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Abstract

Given two elliptic operatorsA1 andA2, let us consider the following problems:{−Aiui = fi, fi � 0 in Ω,

ui |∂Ω
= 0, i = 1,2.

In this work, we give some sufficient conditions ensuring the following comparison principle:

u1(x) � u2(x) ∀x ∈ Ω.

As application, we study the behaviour, as|x| → +∞, of the solutionu of the problem−Au = f in R
N,

lim|x|→+∞u(x) = 0.

Résumé

Etant donnés deux opérateursA1 andA2, on considère les deux problèmes suivants :{−Aiui = fi, fi � 0 in Ω,

ui |∂Ω
= 0, i = 1,2.
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Dans ce travail, on se propose de donner des conditions suffisantes portant surAi , fi permettant de comparer les deux solutio
u1 etu2 :

u1(x) � u2(x) ∀x ∈ Ω.

Comme application, nous étudions le comportement asymptotique, quand|x| → +∞, de la solutionu du problème suivant :−Au = f in R
N,

lim|x|→+∞u(x) = 0.

MSC:35J25; 35K20; 35B50

1. Introduction

We are concerned with Comparison Principle for linear second order partial differential operators. Com
Principle, as Maximum Principle, is a mathematical tool which is used frequently in many fields of mathe
[1–10]. In this paper we propose to give a new Comparison Principle. More precisely, let us consideruA anduB

solution of

−AuA = f1, uA ∈ H 1
0 (Ω), (EA)

−BuB = f2, uB ∈ H 1
0 (Ω), (EB )

whereA =∑ij aij
∂2

∂xi∂xj
andB =∑ij bij

∂2

∂xi∂xj
are uniformly elliptic operators. Let us denote bya andb, respec-

tively, thematrices(aij ) and(bij ). Ω is a bounded open subset ofR
N , N � 3, andfi , i = 1,2, are nonnegative

for simplicity, functions belonging toL2(Ω). We deal with the following natural question: can we compareuA

anduB in some sense? We are looking for reasonable assumptions about the link between(A,f1) and(B,f2), to
imply that the answer to this question is positive, that is to say:

uA(x) > uB(x) a.e.x ∈ Ω.

Let us give a precise idea of our result in a simple but significant setting: letΩ be an open ballB(0,R) of R
3.

Let us assume thatfi(x) = fi(|x|), i = 1,2, anda = (aij ) andb = (bij ) are constantmatrices. Our result can be
claimed as follow: If(A,f1) and(B,f2) are related by

R2∫
y

1

λ3(a)

[ t∫
0

(
s

t

)Tr(a)/(2λ1(a))
f1(s)

s
ds

]
dt

�
R2∫
y

1

λ1(b)

[ t∫
0

(
s

t

)Tr(b)/(2λ3(b))
f2(s)

s
ds

]
dt, ∀y ∈ [0,R2] (H)

then we have

uA(x) > uB(x) a.e.x ∈ B(0,R), (I)

where for any matrixc = (cij ), λ1(c), λ2(c) andλ3(c) stand for, respectively, the first, the second and the t
eigenvalue ofc and Tr(c) = λ1(c) + λ2(c) + λ3(c).

Finally let us point out that the assumption (H) is sufficiently sharp: indeed it is possible to give a con
infirming (H) and implying that (I) does not hold.
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We use our results to give the behaviour of the solution of (EA) in the all spaceRN , N � 3:{−Au = f in R
N, f � 0,

lim|x|→+∞u(x) = 0.

We assume that the support off (·) is compact. The result depends to the geometry of the matrixa(x) = (aij (x)).
Without any hypothesis about this geometry the more general result is: there exist some positive constanc1, c2
andR such that for anyx ∈ R

N , |x| � R we have
c1

|x|2( θ̄−1)
� u(x) � c2

|x|2(θ−1)
(∗)

where

θ̄ = lim
R→+∞ sup

|x|�R

Λ(x),

θ = lim
R→+∞ inf|x|�R

Λ(x)

with

Λ(x) = Tr(a(x))

(2/|x|2)∑ij aij (x) · xixj

.

In some sense this result is optimal. Indeed in the case A is the Laplace operatorθ̄ = θ = N/2 and thus we obtain
the classical optimal result:

u(x) ∼ c

|x|N−2
as|x| goes to infinity.

Finally, let us point out that we can obtain some results more precise than (∗) if we use some adequate hypothes

2. Notations, hypothesis and method

2.1. Notations and hypothesis

Let Ω be a bounded connected open subset ofR
N , N � 3. We can study the caseN = 2 similarly. For any

uniformly elliptic operator

C =
∑
ij

cij (x)
∂2

∂xi∂xj

, with cij = cji∀i, j,

we setc = c(x) the matrix of its coefficients.c is a symmetric definite positive matrix. We assume thatc is Lipschitz
continuous matrix. We denote by

λ1(c) � λ2(c) � · · · � λN(c)

the eigenvalues of matrixc. Let us point out thatλi(c) depends onx in Ω . For anyc2(Ω)-functionϕ we set

|∇Cϕ|2 =
∑
ij

cij

∂ϕ

∂xi

∂ϕ

∂xj

, (1)

Λ1(c,ϕ) = Λ1
(
c(x),ϕ(x)

)= sup
σ∈GN

∑
i

λi(c)λσ(i)

(
D2ϕ(x)

)
, ∀x ∈ Ω, (2)

ΛN(c,ϕ) = ΛN

(
c(x),ϕ(x)

)= inf
σ∈GN

∑
λi(c)λσ(i)

(
D2ϕ(x)

)
, ∀x ∈ Ω, (3)
i
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whereD2ϕ stands for the Hessian matrix ofϕ andGN for the permutation group of the set{1,2, . . . ,N}.
Let us assume thatϕ is such that the functionϕ(x)/|∇ϕ(x)|2 is well defined in�Ω . This holds for instance ifϕ

is convex as we will see later.
Let us consider the two following functions:

Λ1(c,ϕ) · ϕ

|∇cϕ|2
and

ΛN(c,ϕ) · ϕ

|∇cϕ|2 .

These functions are well defined inΩ since we have

1

λN(c)

ϕ

|∇ϕ|2 � ϕ

|∇cϕ|2 = |∇ϕ|2
|∇cϕ|2 · ϕ

|∇ϕ|2 � 1

λ1(c)
· ϕ

|∇ϕ|2
and sinceϕ(x)/|∇ϕ(x)|2 is well defined. Let us define for anyt ∈ [0, T ]

Q
c,ϕ
1 (t) = sup

{
Λ1
(
c(x),ϕ(x)

) · ϕ(x)

|∇cϕ(x)|2
∣∣∣∣ x ∈ �Ω, ϕ(x) = t

}
, (4)

Q
c,ϕ
N (t) = inf

{
ΛN

(
c(x),ϕ(x)

) · ϕ(x)

|∇cϕ(x)|2
∣∣∣∣ x ∈ �Ω, ϕ(x) = t

}
(5)

whereT = sup{ϕ(x) | x ∈ �Ω}. It is clear thatQc,ϕ
i (·) is bounded in[0, T ]. The functionϕ will be precised later

Its role is crucial to establish spectral estimates from above and below of the functionCϕ/|∇cϕ|2, that we need to
state our main result (cf. Propositions 7 and 8 and Theorem 9). Letf1 andf2 be two non negative functions. Le
us set, from anyt ∈ [0, T ],

k
c,ϕ
1 (t) = inf

[
f1(x) · ϕ(x)

|∇cϕ(x)|2
∣∣∣∣ x ∈ �Ω, ϕ(x) = t

]
, (6)

k
c,ϕ
2 (t) = sup

[
f2(x) · ϕ(x)

|∇cϕ(x)|2
∣∣∣∣ x ∈ �Ω, ϕ(x) = t

]
. (7)

Let us point out thatkc,ϕ
i , i = 1,2, are well defined since we have

1

λN(c)
· ϕ

|∇ϕ|2 � ϕ

|∇cϕ|2 � ϕ

|∇ϕ|2 · 1

λ1(c)

and since ϕ

|∇ϕ|2 is well defined.

