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Abstract

A class of damped wave equations with superlinear source term is considered. It is shown that every global so
uniformly bounded in the natural phase space. Global existence of solutions with initial data in the potential well is o
Finally, not only finite time blow up for solutions starting in the unstable set is proved, but also high energy initial d
which the solution blows up are constructed.
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1. Introduction

We study the behavior of local solutions of the following superlinear hyperbolic equation with (possibly s
linear damping


utt − �u − ω�ut + µut = |u|p−2u in [0, T ] × Ω,

u(0, x) = u0(x) in Ω,

ut (0, x) = u1(x) in Ω,

u(t, x) = 0 on [0, T ] × ∂Ω

(1.1)

whereΩ is an open bounded Lipschitz subset ofR
n (n � 1), T > 0,
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u0 ∈ H 1
0 (Ω), u1 ∈ L2(Ω), (1.2)

ω � 0, µ >−ωλ1, (1.3)

λ1 being the first eigenvalue of the operator−� under homogeneous Dirichlet boundary conditions, and

2< p �
{

2n
n−2 for ω > 0
2n−2
n−2 for ω = 0

if n � 3, 2< p < ∞ if n = 1,2. (1.4)

We study the behavior of solutions to (1.1) in the phase spaceH 1
0 (Ω). Since stationary solutions play a cruc

role in the description of the evolution of (1.1), several tools from critical point theory turn out to be quite
for our purposes. In particular, we consider themountain pass energy leveld (see e.g. [1]), theNehari manifold
N (see [20]) of the stationary problem associated to (1.1) and the two unbounded setsN+ (insideN ) andN−
(outsideN ). All these tools are defined in detail in Section 2. A first attempt to tackle (1.1) with these too
made by Sattinger [27] (see also [24,28]) who developed the so-called potential well theory in order to st
problem withno damping(that isω = µ = 0). Subsequently, equations with damping terms have been consi
by many authors. For equations with (possibly nonlinear)weakdamping we refer to [9,13,14,18,25,29]. Much le
is known for equations withstrongdamping; see the seminal paper by Levine [17] (and also [21,22]) but still m
problems remain unsolved. It is our purpose to shed some further light on damped wave equations of
of (1.1) in both the cases of weak (ω = 0) and strong (ω > 0) damping. To this end, as recently done by the fi
author in [7,8] for parabolic equations, we will exploit further the properties of the Nehari manifold. In parti
this will enable us to obtain blow up results in correspondence of initial data(u0, u1) having arbitrarily large initial
energy. As far as we are aware, this is the first blow up result for (1.1) withE(0) > d (initial energyabovethe
mountain pass level). However we mention that, by exploiting a completely different method, the existe
solutions with arbitrarily high initial energy has been also obtained in [19] for weakly damped wave equat
the wholeR

n.
Let us explain in some detail which are our main results. We first make clear for which exponentsp prob-

lem (1.1) is (locally) well posed. We restricted our attention to the superlinear casep > 2 since the sublinear cas
p ∈ (1,2] is well established (see Remark 3.10). Whenω = 0 andµ > 0, it is proved in [11] that (1.1), (1.2) admi
a unique local weak solution for anyp > 2 if n = 1,2 and for 2< p � 2n−2

n−2 if n � 3; note that2n−2
n−2 is the critical

exponentr for the trace embeddingH 1(Ω) ⊂ Lr(∂Ω). We wish to stress that, leaving aside the well posed
of (1.1), the constraintp � 2n−2

n−2 for ω = 0 and initial data (1.2) is up to now unavoidable for theenergy identity

to make sense, i.e. it is not known if formula (4.13) holds forp > 2n−2
n−2 : we refer to [2] for further comments. I

Theorem 3.1 we show that in presence of a strong damping (ω > 0) this upper bound forp can be enlarged t
p � 2n

n−2, which is the “natural” constraint since 2∗ = 2n
n−2 is the critical Sobolev exponentq for the embedding

H 1
0 (Ω) ↪→ Lq(Ω). Our result restates [22, Theorem 1] for a wider class of initial data but for a smaller range

ponentsp. When dealing with critical point theory, the correct phase space for the solutions of (1.1) is nece
H 1

0 (Ω) and, therefore, the natural regularity for the initial data is precisely that of (1.2).
Cazenave [4] proved boundedness of global solutions to (1.1) forω = µ = 0 while Esquivel-Avila [5] recovered

the same result forω = 0 andµ > 0 and showed that this property may fail in presence of anonlineardissipation
term (cf. [6, Theorem 3.4]). In Theorems 3.4 and 3.6, by exploiting an argument different from the one d
in [4,5], we prove that any global solution of (1.1) is bounded wheneverω andµ fulfill (1.3). The proof relies on a
delicate analysis of the behavior of several norms of the solution ast → ∞. Moreover, we obtain convergenceup to
a subsequenceof solutions of (1.1) towards a steady-stateφ. Since in general the source nonlinearity{u �→ |u|p−2u}
in (1.1) is not an analytic function, counterexamples of Jendoubi-Poláčik [15] show that we cannot expect that
global solutionsu = u(t) stabilize, that is

lim
t→∞

∥∥ut (t)
∥∥

2 + ∥∥∇u(t) − φ
∥∥

2 = 0. (1.5)

Only under more restrictive assumptions onn andp, one may guarantee that (1.5) indeed occurs, see Remar
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Once boundedness of global solutions is established, one is interested to find out for which initial da
problem (1.1) does have a global solution. For the undamped equation (ω = µ = 0) Sattinger [27] showed tha
local solutions of (1.1) are in fact global wheneverE(0) < d andu0 ∈ N+. This statement may be improved
presence of dissipation; for the weakly damped equation (ω = 0, µ > 0) Ikehata and Suzuki [14] prove that und
the same assumptions on the initial data, not only the solution is global but it also converges to the equ
φ ≡ 0 ast → ∞. In Theorem 3.8 we extend this result to the caseω > 0. Our result improves [22, Theorem
whereE(0)� d/22/(p−2) and only the caseµ = 0 is considered.

Not all local solutions of (1.1) are global in time. Blow up in finite time is usually obtained for low initial en
E(0) and foru0 ∈ N−. For the undamped equation (ω = µ = 0) Tsutsumi [28] showed that local solutions of (1
cannot be continued to the whole[0,∞) provided thatu0 ∈ N− andE(0) < d. For equations with weak dampin
(ω = 0 andµ > 0), Levine and Serrin [18] proved nonexistence of global solutions whenE(0) < 0, a condition
which automatically implies thatu0 ∈ N−. Subsequently, Ikehata and Suzuki [13,14] proved the same result
u0 ∈ N− andE(0) < d − ε for a suitableε ∈ (0, d) depending on the damping coefficientµ. Finally, Pucci and
Serrin [25] successfully handled the case whenE(0) < d and Vitillaro [29] showed that also forE(0) = d the
solution blows up in finite time. Whenω > 0 andµ = 0, Ono [22, Theorem 7] shows that the solution of (1
blows up in finite time ifE(0) < 0. For the same problem, Ohta [21] improves this result by allowingE(0) < d,
provided thatu0 ∈ N−. In Theorem 3.11, by refining and simplifying the concavity method introduced by Le
[16,17], we extend this result to the case whereµ 	= 0 andE(0)� d . Last but not least, in Theorems 3.12 and 3
we show the finite time blow up of some solutions of (1.1) whose initial data have arbitrarilyhigh initial energy.
The proof is inspired by previous work in [8] and uses the weak antidissipativity of the flow inN−.

This paper is organized as follows.

– in Section 2 we recall some preliminary tools and definitions;
– in Section 3 we present the main results of the paper and we list some open problems;
– from Sections 4 to 10 we provide the proofs of the results. We point out that the proofsare not in the same

order as the statements.

2. Setup and notations

We denote by‖ · ‖q theLq(Ω) norm for 1� q � ∞ and by‖∇ · ‖2 the Dirichlet norm inH 1
0 (Ω). Moreover,

for later use we denote by〈·, ·〉 the duality pairing betweenH−1(Ω) andH 1
0 (Ω). Whenω > 0 (resp.ω = 0) for

all v,w ∈ H 1
0 (Ω) (resp. for allv,w ∈ L2(Ω)), we put

(v,w)∗ = ω

∫
Ω

∇v · ∇w + µ

∫
Ω

vw, ‖v‖∗ = (v, v)
1/2∗ ;

by (1.3),‖ · ‖∗ is an equivalent norm overH 1
0 (Ω) (resp.L2(Ω)).

