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Abstract

We compute explicitly a relaxed type energy for maps2 C R3 — $2. The explicit formula involves the length of a minimal
connection relative to some specific distance connecting the topological singularitiae@fssociated to a measurable weight
function. This result generalizes a previous result of F. Bethuel, H. Brezis and J.M. Coron.
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Résumé
Nous calculons explicitement une énergie de type relaxée pour des applications R3 — §2. La formule explicite fait
intervenir la longueur d’'une connexion minimale relative a une certaine distance, connectant les singularités topologiques de

u et associée a une fonction de poids mesurable. Ce résultat généralise un résultat antérieur de F. Bethuel, H. Brezis et J.M.
Coron.
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MSC:49D20; 49F99

1. Introduction and main results

Let £2 be a smooth bounded and connected open sBfaind letw: 2 — R be a measurable function such
that

O<i<w<A ae.in®2 (1.2)
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for some constarit and A. We setH}(2, $?) = {u € HY(2, $%), u =g on L2}, whereg:92 — 52 is a given
smooth boundary data such that ggg= 0. Our main goal in this paper is to obtain an explicit formula for the
relaxed functional

E,(u) = Inf{limJirnf f’vu,,(x)|2w(x)dx, u, € Hgl(Q, SAHNCYH D), up —u weakly inHl}’
n—+00
2

defined foru € H}(£2, $?). By a result of F. Bethuel (see [1]H}(£2, $%) N C1({2) is sequentially dense for the

weak topology inH;(£2, %) and then the functionat,,, is well defined.
In [4], F. Bethuel, H. Brezis and J.M. Coron have proved thatfes 1,

E1(u) :/|Vu(x)|2dx+8nL(u),
22

where L(x) denotes thdength of a minimal connectiorelative to the Euclidean geodesic distanke in 2
connecting the singularities af (see also M. Giaquinta, G. Modica, J. $ek [12]). Ifu € Hgl(Q, $2) is smooth
on £2 except at a finite number of points i@, the length of a minimal connection relativedg connecting the
singularities ofu is given by

K
L = Min do(P;, Ng@iy),
(w) S; @ (Pi, No i)

where(P1, ..., Px) and(Ny, ..., Nx) are respectively the singularities of positive and negative degree counted
according to their multiplicity (since d¢g) = 0, the number of positive singularities is equal to the number of
negative ones) andx denotes the set of all permutations &findices. For the definition of.(«) whenu is
arbitrary in Hgl(.(z, 52), we refer to (1.6), (1.7) below. The notion of length of a minimal connection between
singularities has its origin in [8]. We also refer to the results of J. Bourgain, H. Brezis, P. Mironescu [5] and
H. Brezis, P. Mironescu, A.C. Ponce [9] for similar problems involviifgvalued maps.

Foru € HY(£2, §%), the vector fieldD () first introduced in [8] and defined by

ou ou ou ou ou ou )
— A — A — A

—,u- —,Uu- (1'2)
dx2  0x3 0x3 0x1 0x1 0x2

Du) = (u .
plays a crucial role. Indeed, if is smooth except at a finite humber of poirf3, N,-)l.K:1 in £2, then (see [8],
Appendix B)

K
divD(u) =41 (8p —8y,) InD'(£2) (1.3)
i=1

and if in additionu |, = g, we have (since dég) =0, see [8], Section V)

K
L(u) = Sup! > (¢(P) - ;(Nn)}, (1.4)

i=1

where the supremum is taken over all functigng2 — R which are 1-Lipschitz with respect to distanég i.e.,
£ (x) — ¢(y)| <dgo(x,y). Note that for any real Lipschitz functian

K 1[0, 1 1
Zc<P,~>—¢(M)=E/de(u):=—E/D(u)-vc+5/(0(u)-v);, (1.5)
2 2

i=1 082
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wherev denotes the outward normal 862. We recall thatD () - v is equal to the Z 2 Jacobian determinant
of u restricted tod£2 and then it only depends qn In view of (1.4) and (1.5)L(«) has been defined in [4] for
u€ HX(£2,5% by

L(u) = 4i Sup{(T (), ¢), ¢:2 — R 1-Lipschitz with respect tdg, }, (1.6)
T
whereT (u) € D'(£2) denotes the distribution defined by its action on real Lipschitz functions through the formula:
<T(u),§)=/D(u)-V§ - /(D(u)-v);. (1.7)
2 082

In a previous paper [13], we have studied the following variational problem: given two distinct poard N
in £2,

E,(P,N)= |nf{/]v1)(x)\2w(x)dx, veE(P, N)},
2

where
E(P,N)={ve H 2,55 NCH(2\ (P, N}), v=constoms2, T(v) =4x(8p — 8y) in D'(2)}.

In the caseav =1, H. Brezis, J.M. Coron and E. Lieb have shown that (see [8])
E1(P,N)=8ndg(P,N).

For an arbitrary functiomw, we have proved (see [13]) that, (-, -) defines a distance function satisfying
8rAde (-, ) < Ey(, ) <8mAdg(, ). (1.8)

From (1.8), we infer thaE,, extends ta2 x £ into a distance o2. In what follows, we set fok, y € £2,
1
dy(x,y) = 8—Ew(x, y).
T
Whenw is continuous, we also have shown that the distahcean be characterized in the following way: for any
X,y € $2,
1
dy(x, y) = Min / w(y®)|y@®]dr,
0
where the minimum is taken over all Lipschitz curve[0,1] — 2 verifying y(0) = x andy (1) = y. For an
arbitrary measurable functian, the previous formula is meaningless sincés not well defined on curves but a

similar characterization of,, actually holds. We refer to [13] for more details. We also recall the general result
in [13]:

Theorem 1.1. Let (P;)X ; and (N;)X_, be two lists of points i2 and consider
E((P,NHEY) = {v e HY (2,59 nct (@2 \ (P, N0EL)),
K

v=constond andT (v) = 4r Z(SPI. — &y, in ’D’(Q)}.
i=1
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Then we have

|nf{/\Vu(x)|2w(x)dx, veg((Pi,N,-)iK:l)} =8m Ly,
2

whereL,, is the length of a minimal connection relative to distadgeconnecting the point&P;) and (V;) i.e.,

K
Ly = Min > " dy(Pi, No@).

UESK i1
By analogy with the case = 1, we define fou € Hgl(SZ, 52,

1 _
L) =7~ Sup{(T (), ¢), ¢ : 2 — R 1-Lipschitz with respect td,, }

(note that any real function which is 1-Lipschitz with respect td,,, is a Lipschitz function with respect i,
sinced,, is strongly equivalent tal, and then(T (u), ¢) is well defined). When: is smooth except at a finite
number of pointg P;, N,»)I.K=l in £2, it follows as in [8] thatL,, (1) is equal to the length of a minimal connection
relative to distancé,, connecting the point&P;) and(N;). Our main result is the following.

