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Abstract

A class of damped wave equations with superlinear source term is considered. It is shown that every global solution is
uniformly bounded in the natural phase space. Global existence of solutions with initial data in the potential well is obtained.
Finally, not only finite time blow up for solutions starting in the unstable set is proved, but also high energy initial data for
which the solution blows up are constructed.
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1. Introduction

We study the behavior of local solutions of the following superlinear hyperbolic equation with (possibly strong)
linear damping

U — Au— wAuy + puy = |ulP~2u in [0, T] x £2,

u(0, x) =uo(x) in 2, L.1)
u; (0, x) =u1(x) in 2, :
u(t,x)=0 on[0,T] x 382

wheres?2 is an open bounded Lipschitz subsei®¥f(n > 1), T > 0,
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uo € H3(£2), ur € L3(2), (1.2)
w >0, n>—wki, (1.3)

A1 being the first eigenvalue of the operate under homogeneous Dirichlet boundary conditions, and

2 foro>0 .

2<p< 202 ¢ 0 if n >3, 2<p<oo ifn=12. (1.4)
— orw =
n—2

We study the behavior of solutions to (1.1) in the phase s;ﬁﬁ}i&f)). Since stationary solutions play a crucial
role in the description of the evolution of (1.1), several tools from critical point theory turn out to be quite useful
for our purposes. In particular, we consider theuntain pass energy levél(see e.g. [1]), th&ehari manifold
A (see [20]) of the stationary problem associated to (1.1) and the two unbounded sétsside.+") and.4_
(outside.4"). All these tools are defined in detail in Section 2. A first attempt to tackle (1.1) with these tools was
made by Sattinger [27] (see also [24,28]) who developed the so-called potential well theory in order to study the
problem withno dampingthat isw = 1 = 0). Subsequently, equations with damping terms have been considered
by many authors. For equations with (possibly nonlineasakdamping we refer to [9,13,14,18,25,29]. Much less
is known for equations witetrongdamping; see the seminal paper by Levine [17] (and also [21,22]) but still many
problems remain unsolved. It is our purpose to shed some further light on damped wave equations of the kind
of (1.1) in both the cases of weak & 0) and strongd > 0) damping. To this end, as recently done by the first
author in [7,8] for parabolic equations, we will exploit further the properties of the Nehari manifold. In particular,
this will enable us to obtain blow up results in correspondence of initial @ata1) having arbitrarily large initial
energy. As far as we are aware, this is the first blow up result for (1.1) 8@ > d (initial energyabovethe
mountain pass level). However we mention that, by exploiting a completely different method, the existence of
solutions with arbitrarily high initial energy has been also obtained in [19] for weakly damped wave equations on
the wholeR".

Let us explain in some detail which are our main results. We first make clear for which expgnprad-
lem (1.1) is (locally) well posed. We restricted our attention to the superlineapcase since the sublinear case
p € (1,2]is well established (see Remark 3.10). Whes 0 andu > 0, itis proved in [11] that (1.1), (1.2) admits

a unique local weak solution for any> 2 if n = 1,2 and for 2< p < 2=2 if n > 3; note that?=£ is the critical

exponent- for the trace embedding/1(£2) c L7 (9£2). We wish to stress that, leaving aside the well posedness
of (1.1), the constrainp < % for @ = 0 and initial data (1.2) is up to now unavoidable for #reergy identity

to make sense, i.e. it is not known if formula (4.13) holds for %: we refer to [2] for further comments. In
Theorem 3.1 we show that in presence of a strong damping Q) this upper bound fop can be enlarged to
p < n% which is the “natural” constraint since n% is the critical Sobolev exponepgtfor the embedding

Hol(.Q) — L9(£2). Our result restates [22, Theorem 1] for a wider class of initial data but for a smaller range of ex-
ponentsp. When dealing with critical point theory, the correct phase space for the solutions of (1.1) is necessarily
Hol(.Q) and, therefore, the natural regularity for the initial data is precisely that of (1.2).

Cazenave [4] proved boundedness of global solutions to (1.1) fopx = 0 while Esquivel-Avila [5] recovered
the same result fab = 0 andu > 0 and showed that this property may fail in presence mb@lineardissipation
term (cf. [6, Theorem 3.4]). In Theorems 3.4 and 3.6, by exploiting an argument different from the one devised
in [4,5], we prove that any global solution of (1.1) is bounded whenevand . fulfill (1.3). The proof relies on a
delicate analysis of the behavior of several norms of the solutior-asc. Moreover, we obtain convergenap to
a subsequenasf solutions of (1.1) towards a steady-statéSince in general the source nonlineafity— |u|?~2u}
in (1.1) is not an analytic function, counterexamples of JendoubigikdA5] show that we cannot expect that all
global solutions: = u(r) stabilize, that is

timw”ut(t)”z—f- |Vu@) —¢|,=0. (1.5)

Only under more restrictive assumptionsmoand p, one may guarantee that (1.5) indeed occurs, see Remark 3.7.
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Once boundedness of global solutions is established, one is interested to find out for which initial data (1.2)
problem (1.1) does have a global solution. For the undamped equatiery(= 0) Sattinger [27] showed that
local solutions of (1.1) are in fact global whenevg(0) < d andug € .#4. This statement may be improved in
presence of dissipation; for the weakly damped equatioa Q, 1 > 0) Ikehata and Suzuki [14] prove that under
the same assumptions on the initial data, not only the solution is global but it also converges to the equilibrium
¢ =0 ast — oo. In Theorem 3.8 we extend this result to the case 0. Our result improves [22, Theorem 3]
whereE (0) < d/2% (=2 and only the casg = 0 is considered.

Not all local solutions of (1.1) are global in time. Blow up in finite time is usually obtained for low initial energy
E(0) and forug € A4~ . For the undamped equatio@ & u = 0) Tsutsumi [28] showed that local solutions of (1.1)
cannot be continued to the whdle, co) provided thatig € .4/~ and E(0) < d. For equations with weak damping
(w =0 andu > 0), Levine and Serrin [18] proved nonexistence of global solutions wih@) < 0, a condition
which automatically implies thatp € .4_. Subsequently, Ikehata and Suzuki [13,14] proved the same result when
uo € A~ andE(0) < d — ¢ for a suitables € (0, d) depending on the damping coefficiqnt Finally, Pucci and
Serrin [25] successfully handled the case wh&i®) < 4 and Vitillaro [29] showed that also foE (0) = d the
solution blows up in finite time. Whew > 0 and = 0, Ono [22, Theorem 7] shows that the solution of (1.1)
blows up in finite time ifE(0) < 0. For the same problem, Ohta [21] improves this result by alloviii@) < d,
provided thatg € .#_. In Theorem 3.11, by refining and simplifying the concavity method introduced by Levine
[16,17], we extend this result to the case wherg 0 andE (0) < d. Last but not least, in Theorems 3.12 and 3.13
we show the finite time blow up of some solutions of (1.1) whose initial data have arbitnagftynitial energy.