By (1.4), we may consider theC1 functionalsI, J :H 1
0 (Ω) → R defined by

I (u) = ‖∇u‖2
2 − ‖u‖p

p and J (u) = 1

2
‖∇u‖2

2 − 1

p
‖u‖p

p.

The mountain pass value ofJ (also known as potential well depth) is defined as

d = inf
u∈H1(Ω)\{0}

max
λ�0

J (λu). (2.1)

0
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Consider the best Sobolev constant for the embeddingH 1
0 (Ω) ↪→ Lp(Ω),

Sp = inf
u∈H1

0 (Ω)\{0}
‖∇u‖2

2

‖u‖2
p

. (2.2)

If (n − 2)p < 2n, the embedding is compact and the infimum in (2.2) (and in (2.1)) is attained. In such cas
e.g. [24, Section 3]), any mountain pass solutionu of the stationary problem is a minimizer for (2.2) (i.e. it satisfi
‖∇u‖2

2 = Sp‖u‖2
p) andSp is related to its energy

d = p − 2

2p
S

p/(p−2)
p .

All nontrivial stationary solutions belong to the so-called Nehari manifold (see [20] and also [31]) defined b

N = {
u ∈ H 1

0 (Ω) \ {0}: I (u) = 0
}
.

It is easy to show that each half line starting from the origin ofH 1
0 (Ω) intersects exactly once the manifoldN and

thatN separates the two unbounded sets

N+ = {
u ∈ H 1

0 (Ω): I (u) > 0
} ∪ {0} and N− = {

u ∈ H 1
0 (Ω): I (u) < 0

}
.

We also consider the (closed) sublevels ofJ

J a = {
u ∈ H 1

0 (Ω): J (u) � a
}

(a ∈ R)

and we introduce thestablesetW and theunstablesetU defined by

W = J d ∩ N+ and U = J d ∩ N−.

It is readily seen (see [31, Theorem 4.2]) that the mountain pass leveld defined in (2.1) may also be characteriz
as

d = inf
u∈N

J (u). (2.3)

This alternative characterization ofd shows that

β = dist(0,N ) = inf
u∈N

‖∇u‖2 =
√

2dp

p − 2
> 0 (2.4)

and that, for everya > d , we have

Na = N ∩ J a ≡
{
u ∈ N : ‖∇u‖2 �

√
2ap

p − 2

}
	= ∅.

Therefore, for everya > d , we may define

Λa = sup
{‖u‖2: u ∈ Na

}
.

By Poincaré inequality, we haveΛa < ∞ for everya > d . We introduce the sets

S = {
φ ∈ H 1

0 (Ω): φ is a stationary solution of (1.1)
}
,

S� = {
φ ∈ S : J (φ) = �

}
(� ∈ R+).

Finally, we consider the energy functionalE :H 1
0 (Ω) × L2(Ω) → R defined by

E (v,w) = J (v) + 1

2
‖w‖2

2

and the Lyapunov functionE(t) = E (u(t), ut (t)), defined for any solutionu(t) to (1.1).
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3. The main results

By solutionof (1.1), (1.2) over[0, T ] we mean a function

u ∈ C0([0, T ],H 1
0 (Ω)

) ∩ C1([0, T ],L2(Ω)
) ∩ C2([0, T ],H−1(Ω)

)
,

with ut ∈ L2([0, T ],H 1
0 (Ω)) wheneverω > 0, such thatu(0)= u0, ut (0)= u1 and

〈
utt (t), η

〉 + ∫
Ω

∇u(t) · ∇η + ω

∫
Ω

∇ut (t) · ∇η + µ

∫
Ω

ut (t)η =
∫
Ω

∣∣u(t)
∣∣p−2

u(t)η

for all η ∈ H 1
0 (Ω) and a.e.t ∈ [0, T ].

We first establish local existence and uniqueness for solutions of (1.1), (1.2).

Theorem 3.1. Assume that(1.3)and (1.4)hold. Then there existT > 0 and a unique solution of(1.1), (1.2)over
[0, T ]. Moreover, if

Tmax= sup
{
T > 0: u = u(t) exists on[0, T ]} < ∞

then

lim
t→Tmax

∥∥u(t)
∥∥

q
= ∞ for all q � 1 such thatq >

n(p − 2)

2
; (3.1)

if n � 3 andp = 2∗ (so thatω > 0), then(3.1)also holds forq = n(p−2)
2 = 2∗.

Definition 3.2. If Tmax < ∞, we say that the solution of (1.1), (1.2) blows up and thatTmax is the blow up time.
If Tmax = ∞, we say that the solution is global. The property of continuing (in time) a bounded solution w
referred throughout the paper as the Continuation Principle.

Remark 3.3. As it should be expected, from the proof of Theorem 3.1 it follows that, for fixed initial data, we
Tmax → ∞ asω → ∞, that is to say, the more the equation gets damped, the larger becomes the life spa
solution.

Next, we prove the boundedness of global solutionsu, namely

u ∈ L∞(
R+,H 1

0 (Ω)
) ∩ W1,∞(

R+,L2(Ω)
)
. (3.2)

In the strongly damped case we have the following

Theorem 3.4. Assume thatω > 0 and that(1.3) and (1.4) hold. Then, every global solutionu(t) to (1.1), (1.2)
satisfies(3.2). Moreover, ifn = 1,2 or if

n � 3 and 2< p < 2∗, (3.3)

then there exists� ∈ R+ such thatS� 	= ∅,

lim
t→∞E(t) = �, lim

t→∞ distH1
0

(
u(t),S�

) = 0 and lim
t→∞

∥∥ut (t)
∥∥

2 = 0, (3.4)

and there exist{tj } ⊂ R+ with tj → ∞ andφ ∈ S� such that

lim
j→∞

∥∥∇u(tj ) − ∇φ
∥∥

2 = 0. (3.5)
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Remark 3.5. Assume thatn � 3 and thatΩ is star shaped. Then, in the limiting casep = 2∗, the well known
Poȟozaev identity (see e.g. [31, Theorem B.1]) combined with the unique continuation property for elliptic
tions yieldsS = {0}. Then, arguing as in the proof of Theorem 3.4, it is possible to show that from every g
solutionu = u(t) we may extract a subsequence{u(tj )} such thatu(tj ) ⇀ 0 weaklyin H 1

0 (Ω), while thestrong
convergenceu(tj ) → 0 seems to be out of reach.

In order to prove the boundedness of global solutions (cf. (3.2)) we make use of a delicate analysis o
terms involved in (1.1), see Section 7.1. The corresponding statement for the weakly damped case(ω = 0) has
recently been obtained by Esquivel-Avila [5]. Based on the just mentioned delicate analysis, in Section 7.2
a different proof of the following

Theorem 3.6 [5]. Assume thatω = 0 and that

2< p �
{ 2n−2

n−2 for n � 3,

6 for n = 2,
2< p < ∞ for n = 1. (3.6)

Then, every global solutionu(t) to (1.1),(1.2)satisfies(3.2). Moreover, ifn = 1,2 or if

2< p <
2n− 2

n − 2
for n � 3, (3.7)

then there exists� ∈ R+ such thatS� 	= ∅, (3.4) holds and there exist{tj } ⊂ R+ with tj → ∞ andφ ∈ S� such
that (3.5)holds.

Remark 3.7. By combining the boundedness of global solutions that we obtained in Theorems 3.4 and 3
some well known convergence results one can prove stabilization of thewhole flow. In one space dimension, for a
p > 2, under assumption (1.3) one obtains (1.5) for some equilibriumφ, as a consequence of [10, Theorem 2
follow step by step the arguments of Section 5.4 therein, with the only difference that the orbit precompac
due to (3.5) and not as a byproduct of the existence of the global attractor. In two space dimensions, the
is different for weak and strong damping; ifω = 0 one has (1.5) forp = 4,6 (see [12, Theorem 1.2]), whereas
ω > 0 one has (1.5) for any even integerp � 4 (see [12, Theorem 4.4.1 and Example 4.4.1]).

Let us turn to the global existence of solutions starting with suitable initial data.