Theorem 1.2. For anyu € H}(£2, 5?), we have

Eyp(u) = /|Vu(x)|2w(x)dx+87er(u).
2

The proof of Theorem 1.2 is presented in Section 3 and is based on a method similar to the one used in [4]
and on aDipole Removing Techniquexposed in the next section. This technique is mostly inspired from [1] but
involves some tools developed in [13] in order to treat the problem for a non smooth function

In Section 4, we prove a stability property @&f,. More precisely, we give some conditions on a sequence
(wn)nen Under which one can conclude that the sequence of functigBals,en converges pointwise t&,, on
Hgl(.Q, $2). The results are obtained using previous ones in [13]. In Section 5, we present similar results for a
relaxed type functional in which we do not prescribed any boundary data.

Throughout the paper, a sequence of smooth mollifiers means any se@ugneg satisfying

o1 €CEER). SUPDO,C Buyne [ pr=1. py>0 OnES.

R3
2. Thedipoleremoving technique
In this section, we first give a technical result which will be used fodipele removing techniqua Section 2.2.
2.1. Preliminaries
Let o and B be two distinct points irf2. We denote byp, g(£) the projection of e RR3 on the straight line

passing byr andg andr, g(§) = dist(x, [«, 1), where “dist” denotes the Euclidean distancé®h Form e N*,
we set

lo — B

m

B

a%h = =ja%P forj=0,...,m.

m

o,
and 5
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For& e R3 such thatp, s (£) € [a, 1, we define
a,B _ H o _ a,B
hm (E)—Oglgmea,ﬁ(%_) O[i Sj |»

and we set

Om ([, B1) = {€ € R, pyp(€) € o, Bl andry 4 (€) < am PP (&)}

For two pointsx and y in §2, we consider the clas®(x, y) of all finite collections of segmentg =

([ak,ﬂk])z(j) such thatfy = ax11, a1 =x, BuF) =, [ok, Bl C 2 and oy # Br. We define the “length” of

an elementF € Q(x, y) by

n(F) 1
L =Y limint 2 / en o (E)w(E) d
k=1 Om ([, BN
with
(haksﬂk( ))Z(aak’ﬂk)4
e g (6) = n () (e

(P @)2(an Py + 72, (€))7

Lemma 2.1. LetP be a finite collection of distinct points 2 or P = ¢. For any distinct pointsg, yo in 2\ P and
3 > 0, there existsFs = ([«1, B1], - - -, [otn, Br]) € Q(xo, yo) such that(P U {yo}) N (Uz;i[ak, Bil U [an, BuD) =0
and

2w (F) < dy(xo0, yo) + 6.

Proof. Step 1 Assume thatv is smooth onf2. We are going to prove that for every elemént= ([a1, f11, - .-,
[on, Bn]) € Q(x, y), we have

lyw(F) = /ﬁ w(s) ds.

Urk1lox.Br]
It suffices to prove that for any distinct pointsg € $2,
1
lim — / e ®w(€)dé = / w(s)ds. (2.1)
m—+00 Jr
O ([, FDNS2 [o, B]

Without loss of generality, we may assume thatg] = {(0,0)} x [0, R] and we drop the indiceg and g for
simplicity. We setforj =0,...,m—1,

Cot = {E = (§1.£2,83) € Op(le, B]), &3 € [Sj,Sj + %m“
andforj=1,...,m,
. am
Con = {E = (§1.£2,83) € Op(l, B]), &3 € [Sj - ?,Sji|}~

For& e C,’,f U C,{f, we haveh, (§) = |3 — s;| and we get that fom large enough,

m—1 m
e EwEdE =Y LT+ L 2.2)

Om ([, BHNR j=0 =1



140 V. Millot/ Ann. |. H. Poincaré — AN 23 (2006) 135-157

with
2.4
j+ 163 — sj|“a,w(§) d .
= & forj=0,...,m—1,
" T ) g — ;R +125)2 !
Ci£1+
- |63 — s, Papw(€) .
I} =/ S m d¢ forj=1,...,m.
| e —spaf 2@ '
Ch-
Using the change of variablg = ‘Ef_lsjl , 22 = ‘Ef_zsjl andzs = &3, we derive that

sj+am /2

4
- a*w(|za —silz1, |23 — 57122, 23
It = / < / m¥(l jlas | i )dzldz2>dz3

(a% + 72 + 72)2
i Ban(©) morLne2

Sj+am /2

a4

= 0,0, z3) + O(anm / —2  _ —dznd )d
/ (w(0,0, z3) (a ))( @ 2+ 22 z1dz2 ) dz3
Sj B, (0)
Sjtam/2
—x / (0.0, 23) dzs + O(a2).
5
By similar computations we get that
5
I,{;_ =7 / w(0,0, z3) dzz + O(a,zn).
sj*am/z
Combining this equalities with (2.2), we obtain that
R
g GwE)dé=n / w(0,0, z3) dzz + O(am)
Op ([, BHNS2 0

which ends the proof of (2.1).
Step 2We fix two distinct pointsc, yo € 2 \ P. For any pointst, y in £2 \ (PU {yo}), let @'(x, y) be the class of
elementsF = ([a1, B1], ..., [an, Br]) € Q(x, y) such that

Ulew, Brl € 21\ (PU {y0)).

k=1
We consider the functio®,, : 2 \ (P U {yo}) x 2\ (PU {yo}) — R, defined by
Dy(x,y)= _Inf £(F).

FeQ'(x,y)

We are going to show tha@,, defines a distance function which can be extende® t002. Letx, y € 2\ (PU{yo})
and letF = ([a1, B1l, ..., [ax, Br]) be an element of)’ (x, y). Assumption (1.1) and similar computations to those
in Step 1 lead to

WY o — Bl S (F) <Al — Bl

k=1 k=1
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Taking the infimum over alF € Q'(x, y), we infer that

From (2.3), we deduce thd?,(x, y) = 0 if and only if x = y. Let us now prove thaD,, is symmetric. Let
x,y € 2\ (PU{yp}) ands > 0 arbitrary small. By definition, we can finfy = ([a1, B2], ..., [an, B.]) In Q'(x, y)
satisfying

Zw(-FS) < Dy(x,y) +4.
Then forFy = ([Bn. anl. ..., [B1, a1]) € Q' (v, x), we have
Dy (y,x) < Ew(}—é) = Ew(}-S) < Dy(x,y) +34.

Sinces is arbitrary, we obtaiD,, (v, x) < Dy (x, y) and we conclude thd?,, (y, x) = D, (x, y) inverting the roles
of x andy. The triangle inequality is immediate since the juxtapositiotFok Q' (x, z) with 7> € Q'(z, y) is an
element of®’(x, y). HenceD,, defines a distance a2 \ (P U {yo}) verifying (2.3). Therefore distand®,, extends
uniquely to£2 x 2 into a distance function that we still denote By,. By continuity, D,, satisfies (2.3) for any
X,y €. _
Step 3We consider the functiof: 2 — R defined by

$(x) =Dy (x, x0).

