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Abstract

We compute explicitly a relaxed type energy for mapsu :Ω ⊂ R
3 → S2. The explicit formula involves the length of a minim

connection relative to some specific distance connecting the topological singularities ofu and associated to a measurable wei
function. This result generalizes a previous result of F. Bethuel, H. Brezis and J.M. Coron.

Résumé

Nous calculons explicitement une énergie de type relaxée pour des applicationsu :Ω ⊂ R
3 → S2. La formule explicite fait

intervenir la longueur d’une connexion minimale relative à une certaine distance, connectant les singularités topolog
u et associée à une fonction de poids mesurable. Ce résultat généralise un résultat antérieur de F. Bethuel, H. Bre
Coron.

MSC:49D20; 49F99

1. Introduction and main results

Let Ω be a smooth bounded and connected open set ofR
3 and letw :Ω → R be a measurable function su

that

0< λ � w � Λ a.e. inΩ (1.1)
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for some constantλ andΛ. We setH 1
g (Ω,S2) = {u ∈ H 1(Ω,S2), u = g on ∂Ω}, whereg : ∂Ω → S2 is a given

smooth boundary data such that deg(g) = 0. Our main goal in this paper is to obtain an explicit formula for
relaxed functional

Ew(u) = Inf

{
lim inf
n→+∞

∫
Ω

∣∣∇un(x)
∣∣2w(x)dx, un ∈ H 1

g (Ω,S2) ∩ C1( �Ω), un ⇀ u weakly inH 1
}
,

defined foru ∈ H 1
g (Ω,S2). By a result of F. Bethuel (see [1]),H 1

g (Ω,S2) ∩ C1( �Ω) is sequentially dense for th

weak topology inH 1
g (Ω,S2) and then the functionalEw is well defined.

In [4], F. Bethuel, H. Brezis and J.M. Coron have proved that forw ≡ 1,

E1(u) =
∫
Ω

∣∣∇u(x)
∣∣2 dx + 8πL(u),

whereL(u) denotes thelength of a minimal connectionrelative to the Euclidean geodesic distancedΩ in �Ω
connecting the singularities ofu (see also M. Giaquinta, G. Modica, J. Souček [12]). If u ∈ H 1

g (Ω,S2) is smooth
on �Ω except at a finite number of points inΩ , the length of a minimal connection relative todΩ connecting the
singularities ofu is given by

L(u) = Min
σ∈SK

K∑
i=1

dΩ(Pi,Nσ(i)),

where(P1, . . . ,PK) and(N1, . . . ,NK) are respectively the singularities of positive and negative degree co
according to their multiplicity (since deg(g) = 0, the number of positive singularities is equal to the numbe
negative ones) andSK denotes the set of all permutations ofK indices. For the definition ofL(u) when u is
arbitrary in H 1

g (Ω,S2), we refer to (1.6), (1.7) below. The notion of length of a minimal connection betw
singularities has its origin in [8]. We also refer to the results of J. Bourgain, H. Brezis, P. Mironescu [5
H. Brezis, P. Mironescu, A.C. Ponce [9] for similar problems involvingS1-valued maps.

Foru ∈ H 1(Ω,S2), the vector fieldD(u) first introduced in [8] and defined by

D(u) =
(

u · ∂u

∂x2
∧ ∂u

∂x3
, u · ∂u

∂x3
∧ ∂u

∂x1
, u · ∂u

∂x1
∧ ∂u

∂x2

)
(1.2)

plays a crucial role. Indeed, ifu is smooth except at a finite number of points(Pi,Ni)
K
i=1 in Ω , then (see [8],

Appendix B)

divD(u) = 4π

K∑
i=1

(δPi
− δNi

) in D′(Ω) (1.3)

and if in additionu|∂Ω = g, we have (since deg(g) = 0, see [8], Section IV)

L(u) = Sup

{
K∑

i=1

(
ζ(Pi) − ζ(Ni)

)}
, (1.4)

where the supremum is taken over all functionsζ : �Ω → R which are 1-Lipschitz with respect to distancedΩ i.e.,
|ζ(x) − ζ(y)| � dΩ(x, y). Note that for any real Lipschitz functionζ ,

K∑
i=1

ζ(Pi) − ζ(Ni) = 1

4π

∫
divD(u)ζ = − 1

4π

∫
D(u) · ∇ζ + 1

4π

∫ (
D(u) · ν)

ζ, (1.5)
Ω Ω ∂Ω
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whereν denotes the outward normal to∂Ω . We recall thatD(u) · ν is equal to the 2× 2 Jacobian determinan
of u restricted to∂Ω and then it only depends ong. In view of (1.4) and (1.5),L(u) has been defined in [4] fo
u ∈ H 1

g (Ω,S2) by

L(u) = 1

4π
Sup

{〈
T (u), ζ

〉
, ζ : �Ω → R 1-Lipschitz with respect todΩ

}
, (1.6)

whereT (u) ∈D′(Ω) denotes the distribution defined by its action on real Lipschitz functions through the for〈
T (u), ζ

〉 = ∫
Ω

D(u) · ∇ζ −
∫

∂Ω

(
D(u) · ν)

ζ. (1.7)

In a previous paper [13], we have studied the following variational problem: given two distinct pointsP andN

in Ω ,

Ew(P,N) = Inf

{∫
Ω

∣∣∇v(x)
∣∣2w(x)dx, v ∈ E(P,N)

}
,

where

E(P,N) = {
v ∈ H 1(Ω,S2) ∩ C1( �Ω \ {P,N}), v = const on∂Ω, T (v) = 4π(δP − δN) in D′(Ω)

}
.

In the casew ≡ 1, H. Brezis, J.M. Coron and E. Lieb have shown that (see [8])

E1(P,N) = 8πdΩ(P,N).

For an arbitrary functionw, we have proved (see [13]) thatEw(·, ·) defines a distance function satisfying

8πλdΩ(·, ·) � Ew(·, ·) � 8πΛdΩ(·, ·). (1.8)

From (1.8), we infer thatEw extends to�Ω × �Ω into a distance on�Ω . In what follows, we set forx, y ∈ �Ω ,

dw(x, y) = 1

8π
Ew(x, y).

Whenw is continuous, we also have shown that the distancedw can be characterized in the following way: for a
x, y ∈ �Ω ,

dw(x, y) = Min

1∫
0

w
(
γ (t)

)∣∣γ̇ (t)
∣∣dt,

where the minimum is taken over all Lipschitz curveγ : [0,1] → �Ω verifying γ (0) = x andγ (1) = y. For an
arbitrary measurable functionw, the previous formula is meaningless sincew is not well defined on curves but
similar characterization ofdw actually holds. We refer to [13] for more details. We also recall the general r
in [13]:

Theorem 1.1. Let (Pi)
K
i=1 and(Ni)

K
i=1 be two lists of points inΩ and consider

E
(
(Pi,Ni)

K
i=1

) =
{
v ∈ H 1(Ω,S2) ∩ C1( �Ω \ {

(Pi,Ni)
K
i=1

})
,

v = conston∂Ω andT (v) = 4π

K∑
δPi

− δNi
in D′(Ω)

}
.

i=1
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Inf

{∫
Ω

∣∣∇v(x)
∣∣2w(x)dx, v ∈ E

(
(Pi,Ni)

K
i=1

)} = 8πLw,

whereLw is the length of a minimal connection relative to distancedw connecting the points(Pi) and(Ni) i.e.,

Lw = Min
σ∈SK

K∑
i=1

dw(Pi,Nσ(i)).

By analogy with the casew ≡ 1, we define foru ∈ H 1
g (Ω,S2),

Lw(u) = 1

4π
Sup

{〈
T (u), ζ

〉
, ζ : �Ω → R 1-Lipschitz with respect todw

}
(note that any real functionζ which is 1-Lipschitz with respect todw, is a Lipschitz function with respect todΩ

sincedw is strongly equivalent todΩ and then〈T (u), ζ 〉 is well defined). Whenu is smooth except at a finit
number of points(Pi,Ni)

K
i=1 in Ω , it follows as in [8] thatLw(u) is equal to the length of a minimal connecti

relative to distancedw connecting the points(Pi) and(Ni). Our main result is the following.

Theorem 1.2. For anyu ∈ H 1
g (Ω,S2), we have

Ew(u) =
∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8πLw(u).

The proof of Theorem 1.2 is presented in Section 3 and is based on a method similar to the one us
and on aDipole Removing Techniqueexposed in the next section. This technique is mostly inspired from [1
involves some tools developed in [13] in order to treat the problem for a non smooth functionw.

