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Abstract

Given two elliptic operatorgl; and Ay, let us consider the following problems:
—A,-ul-:fi, f,-}Oin.Q,
ujlgy =0, i=12

In this work, we give some sulfficient conditions ensuring the following comparison principle:
ui(x) > uoz(x) Vxe$2.

As application, we study the behaviour,|as— +o0, of the solutioru of the problem

—Au=f inRV,
lim wu(x)=0.
|x|—4o00

© 2006 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumé
Etant donnés deux opérateuts and Ao, on considére les deux problémes suivants :

—Aju;=f;, f; >20ing,
ui|39=0, =12
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Dans ce travail, on se propose de donner des conditions suffisantes portant gysermettant de comparer les deux solutions
uq etus :

u1(x) > us(x) Vxe 2.

Comme application, nous étudions le comportement asymptotique, @iiard+oo, de la solution: du probleme suivant :

—Au=f inRV,
lim u(x)=0.
[x]—>+00

© 2006 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

MSC:35J25; 35K20; 35B50

1. Introduction

We are concerned with Comparison Principle for linear second order partial differential operators. Comparison
Principle, as Maximum Principle, is a mathematical tool which is used frequently in many fields of mathematics
[1-10]. In this paper we propose to give a new Comparison Principle. More precisely, let us cansatetu p
solution of

—Aus=f1. ux€Hy(R), (Ea)
—Bup = fa, up€H;(), (Ep)
whereA = Z” Qjj7==— ax 6x andB = Z i 3x ax are uniformly elliptic operators. Let us denotedgndb, respec-

tively, thematrices(a;;) and(b;;). £2 is a bounded open subset®f, N > 3, andf;, i = 1, 2, are nonnegative,
for simplicity, functions belonging td.?(£2). We deal with the following natural question: can we compage
andu g in some sense? We are looking for reasonable assumptions about the link betwggnand (B, f2), to
imply that the answer to this question is positive, that is to say:

upa(x) >up(x) a.exces2.

Let us give a precise idea of our result in a simple but significant setting? leé an open balB(0, R) of RS.
Let us assume that; (x) = f;(Ix]), i =1, 2, anda = (g;;) andb = (b;;) are constanmatrices Our result can be
claimed as follow: If(A, f1) and(B, f2) are related by

BT by o\ @/ @@ 1)
o)
Ar3(a) t s
y 0
R? TH(b)/(223(b))
r 3
Ll 6 AP a]a wenm
y 0
then we have
ua(x) >up(x) a.ex e B(0,R), ()]

where for any matrix = (c;;), A1(c), A2(c) andiz(c) stand for, respectively, the first, the second and the third
eigenvalue ot and Ti(c) = A1(c) + A2(c) + A3(c).

Finally let us point out that the assumption (H) is sufficiently sharp: indeed it is possible to give a condition
infirming (H) and implying that (I) does not hold.
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We use our results to give the behaviour of the solutionfof)(in the all spac®”, N > 3:
—Au=f inRN, f>0,
lim u(x)=0.

|x]—+o00

We assume that the support t-) is compact. The result depends to the geometry of the matxix= (a;; (x)).
Without any hypothesis about this geometry the more general result is: there exist some positive constants
andR such that for any € RV, |x| > R we have

c1 c2
— < < ———
apeen S S pey (+)

where

6= lim sup A(x),
R—>+OO|X|>R

6= lim inf A(x)
R—+o00 x| 2R

_ Tr(a(x))

@/ X @i (x) - xixj

In some sense this result is optimal. Indeed in the case A is the Laplace opetato= N /2 and thus we obtain
the classical optimal result:

Ax)

C ..
u(x) ~ —=— asl|x| goes to infinity
|x|N=

Finally, let us point out that we can obtain some results more precisethd&mwe use some adequate hypothesis.

2. Notations, hypothesis and method
2.1. Notations and hypothesis

Let £2 be a bounded connected open subseR®f N > 3. We can study the cas¥ = 2 similarly. For any
uniformly elliptic operator
92 ,
CZ%:Cij(x)BXiBXl/’, with cij =cjivi, J,
we sefc = c(x) the matrix of its coefficients: is a symmetric definite positive matrix. We assume that_ipschitz
continuous matrix. We denote by

A1(c) <A2(c) <--- < An(o)

the eigenvalues of matrix Let us point out that;(¢) depends om in £2. For anyc?($2)-functiong we set

2 09 d¢
Vel = Eij Cij 9x; 3)(1" (1)
A1(c, 9) = A1(c(x), p(x)) = Slép E 2 (©ra(i) (D?p(x)), Vxe 2, (2
oelGy i

An(e,@) = An(c(0,p() = inf in (©ra(i)(D?p(x)), Vxe2, ®3)
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whereD?y stands for the Hessian matrix ¢fandG y for the permutation group of the sgt, 2, ..., N}.

Let us assume that is such that the function(x)/|Ve(x)|? is well defined ins2. This holds for instance ip
is convex as we will see later.

Let us consider the two following functions:

@
A1(c, @) ——
|Vep|?
and
@
An(c, @) —.
|Vepl|?
These functions are well defined §a since we have
2
1 ¢ ¢ _ Vgl e 1 @

v (@) V2 S IVepl2 T Vel V@2 T ha(e) IVl
and sincep(x)/|Ve(x)|? is well defined. Let us define for amye [0, 7]

077 (1) = sup{Al(c(xL p(x)) - % xe€Q, p(x)= t}, 4)
03 (1) = inf{AN(c(x>, o) =2 i@, px) = r} (5)
[Vep(x)?

whereT = supe(x) | x € 2}. Itis clear thath"”(-) is bounded in0, T]. The functiony will be precised later.
Its role is crucial to establish spectral estimates from above and below of the fufigijdW.¢|2, that we need to
state our main result (cf. Propositions 7 and 8 and Theorem 9)fiLahd f> be two non negative functions. Let
us set, from any € [0, T7,

c [ A1) -9 (x) S
k ""(r):lnf[i X €82, (x):t:|, 6
1 Vep()2 v ©)

(x) - @(x) =
Kot = sug 22909 |5 (x):t]. 7
2 Vep(0)2 Y 7)

Let us point out thak;"?, i = 1, 2, are well defined since we have
1 @ @ @ 1

’ 7 S 7 S 2
an(e) IVel= ~[Vepl® ~ [Vel© Aa(c)

and sincelv% is well defined.