Note that functionz is 1-Lipschitz with respect to distan@®,, and thereforeA-Lipschitz with respect to the
Euclidean geodesic distance @nby (2.3). We fix an arbitrary poinig € £2 \ (PU {yo}) and someR > 0 such that
B3r(zo) C 2\ (PU {yo}). Let (p,)nen be a sequence of smooth mollifiers. los 1/R, we consider the smooth
function¢, = p,, * ¢ : Br(zo0) — R. We write

Ln(x) = / Pn(=2)¢(x +2)dz
B/

and therefore for alk, y € Br(zo),

60 () — L0 ()] < / pn(—z>|;(x+z>—<:<y+z>|dz</pn(—z>Dw(x+z,y+z>dz
Bl/n Bl/,,
< / pn(_Z)Ew([x‘i‘Z,y—i‘Z])dZ.
B/

We remark tha®,,,([x + z, y + z]) = z + O, ([x, y]). Form large enough + ©,,([x, y]) C B3g(zo) and then for
any vectort € ®,,([x, y]), we haves;”%yﬂ E+2= sﬁy(é). Hence we obtain for all € B1/,(0),

_ o1 "
Zw([x—i-z,y—i-z]) =r|rllr_n)jrnofo; / 8x’y(£)w(é+z)d$.
Om([x,y])

Using Fatou’s lemma, we get that

o1
|§n(X)—Cn(y)}</pn(—z)<|lmlnf— / 8ny($)w($+z)d$>dz

m—+00 7
B/ Om([x,y])
o1
<iminf = [ [ pucoe @ue + 2 dedz.
m——+00 T ’

Bi/n Om([x,y])
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For eachn € N sufficiently large we have
1

[ el @uesodss=
B1/n Op ([x,5]) Om(lx,y])
and sincep, * w is smooth, we obtain as in Step 1,
1 m
- / sx,y(é)pn*w(*g‘)dge f pn *w(s)ds asm — +oo.
On ([x,y]) [x,¥]
Thus for each, y € Br(zo) we have

|22 (x) = & (0] < / pn * w(s) ds.
[x,¥]
Then forx € Br(zo), h € S? fixed ands > 0 small, we infer that

|Zn (x 4+ 8h) — La(X)] gg P *w(s)ds —> p, * w(x)
s § §—0t

[x,x+6h]

€1 (&) pn * w(E) dE,

and we conclude, letting — 0, that|V¢,(x) - h| < p, * w(x) for eachx € Br(zo) andh € $2 which implies
that V¢, | < pn % w on Bg(zp). SinceVe, — Ve andp, * w — w a.e. onBg(zg) asn — +o0, we deduce that
V¢ < w a.e. onBg(zo). Sincezg is arbitrary in2 \ (P U {yo}), we derive

Vel <w a.e.onf2.

By Proposition 2.3. in [13], it follows that (x) — ¢(y)| < dy (x, y) for anyx, y € £2 and in particular, we obtain
choosingy = xo,

Dy (x,x0) < dy(x,xg) forallx e .

Step 4. End of the Proofet § > 0 be given. We choose sonyg € £2 \ (P U {yo}) such thafyg, yo] C £2 \ P and
|Y0 — yo| < % By the previous step, we can find an elemé&ht= ([a1, 1], ..., [on, Bu]) € Q (x0, yo) verifying

_ _ b
Ly (F) < dy(xo0, Yo) + 5
Then we consideF = ([a1, B1], ..., [an, Ba], [Fo, yol) € Q(xo, yo). We have

- - - N 26 - 26
Ly(F) < Ly(F') + Aljo — yol < dw(xo, Jo) + 3 < dy(x0, Y0) + dw (o, Yo) + 3 < dy(x0,y0) + 6

and thenF satisfies the requirement.c
2.2. The dipole removing technique

We first present thelipole removing techniquior a simple dipole. We then treat the case of several point
singularities.

Lemma 2.2. Let P and N be two distinct points in2 and consideru € H1(£2, %) N C1(2 \ {P, N}) with
degu, P) = +1 and degu, N) = —1. Let F = ([ag, B1l, ..., [an, Bn]) be an element oD(P, N) such that
N ¢ UZ;%[O% Bl U [, Bul. Then for anys > 0 small enough, there exists a mape C1(£2, $2) such that

/|Vu5(x)|2w(x)dx</\vu(x)|2w(x)dx+8n2w(f)+5
2 2

andus coincides with: outside as-neighborhood of J;_; [, Bx] included in2.
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Proof. Let 7 = ([a1, B1], ..., [an, Bx]) € Q(P, N) such thatN ¢ U’,Zj[ak, Brl U [y, Byl and fix somes > 0
small. We proceed in several steps.

Step 1.We consider a small & rg < § verifying B,,(a1) C £2 \ {N}. By Lemma A.1 in [1], we can find ¢
CY(22 \ {a1, N}, $%) N H1(£2) (recall thatw; = P) satisfying

u(x) on 2\ Byy(a1),
= _ 2.4
v(x) R( X —aq ) on Byy(a1), (2.4)
|x — a1
for some rotatiorR and
/|Vv(x)|2w(x)dx < /|Vu(x)|2w(x)dx+8. (2.5)

2 2

Let W = {x € R3, dist(x,[«1, B1]) < 8}. For§ small enough, we hav& c 2 \ {N}. We setd = a1 — B1]. We
choose normal coordinates such that= (0,0,0) and 81 = (0,0,d). Let 0 < r < ’70 Sincev is smooth on
W\ B,,(a1), we can find a constaet(r) such thaiVv| < o (r) on W\ B,,(«x1). Form € N*, we consider

o _ _a;;;l,ﬂi afrlllsﬂl 2>< _afrtlLﬁl d_’_afrlll’ﬂl
" ) 2 2 |

Form large enough, we hav@,, ([«1, B1]) C K,» € W. As in [1], we are going to construct in the next step a map
v1 € CL(W \ {B1}, $%) N HY(W) verifying v1 = v in a neighborhood 08 W and degv1, A1) = +1. For simplicity,

we drop the indicess and ;.