Theorem 3.8. Assume that(1.3) and (1.4) hold and letu be the unique local solution to(1.1), (1.2). In addition,
assume that there existst̄ ∈ [0, Tmax) such that

u(t̄ ) ∈ W and E
(
u(t̄ ), ut (t̄ )

)
� d. (3.8)

ThenTmax= ∞ and, for everyt > t̄ ,∥∥∇u(t)
∥∥2

2 + ∥∥ut (t)
∥∥2

2 � Θ(ω,µ)

t
(3.9)

where

Θ(ω,µ) =
{

Cµ(1+ 1
ω

+ ω) for ω > 0,

C(1+ 1
µ

+ µ) for ω = 0
(3.10)

andC is independent ofµ, whereasCµ only depends onµ.

Remark 3.9. Let ω > 0 andµ = 0. Although inequality (3.9) gives only a one-sided control, sinceΘ(ω,0)→ ∞
both for ω → 0 andω → ∞, the best dissipation rate for the energy norm (with respect to the damping c
cientω) seems to be achieved at the minimum point ofΘ(ω,0), which occurs atω = 1. Physically, asω → 0 the
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dissipation gets lost, whereas forω → ∞ the system tends to freeze sinceω acts only on the velocityut . A similar
phenomenon has been observed for a (different) class of strongly damped wave equations in [23, Remarks
in discussing the size of the universal attractor asω varies.

Remark 3.10. In the casep ∈ (1,2], we haveTmax = ∞ for arbitrary choices of the initial data (1.2). Indeed,
any fixedT > 0, define the functionalΨ : [0, T ] → R

+,

Ψ (t) = 1

2

∥∥∇u(t)
∥∥2

2 + 1

2

∥∥ut (t))
∥∥2

2 + 1

p

∥∥u(t)
∥∥p

p
.

Notice that, for everyt ∈ [0, T ], there holds

Ψ ′(t) � −∥∥ut (t)
∥∥2

∗ + 2
∫
Ω

∣∣u(t)
∣∣p−1∣∣ut (t)

∣∣.
Since 2n(p− 1)/(n+ 2)� p, by Sobolev and Young inequalities, we have

2
∫
Ω

|u|p−1|ut | � c‖∇ut‖2‖u‖p−1
p � ‖ut‖2∗ + cΨ 2(p−1)/p.

Here and belowc denotes a positive constant. Therefore, we get

Ψ ′(t) � cΨ 2(p−1)/p(t) for everyt ∈ [0, T ].
Sincep ∈ (1,2], we have 2(p − 1)/p ∈ (0,1] and∥∥∇u(t)

∥∥2
2 + ∥∥ut (t))

∥∥2
2 � 2Ψ (t)�

{
c(T + c)p/(2−p) for p < 2,

c ecT for p = 2.

By the continuation principle, the solution has to be globally defined.

We come to a blow up result for solutions starting in the unstable set.

Theorem 3.11. Assume that(1.3) and (1.4) hold and letu be the unique local solution to(1.1), (1.2). Then
Tmax< ∞ if and only if there exists̄t ∈ [0, Tmax) such that

u(t̄) ∈ U and E
(
u(t̄), ut (t̄)

)
� d.

Theorem 3.11 is already known for weakly damped equations (ω = 0), see [29]. In Section 6 we give a gene
proof of this statement under the sole assumption (1.3). As a byproduct of our proof it is clear thatTmax < ∞ if
and only ifE(t) → −∞ ast → Tmax. In particular, the blow up has a full characterization in terms of (nega
energy blow up.

In the weakly damped case we state the blow up of solutions to (1.1) with suitable initial data having
larger than the mountain pass leveld .

Theorem 3.12. Assume thatω = 0 andµ � 0 and that(1.4)holds. In addition, assume that(u0, u1) ∈ N− ×L2(Ω)

are such that

E (u0, u1) > d, ‖u0‖2 � ΛE (u0,u1),

∫
Ω

u0u1 � 0.

ThenTmax< ∞ for the corresponding solutionu of (1.1),(1.2).

As a consequence of Theorem 3.12, we obtain arbitrarily high energy initial data for which the solution o
blows up in finite time.
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Theorem 3.13. Assume thatω = 0, µ � 0 and that(1.4)holds. Then, for everym > 0, there exist initial data(
um

0 , um
1

) ∈ N− × L2(Ω)

such thatE (um
0 , um

1 ) � m andTmax< ∞ for the corresponding solution of(1.1).

Theorems 3.12 and 3.13 also hold for the undamped wave equation, whereω = µ = 0. They are new also in thi
context.

Some open problems. We collect here a few questions and open problems connected with the statements
results:

– Do Theorems 3.12 and 3.13 extend to the strongly damped caseω > 0? Also, do these results extend to t
case of nonlinear (weak) damping such asµ|ut |m−2ut with m > 2 in place ofµut?

– Many authors have obtained both global existence and blow up results for equations which present n
damping terms such as|ut |m−2ut with m > 2 (often enlightening the interaction that pops up with the c
responding power source|u|p−2u). We refer the reader to [6,9,13,25,26,29] and to the references there
analogy with these extensions, one could wonder whether it is possible to obtain some results for a n
strong damping such as−�mut (them-Laplacian operator). We stress that our blow up Theorems 3.11,
and 3.13, being based on a kind of concavity argument (for which the linearity of the dissipation terms
ticularly helpful in performing the reduction to an ordinary differential inequality in time, see e.g. (6.5)) w
become too involved. Moreover, testing the equation withu generates hard to manage terms which may
lack summability ifm > 2.

4. Proof of Theorem 3.1

We restrict ourselves to the caseω > 0, µ 	= 0 andn � 3, the other cases being similar (and simpler), see
for the caseω = 0 andµ > 0, we also refer the reader to [11].

For a givenT > 0, consider the spaceH = C([0, T ],H 1
0 (Ω)) ∩ C1([0, T ],L2(Ω)) endowed with the norm

‖u‖2
H = max

t∈[0,T ]
(∥∥∇u(t)

∥∥2
2 + ∥∥ut (t)

∥∥2
2

)
.

We first prove the following

Lemma 4.1. For everyT > 0, everyu ∈ H and every initial data(u0, u1) satisfying(1.2) there exists a unique

v ∈ H ∩ C2([0, T ];H−1(Ω)
)

such thatvt ∈ L2([0, T ],H 1
0 (Ω)

)
(4.1)

which solves the linear problem


vtt − �v − ω�vt + µvt = |u|p−2u in [0, T ] × Ω,

v(0, x)= u0(x) in Ω,

vt (0, x)= u1(x) in Ω,

v(t, x) = 0 on [0, T ] × ∂Ω.

(4.2)

Proof. The assertion follows from an application of the Galerkin method. For everyh � 1 letWh = Span{w1, . . . ,

wh}, where{wj } is the orthogonal complete system of eigenfunctions of−� in H 1(Ω) such that‖wj‖2 = 1 for
0
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s

a

tion
that

ame

ualities
all j . Then,{wj } is orthogonal and complete inL2(Ω) and inH 1
0 (Ω); denote by{λj } the related eigenvalue

repeated according to their multiplicity. Let

uh
0 =

h∑
j=1

(∫
Ω

∇u0 · ∇wj

)
wj and uh

1 =
h∑

j=1

(∫
Ω

u1wj

)
wj

so thatuh
0 ∈ Wh, uh

1 ∈ Wh, uh
0 → u0 in H 1

0 (Ω) anduh
1 → u1 in L2(Ω) ash → ∞. For allh � 1 we seekh functions

γ h
1 , . . . , γ h

h ∈ C2[0, T ] such that

vh(t) =
h∑

j=1

γ h
j (t)wj (4.3)

solves the problem{∫
Ω

[
v̈h(t) − �vh(t) − ω�v̇h(t) + µv̇h(t) − |u(t)|p−2u(t)

]
η = 0,

vh(0)= uh
0, v̇h(0)= uh

1

(4.4)

for everyη ∈ Wh and t � 0. Forj = 1, . . . , h, takingη = wj in (4.4) yields the following Cauchy problem for
linear ordinary differential equation with unknownγ h

j :{
γ̈ h
j (t) + (ωλj + µ)γ̇ h

j (t) + λjγ
h
j (t) = ψj(t),

γ h
j (0)= ∫

Ω
u0wj , γ̇ h

j (0)= ∫
Ω

u1wj

whereψj (t) = ∫
Ω

|u(t)|p−2u(t)wj ∈ C[0, T ]. For allj , the above Cauchy problem yields a unique global solu
γ h
j ∈ C2[0, T ]. In turn, this gives a uniquevh defined by (4.3) and satisfying (4.4). In particular, (4.3) implies

v̇h(t) ∈ H 1
0 (Ω) for everyt ∈ [0, T ] so that Sobolev inequality entails∥∥v̇h(t)

