given Hamiltonian H or its Lagrangian L, are viscosity solu-
tions of H = 0.

Let H ∈ C(Rn × Rn) be a function such that for each x ∈ Rn the function: p �→ H(x,p) is convex in Rn, and let
L be its Lagrangian. Let S be a nonempty subset of Rn and v0 a real-valued function on S. We define the function
v : Rn → [−∞,∞] by

v(x) = inf

{ t∫
0

L
(
γ (s), γ̇ (s)

)
ds + v0

(
γ (0)

) ∣∣∣ t > 0, γ ∈ C(x, t), γ (0) ∈ S

}
.

We define the upper and lower semicontinuous envelopes v∗ and v∗ of v, respectively, by

v∗(x) = lim
r→+0

sup
{
v(y) | y ∈ B(x, r)

}
and v∗(x) = lim

r→+0
inf

{
v(y) | y ∈ B(x, r)

}
.

As is well known, v∗ and v∗ are upper and lower semicontinuous in Rn, respectively.

Theorem A.1. Let Ω be an open subset of Rn, and assume that v is locally bounded above in Ω . Then u := v∗ is a
viscosity subsolution of H [u] = 0 in Ω .

Proof. Let (ϕ, z) ∈ C1(Ω) × Ω and assume that v∗ − ϕ attains a maximum at z. We show that H(z,Dϕ(z)) � 0. We
may assume without loss of generality that v∗(z) = ϕ(z), so that v∗ � ϕ in Ω . Define the multi-function F :Ω → 2Rn

by

F(x) = {
ξ ∈ Rn | Dϕ(x) · ξ � L(x, ξ) + H

(
x,Dϕ(x)

)}
.

Since, for any x ∈ Rn, the function: p �→ H(x,p) is a real-valued convex function in Rn, it is subdifferentiable
everywhere, which shows that F(x) �= ∅ for all x ∈ Ω . Also, it is easily seen that F(x) is a closed convex set for any
x ∈ Ω and that the multi-function F is upper semicontinuous in Ω . Moreover, since H ∈ C(Rn × Rn), the function
L(x, ξ) has a superlinear growth as |ξ | → ∞. As a consequence, the multi-function is locally bounded in Ω . By a
standard existence result for differential inclusions (see, e.g., [2, Theorem 2.1.3]), we see that there is a constant δ > 0
such that for any y ∈ B(z, δ) there exists a curve ηy ∈ AC([0, δ],Rn) such that η̇y(s) ∈ −F(ηy(s)) a.e. s ∈ (0, δ) and
ηy(0) = y. Fix such a δ > 0 and for each y ∈ B(z, δ) a curve ηy ∈ AC([0, δ],Rn). We may assume, thanks to the local
boundedness of the multi-function F , that |η̇y(s)| � M a.e. s ∈ (0, δ) for all y ∈ B(z, δ) and for some M > 0 and that
ηy([0, δ]) ⊂ Ω . Note that |ηy(s) − y| � Ms for all 0 � s � δ.

Fix any ε,λ ∈ (0, δ) and y ∈ B(z,λ). Noting that v∗ � ϕ in Ω , by the definition of v, we may choose t > 0 and
γ ∈ C(ηy(ε), t) so that γ (0) ∈ S and

ϕ
(
ηy(ε)

) + λ >

t∫
0

L
(
γ (s), γ̇ (s)

)
ds + v0

(
γ (0)

)
.

We define the curve ζ ∈ C(y, t + ε) by

ζ(s) =
{

γ (s) for s ∈ [0, t],
ηy(ε + t − s) for s ∈ (t, t + ε].

It is obvious that ζ(0) ∈ S. Noting that

ζ̇ (s) = −η̇y(ε + t − s) ∈ F
(
ηy(ε + t − s)

) = F
(
ζ(s)

)
a.e. s ∈ (t, t + ε),

we have

Dϕ
(
ζ(s)

) · ζ̇ (s) = L
(
ζ(s), ζ̇ (s)

) + H
(
ζ(s),Dϕ

(
ζ(s)

))
a.e. s ∈ (t, t + ε).

Hence we get
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ϕ(y) = ϕ
(
ζ(t + ε)

) = ϕ
(
ζ(t)

) +
t+ε∫
t

Dϕ
(
ζ(s)

) · ζ̇ (s)ds

= ϕ
(
γ (t)

) +
t+ε∫
t

[
L

(
ζ(s), ζ̇ (s)

) + H
(
ζ(s),Dϕ

(
ζ(s)

))]
ds

> −λ + v0
(
γ (0)

) +
t∫

0

L
(
γ (s), γ̇ (s)

)
ds +

t+ε∫
t

[
L

(
ζ(s), ζ̇ (s)

) + H
(
ζ(s),Dϕ

(
ζ(s)

))]
ds

= −λ + v0
(
ζ(0)

) +
t+ε∫
0

L
(
ζ(s), ζ̇ (s)

)
ds +

t+ε∫
t

H
(
ζ(s),Dϕ

(
ζ(s)

))
ds

� −λ + v(y) + ε min
x∈B(y,Mε)

H
(
x,Dϕ(x)

)
.