In Section 4, we prove a stability property ofEw. More precisely, we give some conditions on a seque
(wn)n∈N under which one can conclude that the sequence of functionals(Ewn)n∈N converges pointwise toEw on
H 1

g (Ω,S2). The results are obtained using previous ones in [13]. In Section 5, we present similar resul
relaxed type functional in which we do not prescribed any boundary data.

Throughout the paper, a sequence of smooth mollifiers means any sequence(ρn)n∈N satisfying

ρn ∈ C∞(R3,R), Suppρn ⊂ B1/n,

∫
R3

ρn = 1, ρn � 0 onR
3.

2. The dipole removing technique

In this section, we first give a technical result which will be used for thedipole removing techniquein Section 2.2.

2.1. Preliminaries

Let α andβ be two distinct points inΩ . We denote bypα,β(ξ) the projection ofξ ∈ R
3 on the straight line

passing byα andβ andrα,β(ξ) = dist(x,[α,β]), where “dist” denotes the Euclidean distance inR
3. Form ∈ N

∗,
we set

aα,β
m = |α − β|

and s
α,β
j = jaα,β

m for j = 0, . . . ,m.

m
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For ξ ∈ R
3 such thatpα,β(ξ) ∈ [α,β], we define

hα,β
m (ξ) = min

0�j�m

∣∣∣∣pα,β(ξ) − α
∣∣ − s

α,β
j

∣∣,
and we set

Θm

([α,β]) = {
ξ ∈ R

3, pα,β(ξ) ∈ [α,β] andrα,β(ξ) � aα,β
m hα,β

m (ξ)
}
.

For two pointsx and y in Ω , we consider the classQ(x, y) of all finite collections of segmentsF =
([αk,βk])n(F)

k=1 such thatβk = αk+1, α1 = x, βn(F) = y, [αk,βk] ⊂ Ω and αk �= βk . We define the “length” o
an elementF ∈ Q(x, y) by

�̄w(F) =
n(F)∑
k=1

lim inf
m→+∞

1

π

∫
Θm([αk,βk])∩Ω

εm
αk,βk

(ξ)w(ξ)dξ

with

εm
αk,βk

(ξ) = (h
αk,βk
m (ξ))2(a

αk,βk
m )4

((h
αk,βk
m (ξ))2(a

αk,βk
m )4 + r2

αk,βk
(ξ))2

.

Lemma 2.1. LetP be a finite collection of distinct points inΩ or P = ∅. For any distinct pointsx0, y0 in Ω \P and
δ > 0, there existsFδ = ([α1, β1], . . . , [αn,βn]) ∈ Q(x0, y0) such that(P ∪ {y0}) ∩ (

⋃n−1
k=1[αk,βk] ∪ [αn,βn[) = ∅

and

�̄w(F) � dw(x0, y0) + δ.

Proof. Step 1.Assume thatw is smooth onΩ . We are going to prove that for every elementF = ([α1, β1], . . . ,
[αn,βn]) ∈Q(x, y), we have

�̄w(F) =
∫

⋃n
k=1[αk,βk]

w(s)ds.

It suffices to prove that for any distinct pointsα,β ∈ Ω ,

lim
m→+∞

1

π

∫
Θm([α,β])∩Ω

εm
k (ξ)w(ξ)dξ =

∫
[α,β]

w(s)ds. (2.1)

Without loss of generality, we may assume that[α,β] = {(0,0)} × [0,R] and we drop the indicesα andβ for
simplicity. We set forj = 0, . . . ,m− 1,

C
j+
m =

{
ξ = (ξ1, ξ2, ξ3) ∈ Θm

([α,β]), ξ3 ∈
[
sj , sj + am

2

]}
,

and forj = 1, . . . ,m,

C
j−
m =

{
ξ = (ξ1, ξ2, ξ3) ∈ Θm

([α,β]), ξ3 ∈
[
sj − am

2
, sj

]}
.

For ξ ∈ C
j+
m ∪ C

j−
m , we havehm(ξ) = |ξ3 − sj | and we get that form large enough,∫
εm
k (ξ)w(ξ)dξ =

m−1∑
j=0

I
j+
m +

m∑
j=1

I
j−
m (2.2)
Θm([α,β])∩Ω
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I
j+
m =

∫
C

j+
m

|ξ3 − sj |2a4
mw(ξ)

(|ξ3 − sj |2a4
m + r2(ξ))2

dξ for j = 0, . . . ,m− 1,

I
j−
m =

∫
C

j−
m

|ξ3 − sj |2a4
mw(ξ)

(|ξ3 − sj |2a4
m + r2(ξ))2

dξ for j = 1, . . . ,m.

Using the change of variablez1 = ξ1|ξ3−sj | , z2 = ξ2|ξ3−sj | andz3 = ξ3, we derive that

I
j+
m =

sj +am/2∫
sj

( ∫
Bam(0)

a4
mw(|z3 − sj |z1, |z3 − sj |z2, z3)

(a4
m + z2

1 + z2
2)

2
dz1 dz2

)
dz3

=
sj +am/2∫

sj

(
w(0,0, z3) +O(am)

)( ∫
Bam(0)

a4
m

(a4
m + z2

1 + z2
2)

2
dz1 dz2

)
dz3

= π

sj +am/2∫
sj

w(0,0, z3)dz3 +O(a2
m).

By similar computations we get that

I
j−
m = π

sj∫
sj −am/2

w(0,0, z3)dz3 +O(a2
m).

Combining this equalities with (2.2), we obtain that∫
Θm([α,β])∩Ω

εm
k (ξ)w(ξ)dξ = π

R∫
0

w(0,0, z3)dz3 +O(am)

which ends the proof of (2.1).
Step 2.We fix two distinct pointsx0, y0 ∈ Ω \ P. For any pointsx, y in Ω \ (P ∪ {y0}), letQ′(x, y) be the class o
elementsF = ([α1, β1], . . . , [αn,βn]) ∈ Q(x, y) such that

n⋃
k=1

[αk,βk] ⊂ Ω \ (
P ∪ {y0}

)
.

We consider the functionDw :Ω \ (P ∪ {y0}) × Ω \ (P ∪ {y0}) → R+ defined by

Dw(x, y) = Inf
F∈Q′(x,y)

�̄(F).

We are going to show thatDw defines a distance function which can be extended to�Ω × �Ω . Letx, y ∈ Ω \(P∪{y0})
and letF = ([α1, β1], . . . , [αn,βn]) be an element ofQ′(x, y). Assumption (1.1) and similar computations to tho
in Step 1 lead to

λ

n∑
|αk − βk| � �̄w(F) � Λ

n∑
|αk − βk|.
k=1 k=1
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Taking the infimum over allF ∈ Q′(x, y), we infer that

λdΩ(x, y) �Dw(x, y) � ΛdΩ(x, y). (2.3)

From (2.3), we deduce thatDw(x, y) = 0 if and only if x = y. Let us now prove thatDw is symmetric. Let
x, y ∈ Ω \ (P∪{y0}) andδ > 0 arbitrary small. By definition, we can findFδ = ([α1, β2], . . . , [αn,βn]) in Q′(x, y)

satisfying

�̄w(Fδ) �Dw(x, y) + δ.

Then forF ′
δ = ([βn,αn], . . . , [β1, α1]) ∈Q′(y, x), we have

Dw(y, x) � �̄w(F ′
δ) = �̄w(Fδ) �Dw(x, y) + δ.

Sinceδ is arbitrary, we obtainDw(y, x) �Dw(x, y) and we conclude thatDw(y, x) =Dw(x, y) inverting the roles
of x andy. The triangle inequality is immediate since the juxtaposition ofF1 ∈ Q′(x, z) with F2 ∈ Q′(z, y) is an
element ofQ′(x, y). HenceDw defines a distance onΩ \ (P∪{y0}) verifying (2.3). Therefore distanceDw extends
uniquely to �Ω × �Ω into a distance function that we still denote byDw. By continuity,Dw satisfies (2.3) for any
x, y ∈ �Ω .
Step 3.We consider the functionζ : �Ω → R defined by

ζ(x) =Dw(x, x0).

