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Abstract

We study the global Cauchy problem for nonlinear Schrodinger equations with cubic interactions of derivative type in space
dimension n > 3. The global existence of small classical solutions is proved in the case where every real part of the first derivatives
of the interaction with respect to first derivatives of wavefunction is derived by a potential function of quadratic interaction. The
proof depends on the energy estimate involving the quadratic potential and on the endpoint Strichartz estimates.
© 2007 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the Cauchy problem for nonlinear Schrédinger equations of the form
1
i8,u+EAu=F(u,Vu), (1.1)

where u is a complex-valued function of (¢, x) € R x R", A is the Laplacianin R", 9, =9/0¢, V. = (01, ...,9,), 9; =
d/0x;,and F is a smooth function on C x C" vanishing of third order at the origin. Here we do not assume analyticity
of F and we consider the derivatives in the real sense. For instance, for (z, p) € C x C", F’ is defined as a linear
operator on C x C":
, oF oF 0F -  0F _
Fp6.9g=—"E+—q9+-5+-—=¢q
0z op 0z ap

for (£, q) € C x C", where we have used the standard notations such as
0 1/9 .0 ] 1/0 .0
—===——-1—=), —=—|—+1—
dz 2\dx dy 0z 2\ ox ay
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for z = x 4+ iy. Accordingly, it is sometimes convenient to regard F as a function of (z, p,z, p) e C x C" x C x C".
Moreover, we use the notations 0 F/du, 0F/d(Vu), 0F/du, 0F/d(Vu) for the derivatives at (u, Vu, u, Vu) and the
associated complex-valued functions on R x R" as well.

There is a large literature on the Cauchy problem for (1.1). See for instance [1-12,16-18,20,24-32] and references
therein. The classical energy method naturally requires that the real part of every component of d F/d(Vu) vanishes.
We write the condition as

oF
a(Vu)

With the condition (1.2), Klainerman [18], Klainerman and Ponce [20], and Shatah [28], proved the global existence
of classical solutions for small Cauchy data with sufficient regularity and decay at infinity. Here the decay at infinity
is imposed on the Cauchy data ¢ in such a way that ¢ € H 1’7”, (R"™) with an integer m > n/2, p > 2 for instance, which
provides explicit time-decay of solutions in L? (R"). Here H; = H; (R") = (1 — A)S2LIRY) = (1 — A)~S/2L4 is
the Sobolev space in terms of Bessel potential and p’ is the exponent dual to p defined by 1/p+1/p’ = 1.

Chihara [3,4] and Hayashi, Miao, and Naumkin [8] removed the condition (1.2) by using smoothing operators and
first order partial differential operators which have special commutation relations with 19, + (1/2)A. In [3,4,8,19],
decay at infinity is imposed on the Cauchy data ¢ in such a way that x“¢ € H™ with an integer m > n/2, |a| <2
for instance, which also provides explicit time-decay of solutions in L? for some p > 2 through the first order partial
differential operators above. Here H* = H is the standard Sobolev space.

The purpose in this paper is to remove those assumptions related to decay at infinity of the Cauchy data ¢ and
reduce the required regularity down to n/2 4 2 (limit excluded) such as ¢ € H® with s > n/2 + 2. The condition
s > n/2 4+ 2 is most natural in the framework of classical solutions. Instead, we need an assumption on the structure
of nonlinearity which is weaker than (1.2).

To state the main result precisely, we introduce some notation. Throughout this paper we denote by o any real
number larger than n/2 and by 2* the Sobolev exponent 2 /(n —2). Itis well known that H < L* and HJ, < wlk,
where Wt ={f € LP: 3* f € LP for all & with |a| < m}. The main assumption on F is the following:

Re

(1.2)

(H) There exists a function 6 € C2((0, 00); R) with #(0) = 0 such that

IF 2
Re VD =V (0(|ul*)). (1.3)

Theorem. Let n > 3 and let 0 > n/2. Let s = o 4+ 2. Let F be smooth function vanishing of third order at the origin
and satisfying (H). Then there exists § > 0 such that for any ¢ € H® with ||¢; H*|| < 8 Eq. (1.1) has a unique global
solution u € (Cy,y, NL®)R; H)YNCR; H~H N LA(R; stfl) with u(0) = ¢. Moreover, there exist ¢+ € H® such
that

lu@) —U@®¢s; H ' -0

ast — oo, where U(t) = exp(i%A) is the free propagator.

