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Abstract

We study the large time behavior of solutions of the Cauchy problem for the Hamilton—Jacobi equation u; + H(x, Du) =0 in
R" x (0, 00), where H (x, p) is continuous on R” x R and convex in p. We establish a general convergence result for viscosity
solutions u(x, t) of the Cauchy problem as t — oo.
© 2007 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Nous étudions le comportement en temps grand des solutions du probleme de Cauchy pour I’équation de Hamilton—Jacobi
ur + H(x, Du) = 0 dans R" x (0, co), ot H(x, p) est continu dans R” x R” et convexe en p. Nous établissons un résultat de
convergence général pour les solutions de viscosité u(x, ) du probleéme de Cauchy quand r — oco.
© 2007 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction and the main results

In recent years, there has been much interest on the asymptotic behavior of viscosity solutions of the Cauchy
problem for Hamilton—Jacobi equations or viscous Hamilton—Jacobi equations. Namah and Roquejoffre [25] and
Fathi [14] were the first those who established fairly general convergence results for the Hamilton—Jacobi equation
uy(x,t)+ H(x, Du(x,t)) = 0 on a compact manifold M with smooth strictly convex Hamiltonian H . Fathi’s approach
to this large time asymptotic problem is based on weak KAM theory [13,15,16] which is concerned with the Hamilton—
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Jacobi equation as well as with the Lagrangian or Hamiltonian dynamical structures behind it. Barles and Souganidis
[6,7] took another approach, based on PDE techniques, to the same asymptotic problem. The weak KAM approach
due to Fathi to the asymptotic problem has been developed and further improved by Roquejoffre [27] and Davini
and Siconolfi [12]. Motivated by these developments the author jointly with Y. Fujita and P. Loreti (see [18,19])
has recently investigated the asymptotic problem for viscous Hamilton—Jacobi equations with Ornstein—Uhlenbeck
operator

u; — Au+oax-Du+ H(Du)= f(x) inR" x (0, 00),
and the corresponding Hamilton—Jacobi equations
us +ax-Du+ H(Du)= f(x) inR" x (0, 00),

where H is a convex function on R”, A denotes the Laplace operator, and « is a positive constant, and has established
a convergence result similar to those obtained by [6,7,14,27,12].
In this paper we investigate the Cauchy problem
u; + H(x,Du)=0 inR" x (0, 0c0), (1.1)
u(-,0) = uo, (1.2)
where H is a scalar function on R" x R", u = u(x, t) is the unknown scalar function on R” x [0, 00), u; = du/dt,

Du = (du/dxy,...,0u/dx,), and ug is a given function on R" describing the initial data. The function H (x, p) is
assumed here to be convex in p, and we call H the Hamiltonian and then the function L, defined by

L(x,&)= sup (§-p— H(x, p)),
peR”

the Lagrangian. We refer to [26] for general properties of convex functions.
We are also concerned with the additive eigenvalue problem:

H(x,Dv)=c inR", (1.3)

where the unknown is a pair (¢, v) € R x C(R") for which v is a viscosity solution of (1.3). This problem is also
called the ergodic control problem due to the fact that PDE (1.3) appears as the dynamic programming equation in
ergodic control of deterministic optimal control theory. We remark that the additive eigenvalue problem (1.3) appears
in the homogenization of Hamilton—Jacobi equations. See for this [24].

For notational simplicity, given ¢ € C LR™), we will write H [¢1(x) for H(x, D¢ (x)) or H[¢] for the function:
x +— H(x, D¢ (x)) on R". For instance, (1.3) may be written as H[v] = ¢ in R”.

We make the following assumptions on the Hamiltonian H.

(Al) H e C(R" x R").

(A2) H is coercive, that is, for any R > 0,
lim inf{H(x, p)|xe€B(O,R), peR"\ B(0, r)} = 00.
r—>0o0

(A3) For any x € R”", the function: p — H (x, p) is strictly convex in R".
(A4) There are functions ¢; € CO*'(R") and 0; € C(R"), with i =0, 1, such that fori =0, 1,

H(x, D¢i(x)) < —oi(x) almost every x € R",

| l‘im 0 (x) = o0, | l‘im (9o — ¢1)(x) = 00.

By adding a constant to the function ¢, we assume henceforth that
¢o(x) = ¢1(x) forx eR".

We introduce the class @ of functions by

B = {u € C(R") |influ — go) > —oo}.
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We call a modulus a function m : [0, co) — [0, oo) if it is continuous and nondecreasing on [0, co) and if m(0) = 0.
The space of all absolutely continuous functions y : [S, T] — R" will be denoted by AC([S, T'],R"). For x, y € R"
and t > 0, C(x,t) (resp., C(x,t;y,0)) will denote the spaces of all curves y € AC([0, ¢], R") satisfying y(t) = x
(resp., y(t) = x and y(0) = y). For any interval I C Rand y : I — R", we call y a curve if it is absolutely continuous
on any compact subinterval of /.

We will establish the following theorems.

Theorem 1.1. Let ug € @g and assume that (A1)—(A4) hold. Then there is a unique viscosity solution u € C(R" x
[0, 00)) of (1.1) and (1.2) satisfying

inf{u(x, 1) — go(x) | (x,1) eR" x [0, T]} > —o0 (1.4)
forany T € (0, 00). Moreover the function u is represented as
t
u(x,t) = inf{/ L(y (), 7(s)) ds + uo(y (0)) ’ y €C(x, t)} (1.5)
0

for (x,1) e R" x (0, 00).

Note that L(x,&) > —H (x,0) for all x € R" and hence inf{L(x,&) | (x,&) € B(0, R) x R"} > —oco forall R > 0.
Note as well that for any (x,t) € R" x (0, 00) and y € C(x, t) the function: s — L(y(s), y(s)) is measurable. There-
fore it is natural and standard to set

t

/L(y(s), )}(s)) ds = oo,
0

with y € C(x,t), if the function: s — L(y(s), v (s)) on [0, t] is not integrable. In this sense the integral in formula
(1.5) always makes sense.

Theorem 1.2. Let (A1)—-(A4) hold. Then there is a solution (c, v) € R x @ of (1.3). Moreover the constant c is unique
in the sense that if (d, w) € R x @ is another solution of (1.3), then d = c.

The above theorem determines uniquely a constant ¢, which we will denote by cp, for which (1.3) has a viscosity
solution in the class @(. The constant cy is called the additive eigenvalue (or simply eigenvalue) or critical value for
the Hamiltonian H. This definition may suggest that ¢ depends on the choice of (¢g, ¢1). Actually, it depends only
on H, but not on the choice of (¢, ¢1), as the characterization of cy in Proposition 3.4 below shows. It is clear that
if (¢, v) is a solution of (1.3), then (¢, v + K) is a solution of (1.3) for any K € R. As is well-known (see [24]), the
structure of solutions of (1.3) is, in general, much more complicated than this one-dimensional structure.

After completing the first version of this paper the author learned that Barles and Roquejoffre [5] had studied the
large time behavior of solutions of (1.1) and (1.2) and obtained, among other results, a generalization of the main
result in [25] to unbounded solutions.

Theorem 1.3. Let (A1)—(A4) hold and ug € @g. Let u € C(R" x [0, 00)) be the viscosity solution of (1.1) and (1.2)
satisfying (1.4). Then there is a viscosity solution vy € @¢ of (1.3), with ¢ = cy, such that as t — 00,

u(x,t) +ct —vo(x) = 0 uniformly on compact subsets of R".

We call the function vg(x) — ct obtained in the above theorem the asymptotic solution of (1.1) and (1.2). See
Theorem 8.1 for a representation formula for the function vg.

In order to prove Theorem 1.3, we take an approach close to and inspired by the generalized dynamical approach
introduced by Davini and Siconolfi [12]. However our approach does not depend on the Aubry set for the Lagrangian
L and is much simpler than the generalized dynamical approach by [12].

In the following we always assume that (A1)-(A4) hold.

The paper is organized as follows: in Section 2 we collect some basic observations needed in the following sections.
Section 3 is devoted to the additive eigenvalue problem and to establishing Theorem 1.2. In Section 4 we establish a
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comparison theorem for (1.1) and (1.2), from which the uniqueness part of Theorem 1.1 follows. Section 5 deals with
the existence of a viscosity solution u of the Cauchy problem (1.1)—(1.2) together with an estimate on the modulus
of continuity of u. In Section 6 we prove the existence of extremal curves for variational problems associated with
the Lagrangian L. Section 7 combines the results in the preceding sections, to prove Theorem 1.3. In Section 8 we
show a representation formula for the asymptotic solution for large time of (1.1) and (1.2) and introduce and study
the Aubry set for the Hamiltonian H (or more appropriately for Lagrangian L). In Section 9 we give two sufficient
conditions for H to satisfy (A4) and a two-dimensional example in which the Aubry set contains a nonempty disk
consisting of nonequilibrium points. In Appendix A we show in a general setting that value functions (or in other
words the action functional) associated with Hamiltonian H are viscosity solutions of the Hamilton—Jacobi equation
H = 0. A proposition concerning the Aubry set is presented in Appendix A.

2. Preliminaries

In this section we collect some basic observations which will be needed in the following sections.

We will be concerned with functions f on R” x R”. We write D f and D, f for the gradients of f, respectively,
in the first n variables and in the last n variables. Similarly, we use the symbols Df f and D2i f to denote the sub-
and superdifferentials of f in the first or last n variables.

We remark that, since H (x, -) is convex for any x € R”, for any u € Cco+! (£2), where 2 C R” x (0, 00) is open, it
is a viscosity subsolution of (1.1) in §2 if and only if it satisfies (1.1) almost everywhere (a.e. for short) in £2. A similar
remark holds true for the stationary problem (1.3).

Also, as is well known, the coercivity assumption (A2) on H guarantees that if v € C(§2), where §2 is an open
subset of R", is a viscosity subsolution of (1.3) in £2, then it is locally Lipschitz in 2.

Another remark related to the convexity of H is that given nonempty, uniformly bounded, family S of subsolutions
of (1.3) in £2, where £2 is an open subset of R”, the pointwise infimum u(x) := inf{v(x) | v € S} gives a viscos-
ity subsolution u of (1.3) in £2. For instance, this can be checked by invoking the notion of semicontinuous viscosity
solutions due to Barron and Jensen [8,9]. Indeed, due to this theory (see also [3,4,21]), v € C 0+1 (£2) is a viscosity sub-
solution of (1.3) if and only if H(x, p) < cforall p € D™ v(x) and all x € §2. It is standard to see that if p € D™ u(x)
for some x € §2, then there are sequences {xi}reN C £2, {Vr}keN C S, and {pg}ren C R” such that py € D™ vg (xx)
for all k € N and (xg, pk, vr(xx)) = (x, p,u(x)) as k — oo. Here, we have H (xx, pr) < c for all k € N and conclude
that H(x, p) < cforall p € D7u(x) and all x € £2. If, instead, S is a family of viscosity supersolutions of (1.3) in £2,
then a classical result in viscosity solutions theory assures that u, defined as the pointwise infimum of all functions
v € S, is a viscosity supersolution of (1.3) in §2. In particular, if S is a family of viscosity solutions of (1.3) in £2, then
the function u, defined as the pointwise infimum of v € S, is a viscosity solution of (1.3) in £2. We refer the reader to
[3,4,11] for the general theory of viscosity solutions.

Proposition 2.1. For each R > 0 there exist constants §g > 0 and Cr > 0 such that L(x,&) < Cg for all (x,§) €
B(0, R) x B(0,8R).

Proof. Fix any R > 0. By the continuity of H, there exists a constant Mg > 0 such that H(x,0) < My for all
x € B(0, R). Also, by the coercivity of H, there exists a constant pg > 0 such that H (x, p) > Mg + 1 for all (x, p) €
B(0, R) x dB(0, pr). We set g = pEl. Let& € B(0,8r) and x € B(0, R). Let g € B(0, pr) be the minimum point of
the function: f(p) := H(x, p) —& - p on B(0, pr). Noting that f(0) = H(x,0) < Mg and f(p) > Mr+1—38gpr =
Mp for all p € B(0, pg), we see that g € int B(0, pg) and hence & € D, H(x, q), which implies that L(x,§) =
& -q — H(x, q). Consequently, we get
L ) —min H(x,p)=1-— i
(x,&) <8rpr ,?53 (x, p) B(OI,IIIQI)I>1< -
Now, choosing Cg > 0 so that 1 —ming, ryxr* H < Cg, we obtain

L(x,&) <Cgr forall (x,&) € B(0, R) x B(0,5g). a

Proposition 2.2. Let (x,&) € R" x R". Then (x, §) € intdom L if and only if ¢ € D, H(x, p) for some p € R".
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Proof. Fix £, & € R". Suppose first that £ € D, H (%, p) for some p € R". Define the function f on R" x R" by

fx,p)=H(x,p)—&-p+L&,E).