2.2. Method

The role of the functionϕ is crucial in our work. Its choice depends on the geometry ofΩ and on the form of
operatorA. We callϕ shape function [7,9–11]. Our idea is simple: to give a positive answer, it suffices to
subsolutionrA(·) of (EA) and a supersolutionrB(·) of (EB), such that

rA(x) � rB(x) a.e.x ∈ Ω.

How to construct these functions? For this we use a shape functionϕ: For instance, we look forrA(·) in the form

rA(·) = ra ◦ ϕ(·)
wherera(·) is a suitable function of one variable. What is the link betweenra(·) anduA(·)? The functionra(·) is
the solution of an ordinary differential equation constructed from the partial differential equation (EA). The main



R. Tahraoui / Ann. I. H. Poincaré – AN 23 (2006) 159–183 163

r
e

tion
difficulty is to establish an ordinary differential equation which is as close as possible to (EA), in some sense. Fo
this we need some sharp spectral estimates that we state in the caseΩ andϕ convex. The general case will b
deduced from the first one by a deformation process.

3. Preliminary results. Some spectral estimates

In the sequel we need the following result proved in [3] (if also [1]):

Theorem 1. Let a = (aij ) and b = (bij ) be twon-square symmetric positive matrices. Let us denote byλi(a),
respectivelyλi(b), the eigenvalues ofa, respectively ofb, i = 1,2, . . . ,N. Then we have

min
σ∈GN

N∑
i=1

λi(a)λσ(i)(b) � Tr(a · b) � sup
σ∈GN

N∑
i=1

λi(a)λσ(i)(b)

whereGN stands for the permutation group of the set{1,2, . . . ,N}.

Proposition 1. Let us consider the operator

C =
∑

cij

∂2

∂xi∂xj

wherec = (cij ) is a positive symmetric matrix. Letϕ be a convex function. Then we haveCϕ � 0.

Proposition 2. LetΩ be an open convex subset ofR
N and letϕ be a regular strictly convex function defined onΩ

and such that:

ϕ(x) > 0 ∀x ∈ Ω\{x0},
ϕ(x0) = 0, ϕ|∂Ω = T , some positive constant.

Then we have:

0< c1 = inf�Ω
ϕ(x)

|∇ϕ(x)|2 � ϕ(x)

|∇ϕ(x)|2 � sup
�Ω

ϕ(x)

|∇ϕ(x)|2 = c2 < +∞. (7.1)

The proof of this result is elementary. We omit it.

Remark. It is not interesting to choosex0 close to the boundary ofΩ ; for instance, a good choice ofx0 is the so
called harmonic center of the convexΩ [2].

Proposition 3. Let us consider the operator

C =
N∑

j,i=1

cij (x)
∂2

∂xi∂xj

wherec = (cij (x))ij is a positive symmetric matrix. Letϕ be a strictly convex function satisfying the assump
of Proposition2. Then we have the following spectral estimates:

Q
c,ϕ
N (t)

t
� (Cϕ)(x)

|∇cϕ(x)|2 �
Q

c,ϕ
1 (t)

t
,

∀x ∈ {y ∈ Ω | ϕ(y) = t
}
, ∀t ∈]0, T ].

(SE)
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Proof. First of all, let us remark that we have

Cϕ = Tr(c · D2ϕ)

whereD2ϕ stands for the Hessian matrix ofϕ. Following Theorem 1 we have, for anyx ∈ �Ω ,

min
σ∈GN

∑
i

λi

(
c(x)

) · λσ(i)

(
D2ϕ(x)

)
� Cϕ(x) � max

σ∈GN

∑
i

λi

(
c(x)

) · λσ(i)

(
D2ϕ(x)

)
.

From Proposition 2 the functionsQc,ϕ
1 (t) andQ

c,ϕ
N (t) given in (5) and (4) are well defined. Thus the result follo

by writing

1

|∇cϕ(x)|2 = ϕ(x)

|∇cϕ(x)|2 · 1

ϕ(x)
∀x 
= x0. �

Remark. Let us point out that in the interesting particular caseC is the Laplace operator, the previous res
becomes:

Q
c,ϕ
N (t)

t
� �ϕ(x)

|∇ϕ|2 �
Q

c,ϕ
1 (t)

t
,

∀x ∈ {y | ϕ(y) = t
}
, ∀t ∈]0, T ]

where

Q
c,ϕ
1 (t) = sup

{
ϕ(x)�ϕ(x)

|∇ϕ(x)|2
∣∣∣∣ x ∈ �Ω, ϕ(x) = t

}
,

Q
c,ϕ
N (t) = inf

{
ϕ(x)�ϕ(x)

|∇ϕ(x)|2
∣∣∣∣ x ∈ �Ω, ϕ(x) = t

}
.

And in addition, ifΩ = B(0,R), ϕ(x) = |x|2 we obtain explicitly:

�ϕ(x)

|∇ϕ(x)|2 = N

2ϕ(x)

and thus we have

Q
c,ϕ
1 (t) = Q

c,ϕ
N (t) = N

2
.

Let us point out that in some particular but realistic cases the result of Proposition 3 takes a simpler f
mentioned in Corollaries 4 and 5.

Corollary 4. Assume thatc = (cij ) does not depends onx, Ω = {x ∈ R
N | ϕ(x) < T }, whereϕ(x) =∑N

i=1 aix
2
i ,

with ai > 0, ∀i = 1, . . . ,N. Then we have:
ΛN(c,ϕ)

λN(d)
· αN

2t
� Cϕ(x)

|∇cϕ(x)|2 � Λ1(c,ϕ)

λ1(d)
· α1

2t
,

∀x ∈ {x ∈ Ω | ϕ(x) = t}, ∀t ∈]0, T ],
where

Λ1(c,ϕ) = sup
σ∈GN

∑
i

λi(c)aσ(i), ΛN(c,ϕ) = inf
σ∈GN

∑
i

λi(c)aσ(i),

whered = (dij ) is defined bydij = cij · ai · aj , and

α1 = max
i

ai , αN = min
i

ai .
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Corollary 5. Assume thatc = (cij ) does not depend onx, and letΩ = B(0,R) be the open ball ofRN centred
at 0, with radiusR. Let us setϕ(x) =∑i x

2
i . Then we have

Tr c

λN(c)
· 1

4t
� Cϕ(x)

|∇cϕ(x)|2 � Tr c

λ1(c)
· 1

4t

∀x ∈ {y ∈ B(0,R) | ϕ(y) = t} ∀t ∈]0, T = R2].