2.2. Method

The role of the functiorp is crucial in our work. Its choice depends on the geometr2aind on the form of
operatorA. We call¢ shape function [7,9—11]. Our idea is simple: to give a positive answer, it suffices to get a
subsolution-4 (-) of (E4) and a supersolutiorg (-) of (Eg), such that

ra(x) >rp(x) aexcf.
How to construct these functions? For this we use a shape fungtiBar instance, we look fars (-) in the form
ra(-)=rqop(:)

wherer,(+) is a suitable function of one variable. What is the link betwegr) andu 4 (-)? The functionr, (-) is
the solution of an ordinary differential equation constructed from the partial differential equatigni{he main
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difficulty is to establish an ordinary differential equation which is as close as possildig Jpi some sense. For
this we need some sharp spectral estimates that we state in th&casey convex. The general case will be
deduced from the first one by a deformation process.

3. Preliminary results. Some spectral estimates
In the sequel we need the following result proved in [3] (if also [1]):

Theorem 1. Leta = (a;;) and b = (b;;) be twon-square symmetric positive matrices. Let us denote;ly),
respectively; (b), the eigenvalues af, respectively ob,i =1,2,..., N. Then we have

N N
min ;xim)xam(b) <Tr(@-b) < sup ) hi(@ho(i)(®)

oeGy i=1

whereG y stands for the permutation group of the $&12, ..., N}.

Proposition 1. Let us consider the operator

52
C = L
Z CU 8xl‘ 8)(]'

wherec = (¢;;) is a positive symmetric matrix. Letbe a convex function. Then we have > 0.

Proposition 2. Let £2 be an open convex subsetfR®f and lety be a regular strictly convex function defined &n
and such that

o(x) >0 Vxe 2\{xo},
e(x0) =0, ¢lse=T, some positive constant

Then we have:

0<cy=inf e W) < sup p(x) — ¢y < +00. (7.1)

2 IVe@I2 = Vo2 = 5 [Ve)?
The proof of this result is elementary. We omit it.

Remark. It is not interesting to choose) close to the boundary aP; for instance, a good choice of is the so
called harmonic center of the convex[2].

Proposition 3. Let us consider the operator

N 32
C= Z cij(x)

8xi8xj

jii=1
wherec = (c;j(x));; is a positive symmetric matrix. Letbe a strictly convex function satisfying the assumption
of Proposition2. Then we have the following spectral estimates:

0] < Co) _ 077 ()
T VepI2 Tt (SE)
vxe{ye|p(y)=t}, Viel0, Tl
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Proof. First of all, let us remark that we have
Co =Tr(c- D?%p)

whereD?¢ stands for the Hessian matrix f Following Theorem 1 we have, for anye 2,

min i (e(n) - do (D%0() < Co) < Max Y hi(e) - hoo (D%0(x)-

From Proposition 2 the function@{ ¥ (1) and Q¥ (1) given in (5) and (4) are well defined. Thus the result follows
by writing
1 W) 1
VeI [Vep()I2 @(x)

Vx # xo. O

Remark. Let us point out that in the interesting particular c&3es the Laplace operator, the previous result
becomes:

oy’ (1) < Ao 077
t Vo2 Tt
vxelylo(y)=t}, Vre€l0,T]

where
07%(1) =su % xe2, p(x) =;},
05 (1) = inf{% Y, o) =t}.
And in addition, if2 = B(0, R), ¢(x) = |x|* we obtain explicitly:
Ap(x) N

Vo2~ 2p(x)
and thus we have

c c N
Ql’w(l)=Q1\}(p(l)=E-

Let us point out that in some particular but realistic cases the result of Proposition 3 takes a simpler form, as
mentioned in Corollaries 4 and 5.

2

i

Corollary 4. Assume that = (c;;) does not depends on 2 = {x RV | ¢(x) < T}, whereg(x) = Zf.vzlaix
witha; >0,Vi=1,..., N. Then we have:

An(e.g) ay . Cox) _ A, @) o

ind) 2t [VepP T rad) 2
Vxe{xe2|pkx)=t}, Vtel0,T],

where

Aq1(c, ) = sup E ri(©)ag iy, An(c, 9) =Ui€nt E ri(©)ag @y,
N .
l

oeGyn i
whered = (d;;) is defined byl;; =¢;; - a; - a;, and

o1 = Maxa;, ay =mMming;.
1 l
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Corollary 5. Assume that = (c;;) does not depend an, and let2 = B(0, R) be the open ball oRY centred
at0, with radiusR. Let us sep(x) =) ; xl.z. Then we have

Tre 1 < Co(x) Tre 1
An(c) 4t T [Vep(x)2 T hi(e) 4t

Vx e{y e B(0,R)| ¢(y) =1} Vt €10, T = R?].