Note that the function f (X, -) attains the minimum value 0 at p and it is strictly convex on R". Fix r > 0 and set

m= min f(x,p),
peIB(p,r)

and note, because of the strict convexity of f (X, -), that m > 0. Note also that the function: x = min,cyp(5,) f (X, p)
is continuous on R”. Hence there is a constant § > 0 such that

min{ f(x, p) | x € B(%,8), p € B(p, )} > % 2.1)
max{f(x. ) | x € B 9)} < 7 (22)
Fix any (x, £) € B(%, 8) x B(0, %) and consider the affine function g(p) :=r~'&(p — p) + 7 We show that
f(x,p)>g(p) forall peR"\ B(p,r). (2.3)
To see this, we fix any p e R" \ B(p,r) andsetq =p+r(p — p)/|p — p|l € dB(p, r). Then, by (2.1), we have
m
f(x,q) > 7
Using the convexity of f(x,-) and noting thatg = (1 —r/|p — p)p + (r/|p — pl) p, we get
r A r
Fo) < (1= =) f B + e f (5 p)
lp = pl |p = pl

and hence, by using (2.2), we get
fapyzrtp=plfa.g+ 1 —=r~p—pl)fx. p)

>l p—pig + (L= p = p) T =T (147 1p = ). 2.4

On the other hand, we have
m, _; .
gy <7 p—pl+1).
This combined with (2.4) shows that (2.3) is valid.

Next, observing that f(x,p) — g(p) < 7 — g(p) = 0 by (2.2) and using (2.3), we see that the function:
p f(x, p) — g(p) attains its global minimum at a point in B(p, r). Fix such a minimum point p, ¢ € B(p,r),

which is indeed uniquely determined by the strict convexity of f(x, -). We have
0€ Dy f(x, pxg) = Dg(prg) = Dy Hx, prg) —xi —r'&.

That is,
§+r7'6 e DY H(x, pro).

which is equivalent to saying that
prg €Dy L(x, € +r7'¢).

In particular, we have (x,é + r_lé) € dom L and (X, %) €int dom L.
Next, we suppose that (¥, &) € int dom L. Then it is an easy consequence of the Hahn—Banach theorem that there
isa p e R" suchthat xi € D, H(X, p). O

Remark. Let (x,£&) € intdom L. According to the above theorem (and its proof), there is a unique p(x,§) €
D, L(x,&). That is, on the set intdom L, the multi-valued map D, L can be identified with the single-valued func-
tion: (x, &) — p(x, ). By the above proof, we see moreover that for each r > 0 there is a constant § > 0 such that
p(y,n) € B(p(x,&),r) for all (y,n) € B(x,8) x B(&,5). From this observation, we easily see that the function:
(x,&) — p(x, &) is continuous on intdom L. Indeed, one can show that L is differentiable in the last n variables and
D, L is continuous on intdom L.
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Proposition 2.3. Let K C R" x R" be a compact set. Set
S = {(x,E) eR" xR" | & € D; H(x, p) for some p € R" such that (x, p) € K}.
Then S is a compact subset of R" x R" and S C intdom L.

Proof. We choose a constant R > 0 so that K = B(0, R) x B(0, R).
To see that S is compact, we first check that § C R?" is a closed set. Let {(xk, &) }keN C S be a sequence converging
to (xo, &) € R?". For each k € N there corresponds a point p; € B(0, R) such that

& € Dy H(xg, pi).
This is equivalent to saying that

&k - P = L(xk, &) + H (xk, pr)- (2.5)
We may assume by replacing the sequence {(xx, &, pr)} by one of its subsequences if necessary that {p} is conver-
gent. Let pg € B(0, R) be the limit of the sequence {px}. Since L is lower semicontinuous, we get from (2.5) in the
limit as k — oo,

&0 - po = L(xo, o) + H (xo, po),

which implies that §y € D, H (xq, po). Hence, we have (xo, §o) € S and see that S is closed.

Next we show that S is bounded. Since H € C(R?") and the function: p — H(x, p) is convex for any x € R",
we see that there is a constant M > 0 such that the functions: p — H(x, p), with x € B(0, R), is equi-Lipschitz
continuous on B(0, R) with a Lipschitz bound M. This implies that

€| <M forall (x,&) €S,

since if (x,§) € S, then § € D, H(x, p) for some p € B(0, R) and |§| < M. Thus we have seen that § C B(0, R) x
B(0, M). The set S is bounded and closed in R?" and therefore it is compact.
Finally, we apply Proposition 2.2 to (x, §) € S, to see that (x, &) € intdomL. O

Proposition 2.4. Let 2 be an open subset of R", ¢ € CHY), and y € AC([a, b], R"), where a, b € R satisfy a < b.
Assume that y ([a, b]) C $2. Then there is a function g € L*°(a, b, R") such that

%(ﬁ oy()=q(t) -y(t) aete(a,b),
qt) €0:p(y (1)) aete(a,b).
Here 0.¢ denotes the Clarke differential of ¢ (see [10]), that is,
0cp(x) = mc_o{Dqﬁ(y) |y € B(x,r), ¢ is differentiable aty} forx € $2.

r>0

Proof. We may assume without loss of generality that £2 = R”. Let p € C®°(R") be a standard mollification kernel,
ie,p>0,stpp C B(0,1),and [, p(x)dx =1.
Set pr(x) := k" p(kx) and ¢y (x) := px * ¢(x) for x € R" and k € N. Here the symbol “x” indicates the usual

convolution of two functions. Set

Vv()=¢oy(), yYw(®)=d¢roy(@), and gi(t)=D¢roy(t) forsela,b], keN.
We have ll}k () =qr(t) - y(t) a.e. t € (a, b), and, by integration,

t
Vi (1) — Yr(a) = / qk(s) - y(s)ds forallz € [a, b]. (2.6)
a

Passing to a subsequence if necessary, we may assume that for some g € L*(a, b, R"),

qr — q weakly star in Loo(a, b, R”) as k — oo.
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Therefore, from (2.6) we get in the limit as k — oo,

t

1//(t)—1/f(a):/q(s)~)7(s)ds for all ¢ € [a, b].

a

This shows that
V() =q()-y@t) ae.te(a,b).

Noting that {g;} is weakly convergent to g in L?(a, b, R"), by Mazur’s theorem, we may assume that there is a
sequence {px} such that

px — g strongly in Lz(a, b, R”) as k — oo,
pr €cofg; | j >k} forallk eN.
We may further assume that
pr(t) > q() ae.t€(a,b)ask— oo.
We fix a set I C (a, b) of full measure so that
pr(t) —> q() forallt el ask — oo. 2.7
Now, for any x € R" and any k € N, noting that
Dy (x) =/pk(x — ) D¢ (y)dy,

R)l
we find that

Dy (x) € o{Dp(y) | y € B(x, k_l), ¢ is differentiable at y}.
From this, we get
qr(t) € (Y){qu(x) | x € B(y(t), k_l), ¢ is differentiable at x} for all ¢ € [a, b],
and therefore
pk(t) €o{ D (x) | x € B(y(1), k"), ¢ is differentiable at x} forall 7 € [a, b]. (2.8)
Combining (2.7) and (2.8), we get

q(t) e ﬂ c_o{D(p(x) | x € B(y(t), r), ¢ is differentiable at x} forallz e .

r>0

That is, we have

q(t) € 8C¢(y(t)) ae.t € (a,b). O

Proposition 2.5. Let 2 be an open subset of R" and w € COY'(R") be such that H(x, Dw(x)) < f(x) in 2 in
the viscosity sense, where f € C(82). Let a,b € R be such that a < b and let y € AC([a, b], R"). Assume that
y(la, b)) C 2. Then

b

b
w(y(b))—w(ym))</L(ym,y'(s))ds+/f(y<s))ds.

a

Proof. By Proposition 2.4, there is a function ¢ € L*°(a, b, R") such that

d
aw(y(s)) =q(s)-y(s) and gq(s)€ Bcw(y(s)) ae.s € (a,b).

Noting that H (x, p) < f(x) for all p € d.w(x) and all x € §2, we calculate that
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b b b
d
w(y(b))—w(y(a))=/aw(y(s))ds:/q(s))}(s)dsg/[L(y(s),;)(s))+H(y(s),q(s))]ds
b

< /[L(y(s>, J©) + Fy)]ds. O

a

3. Additive eigenvalue problem
In this section we prove Theorem 1.2. Our proof below is parallel to that in [24].

Lemma 3.1. There is a function Yo € C'(R") such that

H(x, Dwo(x)) >—Cy forallx eR", (3.1
Yo(x) = ¢o(x) forallx e R" 3.2)

for some constant Cqy > 0.

Proof. We choose a modulus p so that

H(x,p)>0 forall (x, p) € B(0,r) x [R” \ B(O, ,o(r))] andall r > 1,
Dol < p(r) forallr>1.
Because of this choice, we have
|x]
do(x) — po(Ix1'x) < / p(r)dr forall x e R"\ B(0, 1).
1
We define the function 9 € C'(R") by
x|
o) = max o+ [ o) v
0

It is now easily seen that
do(x) < Yo(x) forall x € R", (3.3)
|Dyo(x)| = p(|x]) forallx € R",
H(x, Dyo(x)) >0 forallx e R"\ B(0, 1).

Choosing a constant Cy > 0 so that

Co > xerg?gfl)IH(x, Dyry(x))

’

we have
H(x, Dwo(x)) >—Cop forallx eR”".
This together with (3.3) completes the proof. O

We need the following comparison theorem.

Theorem 3.2. Let 2 be an open subset of R*. Let ¢ > 0. Let u, v: 2 — R be, respectively, an upper semicontinuous
viscosity subsolution of

Hul<—¢ inS$2, (3.4
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and a lower semicontinuous viscosity supersolution of
H[v] >0 in$2. (3.5)

Assume that v € @y and u < v on dS2. Then u < v on §2.
The main idea in the following proof how to use the convexity property of H is similar to that in [1].

Proof. We may choose an R > 0 so that H(x, D¢1(x)) < —¢ a.e. in £2 \ B(0, R) and then a constant Ag > 0 so that
¢1(x) + Ag > u(x) for all x € B(0, R)._
Fix any A > Ag and define ug4 € C(82) by u4(x) = min{¢;(x) + A, u(x)}. For almost all x € £2, we have

Du(x) ifu(x)<¢1(x)+A,
De1(x) if u(x) > ¢1(x) + A.

Hence, for almost all x € £2, if u(x) < ¢1(x) + A, then H(x, Duyg(x)) = H(x, Du(x)) < —e, and if u(x) >
¢1(x) + A, then |x| > R and hence H (x, Duy(x)) = H(x, D¢1(x)) < —e. Therefore, u 4 is a viscosity subsolution
of (3.4).

Since v € @ and u 4 (x) < ¢1(x) + A for all x € R"?, we have

Duy(x) = {

llim (v(x) — uA(x)) = 00,

and we see that there is a constant M > 0 such that
ua(x) <v(x) forallx € 2\ B0, M).

By a standard comparison theorem applied in £2 N B(0,2M), we obtain ua(x) <vx) forallx € 2N B(0,2M), from
which we get u4(x) < v(x) for all x € £2. Noting that, for each x € £2, we have u4(x) = u(x) if A is sufficiently
large, we conclude that u(x) < v(x) forallx € 2. O

Theorem 3.3. (1) There is a solution (c,v) € R x &g of (1.3). (2) If (c, v), (d, w) € R x ®q are solutions of (1.3),
then c=d.

Proof. We start by showing assertion (2). Let (c, v), (d, w) € R x @ be solutions of (1.3). Suppose that ¢ # d. We

may assume that ¢ < d. Also, we may assume by adding a constant to v that v(xg) > w(xp) at some point xo € R".

On the other hand, by Theorem 3.2, we have v < w for all x € R”, which is a contradiction. Thus we must have ¢ = d.
In order to show existence of a solution of (1.3), we let A > 0 and consider the problem

A (x) + H(x, Dva(x)) = Ago(x) inR". (3.6)

Let ¥9 € C'(R") and Cy > 0 be from Lemma 3.1. We may assume by replacing Cy by a larger number if necessary
that og(x) > —Cy for all x € R". Note that H[¢p] < Cp in R” in the viscosity sense.
We define the functions vf on R" by

v () =Yo(x) +271Co and v (x) = do(x) — 17 Co.

It is easily seen that v):Ir and v, are viscosity supersolution and a viscosity subsolution of (3.6). In view of (3.2), we
have v, (x) < v;’ (x) for all x € R". By the Perron method in viscosity solutions theory, we find that the function v,
on R” given by

v (x) =sup{w(x) | v; <w <y in R, Aw + H[w] < Adp in R” in the viscosity sense} 3.7)
is a viscosity solution of (3.6). Because of the definition of v;, we have

do(x) —271Co < v (x) < Yo(x) +171Cy forall x e R". (3.8)
Using the left-hand side inequality of (3.7), we formally calculate that

Ao (x) = Avy(x) 4+ H (x, Dv.(x)) = Ago(x) — Co + H (x, Dv;. (x)),
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and therefore, H (x, Dv; (x)) < Cp. Indeed, this last inequality holds in the sense of viscosity solutions. This together
with the coercivity of H yields the local equi-Lipschitz continuity of the family {v; },~0. As a consequence, the family
{vi — v (0)}a>0 C C(R") is locally uniformly bounded and locally equi-Lipschitz continuous on R".

Going back to (3.7), we see that

Apo(x) — Co < vy (x) < AYp(x) + Co forall x e R,
In particular, the set {Avy (0)},.c(,1) C R is bounded. Thus we may choose a sequence {A;} jen C (0, 1) such that, as
Jj — 00,
Aj— 0, —Ajvkj 0) —c,
v;,;(x) —v3;(0) = v(x) uniformly on bounded sets C R"
for some real number ¢ and some function v € C%*1(R"). Since
|A(va(x) = vA(0))| < ALglx| forallx € B(0, R),
all R > 0, and some constants L > 0, we find that
—Ajvy; (x) = ¢ uniformly on bounded sets C R" as j — oo.