∥∥
2∗ � c

∥∥∇v̇h(t)
∥∥

2 for everyt ∈ [0, T ]. (4.5)

Here and in the sequel we denote byc > 0 a generic constant that may vary even from line to line within the s
formula. Takingη = v̇h(t) into (4.4), and integrating over[0, t] ⊂ [0, T ], we obtain

∥∥∇vh(t)
∥∥2

2 + ∥∥v̇h(t)
∥∥2

2 + 2

t∫
0

∥∥v̇h(τ )
∥∥2

∗ dτ = ‖∇uh
0‖2

2 + ‖uh
1‖2

2 + 2

t∫
0

∫
Ω

∣∣u(τ)
∣∣p−2

u(τ)v̇h(τ )dτ, (4.6)

for everyh � 1. We estimate the last term in the right-hand side thanks to Hölder, Sobolev and Young ineq
(recallp � 2∗, (4.5) andu ∈ C([0, T ],H 1

0 (Ω))):

2

t∫
0

∫
Ω

∣∣u(τ)
∣∣p−2

u(τ)v̇h(τ )dτ � cT +
t∫

0

∥∥v̇h(τ )
∥∥2

∗ dτ. (4.7)

Recalling thatuh
0 anduh

1 converge, from (4.6) and (4.7) we obtain

‖vh‖2
H +

T∫
0

∥∥v̇h(τ )
∥∥2

∗ dτ � CT

for everyh � 1, whereCT > 0 is independent ofh. By this uniform estimate and using (4.4), we have:
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d.
me

im
{vh} is bounded inL∞([0, T ],H 1
0 (Ω)

)
,

{v̇h} is bounded inL∞([0, T ],L2(Ω)
) ∩ L2([0, T ],H 1

0 (Ω)
)
,

{v̈h} is bounded inL2([0, T ],H−1(Ω)
);

note that{v̇h} is bounded inL2([0, T ],H 1
0 (Ω)) because we assumedω > 0.

Therefore, up to a subsequence, we may pass to the limit in (4.4) and obtain a weak solutionv of (4.2)
with the above regularity. Sincev ∈ H 1([0, T ],H 1

0 (Ω)), we getv ∈ C([0, T ],H 1
0 (Ω)). Moreover, sincev̇ ∈

L∞([0, T ],L2(Ω)) ∩ L2([0, T ],H 1
0 (Ω)) and v̈ ∈ L2([0, T ],H−1(Ω)), we havev̇ ∈ C([0, T ],L2(Ω)). Finally,

from Eq. (4.2) we geẗv ∈ C0([0, T ],H−1(Ω)). The existence ofv solving (4.2) and satisfying (4.1) is so prove
Uniqueness follows arguing for contradiction: ifv andw were two solutions of (4.2) which share the sa

initial data, by subtracting the equations and testing withvt − wt , instead of (4.6) we would get

∥∥∇v(t) − ∇w(t)
∥∥2

2 + ∥∥vt (t) − wt(t)
∥∥2

2 + 2

t∫
0

∥∥vt (τ ) − wt(τ )
∥∥2

∗ dτ = 0,

which immediately yieldsw ≡ v. The proof of the lemma is now complete.�
Take(u0, u1) satisfying (1.2), letR2 = 2(‖∇u0‖2

2 + ‖u1‖2
2) and for anyT > 0 consider

MT = {
u ∈ H : u(0)= u0, ut (0)= u1 and‖u‖H � R

}
.

By Lemma 4.1, for anyu ∈ MT we may definev = Φ(u), beingv the unique solution to problem (4.2). We cla
that, for a suitableT > 0, Φ is a contractive map satisfyingΦ(MT ) ⊆ MT . Givenu ∈ MT , the corresponding
solutionv = Φ(u) satisfies for allt ∈ (0, T ] the energy identity (see (4.6)):

∥∥∇v(t)
∥∥2

2 + ∥∥vt (t)
∥∥2

2 + 2

t∫
0

∥∥vt (τ )
∥∥2

∗ dτ = ‖∇u0‖2
2 + ‖u1‖2

2 + 2

t∫
0

∫
Ω

∣∣u(τ)
∣∣p−2

u(τ)vt (τ )dτ. (4.8)

For the last term, we argue in the same spirit (although slightly differently) as for (4.7) and we get (recallω > 0)

2

t∫
0

∫
Ω

∣∣u(τ)
∣∣p−2

u(τ)vt (τ )dτ � c

T∫
0

∥∥u(τ)
∥∥p−1

2∗
∥∥vt (τ )

∥∥
2∗ dτ � c

T∫
0

∥∥u(τ)
∥∥p−1

∗
∥∥vt (τ )

∥∥∗ dτ

� cT R2(p−1) + 2

T∫
0

∥∥vt (τ )
∥∥2

∗ dτ (4.9)

for all t ∈ (0, T ]. Combining (4.8) with (4.9) and taking the maximum over[0, T ] gives

‖v‖2
H � 1

2
R2 + cT R2(p−1).

ChoosingT sufficiently small, we get‖v‖H � R, which shows thatΦ(MT ) ⊆ MT . Now, takew1 andw2 in
MT ; subtracting the two equations (4.2) forv1 = Φ(w1) andv2 = Φ(w2), and settingv = v1 − v2 we obtain for
all η ∈ H 1

0 (Ω) and a.e.t ∈ [0, T ]
〈
vtt (t), η

〉 + ∫
Ω

∇v(t) · ∇η + ω

∫
Ω

∇vt (t) · ∇η + µ

∫
Ω

vt (t)η =
∫
Ω

(∣∣w1(t)
∣∣p−2

w1(t) − ∣∣w2(t)
∣∣p−2

w2(t)
)
η

=
∫

ξ(t)
(
w1(t) − w2(t)

)
η (4.10)
Ω
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iple,
d.
e

s,

ely
whereξ = ξ(x, t) � 0 is given by Lagrange Theorem so thatξ(t) � (p − 1)(|w1(t)| + |w2(t)|)p−2. Therefore, by
takingη = vt in (4.10) and arguing as above, we obtain∥∥Φ(w1) − Φ(w2)

∥∥2
H = ‖v‖2

H � cR2p−4T ‖w1 − w2‖2
H � δ‖w1 − w2‖2

H

for someδ < 1 providedT is sufficiently small. This proves the claim. By the Contraction Mapping Princ
there exists a unique (weak) solution to (1.1) defined on[0, T ]. The main statement of Theorem 3.1 is so prove

Concerning the last assertion we observe that, by the construction above, onceω > 0 is fixed, the local existenc
time of u merely depends (throughR) on the norms of the initial data. Therefore, as long as‖u(t)‖H remains
bounded, the solution may be continued, see also [22, p. 158] for a similar argument. Hence, ifTmax< ∞, we have

lim
t→Tmax

∥∥∇u(t)
∥∥2

2 + ∥∥ut (t)
∥∥2

2 = lim
t→Tmax

∥∥u(t)
∥∥2

H = ∞. (4.11)

Consider the energy function

E(t) = 1

2

∥∥∇u(t)
∥∥2

2 + 1

2

∥∥ut (t)
∥∥2

2 − 1

p

∥∥u(t)
∥∥p

p
, t ∈ [0, Tmax), (4.12)

which satisfies

E(t) +
t∫

s

∥∥ut (τ )
∥∥2

∗ dτ = E(s) for every 0� s � t < Tmax. (4.13)

Sinceω > 0, this energy identity follows by testing (1.1) withut and integrating with respect tot . Note that
(4.13) also holds in the caseω = 0, see [9, Proposition 2.1]. In both the cases, by (4.13), the map{t �→ E(t)} is
nonincreasing. As a consequence,

1

2

∥∥∇u(t)
∥∥2

2 + 1

2

∥∥ut (t)
∥∥2

2 � 1

p

∥∥u(t)
∥∥p

p
+ E(0) for all t ∈ [0, Tmax) (4.14)

which, together with (4.11), implies

lim
t→Tmax

∥∥u(t)
∥∥

p
= ∞. (4.15)

This proves at once the very last statement of Theorem 3.1 whenp = 2∗ = q = n(p−2)
2 . For the remaining case

notice first that (4.15) implies

lim
t→Tmax

∥∥∇u(t)
∥∥

2 = ∞. (4.16)

Moreover, by (4.14) we obtain

∥∥∇u(t)
∥∥2

2 � 2E(0)+ 2

p

∥∥u(t)
∥∥p

p
, t ∈ [0, Tmax)

which, combined with the Gagliardo–Nirenberg inequality, yields:

c
∥∥∇u(t)

∥∥2
2 − c �

∥∥u(t)
∥∥p

p
� c

∥∥u(t)
∥∥p(1−σ)

q

∥∥∇u(t)
∥∥pσ

2 for σ = 2n(p − q)

p(2n+ 2q − nq)
.