Step 2We divide K, in m + 1 cubesQ;, defined by

j am am1? 1 o1 for i
Qm= _?’? X ]_E am, J+§ am OrJ=O”m

Arguing as in [1], we infer from (2.4) that

3 / Vo2 < c(L +ma(r)2a3,>. (2.6)

- Am
=0 Y.
=90,

We are going to make use of a map : B2 (0) c R2 — 2 defined by

am
2

a
O (X1, X2) = ———3—— (x1, X2, —a}) +(0,0,1)
ay, +x7+ x5

(wm was first introduced in [7] and we refer to the proof of Lemma 2 in [7] for its main properties); For
1,...,m, we choose an orthonormal direct bagib, e;, e3) of R3 such that
v(0,0, (j — 1/2)a,) = (0,0,1) inthe basige], e}, ¢4),
and we define the may" : UTzoaQ;’;, — $2 by
(1) for (x1, x2, x3) € (U?'zoann) \ (UTzl Bf’% 0) x{(J —1/2)am}),
vy (x1, X2, X3) = v(x1, X2, X3),
(2)forj=1,...,mand(x1, xp, x3) € 332/2(0) x {(j —1/2)an},
2x1 2x2

vy’ (x1, X2, x3) = a)m< , ) in the basis(ei, eé, e':/,,),
am  am
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(3)forj=1,....m,for (x1,x2,x3) € (B% (0)\ B, 12(0) % {(j = 1/2)ay} and using cylindrical coordinates
(x1, X2, x3) = (0 COS, pSiNG, 2), "

vy’ (x1, x2, x3) = (A1p + B1, A2p + Ba, \/1 — (A1p + B1)? — (A2p + B2)?)

in the basige], 3, e3), whereA1, Az, B1, B, are determined to makg’ continuous. More precisely, if we write
V= vlei + vzeé + vgeé then

a2 Ai(0) + B;(9) = vi (a2 cosh, aZ sing, (j — 1/2)ay), i=1,2,
G 44(6) + By(6) = —2_ cosp,

2 ap +a2

2 3

as, 20 .

M An(6) + Bo(0) = sine.

> 2(0) + B2(0) pr]

The mapv]' satisfies by construction}’ = v on dK,,. Moreover, it follows exactly as in the proof of Lemma 2 in
[1] that degv}', 8Q;,) =0 for j =0,...,m — 1 and degu]’, dQ™) = +1. Then we extend' on each cub&;,
by setting

m< am(x —bj)

"(x) = b; onQl forj=0,... ,
V1 (X) U1 2||x—b]||oo+ /) Qm ] s ,m

whereb{ =(0,0,s,) is the barycenter ob’ and|x — bjllo = max(|x1l, |x2|, |x3 — s;]). We easily check that
vy’ € H*(Kp, 52), v]' =v ondk,, v is continuous except at the poirits and Lipschitz continuous outside any
small neighborhood of the poinis. We also get that

degvf',b,)=+1 and degi,b;)=0 for;j=0,...,m—1. 2.7)
We remark that if we set

DL:B%/Z(O)X{(j—l/z)am}UBjé/z(O)x{(j+1/2)am} forj=1,....m—1,

DY = B2 12(0)x {1/24,) and D = B%, 12(0) % {(m —1/2)ay},

then we have

m

. —b; . )
U{x € 0}, Im(x = bj) +bjeDyif x#bjorx=b; otherwse] = O ([e1, p1])
hr! 2l — bj o

andifx e Q,J;l N O, ([a1, B1]) for somej € {0, ..., m} then

hm(x) = |x3 —5j| = x —bjllc  and r(x)=,/x2+x3. (2.8)
Some classical computations (see [1] and [7]) lead toj fer0, ..., m,
/ IVof'1 < / IVul? + Oah)
@0I\Djy 20},

and therefore
/ Vo () |Pw(x) dx < C1Aday, / Vo2 + CoAd3.

0\Op ([a1,11) 300,
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Adding these inequalities fgr=0, ..., m and combining with (2.6) we obtain

|Vv'l” (x)|2w(x) dx < CA(r + ma(r)zas’1 + ai). (2.9

Kn\Op ([a1, 1]

Forx e Q,{1 N O, ([a1, B1]) for somej € {0, ..., m}, we have

X1 X2 . . ; i1 .

a)m< , ) in the baSIS(ef_l, e£+1, eé“) if x3—s;>0,
m |x3 —s;| |x3—s;|

vy (x) =

X1 X2 . . i i i .
a)m( , ) in the basige;, €5, ¢3) otherwise.
|x3 —s;| |x3— s/

Following the computations in [6], we infer that
Va)m< aE , 2 )
|x3 — s [x3 — 5]

2

1+ Ca? 2
|W’l"(x)|2<|+—a’"

in 0, N Oy (la1, B1l)-

x3— 52

Since we have (see [7])

X1 x2
|x3 — ;| |x3— 5]

we derive that

. 8|x3 —sj|4a,‘,11
(lx3 —s; |2a;4n + x% + x%)2

/ 8|x3—sj|2a,‘,‘1u)(x) dx 4+ C A
e

2
Vo' (x)|"w(x) dx <
/ } L ’ (|x3—sj|2a;4n+xf+x§)2

05,NOy (a1, 1)) 05,0y, ([t 1))

Summing these inequalities fgr=0, ..., m and using (2.8) we obtain that

|Vv1m(x)|2w(x) dx <8 [ sa’"l,ﬁl(x)w(x) dx—l—CAa,zn. (2.10)
Om([a1,p1]) Om([a1,B1])

Combining (2.9) with (2.10) we conclude that

f|VvT(x)‘2w(x) dx <8 / et'flﬂl(x)w(x) dx—i—CA(r—i—mo(r)za,i —i—ai).
K On ([a1,p1])
Taking the liminf inm, we derive that we can finet; € N large and- small enough such that

/ |VUT1(X)|2w(x) dx < 8liminf / e(’fl)ﬁl(x)w(x) dx + 6. (2.11)

m——+00
Kml O ([0, B1])

Sincev]" = v on dK,,;, we may extend]" to W by settingv]'* = v on W \ K,,,. Now we recall thav]* is
singular only at the points;, j =0, ..., m (we also recall thab,, = 1). From (2.7) and the results in [1-3], we
infer that exists a mapy € CL(W \ {81}, $% N H1(W) satisfyingv; = v in a neighborhood 0§ W, deqvy, B1) =
+1and

/|Vv1(x)|2w(x)dx < /|W§”l(x)|2w(x)dx 4. (2.12)
w1 w1
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Sincev = u in a neighborhood oi W, we may extend to 2 by settingv; = u on 2\ W. Then we conclude that
v1 € CH(2 \ {B1, N}, $% N HY(2), deqv1, B1) = +1, dedv1, N) = —1 and by (2.5)-(2.11)-(2.12),

/‘Vvl(x)|2w(x)dx</’Vu(x)‘zw(x)dx—i-S lim inf / em g (Ow(x) dx + C8.

Q2 2 O ([a1,B1])
Step 3Applying Step 1 and Step 2 tg instead ofu and replacingas, 81) by (a2, B2) (recall that8; = a2), we
obtain a map, € C1(2 \ {B2, N}, $%) N H1(£2) satisfyingv, = v1 outside as-neighborhood ofas, 2] included
in £2, deqvy, B2) = +1, dequvz, N) = —1 and
/|Vv2(x)|2w(x)dx</|Vvl(x)|2w(x)dx+8|iminf / Eaty, ﬁz(x)w(x)dx—i—Cb‘
m——+00
Q O ([a2,B2])

Ilterating this process, we finally obtain a magp.1 € C1(2 \ {ay, Ba}, $2 N HL(£2) (recall thatg, = N) verifying
v,—1 = u outside as-neighborhood OUZ;%[ak, Brlincluded ing2, deqv,,—1, a,) = +1, dedv,—1, 8,) = —1 and

n—1
2 2 L.
/‘anfl(x)’ w(x)dx < /}Vu(x)| w(x) dx+82r|'!TLnOL / Ea. ﬂk(x)w(x) dx + Cs.
2 2 k=1 Om (k. i)

Asin Step 1, we consider ro < § such that,, (ee,) N By (Bn) = ¥ and By, (een) U By (Bn) C §2 and we construct,
using Lemma Al in [1], amap € C1(2 \ {on, B}, $2) N HL(£2) satisfying

u(x) on 2\ Byy(an),
Ry (2% onB
(x) = +<|x —an|> ro(@n),
X _ﬂn
_R—<|x _ﬂn|) on Bro(ﬂn)v

for some rotation®, andR_ and

/|Vf)(x)|2w(x) dng’an_l(x)|2w(x) dx +3.