The proof is inspired by previous work in [8] and uses the weak antidissipativity of the flo¥ in

This paper is organized as follows.

— in Section 2 we recall some preliminary tools and definitions;

— in Section 3 we present the main results of the paper and we list some open problems;

— from Sections 4 to 10 we provide the proofs of the results. We point out that the pmreof®tin the same
order as the statements.

2. Setup and notations

We denote by - ||, the L7(£2) norm for 1< g < oo and by||V - ||2 the Dirichlet norm ian}(Q). Moreover,
for later use we denote by, -) the duality pairing betweefl ~1(£2) and H&(Q). Whenw > 0 (resp.w = 0) for
all v, w € H}(£2) (resp. for allv, w € L?(£2)), we put

(v,w)*=w/Vv-Vw+M/vw, lvlle = (v, v)¥%;
2 22
by (1.3),1| - Il is an equivalent norm ovei(s2) (resp.L?(£2)).
By (1.4), we may consider thé! functionalsl, J : H&(Q) — R defined by
2 P 1 2 1.
I(w)=|Vullz - |ull, and J(@u)= EIIVMIIZ - ;Ilullp-

The mountain pass value df(also known as potential well depth) is defined as

d= inf maxJ (Au). (2.1)
ueH(2)\{0} 2+20
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Consider the best Sobolev constant for the embedH@;@’z) — LP(£2),

_ Vul3
S,=inf I !2. (2.2)
1
ueHX@\(0) llulls

If (n —2)p < 2n, the embedding is compact and the infimum in (2.2) (and in (2.1)) is attained. In such case (see,
e.g. [24, Section 3]), any mountain pass soluiiarf the stationary problem is a minimizer for (2.2) (i.e. it satisfies
IVull3 = Spllul2) ands,, is related to its energy

d=r_ 2Sp/(p—2).
2p 7

All nontrivial stationary solutions belong to the so-called Nehari manifold (see [20] and also [31]) defined by
N ={u e H}(2)\ {0} 1(u) =0}.

It is easy to show that each half line starting from the originﬂé{ﬂ) intersects exactly once the manifalé” and
that.# separates the two unbounded sets

Ny ={ue H}(R): I(w)>0}u{0} and A_ ={ue H(2): I(u)<0}.
We also consider the (closed) sublevelg/of
J9={ue H}(R2): Jw) <a} (aeR)
and we introduce thstableset”” and theunstableset?% defined by
w=JinA and % =Jin.A.

It is readily seen (see [31, Theorem 4.2]) that the mountain passdel&fined in (2.1) may also be characterized
as

d=inf J). (2.3)

This alternative characterization @fshows that

[ 24
B =dist0, /) = inf |Vul= |- 0 (2.4)
ue N p—2

and that, for every > d, we have

2ap
-2

%:Wﬂ]“z{ueﬂi Vullz < }7&@.

Therefore, for every > d, we may define
Aq =sup{llull2: u € A}

By Poincaré inequality, we haw, < oo for everya > d. We introduce the sets
' =|¢ € H}(2): ¢ is a stationary solution of (1.})
Fy=|pe s J@) =t} EeRy).

Finally, we consider the energy functionét H&(Q) x L?(£2) — R defined by
&, w)=J () + %nwn%

and the Lyapunov functioft () = & (u(t), u;(t)), defined for any solution(¢) to (1.1).
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3. Themain results

By solutionof (1.1), (1.2) ovef0, T] we mean a function
u € CO([0, T, Hy(£2)) N C([0, T1, L?(£2)) N C3([0, T1, H1(£2)),

with u, € L2([0, T, H}(£2)) whenevew > 0, such thati(0) = uo, u,(0) = u1 and

<ut,<t),n)+/w<t>~Vn+w/w<t>~Vn+u/ut<r)n=f|u(t)|"‘2u(t)n
2 2 2

2

forall n € H}($2) and a.et € [0, T1.
We first establish local existence and uniqueness for solutions of (1.1), (1.2).

Theorem 3.1. Assume thafl.3)and (1.4) hold. Then there exist > 0 and a unique solution of1.1), (1.2) over
[0, T]. Moreover, if

Tmax=Sup{T > 0: u = u(t) exists on0, T1} < oo

then

-2
lim Hu(r)”q =oo forall ¢ > 1such thaiy > n(p2 ); (3.1)

t— Tma;

if n > 3and p = 2* (so thatw > 0), then(3.1) also holds fory = 222 — 2+,

Definition 3.2. If Tmax < 00, we say that the solution of (1.1), (1.2) blows up and thadx is the blow up time.
If Tmax= o0, we say that the solution is global. The property of continuing (in time) a bounded solution will be
referred throughout the paper as the Continuation Principle.

Remark 3.3. As it should be expected, from the proof of Theorem 3.1 it follows that, for fixed initial data, we have
Tmax — 00 asw — 00, that is to say, the more the equation gets damped, the larger becomes the life span of the
solution.

Next, we prove the boundedness of global solutionsamely
u € L®(Ry, H3(2)) N WE®(Ry, L2(2)). 3.2)

In the strongly damped case we have the following

Theorem 3.4. Assume that > 0 and that(1.3) and (1.4) hold. Then, every global solutian(z) to (1.1), (1.2)
satisfieq3.2). Moreover, ifr = 1,2 or if

n>3 and 2<p <2, (3.3)
then there exists € R such that¥; # ¢,

tll)ngo E(t)=1¢, IILn;o distHé (u(t), #¢) =0 and tingo”ut(t) |,=0. (3.4)
and there exisft;} C Ry witht; — oo and¢ € . such that

lemoo||vM(rj) -V¢|,=0. (3.5)
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Remark 3.5. Assume thakz > 3 and thats2 is star shaped. Then, in the limiting cage= 2*, the well known
Polhbzaev identity (see e.g. [31, Theorem B.1]) combined with the unique continuation property for elliptic equa-
tions yields.¥ = {0}. Then, arguing as in the proof of Theorem 3.4, it is possible to show that from every global
solutionu = u(¢) we may extract a subsequeni&;)} such that:(z;) — 0 weaklyin H(}(Q), while thestrong
convergence(r;) — 0 seems to be out of reach.