Sincen(p − 2)/2 < q < p impliesσ ∈ (0,1) andpσ < 2, the above inequality combined with (4.16) immediat
yields (3.1). This completes the proof of Theorem 3.1.�
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3)
5. Proof of Theorem 3.8

Throughout the proof we denote byc > 0 a generic constant, independent ofω, possibly dependent onµ and
on the initial data(u0, u1), that may vary even from line to line within the same formula.

Consider the caseω > 0 andµ > −λ1ω. Without loss of generality, we may assume thatt̄ = 0. By (4.13) we
know that the energy mapE is decreasing. Then, if condition (3.8) holds true, we have

u(t) ∈ W and E(t) < d for everyt ∈ (0, Tmax). (5.1)

Indeed, if it was not the case, there would existt∗ > 0 such thatu(t∗) ∈ N . By the variational characterization (2.
of d ,

d � J
(
u(t∗)

)
� E(t∗) < d,

a contradiction to (5.1). As a further consequence of (5.1), a simple computation entails

J
(
u(t)

)
� p − 2

2p

∥∥∇u(t)
∥∥2

2 for everyt ∈ [0, Tmax). (5.2)

For all t ∈ [0, Tmax), by (4.13) we obtain

1

2

∥∥ut (t)
∥∥2

2 + J
(
u(t)

) +
t∫

0

∥∥ut (τ )
∥∥2

∗ dτ = E(0)� d.

Therefore, by virtue of (5.2) the Continuation Principle yieldsTmax= ∞ and∥∥∇u(t)
∥∥2

2 + ∥∥ut (t)
∥∥2

2 � c for everyt ∈ [0,∞),

t∫
0

∥∥∇ut (τ )
∥∥2

2 dτ � c

ω
for everyt ∈ [0,∞).

(5.3)

Hence, by Poincaré inequality, we get

t∫
0

∥∥ut (τ )
∥∥2

2 dτ � c

ω
for everyt ∈ [0,∞). (5.4)

Now, as in [13], we integrate over[0, t] the trivial inequality

d

dt

(
(1+ t)E(t)

)
� E(t),

and recalling that by [14, Lemma 5.2] there holds

J
(
u(t)

)
� cI

(
u(t)

)
for everyt ∈ [0,∞),

we reach the inequality

(1+ t)E(t) � d + 1

2

t∫
0

∥∥ut (τ )
∥∥2

2 dτ + c

t∫
0

I
(
u(τ)

)
dτ (5.5)

for everyt ∈ [0,∞). Observe also that, by direct computation, there holds〈
utt (t), u(t)

〉 = d

dt

∫
ut (t)u(t) − ∥∥ut (t)

∥∥2
2 for a.e.t ∈ [0,∞). (5.6)
Ω
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Moreover, by testing the equation withu, we obtain〈
utt (t), u(t)

〉 + ∥∥∇u(t)
∥∥2

2 + (
u(t), ut (t)

)
∗ = ∥∥u(t)

∥∥p

p
for a.e.t ∈ [0,∞).

Using (5.6), this yields

d

dt

(∫
Ω

uut + 1

2
‖u‖2∗

)
= ‖ut‖2

2 − I (u). (5.7)

By integrating (5.7) on[0, t] and by (5.3) and (5.4), we have

t∫
0

I
(
u(τ)

)
dτ �

t∫
0

∥∥ut (τ )
∥∥2

2 dτ + ‖u1‖2‖u0‖2 + ∥∥ut (t)
∥∥

2

∥∥u(t)
∥∥

2 + 1

2

(‖u0‖2∗ − ∥∥u(t)
∥∥2

∗
)

� c + c

ω
+ cω (5.8)

for everyt ∈ [0,∞). Then, by combining the above inequalities, from (5.5) we get

E(t) � c

(
1+ 1

ω
+ ω

)
1

t

for everyt ∈ (0,∞). Consequently, by (5.2) we immediately obtain∥∥∇u(t)
∥∥2

2 + ∥∥ut (t)
∥∥2

2 � Θ(ω,µ)

t
, (5.9)

for everyt ∈ (0,∞), whereΘ is the map defined in (3.10). The proof in the caseω = 0 (andµ > 0) is similar and
follows by obvious modifications of inequalities (5.4) and (5.8).�

6. Proof of Theorem 3.11

Assume first that there existst̄ � 0 such thatu(t̄) ∈ U andE (u(t̄), ut (t̄)) � d . Without loss of generality, we
may assume thatt̄ = 0 so that(u(t̄), ut (t̄)) = (u0, u1). By (4.13) we know thatE(t) < d for all t > 0 and therefore
u(t) /∈ N . This shows thatu(t) ∈ U for all t ∈ [0, Tmax). Hence, by (2.4) we obtain∥∥∇u(t)

∥∥2
2 >

2dp

p − 2
for everyt ∈ [0, Tmax). (6.1)

Assume by contradiction that the solutionu is global. Then, for anyT > 0 we may considerθ : [0, T ] → R+
defined by

θ(t) = ∥∥u(t)
∥∥2

2 +
t∫

0

∥∥u(τ)
∥∥2

∗ dτ + (T − t)‖u0‖2∗.

Noticeθ(t) > 0 for all t ∈ [0, T ]; hence, sinceθ is continuous, there existsρ > 0 (independent of the choice ofT )
such that

θ(t) � ρ for all t ∈ [0, T ]; (6.2)

furthermore,

θ ′(t) = 2
∫

u(t)ut (t) + ∥∥u(t)
∥∥2

∗ − ‖u0‖2∗ = 2
∫

u(t)ut (t) + 2

t∫ (
u(τ),ut (τ )

)
∗ dτ
Ω Ω 0
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tial
and, consequently, using (5.6)

θ ′′(t) = 2
〈
utt (t), u(t)

〉 + 2
∥∥ut (t)

∥∥2
2 + 2

(
u(t), ut (t)

)
∗ for a.e.t ∈ [0, T ].

Testing the equation in (1.1) withu and plugging the result into the expression ofθ ′′ we obtain

θ ′′(t) = 2
(∥∥ut (t)

∥∥2
2 − ∥∥∇u(t)

∥∥2
2 + ∥∥u(t)

∥∥p

p

)
for a.e.t ∈ [0, T ].

Therefore, we get

θ(t)θ ′′(t) − p + 2

4
θ ′(t)2 = 2θ(t)

{∥∥ut (t)
∥∥2

2 − ∥∥∇u(t)
∥∥2

2 + ∥∥u(t)
∥∥p

p

}

+ (p + 2)

{
η(t) − {

θ(t) − (T − t)‖u0‖2∗
}(∥∥ut (t)

∥∥2
2 +

t∫
0

∥∥ut (τ )
∥∥2

∗ dτ

)}
,

whereη : [0, T ] → R+ is the function defined by

η(t) =
(∥∥u(t)

∥∥2
2 +

t∫
0

∥∥u(τ)
∥∥2

∗ dτ

)(∥∥ut (t)
∥∥2

2 +
t∫

0

∥∥ut (τ )
∥∥2

∗ dτ

)
−

(∫
Ω

u(t)ut (t) +
t∫

0

(
u(τ),ut (τ )

)
∗ dτ

)2

.

Notice that, using Schwarz inequality, we obtain

∥∥u(t)
∥∥2

2

∥∥ut (t)
∥∥2

2 �
(∫

Ω

u(t)ut (t)

)2

,

t∫
0

∥∥u(τ)
∥∥2

∗ dτ

t∫
0

∥∥ut (τ )
∥∥2

∗ dτ �
( t∫

0

(
u(τ),ut (τ )

)
∗ dτ

)2

,

and ∫
Ω

u(t)ut (t)

t∫
0

(
u(τ),ut (τ )

)
∗ dτ �

∥∥u(t)
∥∥

2

( t∫
0

∥∥ut (τ )
∥∥2

∗ dτ

)1/2∥∥ut (t)
∥∥

2

( t∫
0

∥∥u(τ)
∥∥2

∗ dτ

)1/2

.