;/n

Applying the construction in Step 2 starting frofmwe obtain a new map, " (for some largen, € N) defined
on §-neighborhoodW’ of [a;,, 8,] included ins2, which coincide witho nearBW’ which then has only point
singularities of degree zero (since d&gs,) = —1) and satisfying

/|sz1n(x)|2u)(x)dx</|Vﬁ(x)|2w(x)dx+8Iiminf / ey 8 ()w(x)dx + C8.
m——+00 mEn
w’ w’ Om(lan,Bul)

Since the degree of each singularities)§f is zero, we can construct a mape CL(W’, §?) (see [2,3]) verifying
v, = ¥ in a neighborhood od W’ and

/‘an(x)‘zw(x)dxé/‘va,""(x)’zw(x)dx+8.

Then we definess : 2 — $2 by

Up_1(x) ifxe 2\ W,
us(x) = ) _
v (%) if xeW'.
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Sincev,_1 =¥ and? = v,_1 neardW’, we deduce thais € C1(£2, $2). Moreover it follows by construction that
us = u outside a$-neighborhood of J;_;[o, Bx] included ins2 and

/|w5(x)|2w(x)dx</|W(x)|2w(x)dx+8né(f)+c5,
2 2

which ends the proof sinckis arbitrary small. O

Lemma 2.3. Let (P;, Ny)X | be 2K distinct points ins2 and considen € H($2, 5%) N C*(2 \ UL, (P, Ni})
such thadegu, P;) = +1anddegu, N;) = —1fori =1, ..., K. Then there exists a sequence of maps,cn C
cL(£2, $?) satistyingu, s = ujse,

/|Vun(x)|2w(x)dx</|Vu(x)|2w(x)dx+8an(u)+2_”,
2 2

and
measé{x €2, uy(x) # u(x)}) <27

Proof. Without loss of generality we may assume thatd,, (P;, N;) is equal to the length of a minimal connection
relative tod,, between the pointéP;) and(N;). As in [1], we are going to “remove” each dipol®;, N;). More
precisely, for each € N, we construct successively maps(u;)iKz 1 satisfying

(@) ul, e Hl(.Q,Ez) ﬂCl(f_)\Ungng{P-,_Nj}) fpri =1,...,K, |

(b) up =u on 2\ Wy andu), =ui"t on 2\ W} for i =2,..., K where W} is strictly included ins2 \
Uiti<j<k{Pj, N} and|W, | < 27"/K,

©) Jo IVut@)Pwx)dx < [, [Vu(x)|?w(x) dx + 87dy, (P, N1) + %~ and
Jo IVul, (0) Pw(x) dx < [, Va7 202w (x) dx + 87dyy (P, Nj) + 2~ fori =2,..., K.

We easily check that the sequer(aé),,eN then satisfies the requirement since we haygu) = Y, dy,(Pi, N;).
We start with the construction af!.
Construction oh%. By Lemma 2.1, we can findy = ([«1, 1], - .., [ay, Bi]) € Q(P1, N1) satisfying

K I
(U{Pz‘, Ni}U {Nl}) N <U[0tk, Bl U [a, ﬂl[) =, (2.13)

i=2 k=2
and
—(n+1)
8Km
From (2.13), we infer that we can firdd> 0 small enough such that

[ K
2—11
1_ 3 : ) . 1
wi= !xeR , dlSt(x,k_ll[oek,ﬂk]> ga} C.Q\'_ZI{P,,NI} and [W}1< —.

Ly (F1) < dy(P1, N1) +

By the method described in the proof of Lemma 2.2, we construct ashap (2, $2) N C1(2 \ UL, (P, Ni})
verifying u! = u outsidew; and

—(n+1)

K

/|Vui(x)’2w(x) dx < /|Vu(x)|2w(x)dx+8nfw(}"1)+
2 Q
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—n

X

< /|Vu(x)|2w(x)dx +87d,(P1, N1) +
2

Construction Qh;, i=2,...,K.We iterate the previous process i.e., we proceed as for the constructié;ﬂnof
starting fromu! 1 instead ofu. O

3. Proof of Theorem 1.2

3.1. Lower bound of the energy

In this section, we denote b, the functional defined for mapse H; (2, 5?) by

Fo(u) = /|Vu(x)|2w(x)dx+ 87 Ly ().
2

Proposition 3.1. The functionalF,, is sequentially lower semi-continuous HQ(Q, 52) for the weakH -topology.

Proof. We follow the method in [4]. Since the supremum of a family of sequentially lower semi-continuous
functionals is sequentially lower semi-continuous, it suffices to show that for any funicti@n— R which is
1-Lipschitz with respect td,,, the functional

ueH; — /|Vu(x)|2w(x)dx+2/D(”)‘VC dx
P 2

is sequentially lower semi-continuous for the welRk-topology (the termf, ,(D(u) - v)¢ only depends org
andg). Consideru,),en C Hy (82, 5%) andu € H}($2, $?) such that, — u weakly in H'. Settingu,, = u, — u,
we have

/|w,,(x)|2w(x)dx=/|W(x)|2w(x)dx+/|an(x)|2w(x)dx+o(1),
2 2 2
and writing

Z/D(u,,)-V;dszn—i—Bn—l—Cn
2
with
dx2 0x30x17 O0x3 0x10x3 0x1 Ox2 0x3
0 d 0 d 0 d d 0 d d
BFZ/W. Un O Bu Ovn _€+2/un. Un O Bu Dun) 08
dx2 dx3z Odx2 dx3/)0x1 dx3 dx1 0x3 dx1/ 0x2
2 2
/ Ovn Bu | Ou  Oun) L
0x1 Oxp 0x1 Ox2 ) 0x3
Q

CHZZ/MH.(BU,!/\ana_§+8vn/\avna_f_i_av,,/\avna_;).

0 ou 0 0 du 0 a ou 0
An:Z/un.(_MA_M_C+_MA_L‘_¢+_“A_"_€>,
2

+
N

8_)62 0x30dx17 0x3 0x10x3 0x1 Ox2 0x3
2
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We easily obtain that,, — ZfQ D(u)-V¢ asn — +o0 sinceu, — u weak in L and thatB,, — 0 sincev,, — 0
weakly in L2 andu,, — u strongly inL2. Now we set

v, — (Mn vy, N vy, vy, N vy, vy N an>.