Remark 1. When 6 = 0, the assumption (H) reduces to (1.2). An example of F satisfying (1.2) is given by

n
F(u,Vu):iZ(aj|u|2+bj|8ju|2)8ju+F0(u,Vu),
Jj=1
where aj, bj € R and Fp satisfies
0 Fy _
a(Vu)

Remark 2. If F has the form
F(u, Vu) = A(Vu)?i + u|Vul>u + Fi(u, Vu)
with A, u € R and Fj satisfying (1.2), then 6 defined by 68 (p) = (A + 1 /2)p satisfies (H).
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Remark 3. If F has the form
AVu)2i + | Vul*u
14+ |ul?

with A, u € R and Fj satisfying (1.2), then 6 defined by 6(p) = (A + u/2)log(1 + p) satisfies (H). The case where
u =0 and F; =0 appears as a model of Schrédinger map [2,24]. See also [11,15,29,30].

F(u,Vu) =

+ Fi1(u,Vu)

In the theorem above, assumptions on the Cauchy data are given exclusively on the basis of the usual Sobolev
spaces. There is no assumption of additional decay at infinity previously imposed in terms of L7 spaces with
1 < g <2 [18,20,28] and weighted Sobolev spaces [3,4,8,19]. Moreover, the required regularity is minimal as far
as the classical solutions are concerned. Those two ingredients are new even when (H) is replaced by more restrictive
assumption (1.2).

We prove the theorem in the next section. The proof depends on the a priori estimates of two kinds. At the level
of H5~1, we use the endpoint Strichartz estimates [14], which lose first derivatives at L2 level but still ensure square
integrability in time of solutions with values in H3, !, At the level of H?, we estimate loss of derivatives by means of
“gauge transformation” given by the multiplication by exp(£6 (|u|?)), which enables us to provide a priori estimates
of H* norm of gauge transformed solutions. There appear coefficients bounded by a constant multiple of the H, !
norm squared, time integrability of which has been ensured by the argument at the level of H5~!.

The importance of the endpoint Strichartz estimates in cubic nonlinearities has been noticed in [21-23], though
this paper seems to be the first application of the endpoint Strichartz estimates to nonlinear Schrodinger equations
of the form (1.1). “Gauge transformation” technique has been exploited in [9,10,26,27,32], though this paper seems
to be the first that shows how the endpoint Strichartz estimates come into play in the a priori energy estimates with
transformed derivatives.

2. Proof of the theorem

For simplicity, we treat the case where F is a cubic polynomial. We restrict our attention to the case ¢ > 0 since the
case t < 0 is treated analogously. Let ¢ € H*. For ¢ > 0 we consider the regularized equation

1
ia,u€+§(1 —ige)Aug, = F(ug, Vuy) 2.1)

in (0, c0) x R with u.(0, x) = ¢(x), x € R". By the standard method we see that there exists a unique local solution
u. € C([0,T,); H )N c! (0, Ty) : H""z). Here T, > 0 may be taken T, = oo if we can show an a priori estimate in
H* for local solutions.

From now on we abbreviate the subscript ¢ to write u = u, for simplicity. We write Eq. (2.1) in the integral form:

t

u(t) = Us (1) —i/ Ue(t — ) F (u(r'), V(")) dt', (2.2)
0

where U, (1) = exp(i%(l —ig)A). We note here that the regularizing factor exp(% A) is a contraction semigroup in
L? for any p with 1 < p < oo and therefore the propagator U, has the same Strichartz estimates as those of the usual
Schrodinger group on positive time intervals of the form [0, 7] with 7 > 0. We now apply the endpoint Strichartz
estimates to (2.2) on the interval [0, T'] to obtain

o (22) 0 £2(12) | = (s £2(22) . s L322 )
< Clg:22] + €| Pl v L1(22)]
<Cllgs L2] + Cllus L2 (W) | s 222 (") |