Hence, as y ∈ B(z,λ) is arbitrary, we get

0 � −λ + sup
x∈B(z,λ)

(v − ϕ)(x) + ε min
x∈B(z,λ+Mε)

H
(
x,Dϕ(x)

)
.

Sending λ → 0 first, then dividing by ε, and letting ε → 0 yield H(z,Dϕ(z)) � 0, completing the proof. �
Theorem A.2. Let Ω be an open subset of Rn such that S ∩Ω = ∅, and assume that v is locally bounded below in Ω .
Then v∗ is a viscosity supersolution of H = 0 in Ω .

Proof. Let (ϕ, z) ∈ C1(Ω)×Ω be such that v∗ −ϕ has a strict minimum at z. We will show that H(z,Dϕ(z)) � 0. To
do this, we argue by contradiction and thus suppose that H(z,Dϕ(z)) < 0. We may assume as usual that v∗(z) = ϕ(z).
We choose a constant r > 0 so that B(z, r) ⊂ Ω and H(x,Dϕ(x)) � 0 for all x ∈ B(z, r). We set m = min∂B(z,r)(v∗ −
ϕ). Note that m > 0 and v∗(x) � ϕ(x) + m for all x ∈ ∂B(z, r).

Fix any y ∈ B(z, r). Pick any t > 0 and γ ∈ C(y, t) such that γ (0) ∈ S. Since γ (0) /∈ Ω , there is a constant
τ ∈ (0, t] such that γ (τ) ∈ ∂B(z, r) and γ (s) ∈ B(z, r) for all s ∈ [τ, t]. We now compute that

ϕ(y) = ϕ
(
γ (t)

) = ϕ
(
γ (τ)

) +
t∫

τ

Dϕ
(
γ (s)

) · γ̇ (s)ds

� v∗
(
γ (τ)

) − m +
t∫

τ

[
L

(
γ (s), γ̇ (s)

) + H
(
γ (s),Dϕ

(
γ (s)

))]
ds

� v0
(
γ (0)

) +
τ∫

0

L
(
γ (s), γ̇ (s)

)
ds +

t∫
τ

L
(
γ (s), γ̇ (s)

)
ds − m

� v0
(
γ (0)

) +
t∫

0

L
(
γ (s), γ̇ (s)

)
ds − m.

Taking the infimum over γ ∈ C(y, t), with γ (0) ∈ S, and t > 0 in the above inequality, we get ϕ(y) � v(y) − m for
all y ∈ B(z, r) and hence ϕ(z) � v∗(z) − m, which is a contradiction. This proves that H(z,Dϕ(z)) � 0. �
Remark. We may apply above theorems to (1.1) as follows. We introduce the Hamiltonian H̃ ∈ C(Rn+1 × Rn+1)

defined by H̃ (x, t,p, q) = q+H(x,p). The corresponding Lagrangian L̃ is given by L̃(x, t, ξ, η) = L(x, ξ)+δ{1}(η),
where L is the Lagrangian of H and δ{1} denotes the indicator function of the set {1} ⊂ R. We set S = Rn × {0} and
Ω = Rn × (0,∞). Also, for given u0 ∈ C(Rn), we define the function v0 ∈ C(S) by v0(x,0) = u0(x). We then
observe that
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inf

{ t∫
0

L
(
γ (s), γ̇ (s)

)
ds + u0

(
γ (0)

) ∣∣∣γ ∈ C(x, t)

}

= inf

{ T∫
0

L̃
(
ζ(s), ζ̇ (s)

)
ds + v0

(
ζ(0)

) ∣∣∣T > 0, ζ ∈ C
(
(x, t), T

)
, ζ(0) ∈ S

}
.

We give here a basic property of the Aubry set AH (cf. [15,17]). We assume as usual that cH = 0.

Proposition A.3. Let y ∈ Rn. Then y ∈ AH if and only if for any τ > 0,

inf

{ t∫
0

L(γ, γ̇ )ds

∣∣∣ t � τ, γ ∈ C(y, t;y,0)

}
= 0. (A.1)

Proof. We start by observing that for any y ∈ Rn, t > 0, and γ ∈ C(y, t;y,0),

t∫
0

L(γ, γ̇ )ds � φ1
(
γ (t)

) − φ1
(
γ (0)

) = 0.

We assume that y /∈ AH , and will show that (A.1) does not hold for some τ > 0. In view of Proposition 8.3 and
Lemma 8.4, there is a function ψ ∈ S−

H ∩ Φ0 and a constant δ > 0 such that H [ψ] � −δ a.e. in B(y,2δ). Let t > 0
and γ ∈ C(y, t;y,0) be such that

t∫
0

L(γ, γ̇ )ds < 1.