9 un : - b un °
0x2  0x3 0x3 dx1 0x1 dx2

We have

|cn|=2‘fvn-w‘<2/|Vn||vc|.
22 22

By Lemma 1 in [4], we know that 2},| < |Vv,|? and by Proposition 2.3 in [13], arty: 2 — R which 1-Lipschitz
with respect tal,, satisfiegV¢| < w a.e. on2. Then we obtain

1Cal < /|an<x)|2w(x)dx
2

and we conclude that

/van(x)yzw(x)derz/D(u,,).vg dx>/|Vu(x)\2w(x)dx+2/1)(u)-Vg dx +0(1)
2 2

ko) 2

which clearly implies the result. 0
Proof of “>” in Theorem 1.2. Letu € H}(£2, 5 and consider an arbitrary sequen@g),en C H2(£2, 5%) N

C1(£2) such thaty, — u weakly in H1. Sinceu,, is smooth ins2, we haveT (u,) = 0 and thenL,, (u,) = 0. We
conclude by Proposition 3.1 that

liminf /\w,,(x)|2w(x) dx = liminf £y, (u,) > F () = /|w(x)|2w(x) dx + 87 Ly, (u).
n—+00 n—+00
2 2
Since the sequende,,),cn is arbitrary, we get the announced result
3.2. Upper bound of the energy

Proposition 3.2. Letu € H}(£2, $?). Then there exists a sequence of mapg,en C H1(£2, $%) N CY(L2) such
thatu,, — u weakly inH! and

limsup |Vu,,(x)|2w(x) dx < /|Vu(x)’2w(x) dx + 87 Ly (u).
n—+00
2

End of the proof of Theorem 1.2. Letu € Hgl(Q, $2) and let(u,),cny be the sequence of maps given by Propo-
sition 3.2. By definition ofE,, (1) and Proposition 3.2, we have

Eo(u) < Iimlnff|Vun(x)|2w(x)dx</|Vu(x)|2w(x)dx+871Lw(u),
n——+00
2 2

which ends the proof of Theorem 1.20

To prove Proposition 3.2, we need the following lemma. We postpone its proof at the end of this section.
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Lemma3.1. For anyu, v € H}(£2, §), we have

|Lw(@) — Lu@)| < CA(IVull 20) + V0l 2(2)) IVt = V20, (3.1)

for a constantC independent ofv.

Proof of Proposition 3.2. Letu € Hgl(Q, $2). By the result in [1,3], we can find a sequence of maps,cn C

Hgl(.Q, $2) such that, € C1(£22 \ Ul.'(z"l{Pi, N;}) for some 2k; distinct points(P;, N;) in £2, dequv,, P;) = +1
and deg@v,, N;) =—1fori =1,..., K, and such that

IV@n =] oo, <27 (3.2)
From this inequality we infer that
meai{x €2, v, (x) — u(x)| < 2_"/2}) <Cc27". (3.3)

Applying Lemma 2.3 ta,, we find a map, € C1(£2, $?) satisfyingu, o = g,

f|Vun(x)|2w(x) dx < /|Vv,, (x)|2w(x) dx+ 87w Ly, (v,)+27" (3.4)
2 2

and
meag{x € 2, u,(x) #va(x)}) <27". (3.5)

From (3.2) and Lemma 3.1 we deduce tfigt(v,) — L, (u) asn — +oo and then it follows thatu,),cyn is
bounded inH®. Moreover we obtain from (3.3) and (3.5) that — « a.e. in£2 and we conclude that, — u
weakly in H'. Lettingn — +oc in (3.4) leads to

limsup |Vun(x) yzw(x) dx < /‘Vu(x)|2w(x) dx +8m Ly (n),
n——+00 o
which completes the proof.O

Proof of Lemma 3.1. To prove Lemma 3.1, we follow the method in [4]. Rarv € Hgl(fz, 52), we set

Ly, v) = Sup{f(D(u) — D(v)) - V¢, ¢ 182 — R 1-Lipschitz with respect tdw}.
2

SinceD(u) - v= D(v) - v onas?2 (it only depends o), we have

/D(u)-Vg“—/(D(u)~v)C=/D(v)-V§ —/(D(v)-V)C+/(D(u)—D(v))~V§,
2 082 2 082 2
and we easily derive that

|Lw (u) — Lw(v)| < Ly(u,v).

Similar computations to those in [4], proof of Theorem 1, lead to

< C(IVull 2y + IVl 2(2) IV = VUl 1200y IVE | L (02).-

/(D(u) —D(v))- V¢
2

By Proposition 2.3 in [13], any real functignwhich is 1-Lipschitz with respect i@,, satisfiegV¢| < w a.e. ons2.
We deduce that (3.1) holds singe< A a.e.on2. O
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4, Stability and approximation properties
4.1. A stability property

Before stating the result, we need to recall some previous ones obtained in [13]. For any real measurable function
w satisfying assumption (1.1), we may associate to distdpdee length functional;, defined by

m—1
La,(y)=3Su Zdw()’(tk)» y(tis1), O=to<ti<---<ty=1me N*},
k=0

wherey :[0,1] — £ is any continuous curve. In [13], we have proved that for any € £2,
dw(x,y) =Inf{Lg, (y), y €Lip([0,1],£2), y(0)=x andy (1) =y}, (4.1)

where Li[0, 1], £2) denotes the class of all Lipschitz maps fr¢f 1] into £2. We have also shown that the
infimum in (4.1) is in fact achieved.

The following stability result relies on th€-convergence of the length functionals (we refer to [10] for the
notion of I'-convergence). In the sequel, we endow([ 1], £2) with the topology of the uniform convergence
on[0,1].

Theorem 4.1. Let (w,),en be a sequence of measurable real functions such that
O<co<w, <Cop a.e.inf2 4.2)

for some constantgy and Cp independent ot € N. Then the following properties are equivalent

i) the functionaldL;,d I"-converge td.,, in Lip([O, ],(7) an
i) thef ionaldLy,, dLg, in Lip([0,1 d
/|V¢(x)|2wn(x)dxn:oo/|w(x)|2w(x)dx foranyy € H(2, R), (4.3)
2 2
(i) for every smooth boundary daga 32 — $2 such thatdegg) = 0,
Ey,(w) —> Ey(u) foranyue H}(2,5?).
n—+00

Proof. (i) = (ii). We fix a smooth boundary daga 2 — S2 such that degg) = 0. Clearly (4.3) implies that

/’Vu(x)‘zwn(x)dx —+> /’Vu(x)‘zw(x)dx for anyu eHgl(.Q,Sz),
n——+0oo
2 2

and by Theorem 1.2, it remains to prove that

Ly, (u) —> Ly() foranyue Hy(£2,5%). (4.4)
n——+00

Consideru € Hy (52, §%). By the result in [1,3], there exits a sequence of mapsien C Hy (52, S?) such that
v €CHR2\ Uj{kl{P-, N;}, $?) for some 2M points(P;, N;) in 2, degvg, P;) = +1 and degu, N;) = —1 for
j=1,..., M, andv, — u strongly inH1. We have