By a stability property of viscosity solutions, we deduce that v is a viscosity solution of (1.3) with ¢ in hand.
Now, we show that v € @g. Fix any A € (0, 1). As we have observed above, there is a constant C; > 0, independent
of A, such that |[Av, (0)] < Cy. Set wy (x) = v, (x) — v, (0) for x € R". Note that w; is a viscosity solution of

H(x, Dw;) > A(¢o — wy) — C;  in R™. (3.9)

We may choose a constant R > 0 so that H (x, D¢o(x)) < —C; — 1 a.e. in R" \ B(0, R), and also a constant C; > 0,
independent of A € (0, 1), so that max{|¢o(x)]|, |w, (x)|} < C; for all x € B(0, R). Set w = ¢pg — 2C>. Obviously we
have w < wy in B(0, R), and H(x, Dw(x)) = H(x, Dpp(x)) < —C1 — 1 ae. x e R"\ B(0, R). We set 2 = {x €
R"” | w(x) > wy (x)} and observe that 2 C R" \ B(0, R). We have ¢g(x) — wy (x) = w(x) +2Cy — wy (x) >2Cr >0
for all x € £2. Hence we see from (3.8) that w,_ is a viscosity solution of H (x, Dw; (x)) = —C} in £2. It is clear that
w(x) = wy (x) for all x € £2. Noting that w) € &(, we may apply Theorem 3.2, to obtain w < w;, in §2, which shows
that 2 =, i.e., w < w, on R". Sending A — 0, we get ¢9 — 2C, < v in R”?, which shows that v € @, completing
the proof. O

Proposition 3.4. The additive eigenvalue cy is characterized as

cH = inf{a € R | there exists a viscosity solution v € C(R”) of H[vl<ain R”}.
Proof. We write d for the right-hand side of the above formula. Let ¢ € @( be a viscosity solution of H[¢] = cy
inR". If a > ¢y, then H[¢] < a in R” in the viscosity sense. Thus we have d < cg. Suppose that d < cg. Then there

is a constant e € (d, cy) and a viscosity solution of H[{/] < e in R”. By Theorem 3.2, we see that v + C < ¢ in R”
for any C € R, which is clearly a contradiction. Thus we have d =cy. O

4. A comparison theorem for the Cauchy problem
In this section we establish the following comparison theorem. Let T € (0, 00).

Theorem 4.1. Let §2 be an open subset of R". Let u, v: 2 x[0, T) — R. Assume that u, —v are upper semicontinuous
on 2 x [0, T) and that u and v are, respectively, a viscosity subsolution and a viscosity supersolution of

u+Hx,Du)=0 in2 x0,T). 4.1)
Moreover, assume that

Jim inf{v(x. 1) — g1 (x) | (x.1) € (2\ B(0.7)) x [0.T)} = o0, 4.2)

and that u < v on (2 x {0) U (32 x [0, T)). Thenu <vin 2 x [0, T).
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Proof. We choose a constant C > 0 so that
H(x, D¢ (x)) <C ae.xeR",

and define the function w € C(R" x R) by
w(x,t) :=¢1(x) — Ct.

Observe that w, + H (x, Dw(x, 1)) <0 ae. (x,7) e R" 1.
We need only to show that for all (x,7) € £2 and all A > 0,

min{u(x,t),w(x,t)+A} <v(x,t). 4.3)

Fix any A > 0. We set wa(x,t) = w(x,t) + A for (x,1) € R"t!. The function wy is a viscosity subsolution of (4.1).
By the convexity of H (x, p) in p, the function u defined by u(x, ¢) := min{u(x, t), w4 (x, 1)} is a viscosity subsolution
of (4.1). Because of assumption (4.2), we see that there is a constant R > 0 such that u(x, ) < v(x,t) for all (x,7) €
(2 \ B(0, R)) x [0,T). We set 2g := 2 Nint B(0, 2R), so that u(x, ) <v(x,t) forall x € 982z x [0, T). Also, we
have u(x,0) <u(x,0) <v(x,0) forall x € 2.

Next we wish to use standard comparison results. However, H does not satisfy the usual assumptions for compar-
ison. We thus take the sup-convolution of « in the variable ¢ and take advantage of the coercivity of H. That is, for
each ¢ € (0, 1) we set

(t —s)?
2¢

u®(x,t) = sup (ﬁ(x, 5) —

) forall (x,1) € 2 x R.
5€[0,T)

For each § > 0, there is a ¥ € (0, min{8, T/2}) such that it(x, 1) — 8 < v(x, 1) forall (x,7) € 2& x [0, y]. As is well
known, there is an € € (0, §) such that u® is a viscosity subsolution of (4.1) in 2z x (y, T — y) and u®(x, 1) — 2§ <
v(x,t) for all (x,1) € (2 x [0,y]) U (2% x [y, T — y]). Observe that the family of functions: ¢ > u®(x, t) on
[y, T — y], with x € 2r, is equi-Lipschitz continuous, with a Lipschitz bound C, > 0, and therefore that for each
t €[y, T — y], the function z: x — u®(x, t) in 2 satisfies H(x, Dz(x)) < C; a.e., which implies that the family of
functions: x — u®(x,t), with t € [y, T — y1, is equi-Lipschitz continuous in 2.

Now, we may apply a standard comparison theorem, to get u®(x, t) < v(x,t) forall (x,t) € 2 x [y, T — y], from
which we get ii(x, 1) < v(x, ) forall (x, ) € 2 x [0, T). This completes the proof. O

5. Cauchy problem

Let ¢ = cy be the (additive) eigenvalue for H. In this and the following sections we assume without loss of
generality that ¢ = 0. Indeed, if we set H.(x,y) = H(x,y) —cand L.(x,y) = L(x,y) +c for (x,y) € R?" then the
stationary Hamilton—Jacobi equation H[v] = ¢ for v is exactly H.[v] = O for v and the evolution equation u; + H[u] =
0 for u is the equation w; + H.[w] =0 for w(x, ) := u(x,t) + ct. Note moreover that L. is the Lagrangian of the
Hamiltonian H,, i.e., Lo(x,&) =sup{é - p — H.(x, p) | p € R"} for all x, & € R". With these relations in mind, by
replacing H and L by H, and L., respectively, we may assume that ¢ = 0.

We make another normalization. We fix a viscosity solution ¢ € @ of H[¢] = 0 in R"”. We choose a constant r > 0
so that o; (x) > 0 for all x € R" \ B(0, r). There is a constant M > 0 such that ¢(x) — M < ¢ (x) for all x € B(0, r).
We set £1(x) =min{¢(x) — M, ¢1(x)} for x € R". Since lim|y|— o0 (¢ — ¢1)(x) = 00, we have £1(x) = ¢ (x) for all
x € R*\ B(0, R) and some R > r. Note that H(x, D¢1(x)) = H(x, D¢(x)) =0 a.e. in B(0,r), H(x, D¢1(x)) <
max{H (x, D¢ (x)), H(x, D¢1(x))} <0a.e.in B0, R)\ B(0,r), and H(x, D¢;1(x)) = H(x, Dp1(x)) = —o1(x) a.e.
in R" \ B(0, R). Therefore, by replacing ¢ and o] by ¢; and max{oq, 0}, respectively, we may assume that o > 0
in R”. Similarly, we define the function ¢y € C O+1(R™) by setting ¢o(x) = min{¢(x) — M, ¢o(x)} and observe that
H[¢o] <0 in R” in the viscosity sense and that supgn [{o — ¢o| < oo, which implies that u € @ if and only if
infre (u — ¢o) > —oo. Henceforth we write ¢ for {p. A warning is that the function o = 0 corresponds to the current
¢o and does not have the property: lim|y|— o0 00(x) = 00.

In this section we prove Theorem 1.1 together with some estimates on the continuity of the solution of (1.1) and
(1.2) which satisfies (1.4).
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Our strategy here for proving the existence of a viscosity solution of (1.1) and (1.2) which satisfies (1.4) is to prove
that the function # on R” x (0, co) given by

t

u(x,t) =inf{/L(y(s), ))(s)) ds —l—uo(y(O)) ‘ y €C(x, t)} (5.1)
0

is a viscosity solution of (1.1) by using the dynamic programming principle.
In this section u always denotes the function on R” x [0, co) whose value u(x, t) given by (5.1) for r > 0 and by
ug(x) fort =0.

Lemma 5.1. There exists a constant Cy > 0 such that

u(x,t) = ¢o(x) —Co forall (x,t) e R" x [0, 00).

Proof. We choose Cy > 0 so that ug(x) > ¢o(x) — Co for all x € R". Fix any (x,7) € R” x (0, 00). For each ¢ > 0
there is a curve y € C(x, t) such that

t
u(x,t)+¢e> /L(y(s), J)(s)) ds + uo(y(O)).
0
By Proposition 2.5, since H[¢p] < 0 a.e., we have
u(x, 1) +& > ¢o(y (1)) — do(v(0) +uo(y(0)) > po(x) — Co,
which shows that u(x, t) > ¢o(x) — Co. O

Lemma 5.2. We have

u(x,t) <ug(x) + L(x,0)t forall (x,t) € R" x (0, 00).

Proof. Fix any (x,7) € R" x (0, 00). By choosing the curve y, () = x in formula (5.1), we find that
t

u(x, 1) < / L(2(8). 7()) ds + (32 (0))

0
t

:/L(x,O)ds—i—uo(x):uo(x)+L(x,0)t. a
0

Proposition 5.3 (Dynamic Programming Principle). Fort >0, s > 0, and x € R", we have

t

u(x,s+1t) :inf{/L(y(r), ))(r)) dr +u(y(0),s) ‘ y €C(x, t)}. 5.2)

0
We omit giving the proof of this proposition and we refer to [23] for a proof in a standard case.
Lemma 5.4. For each R > 0 there exists a modulus mg such that
u(x,t) > uog(x) —mpg(t) forall (x,t) € B0, R) x (0,00).

Proof. Fix any R > 0. We choose C > 0 and then p > R so that ¢{(x) + C > up(x) + 1 for all x € B(0, R) and
$1(x) + C <ug(x) — 1 for all x € R" \ B(0, p). Fix any ¢ € (0, 1) and choose a function u, € C!(R") so that
lue(x) —uo(x)| < e forall x € R”.
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We set
¢e(x) =min{¢; (x) + C,us(x)} forx eR",

and note that ¢z (x) = u.(x) for x € B(0, R) and ¢ (x) = ¢1(x) — C for x € R" \ B(0, p). Next we choose an M > 0
so that |H (x, D¢, (x))| < M for all x € B(0, p) and observe that H(x, D¢, (x)) < M a.e. x € R".
Fix any (x, 1) € R” x (0, 00) and select a curve y € C(x, t) so that

t

u(x,t)+¢e> /L(y(s), )}(s)) ds + uo(y(O)).
0
Using Proposition 2.5, we get

u(x, 1)+ &> ¢e(y (1)) — de (v (0)) — Mt +uo(y (0))
> ¢ (x) — Mt — ue(y(0)) +uo(y (0)),

which shows that u(x,?) > ug(x) — Mt — 2¢ for all (x,t) € B(0, R) x [0, 00). Writing M, for M in view of its
dependence on ¢ and setting m g (¢) = inf{2¢ + Mt | ¢ € (0, 1)} for ¢ > 0, we find a modulus m g for which u(x, ¢) >
ug(x) —mpg() forall (x,t) € B(O,R) x [0,00). O

Theorem 5.5. The function u is continuous in R" x [0, 0c0) and is a viscosity solution of (1.1).
This theorem together with Lemma 5.1 and Theorem 4.1 completes the proof of Theorem 1.1.

Proof. We define the upper and lower semicontinuous envelopes u™* and u, of u, respectively, by
u (x,t) = limosup{u(y,s) | (v,5) e R" x [0,00), |y —x|+|s — ]| < r},
r—+
ue(x, 1) = limoinf{u(y, )| (v,5) €R" x [0,00), |y — x|+ |s —t] <r}.
r— -+

We now invoke some results established in Appendix A. That is, we apply Theorems A.1 and A.2 together with
remark after these theorems, to conclude that u* and u, are a viscosity subsolution and a viscosity supersolution
of (1.1), respectively.

We observe by Lemmas 5.2 and 5.4 that u™*(x,0) = u.(x,0) = ug(x) for all x € R” and by Lemma 5.1 that
ux(x,1) = ¢o(x) — Cp for all (x,1) € R" x [0, 00) and some constant Cy > 0. We apply Theorem 4.1, to conclude
that u, < u* in R" x [0, 00), which implies that u = u™* = u, € C(R" x [0, 00)), completing the proof. O

Lemma 5.6. For each R > 0 there exists a constant Cg > 0 such that u(x,t) < Cg for all (x,t) € B(0, R) x [0, c0).

Proof. Fix a viscosity solution ¢ € @ of (1.3). Fix any R > 0. We choose a constant C > 0 and then a constant
p > R sothat ¢1(x) + C > ¢(x) for all x € B(0, R) and ¢ (x) + C < ¢(x) for all x e R" \ B(0, p).