In order to prove the boundedness of global solutions (cf. (3.2)) we make use of a delicate analysis of all the
terms involved in (1.1), see Section 7.1. The corresponding statement for the weakly dampead €d®ehas
recently been obtained by Esquivel-Avila [5]. Based on the just mentioned delicate analysis, in Section 7.2 we give
a different proof of the following

Theorem 3.6 [5]. Assume thai = 0 and that

22
2op< ]z forn=3 5 o forn=1 (3.6)
6 f 2
orn=2~42,

Then, every global solutiom(z) to (1.1),(1.2) satisfieq3.2). Moreover, il = 1, 2 or if

2<p< forn > 3, (3.7)

then there existg € R, such that¥; # ¢, (3.4) holds and there exidt;} C Ry with¢; — oo and¢ € . such
that (3.5) holds.

Remark 3.7. By combining the boundedness of global solutions that we obtained in Theorems 3.4 and 3.6 with
some well known convergence results one can prove stabilization ahtble flow. In one space dimension, for any

p > 2, under assumption (1.3) one obtains (1.5) for some equilibgiuas a consequence of [10, Theorem 2.4];
follow step by step the arguments of Section 5.4 therein, with the only difference that the orbit precompactness is
due to (3.5) and not as a byproduct of the existence of the global attractor. In two space dimensions, the situation
is different for weak and strong damping;af= 0 one has (1.5) fop = 4,6 (see [12, Theorem 1.2]), whereas if

o > 0 one has (1.5) for any even integee> 4 (see [12, Theorem 4.4.1 and Example 4.4.1]).

Let us turn to the global existence of solutions starting with suitable initial data.

Theorem 3.8. Assume thaf1.3)and (1.4) hold and letu be the unique local solution t1.1), (1.2). In addition,
assume that there exists [0, Tmax) Such that

u)ew and g(u(t_),u,(t_))gd. (3.8)
ThenTmax= oo and, for every > 1,
[ue) |2+ ety |2 < 2422 39)
where
Cu(l+ 1 +w) forw>0,
O(w, n) = (3.10)

Cl+x+p) fore=0
andC is independent g, whereasC,, only depends op.
Remark 3.9. Let w > 0 andu = 0. Although inequality (3.9) gives only a one-sided control, si@¢e, 0) — oo

both forw — 0 andw — oo, the best dissipation rate for the energy norm (with respect to the damping coeffi-
cientw) seems to be achieved at the minimum poin&xdiv, 0), which occurs atv = 1. Physically, ag» — 0 the
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dissipation gets lost, whereas t#r— oo the system tends to freeze sine@cts only on the velocity,. A similar
phenomenon has been observed for a (different) class of strongly damped wave equations in [23, Remarks 4 and 5],
in discussing the size of the universal attractowasries.

Remark 3.10. In the casep € (1, 2], we haveTmax = oo for arbitrary choices of the initial data (1.2). Indeed, for
any fixedT > 0, define the functionab : [0, T] — R,

1 2 1 2 1
v () =3[ Vu®z+ S Ju )]z + ;||u(t)||;j.
Notice that, for every € [0, T'], there holds

w'(1) < —|}u,<r)|}§+2/|u(r)}”*1|u,(t)|.
2

Since 2n(p—1)/(n+ 2) < p, by Sobolev and Young inequalities, we have

_ -1 _
2 [ 1] < Vbl < gl + w20V,
2
Here and below denotes a positive constant. Therefore, we get

/(1) < cw?P=D/P 1)y for everyr € [0, T].
Sincep € (1,2], we have 2p — 1)/p € (0,1] and

e(T +¢)P/@=P) for p <2,
ceT for p =2.

By the continuation principle, the solution has to be globally defined.

v+ o 3 < 200 < |

We come to a blow up result for solutions starting in the unstable set.

Theorem 3.11. Assume thaf1.3) and (1.4) hold and letu be the unique local solution tl.1), (1.2). Then
Tmax < oo if and only if there exists € [0, Tmax) such that

u(t)e% and é"(u(t_),ut(t_))éd.

Theorem 3.11 is already known for weakly damped equatiens Q), see [29]. In Section 6 we give a general
proof of this statement under the sole assumption (1.3). As a byproduct of our proof it is cleBnihat oo if
and only if E(t) — —oo ast — Tmax. In particular, the blow up has a full characterization in terms of (negative)
energy blow up.

In the weakly damped case we state the blow up of solutions to (1.1) with suitable initial data having energy
larger than the mountain pass level

Theorem 3.12. Assume thab = 0 and > 0 and that(1.4)holds. In addition, assume th@tg, u1) € A~ x L2(£2)
are such that

Euoun) >, luole> Asupu. [ uons >0,
2
ThenTmax < oo for the corresponding solutiom of (1.1),(1.2).

As a consequence of Theorem 3.12, we obtain arbitrarily high energy initial data for which the solution of (1.1)
blows up in finite time.
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Theorem 3.13. Assume thab = 0, 1 > 0 and that(1.4) holds. Then, for every: > 0, there exist initial data
(ull ulf') € A x L2(£2)

such that& (ugy , u') > m and Tmax < oo for the corresponding solution dfL.1).

Theorems 3.12 and 3.13 also hold for the undamped wave equation, awbere= 0. They are new also in this
context.

Some open problems. We collect here a few questions and open problems connected with the statements of our
results:

— Do Theorems 3.12 and 3.13 extend to the strongly dampeducas@? Also, do these results extend to the
case of nonlinear (weak) damping suchas; |” —2u; with m > 2 in place ofuu,?

— Many authors have obtained both global existence and blow up results for equations which present nonlinear
damping terms such ds,|”2u, with m > 2 (often enlightening the interaction that pops up with the cor-
responding power sourde|”2u). We refer the reader to [6,9,13,25,26,29] and to the references therein. In
analogy with these extensions, one could wonder whether it is possible to obtain some results for a nonlinear
strong damping such asA,,u, (the m-Laplacian operator). We stress that our blow up Theorems 3.11, 3.12
and 3.13, being based on a kind of concavity argument (for which the linearity of the dissipation terms is par-
ticularly helpful in performing the reduction to an ordinary differential inequality in time, see e.g. (6.5)) would
become too involved. Moreover, testing the equation witienerates hard to manage terms which may also
lack summability ifm > 2.