C|¢; L2|| + C|lu; L2 (HS) | |us L=(H") |, 2.3)

’

N

where we have used Holder’s inequalities in space and time and the Sobolev embedding Hj\ — wl.
We differentiate (2.2) to have
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t

dju)=U: ()¢ '/U(t t') 8 +8F8_+ 3F8V+ aFE)V (¢'ydr’. (2.4)
ju(t) = i —1 - —oju ———0;Vu+ ———— u .
! o ‘ du 7T (V) ! (Vi)

0
By the endpoint Strichartz estimates, fractional Leibniz rule, and estimates on composite functions in the case where
F is not a polynomial, we obtain

Jojus L(17) 0 L2 ()| < oy 17| 4. s L1 (1) | + O s (1)

—|—C” (Ve )a Vu; L'(H?) +CH—8 Vii; L'(H?)
< Cllgs BT+ C s L2 (W) | L (15 ) |
(Wao) [ s 2 (3 [ s £ (1)
()P s £ (1) 2.5)
where we have used Holder’s inequality in space and time and embeddings HJ, <> W;O and HO 12 < H,%.
By (2.3) and (2.5), we have
(H =) n L2 ()| < C s 1! Il (H°)] 2:6)
By (2.1) or (2.4), we have
. 1 ) oF oF _ _ oF F _
(18, + 5(1 — 18)A>8ju = Ea,u + Ea,u + majw + ma,w. 2.7)

With I = (1 — A)¢~D/2 we have by (H) and (2.7)

% =00y ru; 2| = 21m<<ia, + %A) (e 00y, ru), e84, Fu)

1 1
= 21m<e_9(|”2) (—[(ia, + EA)e(mﬁ)}ajru + (ia, + §A> 3 Tu
—v(O(uP))- vajru),e—9<'"2>ajru>

= 2Im<e—9<|“2> (- [(ia, + %(1 - ie)A)9(|u|2)]8jFu

: 1 . oF o dlul?
+ (13, +50 —15)A)ajru - (Re amo) -vajru>,e 8(lul )3]-1"14>

— eRe(e [ A0 (jul?)]0; Tu, e 00 a; )
+eRe(e P Ag; Fu, e #0P g, )

1
= 2Im e9('“'2)[<ia, +50- ie)A)9(|u|2)]ajru, e9<'”2>aj1“u>

o
6(ul®) OF N 9o, ru,e 0™y, ru
a(w)

+2Im<e—9<“| >[r } - Vju, e—9<|"2>ajru>

(e 2

OF
+2Im( e 9<“'>F< dju+ — a‘) e‘)(“'z)a,m)

+2Rel e

a(w)

) Vol e—0<'“'2>a-ru)
8 J ’ J
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+21m<eg(“|2)|:1“ or ]Vajﬁ ee<|”2)3j1“u>
" 9(Vir) ’

- eRe(e—9<'“'2> [A6(jul?)]0; Tu, e—"(“'2>a,-1"u>

+ eRe(e_Q(‘“F)AE)jFu, e—9<'"|2>aj Fu),
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(2.8)

where (-,-) and [-, -] denote the scalar product in L? and the commutator of operators, respectively. We denote
by I, ..., VIII the first, ..., eighth terms on the RHS of the last equality in (2.8) and consider those contributions

separately. For I, we compute

(ia, + %(1 - is)A)9(|u|2) =2(1 —ie)0" (Jul?) (Re(@Vu))” + 2i6’ (Jul?) Im (@ F (u, Vir))
+ (1 —ie)0 (Jul®)[Vul* + 6 (|ul*)uria
to obtain
1< CM(Ju: 2ol s W [P [P0, rus L)

w B e Py rus 12

<cM(i+ Ju )

= M B P s 3 P09 s 2,

where

2
M= Z sup{|
j=0

and we have used the embedding H°*+! < W) and H;[H — W2..
As in (2.5), we estimate II as