These three inequalities entailη(t) � 0 for everyt ∈ [0, T ]. As a consequence, we reach the following differen
inequality

θ(t)θ ′′(t) − p + 2

4
θ ′(t)2 � θ(t)ξ(t) for a.e.t ∈ [0, T ], (6.3)

whereξ : [0, T ] → R+ is the map defined by

ξ(t) = −2pE(t)+ (p − 2)
∥∥∇u(t)

∥∥2
2 − (p + 2)

t∫
0

∥∥ut (τ )
∥∥2

∗ dτ.

By (4.13), for allt ∈ [0, T ] we may also write

ξ(t) = −2pE(0)+ (p − 2)
∥∥∇u(t)

∥∥2
2 + (p − 2)

t∫
0

∥∥ut (τ )
∥∥2

∗ dτ

and therefore, by (6.1), we obtain
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ξ(t) = ξ(0)+ (p − 2)
∥∥∇u(t)

∥∥2
2 − (p − 2)‖∇u0‖2

2 + (p − 2)

t∫
0

∥∥ut (τ )
∥∥2

∗ dτ

> 2p
(
d − E(0)

) + (p − 2)

t∫
0

∥∥ut (τ )
∥∥2

∗ dτ � (p − 2)

t∫
0

∥∥ut (τ )
∥∥2

∗ dτ � 0

sinceE(0)� d . Hence, there existsδ > 0 (independent ofT ) such that

ξ(t) � δ for all t � 0. (6.4)

By (6.2), (6.3) and (6.4) it follows that

θ(t)θ ′′(t) − p + 2

4
θ ′(t)2 � ρδ for a.e.t ∈ [0, T ]. (6.5)

Settingy(t) = θ(t)−(p−2)/4, this inequality becomes

y′′(t) � −p − 2

4
ρδy(t) for a.e.t ∈ [0, T ].

This proves thaty(t) reaches 0 in finite time, say ast → T ∗. SinceT ∗ is independent of the initial choice ofT , we
may assume thatT ∗ < T . This tells us that

lim
t→T ∗ θ(t) = ∞.

In turn, this implies that

lim
t→T ∗

∥∥∇u(t)
∥∥2

2 = ∞. (6.6)

Indeed, if‖u(t)‖2 → ∞ ast → T ∗, then (6.6) immediately follows. On the contrary, if‖u(t)‖2 remains bounded
on [0, T ∗), then

lim
t→T ∗

t∫
0

∥∥u(τ)
∥∥2

∗ dτ = ∞

so that again (6.6) is satisfied.
Conversely, assume now thatTmax< ∞. Notice first that, for everyt > 0, there holds

t∫
0

∥∥ut (τ )
∥∥2

∗ dτ � 1

t

( t∫
0

∥∥ut (τ )
∥∥∗ dτ

)2

� 1

t

(∥∥u(t)
∥∥∗ − ‖u0‖∗

)2
.

Hence, by (4.13), we obtain

1

2
I
(
u(t)

)
� E(t) � E(0)− 1

t

(∥∥u(t)
∥∥∗ − ‖u0‖∗

)2
.

Since‖u(t)‖∗ → ∞ ast → Tmax, we conclude that

lim
t→Tmax

I
(
u(t)

) = lim
t→Tmax

E(t) = −∞. (6.7)

Then, the desired assertion immediately follows.�



200 F. Gazzola, M. Squassina / Ann. I. H. Poincaré – AN 23 (2006) 185–207

).

n
ved
ld

rove a

, for
7. Proof of Theorems 3.4 and 3.6

Assume thatu = u(t) is a global solution to (1.1) and (1.2) and letE :R+ → R be its energy as defined in (4.12
Without loss of generality, we may assume that

d � E(t) � E(0) for everyt ∈ R+. (7.1)

Indeed, the right-hand side inequality holds true since the map{t �→ E(t)} is nonincreasing in view of (4.13). O
the other hand, if it wasE(t0) < d for somet0 > 0, taking into account Theorem 3.8 and Theorem 3.11 (pro
above!), either‖∇u(t)‖2

2 + ‖ut (t)‖2
2 → 0 as t→ ∞ if u(t0) ∈ W (in which case Theorems 3.4 and 3.6 wou

automatically hold true) oru is not global ifu(t0) ∈ U , against the assumption.
Before starting the proof of Theorems 3.4 and 3.6, some preliminary facts are in order. Firstly we p

global summability property forut . For simplicity we assume thatω > 0, the caseω = 0 being similar. Taking into
account thatut (τ ) ∈ H 1

0 (Ω) for a.e.τ � 0, we combine Poincaré inequality with (4.13) and (7.1) to show that
everyt > 0 we have

t∫
0

∥∥ut (τ )
∥∥2

2 dτ � c

t∫
0

∥∥ut (τ )
∥∥2

∗ dτ � c
(
E(0)− d

)
.

Letting t → ∞, we conclude that
∞∫

0

∥∥ut (τ )
∥∥2

2 dτ <∞ if ω � 0,

∞∫
0

∥∥∇ut (τ )
∥∥2

2 dτ <∞ if ω > 0. (7.2)

Furthermore, observe that by the definition ofE(t) and (7.1), we obtain∥∥u(t)
∥∥p

p
� p

2

∥∥∇u(t)
∥∥2

2 − pE(0) for everyt ∈ R+.

Then, plugging this inequality into identity (5.7) yields

d

dt

(∫
Ω

u(t)ut (t) + 1

2

∥∥u(t)
∥∥2

∗

)
� p − 2

2

∥∥∇u(t)
∥∥2

2 − pE(0). (7.3)

Inspired by [8] we now prove a crucial stability result.

Lemma 7.1. Under the assumptions of Theorems3.4and3.6, for everyκ > 0 we have

lim
t→∞

∥∥∇u(t) − ∇u(t + κ)
∥∥

2 = 0 for ω > 0,

lim
t→∞

∥∥u(t) − u(t + κ)
∥∥

2 = 0 for ω = 0.

Proof. Let ω > 0. Fixedκ > 0, by (4.13), for everyt > 0 we have

∫
Ω

∣∣∇u(t) − ∇u(t + κ)
∣∣2 =

∫
Ω

∣∣∣∣∣
t+κ∫
t

∇ut (τ )dτ

∣∣∣∣∣
2

� κ

∫
Ω

t+κ∫
t

∣∣∇ut (τ )
∣∣2 dτ

� κc

t+κ∫
t

∥∥ut (τ )
∥∥2

∗ dτ = κc
(
E(t) − E(t + κ)

)
.

SinceE(t) is nonincreasing and lower bounded by (7.1),E(t) admits finite limit ast → ∞. This immediately
yields the assertion by lettingt → ∞ in the previous inequality. The proof in the caseω = 0 is similar. �
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7.1. Proof of Theorem 3.4

Assume by contradiction that (3.2) fails, namely that there exists a diverging sequence{tj } ⊂ R+ such that∥∥ut (tj )
∥∥2

2 + ∥∥∇u(tj )
∥∥2

2 → ∞ asj → ∞. (7.4)

Then, by (7.1) we have‖u(tj )‖p → ∞ so that by Sobolev inequality∥∥∇u(tj )
∥∥

2 → ∞ asj → ∞. (7.5)

By (7.5) and continuity, we can select a diverging sequence{t̄m} ⊂ R+ such that‖u(t̄m)‖2∗ = m2 + 1. Moreover,
since Lemma 7.1 withω > 0 rephrases as

lim
τ→∞ sup

{
κ > 0:

∥∥u(t) − u(t + κ)
∥∥∗ < 1, ∀t � τ

} = ∞,

we find a second diverging sequence{τm} ⊂ R+ such that

m2 �
∥∥u(t)

∥∥2
∗ � m2 + 2 for everyt ∈ [t̄m, t̄m + τm]. (7.6)

In view of (7.2), for allm sufficiently large,

there existstm ∈ [t̄m, t̄m + 1] such that
∥∥ut (tm)

∥∥2
2 < 2d. (7.7)

Clearly, up to renamingτm into (τm − 1) we now have

m2 �
∥∥u(t)

∥∥2
∗ � m2 + 2 for everyt ∈ [tm, tm + τm]. (7.8)

Also, for m large enough, there holds∫
Ω

u(tm)ut (tm) + 1

2

∥∥u(tm)
∥∥2

∗ � 0. (7.9)