4. Proof of Theorem 3.1

We restrict ourselves to the case> 0, 1 # 0 andn > 3, the other cases being similar (and simpler), see [3];
for the caser = 0 andu > 0, we also refer the reader to [11].
For a givenT > 0, consider the spac#’ = C([0, T], H}(£2)) N C([0, T, L?(52)) endowed with the norm

2 2
luliSe = max (| Vu) [+ ®]).

We first prove the following

Lemma4.1. For everyT > 0, everyu € 7 and every initial datauo, u1) satisfying(1.2)there exists a unique
ve A NC?([0,T]; H1(2)) such that, € L%([0, T, Hy(£2)) (4.1)

which solves the linear problem

Vit — Av — wAv + pv = [ulP"%u in [0, T] x £2,

v(0, x) =up(x) in 2, 4.2)
(0, x) = up(x) in 2, '
v(t,x)=0 on[0,T] x 952.

Proof. The assertion follows from an application of the Galerkin method. For éveni let W;, = Spafqwy, ...,
wy}, where{w;} is the orthogonal complete system of eigenfunctions-af in H&(Q) such that|w;|> =1 for
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all j. Then,{w;} is orthogonal and complete ih%(£2) and in H&(Q); denote by{A;} the related eigenvalues
repeated according to their multiplicity. Let

h h

Mgzz(/VMO'VU)j>U)j and uﬁ:Z(/ule)wj

j=1"g j=1"g

so thatu}, € Wy, u € Wy, ub — ugin H3}(22) andu’t — uy in L2(£2) ash — cc. For allh > 1 we seel: functions
v, ...,y € C?[0, T such that

h
() =Yy} (Ow, (4.3)

j=1
solves the problem

{ JolBn(®) = Avp(1) — @ADL () + iy (1) — ()P~ 2u()]n =0,

4.4
v (0)=ug, 0, (0)=u" (4.4)

for everyn e W, andr > 0. Forj =1,..., h, takingn = w; in (4.4) yields the following Cauchy problem for a
linear ordinary differential equation with unknoiji‘:

PO + (@hj +107] (0 + 2y} () = ¥ @),
v/ 0) = [quow;, !0 = [puiw;
whereys; (t) = fQ |M(t)|p_2bl(t)w]‘ € C[0, T]. For all j, the above Cauchy problem yields a unique global solution
y}l € C?[0, T1. In turn, this gives a unique, defined by (4.3) and satisfying (4.4). In particular, (4.3) implies that
(1) € H(}(.Q) for everyt € [0, T] so that Sobolev inequality entails
|| vy (1)

Here and in the sequel we denotedy 0 a generic constant that may vary even from line to line within the same
formula. Takingn = v, (z) into (4.4), and integrating ove0, ¢] C [0, T'], we obtain

o <c|Vin(0)|, foreveryr €0, T]. (4.5)

t t
||th(t)|\§+ Hi;h(t)||§+2/||z>h(r)y|§df= IVub|3+ ||u’1||§+2//]u(r)|’)‘2u(z)ﬁh(r)dz, (4.6)
0 0

for everyh > 1. We estimate the last term in the right-hand side thanks to Hélder, Sobolev and Young inequalities
(recall p < 2%, (4.5) andu € C([0, T1, H}(2))):

t t
2/f|u(r)|p_2u(r)bh(r)dr <cT +/|| o (0] de. (4.7)
02 0
Recalling thaug andu’{ converge, from (4.6) and (4.7) we obtain

T
e + [Jino|de < cr
0

for everyh > 1, whereCr > 0 is independent of. By this uniform estimate and using (4.4), we have:
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{vy} is bounded iInL> ([0, T1, H3(£2)),
{0n} is bounded iInL* ([0, T1, L3(52)) N L3([0, T1, HF(£2)),
{U} is bounded inL2([0, T1, H1(£2));
note that{v, } is bounded inL2([0, T], H}(52)) because we assumed> 0.

Therefore, up to a subsequence, we may pass to the limit in (4.4) and obtain a weak solofi¢4.2)
with the above regularity. Since € H([0, T1, H3(£2)), we getv € C([0, T], H}(£2)). Moreover, sincej e
L>([0, T1, L?(£2)) N L*([0, T], Hy(£2)) and § € L2([0, T1, H~1(£2)), we havei € C([0, T], L?(£2)). Finally,
from Eq. (4.2) we get € CO([0, T], H~1(£2)). The existence of solving (4.2) and satisfying (4.1) is so proved.

Uniqueness follows arguing for contradiction:ifand w were two solutions of (4.2) which share the same
initial data, by subtracting the equations and testing with w,, instead of (4.6) we would get

t
Vo = Y@ 3+ o - w03 +2 [ o - w2 dr =0,
0

which immediately yieldsv = v. The proof of the lemma is how complete

Take (ug, u1) satisfying (1.2), letR? = 2(||Vuo||§ + ||u1||§) and for anyT > 0 consider
My ={ue A u0)=uo, u;(0)=uzand|ul» < R}.

By Lemma 4.1, for any € .47 we may definew = & (1), beingv the unique solution to problem (4.2). We claim
that, for a suitablg’” > 0, @ is a contractive map satisfying (#r) € .#7. Givenu € .#r, the corresponding
solutionv = @ (u) satisfies for alk € (0, T] the energy identity (see (4.6)):

t 1

Hw(z)H;Jr Hu,(z)}];+2/Hv,(z)\|idf= | Vuol3 + ||u1||§+2//yu(r)|”‘2u(z)u,(r)dr. (4.8)
0 0Q
For the last term, we argue in the same spirit (although slightly differently) as for (4.7) and we getdredd)l

' T T
2//|u(t)|p72u(r)v,(t)dr<c/||u(t) g,:le;(‘L') o d‘[SC/Hu(‘c)“filnvt(l')”*dt
0 0 0
T
< cTR?P~D +2/|| v,(r)”idr (4.9)
0

for all t € (0, T]. Combining (4.8) with (4.9) and taking the maximum o{@y77] gives
1
vl < ER2 + T R?PD),

ChoosingT sufficiently small, we get|v| » < R, which shows thatb (.#7) C .. Now, takew1 and ws in
At subtracting the two equations (4.2) for = @ (w1) andvy = @ (w2), and settingy = v1 — v we obtain for
alln € H}(£2) and a.et € [0, T]

(vee (1), m) + / Vu(t)-Vn+o / Vu(t) - Vi + / v (N = / (Jwa@)|” 2wa(t) — |wae)|”2wa())n