(=)}

oF

aF ‘
|II|<2eM<Ha—8ju; H ! +'a—a a; H'!
u

Jle ;s 2

*

jus B | [0 o 12]

< Ce

w; B3P e 000 v ru; 12,

For III, we integrate by parts to obtain

9F
| = | (v (e 20 m ") |5, rul?
(Vi)
112

<M (lus W[ e 0 rus 12
<cM( 3w B | w; HE ) e 0O v ru; L2
<CM([u; s B3 POV s 22

We apply Kato—Ponce’s commutator estimate [13] to IV to obtain

oF )
I'y ——19;Vu; L
8(V )

00 s—2 s—1
(H a(V )k HHB’V” " ”+Ha(v y

ol Ivus H 7] + s A

V] < 2e le=0Pa; Fus 12|

<Ce(

< Ce 2 |679(|”‘2)Vl“u; L? ||2

oy ) e~ rwru: )

Vi 17 #7 [) e PV s 2]

2.9)

(2.10)

@2.11)

2.12)



308 T. Ozawa, J. Zhai/ Ann. I. H. Poincaré — AN 25 (2008) 303-311

where we have used the usual Sobolev inequality for H' < L% when dF /9(Vu) involves terms like u?. We estimate
V and VI in the same way as in (2.11), (2.12), and (2.9), respectively. Moreover, VII is estimated in the same way as
in (2.9) for any ¢ with 0 < & < 1. To estimate VIII, we write

2
)

VI = %(A(e_w('”'z)) 29T, 8; ) —&|e Vo, Fu; L2

where the first term on the RHS is estimated in the same way as in (2.9).
Combining those estimates above, we obtain

%“efwz)af'”? L[ + e e v, ru; 12
<Ce (1t us B us 3P| MOV s L2, 2.13)

where C is independent of ¢ € (0, 1].
Taking summation with respect to j and integrating, we have

e~ Pz L2(L2)] < e 000 P L2 exp(Ce™ (1 4 s L% () ) s L2(H57) ). @219
By (2.3) and (2.14)

where C is independent of ¢ € (0, 1]. We now choose §, n > 0 sufficiently small to ensure that

u L () ) s £2 (1371 ). 2.15)

i L2(H7) | < e g 1 exp(Ce2 (1-+

Cs+Cn* <, (2.16)
Ce*Msexp(Ce™ (14 1°)n?) <. (2.17)
Then for any ¢ € H® with ||¢; H*|| < § the corresponding solution u, of the regularized equation (2.1) satisfies

max (||ug; L®(H*) |, |ue; L*(H3) ) < n. (2.18)

’

This implies that u, extends to a global solution belonging to L°°(0, oco; H*) N L2(0, oo; H;;l). Moreover, by a
compactness argument it follows that (1.1) has a global solution u € (Cy, N L*°)(0, co; H¥) N L%(0, oo; st*_l) with
u(0) = ¢ satisfying

u; L% (H*)

max(| w; L2(H Y |) <. (2.19)

)

We now consider the uniqueness of solutions u of (1.1) satisfying u(0) = ¢ € H® with ||¢; H*|| <6 and (2.19). Let u
and v be those two solutions. We consider the difference u — v in H2. For that purpose we estimate

E u—v;L2 2=21m 18,+1A (u—v),u—v
dr 2
= 2Im(F (u, Vu) — F (v, Vv),u — v)
< (s WL I + s WL ) = v 8 vz 22]
< C(Jus 37 P o B3 ) - v .20

In the same way as in (2.8), we obtain
d
e g — g0 12

1
_ 21m(<ia, n §A> (03,00 — =g, ), 0Py g — ee(”'z)ajakv>

1 1
—~ 2Im<e—9<'"|2> [(iat + zA>9(|I,¢|2)}9jaku — 0P [(iat + zA>9(|v|2)}ajakv,

&0y g — =Py, akv>



T. Ozawa, J. Zhai / Ann. 1. H. Poincaré — AN 25 (2008) 303-311

+ 21m<e9<'"'2) [(ia, + %A)aj okv — VO (jul?) - vajaku]
— et [(ia, + %A) 90w — VO (|v)?) - Vajakv},e—“'"z)ajaku - e—9<”'2)ajaku)
+Im (e~ (VO (jul?)) 0 0pu — =P (Vo (j0[2))70; kv, e 19 0 — =01 v
— 2Im(e—"<'”'2) [(ia, + %A)e(lulz)}a, et — e 000 [(ia, + %A)@(Ivlz)})/ v,
e 00y deu — e—9<|“2>ajakv>