4. Ordinary differential equation linked with operators A and B: construction of super and sub solution of
(E4) and (Ep) respectively

We are going to introduce an ordinary differential equation denoted (E) which is essential to construct the
supersolution1 of (Eg) and the subsolutiorp, of (E 4): r1 andr2 will be constructed from a solution of (E). Let
us set

q(t) = @ for anyt belonging to]0, T]

where Q(¢) is a positive function defined a®, 7'] such that O< §1 < Q(¢) < 82, and which will play the role of
Qf"" in (4) and (5). Let us consider the following ordinary differential equation:

" o k() -
—0"(t) —q)' (t) = ” >0, in]o0,T], (E)
@' (0)=0, (=0

wherek is some function which will play the role o}f"” in (6) and (7). We assume thﬁcf @ ds < +4o0. To write
(E) in some canonical way, let us introduce the funcfosolution of

: B'®) _ o in 10, 71,

g !
BO)=

Let us remark thag satisfies:
() <5<()’
t) T B0
for anys and anyr such that O< s < ¢. This implies

C-s(sziﬂ(s)gc-sl (8)

in some neighbourhood of 0. Then Eq. (E) can be rewritten as:

p ( ) :
: —%(ﬂ(t) @' (1)) =—=>0 in]0,TI, )
@'(0)=0, w(T)=0.
It is easy to see that the solution of (9) is
w(y) = / ﬂ(l‘) IB(S)k(S) dsdr, (10)
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and it satisfies

T
0<a)(t)<(T—t)~/@ds in10, TY,
N
° (11)

t

0<—wﬁ></
0

@ ds in]o0, T[.
s

Thus we have proved the following result
Proposition 6. Functione given in(9) and (10) is the unique solution of EQE).
4.1. Subsolution of equation

{ —Aup=f1 InQ2, a=(aj),

12
ualae =0. (12)

To use Proposition 2, let us suppose tfais convex and is regular in$2 and strictly convex such that:
o(x)=T Vxedf2,
¢(xg) =0 for somexg € 2.

In order to simplify the exposition of the results, we assume, in a first step, that the furkflﬁ‘f)rils (6) andklz’""
in (7) satisfy:

T

T
k&
/ 1t(t)dt<+oo, /

0 0

240)

dr < +o0. (H1)

Remark. We will see later that when (H1) is not satisfied, we can proceed by approximation in a neighbourhood
of 0.

Let us sey, (¢t) = Q‘i""(r)/t WhereQ‘{"" is defined in (4) and let us consider the solutigty) of

ke
170) in 10, T,

{ _r(/l/(t) —Ya (l‘)r;(t) = (13)

ri(0=0, r (T)=0.

From Proposition 6r,(-) is given by formula (10) i.e.

T K a9
ra(t) = / 1 / POy ©) dods (13.1)
) ﬂa(s)o 0

whereg,(t) is solution of

Ba(t)

{5“”=%ﬁ>imaTL 1)
Ba(0) =0.
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Proposition 7. Let us set
ra(x) =rq0p(x) =rq(px)).

Thenr4 (+) is a subsolution 0{12).

Proof. First step In a first step, assume that(-) is regular. In a second step, we will study the non regular case
by a regularization procedure. From (13) we have:

ky?

—7(9(0)) = ga(p()) -1y (9 (1)) = % Vax € £2\{xo}. (14.1)

From (6) we have:
a,p
GHeW) AW g, (15)
@(x) [Vagp(x)]
and from (4)
_ 91" (p() .

qa(p(x)) = e > A1(a(x), p(x)) A (16)

From (16), applying Proposition 3, we get
(Ag)(x)
qa (‘P(x)) > W Vx € £2\{xo}. (17)

Sincer/ (1) < 0 for any¢, by (17) we can estimate from below the left-hand side of (14.1) and by (15) we can
estimate from above the right-hand side of (14.1). We obtain:

, Ap) A
~raeW) + g (Tl @) < g Uaie

This can be written:
—rd @)Vagl? = ;@) - Ap < f1 i 2\(xo0). (18)
And sincer,(-) andg(-) are regular, (18) is valid in al2. Thus (18) means
—A(ra(p)) < f1 in g2,
{ra(gonag =0, ralp) € Wy ™(£2)

which implies that 4 (-) = r; o ¢(-) is a subsolution of Eq.H,).

Second stefRegularization in the nonregular case.

If 07(t) andky"?/t are not regular, we use a regularization process(.&t) a regular function such tha.
tends toQ‘l’"" in L2(0, T) strongly as goes to zero. From Appendix A there exists a regular fundticsuch that:

T T
Iim/]ke—ki’ﬂzdt=0, Iim/
€ €

0 0

Let us consider, the solution of
k
i_r!(t)_ QE(t)r;(t)z ()

Vx € £2\{xo}.

(19)

ke —k
< dr=0.

t+e t+¢€’
r.(0)=0, r.(T)=0.
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re(+) is regular enough in order to defing(¢(x)) andr/ (¢(x)) and it is easy to see that

T
0<re(t)<(T—t)/@dS<c,
S
0

t T

Oé—ré(t)é/kg(s) dsgfkg(s) <e.

N N
0 0

Thus there is a subsequence, again labejedich that. tends tar, in Wg"’o(]O, T|) for the weakx topology, as
€ goes to zero. Let us recall that(-) is the solution of (13). From Appendix B we get

K@) - Vapl?
h ¢

—A(ra(@)) in H4($2)
which implies
—Ara(@) < f1 In HH(82),
with
ra o 9() =rq() € Hy(82)
using definition (6) oky"*. O

4.2. Supersolution of equation

—Bup=f2 inQ, b= (b)),

20
uglag =0. (20)

We proceed in the same way as in the previous section. Using op&rat@ consider the similar equation of (13)

b,p kb,(p
—r](t) — Oy ) () = 27 in 10, T, 1)
r,(0)=0, n(T) =0,
whereQi’\;“’(-) andk’z”“’(-) are defined, respectively, in (5) and (7) Section 2 ajtd is given by
T K b
(1 ky? (6)
rp(t) = / m -fﬂ;,(@) 0 dods (22)
t 0
with B, (-) satisfying
B O
{ o~ oI (23)
Br(0)=0.