Next we choose a constant K > 0 so that min{¢(x), ¢1(x) + C} + K > ug(x) for all x € B(0, p) and set
v(x,t) = minfu(x, 1), $1(x) + C + K} for (x,1) € R” x [0, 00). Observe that v is a viscosity subsolution of (1.1)
and that v(x,0) <wup(x) <dp(x)+ K forx € B0, p) and v(x,0) < p1(x) + C+ K < ¢p(x) + K forx € R"\ B(0, p).
Therefore, since w(x, t) := ¢ (x) + K is a viscosity solution of (1.1), by Theorem 4.1 we obtain v(x, t) < ¢ (x)+ K for
all (x,1) € R" x [0, 00). In particular, since ¢ (x) +C+ K > ¢(x)+ K forallx € B(0, R), we getu(x,t) < p(x)+K
for all (x,t) € B(0, R) x [0, 00), from which we conclude that u(x, t) < Cg for all (x,t) € B(0, R) x [0, c0), with
Cg:=maxpop ¢+ K. O

Lemma 5.7. For each R > 0 there exists a modulus lg such that lu(x,t) —u(y,s)| <Ig(Jx — y| + |t — s|) for all
(x,1), (y,s) € B(0, R) x [0, c0).

Proof. Fix any ¢ € (0, 1) and choose a function vy € C'(R") so that |vg(x) — ug(x)| < & for all x e R". Let v €
C(R" x [0, 00)) be the unique solution of (1.1)—(1.2) satisfying (1.4), with v in place of u. Existence and uniqueness
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of such a solution is guaranteed by Theorem 1.1. By Theorem 4.1, we have |u(x,t) — v(x,t)| < ¢ for all (x,¢) €
R" x [0, 00).

We wish to show that for each R > 0 the function v is Lipschitz continuous on B(0, R) x [0, 00).

For each p > 0 we choose a constant A, > 0 so that

|H(x, Dug(x))| < A, forallx € B(0, p). (5.3)

In view of Lemma 5.6, for each R > 0 we may choose a constant Cg > 0 so that ¢1(x) + Cg > u(x,t) + 1 for all
(x,1) € B(0, R) x [0, 00). In view of Lemma 5.1, we may choose a constant Cy > 0 so that u(x, t) = ¢o(x) — Co for
all (x,7) e R" x [0, 00).

Fix any R > 0 and then p > R so that

do(x) —2—Co = ¢1(x)+Cr forall x e R"\ B(0, p). (5.4)

We define w € C(R" x [0, 00)) by w(x, ) = min{vg(x) — A, ¢1(x) + Cr}.
Note that for any (x,1) € (R" \ B(0, p)) x [0, A, 1),

vo(x) — Apt Zuo(x) —2 2 ¢o(x) —2 — Co > ¢1(x) + Ck,
and therefore w(x, ) = ¢1 (x) + Cg. Consequently, we have
wy(x, 1) + H(x, Dw(x,1)) <0 ae. (x.,1) eR" x (0,4,").

That is, w is a viscosity subsolution of (1.1) in R" x (0, A;l). Observe as well that w(x, 0) < vo(x) forall x € R". We
may now apply Theorem 3.1, to conclude that w(x, ¢t) < v(x,t) for all (x,?) € R" x [0, A;l). Since ¢1(x) + Cr >
vo(x) for all x € B(0, R) by our choice of Cg, we see that w(x, t) = vo(x) — A,t for all (x,¢) € B(0, R) x [0, 00).
Thus, setting Kg = A, we see that for any R > 0,

vo(x) — Kt <v(x,1) forall (x,) € B(O,R) x [0, K']. (5.5)

Nextwe fixany R>0and 0 <h < K =1 where K o 1s a constant for which (5.5) holds with p in place of R, and
define z € C(R" x [0, 00)) by z(x, t) = min{v(x,t) — K,h, ¢1(x) + Cr}. Observe that z is a viscosity subsolution
of (1.1), that z(x, 0) < v(x,0) — K,h < v(x, h) for x € B(0, p) by (5.5), that if x e R" \ B(0, p), then

2(x,0) < P1(x) + Cr < po(x) =2 —Co < u(x,h) —2 <v(x, h).

Now, by comparison, we get z(x, 1) < v(x, t+h) forall (x, t) € R" x [0, 00). Noting thatif x € B(0, R), then v(x, t) —
Koh <u(x,t)+1 < ¢1(x)+ Cg, wefind that v(x, 1) — Kph =z(x, 1) <v(x,t+h) forall (x, ) € B0, R) x [0, 00).
Setting Mg = K, we thus obtain

v(x,t) + Mgt <v(x,t+h)+Mp(t+h)

forall (x,7) € B(0, R) x [0, o0) and & € [0, MEl]. We now conclude that for any R > 0 and x € B(0, R), the function:
t — v(x,t) + Mgt is nondecreasing on [0, 00).

Fix any R > 0 and observe that H(x, Dv(x, t)) < Mg in int B(0, R) in the viscosity sense, which implies together
with (A2) the Lipschitz continuity of v(x, t) in x € B(0, R) uniformly in ¢ > 0, that is, there exists a constant L > 0
such that |v(x, ) —v(y,t)| < Lglx — y| forall x,y € B(0, R) and ¢ > 0.

Now, we note that infg, gyxrr H > —00. We may assume by replacing Lz by a larger constant if necessary that
Mg < Lg and H(x, p) > —Lp for all (x, p) € B(0, R) x R". Noting that v is a viscosity solution of v; < Lg in
int B(0, R) x (0, 00), we see that for any x € B(0, R) the function: ¢ — v(x, t) — Lyt is nonincreasing on [0, 00). In
conclusion, we find that |v(x, 1) —v(y, s)| < Lr(|x —y|+|t —s]|) forall (x, ?), (y,s) € B(0, R) x [0, co) and moreover
that |u(x,t) —u(y,s)| <2e+Lr(|x —y|+ |t —s]|) forall (x, ), (y,s) € B(0, R) x [0, 00). This ensures the existence
of a modulus /g such that |u(x,t) —u(y,s)| <Ig(|x — y|+ |t —s|) forall (x,1), (y,s) € B(O,R) x [0,00). O

Theorem 5.8. For each R > 0 the function u is bounded and uniformly continuous on B(0, R) x [0, 00).

Proof. The required boundedness of u follows from Lemmas 5.1 and 5.6, and hence Lemma 5.7 concludes the
proof. 0O



H. Ishii /Ann. I. H. Poincaré — AN 25 (2008) 231-266 245

6. Extremal curves

We are assuming as before that cy = 0. Eq. (1.3) reads
H(x, Du(x))=0 inR". (6.1)

Henceforth S;, S;, and Sy denote the sets of continuous viscosity subsolutions, of continuous viscosity supersolu-
tions, and of continuous viscosity solutions of (6.1), respectively.
Let ¢ € S;; and I C R be an interval. Note by Proposition 2.5 that if [a, b] C I and y € AC([a, b], R"), then

b
by () — d(y @) < / L(y (), 7 (1)) dr.
We call any y € C(I, R") an extremal curve for ¢ on [ if for any interval [a, b] C I, we have y € AC([a, b], R") and
b
/ L(y(s),y(s))ds = (y (b)) — ¢(y(@)).

Let £(1, ¢) denote the set of all extremal curves for ¢ on I.
In this section we are concerned with existence of extremal curves.

Theorem 6.1. Let S, T € R satisfy S < T. Let x € R" and ¢ € Sy N @q. Then there exists a curve y € E([S, T], ¢)
such that y(T) = x.

Theorem 6.1 has the following consequence.
Corollary 6.2. Let x € R" and ¢ € Sy N @. Then there exists a curve y € E((—o0, 0], ¢) such that y (0) = x.

Proof. Due to Theorem 6.1, for each y € R" we may choose a curve y, € £([—1, 0], ¢) such that y,(0) = y. We
define the sequence {£;};en C R" inductively as & = yi(—1), & = yg (—1), & = yg(—1), ..., and the curve
y € C((—o0, 0], R") by

Y (®) fort € (—1,0],
ve (t+1) forre (=2,—1],
V=1 ye,(t +2) forre(=3,-2],

It is not hard to check that y € £((—o0, 0], ¢). Also, it is obvious that y (0) =x. O
We need the following lemmas for the proof of Theorem 6.1.

Lemma 6.3. Let T > 0 and let {yi}xen C AC([0, T], R™) be a sequence converging to a function y € C([0, T], R")
in the topology of uniform convergence. Assume that

T
liminf/ L(yk(t), )}k(t)) dt < oo.
— 00
0
Then y € AC([0, T1, R") and
T

T
/ L(y(®).7(1)) dr < liminf / L(yi(®), () dr. (6.2)
0 0

The following lemma will be used in the proof of Lemma 6.3.
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Lemma 6.4. Let T >0, C >0, and R > 0. Let y € AC([0, T], R") be such that

T

/L(y(t),))(t))dtgc and y(t)e B(O,R) forallte[0,T].
0

Then for each ¢ > 0 there exits a constant M, > 0 depending onlyon e, T, C, R, and H, such that for all measurable
B C0,T],

/I?(t)ldt<e+Mg|B|, (6.3)
B

where | B| denotes the Lebesgue measure of B C R.

Proof. We choose a constant C| > 0 so that H (x,0) < C; for all x € B(0, R), which guarantees that L(x, &) > —C}
for all (x, &) € B(0, R) x R". For each ¢ > 0 we set

M(e) =max{|H(x, p)|| (x, p) € B(0, R) x B(0,7 ")},
so that for (x, &) € B(0, R) x R”,
L(x.&)>max{&-p— H(x,p) | pe B(0.e7")} > 7] — M(e).

Now, let B C [0, T'] be a measurable set, and observe that

T

/(L(y(t), y (@) +Cp)dr < /(L(y(t), y(®)+Ci)dt <C+C T,
B 0

from which we get

/(8_1|3’(f)| +C1—M())dt <C+C1T.
B

Hence we have

/[;}(r)| dt <e(C+CiT)+eM(e)|B],
B

which shows that (6.3) holds with M, = 8M(8), where s =s(C + C;T)~!. O

Proof of Lemma 6.3. We choose a constant R > 0 so that |y, (¢)] < R for all # € [0, T'] and all k € N. Passing to a
subsequence of {y}xeN if necessary, we may assume that there is a constant C > 0 such that

T
/L(yk(t), yi(t))dr <C  forall k e N.
0

Now, by Lemma 6.4, for each ¢ > 0 we may choose a constant M (¢) > 0 so that for any measurable B C [0, T']
and for all k € N,

f|)>k(t)|dt<8+M(s)|B|. (6.4)
B
We deduce from (6.4) that for any ¢ > 0 and any mutually disjoint intervals [a;, b;] C [0, T], withi = 1,2, ..., m,

Yy —y@)| <e+ M) (b —a,

i=1 i=1
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which shows that y € AC([0, T'], R") and

/Iy‘(r>|dz<e+M(e)|B| (6.5)
B

for any measurable subset B of [0, T'].
Next let f € AC([0, T'], R") and observe by using integration by parts that as k — 0o

T T
/ F@O ) dt = (f - y(T) = (f ) (0) = / f@) vy dr
0 0
T
- (f~7/)(T)—(f-)/)(O)—/f(t)-y(t)dt
0

T
= ff(r) p (1) dr.
0

Now we introduce the Lagrangian L, with o > 0, as follows. Fix & > 0 and define the function H,, : R = (0, 00]
by
Ipl?
Hy(x,p)=H(x,p)+ o +8B0,0)(P),

where §¢ denotes the indicator function of C C R” defined by §¢(p) = 0if p € C and = 0o otherwise. Next define the
function Ly : R¥ — R as the Lagrangian of Hy, thatis, Ly (x,&) =sup{é - p — Hy(x, p) | p € R"} for (x,&) € R%".
It is easy to see that, for all (x, ) € R?, Lq(x, &) < Lg(x,&) < L(x,8) if a < B, that limg 00 Lo (x,§) = L(x,§)
for all (x,&) € R?"_ and that for any (x,§) € R if p € Dy Ly(x,§), then | p| < a. Also, as is well known, for any
a > 0, Ly is differentiable in the last n variables everywhere and L, and D, L, are continuous on R?". In view of the
monotone convergence theorem, in order to prove (6.2), we need only to show that for any o > 0,

T T
[ Lty o) ar <timint [ Lm0, o) . (6.6)
0 0
To show (6.6), we fix & > 0 and note by convexity that for a.e. t € (0, T) and any k € N,

Lo (yc(@), 7)) = Lo (v (@), ¥ (1)) + D2La (v (1), ¥ @) - (Y (6) — y (1)).

Since
[La(n®. 7 0)| < [La(re. 0)| + |y O] < max [La(x, 0] +alyO)]eL!©.T),

by the Lebesgue dominated convergence theorem, we get
T T
Jim / La(y(@), 7 (1)) dt = / Lo(y @), 7)) dt.
0 0
Next, we set fx(t) = DaLy(yx(t), y(t)) and f(t) = DaLy(y(t),y(t)) for t € [0, T] and k € N. Then fi, f €
L0, T,R") forall k e N, and | f; ()| <@ and | f(t)| <« a.e. t € (0, T) for all k € N. We may choose a sequence
{gj}jen CAC([0,T],R") so that g;(t) — f(t) ae. t €(0,T)as j — ocoand |[g;j(#)| <« forallt€[0,T], j €N.
Note that fi(t) — f(t) a.e. t € (0,T) as k — oo and recall that the almost everywhere convergence implies the
convergence in measure. For each ¢ > 0 we set

ue. k)= {te O, ) ||(fi — H®)|>e}| forkeN,
ve, j)={te©,T)||(g;— f)@®)|>e}| forjeN,
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and observe that limy_, oo (e, k) =lim; . v (e, j) =0 for any ¢ > 0.