Note that functionζ is 1-Lipschitz with respect to distanceDw and thereforeΛ-Lipschitz with respect to the
Euclidean geodesic distance on�Ω by (2.3). We fix an arbitrary pointz0 ∈ Ω \ (P ∪ {y0}) and someR > 0 such that
B3R(z0) ⊂ Ω \ (P ∪ {y0}). Let (ρn)n∈N be a sequence of smooth mollifiers. Forn > 1/R, we consider the smoot
functionζn = ρn ∗ ζ : BR(z0) → R. We write

ζn(x) =
∫

B1/n

ρn(−z)ζ(x + z)dz

and therefore for allx, y ∈ BR(z0),∣∣ζn(x) − ζn(y)
∣∣ �

∫
B1/n

ρn(−z)
∣∣ζ(x + z) − ζ(y + z)

∣∣dz�
∫

B1/n

ρn(−z)Dw(x + z, y + z)dz

�
∫

B1/n

ρn(−z)�̄w

([x + z, y + z])dz.

We remark thatΘm([x + z, y + z]) = z + Θm([x, y]). Form large enoughz + Θm([x, y]) ⊂ B3R(z0) and then for
any vectorξ ∈ Θm([x, y]), we haveεm

x+z,y+z(ξ + z) = εm
x,y(ξ). Hence we obtain for allz ∈ B1/n(0),

�̄w

([x + z, y + z]) = lim inf
m→+∞

1

π

∫
Θm([x,y])

εm
x,y(ξ)w(ξ + z)dξ.

Using Fatou’s lemma, we get that∣∣ζn(x) − ζn(y)
∣∣ �

∫
B1/n

ρn(−z)

(
lim inf
m→+∞

1

π

∫
Θm([x,y])

εm
x,y(ξ)w(ξ + z)dξ

)
dz

� lim inf
m→+∞

1

π

∫
B

∫
Θ ([x,y])

ρn(−z)εm
x,y(ξ)w(ξ + z)dξ dz.
1/n m
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For eachm ∈ N sufficiently large we have

1

π

∫
B1/n

∫
Θm([x,y])

ρn(−z)εm
x,y(ξ)w(ξ + z)dξ dz= 1

π

∫
Θm([x,y])

εm
x,y(ξ)ρn ∗ w(ξ)dξ,

and sinceρn ∗ w is smooth, we obtain as in Step 1,

1

π

∫
Θm([x,y])

εm
x,y(ξ)ρn ∗ w(ξ)dξ →

∫
[x,y]

ρn ∗ w(s)ds asm → +∞.

Thus for eachx, y ∈ BR(z0) we have∣∣ζn(x) − ζn(y)
∣∣ �

∫
[x,y]

ρn ∗ w(s)ds.

Then forx ∈ BR(z0), h ∈ S2 fixed andδ > 0 small, we infer that

|ζn(x + δh) − ζn(x)|
δ

� 1

δ

∫
[x,x+δh]

ρn ∗ w(s)ds −→
δ→0+ ρn ∗ w(x)

and we conclude, lettingδ → 0, that |∇ζn(x) · h| � ρn ∗ w(x) for eachx ∈ BR(z0) andh ∈ S2 which implies
that |∇ζn| � ρn ∗ w on BR(z0). Since∇ζn → ∇ζ andρn ∗ w → w a.e. onBR(z0) asn → +∞, we deduce tha
|∇ζ | � w a.e. onBR(z0). Sincez0 is arbitrary inΩ \ (P ∪ {y0}), we derive

|∇ζ | � w a.e. onΩ.

By Proposition 2.3. in [13], it follows that|ζ(x) − ζ(y)| � dw(x, y) for anyx, y ∈ �Ω and in particular, we obtain
choosingy = x0,

Dw(x, x0) � dw(x, x0) for all x ∈ �Ω.

Step 4. End of the Proof.Let δ > 0 be given. We choose someỹ0 ∈ Ω \ (P ∪ {y0}) such that[ỹ0, y0] ⊂ Ω \ P and
|ỹ0 − y0| � δ

3Λ
. By the previous step, we can find an elementF ′ = ([α1, β1], . . . , [αn,βn]) ∈ Q′(x0, ỹ0) verifying

�̄w(F ′) � dw(x0, ỹ0) + δ

3
.

Then we considerF = ([α1, β1], . . . , [αn,βn], [ỹ0, y0]) ∈ Q(x0, y0). We have

�̄w(F) � �̄w(F ′) + Λ|ỹ0 − y0| � dw(x0, ỹ0) + 2δ

3
� dw(x0, y0) + dw(y0, ỹ0) + 2δ

3
� dw(x0, y0) + δ

and thenF satisfies the requirement.�
2.2. The dipole removing technique

We first present thedipole removing techniquefor a simple dipole. We then treat the case of several p
singularities.

Lemma 2.2. Let P and N be two distinct points inΩ and consideru ∈ H 1(Ω,S2) ∩ C1( �Ω \ {P,N}) with
deg(u,P ) = +1 and deg(u,N) = −1. Let F = ([α1, β1], . . . , [αn,βn]) be an element ofQ(P,N) such that
N /∈ ⋃n−1

k=1[αk,βk] ∪ [αn,βn[. Then for anyδ > 0 small enough, there exists a mapuδ ∈ C1( �Ω,S2) such that:∫
Ω

∣∣∇uδ(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8π�̄w(F) + δ

anduδ coincides withu outside aδ-neighborhood of
⋃n

k=1[αk,βk] included inΩ .
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ap
Proof. Let F = ([α1, β1], . . . , [αn,βn]) ∈ Q(P,N) such thatN /∈ ⋃n−1
k=1[αk,βk] ∪ [αn,βn[ and fix someδ > 0

small. We proceed in several steps.
Step 1.We consider a small 0< r0 < δ verifying Br0(α1) ⊂ Ω \ {N}. By Lemma A.1 in [1], we can findv ∈
C1( �Ω \ {α1,N}, S2) ∩ H 1(Ω) (recall thatα1 = P ) satisfying

v(x) =


u(x) onΩ \ Br0(α1),

R

(
x − α1

|x − α1|
)

onBr0(α1),
(2.4)

for some rotationR and∫
Ω

∣∣∇v(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + δ. (2.5)

Let W = {x ∈ R
3,dist(x,[α1, β1]) < δ}. For δ small enough, we have�W ⊂ Ω \ {N}. We setd = |α1 − β1|. We

choose normal coordinates such thatα1 = (0,0,0) and β1 = (0,0, d). Let 0< r <
r0
2 . Sincev is smooth on

W \ Br0(α1), we can find a constantσ(r) such that|∇v| � σ(r) onW \ Br0(α1). Form ∈ N
∗, we consider

Km =
[
−a

α1,β1
m

2
,
a

α1,β1
m

2

]2

×
[
−a

α1,β1
m

2
, d + a

α1,β1
m

2

]
.

Form large enough, we haveΘm([α1, β1]) ⊂ Km ⊂ W . As in [1], we are going to construct in the next step a m
v1 ∈ C1( �W \ {β1}, S2) ∩ H 1(W) verifying v1 = v in a neighborhood of∂W and deg(v1, β1) = +1. For simplicity,
we drop the indicesα1 andβ1.
Step 2.We divideKm in m + 1 cubesQj

m defined by

Q
j
m =

[
−am

2
,
am

2

]2

×
[(

j − 1

2

)
am,

(
j + 1

2

)
am

]
for j = 0, . . . ,m.

Arguing as in [1], we infer from (2.4) that
m∑

j=0

∫
∂Q

j
m

|∇v|2 � C

(
r

am

+ mσ(r)2a2
m

)
. (2.6)

We are going to make use of a mapωm :B2
am

(0)⊂ R
2 → S2 defined by

ωm(x1, x2) = 2a2
m

a4
m + x2

1 + x2
2

(x1, x2,−a2
m) + (0,0,1)

(ωm was first introduced in [7] and we refer to the proof of Lemma 2 in [7] for its main properties). Forj =
1, . . . ,m, we choose an orthonormal direct basis(e

j

1, e
j

2, e
j

3) of R
3 such that

v
(
0,0, (j − 1/2)am

) = (0,0,1) in the basis(ej

1, e
j

2, e
j

3),

and we define the mapvm
1 :

⋃m
j=0 ∂Q

j
m → S2 by

(1) for (x1, x2, x3) ∈ (
⋃m

j=0 ∂Q
j
m) \ (

⋃m
j=1 B2

a2
m
(0)× {(j − 1/2)am}),

vm
1 (x1, x2, x3) = v(x1, x2, x3),

(2) for j = 1, . . . ,m and(x1, x2, x3) ∈ B2
a2
m/2

(0)× {(j − 1/2)am},

vm
1 (x1, x2, x3) = ωm

(
2x1

,
2x2

)
in the basis(ej

1, e
j

2, e
j

3),

am am
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(3) for j = 1, . . . ,m, for (x1, x2, x3) ∈ (B2
a2
m
(0) \ B2

a2
m/2

(0))× {(j − 1/2)am} and using cylindrical coordinate

(x1, x2, x3) = (ρ cosθ,ρ sinθ, z),

vm
1 (x1, x2, x3) = (

A1ρ + B1,A2ρ + B2,

√
1− (A1ρ + B1)2 − (A2ρ + B2)2

)
in the basis(ej

1, e
j

2, e
j

3), whereA1,A2,B1,B2 are determined to makevm
1 continuous. More precisely, if we writ

v = v1e
j

1 + v2e
j

2 + v3e
j

3 then

a2
mAi(θ) + Bi(θ) = vi

(
a2
m cosθ, a2

m sinθ, (j − 1/2)am
)
, i = 1,2,

a2
m

2
A1(θ) + B1(θ) = 2a3

m

a4
m + a2

m

cosθ,

a2
m

2
A2(θ) + B2(θ) = 2a3

m

a4
m + a2

m

sinθ.