Proposition 8. Let us setz(x) = rp o ¢(x). Thenrg(-) is a supersolution of20).

The proof is similar to that of Proposition 7.
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5. The comparison principle

From operatorst and B let us introduce the following kernels:

S b,(p
Ké"“’(s,@):exp[—/ Oy @) da},
b

o
N a,(ﬂ
Ki“"(s,@):exp[—/ ng(d) da:|,
b

whereQ?7? and Q?\;‘” are defined in (4) and (5) respectively.
To locally compare: 4 (-) andu g (-), it is necessary that there exists some links betwdery1) and(B, f2). In
this paper we give a sufficient condition to establish the following comparison principle:

ua(x) >upg(x) ing.
Theorem 9. Let us assume that there exists a constgnt 0 such that

T s k“"”(o—) T s kb’(p(o—)
co-/[/Kf’w(s,a) 1 . d0:| ds>/|:/K§’¢(s,a)2T da:| ds. (H1)
0

t 0 t
Then under assumptiqii1) the following comparison holds

co-ua(x)>up(x) a.exef

whereu 4 (-) andu g (-) are, respectively, solution dfL2) and (20).

Proof. Now this proof is easy to get. Indeed our assumption means that

co-ra(t) Zrp(t) Vte]0, T,
and since, o ¢ andr, o ¢ are respectively subsolution af ) and supersolution off3), we clearly obtain:

co ua(x)>co-rgop(x) =rpop(x)>up(x) Iins. O
Remarks.

1. To prove the previous result, we assumed hypothesis (H1) i.e. we supposé@"’ﬂ@at/t and kg""(t)/t

belong toL1(0, T). This means, roughly speaking, thA(x)/¢(x), i = 1,2, is bounded in a neighbourhood of
x0, Wherexg is the critical point ofp, which also satisfieg(xg) = 0. If ki"p(t)/t andklz”‘p(r)/t do not belong to

L1(0, T), we can proceed by approximation process. Let us mention briefly how to do. Fer-afiylet us give a
regular functiony, such that:

0<vYe(x) <1 Vxeg2,

Ye(x)=1 Vx € 2\B(xp, 2¢),

Ye(x) =0 Vx € B(xp, €),
whereB (xo, r) is the open ball centered &g, with radiusr > 0. Let us consides, () andu$; (-), solution respec-
tively of

—Au§ = f1- V. in$2, u§ € H}(2),

—Bu$y = fo- Y N2, uf e HF ().
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Now it is sufficient to compare, andu$ uniformly with respect te using Theorem 9. The main difficulty is then
to prove some estimates uniformly with respect td@his point of our work is left to the interested reader: in this
paper, our goal is to develop the main idea without peppering it with too many technical details.

2. We will see that in some important and particular cases the keﬁfe‘f’sand Ké”‘p are more explicit than
those given previously: cf. (i) and (H) Section 7. O

6. Thecase 2 isan open regular, bounded and connected subset of RY

In this section we assume th&t is such that there exists an open bounded and regular convex, Rotad
a deformation: = (h1, ..., hy) mappings2 to 2, satisfying deVh(x) > 0 Vx € £. In order to use the previous
results, our idea is to transport equatidfy( and (EB) to £2 by applyingh. Let us noticed and B the transported
operators which are variable coefficients; we have the following

Proposition 10. Let A = — Zij a;j % be the operator acting of2, and A its corresponding transported oper-
ator acting ong2. Then we have:
. .92 3
AZ—ZakZ +ch8_’
I, {4 % Yk ©)
age = ae(y) =Tr(a - (Vhe ® Vig) o b)),
cr = cx(y) =Tr(a- (D) o ()

whereD?h, stands for the Hessien operator/gf anda ® 8 is the matrix(e; 8;) for anyo andg belonging taR™.

The proof of this result is based on a simple computation and is left to the reader. The same result hiplds for
andB.

Remark. To study explicit examples, it is judicious to choose as much as possible tha(Balk) as2. In fact
the coefficients of operatoré and B are non constant and we have to minimize technical details by choosing the
radial shape function.

It is easy to show that
Proposition 11. The operator— ) _,, dke % is uniformly elliptic and such that,, = ag for anyZ, k.

Foranyj, 1< j < N, letus considew; the jth eigenfunction of matrix = (a;;) corresponding to eigenvalue
Xj(a). Let us assume thajt; || = 1.

Proposition 12. Spectral estimates of matri®;;).
We have the following estimates:

M(@)yf(h) < A; <@ < Ay <an(@ygh)

where
al 2
A =x|2;20|€nf E Aoy @[ ('Vhx)w)), P =infinf||y/Day ' Vio;]|?,
- N 2
Aj = sup sup E Aoy @[ ('VR(X)w)), ] = supsuffy/Da.c' Vhoj|

xeRoeGy ;1
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yiz(h) =A('Vh-Vh)fori=1,..., N; Gy is the permutation group of the sgt, 2, ..., N}. The matrixX Vi
stands for the adjoint of the matriXA. In addition

2@ = k@[(Vh)w;),)? = |VDa - ' Vh()w; |

r(a) ... 0 Aopy(a) ... 0
0 ... Ay(a) 0 oo Aoy (a)

Proof. We have

/\j(ﬁ)=(5!wj,wj)=Zﬁk,e(w1)k-(wj)z. (1)

k.t

Let us consider the following bilinear form

a.m)=Y ajEn=£"a-n.

ij

we havedy ¢, = a(Vhy, Vhy). Let us consider the basis;), i =1, ..., N of unitary eigenvectors of matrix =
(a;j). We have

th:Zafe,-, thzz:a];-ej.
i J
Thus
Aie = Zalj‘-afa(ei, ej)= Zafa]]‘-ki(a)éij = Zafal{‘)»i(a).
ij ij i

with

For any& belonging taR" we have:

2
D ake & k= Z(in (a)afaf)skse =) (a)(Zafsk) = n@[('Vhe),]%. @)
kt i k i

ke N i
Now let us take& = w; in (2). Using (1), we obtain

2@ = @wj.0) =Y i@[('Vho;),]? = |VDa - 'Vho; |
The next parts of the proof is then obviousa

Propositions 12 and 3 give without too technical computations, a satisfactory spectral estimats fiact we
obtain the following

Corollary 13 (of Propositions 12 and 3)f we denote by(-) the shape function of?, we have
VW _Ae 0170
t [Vag(x)|? t
vxe{ye|p(y)=t}, Viel0,T]

where ian\’,‘” defined in(3) and (5), 1, (¢) is replaced byA;, and in Q‘;"” defined in(2) and (4), A; (¢) is replaced
by /il'.
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Remark. If 2 = B(0, R) andg(y) = |y|? the previous result becomes:

YA 1 Apy) iAo 1
sup A; 41 [Vap()I? T infi 4, 4

Vy such thafy|2 = r. Compare with Corollary 5.

Remark (About the setting of the ordinary differential equation linked with The additional termd_, ck%,

which appears in (0) Proposition 10, does not imply any major disadvantage for our method. In the ordinary dif-
ferential equation (E) in Section 4, the coefficigtit) of »'(-) is the only one which changes: the term originating
from ), Cj% adds itself to the coefficient(-). In order to avoid doing the same work again, we omit the work
corresponding to Sections 4 and 5. Theorem 9 is still valid in this framework.

7. Examplesand application

Example 1. The significance of shape functignis illustrated by the following pseudo-radial example:
2=B@O,R) inRY; a=(aj), b=(bi)
are constant matriceg; (x) = fi (|x|%),i =1,2; o(x) = |x|%; T = R%; co =1,
Tr@) 1 _ (o _ T 1
2in(e) @) T IVep@)2 T 20(e) 90’
whereC stands forA or B.
filg) 1 fillklh) _ fitpx) 1

: X 2 X : 5 = 1’ 2‘
4p(x)  An(c) ~ |Vep(x)] 4p(x)  Ailo)
In this case our assumption (H) becomes:
R? t
Tr(a)/(2r1(a))
ra(y) =f ! [/(5> J1() ds:| d
4in(a) t N
y 0
R? '
1 s\TO/ @) £ o)
> - =
//4k1(b)|:/(t> P ds [dt =rp(y), (Hpr)
y 0

and we obtain:

upa(x) >up(x) a.exces?.
Remarks.
1. Let us point out that to well define the above hypothesis it is sufficient to assume, for instanggithat, 2,

is bounded on some neighbourhood®f
2. In the particular radial case i.e. where=b = (3;;), (Hpr) becomes:

N Y TG
S S S S
ra(y)=1/dt/.(;) ls ds> Z/dt/(;) Zs dS=rb(Y)-
y 0 y 0
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After a change of variables it is easy to show that
wr(x) =ra(1x1?),  u2(x) =rp(1xP?)
are respectively the solution of
{ —Au; = f; inB(0,R),
uilsp =0, i=1,2.

And then (Hy) is the optimal condition to compate (x) anduz(x) [9]. This very particular example shows, if
necessary, that our spectral estimates (SE) and consequently our hypothesis (H) are in some sense optimal: the
possible loss of the optimal quality of the result is a consequence of the choice of the shape function

To understand inequality (8 we think that it is interesting to give a sufficient inequality less sharp thgf) (H
but more explicit than (k).

Proposition 14. Assume thak( f1) = inf{ f1(|x|?) | x € B(0, R)} > 0} and

M(a) a(f1) < An(D) B(f2)
An@) Tr(@) +2xi(a) = r1b)  Tr(b) + 2xn(b)

whereg(f2) = sup{ £(|x|?) | x € B(O, R)}. Then(Hp) holds.

(%)

Proof. It suffices to see that we have

r(@a(f1) - (R —y?)
An (@) (Tr(a) + 221(a))’

ra(y) > Vy € [0, R?],

and

o) < VDB - (R~ 5?)

< . VyelO, R?].
b (T + 2ty 0K O

Remark. Let f1(|x|%) and f2(|x|%) be two functions defined oB(0, R). Assumex( f1) > 0. Letag andbg be two
Lipschitzian positive matrices. Then there exists some congtan® such that for any > rg inequality ¢) holds
fora =ag andb =r - bg.
Example 2 (Ellipsoidal case)Let us consider

.Q:{xeRN: go(x)<T}
wherep(x) = vazlm,-xiz, m; >0Vi=1,...,N. We supposef; (x) = f;(¢(x)) anda = (a;;), b = (b;;) are
constant matrices.

Proposition 15. Let ¢ = (¢;;) a symmetric positive matrix. Then the matix= (d;;), whered;; = ¢;jm;m;, is a
symmetric positive matrix. This matrix is denote® (m ® m) wherem = (mq, mp, ..., my) belongs taR” .
Proof. Let us remark that, for any € RV, x # 0, we have:
(dx,x) > i) Cij (ximy) - (xjm ) . > (m?x?)
2 >, (xim;)? 2
Then it is clear that
A(d) = ra(c) - [infm? |i=1,...,N]>0.