4. Ordinary differential equation linked with operators A and B: construction of super and sub solution of
(EA) and (EB) respectively

We are going to introduce an ordinary differential equation denoted (E) which is essential to constr
supersolutionr1 of (EB ) and the subsolutionr2 of (EA): r1 andr2 will be constructed from a solution of (E). Le
us set

q(t) = Q(t)

t
for anyt belonging to]0, T ]

whereQ(t) is a positive function defined on[0, T ] such that 0< δ1 � Q(t) � δ2, and which will play the role of
Q

c,ϕ
i in (4) and (5). Let us consider the following ordinary differential equation:−ω′′(t) − q(t)ω′(t) = k(t)

t
� 0, in ]0, T ],

ω′(0)= 0, ω(T )= 0
(E)

wherek is some function which will play the role ofkc,ϕ
i in (6) and (7). We assume that

∫ T

0
k(s)
s

ds <+∞. To write
(E) in some canonical way, let us introduce the functionβ solution of

β ′(t)
β(t)

= Q(t)
t

in ]0, T ],
β(0)= 0.

Let us remark thatβ satisfies:(
s

t

)δ2

� β(s)

β(t)
�
(

s

t

)δ1

for anys and anyt such that 0< s � t . This implies

c · sδ2 � β(s) � c · sδ1 (8)

in some neighbourhood of 0. Then Eq. (E) can be rewritten as:− 1

β(t)

(
β(t)ω′(t)

)′ = k(t)

t
� 0 in ]0, T [,

ω′(0)= 0, ω(T )= 0.

(9)

It is easy to see that the solution of (9) is

ω(y) =
T∫

1

β(t)

t∫
β(s)k(s)

s
dsdt, (10)
y 0
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and it satisfies

0� ω(t) � (T − t) ·
T∫

0

k(s)

s
ds in ]0, T [,

0� −ω′(t) �
t∫

0

k(s)

s
ds in ]0, T [.

(11)

Thus we have proved the following result

Proposition 6. Functionω given in(9) and (10) is the unique solution of Eq.(E).

4.1. Subsolution of equation{−AuA = f1 in Ω, a = (aij ),

uA|∂Ω = 0.
(12)

To use Proposition 2, let us suppose thatΩ is convex andϕ is regular in�Ω and strictly convex such that:

ϕ(x) = T ∀x ∈ ∂Ω,

ϕ(x0) = 0 for somex0 ∈ Ω.

In order to simplify the exposition of the results, we assume, in a first step, that the functionsk
a,ϕ
1 in (6) andk

b,ϕ
2

in (7) satisfy:

T∫
0

k
a,ϕ
1 (t)

t
dt <+∞,

T∫
0

k
b,ϕ
2 (t)

t
dt <+∞. (H1)

Remark. We will see later that when (H1) is not satisfied, we can proceed by approximation in a neighbo
of 0.

Let us setqa(t) = Q
a,ϕ
1 (t)/t whereQ

a,ϕ
1 is defined in (4) and let us consider the solutionra(·) of−r ′′

a (t) − qa(t)r
′
a(t) = k

a,ϕ
1 (t)

t
in ]0, T [,

r ′
a(0)= 0, ra(T ) = 0.

(13)

From Proposition 6,ra(·) is given by formula (10) i.e.

ra(t) =
T∫

t

1

βa(s)

s∫
0

βa(θ)k
a,ϕ
1 (θ)

θ
dθ ds (13.1)

whereβa(t) is solution of
β ′

a(t)

βa(t)
= qa(t) in ]0, T [,

βa(0)= 0.

(14)
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Proposition 7. Let us set

rA(x) = ra ◦ ϕ(x) = ra
(
ϕ(x)

)
.

ThenrA(·) is a subsolution of(12).

Proof. First step. In a first step, assume thatra(·) is regular. In a second step, we will study the non regular c
by a regularization procedure. From (13) we have:

−r ′′
a

(
ϕ(x)

)− qa

(
ϕ(x)

) · r ′
a

(
ϕ(x)

)= k
a,ϕ
1 (ϕ(x))

ϕ(x)
∀x ∈ Ω\{x0}. (14.1)

From (6) we have:

k
a,ϕ
1 (ϕ(x))

ϕ(x)
� f1(x)

|∇aϕ(x)|2 a.e.x ∈ Ω, (15)

and from (4)

qa

(
ϕ(x)

)= Q
a,ϕ
1 (ϕ(x))

ϕ(x)
� Λ1

(
a(x),ϕ(x)

) · 1

|∇aϕ(x)|2 . (16)

From (16), applying Proposition 3, we get

qa

(
ϕ(x)

)
� (Aϕ)(x)

|∇aϕ(x)|2 ∀x ∈ Ω\{x0}. (17)

Sincer ′
a(t) � 0 for any t , by (17) we can estimate from below the left-hand side of (14.1) and by (15) we

estimate from above the right-hand side of (14.1). We obtain:

−r ′′
a

(
ϕ(x)

)+ Aϕ(x)

|∇aϕ(x)|2
(−r ′

a

(
ϕ(x)

))
� f1(x)

|∇aϕ(x)|2 ∀x ∈ Ω\{x0}.

This can be written:

−r ′′
a (ϕ)|∇aϕ|2 − r ′

a(ϕ) · Aϕ � f1 in Ω\{x0}. (18)

And sincera(·) andϕ(·) are regular, (18) is valid in allΩ . Thus (18) means{−A
(
ra(ϕ)

)
� f1 in Ω,

ra(ϕ)|∂Ω = 0, ra(ϕ) ∈ W
1,∞
0 (Ω)

(19)

which implies thatrA(·) = ra ◦ ϕ(·) is a subsolution of Eq. (EA).
Second step. Regularization in the nonregular case.
If Q

a,ϕ
1 (t) andk

a,ϕ
1 /t are not regular, we use a regularization process. LetQε(·) a regular function such thatQε

tends toQa,ϕ
1 in L2(0, T ) strongly asε goes to zero. From Appendix A there exists a regular functionkε such that:

lim
ε

T∫
0

∣∣kε − k
a,ϕ
1

∣∣2 dt = 0, lim
ε

T∫
0

∣∣∣∣kε − k

t

∣∣∣∣dt = 0.

Let us considerrε the solution of−r ′′
ε (t) − Qε(t)

t + ε
r ′
ε(t) = kε(t)

t + ε
,

r ′ (0)= 0, r (T ) = 0.
ε ε
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3)
rε(·) is regular enough in order to definer ′
ε(ϕ(x)) andr ′′

ε (ϕ(x)) and it is easy to see that

0� rε(t) � (T − t)

T∫
0

kε(s)

s
ds � c,

0� −r ′
ε(t) �

t∫
0

kε(s)

s
ds �

T∫
0

kε(s)

s
� c.

Thus there is a subsequence, again labeledε, such thatrε tends tora in W
1,∞
0 (]0, T [) for the weak-∗ topology, as

ε goes to zero. Let us recall thatra(·) is the solution of (13). From Appendix B we get

−A
(
ra(ϕ)

)
�

k
a,ϕ
1 (ϕ) · |∇aϕ|2

ϕ
in H−1(Ω)

which implies

−A
(
ra(ϕ)

)
� f1 in H−1(Ω),

with

ra ◦ ϕ(·) = ra(·) ∈ H 1
0 (Ω)

using definition (6) ofka,ϕ
1 . �

4.2. Supersolution of equation{−BuB = f2 in Ω, b = (bij ),

uB |∂Ω = 0.
(20)

We proceed in the same way as in the previous section. Using operatorB, we consider the similar equation of (1−r ′′
b (t) − Q

b,ϕ
N (t)

t
r ′
b(t) = k

b,ϕ
2

t
in ]0, T [,

r ′
b(0)= 0, rb(T ) = 0,

(21)

whereQ
b,ϕ
N (·) andk

b,ϕ
2 (·) are defined, respectively, in (5) and (7) Section 2 andrb(·) is given by

rb(t) =
T∫

t

1

βb(s)
·

s∫
0

βb(θ)
k
b,ϕ
2 (θ)

θ
dθ ds (22)

with βb(·) satisfying β ′
b(t)

βb(t)
= Q

b,ϕ
N (t)

t
in ]0, T [,

βb(0)= 0.