The mapvm
1 satisfies by constructionvm

1 = v on ∂Km. Moreover, it follows exactly as in the proof of Lemma 2

[1] that deg(vm
1 , ∂Q

j
m) = 0 for j = 0, . . . ,m− 1 and deg(vm

1 , ∂Qm
m) = +1. Then we extendvm

1 on each cubeQj
m

by setting

vm
1 (x) = vm

1

(
am(x − bj )

2‖x − bj‖∞
+ bj

)
onQ

j
m for j = 0, . . . ,m,

wherebj = (0,0, sj ) is the barycenter ofQj
m and‖x − bj‖∞ = max(|x1|, |x2|, |x3 − sj |). We easily check tha

vm
1 ∈ H 1(Km,S2), vm

1 = v on ∂Km, vm
1 is continuous except at the pointsbj and Lipschitz continuous outside an

small neighborhood of the pointsbj . We also get that

deg(vm
1 , bm) = +1 and deg(vm

1 , bj ) = 0 for j = 0, . . . ,m− 1. (2.7)

We remark that if we set

D
j
m = B2

a2
m/2(0)× {

(j − 1/2)am
} ∪ B2

a2
m/2(0)× {

(j + 1/2)am
}

for j = 1, . . . ,m− 1,

D0
m = B2

a2
m/2(0)× {1/2am} and Dm

m = B2
a2
m/2(0)× {

(m − 1/2)am
}
,

then we have
m⋃

j=0

{
x ∈ Q

j
m,

am(x − bj )

2‖x − bj‖∞
+ bj ∈ D

j
m if x �= bj or x = bj otherwise

}
= Θm

([α1, β1]
)

and ifx ∈ Q
j
m ∩ Θm([α1, β1]) for somej ∈ {0, . . . ,m} then

hm(x) = |x3 − sj | = ‖x − bj‖∞ and r(x) =
√

x2
1 + x2

2. (2.8)

Some classical computations (see [1] and [7]) lead to, forj = 0, . . . ,m,∫
(∂Q

j
m)\Dj

m

|∇vm
1 |2 �

∫
∂Q

j
m

|∇v|2 +O(a2
m)

and therefore∫
j

∣∣∇vm
1 (x)

∣∣2w(x)dx � C1Λam

∫
j

|∇v|2 + C2Λa3
m.
Qm\Θm([α1,β1]) ∂Qm
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Adding these inequalities forj = 0, . . . ,m and combining with (2.6) we obtain∫
Km\Θm([α1,β1])

∣∣∇vm
1 (x)

∣∣2w(x)dx � CΛ
(
r + mσ(r)2a3

m + a2
m

)
. (2.9)

Forx ∈ Q
j
m ∩ Θm([α1, β1]) for somej ∈ {0, . . . ,m}, we have

vm
1 (x) =


ωm

(
x1

|x3 − sj | ,
x2

|x3 − sj |
)

in the basis(ej+1
1 , e

j+1
2 , e

j+1
3 ) if x3 − sj > 0,

ωm

(
x1

|x3 − sj | ,
x2

|x3 − sj |
)

in the basis(ej

1, e
j

2, e
j

3) otherwise.

Following the computations in [6], we infer that

∣∣∇vm
1 (x)

∣∣2 � 1+ Ca2
m

|x3 − sj |2
∣∣∣∣∇ωm

(
x1

|x3 − sj | ,
x2

|x3 − sj |
)∣∣∣∣2 in Q

j
m ∩ Θm

([α1, β1]
)
.

Since we have (see [7])∣∣∣∣∇ωm

(
x1

|x3 − sj | ,
x2

|x3 − sj |
)∣∣∣∣2 = 8|x3 − sj |4a4

m

(|x3 − sj |2a4
m + x2

1 + x2
2)2

,

we derive that∫
Q

j
m∩Θm([α1,β1])

∣∣∇vm
1 (x)

∣∣2w(x)dx �
∫

Q
j
m∩Θm([α1,β1])

8|x3 − sj |2a4
mw(x)

(|x3 − sj |2a4
m + x2

1 + x2
2)2

dx + CΛa3
m.

Summing these inequalities forj = 0, . . . ,m and using (2.8) we obtain that∫
Θm([α1,β1])

∣∣∇vm
1 (x)

∣∣2w(x)dx � 8
∫

Θm([α1,β1])
εm
α1,β1

(x)w(x)dx + CΛa2
m. (2.10)

Combining (2.9) with (2.10) we conclude that∫
Km

∣∣∇vm
1 (x)

∣∣2w(x)dx � 8
∫

Θm([α1,β1])
εm
α1,β1

(x)w(x)dx + CΛ
(
r + mσ(r)2a3

m + a2
m

)
.

Taking the lim inf inm, we derive that we can findm1 ∈ N large andr small enough such that∫
Km1

∣∣∇v
m1
1 (x)

∣∣2w(x)dx � 8 lim inf
m→+∞

∫
Θm([α1,β1])

εm
α1,β1

(x)w(x)dx + δ. (2.11)

Sincev
m1
1 = v on ∂Km1, we may extendvm1

1 to W by settingv
m1
1 = v on W \ Km1. Now we recall thatvm1

1 is
singular only at the pointsbj , j = 0, . . . ,m (we also recall thatbm = β1). From (2.7) and the results in [1–3], w
infer that exists a mapv1 ∈ C1( �W \ {β1}, S2) ∩ H 1(W) satisfyingv1 = v in a neighborhood of∂W , deg(v1, β1) =
+1 and∫ ∣∣∇v1(x)

∣∣2w(x)dx �
∫ ∣∣∇v

m1
1 (x)

∣∣2w(x)dx + δ. (2.12)
W1 W1
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Sincev = u in a neighborhood of∂W , we may extendv1 to �Ω by settingv1 = u on �Ω \W . Then we conclude tha
v1 ∈ C1( �Ω \ {β1,N}, S2) ∩ H 1(Ω), deg(v1, β1) = +1, deg(v1,N) = −1 and by (2.5)-(2.11)-(2.12),∫

Ω

∣∣∇v1(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8 lim inf

m→+∞

∫
Θm([α1,β1])

εm
α1,β1

(x)w(x)dx + Cδ.

Step 3.Applying Step 1 and Step 2 tov1 instead ofu and replacing(α1, β1) by (α2, β2) (recall thatβ1 = α2), we
obtain a mapv2 ∈ C1( �Ω \ {β2,N}, S2) ∩ H 1(Ω) satisfyingv2 = v1 outside aδ-neighborhood of[α2, β2] included
in Ω , deg(v2, β2) = +1, deg(v2,N) = −1 and∫

Ω

∣∣∇v2(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇v1(x)
∣∣2w(x)dx + 8 lim inf

m→+∞

∫
Θm([α2,β2])

εm
α2,β2

(x)w(x)dx + Cδ.

Iterating this process, we finally obtain a mapvn−1 ∈ C1( �Ω \ {αn,βn}, S2)∩H 1(Ω) (recall thatβn = N ) verifying
vn−1 = u outside aδ-neighborhood of

⋃n−1
k=1[αk,βk] included inΩ , deg(vn−1, αn) = +1, deg(vn−1, βn) = −1 and∫

Ω

∣∣∇vn−1(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8

n−1∑
k=1

lim inf
m→+∞

∫
Θm([αk,βk])

εm
αk,βk

(x)w(x)dx + Cδ.