The result follows from that fact that; (d) is the lowest eigenvalue af. O
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The spectral estimate (SE) becomes from Corollary 4
An(c, ®) 1 (Cp)(x) Ai(c, ) _ 1
2in(c ® (m @ m)) p(x) Vep(x)|©  2h1(c ® (m @ m)) @(x)
wherem =inflm; |i =1,...,N],m=sup[m |i =1,...,N], Ay(c,9) and A1(c, ¢) are defined as in Corol-
lary 4:

A1(c, ) = sup Zki(c)mo(i), An(c, @) = lent Zki(c)ma(i)-
o N .

ogeGy i

In addition we have:
fity) 1 _ file) _filp) 1

X 2 X M 5 l= 1,2
4o An(c)  |Vep(x)] 4p  Ai(o)
Thus condition (H1) becomes:
T t —
Ax(a,)-m/(2r1(a®@m®m))
f 1 /(5> 9 G0l ar
An(a) t s
: 0
T !
1 s Ay (b,@)-m/(2hn (bQm®m)) fo(s)
> - . ds [ dr. H2
/M(M[/(t) s N (72
y 0

7.1. Applications

7.1.1. A priori estimates in linear case
Let us consider a sequence of problems

a2 .
{ — Xy a5 ke = f(1x?) >0 in2 =B, R),
uelop =0

where the coefficientsfj(-) are regular. Let us assume that there exists two constant, symmetric, definite positive
matricesc andd such that

[ Tr(a®(x)) S Tr(c)

@)~ ey L EBOR (H1)

Al(ae(x)) > x1(c) Vx e B(0,R);
{ Tr(a®(x)) o Tr(d)

@) S a@ FEEOR. (H2)

An(a () < An@).
The result is:

(i) if (H1) holds then we have

ue(x) <s(x%) Vx € B(O, R),
(ii) if (H2) holds then we have

Ue(x) > r(|x|2) Vx € B(0, R)

where
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R2

t
an 1 s Tr(c)/(2hn(c)) f(s)
(i )_/4x1(c)[/<?> I
0

x[?

R2

2 1
()= | 4AN(d>[

|x[2

t

Tr(d)/(2r1(d))
/ G) fs) ds:| dr.
S

0

7.1.2. Comparison in nonlinear case
Let us consider the two nonlinear equations

9%u 2 .
—;aly(m Fror f(Ix)" in2=BO,R),

ulap =0,

92y 2 .
; 7Ok o g(1x1) (0, R)

ulyp =0.
Assume that there exists two constant, symmetric, definite positive matrésesd such that:

Tra(t) Trc
2Mv(a(1)) = 2ay(c)
A(a@®) = r(c) VteR,

{ Trb(t) o Tr(d)

vVt e R,

22 S 2a@ R

AN (b)) < An(d).
Then we have:
u(x) <v(x) VxeB(0,R)
if the following inequality is satisfied

2 t

R Tr(e)/ 2y (0))
Jaal o e
4r1(c) t s

|x[2 0

R2

t
1 Tr(d)/ (201 (d)
</ [/(5) 89 o ldr. vx e BO.R).
4in(d) 14 K
0

|x[2

7.1.3. Elliptic problem setting iR
Asymptotic behaviour of the solution &s| goes to infinity. We suppos® > 3. We are going to study the
asymptotic behaviour of the solutiaet-) of the following equation:

52
—Zaij(X)ax'a: = f(x) onRY,
T 10X 3

lim u(x)=0,
|x|—4o00



176 R. Tahraoui / Ann. |. H. Poincaré — AN 23 (2006) 159-183

where f is a nonnegative function belonging id (R") and having a compact support; we assume ihexists.
The symmetric matrix: = (g;;) is a bounded, Lipschitz and uniformly elliptic. We suppose that there exist two
radial nonnegative functiongsandi with compact support and satisfying:

0<g(1x?) < () <h(1x1?) VxeRYN. @)

We assume that(|x|2) belongs taL1(R").
Our idea is to approach, in the ba&l0, R), the solutionu(-) by the solution:g(-) of:

2
- aijx) TUR _ fx) onB(O, R,
i axi3Xj (5)

urlop =0

as R goes to infinity. The previous comparison results permit us to estimgte from above and from below by
two known radial function®z (-) andwg (-) respectively. As the behaviour of (-) andwg(-) are known we can
deduce the behaviour af(-) as R goes to infinity. We shall see that the behaviour of the solutioh of (3) is
controlled by the behaviour of the function

Tr(a(x))
(2/|X|2) Zij aijj (x)xixj

as|x| goes to infinity. This result is new; and it seems surprising for us. Let us set;

Ax) =

6= lim sup A(x),
R—>+00‘x|>R

6= lim inf A(x).
R—+o00 |x|=R

(5.1)

Since the matrixz(-) is bounded and uniformly elliptic, we have<04 < 6, € RT. We assume the following
hypothesis:

(H3) there exist some positive radial functigi) such that

. _ 2 _
RETOOMS‘;%‘A(X) y(Ix1?)|=0.

Remark. It is interesting to note that we have the following estimates: forany

Naaw) Y ki@e) A  XiLki@w)  Niy@e)
2 an(a)  2hy(ax) 2Mma(x) 2 ra(x)

The interval
Ia)= [Z hi(a)

measures the dispersion spectrum of the mauijx). And we will see that the functioni(-) leaving inI(a)
controls, in some sense, the behaviour of the solution of (8)|agoes to infinity.

There exist two constant elliptic matricesand 4 such that for anyx € RY, Tr(c)/(2an(c)) < A(x) <
Tr(d)/(211(d)). For anye > 0 there existR. > 0 such that for any such thajx| > R. we have:

20y (@), Y (i) | 2A1<a)]

0—e< A(x) <0 +e. (6)
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For anye > 0, let us set

O+e  ifr>(Re+172
117 i p2 2
o)== 4 L0 if RE<t1<(Re+1)%

t ]| Tr(d)

2)1(d)’
wheref(-) is an affine function such that (-) is continuous. From (7) we have

A(x) <ge(1x?) ¥xeRN.

if0 <t <R2,

Similarly we define

0—e€,  ift>(Re+1)72
1 £ p2 2
g.(0)="> L), if RZ<t < (Re +1)7,
t Tr(c)
2an(c)’

wheref(.) is an affine function such thgte(-) is continuous. From (9) we have

if0 <t < R?