2 2 2 2

= / £() (wi(r) — wa2())n (4.10)
2
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where¢ = £(x, t) > 0 is given by Lagrange Theorem so tlét) < (p — 1)(Jwi()| + |w2(t)|)?~2. Therefore, by
takingn = v, in (4.10) and arguing as above, we obtain

2 _
|@w1) — @ w2)||5, =I5, < cR¥P AT w1 — w23, < Sllwi— w2l

for someé < 1 providedT is sufficiently small. This proves the claim. By the Contraction Mapping Principle,
there exists a unique (weak) solution to (1.1) defined®@’]. The main statement of Theorem 3.1 is so proved.
Concerning the last assertion we observe that, by the construction above; sreés fixed, the local existence
time of u merely depends (througR) on the norms of the initial data. Therefore, as lond|a&)| ;» remains
bounded, the solution may be continued, see also [22, p. 158] for a similar argument. H&pgg<foo, we have

im [Vu@ 5+ a3 = tim Ju)]5, = oc. (4.11)

Consider the energy function

1 2 1 2 1
E@t) = E||W(z)||2+ E||u,(t)||2 — ;Hu(z‘)| Z t €10, Tmay), (4.12)
which satisfies
t
E@) + f ||u,(t)||idr = E(s) forevery 0<s <t < Tmax (4.13)

Sincew > 0, this energy identity follows by testing (1.1) with and integrating with respect to Note that
(4.13) also holds in the cage= 0, see [9, Proposition 2.1]. In both the cases, by (4.13), the {map E(¢)} is
nonincreasing. As a consequence,

1 1 1
SIVuO 3+ 5w 0[5 < ~lu@l; + E©) forallt €10, Tna (4.14)

which, together with (4.11), implies

lim JJu@], = co. (4.15)

t— Trax

This proves at once the very last statement of Theorem 3.1 whe* = ¢ = "(P—z’z). For the remaining cases,
notice first that (4.15) implies

lim || Vu()|,=oc. (4.16)

t— Trax

Moreover, by (4.14) we obtain

2
| Vu@)|5<2E0) + : Ju®]?,  t €10, Trnax

which, combined with the Gagliardo—Nirenberg inequality, yields:

2n(p—q)

2 P p(l-o) po _ _
e|vu ] e < [uoll < clu 747 [vuw]g fore = 2D

Sincen(p — 2)/2 < g < p implieso € (0,1) andpo < 2, the above inequality combined with (4.16) immediately
yields (3.1). This completes the proof of Theorem 3.1
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5. Proof of Theorem 3.8

Throughout the proof we denote by> 0 a generic constant, independentgfpossibly dependent gn and
on the initial dataug, u1), that may vary even from line to line within the same formula.

Consider the case > 0 andu > —11w. Without loss of generality, we may assume that 0. By (4.13) we
know that the energy map is decreasing. Then, if condition (3.8) holds true, we have

u(tyew and E(t) <d foreveryr e (0, Thax. (5.1)

Indeed, if it was not the case, there would exjst 0 such that:(z,) € .4". By the variational characterization (2.3)
ofd,

d<J(u@t) <E@) <d,
a contradiction to (5.1). As a further consequence of (5.1), a simple computation entails

J(u@®) > pz—_pz | Vu@|5  for everyr € [0, Tmay. (5.2)

For allz € [0, Tmax), by (4.13) we obtain
1 2 \ 2
Sl 3+ 7 @®) + [ @] de= E© <.
0

Therefore, by virtue of (5.2) the Continuation Principle yieligx = oo and
[ Vu(r) ||§ + [ur () ||§ <c¢ foreveryr € [0, 00),
t
5.3
/|| Vi, (1) ||§dr << for everyt e [0, 00). ®3)
w
0
Hence, by Poincaré inequality, we get

t
/Hu,(r)”;dr < 2 for everyr e [0, 00). (5.4)
0

Now, as in [13], we integrate ov¢®, ¢] the trivial inequality

d
5 (A+DEM) <E®,

and recalling that by [14, Lemma 5.2] there holds
J(u(®)) <clI(u@)) foreveryr €[0,00),

we reach the inequality

t

t

1

A+0E@) <d+ > / ||u,(r)||§dr + c/ I(u(r))dr (5.5)
0 0

for everyr € [0, 00). Observe also that, by direct computation, there holds

d
(uer (), u(@®)) = E/u’(t)u(t)_ ||ut(t)||§ for a.e.r € [0, 00). (5.6)
2
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Moreover, by testing the equation wiit) we obtain
(100 @), u (@) + | Vu) |5+ (@), ur ), = |u@ | forae.re[0,00).
Using (5.6), this yields

d 1
a(/uut + Euuni) = llucll3 — I (). (5.7)
2

By integrating (5.7) ori0, ¢] and by (5.3) and (5.4), we have
t t
1
/l(u(r))dr</||u,(r>||§dr+ luzll2lluollz + ||u,<r)||2||u(t)||2+E(nuoni— Ju)]?)
0 0

<c+£+cw (5.8)
1)

for everytr € [0, 00). Then, by combining the above inequalities, from (5.5) we get
1 1
E(t) <c(1+ — +a)>—
) t
for everyt € (0, 00). Consequently, by (5.2) we immediately obtain

O(o,
Va5 + 05 < 242, 9

for everyt € (0, 00), where® is the map defined in (3.10). The proof in the case 0 (andu > 0) is similar and
follows by obvious modifications of inequalities (5.4) and (5.8)

6. Proof of Theorem 3.11

Assume first that there exists> 0 such that(7) € % and& (u(7), u,(t)) < d. Without loss of generality, we
may assume that= 0 so that(u(7), u;(f)) = (ug, u1). By (4.13) we know thaE (¢) < d for all t > 0 and therefore
u(t) ¢ A . This shows that (t) € % for all ¢ € [0, Tmax) - Hence, by (2.4) we obtain

| Vu() ||§ > % for everyr € [0, Tmax)- (6.1)

Assume by contradiction that the solutiaris global. Then, for any” > 0 we may considef : [0, T] — R4
defined by

t
6(1) = ||u<t>||§+/||u<r)||§dr+(T—r>||uo||§.
0

Noticed(¢) > 0 for all t € [0, T]; hence, sincé is continuous, there exisis> 0 (independent of the choice &)
such that

0()>p forallte[0,T]; (6.2)

furthermore,
t

0'(1) = 2[ w(Our () + () |2 JuollZ = 2/u(z>uz<r> + 2/(u(r), ui (), de
2

2 0
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and, consequently, using (5.6)

0" (t) = 2us (1), u(®)) + 2||u; () H; +2(u(r), u; (1)), fora.erel0,T].