As in Step 1, we consider 0< r0 < δ such thatBr0(αn)∩Br0(βn) = ∅ andBr0(αn)∪Br0(βn) ⊂ Ω and we construct
using Lemma A1 in [1], a map̃v ∈ C1( �Ω \ {αn,βn}, S2) ∩ H 1(Ω) satisfying

ṽ(x) =



u(x) onΩ \ Br0(αn),

R+
(

x − αn

|x − αn|
)

onBr0(αn),

−R−
(

x − βn

|x − βn|
)

onBr0(βn),

for some rotationsR+ andR− and∫
Ω

∣∣∇ṽ(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇vn−1(x)
∣∣2w(x)dx + δ.

Applying the construction in Step 2 starting from̃v, we obtain a new map̃vmn
n (for some largemn ∈ N) defined

on δ-neighborhoodW ′ of [αn,βn] included inΩ , which coincide withṽ near∂W ′, which then has only poin
singularities of degree zero (since deg(ṽ, βn) = −1) and satisfying∫

W ′

∣∣∇vmn
n (x)

∣∣2w(x)dx �
∫
W ′

∣∣∇ṽ(x)
∣∣2w(x)dx + 8 lim inf

m→+∞

∫
Θm([αn,βn])

εm
αn,βn

(x)w(x)dx + Cδ.

Since the degree of each singularities ofv
mn
n is zero, we can construct a mapvn ∈ C1( �W ′, S2) (see [2,3]) verifying

vn = ṽ in a neighborhood of∂W ′ and∫
W ′

∣∣∇vn(x)
∣∣2w(x)dx �

∫
W ′

∣∣∇vmn
n (x)

∣∣2w(x)dx + δ.

Then we defineuδ : �Ω → S2 by

uδ(x) =
{

vn−1(x) if x ∈ �Ω \ W ′,
�′
vn(x) if x ∈ W .
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on
Sincevn−1 = ṽ andṽ = vn−1 near∂W ′, we deduce thatuδ ∈ C1( �Ω,S2). Moreover it follows by construction tha
uδ = u outside aδ-neighborhood of

⋃n
k=1[αk,βk] included inΩ and∫

Ω

∣∣∇uδ(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8π�̄(F) + Cδ,

which ends the proof sinceδ is arbitrary small. �
Lemma 2.3. Let (Pi,Ni)

K
i=1 be 2K distinct points inΩ and consideru ∈ H 1(Ω,S2) ∩ C1( �Ω \ ⋃K

i=1{Pi,Ni})
such thatdeg(u,Pi) = +1 anddeg(u,Ni) = −1 for i = 1, . . . ,K. Then there exists a sequence of maps(un)n∈N ⊂
C1( �Ω,S2) satisfyingun|∂Ω = u|∂Ω ,∫

Ω

∣∣∇un(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8πLw(u) + 2−n,

and

meas
({

x ∈ Ω, un(x) �= u(x)
})

� 2−n.

Proof. Without loss of generality we may assume that
∑

i dw(Pi,Ni) is equal to the length of a minimal connecti
relative todw between the points(Pi) and(Ni). As in [1], we are going to “remove” each dipole(Pi,Ni). More
precisely, for eachn ∈ N, we construct successivelyK maps(ui

n)
K
i=1 satisfying

(a) ui
n ∈ H 1(Ω,S2) ∩ C1( �Ω \ ⋃

i+1�j�K{Pj ,Nj }) for i = 1, . . . ,K,

(b) u1
n = u on �Ω \ W1

n and ui
n = ui−1

n on �Ω \ Wi
n for i = 2, . . . ,K where Wi

n is strictly included inΩ \⋃
i+1�j�K{Pj ,Nj } and|Wi

n| � 2−n/K ,

(c)
∫
Ω

|∇u1
n(x)|2w(x)dx �

∫
Ω

|∇u(x)|2w(x)dx + 8πdw(P1,N1) + 2−n

K
and∫

Ω
|∇ui

n(x)|2w(x)dx �
∫
Ω

|∇ui−1
n (x)|2w(x)dx + 8πdw(Pi,Ni) + 2−n

K
for i = 2, . . . ,K.

We easily check that the sequence(uK
n )n∈N then satisfies the requirement since we haveLw(u) = ∑

i dw(Pi,Ni).
We start with the construction ofu1

n.
Construction ofu1

n. By Lemma 2.1, we can findF1 = ([α1, β1], . . . , [αl, βl]) ∈ Q(P1,N1) satisfying(
K⋃

i=2

{Pi,Ni} ∪ {N1}
)

∩
(

l⋃
k=2

[αk,βk] ∪ [α1, β1[
)

= ∅, (2.13)

and

�̄w(F1) � dw(P1,N1) + 2−(n+1)

8Kπ
.

From (2.13), we infer that we can findδ > 0 small enough such that

W1
δ =

{
x ∈ R

3, dist

(
x,

l⋃
k=1

[αk,βk]
)

� δ

}
⊂ Ω

∖ K⋃
i=2

{Pi,Ni} and |W1
δ | � 2−n

K
.

By the method described in the proof of Lemma 2.2, we construct a mapu1
n ∈ H 1(Ω,S2)∩ C1( �Ω \⋃K

i=2{Pi,Ni})
verifying u1

n = u outsideW1
δ and∫ ∣∣∇u1

n(x)
∣∣2w(x)dx �

∫ ∣∣∇u(x)
∣∣2w(x)dx + 8π�̄w(F1) + 2−(n+1)

K

Ω Ω
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uous
�
∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8πdw(P1,N1) + 2−n

K
.

Construction ofui
n, i = 2, . . . ,K. We iterate the previous process i.e., we proceed as for the construction ofu1

n but
starting fromui−1

n instead ofu. �

3. Proof of Theorem 1.2

3.1. Lower bound of the energy

In this section, we denote byFw the functional defined for mapsu ∈ H 1
g (Ω,S2) by

Fw(u) =
∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8πLw(u).

Proposition 3.1. The functionalFw is sequentially lower semi-continuous onH 1
g (Ω,S2) for the weakH 1-topology.

Proof. We follow the method in [4]. Since the supremum of a family of sequentially lower semi-contin
functionals is sequentially lower semi-continuous, it suffices to show that for any functionζ : �Ω → R which is
1-Lipschitz with respect todw, the functional

u ∈ H 1
g �→

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 2

∫
Ω

D(u) · ∇ζ dx

is sequentially lower semi-continuous for the weakH 1-topology (the term
∫
∂Ω

(D(u) · ν)ζ only depends ong
andζ ). Consider(un)n∈N ⊂ H 1

g (Ω,S2) andu ∈ H 1
g (Ω,S2) such thatun ⇀ u weakly inH 1. Settingvn = un − u,

we have∫
Ω

∣∣∇un(x)
∣∣2w(x)dx =

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx +

∫
Ω

∣∣∇vn(x)
∣∣2w(x)dx + o(1),

and writing

2
∫
Ω

D(un) · ∇ζ dx = An + Bn + Cn

with

An = 2
∫
Ω

un ·
(

∂u

∂x2
∧ ∂u

∂x3

∂ζ

∂x1
+ ∂u

∂x3
∧ ∂u

∂x1

∂ζ

∂x3
+ ∂u

∂x1
∧ ∂u

∂x2

∂ζ

∂x3

)
,

Bn = 2
∫
Ω

un ·
(

∂vn

∂x2
∧ ∂u

∂x3
+ ∂u

∂x2
∧ ∂vn

∂x3

)
∂ζ

∂x1
+ 2

∫
Ω

un ·
(

∂vn

∂x3
∧ ∂u

∂x1
+ ∂u

∂x3
∧ ∂vn

∂x1

)
∂ζ

∂x2

+ 2
∫
Ω

un ·
(

∂vn

∂x1
∧ ∂u

∂x2
+ ∂u

∂x1
∧ ∂vn

∂x2

)
∂ζ

∂x3
,

Cn = 2
∫

un ·
(

∂vn

∂x2
∧ ∂vn

∂x3

∂ζ

∂x1
+ ∂vn

∂x3
∧ ∂vn

∂x1

∂ζ

∂x3
+ ∂vn

∂x1
∧ ∂vn

∂x2

∂ζ

∂x3

)
.

Ω
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po-

.