Fix any ¢ > 0, § > 0, and k, j € N. Observing that

{1 € O.D)[|(fk =8| > 2e}| < ule, k) +vee, /)
and using (6.5) with ¢ replaced by § or 1, we get

< / 20|y (t)| dr + / 26|y (t)| dt
| fi—gjl>2e [fi—gjl<2e
<2a[8+ M) (ule, k) +v(e, )] +26(1+MDT).

T
/(fk )@ ) dr
0

Similarly we get

< / 2a|y(t)|dr + / gly(n)|dt
lgj—fl>¢ lgj—fl<e
<2a(8+M@©@)v(e, j)) +e(l+MDT).

T
/(gj — N -y@)de
0

Hence we have

a8+ M©O) (e, k) +v(e, ) +3e(1+MDT)

T
/(fk-y'k—f~y'>dr
0

T
[ e Ge=a
0
Now, since g; € AC([0, T], R"), we have

+

T
lim fg,--(y‘k—wdr:o,
k— 00
0

and hence
T
lim sup /(fk~)}k—f~)})dt <4a(8+ MO, j)) +3e(1+M)T)
k—o00
0

for any ¢ > 0, § > 0, and j € N. Sending j — oo and then ¢, § — 0, we see that
T T
dim [ Do (). 7(0)) - (1) dr = / DaLo(y (), 7)) - 7 (0)dr.
0 0
Finally, noting by the Lebesgue dominated convergence theorem that
T T
jin [ DaLu(n0.70) - 708 = [ DaLa(y0.70) - 701,
0 0

we obtain

T T
kl_ifgo/(La(Vk(t),)?(t))+D2La(7/k(t),?(t)) (e —?(t)))dt=/La(V(t),?(t)) dr
0 0
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and moreover
T T T

f Lay(®),7(0)) i < limin / La(®), 7:(0) di < liminf / L(n(0). ) dr,
0 0 0

completing the proof. O

Lemma 6.5. Let € S;; N Pg. Let S < T, R> 0, and C > 0. Let y € AC([S, T], R") satisfy y (T) € B(0, R) and
T

By (1) =0y ) +C > [ Liva.yo)ar.
S
Then there exists a constant M > 0 depending only on ¢, ¢1, R, and C such that y (t) € B(0, M) forallt €[S, T].

Proof. Fix any ¢ € [S, T'). By Proposition 2.5, we have
t
By @) =) < [ L) 7).
S
Hence we get

P(r(M) —d(y®) +C = [ L(y(s), () ds —o(y(®) +¢(r(S))

t T

L(V(S),J?(S))ds—/L(V(S),J?(S))dS=/L(V(S),7?(S))dS-

S t

>

C— T

Recall by our normalization that ¢; € S,. Using Proposition 2.5 again, we get

T
61 (v (D) — b1y (1) < / L(y(s). p(s)) ds.
t

Therefore we get

@ —oD)(y(®) <(@—oD(y(T)+C. (6.7)

Set Ci = maxpg(,r)(¢ — ¢1). Since limy|o0(¢p — ¢1)(x) = o0, there exists a constant M > R such that
infRrn\ g0, m) (¢ — ¢1) > C1 + C. Fix such a constant M, and observe by (6.7) that y (t) € B(0, M). O

Proof of Theorem 6.1. Fix any ¢ € Sy N @ and T > S. We may assume without loss of generality that S = 0.
Note that the function u(x, t) := ¢ (x) on R" x [0, 00) is a viscosity solution of (1.1). By formula (5.1), we have
for any (x, T) € R" x (0, 00),

T
¢ (x) :inf{/L(y(t), y (@) dr +¢(y(0)) ’ y eC(x, T)}. (6.8)
0
Fix any x € R”. According to the above identity, for each k € N we may choose a curve y; € C(x, T') so that
T
$) + % > f L), 72(0) dt + ¢ (1%:(0)). (6.9)

0
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We use Lemma 6.5 to see that there is a constant R > 0 such that y,(¢) € B(0, R) for all t € [0, T] and all k € N.
It now follows from (6.9) that there exists a constant C > 0 such that

T
fL(Vk (1), (1)) dt < C  forallk €N.
0

Applying Lemma 6.4, we find that ||yk|[ 1, 7y < M for all k € N and for some M > 0.

From these observations, we see that the sequence {y}ren is uniformly bounded and equi-continuous on [0, T].
By the Ascoli—Arzela theorem, we may assume by passing to a subsequence if necessary that the sequence {yx}reN
is convergent to a function y € C([0, T'], R") in the topology of uniform convergence. Lemma 6.3 together with (6.9)
now guarantees that y € C(x, T) and that

T
/L(y(t),?(t))dt <o (x) —p(r(0). (6.10)
0

Fix any a,b € Rsothat 0 <a < b < T. Using (6.7) or Proposition 2.5, we have

a

$(y(@) — p(yO) < / L(y (). 7)) dr.

0

b
6(y ) — d(y (@) < f L(y (), 7 () dr.

T
o(r (1) — p(y ) < / Ly (). 7(®) dr.
b
These together with (6.10) yield
b

P(r®) —o(r@) = / L(y®),y®)dr,

a

which shows that y € £([0, T'], ¢). The proof is now complete. O
We give a useful property of extremal curves in the following proposition.

Proposition 6.6. Let T > 0, ¢ € Sy;, and y € £([0, T1, ¢). Then there exists a function g € L*(0, T, R") such that

Ly, y®))=q@)-y@) aete(,T), (6.11)
H(y(®),q())=0 aete(,T), (6.12)
q(1) €d.p(y (1)) aete(0,T). (6.13)

Proof. Fix T >0, ¢ € S, and y € £([0, T'], ¢). By Proposition 2.4, there is a function g € L*(0, T, R") such that

%¢(y(t)) =q@)-y(t) aete(0,7T), (6.14)

q(t) €d:p(y () ae.te(0,T). (6.15)
Hence we get

H(y(t),q®) <0 ae.te(0,7). (6.16)

Integrating (6.14) over (0, T') and using (6.16), we compute that
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T T

o(v(1)) — d(y(0)) = /q(r) Sp()dr < f[L(y(o, y®)+ H(y @), q(0)]dt

0 0
T
= / L(y®),y®)dt =¢(y (1)) — o(v(0)),
0

which shows that
T T

T
fq(t)-V(t)dt=f[L(y(t),)>(t))+H(y(t),q(t))]dt=/L(y(t),a>(t))dt. (6.17)
0 0 0

In particular, we get

T
/H(y(t),q(t))dt=0,
0

which together with (6.16) yields
H(y(®),q(1)=0 ae.r€(0,7).
Similarly, since
q®) -y <L(y®),y®)+H(y@®),q®)) =L(y@),y®) ae.te€(0,T),
we see from (6.17) that
q@)-y@®)=L(y®),y®) aete(,T).
Thus the function ¢ satisfies conditions (6.11), (6.12), and (6.13). O

7. Proof of Theorem 1.3

This section will be devoted to proving Theorem 1.3. As before, the eigenvalue cy is assumed to be zero in this
section.

Let {S;},>0 be the semi-group of mappings on ®@¢ defined by S;uo = u(-, ), where u is the unique viscosity solution
of (1.1) and (1.2) satisfying (1.4).

The following proposition is a variant of [12, Lemma 5.2].

Proposition 7.1. Let K be a compact subset of R". Then there exist a constant § € (0, 1) and a modulus w for which
ifupe @y, ¢Sy, v €&(0,T],¢), y(0, T CK, T >12>20and t/(T — 1) <4, then

tT T
Stuo(y (1)) = Szuo(v () < $(y (1)) — ¢ (v () + ﬁ“’(T — T).

We need the following lemma for the proof of Proposition 7.1.

Lemma 7.2. Let K be a compact subset of R". Then there exist a constant § € (0, 1) and a modulus  such that for
any T >0, ¢ € Sy, y € £([0, T, @) satisfying y([0,T]) C K, and 1 € [-6, 5],

A+ 'Ly @), A+0y®)) < L(y@), 7)) + [Mo(IA])  aete©,T).

Proof. Set O = {(x,p) € K x R" | H(x, p) < 0}. It is clear that Q is a compact subset of R%". Define the set
S CcR" x R" by

S:= {(x,S) € Q& € D, H(x, p) for some p € R" such that (x, p) € Q}.
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By Proposition 2.3, the set S is a compact subset of intdom L. Thus we may choose a constant ¢ > 0 so that
Se:={(x,£) e R | dist((x, &), §) < e} C intdom L.

We choose an R > 0 so that S C B(0, R) (the ball on the right-hand side is a ball in R?") and set § = min{1/2, ¢/R},
so that for any (x, &) € S and any A € (=6, 6), (x, (1+21)&) € S;. Let wy be a modulus of continuity of the uniformly
continuous function D> L on S;.

FixT >0,¢ ¢ S,;, y € £([0, T], ¢) such that ¥ ([0, T]) C K, and A € [—§, §]. According to Proposition 6.6, there
is a function ¢ € L°°(0, T, R") such that

H(y().,q®))=0 and y@)eD;H(y({).q() ae.te(0,T7). (7.1)
Therefore we have (y (1), y (1)) € S ae. t € (0, T). Hence, for any 1 € (=8, §), we have
(y@®,1+wy®)esS. aere(0,T).
Consequently, for any u € (-4, §), we have
|D2L(y (1), 7 (1)) = D2L(y (1), (1 + w)y ()| < wo(lully]) ae.r€(0,T).
In view of (7.1), we have
L{y@,y®) =y @) -q@) = H(y®),q(0) =y () - D2L(y (1), 7 (1)) ae.1€(0,T).
Now we compute that for a.e. 7 € (0, T),
Ly@), 1+ 2y ®)=L(y@®),y®) +rD2L(y (1), 1 +6,)y (1)) -y () (1.2)

(for some 6; € (0, 1), and furthermore)

<L(y®),7®) +AD:L(y (1), 7 (@) - 7 (@) + M|y )] wo (1Al |7 (®)))
=1+ DL(y@), 7)) + M|y ®O]wo(I1A]y®)])-
Setting w(r) = 2Rwo(Rr), for a.e. t € (0, T'), we have

A+ Ly, A+10y®) <L(y@),7®) + Mo(rl). O

Proof of Proposition 7.1. Let § € (0, 1) and w be those from Lemma 7.2. Fix any ug € ¢, ¢ € Sp;, ¥ € £([0, T, ¢)
such that ¥ ([0, T]) C K, and T > t > 0 such that 7(T — 7)~! <&. Set u(x, 1) = S;uq(x) for (x,1) € R* x [0, 00).
Sete=1/(T — 1) €[0,5].

Setting T, = (1 + &)~ T, observing that

u(y(T),T) =u(y(T), T; +&T)

T,

= inf{/ L(n@®),n(1))dt +u(n(0), eT;)

0

nEC(V(T),Tg)},

and choosing 7(¢) := y ((1 4+ ¢)t) in the above formula, we get
T,
u(y(T),T) < f L(y (A 4e)), A+e)y((1+o)))dr +u(y(0),eTy).
0

By making the change of variables s = (1 4 ¢)¢ in the above inequality, we get

T
u(y(T),T) < /(1 + 8)_1L()/(S), (L4 &)y (s))ds +u(y(0), eT;).
0
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Using Lemma 7.2, we see immediately that
T
u(y(T),T) < / L(y(s),7(s))ds +u(y(0),eT;) + ew(e)T.
0
Observing that eT; = 7, we get
T
u(y(T),T) < f L(y(s),y(s))ds +u(y(0),7) + il w( i )
T—1 T—1
0
Recalling that y € £([0, T], ¢), we obtain

T
u(y (1), T) = u(y(©0),7) <P(y (1)) — p(y () + TT—_Tw(T i T). D

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. We fix any u( € @( and define the functions u* : R” — R by

ut(x) = limsup S;uo(x), u~ (x) =liminf Syug(x).
t—00 11— 00
Since the function u(x, t) := S;ug(x) is bounded and uniformly continuous on B(0, R) x [0, oo) for any R > 0 by
Theorem 5.8, we see that u* € C(R") and that u™ (x) = limsup} , . u(x, ) and u~ (x) = liminf,, , cu(x, r) for all
x € R". As is standard in viscosity solutions theory, we have ut € Sy and u™ € S;;. Moreover, by the convexity of
H(x,:),wehaveu™ € S;I. Also, from Lemma 5.1 we see that u™ € D.

To conclude the proof, it is enough to show that ™ (x) = u™ (x) for all x € R".

We fix any x € R". By Corollary 6.2, we find an extremal curve y € £((—o0, 0], u™) such that y(0) = x. By
Lemma 6.5, we may choose a constant R > 0 so that y(t) € B(0, R) for all t € (—o0, 0]. By the definition of u™,
we may choose a divergent sequence {t;} C (0, 00) such that lim;_, oo u(x,t;) = ut(x). Noting that the sequence
{y(=t;)} C B(0, R), we may assume by replacing {¢;} by one of its subsequences if necessary that y (—¢;) — y as
j — oo for some y € B(0, R).

Fix any ¢ > 0, and choose a 7 > 0 so that u™ (y) +& > u(y, 7). Let § € (0, 1) and w be those from Proposition 7.1.
Let j € N be so large that 7(¢; — 7)~! < 8. We now apply Proposition 7.1, to get

Tt; T
; w< )
1, —7 1, —7

ut ) <uly, D) +u ) —u" ) <u" ) +et+u x)—u (y)=u (x)+e,

ux, 1)) =u(y0),1;) <u(y (=), t) +u= (y(0) —u(y(~1;) +

Sending j — oo yields

from which we conclude that # ™ (x) < u~(x). This completes the proof. O
8. A formula for asymptotic solutions and Aubry sets

In the previous section we have proved Theorem 1.3 which states that the viscosity solution u# of (1.1) and (1.2)
satisfying (1.4) approaches to vg(x) — ct in C(R") as t — 0o, where (c, vg) € R x @ is a solution of (1.3). In this
section we give a formula for the function vy.