(23)

Proposition 8. Let us setrB(x) = rb ◦ ϕ(x). ThenrB(·) is a supersolution of(20).

The proof is similar to that of Proposition 7.
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-

5. The comparison principle

From operatorsA andB let us introduce the following kernels:

K
b,ϕ
2 (s, θ) = exp

[
−

s∫
θ

Q
b,ϕ
N (σ )

σ
dσ

]
,

K
a,ϕ
1 (s, θ) = exp

[
−

s∫
θ

Q
a,ϕ
1 (σ )

σ
dσ

]
,

whereQ
a,ϕ
1 andQ

b,ϕ
N are defined in (4) and (5) respectively.

To locally compareuA(·) anduB(·), it is necessary that there exists some links between(A,f1) and(B,f2). In
this paper we give a sufficient condition to establish the following comparison principle:

uA(x) > uB(x) in Ω.

Theorem 9. Let us assume that there exists a constantc0 > 0 such that

c0 ·
T∫

t

[ s∫
0

K
a,ϕ
1 (s, σ )

k
a,ϕ
1 (σ )

σ
dσ

]
ds �

T∫
t

[ s∫
0

K
b,ϕ
2 (s, σ )

k
b,ϕ
2 (σ )

σ
dσ

]
ds. (H1)

Then under assumption(H1) the following comparison holds:

c0 · uA(x) > uB(x) a.e.x ∈ Ω

whereuA(·) anduB(·) are, respectively, solution of(12)and (20).

Proof. Now this proof is easy to get. Indeed our assumption means that

c0 · ra(t) � rb(t) ∀t ∈]0, T [,
and sincera ◦ ϕ andrb ◦ ϕ are respectively subsolution of (EA) and supersolution of (EB ), we clearly obtain:

c0 · uA(x) > c0 · ra ◦ ϕ(x) � rb ◦ ϕ(x) > uB(x) in Ω. �
Remarks.

1. To prove the previous result, we assumed hypothesis (H1) i.e. we supposed thatk
a,ϕ
1 (t)/t and k

b,ϕ
2 (t)/t

belong toL1(0, T ). This means, roughly speaking, thatfi(x)/ϕ(x), i = 1,2, is bounded in a neighbourhood
x0, wherex0 is the critical point ofϕ, which also satisfiesϕ(x0) = 0. If k

a,ϕ
1 (t)/t andk

b,ϕ
2 (t)/t do not belong to

L1(0, T ), we can proceed by approximation process. Let us mention briefly how to do. For anyε > 0, let us give a
regular functionψε such that:

0� ψε(x) � 1 ∀x ∈ Ω,

ψε(x) = 1 ∀x ∈ Ω\B(x0,2ε),

ψε(x) = 0 ∀x ∈ B(x0, ε),

whereB(x0, r) is the open ball centered atx0, with radiusr > 0. Let us consideruε
A(·) anduε

B(·), solution respec
tively of

−Auε
A = f1 · ψε in Ω, uε

A ∈ H 1
0 (Ω),

−Buε
B = f2 · ψε in Ω, uε

B ∈ H 1
0 (Ω).
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n
his

s

r-

ds for

g the

e

Now it is sufficient to compareuε
A anduε

B uniformly with respect toε using Theorem 9. The main difficulty is the
to prove some estimates uniformly with respect toε. This point of our work is left to the interested reader: in t
paper, our goal is to develop the main idea without peppering it with too many technical details.

2. We will see that in some important and particular cases the kernelsK
a,ϕ
1 andK

b,ϕ
2 are more explicit than

those given previously: cf. (Hpr) and (H2) Section 7. �

6. The case Ω is an open regular, bounded and connected subset of R
N

In this section we assume thatΩ is such that there exists an open bounded and regular convex, notedΩ̃ , and
a deformationh = (h1, . . . , hN) mappingΩ to Ω̃ , satisfying det∇h(x) > 0 ∀x ∈ �Ω . In order to use the previou
results, our idea is to transport equation (EA) and (EB ) to Ω̃ by applyingh. Let us noticeÃ andB̃ the transported
operators which are variable coefficients; we have the following

Proposition 10. LetA = −∑ij aij
∂2

∂xi∂xj
be the operator acting onΩ , andÃ its corresponding transported ope

ator acting onΩ̃ . Then we have:
Ã = −

∑
k�

ãk�

∂2

∂yk∂y�

+
∑

k

ck

∂

∂yk

,

ãk� = ãk�(y) = Tr
(
a · (∇h� ⊗ ∇hk) ◦ h−1(y)

)
,

ck = ck(y) = Tr
(
a · (D2hk) ◦ h−1(y)

) (0)

whereD2hk stands for the Hessien operator ofhk andα⊗β is the matrix(αiβj ) for anyα andβ belonging toRN .

The proof of this result is based on a simple computation and is left to the reader. The same result holB

andB̃.

Remark. To study explicit examples, it is judicious to choose as much as possible the ballB(0,R) asΩ̃ . In fact
the coefficients of operators̃A andB̃ are non constant and we have to minimize technical details by choosin
radial shape function.

It is easy to show that

Proposition 11. The operator−∑k� ãk�
∂2

∂yk∂y�
is uniformly elliptic and such that̃ak� = ã�k for any�, k.

For anyj , 1� j � N , let us considerωj thej th eigenfunction of matrix̃a = (ãij ) corresponding to eigenvalu
λj (ã). Let us assume that‖ωj‖ = 1.

Proposition 12. Spectral estimates of matrix(ãij ).
We have the following estimates:

λ1(a)γ 2
1 (h) � Λj � λj (ã) � Λj � λN(a)γ 2

N(h)

where

Λj = inf
x∈ �Ω

inf
σ∈GN

N∑
i=1

λσ(i)(a)
[(

t∇h(x)ωj

)
i

]2 = inf inf
∥∥√Da,σ

t∇hωj

∥∥2
,

Λ̄j = sup
x∈ �Ω

sup
σ∈GN

N∑
λσ(i)(a)

[(
t∇h(x)ωj

)
i

]2 = supsup
∥∥√Da,σ

t∇hωj

∥∥2
i=1
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i (h) = λi(

t∇h · ∇h) for i = 1, . . . ,N; GN is the permutation group of the set{1,2, . . . ,N}. The matrixt∇h

stands for the adjoint of the matrix∇h. In addition

λj (ã) =
∑

i

λi(a)
[(

t∇h(x)ωj

)
i

]2 = ∥∥√Da · t∇h(x)ωj

∥∥2

with

Da =
λ1(a) . . . 0

...
. . .

...

0 . . . λN(a)

 , Da,σ =
λσ(1)(a) . . . 0

...
. . .

...

0 . . . λσ(N)(a)

 .

Proof. We have

λj (ã) = (ãωj ,ωj ) =
∑
k,�

ãk,�(ωj )k · (ωj )�. (1)

Let us consider the following bilinear form

a(ξ, η) =
∑
ij

aij ξj ηi = ξT · a · η.

we haveãk,� = a(∇hk,∇h�). Let us consider the basis(ei), i = 1, . . . ,N of unitary eigenvectors of matrixa =
(aij ). We have

∇h� =
∑

i

α�
i ei, ∇hk =

∑
j

αk
j ej .