We easily obtain thatAn → 2
∫
Ω

D(u) ·∇ζ asn → +∞ sinceun ⇀ u weak� in L∞ and thatBn → 0 sincevn ⇀ 0
weakly inL2 andun → u strongly inL2. Now we set

Vn =
(

un · ∂vn

∂x2
∧ ∂vn

∂x3
, un · ∂vn

∂x3
∧ ∂vn

∂x1
, un · ∂vn

∂x1
∧ ∂vn

∂x2

)
.

We have

|Cn| = 2

∣∣∣∣∫
Ω

Vn · ∇ζ

∣∣∣∣ � 2
∫
Ω

|Vn||∇ζ |.

By Lemma 1 in [4], we know that 2|Vn| � |∇vn|2 and by Proposition 2.3 in [13], anyζ : �Ω → R which 1-Lipschitz
with respect todw satisfies|∇ζ | � w a.e. onΩ . Then we obtain

|Cn| �
∫
Ω

∣∣∇vn(x)
∣∣2w(x)dx

and we conclude that∫
Ω

∣∣∇un(x)
∣∣2w(x)dx + 2

∫
Ω

D(un) · ∇ζ dx �
∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 2

∫
Ω

D(u) · ∇ζ dx + o(1)

which clearly implies the result.�
Proof of “���” in Theorem 1.2. Let u ∈ H1

g (Ω,S2) and consider an arbitrary sequence(un)n∈N ⊂ H 1
g (Ω,S2) ∩

C1( �Ω) such thatun ⇀ u weakly inH 1. Sinceun is smooth inΩ , we haveT (un) ≡ 0 and thenLw(un) = 0. We
conclude by Proposition 3.1 that

lim inf
n→+∞

∫
Ω

∣∣∇un(x)
∣∣2w(x)dx = lim inf

n→+∞Fw(un) � Fw(u) =
∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8πLw(u).

Since the sequence(un)n∈N is arbitrary, we get the announced result.�
3.2. Upper bound of the energy

Proposition 3.2. Let u ∈ H 1
g (Ω,S2). Then there exists a sequence of maps(un)n∈N ⊂ H 1

g (Ω,S2) ∩ C1( �Ω) such

thatun ⇀ u weakly inH 1 and

lim sup
n→+∞

∫
Ω

∣∣∇un(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8πLw(u).

End of the proof of Theorem 1.2. Let u ∈ H 1
g (Ω,S2) and let(un)n∈N be the sequence of maps given by Pro

sition 3.2. By definition ofEw(u) and Proposition 3.2, we have

Ew(u) � lim inf
n→+∞

∫
Ω

∣∣∇un(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8πLw(u),

which ends the proof of Theorem 1.2.�
To prove Proposition 3.2, we need the following lemma. We postpone its proof at the end of this section
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Lemma 3.1. For anyu,v ∈ H 1
g (Ω,S2), we have∣∣Lw(u) − Lw(v)

∣∣ � CΛ
(‖∇u‖L2(Ω) + ‖∇v‖L2(Ω)

)‖∇u − ∇v‖L2(Ω), (3.1)

for a constantC independent ofw.

Proof of Proposition 3.2. Let u ∈ H 1
g (Ω,S2). By the result in [1,3], we can find a sequence of maps(vn)n∈N ⊂

H 1
g (Ω,S2) such thatvn ∈ C1( �Ω \ ⋃Kn

i=1{Pi,Ni}) for some 2Kn distinct points(Pi,Ni) in Ω , deg(vn,Pi) = +1
and deg(vn,Ni) = −1 for i = 1, . . . ,Kn and such that∥∥∇(vn − u)

∥∥
L2(Ω)

� 2−n. (3.2)

From this inequality we infer that

meas
({

x ∈ Ω,
∣∣vn(x) − u(x)

∣∣ < 2−n/2}) � C2−n. (3.3)

Applying Lemma 2.3 tovn, we find a mapun ∈ C1( �Ω,S2) satisfyingun|∂Ω = g,∫
Ω

∣∣∇un(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇vn(x)
∣∣2w(x)dx + 8πLw(vn) + 2−n (3.4)

and

meas
({

x ∈ Ω, un(x) �= vn(x)
})

� 2−n. (3.5)

From (3.2) and Lemma 3.1 we deduce thatLw(vn) → Lw(u) asn → +∞ and then it follows that(un)n∈N is
bounded inH 1. Moreover we obtain from (3.3) and (3.5) thatun → u a.e. inΩ and we conclude thatun ⇀ u

weakly inH 1. Lettingn → +∞ in (3.4) leads to

lim sup
n→+∞

∫
Ω

∣∣∇un(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8πLw(u),

which completes the proof.�
Proof of Lemma 3.1. To prove Lemma 3.1, we follow the method in [4]. Foru,v ∈ H 1

g (Ω,S2), we set

Lw(u, v) = Sup

{∫
Ω

(
D(u) − D(v)

) · ∇ζ, ζ : �Ω → R 1-Lipschitz with respect todw

}
.

SinceD(u) · ν = D(v) · ν on ∂Ω (it only depends ong), we have∫
Ω

D(u) · ∇ζ −
∫

∂Ω

(
D(u) · ν)

ζ =
∫
Ω

D(v) · ∇ζ −
∫

∂Ω

(
D(v) · ν)

ζ +
∫
Ω

(
D(u) − D(v)

) · ∇ζ,

and we easily derive that∣∣Lw(u) − Lw(v)
∣∣ � Lw(u, v).

Similar computations to those in [4], proof of Theorem 1, lead to∣∣∣∣∫
Ω

(
D(u) − D(v)

) · ∇ζ

∣∣∣∣ � C
(‖∇u‖L2(Ω) + ‖∇v‖L2(Ω)

)‖∇u − ∇v‖L2(Ω)‖∇ζ‖L∞(Ω).

By Proposition 2.3 in [13], any real functionζ which is 1-Lipschitz with respect todw satisfies|∇ζ | � w a.e. onΩ .
We deduce that (3.1) holds sincew � Λ a.e. onΩ . �
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4. Stability and approximation properties

4.1. A stability property

Before stating the result, we need to recall some previous ones obtained in [13]. For any real measurable
w satisfying assumption (1.1), we may associate to distancedw the length functionalLdw defined by

Ldw(γ ) = Sup

{
m−1∑
k=0

dw

(
γ (tk), γ (tk+1)

)
, 0= t0 < t1 < · · · < tm = 1, m∈ N

�

}
,

whereγ : [0,1] → �Ω is any continuous curve. In [13], we have proved that for anyx, y ∈ �Ω ,

dw(x, y) = Inf
{
Ldw(γ ), γ ∈ Lip

([0,1], �Ω )
, γ (0)= x andγ (1)= y

}
, (4.1)

where Lip([0,1], �Ω) denotes the class of all Lipschitz maps from[0,1] into �Ω . We have also shown that th
infimum in (4.1) is in fact achieved.

The following stability result relies on theΓ -convergence of the length functionals (we refer to [10] for
notion ofΓ -convergence). In the sequel, we endow Lip([0,1], �Ω) with the topology of the uniform convergenc
on [0,1].

Theorem 4.1. Let (wn)n∈N be a sequence of measurable real functions such that

0< c0 � wn � C0 a.e. inΩ (4.2)

for some constantsc0 andC0 independent ofn ∈ N. Then the following properties are equivalent:

(i) the functionalsLdwn
Γ -converge toLdw in Lip([0,1], �Ω) and∫

Ω

∣∣∇ϕ(x)
∣∣2wn(x)dx −→

n→+∞

∫
Ω

∣∣∇ϕ(x)
∣∣2w(x)dx for anyϕ ∈ H 1(Ω,R), (4.3)

(ii) for every smooth boundary datag : ∂Ω → S2 such thatdeg(g) = 0,

Ewn(u) −→
n→+∞Ew(u) for anyu ∈ H 1

g (Ω,S2).