Ze(mz) <A(x) VxeRY,

Proposition 18. Suppose that is a bounded Lipschitz and uniformly elliptic matrix. Then we have

0<v5(1x1%) Supx) < (1x1%)  Vx € B(O, p),

Wherev;(-) and a);(-) are the following radial functions

p2 s s
0= | [oof - [ o] <P e]a

t Lo 0
0 s s
a);(t) =/|:/exp|:—/c_1€(a)dai| . @d@] ds.
t Lo 0

Proof. Let us consider the solutiavg(~) of
—v€' (1) — Ge (Vs (1) = g (1) on]0p?,
U (0)=0, ¥(p")=0, p>Re.

It is easy to see that

p2 S S
0= | [oa] - [ o] a]a

t Lo 6
From (5), (7), (8) and Theorem 9 we obtain

0<ve(Ix[?) Sup(x) V¥x € B(O, p).
By a similar way we can state that
up(x) <5 (Ix?) V¥xeB(0,p). O

177

Q)

©)

©)

(10)
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It is clear that there exist two constaidis> 8> > 0 such that
1<81<t-ge(t)<t~cje(t)<82 Vt. (12)

From (11) and Proposition 18 we deduce the following result.
Corollary 19.
0\’ h(0)
0<up(x) <wj (|x| ) < |x| / / —d9 ds.
Ix[2 =0

Proposition 20. We have
0« v€(|x|2) <ulx) < a)g(|x|2) Vx e RV,

where
+00 s K
ve(|x|2)=/[fexp[—/qew)da]g() }ds,
|x|2 0 0
+o0 s K
we(1x|%) = / |:/exp|:—[ (a)da:|@d9:|d
x[2 =0 0

Proof. (1) first step. A priori estimates of,(-)
Since the matrix:(-) is Lipschitz, (5) can be written:

—div(a-Vuy)+b-Vu,=f onB(0,p), 12
uplop =0 (12)
where
by
by
belongs ta(L>° (R )V, with
N
aa;;
bj=— L
=2
i=1
Multiplying (12) by «, and after an integration oB(O, p), it follows from the fact thab € L>°(RV))V:
O0<u,(x)<c Vx e RV, (13)
”Vup”LZ(B) <,

wherec stands for some constant which is independent fsbm Corollary 19 and where we have extended-)
by zero outsideB(0, p). Up to a subsequence, labelled agajs.), u, tends weakly ta: in H,})C(RN), strongly
in L%C(RN) and a.ex € R asp goes to infinity. Sincef is nonnegative, from maximum principle ([4], [6]) the
sequence — u,(-) is increasing. Thus for any € RY, we have

0< i =u(x) < %),
p;rﬂwup(x) u(x) m(|x|)
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using Corollary 19. Thanks to (12) and (13) and up to a subsequep¢e,converges ta: which is a solution
of (3).

(2) second stef.imit of v{,(-) andw( (-) asp goes to infinity.

For anye > O the sequences of functiops— v;,(-) andp — «f,(-) are increasing. Thus from Proposition 18
and Corollary 19 we have, for anye RY

lim V5 (Ix12) = ve (Ix1?), lim oS (1x1%) = ¢ (Ix]?).
Sove(lx[?) Sux) <we(lx?) vx eRY. O

Theorem 21. There exisiR > 1 such that
v eRY, x| >R, 0<ead(lx’) <ul) < cd(lx?)

wherec;, i = 1,2, are some positive constants and
R 1
(Ix[%) = —=—,
|x|2(971)
1
~ 2 _
a)(|X| ) - |_x|2(Q_1) )

whered andg are given by(5.1).

Proof. Our idea is to estimate from aboug (-) and from below, (-).

(i) first step. Estimate from above of (|x|?).

Let us consider (9) an#, defined in (6). Let us considé& > R, +1, large enough such that supp) C [0, R?[.
The functionw. (|x|%) can be written fotx| > R

+oo s R? K
oc(1?) = [ [ / X[o,s](Q)GXD(— / g]e(o)do> exp(— / Q;Edo>@de} ds,
w2 -0 b R?

from the very definition Ofle(')- Or again

+o0 R2 g—e & R? h) +o0 R? 9—e
oc(?) = [ [(—) / X[o,s](9)exp<— / gé(a)d0>7d9} a= [(5) ewdn a
x[? 0 o |x|?
But since supp(-) C [0, R?[, we have
s R? ho) +o00 R? h)
C(S):/X[Q’S](Q) exp(—/gé(a) da>7d9< / X0.r2(©) exp(—/gé(o)do)TdQ
0 0 0 0
400 R25 h(@)
1
< / X[O,RZ](G) exp(—/ ;da)TdQ
0 o
because we have (11). Thus we obtain
1 +00 +00
51-1
c0) < oz [ OO I / h(@©)do <c, (15)

0 0
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since suppi(-) is compact. Consequently (14) and (15) entail the result:
C
wherec stands for some constant independent with respeRtaade. From the Proposition 20, (16) entail:

Cc
u(x)<|x|2(94_1_6) V|x|>R,Ve>0

This means:(x) < ¢/|x|?2~Y by monotonicity with respect te.

(i) second step. Estimate from belowgf(|x|?).