Let ¢ = cy. Following [17] with small variations in the presentation, we introduce the Aubry set for H[u] = c.
First of all, we define the function dy € C(R" x R") by

dy(x,y)= sup{v(x) lve C(R"), Hv]<cinR", v(y) = O} 8.1

where the inequality H[v] < ¢ should be understood in the viscosity sense, and Ay as the set of those y € R" for
which the function dy (-, y) is a viscosity solution of H[u] = c¢ in R"”. We call Ap the Aubry set for H or for H[u] = c.
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Theorem 8.1. For any x € R",
vo(x) =inf{dy (x,y) +du(y.2) +uo(2) | y € An, z€R"}. (8.2)

We need several properties of the function dy and the Aubry set Ay for the proof of Theorem 8.1 and present
them here.

Henceforth we assume as usual that ¢ = 0 and that ¢o, ¢ € 5.

Since the equation, H[v] = 0 in R", has a viscosity solution in the class @( by Theorem 3.3 (or 1.2), the set

{UGSI} | v(y)=()}

is nonempty and, because of the coercivity assumption on H, it is locally equi-Lipschitz continuous. Therefore, the
function dg (-, y) defined by (8.1) is locally Lipschitz continuous on R" and vanishes at x = y for any y € R".
Since the pointwise supremum of a family of viscosity subsolutions of (8.1) defines a function which is a viscosity
subsolution of (8.1), for any y € R", we have dy (-, y) € Sj;. In view of the Perron method, we deduce that, for any
y € R", the function dg (-, y) is a viscosity solution of (8.1) in R" \ {y}. Thus we see that

yeR"\ Ay ifandonlyif 3Ipe D{dy(y,y)suchthat H(y, p) <O. (8.3)

For any y, z € R”, the function w(x) :=dg (x, y) —dp(z, y) is a viscosity subsolution of (8.1) and satisfies w(z) = 0.
Therefore we have w(x) < dg (x, z). That is, we have the triangle inequality for dy:

dy(x,y) <dg(x,z) +dy(z,y) forallx,y,zeR".
Also, we see by the definition of dy that v(x) — v(y) <dp(x,y) forany v € §;; and x, y € R”

Proposition 8.2. The following formula is valid for all x, y € R":

t

dy(x,y) = inf{/ L(y(s), )}(s)) ds

0

t>0, yeCx,t; y,O)}. (8.4)

Proof. We write p(x, y) for the right-hand side of (8.4) in this proof.
Letx,yeR",t>0,and y € C(x,t; y,0). Since dg (-, y) € 81;, by Proposition 2.5, we have

t

dir (v, y) =d (v (). y) — dir(y(0). y) < f L(y(s). 7(s)) ds.
0

from which we get dy (x, y) < p(x, y) forall x, y e R".

Next we show that for each y € R" the function p(-, y) is locally Lipschitz continuous on R”.

Fix any R > 0. By Proposition 2.1, there are constants eg > 0 and Cg > 0 such that L(x, &) < Cg for all (x,£&) €
B(0, R) x B(0,er).Fixany x,y € B(0O, R)and § > 0,andset T := (6 + |x —y|)/egand & = ep(x —y) /(6 +|x — y]).
Define the curve y € C(x, T; y,0) by y(s) = y + s&. Noting that £ € B(0, eg), we get

T T

P(x,y)</L(V(S),J?(S))dS=/L(y+SE,$)dS<CRT=8,§1CR(5+IX—y|)-
0 0

Letting § — 0 yields p(x, y) < SEICRDC — y|, which, in particular, shows that p(x, x) < 0. It is easy to see that for
any x,y,z € R", p(x,y) < p(x,2) + p(z,y). Therefore, for any x, y,z € B(0, R), we have |p(x,y) — p(z,y)| <
81;] Crlx —z|.

In order to prove that p(x, y) < dp(x, y) forall x, y € R”, it is sufficient to show that for any y € R", the function
v := p(-, y) is a viscosity subsolution of H[v] =0 in R”. This is a consequence of a well-known observation on value
functions like v. Indeed, Theorem A.1 in Appendix A applied to the current v, with S = {y} and £2 = R”, assures that
veSy,. O

Proposition 8.3. The Aubry set Ay is a nonempty compact subset of R".
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We need two lemmas to show Proposition 8.3.

Lemma 8.4. For any compact K C R" \ Ay there are a function ¢ € Sy; N @y and a constant § > 0 such that
Hl¢g] < —4 in a neighborhood of K in the viscosity sense.

Proof. Let y € R" \ Apg. There is a function ¢ € C'(R") such that ¢(y) =0, ¢(x) < dg(x, y) for all x € R\ {y},
and H(y, De(y)) < 0. With a sufficiently small constant § > 0, we set

¥ (x) =max{p(x) +8,du(x,y)} forallx eR",

to get a function having the properties: (i) H[y] < 0 in R” in the viscosity sense, (ii) H[¢] < —e in int B(y, ¢) in
the viscosity sense, and (iii) ¥ € @¢. Thus we see that for each y € R" \ Ay there is a pair (y, &) € g x (0, 00)
such that H[yy] < 0 in R" in the viscosity sense and H[v,] < —&y in int B(y, &y) in the viscosity sense. By a
compactness argument, we find a finite sequence {y;}/_, such that K C Uj=iint B(y;, €;), where ¢; := ey, We set
e=min{e; | j=1,2,...,m} and

1 m
P () =— D ¥j(x) forallx eR", where ¥ := 1.
j=1

It is easily seen that ¢px € P9 NSy and H[¢k] < —&/m in a neighborhood of K in the viscosity sense. O

Lemma 8.5. Let ¢ € COTL(R") be a viscosity solution of H[¢] < 0 in R", y a point in R", and ¢ > 0 a constant.
Assume that H[¢] < —¢ a.e. in B(y,¢). Then y ¢ Ag.

Proof. Let ¢, y, and ¢ be as above. We argue by contradiction and suppose that y € Ay. Set u = dg (-, y). By
continuity, there is a constant § > 0 such that the function v € CO+1(RM), defined by v(x) = ¢ (x) + d minf{|x — y|, €},
satisfies H[v] < 0 a.e. in R”. By the definition of dg, we have u(x) > v(x) — v(y) for all x € R", which shows that
u(x) > o¢(x)—¢(y)forallx € dB(y,e/2) and u(y) = ¢ (y) — ¢ (y) = 0. We approximate ¢ by a sequence of functions
¢r € C L(R™), with k € N, obtained by mollifying ¢. Here, of course, the uniform convergence ¢y (x) — ¢(x) is
assumed on any compact subsets of R" as k — co. We may assume as well that H[¢x] < —&/2 on B(y, £/2). Noting
that as k — oo,

lim  min  (u(x) —ge(x) —g(») >  min  (u(x) —p(x) —(y)) > u(y) =0,

k—o0ox€dB(y,e/2) x€dB(y,e/2)

we deduce that if £ is sufficiently large, then u — ¢ attains a local minimum at a point x; € B(y, €¢/2). For such a k,
since H[u] > 0 in R” in the viscosity sense, we get

H (xi, Doy (xx)) = 0.
On the other hand, by our choice of ¢y, we have

£ 3
H(x, D¢y (x)) < —3 forall x € B<y, E)’

and, in particular, H (xg, Dy (xx)) < —e/2. Thus we get a contradiction, which proves that y ¢ Ay. O

Proof of Proposition 8.3. We begin by showing that Ag # @. For this, we suppose that Ay = ¢ and will get a
contradiction. There is a constant R > 0 such that H[¢] < —1 in R" \ B(0, R) in the viscosity sense. By Lemma 8.4,
there are a function ¥ € @ and a constant ¢ € (0, 1) such that H[¢¥] <0 a.e. in R" and H[¢¥] < —¢ a.e. in B(0, R).
By setting v = 1 (¥ + ¢1), we get a function v € C*!(R") which satisfies H[v] < —¢/2 a.e. in R". Hence, by the
definition of the additive eigenvalue ¢, we have ¢ < —e/2, which contradicts our assumption that ¢ = 0.

Using again the fact that ¢; € 81_{ satisfies H[¢1] < —1 in R" \ B(0, R) in the viscosity sense, we see from
Lemma 8.5 that Ay C B(0, R).

It remains to show that Ay is a closed set. Let {yx} C Ag be a sequence converging to y € R". Because of the
coercivity assumption (A2), the sequence {dg (-, yx)} is locally equi-Lipschitz on R". In particular, there is a constant
C > 0 such that max{dy (yx, ¥),du (¥, yr)} < C|yx — y| for all k € N. By the triangle inequality for dy, we have

|du (x, ) — dp (x, yo) | <max{du (v, y),du(y, yo)} < Clyk — y| forall x e R".
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Consequently, as k — oo, we have dg (x, yx) — dg(x, y) uniformly for x € R". By the stability of the viscosity
property under uniform convergence, we find that dy (-, y) € Sy, proving that y € Ay and therefore that Ay is a
closed set. O

Theorem 8.6. Let v € Sp; and w € S; N @g. Assume that v < w on Ay. Then v < w on R".

Proof. Fix any ¢ > 0. Choose a compact neighborhood V of Ay so that v(x) < w(x)+ ¢ for all x € V. Fix a constant
R > 0sothat H[¢1] < —1 a.e.in R"\ B(0, R). By Lemma 8.4, there are a function v € CHL(R") such that H¥]<0
a.e. in R" and H[y] < —6 a.e. in B(0, R) \ V for some constant § € (0, 1). We set g(x) = %(qbl(x) + ¥ (x)) for all
x € R" and observe that H[g] < —% ae.in R"\ V. Let A € (0,1) and set vy (x) = (1 — AM)v(x) + Ag(x) — 2¢ for
x € R". Observe that H[v,] < —%‘S in R" \ V and that for A € (0, 1) sufficiently small, vy (x) < w(x) forall x € V.
We apply Theorem 3.2, to get vy (x) < w(x) for all x € R” \ V and all A sufficiently small. That is, if > € (0, 1) is
sufficiently small, then we have v (x) < w(x) for all x € R". From this, we find that v(x) < w(x) forall x e R*. O
The above theorem has the following corollary.

Corollary 8.7. Let u € Sy. Then
u(x) = inf{u(y) +dy(x,y)|ye AH} forall x e R". (8.5)

We refer to [15,17] for previous results related to Corollary 8.7. Also we refer to [22] for a recent result which
generalizes the above representation formula.

Proof. We write v(x) for the right-hand side of (8.6). Since v is defined as the pointwise infimum of a family of
viscosity solutions, the function v is a viscosity solution of H[v] =0 in R”. Since u(x) — u(y) < dy(x, y) for all
x,y € R", we see that u(x) < v(x) for all x € R". On the other hand, for any x € Ay, we have u(x) = u(x) +
dg(x,x) > v(x). Hence Theorem 8.6 guarantees that u(x) > v(x) forallx e R". 0O

We are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. We write w(x) for the right-hand side of (8.2) and set wo(x) = inf{dy (x, y) +uo(y) | y € R"}
for x € R". Also we write u(x, t) = S;ug(x) for (x,t) € R" x [0, 00).

By the definition of wy, it is clear that wo(x) < ug(x) for all x € R". Since dy (-, y) € Sp; for all y € R", we see
that wg € Sy,;. Noting that the function z(x, t) := wo(x) is a viscosity subsolution of (1.1), we find by Theorem 4.1
that z(x, 1) < u(x,t) forall (x,r) € R" x [0, 00), which implies that wg < vg on R”. Since w < wo < vg on Ay, by
Theorem 8.6 we obtain w < vy on R”.

Next we fix any x € R”, y € Ay, and z € R". Note that dy (-, y) € Sy N @g. By Corollary 6.2, we may choose a
curve y € £((—00,0],dg (-, y)) so that y(0) = x. By Lemma 6.5, there is a constant M > 0 such that y (t) € B(0, M)
for all + < 0. We choose any divergent sequence {¢;}jen C (0, 00) such that {y (—#;)}jen is convergent. Let xo € R"
be the limit of the sequence {y (—¢;)}.

Arguing as in the last part of the proof of Theorem 1.3, with dg (-, y) in place of u™, we obtain

tt; t
t—1 tj—1t

for any ¢t > 0 if j is large enough, where w is the modulus from Proposition 7.1. Sending j — oo yields

u(x, 1)) <dp(x,y) —du(y (=), y) +uly(=1;),1) +

vo(x) <dg(x,y) —dy(xg,y) +u(xg,t) forz>0.

By the variational formula (5.1), we have

t

u(xo,z)gfL(g(s),é(s))ds+uo(§(0)) for any & € C(xo, 1).

0
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Hence we have
t

vo(x) <dp(x,y) —du(xo,y) + / L(£(s),£(s)) ds +uo(£(0))
0
for all t > 0 and & € C(xp, t). Consequently, we have

t S

vo(x) <dy(x,y) —dp(xo,y) + / L(£(0),£(0))do + / L(n(0),7(0)) do + uo(z)
0 0
forany t >0,s >0, & € C(xg,t;y,0),and n € C(y, s; z,0). Therefore, by Proposition 8.2, we get

vo(x) <dp(x,y) —du(xo,y) +du(xo,y) +du(y,z) +uo(z)
=dp(x,y) +du(y,z) +uo(z).