Proof. (i) ⇒ (ii). We fix a smooth boundary datag :Ω → S2 such that deg(g) = 0. Clearly (4.3) implies that∫
Ω

∣∣∇u(x)
∣∣2wn(x)dx −→

n→+∞

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx for anyu ∈ H 1

g (Ω,S2),

and by Theorem 1.2, it remains to prove that

Lwn(u) −→
n→+∞Lw(u) for anyu ∈ H 1

g (Ω,S2). (4.4)

Consideru ∈ H 1
g (Ω,S2). By the result in [1,3], there exits a sequence of maps(vk)k∈N ⊂ H 1

g (Ω,S2) such that

vk ∈ C1( �Ω \ ⋃Mk

j=1{Pj ,Nj }, S2) for some 2Mk points(Pj ,Nj ) in Ω , deg(vk,Pj ) = +1 and deg(vk,Nj ) = −1 for

j = 1, . . . ,Mk , andvk → u strongly inH 1. We have

Lwn(vk) = Min
σ∈SMk

Mk∑
dwn(Pj ,Nσ(j)) and Lw(vk) = Min

σ∈SMk

Mk∑
dw(Pj ,Nσ(j)).
j=1 j=1
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Since the functionalsLdwn
Γ -converge toLdw in Lip([0,1], �Ω), we deduce from Theorem 4.1 in [13] that f

everyk ∈ N, Lwn(vk) → Lw(vk) asn → +∞. Now we fix a smallδ > 0. Sincevk → u strongly inH 1, we derive
from Lemma 3.1 and (4.2) that existsk0 ∈ N which only depends onu, δ andC0 such that

Lwn(vk) − δ � Lwn(u) � Lwn(vk) + δ for anyn ∈ N andk � k0.

Lettingn → +∞ in this inequality, we get that

Lw(vk) − δ � lim inf
n→+∞Lwn(u) � lim sup

n→+∞
Lwn(u) � Lw(vk) + δ for k � k0.

Passing to the limit ink and using Lemma 3.1, we obtain

Lw(u) − δ � lim inf
n→+∞Lwn(u) � lim sup

n→+∞
Lwn(u) � Lw(u) + δ,

which leads to the result sinceδ is arbitrary small.
(ii) ⇒ (i). First we prove (4.3) forϕ ∈ C∞( �Ω,R). Letϕ ∈ C∞( �Ω,R) and consider the smooth mapg : ∂Ω → S2

defined byg(x) = (cos(ϕ(x)),sin(ϕ(x)),0). We easily check that deg(g) = 0. Now consider the mapu defined for
x ∈ �Ω by

u(x) = (
cos

(
ϕ(x)

)
,sin

(
ϕ(x)

)
,0

)
.

We haveu ∈ H 1
g (Ω,S2) ∩ C∞( �Ω) and thenLwn(u) = Lw(u) = 0 for anyn ∈ N. Since|∇u|2 = |∇ϕ|2, we derive

from assumption (ii) and Theorem 1.2 that∫
Ω

∣∣∇ϕ(x)
∣∣2wn(x)dx −→

n→+∞

∫
Ω

∣∣∇ϕ(x)
∣∣2w(x)dx.

Let us now prove (4.3) for anyϕ ∈ H 1(Ω,R). Let ϕ ∈ H 1(Ω,R) and consider a sequence(ϕk)k∈N ⊂ C∞( �Ω,R)

such thatϕk → ϕ strongly inH 1. We fix a smallδ > 0. From assumption (4.2), we infer that existsk0 ∈ N which
only depends onϕ, δ andC0 such that for anyn ∈ N andk � k0,∫

Ω

∣∣∇ϕk(x)
∣∣2wn(x)dx − δ �

∫
Ω

∣∣∇ϕ(x)
∣∣2wn(x)dx �

∫
Ω

∣∣∇ϕk(x)
∣∣2wn(x)dx + δ.

Sinceϕk is smooth, lettingn → +∞ we obtain fork � k0,∫
Ω

∣∣∇ϕk(x)
∣∣2w(x)dx − δ � lim inf

n→+∞

∫
Ω

∣∣∇ϕ(x)
∣∣2wn(x)dx

� lim sup
n→+∞

∫
Ω

∣∣∇ϕ(x)
∣∣2wn(x)dx �

∫
Ω

∣∣∇ϕk(x)
∣∣2w(x)dx + δ.

Passing to the limit ink and thenδ → 0, we conclude

lim
n→+∞

∫
Ω

∣∣∇ϕ(x)
∣∣2wn(x)dx =

∫
Ω

∣∣∇ϕ(x)
∣∣2w(x)dx.

It remains to prove that the functionalsLdwn
Γ -converge toLdw in Lip([0,1], �Ω). Let P andN be two distinct

points inΩ . We takeg ≡ (0,0,1) and consideru ∈ H 1
g (Ω,S2) ∩ C1( �Ω \ {P,N}) (such a map is constructed f

instance in [6,8]). By Theorem 1.2, we have

Ewn(u) =
∫ ∣∣∇u(x)

∣∣2wn(x)dx + 8πdwn(P,N)
Ω
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[13]
and

Ew(u) =
∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8πdw(P,N).

From (4.3) we get that
∫
Ω

|∇u(x)|2wn(x)dx → ∫
Ω

|∇u(x)|2w(x)dx and from assumption (ii) we deduce that

dwn(P,N) → dw(P,N) asn → +∞.

Since the pointsP andN are arbitrary inΩ , we derive thatdwn converges todw pointwise onΩ × Ω and the
conclusion follows by the results in [13] Section 4.�

In the next proposition, we give some sufficient condition on a sequence(wn)n∈N converging pointwise a.e. t
w for property (ii) in Theorem 4.1 to hold.

Proposition 4.1. Let (wn)n∈N be a sequence of measurable real functions satisfying(4.2)and assume that one o
the following conditions holds:

(a) wn � w andwn → w a.e. inΩ ,
(b) wn → w in L∞(Ω).

Then property(ii) in Theorem4.1holds.

Proof. By Proposition 4.1 and Theorem 4.1 in [13], (a) or (b) implies that the functionalsLdwn
Γ -converge to

Ldw in Lip([0,1], �Ω). We also check that (a) or (b) implies (4.3) by dominated convergence. Then the conc
follows from Theorem 4.1. �
Remark 4.1. The conclusion of Proposition 4.1 may fails if one only assumes thatwn → w a.e. inΩ (see Re-
mark 4.1 in [13]).

4.2. Approximation property

In this section, we show that the functionalEw can be obtain as pointwise limit of a sequence(Ewn)n∈N in
which the weight functionwn is smooth.

Proposition 4.2. Let (ρn)n∈N be a sequence of smooth mollifiers. Extendingw by a sufficiently large constant an
settingwn = ρn ∗ w, we have

Ewn(u) −→
n→+∞Ew(u) for anyu ∈ H 1

g (Ω,S2).

Proof. By construction, (4.3) clearly holds. Then property (i) in Theorem 4.1 follows from Theorem 4.1 in
and Theorem 4.2 in [13] which leads to the result by Theorem 4.1.�

5. The relaxed energy without prescribed boundary data

In this section, we consider the relaxed type functional

Ẽw(u) = Inf

{
lim inf
n→+∞

∫ ∣∣∇un(x)
∣∣2w(x)dx, un ∈ C1( �Ω,S2), un ⇀ u weakly inH 1

}

Ω
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defined foru ∈ H 1(Ω,S2). We recall that F. Bethuel has also proved (see [1]) thatC1( �Ω,S2) is sequentially dens
in H 1(Ω,S2) for the weakH 1 topology and theñEw is well defined.

As in [4], there is also a notion of length of a minimal connection relative todw defined for anyu ∈ H 1(Ω,S2):

L̃w(u) = 1

4π
Sup

{〈
T (u), ζ

〉
, ζ : �Ω → R 1-Lipschitz with respect todw andζ = 0 on ∂Ω

}
.

Since no assumptions are made onu|∂Ω , it may happen that deg(u|∂Ω) �= 0 or that deg(u|∂Ω) is not well defined.
But clearlyL̃w(u) always makes sense. Whenu is smooth except at a finite number of point inΩ , L̃w(u) is equal
to the length of a minimal connection relative todw between the singularities ofu and some virtual singularities o
the boundary (see [8]). More precisely, one adds some virtual singularities on the boundary in such a way
new configuration has the same number of positive and negative points and one consider the length of a
connection relative todw for this configuration. TheñLw(u) corresponds to the infimum of these quantities w
one varies the position and the number of the boundary points. There is the variant of Theorem 1.2 forẼw.

Theorem 5.1. For anyu ∈ H 1(Ω,S2), we have

Ẽw(u) =
∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8πL̃w(u).

5.1. Proof of Theorem 5.1

The inequality “�” in Theorem 5.1 can be proved using a method similar to the one used in Section 3.1 a
omit it. We obtain “�” as in Section 3.2 using Proposition 5.1 and Lemma 5.1 below instead of Propositio
and Lemma 3.1. The proof of Lemma 5.1 is almost identical to the proof of Lemma 3.1 and we also omit
that all the boundary integrals vanish sinceζ = 0 on∂Ω).