Thus

ãk� =
∑
ij

αk
j α

�
i a(ei, ej ) =

∑
ij

α�
i α

k
j λi(a)δij =

∑
i

α�
i α

k
i λi(a).

For anyξ belonging toRN we have:∑
k�

ãk� · ξk · ξ� =
∑
k�

(∑
i

λi(a)α�
i α

k
i

)
ξkξ� =

∑
i

λi(a)

(∑
k

αk
i ξk

)2

=
∑

i

λi(a)
[(

t∇hξ
)
i

]2
. (2)

Now let us takeξ = ωj in (2). Using (1), we obtain

λj (ã) = (ãωj ,ωj ) =
∑

i

λi(a)
[(

t∇hωj

)
i

]2 = ∥∥√Da · t∇hωj

∥∥2
.

The next parts of the proof is then obvious.�
Propositions 12 and 3 give without too technical computations, a satisfactory spectral estimate forÃ. In fact we

obtain the following

Corollary 13 (of Propositions 12 and 3). If we denote byϕ(·) the shape function oñΩ , we have
Q

ã,ϕ
N (t)

t
� Ãϕ

|∇ãϕ(x)|2 �
Q

ã,ϕ
1 (t)

t

∀x ∈ {y ∈ Ω | ϕ(y) = t
}
, ∀t ∈]0, T ]

where inQ
c̃,ϕ
N defined in(3) and (5), λi(c̃) is replaced byΛi , and inQ

c̃,ϕ
1 defined in(2) and (4), λi(c̃) is replaced

by Λ̄i .
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ary dif-
ing
ork
Remark. If Ω̃ = B(0,R) andϕ(y) = |y|2 the previous result becomes:∑
i Λi

supi Λ̄i

· 1

4t
� Ãϕ(y)

|∇ãϕ(y)|2 �
∑

i Λ̄i

infi Λi

· 1

4t

∀y such that|y|2 = t . Compare with Corollary 5.

Remark (About the setting of the ordinary differential equation linked withÃ). The additional term
∑

k ck
∂

∂yk
,

which appears in (0) Proposition 10, does not imply any major disadvantage for our method. In the ordin
ferential equation (E) in Section 4, the coefficientq(·) of ω′(·) is the only one which changes: the term originat
from

∑
k cj

∂
∂yk

adds itself to the coefficientq(·). In order to avoid doing the same work again, we omit the w
corresponding to Sections 4 and 5. Theorem 9 is still valid in this framework.

7. Examples and application

Example 1. The significance of shape functionϕ is illustrated by the following pseudo-radial example:

Ω = B(0,R) in R
N ; a = (aij ), b = (bij )

are constant matrices;fi(x) = fi(|x|2), i = 1,2; ϕ(x) = |x|2; T = R2; c0 = 1,

Tr(c)

2λN(c)
· 1

ϕ(x)
� (Cϕ)(x)

|∇cϕ(x)|2 � Tr(c)

2λ1(c)
· 1

ϕ(x)
,

whereC stands forA or B.

fi(ϕ(x))

4ϕ(x)
· 1

λN(c)
� fi(|x|2)

|∇cϕ(x)|2 � fi(ϕ(x))

4ϕ(x)
· 1

λ1(c)
, i = 1,2.

In this case our assumption (H) becomes:

ra(y) =
R2∫
y

1

4λN(a)

[ t∫
0

(
s

t

)Tr(a)/(2λ1(a))
f1(s)

s
ds

]
dt

�
R2∫
y

1

4λ1(b)

[ t∫
0

(
s

t

)Tr(b)/(2λN (b))
f2(s)

s
ds

]
dt = rb(y), (Hpr)

and we obtain:

uA(x) > uB(x) a.e.x ∈ Ω.

Remarks.
1. Let us point out that to well define the above hypothesis it is sufficient to assume, for instance, thatfi , i = 1,2,

is bounded on some neighbourhood ofO.
2. In the particular radial case i.e. wherea = b = (δij ), (Hpr) becomes:

ra(y) = 1

4

R2∫
dt

t∫ (
s

t

)N/2
f1(s)

s
ds � 1

4

R2∫
dt

t∫ (
s

t

)N/2
f2(s)

s
ds = rb(y).
y 0 y 0
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if
timal: the

H

After a change of variables it is easy to show that

u1(x) = ra
(|x|2), u2(x) = rb

(|x|2)
are respectively the solution of{−�ui = fi in B(0,R),

ui |∂B = 0, i = 1,2.

And then (Hpr) is the optimal condition to compareu1(x) andu2(x) [9]. This very particular example shows,
necessary, that our spectral estimates (SE) and consequently our hypothesis (H) are in some sense op
possible loss of the optimal quality of the result is a consequence of the choice of the shape functionϕ.

To understand inequality (Hpr) we think that it is interesting to give a sufficient inequality less sharp than (pr)
but more explicit than (Hpr).

Proposition 14. Assume thatα(f1) = inf{f1(|x|2) | x ∈ B(0,R)} > 0} and

λ1(a)

λN(a)
· α(f1)

Tr(a) + 2λ1(a)
� λN(b)

λ1(b)
· β(f2)

Tr(b) + 2λN(b)
(∗)

whereβ(f2) = sup{f2(|x|2) | x ∈ B(0,R)}. Then(Hpr) holds.

Proof. It suffices to see that we have

ra(y) � λ1(a)α(f1) · (R4 − y2)

λN(a)(Tr(a) + 2λ1(a))
, ∀y ∈ [0,R2],

and

rb(y) � λN(b)β(f2) · (R4 − y2)

λ1(b)(Tr(b) + 2λN(b))
, ∀y ∈ [0,R2]. �

Remark. Let f1(|x|2) andf2(|x|2) be two functions defined onB(0,R). Assumeα(f1) > 0. Leta0 andb0 be two
Lipschitzian positive matrices. Then there exists some constantt0 > 0 such that for anyt � t0 inequality (∗) holds
for a = a0 andb = t · b0.

Example 2 (Ellipsoïdal case). Let us consider

Ω = {x ∈ R
N : ϕ(x) < T

}
whereϕ(x) = ∑N

i=1 mix
2
i , mi > 0 ∀i = 1, . . . ,N. We supposefi(x) = fi(ϕ(x)) and a = (aij ), b = (bij ) are

constant matrices.

Proposition 15. Let c = (cij ) a symmetric positive matrix. Then the matrixd = (dij ), wheredij = cijmimj , is a
symmetric positive matrix. This matrix is denotedc ⊗ (m ⊗ m) wherem = (m1,m2, . . . ,mN) belongs toRN .

Proof. Let us remark that, for anyx ∈ R
N , x 
= 0, we have:

(dx, x)

|x|2 =
∑

ij cij (ximi) · (xjmj )∑
i (ximi)2

·
∑

i (m
2
i x

2
i )

|x|2 .

Then it is clear that

λ1(d) � λ1(c) · [inf m2
i | i = 1, . . . ,N

]
> 0.