Indeed, by (7.6), (7.7), Young, Hölder, and Poincaré inequalities,∫
Ω

u(tm)ut (tm) + 1

2

∥∥u(tm)
∥∥2

∗ � 1

2

∥∥u(tm)
∥∥2

∗ − ∥∥u(tm)
∥∥

2

∥∥ut (tm)
∥∥

2

� 1

4

∥∥u(tm)
∥∥2

∗ − c
∥∥ut (tm)

∥∥2
2 � m2

4
− 2cd � 0

for everym large enough.
By (7.9) and integrating (7.3) on the time interval[tm, t] for t ∈ (tm, tm + τm] entails

∫
Ω

u(t)ut (t) + 1

2

∥∥u(t)
∥∥2

∗ �
t∫

tm

(
p − 2

2

∥∥∇u(τ)
∥∥2

2 − pE(0)

)
dτ � c

t∫
tm

∥∥u(τ)
∥∥2

∗ dτ

providedm is sufficiently large. On the other hand, by Hölder, Young and Poincaré inequalities,∫
Ω

u(t)ut (t) + 1

2

∥∥u(t)
∥∥2

∗ �
∥∥u(t)

∥∥
2

∥∥ut (t)
∥∥

2 + 1

2

∥∥u(t)
∥∥2

∗ � 1

2

∥∥ut (t)
∥∥2

2 + c
∥∥u(t)

∥∥2
∗.

Summarizing, if we set

Υm(t) =
t∫ ∥∥u(τ)

∥∥2
∗ dτ for everyt ∈ (tm, tm + τm],
tm
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lly

ce
then the following differential inequality is satisfied

Υ ′
m(t) � γΥm(t) − C

∥∥ut (t)
∥∥2

2 for everyt ∈ (tm, tm + τm],
for someγ > 0 andC > 0; hence,

Υ ′
m(t)

Υm(t)
� γ − C

‖ut (t)‖2
2

Υm(t)
for everyt ∈ (tm, tm + τm]. (7.10)

Notice that, since by (7.8) we have

Υm(t) � m2(t − tm) � m2τm

2
for everyt ∈

[
tm + τm

2
, tm + τm

]
, (7.11)

the differential inequality (7.10) yields

Υ ′
m(t)

Υm(t)
� γ − 2C

‖ut (t)‖2
2

m2τm

for everyt ∈
[
tm + τm

2
, tm + τm

]
. (7.12)

Integrating (7.12) over[tm + τm

2 , tm + τm] and taking into account (7.2) we find

logΥm(tm + τm) � logΥm

(
tm + τm

2

)
+ γ

τm

2
− 2Cα

m2τm

where we have setα = ∫ ∞
0 ‖ut (τ )‖2

2 dτ. Hence, up to enlargingm, we may take the exponential and we fina
conclude that

tm+τm∫
tm

∥∥u(τ)
∥∥2

∗ dτ = Υm(tm + τm) � 1

2
Υm

(
tm + τm

2

)
eγ τm/2 � m2τm

4
eγ τm/2 (7.13)

where we also used (7.11). On the other hand, by inequality (7.8), it turns out that

tm+τm∫
tm

∥∥u(τ)
∥∥2

∗ dτ � (m2 + 2)τm

which contradicts (7.13), sinceτm → ∞. Therefore, (7.4) is false and{u(t)} is bounded, namely there existsc > 0
such that∥∥ut (t)

∥∥2
2 + ∥∥∇u(t)

∥∥2
2 � c for all t � 0. (7.14)

We now turn to the proof of the second part of Theorem 3.4 forn = 1,2 or under assumption (3.3). Sin
ut ∈ C0(R+,L2(Ω)), by (7.2) there exist a diverging sequence{tj } ⊂ R+, ε ∈ (0,1) and a sequence{εj } ⊂ [ε,1]
such that

lim
j→∞

tj +εj∫
tj

∥∥ut (τ )
∥∥2

∗ dτ = 0, lim
j→∞

∥∥ut (tj )
∥∥

2 + ∥∥ut (tj + εj )
∥∥

2 = 0. (7.15)

In particular, from (7.15), for everyη ∈ H 1
0 (Ω) there holds

tj +εj∫
tj

〈
utt (τ ), η

〉
dτ =

∫
Ω

ut (tj + ε)η −
∫
Ω

ut (tj )η = o(1) asj → ∞.

Integrating Eq. (1.1) over[tj , tj + εj ] and using again (7.15) yields
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tj +εj∫
tj

(∫
Ω

(∇u(τ) · ∇η − ∣∣u(τ)
∣∣p−2

u(τ)η
))

dτ

= −
tj +εj∫
tj

〈
utt (τ ), η

〉
dτ −

tj +εj∫
tj

(
ut (τ ), η

)
∗ dτ = o(1) asj → ∞

for everyη ∈ H 1
0 (Ω). Consequently, recalling thatu ∈ C0(R+,H 1

0 (Ω)), for any suchη and for anyj we may find
t
η
j ∈ [tj , tj + εj ] such that

lim
j→∞

∫
Ω

(∇u(t
η
j ) · ∇η − ∣∣u(t

η
j )

∣∣p−2
u(t

η
j )η

) = 0;

in fact, by (7.14) and Lemma 7.1 we may taket
η
j = tj for anyη, namely

lim
j→∞

∫
Ω

(∇u(tj ) · ∇η − ∣∣u(tj )
∣∣p−2

u(tj )η
) = 0 for all η ∈ H 1

0 (Ω).

Using again (7.14), this tells us that (up to a subsequence)

u(tj ) ⇀ φ for someφ ∈ S . (7.16)

Next, we test Eq. (1.1) withu and integrate over[tj , tj + εj ] for all j . By using (5.6), (7.15) and arguing as abo
we obtain

lim
j→∞

tj +εj∫
tj

∫
Ω

(∣∣∇u(τ)
∣∣2 − ∣∣u(τ)

∣∣p)
dτ = 0.

Therefore, we can find a new sequencet̃j ∈ [tj , tj + εj ] such that

lim
j→∞

∥∥∇u(t̃j )
∥∥2

2 − ∥∥u(t̃j )
∥∥p

p
= 0.

By Lemma 7.1 we may takẽtj = tj so that Rellich Theorem yields

lim
j→∞

∥∥∇u(tj )
∥∥2

2 = lim
j→∞

∥∥u(tj )
∥∥p

p
= ‖φ‖p

p = ‖∇φ‖2
2,

which, combined with (7.16), shows thatu(tj ) → φ strongly inH 1
0 (Ω).

Concerning the proof of (3.4), since the energy functionalE is decreasing and bounded below, there ex
� ∈ [d,E(0)) such thatE(t) → � ast → ∞. The fact thatS� 	= ∅ and

lim
t→∞ distH1

0

(
u(t),S�

) = 0 (7.17)

follows immediately by [11, Corollaire 2.1.9] once we observe thatE is a strict Lyapunov function for the dynam
ical system associated with (1.1). Notice that, as a consequence of (7.17), the stationary solutionφ defined through
(7.16) belongs toS�, being

distH1
0
(φ,S�) = lim

j→∞ distH1
0

(
u(tj ),S�

) = 0.

Finally, again in light of (7.17), it is readily seen that

lim
t→∞J

(
u(t)

) = �,

which, by the definition ofE(t), immediately yields‖ut (t)‖2 → 0.
The proof of Theorem 3.4 is now complete.�
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7.2. Proof of Theorem 3.6

We provide a new proof of the boundedness of global solutions that parallels the one we performe
caseω > 0. According to Esquivel-Avila [5, Theorems 2.8 and 3.1], the difficult part of the statement i
L2-boundedness of the global solution.