My, M
L, (vy) = Min dy (P;, Ng(; and L, (vy) = Min dy(P;i, Ng(i)).
wn (VK) UE%; wn (Pjs No(j)) w (k) OGSMk; w(Pj. No(j))
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Since the functionalé.;, I"-converge taL,, in Lip([O, 1], £2), we deduce from Theorem 4.1 in [13] that for
everyk e N, Ly, (vk) — Ly, (vg) asn — +oo. Now we fix a small > 0. Sincevy — u strongly inH, we derive
from Lemma 3.1 and (4.2) that exigts € N which only depends on, § andCqp such that

Ly, (vk) — 8 < Ly, (u) < Ly, (vx) +6 foranyn € N andk > ko.
Lettingn — +o0 in this inequality, we get that

Ly (vk) — 8 < liminf Ly, (u) <limsupLy, (u) < Ly(ve) +8  for k > ko.
n—+00

n——+o0o

Passing to the limit it and using Lemma 3.1, we obtain

Ly (1) = & < TMinf Lu, () < M SUPLy, () < Loy () +3,
n—-—+0oo

n——+00

which leads to the result sinées arbitrary small. _

(i) = (i). First we prove (4.3) fop € C*(£2, R). Letgp € C*®(£2, R) and consider the smooth mapd 2 — 52
defined byg (x) = (cogp(x)), sin(ep(x)), 0). We easily check that dég) = 0. Now consider the majp defined for
x € 2 by

u(x) = (Cos(go(x)), Siﬂ((p(x)), O).

We haveu € Hy(£2, §%) N C>®(£2) and thenL,, (u) = L,,(u) =0 for anyn € N. Since|Vu|? = |V¢|?, we derive
from assumption (ii) and Theorem 1.2 that

f Vo o) Pws () dx —> f Vo)) da.
2 2

Let us now prove (4.3) for any € H1(2, R). Let ¢ € H1(£2, R) and consider a sequengg )reny C C°(52, R)
such thatp, — ¢ strongly in H1. We fix a smalls > 0. From assumption (4.2), we infer that exigse N which
only depends o, § andCo such that for any: € N andk > ko,

/|V¢k(x)|2wn(x>dx—6 < f|w(x)|2wn<x)dx< /|wk(x>|2wn(x)dx+8.
2 2 2

Sincegy is smooth, letting: — +o0o we obtain fork > kg,

/‘Vg&k(x)‘zw(x)dX—(S < Iimlrng\vw(x)fwn(x)dx
2 2

n—-+00

<limsup [ [Vex)|*w, (x) dx < f|V<pk(x)|2w(x)dx 4.
2
Passing to the limit it and thens — 0, we conclude

n—-+00

lim /|V(p(x)|2wn(x)dx=f|V¢(x)|2w(x)dx.
2 2

It remains to prove that the functiondls, I"-converge tdLg, in Lip([0,1], £2). Let P and N be two distinct

points in$2. We takeg = (0,0,1) and consider € H}(£2, 5%) N C1(2 \ {P, N}) (such a map is constructed for
instance in [6,8]). By Theorem 1.2, we have

Eu, (1) =/|Vu(x)|2wn(x)dx +87d,, (P, N)
2
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and

Ey(u) = /\w(x)|2w(x)dx +87d, (P, N).
2

From (4.3) we get thaf, |Vu(x) 2w, (x) dx — [, [Vu(x)|?w(x) dx and from assumption (i) we deduce that
dy,(P,N) — d,(P,N) asn— +oo.

Since the points? and N are arbitrary in$2, we derive that/,, converges tal,, pointwise on$2 x £ and the
conclusion follows by the results in [13] Section 40

In the next proposition, we give some sufficient condition on a sequengg<n converging pointwise a.e. to
w for property (ii) in Theorem 4.1 to hold.

Proposition 4.1. Let (w,,),en be a sequence of measurable real functions satisfi@r®) and assume that one of
the following conditions holds

(@) w, >wandw, —> w a.e.ing,
(b) w, = win L*®(£2).

Then propertyii) in Theoremd.1 holds.

Proof. By Proposition 4.1 and Theorem 4.1 in [13], (a) or (b) implies that the functidng|s I"-converge to
LLg, in Lip([0, 1], £2). We also check that (a) or (b) implies (4.3) by dominated convergence. Then the conclusion
follows from Theorem 4.1. O

Remark 4.1. The conclusion of Proposition 4.1 may fails if one only assumesithat> w a.e. in§2 (see Re-
mark 4.1 in [13]).

4.2. Approximation property

In this section, we show that the function&), can be obtain as pointwise limit of a sequeniég,, ), en in
which the weight functionw,, is smooth.

Proposition 4.2. Let (p,),en be a sequence of smooth mollifiers. Extendinigy a sufficiently large constant and
settingw, = p, * w, we have

Ey, (”)nIZo E,(u) foranyu e H}(£2,5?).

Proof. By construction, (4.3) clearly holds. Then property (i) in Theorem 4.1 follows from Theorem 4.1 in [13]
and Theorem 4.2 in [13] which leads to the result by Theorem 4c1.
5. Therelaxed energy without prescribed boundary data

In this section, we consider the relaxed type functional

Ey(u) = Inf{limJirnf /|Vu,1(x)|2w(x)dx, up € C1(2, $%), uy — u weakly in Hl}
n——+oo
2
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defined foru € H'(£2, $2). We recall that F. Bethuel has also proved (see [1])@a®2, $?) is sequentially dense
in H1(£2, §2) for the weakH ! topology and therE,, is well defined.
As in [4], there is also a notion of length of a minimal connection relativé,tdefined for any: € H1(£2, $2):

. 1 _
Ly(u) = yp Sup|{(T (u), ¢), ¢ 152 — R 1-Lipschitz with respect td,, and{ =0 on 952}.

Since no assumptions are madewgyl;, it may happen that dégj;>) # 0 or that de@x|2) is not well defined.

But clearlyL,, () always makes sense. Whelis smooth except at a finite number of pointst) L., («) is equal

to the length of a minimal connection relativedg between the singularities afand some virtual singularities on

the boundary (see [8]). More precisely, one adds some virtual singularities on the boundary in such a way that the
new configuration has the same number of positive and negative points and one consider the length of a minimal
connection relative td,, for this configuration. Thet,, (1) corresponds to the infimum of these quantities when

one varies the position and the number of the boundary points. There is the variant of TheorenE},.2 for

Theorem 5.1. For anyu € H(£2, 5%), we have

Ey(u) = /|vu(x)|2w(x)dx+8niw(u).
2

5.1. Proof of Theorem 5.1

The inequality =" in Theorem 5.1 can be proved using a method similar to the one used in Section 3.1 and we
omit it. We obtain <” as in Section 3.2 using Proposition 5.1 and Lemma 5.1 below instead of Proposition 3.2
and Lemma 3.1. The proof of Lemma 5.1 is almost identical to the proof of Lemma 3.1 and we also omit it (note
that all the boundary integrals vanish sirice- 0 on9£2).