Testing the equation in (1.1) withand plugging the result into the expressiorftfwe obtain
0" (t) = 2(||u; () H; — HVu(t)Hg + [Ju(r) Hg) fora.e.r € [0, T].

Therefore, we get

2
0(1)0" (1) — %9’(;)2 = 200){ | (1) |5 — |V |2+ i) 17}

t
+(p+-24n0)—{90)—(T-—DHMM@}(HMADH%+:/Hudtﬂﬁdt>},
0

wheren : [0, T]1 — R is the function defined by

t t
10 = (1ol [luotiar) (luol+ [lucoiar) -
0 0

Notice that, using Schwarz inequality, we obtain

2
Hwoﬁhxm@></ummaﬂ,

2
t t t 2
/||u(t)||idt[||u,(r)||idr2 </(u(r),ut(r))*dr> :
0 0 0

t ' 1/2 t
st [ tor e, <o [Tl Jaoly( [locoier)
0 0 0

2

t

2
/u(t)u,(t)~|—/(u(r),ut(t))*dr> .

2 0

and
1/2

These three inequalities entailr) > O for everyr € [0, T]. As a consequence, we reach the following differential
inequality

00" (t) — pTJrZG’(t)z >60()E() fora.e.re[0,T], (6.3)

wheret : [0, T] — R, is the map defined by

t
E(t)=—-2pE(t)+ (p—2)| Vu(t)”; —(p+ 2)/ ||u,(t)||idt.
0

By (4.13), for allz € [0, T] we may also write
t
§1)=—2pE©@)+ (p - 2)|Vu@) |5+ (p - 2)/”u,(r)||idr
0

and therefore, by (6.1), we obtain
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t
£ =£0) + (p— 2| Vu() |2 = (p — DI VuolZ + (p — 2>f||u,<r>||§dr
0

t t
> 2p(d = EO) + (-2 [ Ju[ldr> p~2) [ Juo)dr >0
0 0

sinceE (0) < d. Hence, there exists> 0 (independent of") such that
E(r)=48 forallr>0. (6.4)
By (6.2), (6.3) and (6.4) it follows that

010" (1) — 4 9 (1)?> > ps fora.e.r [0, T]. (6.5)
Settingy(r) = 6(r)~P~2/4 this inequality becomes
-2
y'(t) < —T,OSy(t) fora.e.r € [0, T].

This proves thap (r) reaches 0 in finite time, say as> T*. SinceT* is independent of the initial choice &f, we
may assume that* < T. This tells us that

lim 6(t) =00
t—>T*
In turn, this implies that
. 2
Tim_[|[Vu(]5=ce. (©6)

Indeed, if||u(t)||2 — oo ast — T*, then (6.6) immediately follows. On the contrary|if(¢)||> remains bounded
on[0, T*), then

t
. 2
tan;*f”u(r)”*dr =00
0

so that again (6.6) is satisfied.
Conversely, assume now thBfax < oo. Notice first that, for every > 0, there holds

2
1
/||u,<f>|| dr > (/Hu,(r)n dr) > 2 (Ju], = luoll.)

Hence, by (4.13), we obtain

1 1
51 (1®) SE®) < EQ) = (Ju®], — luoll.)*
Since||lu(t)]|« — oo ast — Tmax, We conclude that

lim I(u())= IirTn E(t) = —o0. (6.7)
t— Tmax

t— Tmax

Then, the desired assertion immediately followsi
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7. Proof of Theorems 3.4 and 3.6

Assume that = u(r) is a global solution to (1.1) and (1.2) and et R, — R be its energy as defined in (4.12).
Without loss of generality, we may assume that

d< E(t)<E() foreveryreR,. (7.1)

Indeed, the right-hand side inequality holds true since the fnap E(¢)} is nonincreasing in view of (4.13). On
the other hand, if it wa# (z9) < d for somerg > 0, taking into account Theorem 3.8 and Theorem 3.11 (proved
above!), eithen|Vu(t)||§ + ||u,(t)||§ — 0 as t— oo if u(tg) € # (in which case Theorems 3.4 and 3.6 would
automatically hold true) oz is not global ifu(zg) € % , against the assumption.

Before starting the proof of Theorems 3.4 and 3.6, some preliminary facts are in order. Firstly we prove a
global summability property fag,. For simplicity we assume that > 0, the casa = 0 being similar. Taking into
account thatz; (t) € Hol(fz) for a.e.t > 0, we combine Poincaré inequality with (4.13) and (7.1) to show that, for
everyr > 0 we have

t t
/Hu,(r)”idt < c/“ut(r)“idr < C(E(O) — d).
0 0

Lettingr — oo, we conclude that
o0 o0
/Hu,(r)”SdI <o ifw>0, f||Vu,(t)|’§dr <o ifw>0. (7.2)
0 0

Furthermore, observe that by the definition/f) and (7.1), we obtain
Hu(r)||£ > gHVu(t)”; — pE(0) foreveryr e R,.

Then, plugging this inequality into identity (5.7) yields

d 1 p—2
E(/“(t)ut(f) + E”u(l‘)”i) = T||Vu(t)||§ — pE(0). (7.3)
2

Inspired by [8] we now prove a crucial stability result.

Lemma 7.1. Under the assumptions of Theorethd and 3.6, for every > 0 we have
lim |Vu(t) — Vu(t +«)|,=0 forw=>0,
11— 00

lim |u() —u(t +«)|,=0 forw=0.
11— 00

Proof. Letw > 0. Fixedx > 0, by (4.13), for every > 0 we have

t+k 2 t+K
/‘Vu(t)—Vu(H—K)’Z:/ /Vu,(r)dr <K//’Vu,(r)]2dt
2 22 t 2t

t+x

<«kc / ||u,(r)||idr=Kc(E(t) —E(t—i—/()).
t

Since E(¢) is nonincreasing and lower bounded by (7.E)y) admits finite limit ast — oco. This immediately
yields the assertion by letting— oo in the previous inequality. The proof in the case= 0 is similar. O
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7.1. Proof of Theorem 3.4

Assume by contradiction that (3.2) fails, namely that there exists a diverging sequgnceR . such that
2 2 .
lus@p) |5+ || Vu@j)|5— 00 asj— oo. (7.4)
Then, by (7.1) we havgu(z;)|l , — oo so that by Sobolev inequality
||Vu(tj)||2 — 00 asj— oo. (7.5)