Thus we have vg(x) < w(x) for all x € R". The proof is now complete. O
9. Examples
We give two sufficient conditions for H to satisfy (A.4).
Let Hy e C(R" x R") and f € C(R"). Set H(x, p) = Ho(x, p) — f(x) for (x, p) € R" x R". We assume that
lim f(x) = oo, ©-b

|x]—00
and that there exists a § > 0 such that

sup |Hp| < oo. 9.2)
R x B(0,8)

Fix such a § > 0 and set

Cs= sup |Hol
R" % B(0,8)

Then we define ¢; € co+l R"), with i =0, 1, by setting

1)

¢>0(X)=—§IXI and  ¢;(x) = —d|x|,
and observe that fori =0, 1,

Ho(x, Do; (x)) < Cs forall x e R"\ {0}.
Hence, for i =0, 1, we have

1 1

Ho(x, Déi(x)) < 5/ () +Cs—min [ forallx € R"\ {0}.

If we set
1 | n .
oi(x)zgf(x)—C(g+§nIglnf forx e R"andi =0, 1,

then H satisfies (A.4) with these ¢; and o;, i =0, 1. It is clear that if Hy satisfies (A.1)—(A.3), then so does H.

A smaller ¢ yields a larger space @, and in applications of Theorems 1.1-1.3, it is important to have a larger @.
We are thus interested in finding a smaller ¢9. A method better than the above in this respect is as follows. We assume
that (9.1), (9.2), and (A.2) with Hy in place of H hold and that for each x € R” the function: p — Hy(x, p) is convex
in R". We fix a function 6 € C'(R") so that

lim 6(x)=o00 and lim |DO(x)|=0.
|x]—00 [x]—00
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For instance, the function 6(x) = log(|x|> 4+ 1) has these properties. Fix an ¢ > 0 so that ¢| D0 (x)| < §/2 for all
x € R". Fix any A € (0, 1). Define the function G € C(R" x R") by

G(x, p) =max{Ho(x, p), Ho(x, p —eDO(x))} — (1 = 1) f(x) — Cs + (1 — 1) rrﬁinn f.

We note that for each x € R” the function: p — G(x, p) is convex in R”. Define the function ¥ € C?t1(R") by
¥ (x) = inf{v(x) | v e COTH(R"), G[Dv] <0 ae.inR", v(0) =0}.

Note that v(x) := —%|x| has the properties: G(x, Dv(x)) < 0a.e. x € R" and v(0) = 0. Hence we have ¥ (x) < —% |x|
for all x € R". Because of the convexity of G(x, p) in p, we see that ¢ is a viscosity solution of G[¥] <0 in R”.
This implies that ¥ and ¥y — €6 are both viscosity solutions of

H(x,Dv) < —Af(x)+Cs—(1— )”)nll{i,}lf in R".
With functions ¢g := ¥, ¢1 ;= — €0, and o9 = o1 := Af — Cs + (1 — A) mingre f, the function H satisfies all

the conditions of (A.4). As is already noted, the function i satisfies the inequality ¥ (x) < —%|x| for all x € R”.
Moreover, for any y € (1/2, 1), the function v(x) := —y §|x| satisfies

G(x, Dv(x)) <0 ae.xeR"\ B(0,R)

for some constant R = R(y) > 0. It is now easy to see that if A > 0 is large enough, then
)
P(x) < min{—§|x|, —yd|x|+ A} for all x e R".

Now we examine another class of Hamiltonians H. Let o« > 0 and let Hy € C(R") be a strictly convex function
satisfying the superlinear growth condition

Hy(p)
m =0
Ipl—>oco | p]
Let f € C(R"). We set
H(x,p)=ax-p+ Hy(p) — f(x) for(x,p)eR" xR".

This class of Hamiltonians H is very close to that treated in [19].
Clearly, this function H satisfies (A.1), (A.2), and (A.3). Let L¢ denote the convex conjugate Hj of Ho. By the
strict convexity of Hyp, we see that Lo € C I(R"). Define the function ¥ € C!(R") by

1
¥ (x) = ——Lo(—ax).
o

Then we have Dy (x) = DLo(—ax) and therefore, by the convex duality, Hy(Dv(x)) = Dy (x) - (—ax) — Lo(—ax)
for all x € R". Consequently, for all x € R", we have

H(x, Dy (x)) = ax - DY (x) + Ho(Dy (x)) — f(x) = —Lo(—ax) — f(x).
Now we assume that there is a convex function / € C(R") such that
lim (I(—ax) + f(x)) = o0, (9.3)
[x]—00
lim (Lo —1)(&)=o0. 9.4)
&]—>00
Let i denote the convex conjugate of /. We define ¢ € C O+ (R™) by ¢(x) = —all (—ax) for x € R". This function ¢

is almost everywhere differentiable. Let x € R” be any point where ¢ is differentiable. By a computation similar to
the above for ¢, we get

ax - Do(x) + h(D¢(x)) — f(x) < =l(—ax) — f(x). 9.5)

By assumption (9.4), there is a constant C > 0 such that Lo(¢) > [(§) — C for all £ € R”. This inequality implies that
Hyp < h+ C in R". Hence, from (9.5), we get

H(x, D¢(x)) < =l(—ax)— f(x)+C.
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We now conclude that the function H satisfies (A.4), with the functions ¢g = ¢, ¢1 = ¥, op(x) =Il(—ax) + f(x) —C,
and o1 (x) = L(—ax) + f(x).

It is assumed here that Hy is strictly convex in R”, while it is only assumed in [19] that Hy is just convex in R”, so
that Lo may not be a C ! function. The reason why the strict convexity of Hy is not needed in [19] is in the fact that
Hamiltonians H in this class have a simple structure of the Aubry sets. Indeed, if ¢ is the additive eigenvalue of H,
then min,crr H (x, p) = c for all x € Ay. Given such a simple property of the Aubry set, the proof of Theorem 1.3
can be simplified greatly and does not require the C! regularity of Lg, while such a regularity is needed in the proof of
Lemma 7.2 in the general case. Any x € Ay is called an equilibrium point if min,egr H (x, p) = c. A characterization
of an equilibrium point x € A is given by the condition that L(x, 0) = —c. The property of Aubry sets Ay mentioned
above can be stated that the set . Ay comprises only of equilibrium points.

The following example tells us that such a nice property of Aubry sets is not always the case. Let n = 2 and here
we write (x,y) for a generic point in R%. We choose a function g € C(R?) so that g > 0 in R?, g(x,y) = 0 for
all (x,y) € R? \ B((0,0), 1), and g(x, y) > 0 for all (x, y) € int B((0, 0), 1). Also, we choose a function 4 € C(Rz)
so that h(x, y) > 0 for all (x,y) € R%, h(x,y) =0 for all (x,y) € B((0,0),2), and h(x, y) > x> + y> — 4 for all
(x,y) € R%. We define the Hamiltonian H € C(R*) by

Hx,y, p.q)=(p— g, ) +q% — g, »)? — hix, y).

It is clear that this Hamiltonian H satisfies (A.1)—(A.3). Note that (9.1) and (9.2) are satisfied with Hy(x, y, p,q) =
(p—glx, y))2 + q2 —g(x, y)2 and f = h. Thus we see that H satisfies (A.4) as well. Note moreover that we may
take the function: (x, y) — §|(x, y)|, with any § > 0, as ¢g in (A.4).

Note that the zero function z = 0 is a viscosity solution of H[z] <0 in R? and that min( .q)R? Hx,y,p,q)=0
for all (x, y) € B((0, 0), 2). Therefore, in view of Proposition 3.4, we deduce that the additive eigenvalue ¢ for H is
Zero.

Now we claim that Ay = B((0, 0), 2) \ int B((0, 0), 1). Since the zero function z = 0 satisfies

H[z]=—h(x,y) <0

in R? \ B((0,0), 2), we see by Lemma 8.5 that Ay C B((0,0),2). Let ¢ CHI(R?) be any viscosity subsolution of
H[¢] =0in R%. Then, since H(x, y, p,q) = (p — g(x, y))> + g% — g(x, y)? for any (x, y, p, q) € R*> x B((0,0),2),
for almost all (x, y) € B((0,0),2) we have
d¢

0< ==, y) < 28(x, ). ©.6)
Since g(x, y) =0 for all (x, y) € B((0,0),2)\ B((0,0), 1), we find that D¢ =0 a.e. in B((0, 0), 2) \ B((0,0), 1) and
therefore that ¢ (x, y) = a for all (x, y) € B((0,0),2) \ B((0,0), 1) and some constant a € R. The first inequality in
(9.6) guarantees that for each y € (—1, 1) the function: x — ¢ (x, y) is nondecreasing in (—1, 1). These observations
obviously implies that ¢ (x, y) = a for all (x, y) € B((0, 0), 2). This shows that for any (xg, yo) € int B((0, 0), 2), the
function dg (x, y) = 0 in a neighborhood of (x¢, yg) and hence it is a viscosity solution of H[u] =0 in R2. Thus we
see that int B((0, 0), 2) C Ag. By the fact that Ay is a closed set, we conclude that Ay = B((0, 0), 2).

Finally we remark that H (x, y, g(x, y),0) = —g(x, y)2 < 0 for all (x, y) € int B((0, 0), 1), which shows that any
(x,y) €int B((0, 0), 1) is an element of Ay, but not an equilibrium point.

Next we examine another example whose Aubry set does not contain any equilibrium points. As before we consider
the two-dimensional case. We fix , 8 € R so that 0 < & < 8 and choose a function g € C([0, 00)) so that g(r) = 0 for
allr € [a, B], g(r) > O0forallr € [0, x) U (B, 00), and lim,_, g(r)/r2 = 00. We define the functions Hy, H € C(R%)
by

Ho(x,y,p,q) = (p— y)* —y* + (g +x)* — 1%,

H(x,y,p.q)=H(x,y, p.q) — g(y/x> + y?).

It is easily seen that this function H satisfies (A.1)—(A.3). Let § > 0 and set ¥ (x, y) = 8(x> + y?) for (x, y) € R?.
Writing v, = dv/0x and v, = dvy/dx, we observe that ¥ (x, y) = 28x, ¥, (x,y) =238y, and Ho(x, y, ¥x, ¥y) =
482(x2 + y?) for all (x,y) € R2. Therefore, for any & > 0, if we set ¢o(x,y) = —8(x% + y?) and ¢ (x,y) =
—28(x% + y?) for (x, y) € R?, then (A.4) holds with these ¢ and ¢;.
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Noting that the zero function z = 0 is a viscosity subsolution of H[z] = 0 in R?, we find that the addi-
tive eigenvalue ¢ for H is nonpositive. We fix any r € [, B] and consider the curve y € AC([0, 27r]) given by
y(t) = (x(t), y(t)) :=r(cost, sint). We denote by U the open annulus int B((0, 0), 8) \ B((0,0), «) for notational
simplicity. Let ¢ € CO*1(R?) be a viscosity solution of H[¢] = c in R”. Such a viscosity solution indeed exists ac-
cording to Theorem 3.3. Due to Proposition 2.4, there are functions p,q € L*°(0, 27, R2) such that for almost all
t€(0,2m),

d
afﬁ(y(t)) =r(—p(t)sint + g (t) cosr),

(p(). q(1)) € d:p (v (1)).

The last inclusion guarantees that H (x(¢), y(¢), p(¢),q(¢)) < c a.e. t € (0, 2). Hence, recalling that « < r < 8, we
get

¢ = Ho(x(1), y(1), p(1), g(1) = p(t)* = 2y() p(t) + q(1)* + 2x(1)g (1) ae.t € (0, 27).
We calculate that

T
o(v(1)) —o(y @) =r /(—p(t) sint +q(r) cost) dr
0

T

! T

< Ef(C—P(f)z —q(®)?)dt < % forall T € [0, 27].
0

This clearly implies that ¢ = 0 and also that the function: ¢ — ¢ (y (¢)) is a constant. Thus we find that ¢ (x, y) =
h(x% + y?) for some function 4 € COF! ([, B]).
Next, we show that ¢ is a constant function in U. At any r € («, B) and any (x, y) € dB((0, 0), r), we have

$x(r,y) =200 (x* +y%) and  gy(x.y) =291 (x* +?),
and, in particular, y¢, (x, y) — x¢y(x, y) = 0. Therefore, for almost all (x, y) € U, we have

0> Ho(x,y, ¢r. ) = (hx — 3)> — ¥ + (by +X)> —x* =] + ;.
That is, we have

¢x(x,y) =¢y(x,y) =0 ae. (x,y)eU,

which assures that ¢ is a constant in U..

Now we know that for any y € U, the function: x — dg (x, y) is a constant in a neighborhood of y, which guaran-
tees that U C Ag and moreover that Ay = U.

Finally, we note that H(x, y, y, —x) = Ho(x,y,y, —x) = —x2 - y2 < Oforall (x,y) € U, and conclude that any
(x,y) € Ay = U is not an equilibrium points.

The following two propositions give sufficient conditions for points of the Aubry set Ay to be equilibrium points.
Here we assume as usual that cy = 0.

Proposition 9.1. If y is an isolated point of Ay, then it is an equilibrium point.