The result follows from that fact thatλ1(d) is the lowest eigenvalue ofd . �
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ositive
The spectral estimate (SE) becomes from Corollary 4

ΛN(c,ϕ)

2λN(c ⊗ (m ⊗ m))
· m · 1

ϕ(x)
� (Cϕ)(x)

|∇cϕ(x)|2 � Λ1(c,ϕ)

2λ1(c ⊗ (m ⊗ m))
· �m · 1

ϕ(x)

wherem = inf[mi | i = 1, . . . ,N], �m = sup[mi | i = 1, . . . ,N], ΛN(c,ϕ) andΛ1(c,ϕ) are defined as in Coro
lary 4:

Λ1(c,ϕ) = sup
σ∈GN

∑
i

λi(c)mσ(i), ΛN(c,ϕ) = inf
σ∈GN

∑
i

λi(c)mσ(i).

In addition we have:
fi(ϕ)

4ϕ
· 1

λN(c)
� fi(ϕ(x))

|∇cϕ(x)|2 � fi(ϕ)

4ϕ
· 1

λ1(c)
, i = 1,2.

Thus condition (H1) becomes:

T∫
y

1

λN(a)

[ t∫
0

(
s

t

)Λ1(a,ϕ)·�m/(2λ1(a⊗m⊗m))

· f1(s)

s
ds

]
dt

�
T∫

y

1

λ1(b)

[ t∫
0

(
s

t

)ΛN(b,ϕ)·m/(2λN (b⊗m⊗m))

· f2(s)

s
ds

]
dt. � (H2)

7.1. Applications

7.1.1. A priori estimates in linear case

Let us consider a sequence of problems{
−∑ij aε

ij (x) ∂2uε

∂xi∂xj
= f

(|x|2)� 0 in Ω = B(0,R),

uε |∂B = 0

where the coefficientsaε
ij (·) are regular. Let us assume that there exists two constant, symmetric, definite p

matricesc andd such that
Tr(aε(x))

2λN(aε(x))
� Tr(c)

2λN(c)
∀x ∈ B(0,R),

λ1
(
aε(x)

)
� λ1(c) ∀x ∈ B(0,R);

(H1)


Tr(aε(x))

2λ1(aε(x))
� Tr(d)

2λ1(d)
∀x ∈ B(0,R),

λN

(
aε(x)

)
� λN(d).

(H2)

The result is:

(i) if (H1) holds then we have

uε(x) � s
(|x|2) ∀x ∈ B(0,R),

(ii) if (H2) holds then we have

uε(x) � r
(|x|2) ∀x ∈ B(0,R)

where
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e

s
(|x|2)=

R2∫
|x|2

1

4λ1(c)

[ t∫
0

(
s

t

)Tr(c)/(2λN (c))
f (s)

s
ds

]
dt,

r
(|x|2)=

R2∫
|x|2

1

4λN(d)

[ t∫
0

(
s

t

)Tr(d)/(2λ1(d))
f (s)

s
ds

]
dt.

7.1.2. Comparison in nonlinear case
Let us consider the two nonlinear equations−

∑
ij

aij (u)
∂2u

∂xi∂xj

= f
(|x|)2 in Ω = B(0,R),

u|∂B = 0,−
∑
ij

bij (v)
∂2v

∂xi∂xj

= g
(|x|)2 in Ω = B(0,R),

u|∂B = 0.

Assume that there exists two constant, symmetric, definite positive matricesc andd such that:
Tra(t)

2λN(a(t))
� Tr c

2λN(c)
∀t ∈ R,

λ1(a(t)) � λ1(c) ∀t ∈ R,
Trb(t)

2λ1(b(t))
� Tr(d)

2λ1(d)
∀t ∈ R,

λN

(
b(t)

)
� λN(d).

Then we have:

u(x) < v(x) ∀x ∈ B(0,R)

if the following inequality is satisfied

R2∫
|x|2

1

4λ1(c)

[ t∫
0

(
s

t

)Tr(c)/(2λN (c))

· f (s)

s
ds

]
dt

�
R2∫

|x|2

1

4λN(d)

[ t∫
0

(
s

t

)Tr(d)/(2λ1(d))

· g(s)

s
ds

]
dt, ∀x ∈ B(0,R).

7.1.3. Elliptic problem setting inRN

Asymptotic behaviour of the solution as|x| goes to infinity. We supposeN � 3. We are going to study th
asymptotic behaviour of the solutionu(·) of the following equation:

−
∑
ij

aij (x)
∂2u

∂xi∂xj

= f (x) onR
N,

lim u(x) = 0,

(3)
|x|→+∞
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t two

y

wheref is a nonnegative function belonging toL1(RN) and having a compact support; we assume thatu exists.
The symmetric matrixa = (aij ) is a bounded, Lipschitz and uniformly elliptic. We suppose that there exis
radial nonnegative functionsg andh with compact support and satisfying:

0� g
(|x|2)� f (x) � h

(|x|2) ∀x ∈ R
N. (4)

We assume thath(|x|2) belongs toL1(RN).
Our idea is to approach, in the ballB(0,R), the solutionu(·) by the solutionuR(·) of:−

∑
ij

aij (x)
∂2uR

∂xi∂xj

= f (x) onB(0,R),

uR|∂B = 0

(5)

asR goes to infinity. The previous comparison results permit us to estimateuR(·) from above and from below b
two known radial functionsvR(·) andωR(·) respectively. As the behaviour ofvR(·) andωR(·) are known we can
deduce the behaviour ofu(·) asR goes to infinity. We shall see that the behaviour of the solutionu(·) of (3) is
controlled by the behaviour of the function

Λ(x) = Tr(a(x))

(2/|x|2)∑ij aij (x)xixj

as|x| goes to infinity. This result is new; and it seems surprising for us. Let us set:
θ̄ = lim

R→+∞ sup
|x|�R

Λ(x),

θ = lim
R→+∞ inf|x|�R

Λ(x).
(5.1)

Since the matrixa(·) is bounded and uniformly elliptic, we have 0< θ � θ̄ , θ̄ ∈ R
+. We assume the following

hypothesis:

(H3) there exist some positive radial functionγ (·) such that

lim
R→+∞ sup

|x|�R

∣∣Λ(x) − γ
(|x|2)∣∣= 0.

Remark. It is interesting to note that we have the following estimates: for anyx

N

2

λ1(a(x))

λN(a(x))
�
∑N

i=1 λi(a(x))

2λN(a(x))
� Λ(x) �

∑N
i=1 λi(a(x))

2λ1(a(x))
� N

2

λN(a(x))

λ1(a(x))
.

The interval

I (a) =
[∑

i

λi(a)

∣∣∣ 2λN(a),
∑

i

(λi(a)

∣∣∣ 2λ1(a)

]
measures the dispersion spectrum of the matrix(aij ). And we will see that the functionΛ(·) leaving in I (a)

controls, in some sense, the behaviour of the solution of (3) as|x| goes to infinity.
There exist two constant elliptic matricesc and d such that for anyx ∈ R

N , Tr(c)/(2λN(c)) � Λ(x) �
Tr(d)/(2λ1(d)). For anyε > 0 there existRε > 0 such that for anyx such that|x| � Rε we have:

θ − ε � Λ(x) � θ + ε. (6)
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For anyε > 0, let us set

q̄ε(t) = 1

t


θ̄ + ε, if t � (Rε + 1)2,

�̄(t), if R2
ε � t � (Rε + 1)2,

Tr(d)

2λ1(d)
, if 0 � t � R2

ε ,

(7)

where�̄(·) is an affine function such thatq̄ε(·) is continuous. From (7) we have

Λ(x) � q̄ε

(|x|2) ∀x ∈ R
N. (8)

Similarly we define

q
ε
(t) = 1

t


θ − ε, if t � (Rε + 1)2,

�(t), if R2
ε � t � (Rε + 1)2,

Tr(c)

2λN(c)
, if 0 � t � R2

ε ,

(9)

where�(·) is an affine function such thatq
ε
(·) is continuous. From (9) we have

q
ε

(|x|2)� Λ(x) ∀x ∈ R
N. (10)

Proposition 18. Suppose thata is a bounded Lipschitz and uniformly elliptic matrix. Then we have:

0� vε
ρ

(|x|2)� uρ(x) � ωε
ρ

(|x|2) ∀x ∈ B(0, ρ),

wherevε
ρ(·) andωε

ρ(·) are the following radial functions

vε
ρ(t) =

ρ2∫
t

[ s∫
0

exp

[
−

s∫
θ

q
ε
(σ )dσ

]
· g(θ)

θ
dθ

]
ds,

ωε
ρ(t) =

ρ2∫
t

[ s∫
0

exp

[
−

s∫
θ

qε(σ )dσ

]
· h(θ)

θ
dθ

]
ds.