By (7.5) and continuity, we can select a diverging sequehgkec R such that|u(%,)[|2 = m? + 1. Moreover,
since Lemma 7.1 witly > O rephrases as

Tli_)moosup{;c >0: |u@) —ult+x)|, <1, Vi =1} =00,

we find a second diverging sequereg} C R such that

m? < u(t) ||i <m?+2 foreveryt € [im, im + Tm]. (7.6)
In view of (7.2), for allm sufficiently large,

there exists,, € [, im + 1] such that|u, (t,,) ||§ < 2d. (7.7)
Clearly, up to renaming,, into (t,, — 1) we now have

m? < |u@|> <m?+2 for everyr € [im, tm + t. (7.8)
Also, for m large enough, there holds

1 2
u(tm)us () + E ”M(tm)”>|< > 0. (7.9)
2

Indeed, by (7.6), (7.7), Young, Holder, and Poincaré inequalities,

1 1
/u(rmm(rm) St 7> 5 et 7 = ) s ) |
2

1 2
2 Z””(tm)ni - C”ut(tm)”; > mj —2cd>0

for everym large enough.
By (7.9) and integrating (7.3) on the time interyal, ¢] for ¢t € (t,,,, t;, + 1] €ntails

t t
1 _2
/u(r)u,(t)Jr§||u(t)||i>/<p7||Vu(z)}|§—pE(0)) dr>c/||u(r)||fdz
2 tm

m

providedm is sufficiently large. On the other hand, by Holder, Young and Poincaré inequalities,

1 1 1
[ w0+ Sl |2 < @ a0+ 5o < 5 ool + cluo)]?
2
Summarizing, if we set

t
Tm(t)z/”u(t)uidt for everyr € (tp, tm + Tl
m
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then the following differential inequality is satisfied
1) > YT () = Cllus (0|5 for everyr € (i, ty + T,
for somey > 0 andC > 0; hence,

LEAC I lu, ()13
Yo (1) Yo (1)
Notice that, since by (7.8) we have

for everyt € (¢, tyy + T . (7.10)

2
Tt) > m2(t — 1) > 0 for everyr [tm + %" tm + rm}, (7.11)
the differential inequality (7.10) yields
7, (1) e (113 Tn
>y —2C for everyr € | ¢ —,t . 7.12
T (1) v mZTm A 27" *m ( )
Integrating (7.12) ovefr,, + %, t,, + ,,] and taking into account (7.2) we find

T T 2Ca
10 Vo (tin + T) 2109 i ( 1w + == ) + ¥ = — —
2 2 m?y,

where we have set = fooo ||u,(r)||§dr. Hence, up to enlarging:, we may take the exponential and we finally
conclude that

tn+Tm
1 2
/ @) |2 dr = Tosttn +70) > ST (zm + %) @/m/2 s T /2 (7.13)
Im
where we also used (7.11). On the other hand, by inequality (7.8), it turns out that
tn+Tm
2 2
[ a2 de < w2+ 255,
ll}l

which contradicts (7.13), sincg, — oo. Therefore, (7.4) is false ar{d(¢)} is bounded, namely there exists- 0
such that

||u,(t)H§+ ||Vu(t)”§<c forallz > 0. (7.14)

We now turn to the proof of the second part of Theorem 3.4ufer 1,2 or under assumption (3.3). Since
u; € CORL, L2(£2)), by (7.2) there exist a diverging sequericg C R, ¢ € (0,1) and a sequende;} C [e, 1]
such that

tite;

Jim / lu@)[2dr =0, lim [urp)],+ Just; +¢))],=0. (7.15)

Jj—>00 Jj—o0
I

In particular, from (7.15), for every H&(Q) there holds

tite;

/ (e (r), n)dr = / ity +e)m — / u(tj)n=0(1) asj— oo.

tj 2 2

Integrating Eq. (1.1) ovde;, ¢; 4 ¢;] and using again (7.15) yields
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ljtej
/ (/(Vu(r) -Vn — }u(f)|pzu(f)’7)) dr
tj 2
ti+e; lj+ej
T / (uee (), m)dr — / (u:(x), ), dr=0(1) asj— oo
tj tj

for everyn € H}(£2). Consequently, recalling thate CO(R., H}(£2)), for any suchy and for any;j we may find
1] €1, 1; +¢;] such that

; n UNESZ ] —_0n-
lemoo/(W(zj)-vn— |u(tj)| u(tj)n) =0;
2
in fact, by (7.14) and Lemma 7.1 we may tai?e: t; for anyn, namely

lim f(Vu(tj) -V — |u(tj)|p_2bl(tj)r)) =0 forallne H} ().

j—o00
2
Using again (7.14), this tells us that (up to a subsequence)
u(tj) ~¢ forsomeyp € .7. (7.16)

Next, we test Eq. (1.1) with and integrate ovefrr;, t; + ¢;] for all j. By using (5.6), (7.15) and arguing as above
we obtain
tite;
lim f /(|Vu(r)|2 — u(®)|”)dr=0.
j—o00
tj 0
Therefore, we can find a new sequenge [z;,; + ;] such that
. ~ 2 ~ P
lim [ Vu@) |3 = Juip | =o.
By Lemma 7.1 we may takg =¢; so that Rellich Theorem yields

lim [Vu(p|3= lm Juep]” =191} = 1Vel3.
Jj—>00 j—o00

which, combined with (7.16), shows thatt;) — ¢ strongly inH(}(.Q).

Concerning the proof of (3.4), since the energy functiofiak decreasing and bounded below, there exists
¢ e [d, E(0)) such thatE(r) — ¢ ast — oco. The fact that¥; # ¢ and

tIer;o distHol(u(t), ) =0 (7.17)
follows immediately by [11, Corollaire 2.1.9] once we observe #iad a strict Lyapunov function for the dynam-

ical system associated with (1.1). Notice that, as a consequence of (7.17), the stationary gaafinad through
(7.16) belongs ta;, being

distH&(¢, Fp) = jILmoodistH& (u(t), ) =0.
Finally, again in light of (7.17), itis readily seen that

lim J(u(n)) =¢,

—00

which, by the definition ofE (r), immediately yields|u, (¢)||> — O.
The proof of Theorem 3.4 is now completen
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7.2. Proof of Theorem 3.6

We provide a new proof of the boundedness of global solutions that parallels the one we performed in the
casew > 0. According to Esquivel-Avila [5, Theorems 2.8 and 3.1], the difficult part of the statement is the
L2-boundedness of the global solution.