Proposition 5.1. Letu € H1(£2, §%). Then there exists a sequence of mags,cn C C1(£2, $) such that
up, —u weakly inH?!

and
n——+o00o

limsup ’Vun(x)lzw(x)dxé/‘Vu(x)’zw(x)dx+8niw(u).
Q

Lemma5.1. For anyu, v € H1(£2, §%), we have

|Lw () = Ly ()| < CA(I Vull 20y + V]l 12(2)) IVt = VI 1200y (5.1)

for a constantC independent ofy.

Proof of Proposition 5.1. Letu € H1(£2, $2). By the resultin [1,3], we can find a sequericg),cn C H1(£2, 52
such that, € C1(2 \ {(ai)fvz"l}) for someN,, distinct pointsay, ..., ay, in 2 and

”M — Un ”Hl(.Q) g Z_n. (52)

Since we are working with an approximating sequence, we may assumeéebat,, ;)| =1fori =1,..., N,

(see [1]). Sincey, is smooth except at a finite number of pointsihy the length of a minimal connectiah,, (v,,)

is computed as follows (see [8], part II). We pair each singulagitgither to another singularity ife of opposite
degree or to a virtual singularity on the boundary with opposite degree. In other words, we allow connections to
the boundary of2. Pairing all the singularities in this way, we take a configuration that minimizes the sum of the
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distances between the paired singularities, computing the distanceg withle relabel all the singularities (the
a;'s and the virtual singularities on the boundary), according to their multiplicity for those on the boundary, as a
list of positive and negative points s@¥1, ..., Px,) and(N4y, ..., Nk,) such that

Ky
Ly(va) = dw(Pj, Nj).
j=1
Using Lemma 2 bis in [1], we can find, ¢ H1(£2, $%) N CL(2 \ UK AP, N; D for some 2K distinct points
(P ,N ) in £2 such thatvn = v, outside a small neighborhood 8f2, deqv,, P )=+1 and degv,, N )= —
forj=1,...,K,, P =P; (respectwelyN N;)if P; € 2 (respectively ifN; € £2) and|P — P < 2—”/1(
otherwise (respectlvelyvj N;j| <27"/K,), and
10n = Unll g1y < <2 (5.3)

Note that, for each paitP;, N;), we necessarily havg; = P; or N; = N; and then

K, K,
> du(PjNj) =Y dy(Pj,Nj)| < C27", (5.4)
j=1 j=1
and from (5.2) and (5.3), we infer that
meag{x € £2, <22y <o, (5.5)

Applying Lemma 2.3 tdj,, we find a map, € C1(£2, SZ) satisfying

/|Vun(x)| w(x)dx</|an(x)| w(x)dx+8nZd (Pj,Nj)+27" (5.6)
j=1
and
meag{x € 2, u,(x) # v, (x)}) <27 (5.7)
From (5.4) and (5.6), we derive that
f|w,,(x)|2w(x)dx< f|w,,(x)|2w(x)dx+8n£w(vn)+cz—”. (5.8)
2 2

Sincev, — u strongly inH1, we deduce from Lemma 5.1 that, (v,) — Ly (1) asn — +oo which implies that
(un)nen is bounded inH1. From (5.3) and (5.7) we obtain, — « a.e. in£2 and then we conclude thaf, — u
weakly in H1. Passing to the limit in (5.8) leads to

limsup ‘Vun(x)‘zw(x) dx < /|Vu(x)}2w(x) dx + 87 Ly, (1)
n—+00o
2
and the proof is complete.I
5.2. Stability and approximation properties fr,
We present in this section the variants fﬁj; of the results in Section 4.

Theorem 5.2. Let (w,),en be a sequence of measurable real functions satisfiAn) and assume that) in
Theorend.1holds. Then we have

Ey, (1) 7 Ey(u) foranyu e HY(£2, 5. (5.9)
n—-—+oo
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Proof. Assumption (4.3) clearly implies that

/|W(x)|2w,,(x)dx — /|Vu(x)|2w(x)dx for anyu € H1($2, §2),

2 2
and by Theorem 5.1, we just have to prove that
Ly, (1) = L,u) foranyue HY(£2, 5?). (5.10)
n—+00

Consideru € H1(£2, $%). By the result in [1,3], we can find a sequen@g)reny C H1(£2, S?) such thaty; €
cL(2 \ UM, {a;}, $?) for someM; points(a;) in £2 andv; — u strongly inHL. We easily check that a minimal

connection foty relative to distance,,, does not allow more thaﬁj ; |[ded(vg, a;)| connections to the boundary.
Therefore, extracting a subsequerieg,cn, we can relabel the smgulantles of and the virtual singularities on
the boundary given by a minimal connection relativd&ggl , as a list of positive pointSP{, ey P;Q) and a list of

negative pointgNi, ..., Nf,(k) with K; independent of and such that

K
Ly, () =Minscs, Y dy, (P, N} ;) = Zdw,,, (P, NL i)
j=1 j=1

for some permutation; € Sk, . Extracting another subsequence if necessary, we may assumagthay is inde-
pendent of € N and thatPl — P; andN! — Njfor j=1,..., Kx. From the results in [13], Section 4.1,
St

] [—+00
we know that assumption (|) implies th&t, converges tal,, uniformly on£2 x £2 and then we have
Ky Ky
Ly (W) =) du,, (P}, N ) — Zdwuz, No,(j))-
j=1

By definition of L, (v), we obtain that
Ly < lim Ly, ().
I—+00 1

On the other hand, we can also relabel the singularitieg @ind the virtual singularities on the boundary given
by a minimal connection relative t@,,, as a list of positive pointgPs, ..., Pg) and a list of negative points
(N1, ..., Ng) such that

K
Ly = dy(Pj, N)).
j=1
As previously, we have for anye N,

>~

L, ) < du, (Pj. Nj).

Letting! — +o0, we obtain
K
L o0 < Lo B )

and then we conclude that ljm Lwn, (vk) = Ly (vp). By unigueness of the limit, we get that the convergence
holds for the full sequence i.e.,

an () — le(vk)-
n—+00
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At this stage, we can proceed as in the proof of Theorem 4:2 (i) using Lemma 5.1 instead of Lemma 3.10

We obtain the following variants of Proposition 4.1 and Proposition 4.2 using Theorem 5.2 instead of Theo-
rem4.1.

Proposition 5.2. Let (w,),en be a sequence of measurable real functions satisfid?) and assume thgi) or
(b) in Proposition4.1 holds. Ther(5.9) holds.

Proposition 5.3. Let (p,),en be a sequence of smooth mollifiers. Extendinigy a sufficiently large constant and
settingw, = p, * w, then(5.9) holds.
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