Proof. Let us consider the solutionvε
ρ(·) of{−vε′′

ρ (t) − q̄ε(t)v
ε′
ρ (t) = g(t) on ]0ρ2[,

vε′
ρ (0)= 0, vε

ρ(ρ2) = 0, ρ > Rε.

It is easy to see that

vε
ρ(t) =

ρ2∫
t

[ s∫
0

exp

[
−

s∫
θ

q̄ε(σ )dσ

]
g(θ)

θ
dθ

]
ds.

From (5), (7), (8) and Theorem 9 we obtain

0� vε
ρ

(|x|2)� uρ(x) ∀x ∈ B(0, ρ).

By a similar way we can state that

uρ(x) � ωε
ρ

(|x|2) ∀x ∈ B(0, ρ). �
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e

It is clear that there exist two constantsδ1 > δ2 > 0 such that

1< δ1 � t · q
ε
(t) � t · q̄ε(t) � δ2 ∀t. (11)

From (11) and Proposition 18 we deduce the following result.

Corollary 19.

0� uρ(x) � ωε
ρ

(|x|2)� m
(|x|2)=

+∞∫
|x|2

[ s∫
0

(
θ

s

)δ1 h(θ)

θ
dθ

]
ds.

Proposition 20. We have

0� vε

(|x|2)� u(x) � ωε

(|x|2) ∀x ∈ R
N,

where

vε

(|x|2)=
+∞∫

|x|2

[ s∫
0

exp

[
−

s∫
0

q̄ε(σ )dσ

]
g(θ)

θ
dθ

]
ds,

ωε

(|x|2)=
+∞∫

|x|2

[ s∫
0

exp

[
−

s∫
0

q
ε
(σ )dσ

]
h(θ)

θ
dθ

]
ds.

Proof. (1) first step. A priori estimates ofuρ(·)
Since the matrixa(·) is Lipschitz, (5) can be written:{−div(a · ∇uρ) + b · ∇uρ = f onB(0, ρ),

uρ |∂B = 0
(12)

where

b =
 b1

...

bN


belongs to(L∞(RN))N , with

bj = −
N∑

i=1

∂aij

∂xi

.

Multiplying (12) byuρ and after an integration onB(0, ρ), it follows from the fact thatb ∈ L∞(RN))N :{
0� uρ(x) � c ∀x ∈ R

N,

‖∇uρ‖L2(B) � c,
(13)

wherec stands for some constant which is independent ofρ from Corollary 19 and where we have extendeduρ(·)
by zero outsideB(0, ρ). Up to a subsequence, labelled againuρ(·), uρ tends weakly tou in H 1

loc(R
N), strongly

in L2
loc(R

N) and a.e.x ∈ R asρ goes to infinity. Sincef is nonnegative, from maximum principle ([4], [6]) th
sequenceρ → uρ(·) is increasing. Thus for anyx ∈ R

N , we have

0� lim uρ(x) = u(x) � m
(|x|2),
ρ→+∞
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18
using Corollary 19. Thanks to (12) and (13) and up to a subsequence,uρ(·) converges tou which is a solution
of (3).

(2) second step. Limit of vε
ρ(·) andωε

ρ(·) asρ goes to infinity.
For anyε > 0 the sequences of functionsρ → vε

ρ(·) andρ → ωε
ρ(·) are increasing. Thus from Proposition

and Corollary 19 we have, for anyx ∈ R
N

lim
ρ

vε
ρ

(|x|2)= vε

(|x|2), lim
ρ

ωε
ρ

(|x|2)= ωε

(|x|2).
Sovε(|x|2) � u(x) � ωε(|x|2) ∀x ∈ R

N . �
Theorem 21. There existR > 1 such that:

∀x ∈ R
N, |x| � R, 0� c1v̂

(|x|2)� u(x) � c2ω̂
(|x|2)

whereci , i = 1,2, are some positive constants and

v̂
(|x|2)= 1

|x|2(θ̄−1)
,

ω̂
(|x|2)= 1

|x|2(θ−1)
,

whereθ̄ andθ are given by(5.1).

Proof. Our idea is to estimate from aboveωε(·) and from belowvε(·).
(i) first step. Estimate from above ofωε(|x|2).
Let us consider (9) andRε defined in (6). Let us considerR > Rε +1, large enough such that supph(·) ⊂ [0,R2[.

The functionωε(|x|2) can be written for|x| > R

ωε

(|x|2)=
+∞∫

|x|2

[ s∫
0

χ[0,s](θ)exp

(
−

R2∫
θ

q
ε
(σ )dσ

)
exp

(
−

s∫
R2

θ − ε

σ
dσ

)
h(θ)

θ
dθ

]
ds,

from the very definition ofq
ε
(·). Or again

ωε

(|x|2)=
+∞∫

|x|2

[(
R2

s

)θ−ε
s∫

0

χ[0,s](θ)exp

(
−

R2∫
θ

q
ε
(σ )dσ

)
h(θ)

θ
dθ

]
ds =

+∞∫
|x|2

(
R2

s

)θ−ε

· c(s)ds. (14)

But since supph(·) ⊂ [0,R2[, we have

c(s) =
s∫

0

χ[0,s](θ)exp

(
−

R2∫
θ

q
ε
(σ )dσ

)
h(θ)

θ
dθ �

+∞∫
0

χ[0,R2](θ)exp

(
−

R2∫
θ

q
ε
(σ )dσ

)
h(θ)

θ
dθ

�
+∞∫
0

χ[0,R2](θ)exp

(
−

R2∫
θ

δ1

σ
dσ

)
h(θ)

θ
dθ

because we have (11). Thus we obtain

c(s) � 1

R2δ1

+∞∫
θδ1−1h(θ)dθ � c

+∞∫
h(θ)dθ � c, (15)
0 0
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since supp(h(·) is compact. Consequently (14) and (15) entail the result:

ωε

(|x|2)� c

|x|2( θ−1−ε)
∀|x| > R (16)

wherec stands for some constant independent with respect toR andε. From the Proposition 20, (16) entail:

u(x) � c

|x|2( θ−1−ε)
∀|x| > R,∀ε > 0.

This meansu(x) � c/|x|2( θ−1) by monotonicity with respect toε.
(ii) second step. Estimate from below ofvε(|x|2).
ConsiderR > 0 chosen as previously:R > Rε + 1, suppg ⊂ [0,R2[. The functionvε(|x|2) can be written for

|x| > R

vε

(|x|2)=
+∞∫

|x|2

[ s∫
0

exp

(
−

s∫
θ

q̄ε(σ )dσ

)
g(θ)

θ
dθ

]
ds =

+∞∫
|x|2

[ R2∫
0

exp

(
−

s∫
0

q̄ε(σ )dσ

)
g(θ)

θ
dθ

]
ds

=
+∞∫

|x|2

[ R2∫
0

exp

(
−

R2∫
0

q̄ε(σ )dσ

)
exp

(
−

s∫
R2

q̄ε(σ )dσ

)
g(θ)

θ
dθ

]
ds.