Assume by contradiction that there exists a diverging sequence{tj } ⊂ R+ such that‖u(tj )‖2 → ∞. Then, by
continuity, we can find a diverging sequence{t̄m} ⊂ R+ such that‖u(t̄m)‖2

2 = m2 + 1. Moreover, since Lemma 7.
with ω = 0 reads as

lim
τ→∞ sup

{
κ > 0:

∥∥u(t) − u(t + κ)
∥∥

2 < 1, ∀t � τ
} = ∞,

we find a second diverging sequence{τm} ⊂ R+ such that

m2 �
∥∥u(t)

∥∥2
2 � m2 + 2 for everyt ∈ [t̄m, t̄m + τm]. (7.18)

Notice that, by (7.2), as in the caseω > 0, inequality (7.7) holds true for sometm ∈ [t̄m, t̄m +1]. By inequality (7.3)
with ω = 0 and Poincaré inequality we deduce that

d

dt

(∫
Ω

u(t)ut (t) + µ

2

∥∥u(t)
∥∥2

2

)
� p − 2

2
λ1

∥∥u(t)
∥∥2

2 − pE(0). (7.19)

Notice that∫
Ω

u(tm)ut (tm) + µ

2

∥∥u(tm)
∥∥2

2 � 0 (7.20)

for m large enough. Indeed, by (7.7), (7.18) and by Young and Hölder inequalities,∫
Ω

u(tm)ut (tm) + µ

2

∥∥u(tm)
∥∥2

2 � µ

2

∥∥u(tm)
∥∥2

2 − ∥∥u(tm)
∥∥

2

∥∥ut (tm)
∥∥

2

� µ

4

∥∥u(tm)
∥∥2

2 − Cµ

∥∥ut (tm)
∥∥2

2 � µ

4
m2 − 2Cµd � 0

for someCµ > 0, provided thatm is large enough. Let us fixm � 1 so large thatm2 � (4p/(p − 2))E(0)/λ1 and
inequalities (7.7), (7.18) and (7.20) hold true. By (7.18) and (7.20), integrating (7.19) on the time interval[tm, t]
for t ∈ (tm, tm + τm] entails

∫
Ω

u(t)ut (t) + µ

2

∥∥u(t)
∥∥2

2 �
t∫

tm

(
p − 2

2
λ1

∥∥u(τ)
∥∥2

2 − pE(0)

)
dτ � p − 2

4
λ1

t∫
tm

∥∥u(τ)
∥∥2

2 dτ.

On the other hand, by Hölder and Young inequalities,∫
Ω

u(t)ut (t) + µ

2

∥∥u(t)
∥∥2

2 � 1

2

∥∥ut (t)
∥∥2

2 + Cµ

∥∥u(t)
∥∥2

2

for someCµ > 0. In conclusion, if we set

�Υm(t) =
t∫

tm

∥∥u(τ)
∥∥2

2 dτ for t ∈ (tm, tm + τm],

then the following differential inequality is satisfied

�Υ ′
m(t) � γ̄ �Υm(t) − �C∥∥ut (t)

∥∥2 for everyt ∈ (tm, tm + τm]
2
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tly as
he case

tem was
vergence
] by

7.1,
for someγ̄ > 0 and�C > 0. At this point, taking into account (7.18), the desired contradiction pops up exac
in the proof of Theorem 3.4. The other assertions in the statement of Theorem 3.6 follow arguing as in t
ω > 0. �
Remark 7.2. A general criterion to establish the precompactness of bounded trajectories of a dynamical sys
issued in a celebrated paper due to Webb [30]. In fact, in the proof of Theorems 3.4 and 3.6, the strong con
of {u(tj )} for a suitable diverging sequence{tj } could also be obtained as a byproduct of [30, Proposition 3.1
splitting the solution semigroupS(t) into the sum of an exponentially decaying linear semigroupS1(t) and of a
completely continuous nonlinear mappingS2(t). On the other hand, in our proof, once the weak limit of{u(tj )} is
identified as a stationary solutionφ ∈ S , taking into account the crucial stabilization property given by Lemma
the strong convergence is recovered at once by a simple variational argument.

8. Proof of Theorem 3.12

We start with the following elementary statement.

Lemma 8.1. Let δ � 0, T > 0 and leth be a Lipschitzian function over[0, T ). Assume thath(0)� 0 andh′(t) +
δh(t) > 0 for a.e.t ∈ (0, Tmax). Thenh(t) > 0 for all t ∈ (0, T ).

If u solves (1.1), by [24, Lemma 4.1] we know that the map{t �→ d2

dt2 ‖u(t)‖2
2} is defined for a.e.t . Hence, if

ω = 0 andµ � 0, the identity (5.7) reads as

d2

dt2

∥∥u(t)
∥∥2

2 + µ
d

dt

∥∥u(t)
∥∥2

2 = 2
[∥∥ut (t)

∥∥2
2 − I

(
u(t)

)]
for a.e.t ∈ [0, Tmax). (8.1)

We may now prove the weak antidissipativity of the flow wheneveru(t) ∈ N−.

Lemma 8.2. Assume that(1.4)hold and thatω = 0 andµ � 0. In addition, assume thatu0 ∈ N− andu1 ∈ L2(Ω)

are such that∫
Ω

u0u1 � 0.

Let u be the solution of(1.1)with initial data (u0, u1). Then the map{t �→ ‖u(t)‖2} is strictly increasing as long
asu(t) ∈ N−.

Proof. Let F(t) = ‖u(t)‖2
2 andG(t) = F ′(t) = 2

∫
Ω

uut . By [24, Lemma 4.1], the functionG is Lipschitzian.
Note also thatG(0)= 2

∫
Ω

u0u1 � 0 and thatG satisfies

G′(t) + µG(t) > 0 for a.e.t ∈ [0, Tmax)

in view of (8.1) and of the fact thatu(t) ∈ N− (so thatI (u(t)) < 0). Therefore, Lemma 8.1 applies and henceF is
strictly increasing as long asu(t) ∈ N−. �

In order to prove Theorem 3.12, we first claim that the solutionu satisfies

u(t) ∈ N− for everyt ∈ [0, Tmax). (8.2)

If this was not the case, then there would exist a first timeT ∈ (0, Tmax) whereu(t) exitsN−, that is,u(T ) ∈ N .
By Lemma 8.2, we infer that∥∥u(T )

∥∥ > ‖u0‖2 � ΛE(0). (8.3)
2
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to

.13 is
Moreover, by (4.13) (notice thatE is constant ifω = µ = 0) we get

J
(
u(T )

)
� E(T ) � E(0).

This shows thatu(T ) ∈ N ∩ JE(0) = NE(0). Together with (8.3) and the definition ofΛE(0), this leads to a
contradiction and proves (8.2).

By contradiction, assume now thatu is global, namelyTmax = ∞. Then, by energy arguments analogous
those in the proof of Theorem 3.4, there existφ ∈ NE(0) and a diverging sequence{tj } such thatu(tj ) ⇀ φ in
H 1

0 (Ω), so that‖φ‖2 � ΛE(0). But Lemma 8.2 and (8.2) give

‖φ‖2 > ‖u0‖2 � ΛE(0),

a contradiction. Theorem 3.12 is so proved.

9. Proof of Theorem 3.13

We first recall a simple property ofN (see also [8, Theorem 15]).

Lemma 9.1. Let β be as in(2.4). Then, for anyσ � β and for anyk � 1 there existsu ∈ N such thatsupp(u)=
Ω/k and‖∇u‖2 = σ , wheresupp(u)is the support ofu.

Proof. SinceN is unbounded and connected, fork = 1 and anyσ � β there exists a functionu with the required
properties. In the casek > 1 it is sufficient to rescaleu as

uk(x) =
{

k2/(p−1)u(kx) for x ∈ supp(u)
k

,

0 for x /∈ supp(u)
k

,

to get a functionu ∈ N . �
We will construct(um

0 , um
1 ) as in the statement of Theorem 3.13 by using Theorem 3.12. Fixm > 0 sufficiently

large and takeum
1 ≡ 0. Take anyv ∈ H 1

0 (Ω) \ {0} such that supp(v) ⊂ (Ω \ Ω
2 ). Then, takeαm > 0 sufficiently

large so that

αm‖v‖2 � Λm, J (αmv) < 0. (9.1)

By Lemma 9.1, we may findwm ∈ N such that supp(wm) ⊂ Ω/2 and

J (wm) = p − 2

2p
‖∇wm‖2

2 = m − J (αmv) > m. (9.2)

Finally, letum
0 = wm + αmv. Then, sincewm andv have disjoint supports, by (9.1) and (9.2) we have

‖um
0 ‖2 = ‖wm‖2 + αm‖v‖2 > Λm,

J (um
0 ) = J (wm) + J (αmv) = m,

I (um
0 ) = I (wm) + I (αmv) = I (αmv) < 0,

the latter inequality following from (9.1) and the fact thatJ is nonnegative inN+ ∪ N . Moreover,E (um
0 , um

1 ) =
J (um

0 ) = m. Hence,(um
0 , um

1 ) satisfies all the assumptions of Theorem 3.12 and the proof of Theorem 3
complete. �
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