We select a function f ∈ C(Rn) so that 0 � f � δ in Rn, f (x) � δ for all x ∈ B(y, δ), and f (x) = 0 for all
x ∈ Rn \ B(y,2δ). Then, noting that H [ψ] � −f in Rn in the viscosity sense, by virtue of Proposition 2.5, we have

t∫
0

L(γ, γ̇ )ds � ψ
(
γ (t)

) − ψ
(
γ (0)

) +
t∫

0

f
(
γ (s)

)
ds � δ|I |,

where I = {s ∈ [0, t] | γ (s) ∈ B(y, δ)} and |I | denotes the one-dimensional Lebesgue measure of I . By Lemmas 6.4
and 6.5, there is a constant Cδ > 0, depending only on δ, H , y, and φ1, such that

t∫
0

∣∣γ̇ (s)
∣∣ds � δ

2
+ Cδt.

Therefore, setting τ = δ/(2Cδ), we see that if t � τ , then γ (s) ∈ B(y, δ) for all s ∈ [0, τ ]. Accordingly, if t � τ , we
have

t∫
0

L(γ, γ̇ )ds � δτ.

This shows that (A.1) does not hold with our choice of τ .
Next we suppose that (A.1) does not hold for some τ > 0 and will show that y /∈ AH . We see immediately from

this assumption that L(y,0) > 0, which implies that minp∈Rn H(y,p) = H(y,q) < 0 for some q ∈ Rn. By Proposi-
tion 2.1, there are constants ε > 0 and C > 0 such that L(x,p) � C for all (x,p) ∈ B(y, ε)×B(0, ε). We may assume
as well that

dH (x, y) < 1 and H(x,q) � 0 for all x ∈ B(y, ε).
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Let r ∈ (0, ε) be a constant to be fixed later on. Fix x ∈ B(y, r) \ {y}, t > 0, and γ ∈ C(x, t;y,0) so that
t∫

0

L(γ, γ̇ )ds < 1.

According to Lemmas 6.4 and 6.5, there is a constant Cε > 0, independent of the choice of γ , such that
t∫

0

∣∣γ̇ (s)
∣∣ds <

ε

2
+ Cεt.

In particular, there is a constant σ > 0 such that γ (s) ∈ B(y, ε) for all s ∈ [0,min{t, σ }].
We may assume that kσ = τ for some k ∈ N. Note that

k inf

{ T∫
0

L(γ, γ̇ )ds

∣∣∣T � σ,γ ∈ C(y, t;y,0)

}
� inf

{ T∫
0

L(γ, γ̇ )ds

∣∣∣T � τ, γ ∈ C(y, t;y,0)

}
> 0.

We may choose a constant a > 0 so that

inf

{ T∫
0

L(η, η̇)ds

∣∣∣T � σ,η ∈ C(y, T ;y,0)

}
> a.

We divide our considerations into two cases. The first case is when t � σ . Then we have γ (s) ∈ B(y, ε) for all
s ∈ [0, t] and hence

q · (x − y) = q · (γ (t) − γ (0)
) =

t∫
0

q · γ̇ (s)ds

�
t∫

0

[
L

(
γ (s), γ̇ (s)

) + H
(
γ (s), q

)]
ds �

t∫
0

L(γ, γ̇ )ds.

In the other case when t > σ , we define η ∈ C(y, t + ε−1|y − x|;y,0) by

η(s) =
{

γ (s) for s ∈ [0, t],
x + (s − t)ε|y − x|−1(y − x) for s ∈ [t, t + ε−1|x − y|].

Noting that (η(s), η̇(s)) ∈ B(y, r) × B(0, ε) for all s ∈ (t, t + ε−1|x − y|), we have

a �
t+ε−1|x−y|∫

0

L(γ, γ̇ )ds =
t∫

0

L(γ, γ̇ )ds +
t+ε−1|x−y|∫

t

L
(
η(s), η̇(s)

)
ds

�
t∫

0

L(γ, γ̇ )ds + Cε−1|x − y| �
t∫

0

L(γ, γ̇ )ds + Cε−1r.

Now we fix r ∈ (0, ε) so that Cε−1r � a
2 . Consequently we get

t∫
0

L(γ, γ̇ )ds � a

2
.

Hence we have
t∫
L(γ, γ̇ )ds � min

{
p · (x − y),

a

2

}
,

0



266 H. Ishii / Ann. I. H. Poincaré – AN 25 (2008) 231–266
from which we get

min

{
q · (x − y),

a

2

}
� dH (x, y) for all x ∈ B(y, r).

This shows that q ∈ D−
1 dH (y, y). Since H(y,q) < 0, we conclude that y /∈ AH . �
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