Using the very definition of̄qε(·), vε(|x|2) can be written:

vε

(|x|2)=
+∞∫

|x|2
exp

(
−

s∫
R2

θ̄ + ε

σ
dσ

)
ds

R2∫
0

exp

(
−

R2∫
θ

q̄ε(σ )dσ

)
g(θ)

θ
dθ. (17)

But we have, using (11):

cε(R) =
R2∫
0

exp

(
−

R2∫
θ

q̄ε(σ )dσ

)
g(θ)

θ
dθ �

R2∫
0

exp

(
−

R2∫
θ

δ2 dσ

σ

)
g(θ)

θ
dθ,

cε(R) � 1

R2δ2

R2∫
0

θδ2−1g(θ)dθ = c(R)

R2δ2
> 0 (18)

wherec stands for some positive constant independent with respect toR andε. In addition

+∞∫
|x|2

exp

(
−

s∫
R2

θ̄ + ε

σ
dσ

)
ds = R2(θ̄+ε) 1

|x|2(θ̄−1+ε)
. (19)

Thus it follows from (17), (18) and (19):

vε

(|x|2)� c(R)

R2(δ2−δ1)
· 1

|x|2(θ̄−1+ε)
∀|x| > R, ∀ε > 0. (20)

From Proposition 20, (20) entail:

c(R)

R2(δ2−δ1)
· 1

2(θ̄−1+ε)
� u(x) ∀|x| > R, ∀ε > 0.
|x|
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n
ve

to
This means
cR

|x|2(θ̄−1)
� u(x) ∀|x| > R,

by monotonicity with respect toε. And our proof is achieved. �
Now let us examine the classical interesting case:aij (x) = δij that is to sayA is the Laplace operator. The

Theorem 21 says thatu(x) = c(x)/|x|N−2 for |x| large enough, wherec(·) is some function bounded from abo
and below, respectively, by two positive constants. We will show that the more precise is the behaviour ofΛ(·), the
more precise is the one ofu(·). For this we assume hypothesis (H3). As in (7) and (9), let us defineq̄ε(·) andq

ε
(·)

in the following: for anyε > 0 there existRε > 0 such that

∀|x| � Rε γ
(|x|2)− ε � Λ(x) � γ

(|x|2)+ ε; (21)

let us set

q̄ε(t) = 1

t


γ (t) + ε, if t � (Rε + 1)2,

�̄(t), if R2
ε � t � (Rε + 1)2,

Tr(d)

2λ1(d)
, if 0 � t � R2

ε ,

q
ε
(t) = 1

t


γ (t) − ε, if t � (Rε + 1)2,

�(t), if R2
ε � t � (Rε + 1)2,

Tr(c)

2λN(c)
, if 0 � t � R2

ε ,

where�̄(·), �(·), matricesc andd are defined as in (6), (7) and (9). We have

q
ε

(|x|2)� Λ(x) � q̄ε

(|x|2) ∀x.

Theorem 22. Under hypothesis(H3) there existR > 1 such that, for anyx ∈ R
N , |x| � R, we have

0� c1v
(|x|2)� u(x) � c2v

(|x|2)
whereci , i = 1,2, are some positive constants and

v
(|x|2)=

+∞∫
|x|2

exp

(
−

s∫
R2

γ (σ )

σ
dσ

)
ds.

Proof. It is similar to the proof of Theorem 21. So we do not make it again.�
Let us point out that we can assume an hypothesis again more satisfactory than (H3).
(H4) Suppose there exist two symmetric uniformly elliptic matricesb(x) = (bij (x)), c(x) = (cij (x)), some

functionγ :R+ → R
+ and ac2 convex functionr :RN → R

+ such that:

(i) xT c(x)x � r(x) � xT b(x)x ∀x ∈ R
N ,

(ii) lim
R→+∞ sup

|x|�R

∣∣∣∣ Tr(a(x)D2r(x))

2|∇Ar(x)|2/r(x)
− γ

(
r(x)

)∣∣∣∣= 0,

whereD2r stands for the Hessian matrix of the functionr(·) andA is the differential operator associated
the matrixa.
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ur

d

Using the same method as in the previous Theorems 21 and 22 we obtain the

Corollary 23. Assume(H4). Then there existR > 0 and two positive constantsc1, c2 such that

c1v(x) � u(x) � c2v(x) ∀x, |x| � R,

with

v(x) =
+∞∫

|x|2
exp

(
−

s∫
R2

γ (σ )

σ
dσ

)
ds.

The proof is similar to the one of Theorem 21. But it is somewhat technical. It is left to the reader.�
Remark. It is very important to consider some other behaviours of the functionΛ(·) and then to state the behavio
of u(·). The case the matrix(aij (x)) q-periodic,q = [0,1]N , is particularly interesting to study.

Appendix A. An approximation result

We have the following approximation result.

Proposition 16. Let K(·) be a function belonging toL2(0, T ) and such thatK(t)/t belongs toL1(0, T ). Then
there exists a regular sequence of functionsKη such that

(i) Kη → K strongly inL2(0, T ) asη goes to zero.
(ii) Kη(·)/t → K(·)/t strongly inL1(0, T ) asη goes to zero.

The proof is straightforward [11]. So we omit it.

Appendix B. A regularization result

Let us consider the solutionω of (E). In order to definer ′(ϕ) andr ′′(ϕ), let us consider the following regularize
equation of (E) Section 4:

−r ′′
ε (t) − Qε(t)

t + ε
r ′
ε(t) = kε(t)

t + ε
(1)

whereQε andkε are, respectively, a regularization ofQ andk such that

lim
ε

T∫
0

∣∣Qε(t) − Q(t)
∣∣p dt = 0, p � 2,

(1.1)

lim
ε

T∫
0

|kε − k|
t

dt = 0, lim
ε

T∫
0

∣∣kε(t) − k(t)
∣∣2 dt = 0.

Let us point out thatkε exists from Appendix A, and let us recall thatQ andk satisfy the assumptions:

T∫
k(t)

t
dt <+∞, 0< δ1 � Q(t) � δ2.
0
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From (1), in the same way as the study of (E) we can establish that we have (see (11) Section 4):

0� rε(t) � (T − t) ·
T∫

0

kε(s)

s
ds � c · (T − t),

0� −r ′
ε(t) �

t∫
0

kε(s)

s
ds �

T∫
0

kε(s)

s
ds � c,

(2)

by using (1.1). From (1) again we have:

−r ′′
ε

(
ϕ(x)

)− Qε(ϕ(x))

ϕ(x) + ε
· r ′

ε

(
ϕ(x)

)= kε(ϕ(x)

ϕ(x) + ε
∀x ∈ Ω. (3)

Our goal is now to pass to the limit in (3) asε goes to zero. Our result is:

Proposition 17. Assume thatk(ϕ) belongs toL2(Ω). Then we have:

−A
(
r(ϕ)

)
� k(ϕ)

ϕ
|∇aϕ|2 in H−1(Ω)

wherer = limε rε , up to a subsequence, inW1,∞(0, T ) for the weak∗ topology.

The proof is straightforward [11]. So we omit it.
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