ConsiderR > 0 chosen as previousl\® > R, + 1, supgg C [0, R?[. The functionv. (]x|%) can be written for
x| > R

+oor s s +oo R? s
v6(|x|2) = / /exp(—/qe(a)do)&de}d = / |:/exp<—/q€(0)da>&d9j|d
Ix[2 =0 0 x|2 -0 0
foor R? R? K
= / / ( /qe(o)do) exp( /ée(a)da>¥d9:| ds.
Ix2 -0 R2
Using the very definition ofi (), ve (]x|2) can be written:
+oo s _ R2 R2
ve(Ix1?) = / exp(—/ Qajdo> ds/exp<—/c]€(0)do> 80) 4o, (17)
|x|2 R? 0 0
But we have, using (11):
R? R? R?
ce(R)z/.exp<—/cj€(a)d )gT / ( /‘Szda)g(;) do,
0 0 0
R2
ce(R) > % 0%271g(9)do = R(g) >0 (18)

0
wherec stands for some positive constant independent with resp&aittde. In addition

+00 s 7 .
|x |20 —1+€)
|x[2 R?
Thus it follows from (17), (18) and (19):
c(R) 1
(|x| )= R2(62—81) 20110 Vx| > R, Ye > 0. 20)

From Proposition 20, (20) entail:

c(R) 1
R2(62781> |x|2(0 1+)

u(x) V|x|> R, Ve > 0.
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This means
CR

||2(Tl) Su(x) Vx| >R,
x

by monotonicity with respect te. And our proof is achieved. O

Now let us examine the classical interesting cagg(x) = §;; that is to sayA is the Laplace operator. Then
Theorem 21 says that(x) = c(x)/|x|¥ 2 for |x| large enough, where(-) is some function bounded from above
and below, respectively, by two positive constants. We will show that the more precise is the behawiouy thie

more precise is the one of-). For this we assume hypothesis (H3). As in (7) and (9), let us déjimaandgé(-)
in the following: for anye > 0 there existR, > 0 such that

Vix| > Re y(Ix1?) —e <A@ <y (IxP) + e (1)
let us set
y(®) +e ift>(Re+1)72
1 0 H 2 2
Go(t) == £(1), if RE<t<(Re+1),
] Trd) if 0 <t < R?
2}\’1((1)7 ~ ~ €
y(t) —e, ift>(Re+1)7
g ()= 1]ew. if RZ <1< (Re+17,
€ t Tr(c) . 2
, IFO<t < RS,
2in(C)

wheref(-), £(-), matricesc andd are defined as in (6), (7) and (9). We have
q_(1x1%) < A) <Ge(1x1?) .

Theorem 22. Under hypothesigH3) there existR > 1 such that, for any € RY, |x| > R, we have
0< cav(lxf?) Sulx) < cav(|xP?)

wherec;, i = 1,2, are some positive constants and

“+o00 s

v(|x|2)= / exp<—/$ a) ds.

|x|2 R2
Proof. Itis similar to the proof of Theorem 21. So we do not make it again.

Let us point out that we can assume an hypothesis again more satisfactory than (H3).
(H4) Suppose there exist two symmetric uniformly elliptic matribéés) = (b;; (x)), c(x) = (¢;j(x)), some
functiony : Rt — R* and ac? convex functiorr : RY — R+ such that:

() xTe@)x <r(x) <xTh(x)x V%c eRN,
. ) Tr(a(x)D<r(x)) _
(i) B SO SV R ) y(r)| =0,

where D?r stands for the Hessian matrix of the functiof) and A is the differential operator associated to
the matrixa.
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Using the same method as in the previous Theorems 21 and 22 we obtain the

Coroallary 23. AssumgH4). Then there exiskR > 0 and two positive constantg, c2 such that

c1v(x) <u(x) <cov(x) Vx, [x| =R

with
+0oo K
v(x):/exp(—/M o) ds.
o
‘x|2 R2

The proof is similar to the one of Theorem 21. But it is somewhat technical. It is left to the reader.
Remark. It is very important to consider some other behaviours of the functighand then to state the behaviour
of u(-). The case the matriga;; (x)) g-periodic,q = [0, 11V, is particularly interesting to study.

Appendix A. An approximation result
We have the following approximation result.

Proposition 16. Let K (-) be a function belonging t&.2(0, T') and such thatk (r)/¢ belongs toL1(0, T'). Then
there exists a regular sequence of functidgssuch that

(i) K,— K strongly inL2(0, T) asn goes to zero.
(i) K,(-)/t — K(-)/t strongly inL%(0, T) asn goes to zero.

The proof is straightforward [11]. So we omit it.

Appendix B. A regularization result

Let us consider the solutian of (E). In order to define’(¢) andr”(¢), let us consider the following regularized
equation of (E) Section 4:

W Qe(t) ' ke (1)
_ — = 1
e (1) re(t) = Tte 1)
whereQ. andk6 are, respectlvely, a regularization @fandk such that
T
im [10.() - )| dr=0. p>2.
€
0 (1.1)

T
I|m/ ke ' dr=0, Iim/|k6(t)—k(t)|2dt=0
€ t €

0

0
Let us point out thak. exists from Appendix A, and let us recall th@tandk satisfy the assumptions:

/@dt <400, 0<51< 00 <52
0
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From (1), in the same way as the study of (E) we can establish that we have (see (11) Section 4):

T

o<r€<r)<(T—t>~/ke(s)ds@-(T—r),
N
0
. - 2
Oé—ré(t)Q/kE(S) d5§f@dsgc,
S S
0 0

by using (1.1). From (1) again we have:

_ Qc(p(x)) o) = ke (@ (x)
o) +e T o0 Fe

Our goal is now to pass to the limit in (3) agjoes to zero. Our result is:

—ré/(w(x)) € 5. ()

Proposition 17. Assume thak(¢) belongs toL.2(£2). Then we have:

—A(r(p) < %I%wlz in H~1(2)

wherer = lim, r¢, up to a subsequence, W1 (0, T) for the weak« topology.

The proof is straightforward [11]. So we omit it.
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