Proof. Let y be an isolated point of Ag. Since dy (-, y) € Sy, according to Corollary 6.2, there exists a curve
y € E((—00,0],dn (-, y)) such that y (0) = y.
We show that y (¢) € Ay for all r < 0, which guarantees that

y()=y forallz <O0. 9.7)

For this purpose we fix any z € R" \ Ay. By Lemma 8.4 there are two functions ¢ € S;; N @9 and o € C(R") such
that H[¢] < —o in R” in the viscosity sense, o > 0 in R", and o (z) > 0. By Proposition 2.5, for any fixed t > 0, we
have
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0 0
60)=0(r-0) < [ Li©.70) s~ [o(5)as
—t —t

0
=du(y,y) —du(y(-1),y) —/U(V(S))ds-
—t

Accordingly we have

0
/O(V(S)) ds +du(y(=0,5) <¢(y(=0) = (v (®) <dpu(y (1), y).

Hence we get

0

/a(y(s)) ds <0,

—t

which implies that y (s) # z for all s < 0. Thus we conclude that (9.7) holds.
Now we have

0
0=du(y,y) —du(y(=1).y)= / L(y(),y(®)dt =L(y,0),
—1

which shows that y is an equilibrium point. O

Proposition 9.2. Assume that there exists a viscosity solution w € C(R") of H(x, Dw) = min,crr H (x, p) in R".
Then Ay consists only of equilibrium points.

For instance, if H(x,0) < H(x, p) for all (x, p) € R?", then w = 0 satisfies H (x, Dw(x)) = min,crn H (x, p) for
all x € R" in the viscosity sense. If H has the form H(x, p) = ax - p + Ho(p) — f(x) as before, then H attains a
minimum as a function of p at a unique point g satisfying ox + D~ Hp(q) > 0, or equivalently g = DLo(—ax), that
is,

min H(x, p) =ax-q+ Ho(q) — f(x),

peR”
where L denotes the convex conjugate H; of Hy. Therefore, in this case, the function w(x) := —(1/a)Lo(—ax) is a
viscosity solution of H[w]=min,cgr H(x, p) in R". In these two cases, the Aubry sets consist only of equilibrium
points.

Proof. Since cy =0, we have min,cgr H (x, p) < 0forall x € R"”. Note that the function o (x) := — min,crr H (x, p)
is continuous on R” and that w is a viscosity solution of H[w] = —o in R". Applying Lemma 8.5, we see that if
y € R" and min,cre H(y, p) <0, then y ¢ Ay. That is, if y € Ay, then min,cg: H(y, p) =0, which is equivalent
that y is an equilibrium point. O
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Appendix A

We show here that value functions, associated with given Hamiltonian H or its Lagrangian L, are viscosity solu-
tions of H =0.
Let H € C(R" x R") be a function such that for each x € R” the function: p — H(x, p) is convex in R”, and let
L be its Lagrangian. Let S be a nonempty subset of R" and vg a real-valued function on S. We define the function
v:R" - [—00, 0] by
t

v(x) = inf{/ L(y(s), ))(s)) ds + vo(y(O)) ‘t >0,y eCx,t),y0)eS;.
0

We define the upper and lower semicontinuous envelopes v* and v, of v, respectively, by
v (x) = limosup{v(y) |y €B(x,r)} and v (x)= limoinf{v(y) |y € B(x,n)}.
r—-+ r—+

As is well known, v* and v, are upper and lower semicontinuous in R", respectively.

Theorem A.l. Let 2 be an open subset of R", and assume that v is locally bounded above in $2. Then u :=v* is a
viscosity subsolution of H[u] =0 in 2.

Proof. Let (¢, z) € C!(£2) x £2 and assume that v* — ¢ attains a maximum at z. We show that H (z, Dg(z)) < 0. We

may assume without loss of generality that v*(z) = ¢(2), so that v* < ¢ in £2. Define the multi-function F : 2 — 2R
by

F(x)={6 eR" | Dp(x)-& > L(x,&) + H(x, Dp(x))}.

Since, for any x € R”, the function: p — H(x, p) is a real-valued convex function in R”, it is subdifferentiable
everywhere, which shows that F(x) # (@ for all x € £2. Also, it is easily seen that F(x) is a closed convex set for any
x € £2 and that the multi-function F is upper semicontinuous in £2. Moreover, since H € C(R" x R"), the function
L(x, &) has a superlinear growth as || — co. As a consequence, the multi-function is locally bounded in £2. By a
standard existence result for differential inclusions (see, e.g., [2, Theorem 2.1.3]), we see that there is a constant § > 0
such that for any y € B(z, 8) there exists a curve n, € AC([0, ], R") such that 7, (s) € —F(n,(s)) a.e. s € (0, ) and
ny(0) = y. Fix such a § > 0 and for each y € B(z, §) a curve n, € AC([0, ], R"). We may assume, thanks to the local
boundedness of the multi-function F, that |5, (s)| < M a.e. s € (0,6) for all y € B(z, §) and for some M > 0 and that
1y ([0, 8]) C £2. Note that [y (s) — y| < Ms forall 0 < s < 6.

Fix any ¢, A € (0,8) and y € B(z, 1). Noting that v* < ¢ in £2, by the definition of v, we may choose ¢ > 0 and
y €C(ny(e), ) so that y(0) € S and

t

o(n,() + 2. > /L(y<s>, () ds + v0(y (0)).
0
We define the curve ¢ € C(y, t + ¢€) by

_ y(s) for s € [0, t],
£(s) = { ny(e+t—s) forse(t,t+el

It is obvious that £ (0) € S. Noting that
{(s)=—ny(e+t—s)eF(ny(e+t—29)=F(((s)) aese(tt+e),
we have
Do(£(9)) - £ () = L(£(9), £ (9)) + H(£(s), Do(£(5))) ae.s € t+e).

Hence we get
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t+e

o) = o(c +0) =p(t) + / D (c(s)) - ¢ (s)ds
t
t+¢e

=0y 0)+ [[L(606).£0) + B ). Dp(c(5)]s

t

t t+e
= oy ) + / L(y(s), 7() ds + f [L(c(), £ ) + H(£(5), Dp(¢(s)))] ds
0 t
t+e¢ t+e¢
=—A+vo(2(0) + / L(¢(s),£(s))ds + / H(£(s), Do(¢(s)))ds
0 t
>—-A+v(y)+ Sxeg(lyi*,l}l/la) H(x, D(p(x)).

Hence, as y € B(z, A) is arbitrary, we get

0=>—-X14+ sup (v—¢)(x)+e min H(x, Dp(x)).
XGB(E,/\) v X€B(z,A+Me) ( ¢ )

Sending A — 0 first, then dividing by ¢, and letting ¢ — 0 yield H(z, D¢(z)) < 0, completing the proof. O

Theorem A.2. Let 2 be an open subset of R" such that S N §2 = 0, and assume that v is locally bounded below in S2.
Then vy is a viscosity supersolution of H =0 in 2.

Proof. Let (¢, z) € C'(£2) x £2 be such that v, — ¢ has a strict minimum at z. We will show that H (z, D¢(z)) > 0. To
do this, we argue by contradiction and thus suppose that H(z, D¢(z)) < 0. We may assume as usual that v, (z) = ¢(2).
We choose a constant » > 0 so that B(z,r) C §2 and H(x, Dp(x)) < Oforall x € B(z,r). We set m = minypg(; ) (vsx —
¢). Note that m > 0 and v (x) > ¢(x) +m forall x € 9B(z,r).

Fix any y € B(z,r). Pick any ¢ > 0 and y € C(y, ) such that y(0) € S. Since y(0) ¢ 2, there is a constant
7 € (0, ] such that y(t) € dB(z,r) and y (s) € B(z,r) for all s € [, ]. We now compute that

t

oM =9(y®)=0e(y@)+ / Do(y(s)) -y (s)ds
t

<u(y(@) —m+ / [L(y(5). 7)) + H(y (s). Do (5)))] ds

T
T t

<vo()/(O))+/L(V(S),)?(S))dS+/L(J/(S),77(S))dS—m

0 T
t

<vo(y(0) + / L(y(s),y(s))ds —m.
0

Taking the infimum over y € C(y, t), with y(0) € S, and ¢ > 0 in the above inequality, we get ¢(y) < v(y) — m for
all y € B(z, r) and hence ¢(z) < v«(z) — m, which is a contradiction. This proves that H(z, D¢(z)) > 0. O

Remark. We may apply above theorems to (1.1) as follows. We introduce the Hamiltonian He C(R™! x R**1)
defined by ﬁ(x, t,p,q) =q+ H(x, p). The corresponding Lagrangian Lis given by Z(x, t,&,n)=Lx,5)+51;(n),
where L is the Lagrangian of H and (1} denotes the indicator function of the set {1} C R. We set S =R" x {0} and
2 =R" x (0,00). Also, for given ug € C(R"), we define the function vy € C(S) by vo(x, 0) = ug(x). We then
observe that
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t
inf{fL(y(s),))(s))ds+uo(y(0))‘y eC(x,t)}
0

T

=inf{/i(g(s), £(s)) ds + vo(£(0)) ‘ T>0,0€C((x,1),T),c(0) €S
0

We give here a basic property of the Aubry set Ay (cf. [15,17]). We assume as usual that ¢y = 0.

Proposition A.3. Let y € R". Then y € Ay if and only if for any t > 0,

t

inf{/ L(y,y)ds

0

t>m/€C(y,t;y,0)}=0. (A.1)

Proof. We start by observing that forany y e R", ¢t > 0,and y € C(y,t; y,0),
1
[ Lo nds=0:0) - v 0) =0
0

We assume that y ¢ Ap, and will show that (A.1) does not hold for some t > 0. In view of Proposition 8.3 and
Lemma 8.4, there is a function ¢ € S;I N &g and a constant § > 0 such that H[y] < —§ a.e. in B(y,2§). Lett >0
and y € C(y, t; v, 0) be such that

t

/L(y, p)ds < 1.

0
We select a function f € C(R"?) so that 0 < f < in R?, f(x) > § for all x € B(y,6), and f(x) = 0 for all
x € R"\ B(y, 28). Then, noting that H[¢] < — f in R" in the viscosity sense, by virtue of Proposition 2.5, we have

t

t
/L(y,y')ds>w(y(r))—x/f(y<0>)+/f(y<s>)ds>5|1|,
0 0
where I ={s €[0,¢]| y(s) € B(y,d)} and |I| denotes the one-dimensional Lebesgue measure of /. By Lemmas 6.4
and 6.5, there is a constant Cs > 0, depending only on 8, H, y, and ¢, such that

t

/!)‘/(s)\ ds < g +Cst.
0
Therefore, setting 7 = 6/(2Cs), we see that if ¢t > 7, then y (s) € B(y, 6) for all s € [0, 7]. Accordingly, if > 7, we
have
t

/L(J/, y)ds > ét.
0
This shows that (A.1) does not hold with our choice of 7.

Next we suppose that (A.1) does not hold for some 7 > 0 and will show that y ¢ Ag. We see immediately from
this assumption that L(y, 0) > 0, which implies that min,egr H(y, p) = H(y, q) < 0 for some g € R". By Proposi-
tion 2.1, there are constants ¢ > 0 and C > 0 such that L(x, p) < C for all (x, p) € B(y, ¢) x B(0, ¢). We may assume
as well that

dy(x,y)<1 and H(x,q)<0 forallx € B(y,e¢).
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Let r € (0, &) be a constant to be fixed later on. Fix x € B(y,r) \ {y}, t >0, and y € C(x, t; y, 0) so that

t

/L(y,)})ds < 1.
0
According to Lemmas 6.4 and 6.5, there is a constant C; > 0, independent of the choice of y, such that

t
/|)}(s)}ds < % + Cgt.
0

In particular, there is a constant o > 0 such that y (s) € B(y, ¢) for all s € [0, min{z, o'}].
We may assume that ko = t for some k € N. Note that

T T
kinf{/L(m‘)ds\T >0y eC(y,z;y,m} >inf{/L<y,y‘>ds\T>r,y eC(y,z;y,m} >0,
0 0
We may choose a constant a > 0 so that
T

inf{/ L(n,n)ds

0

T>6,77€C(y,T;y,0)} >a.

265

We divide our considerations into two cases. The first case is when ¢t < o. Then we have y(s) € B(y, ¢) for all

s € [0, ¢] and hence
t
q'(x—y)=61~(V(t)—V(O))Z/q-J?(S)dS

0
t t

< Lo 7o) + HEo.aa < [ L. as
0 0
In the other case when ¢ > o, we define n € C(y,t + ¢~ |y — x|; y, 0) by
(s) = y(s) for s € [0, t],
M) = x4+ —0Dely—x|"'(y—x) forselt,t+e x—y|l.
Noting that (n(s), 17(s)) € B(y,r) x B(0,¢) forall s € (¢, 1 + e~ x — y|), we have
t+8‘1|x—y\ t l+8‘1|x—y\
a< / L(y,)})ds:/L(y,)})ds—i- f L(n(s), 1(s)) ds

0 0 t
t t

< /L(J/,)?)ds+C8_l|x -y < /L(y,)})ds+C£_lr.
0 0
Now we fix r € (0, &) so that Ce~!r < 5. Consequently we get
t
[ronas=
0

Hence we have
t

/L(Jm?)ds >min{p'(x -y, %}

0

N
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from which we get

min{q -(x—y), %} <dpg(x,y) forallx e B(y,r).
This shows that ¢ € D dy(y, y). Since H(y,q) <0, we conclude that y ¢ Ay. O
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