Proposition 5.1. Letu ∈ H 1(Ω,S2). Then there exists a sequence of maps(un)n∈N ⊂ C1( �Ω,S2) such that

un ⇀ u weakly inH 1

and

lim sup
n→+∞

∫
Ω

∣∣∇un(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8πL̃w(u).

Lemma 5.1. For anyu,v ∈ H 1(Ω,S2), we have∣∣L̃w(u) − L̃w(v)
∣∣ � CΛ

(‖∇u‖L2(Ω) + ‖∇v‖L2(Ω)

)‖∇u − ∇v‖L2(Ω), (5.1)

for a constantC independent ofw.

Proof of Proposition 5.1. Let u ∈ H 1(Ω,S2). By the result in [1,3], we can find a sequence(vn)n∈N ⊂ H 1(Ω,S2)

such thatvn ∈ C1( �Ω \ {(ai)
Nn

i=1}) for someNn distinct pointsa1, . . . , aNn in Ω and

‖u − vn‖H1(Ω) � 2−n. (5.2)

Since we are working with an approximating sequence, we may assume that|deg(vn, ai)| = 1 for i = 1, . . . ,Nn

(see [1]). Sincevn is smooth except at a finite number of point inΩ , the length of a minimal connectioñLw(vn)

is computed as follows (see [8], part II). We pair each singularityai either to another singularity inΩ of opposite
degree or to a virtual singularity on the boundary with opposite degree. In other words, we allow connec
the boundary ofΩ . Pairing all the singularities in this way, we take a configuration that minimizes the sum
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distances between the paired singularities, computing the distances withdw. We relabel all the singularities (th
ai ’s and the virtual singularities on the boundary), according to their multiplicity for those on the boundar
list of positive and negative points say(P1, . . . ,PKn) and(N1, . . . ,NKn) such that

L̃w(vn) =
Kn∑
j=1

dw(Pj ,Nj ).

Using Lemma 2 bis in [1], we can find̃vn ∈ H 1(Ω,S2) ∩ C1( �Ω \ ⋃Kn

j=1{P̃j , Ñj }) for some 2Kn distinct points

(P̃j , Ñj ) in Ω such thatṽn = vn outside a small neighborhood of∂Ω , deg(ṽn, P̃j ) = +1 and deg(ṽn, Ñj ) = −1
for j = 1, . . . ,Kn, P̃j = Pj (respectivelyÑj = Nj ) if Pj ∈ Ω (respectively ifNj ∈ Ω) and|P̃j − Pj | � 2−n/Kn

otherwise (respectively|Ñj − Nj | � 2−n/Kn), and

‖ṽn − vn‖H1(Ω) � 2−n. (5.3)

Note that, for each pair(Pj ,Nj ), we necessarily havẽPj = Pj or Ñj = Nj and then∣∣∣∣∣
Kn∑
j=1

dw(Pj ,Nj ) −
Kn∑
j=1

dw(P̃j , Ñj )

∣∣∣∣∣ � C2−n, (5.4)

and from (5.2) and (5.3), we infer that

meas
({

x ∈ Ω,
∣∣u(x) − ṽn(x)

∣∣ < 2−n/2}) � C2−n. (5.5)

Applying Lemma 2.3 tõvn, we find a mapun ∈ C1( �Ω,S2) satisfying∫
Ω

∣∣∇un(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇ṽn(x)
∣∣2w(x)dx + 8π

Kn∑
j=1

dw(P̃j , Ñj ) + 2−n (5.6)

and

meas
({

x ∈ Ω, un(x) �= ṽn(x)
})

� 2−n. (5.7)

From (5.4) and (5.6), we derive that∫
Ω

∣∣∇un(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇vn(x)
∣∣2w(x)dx + 8πL̃w(vn) + C2−n. (5.8)

Sincevn → u strongly inH 1, we deduce from Lemma 5.1 thatL̃w(vn) → L̃w(u) asn → +∞ which implies that
(un)n∈N is bounded inH 1. From (5.3) and (5.7) we obtainun → u a.e. inΩ and then we conclude thatun ⇀ u

weakly inH 1. Passing to the limit in (5.8) leads to

lim sup
n→+∞

∫
Ω

∣∣∇un(x)
∣∣2w(x)dx �

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx + 8πL̃w(u)

and the proof is complete.�
5.2. Stability and approximation properties for̃Ew

We present in this section the variants forẼw of the results in Section 4.

Theorem 5.2. Let (wn)n∈N be a sequence of measurable real functions satisfying(4.2) and assume that(i) in
Theorem4.1holds. Then we have

Ẽwn(u) −→
n→+∞ Ẽw(u) for anyu ∈ H 1(Ω,S2). (5.9)
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Proof. Assumption (4.3) clearly implies that∫
Ω

∣∣∇u(x)
∣∣2wn(x)dx −→

n→+∞

∫
Ω

∣∣∇u(x)
∣∣2w(x)dx for anyu ∈ H 1(Ω,S2),

and by Theorem 5.1, we just have to prove that

L̃wn(u) −→
n→+∞ L̃w(u) for anyu ∈ H 1(Ω,S2). (5.10)

Consideru ∈ H 1(Ω,S2). By the result in [1,3], we can find a sequence(vk)k∈N ⊂ H 1(Ω,S2) such thatvk ∈
C1( �Ω \ ⋃Mk

i=1{aj }, S2) for someMk points(ai) in Ω andvk → u strongly inH 1. We easily check that a minima

connection forvk relative to distancedwn does not allow more than
∑Mk

i=1 |deg(vk, ai)| connections to the boundar
Therefore, extracting a subsequence(nl)l∈N, we can relabel the singularities ofvk and the virtual singularities o
the boundary given by a minimal connection relative todwnl

, as a list of positive points(P l
1, . . . ,P

l
Kk

) and a list of

negative points(Nl
1, . . . ,N

l
Kk

) with Kk independent ofl and such that

L̃wnl
(vk) = Minσ∈SKk

Kk∑
j=1

dwnl
(P l

j ,N
l
σ(j)) =

Kk∑
j=1

dwnl
(P l

j ,N
l
σl(j))

for some permutationσl ∈ SKk
. Extracting another subsequence if necessary, we may assume thatσl = σ� is inde-

pendent ofl ∈ N and thatP l
j −→

l→+∞Pj andNl
j −→

l→+∞Nj for j = 1, . . . ,Kk . From the results in [13], Section 4.

we know that assumption (i) implies thatdwn converges todw uniformly on �Ω × �Ω and then we have

L̃wnl
(vk) =

Kk∑
j=1

dwnl
(P l

j ,N
l
σ�(j)) −→

l→+∞

Kk∑
j=1

dw(Pj ,Nσ�(j)).

By definition ofL̃w(vk), we obtain that

L̃w(vk) � lim
l→+∞ L̃wnl

(vk).

On the other hand, we can also relabel the singularities ofvk and the virtual singularities on the boundary giv
by a minimal connection relative todw, as a list of positive points(�P1, . . . , �P�K) and a list of negative point
(�N1, . . . , �N�K) such that

L̃w(vk) =
�K∑

j=1

dw(�Pj , �Nj).

As previously, we have for anyl ∈ N,

L̃wnl
(vk) �

�K∑
j=1

dwnl
(�Pj , �Nj).

Letting l → +∞, we obtain

lim
l→+∞ L̃wnl

(vk) �
�K∑

j=1

dw(�Pj , �Nj)

and then we conclude that liml→+∞ L̃wnl
(vk) = L̃w(vk). By uniqueness of the limit, we get that the converge

holds for the full sequence i.e.,

L̃wn(vk) −→ L̃w(vk).

n→+∞
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Theo-

d
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h of the
N-CT-

Non

riational

ndau

ani
At this stage, we can proceed as in the proof of Theorem 4.2 (i)⇒ (ii) using Lemma 5.1 instead of Lemma 3.1.�
We obtain the following variants of Proposition 4.1 and Proposition 4.2 using Theorem 5.2 instead of

rem 4.1.

Proposition 5.2. Let (wn)n∈N be a sequence of measurable real functions satisfying(4.2) and assume that(a) or
(b) in Proposition4.1holds. Then(5.9)holds.

Proposition 5.3. Let (ρn)n∈N be a sequence of smooth mollifiers. Extendingw by a sufficiently large constant an
settingwn = ρn ∗ w, then(5.9)holds.
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