—o(lul? or or _ —o(lv? or oFr _
—I—ZIm(e (|“|)3k<58ju+£8ju —e ('”')ak Eajv+£ajv s

ey g — =0 0Py, akv)

OF OF
+2Re(e Mg (tm —— ) - Va;u — e g (1m ——— ) - Va;v,
a(Vu) a(Vv)

6_9(“4'2) 3/' ok — 6_0(|U‘2)3/’ Bkv>

oF oF
+2Re e =0 (m 25 -V, 0ku —e P (g o= -Vo;okv,
(Vi) 3(Va)

e 00y dpu — e—9<'vz>a,-akv)
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OF OF
+ 2Im<e9<'“'2)ak (—) Vit — e0(|”2)8k< ) V0, e Dy e — e9<“'2)a,-akv)

3(Vid) (VD)

oF oF
+ 2Im<e_9(|”|2)( ) V9 0pu — =0 <—) - Vv, 6—9(|u|2)8j ou — e_e(vlz)f?jakv)

a(Vu) (Vo)

+21m(e 0P (Vo (jul?)) 70, 0 — e 0P (VO (v12)) 000, e 00 g — e 00D 900). 2.21)

As before, we consider contributions of all terms on the RHS of the last equality of (2.21) separately.
In the same way as in the derivation of (2.13), we obtain

%”e—"(‘“'z)ajaku —e Py g0 L2
€ oMt 1 o ) (s 5 P+ o )

n
7 (e P08, — e 0,0, 05 L2 + |81 — ddv; L2]),

l,m=1

where we have used the inequality

o) _ e—9<|v|2)| -

1
/e—wum%—(l—xw(\mz) d (0 (ju?) - 9(|v|2))‘
0

< CMe ™M (lul + [v])lu — vl.

Moreover, from the identity

(2.22)

1
8kt — v =) (WM g gy — =01 i) — /eW('“'z)—@('”'z» da(6(1ul?) = 6(1v[?))a; v
0
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we have
19000 — 80005 L2 < M e 000, 85u — e 0 500 - L2
+ CeCM(| u; LOO(HS)”2 + | v; LOO(HS)||2)||M —v; L2||. (2.23)
Therefore, (2.22) and (2.23) imply, for any ¢ > 0

n
S e 0 — BP0 12

k=1
<CeM(1+ |u; L°°(HS’1)||3+ |}v;L°°(HS*‘)||3)

f n

X /(Hu, st*_lnz + | v; st*_l ||2) Z ||efe(|”|2)8j8ku — eg(‘vlz)aﬂkv; L2||2dt’
0 jk=1

+CeM (1 + [us L(HY) | + [lvs L (H°) )
t

[ (s 3 P o 5 ) = s 22 (2.24)
0

We define

n
NO =Y e 08,50 — PP a 000 L2 + [u — v; L2,
k=1
Then, by (2.20) and (2.24),
t
N@) < Ce™ /(|
0

w; H37HP + o BV P)N () dr (2.25)

where C (1) is a constant depending on 7 and we have used the inequality

n
||u —v; HIH2 < C”u —v; L2||2 +C Z ”a,-aku — 0 0kv; L2||2
jik=1
<CmeMN@),

which follows from (2.23).

By Gronwall’s lemma, N (t) = 0 for any ¢ > 0. This proves the uniqueness.

The existence of asymptotic states ¢+ € H*~! follows from the standard argument based on the Strichartz estimates
(see for instance [1,12,25]). By the unitarity of the free propagator U (z) in H* and the fact that u € L°°(H*), we see
that ¢ € HS.
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