Assume by contradiction that there exists a diverging sequgnce R, such thatlju(¢;)|2 — oco. Then, by
continuity, we can find a diverging sequeri¢g} C R, such that|u(z,,) ||§ =m?+ 1. Moreover, since Lemma 7.1
with w = 0 reads as

lim Sup{/c > 0: ||u(t) —u(t +K)||2 <1, V> r} = 00,

T—>00

we find a second diverging sequereg} C R, such that
m? < ||u(t)||§ <m?+2 foreveryr € [im, im + Tl (7.18)

Notice that, by (7.2), as in the case> 0, inequality (7.7) holds true for somg € [7,,, ., + 1]. By inequality (7.3)
with w = 0 and Poincaré inequality we deduce that

d -2
d—</l4(f)ut(l)+ E||u<t>||§) > P Siu] - pEO). (7.19)
t 2 2
2
Notice that
/u(tm)ut(tm) + %Hu(tm)HS >0 (7.20)
2

for m large enough. Indeed, by (7.7), (7.18) and by Young and Hélder inequalities,

[ )+ % Yt 1 & Bt = o sl
2

2 2
> ) |3 = Cus ) 3 > Zm? = 2€,d > 0
for someC,, > 0, provided thatn is large enough. Let us fix > 1 so large thatn? > (4p/(p — 2))E(0)/1 and

inequalities (7.7), (7.18) and (7.20) hold true. By (7.18) and (7.20), integrating (7.19) on the time if¢grval
for t € (¢, ty + 7] €NtailS

t t
—2 -2
/u(t)ut(t)Jr%”u(t)”;2/(%,\1”“(1)”;—,719(0)) dr > p4 M/||u(r)||§dr.
Im

2 Im
On the other hand, by Holder and Young inequalities,

1
[uwmo + 4 e 3 < Sl 3+ Culu
2
for someC,, > 0. In conclusion, if we set

t
Tm(z)=/|\u(r)||§dr for ¢ € (tm, tm + Tl
Im

then the following differential inequality is satisfied

1,,(1) = 7V (t) — Cllus(t) ||§ for everyt € (tpy, tm + Tl
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for somey > 0 andC > 0. At this point, taking into account (7.18), the desired contradiction pops up exactly as
in the proof of Theorem 3.4. The other assertions in the statement of Theorem 3.6 follow arguing as in the case
w>0. O

Remark 7.2. A general criterion to establish the precompactness of bounded trajectories of a dynamical system was
issued in a celebrated paper due to Webb [30]. In fact, in the proof of Theorems 3.4 and 3.6, the strong convergence
of {u(t;)} for a suitable diverging sequengg} could also be obtained as a byproduct of [30, Proposition 3.1] by
splitting the solution semigrouf(z) into the sum of an exponentially decaying linear semigrSuf) and of a
completely continuous nonlinear mappisig(¢). On the other hand, in our proof, once the weak limifwof;)} is

identified as a stationary solutigne ., taking into account the crucial stabilization property given by Lemma 7.1,

the strong convergence is recovered at once by a simple variational argument.

8. Proof of Theorem 3.12
We start with the following elementary statement.

Lemma8.1. Lets > 0, T > 0 and leth be a Lipschitzian function ovéd, T). Assume thak(0) > 0 and4/(r) +
Sh(t) > Ofora.e.t € (0, Tmax). Thenh(z) > Oforall r € (0, T).

If u solves (1.1), by [24, Lemma 4.1] we know that the njap> (?TZZIIM(I)IIE} is defined for a.ez. Hence, if
w=0andu > 0, the identity (5.7) reads as

d2 2 d 2 2
iz lu) |5+ O lu)|5=2[|u:@)]5—1(u(®)] fora.e. e [0, Tmax- (8.1)
We may now prove the weak antidissipativity of the flow whenemey € ./_.

L emma 8.2. Assume that1.4) hold and thaiw = 0 and . > 0. In addition, assume thaty € .4~ anduy € L2(£2)
are such that

/uoul > 0.

2

Letu be the solution of1.1) with initial data (ug, u1). Then the mag — |ju(z)||2} is strictly increasing as long
asu(t) € AN_.

Proof. Let F(r) = ||u(t)||§ andG(t) = F'(t) = 2‘[Q uu;. By [24, Lemma 4.1], the functiols is Lipschitzian.
Note also thatG (0) = 2[Q uou1 > 0 and thaiG satisfies
G'(t)+uG@) >0 fora.ete[0, Tmay
in view of (8.1) and of the fact that(¢) € .4_ (so thatl (u(¢z)) < 0). Therefore, Lemma 8.1 applies and helftcis
strictly increasing as long agr) € /~. O
In order to prove Theorem 3.12, we first claim that the soluticGatisfies
u(t)y e &/~ foreveryr € [0, Thax). (8.2)

If this was not the case, then there would exist a first titne (0, Tmax) Whereu(r) exits A_, thatis,u(T) € 4.
By Lemma 8.2, we infer that

lu(T)|, > lluoll2 = Ar. (8.3)
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Moreover, by (4.13) (notice thdf is constant ifw = 1 = 0) we get
J(u(T)) < E(T) < E(0).

This shows thau(T) € 4 N JE©@ = 4% . Together with (8.3) and the definition of (o), this leads to a
contradiction and proves (8.2).

By contradiction, assume now thatis global, namelylimax = co. Then, by energy arguments analogous to
those in the proof of Theorem 3.4, there expst .4z, and a diverging sequende;} such thatu(z;) — ¢ in
Hol(Q), so that|¢|l2 < Ag ). But Lemma 8.2 and (8.2) give

loll2 > lluoll2 = Ak,

a contradiction. Theorem 3.12 is so proved.

9. Proof of Theorem 3.13
We first recall a simple property ofi” (see also [8, Theorem 15]).

Lemma 9.1 Let B be as in(2.4). Then, for any > g and for anyk > 1 there exists: € 4" such thatsupp(u)=
2/k and||Vull2 = o, wheresupp(u)is the support ofi.

Proof. Since./" is unbounded and connected, foe= 1 and any > g there exists a function with the required
properties. In the case> 1 it is sufficient to rescale as

{kz/(”_l)u(kx) for x ¢ PR
up(x) = su
pru)
for x ¢ =57,
to get a functiont € 4. O
We will construct(ug', u7') as in the statement of Theorem 3.13 by using Theorem 3.12xz Eb0 sufficiently

large and take:]' = 0. Take anyw Hol(Q) \ {0} such that supf) C (£2 \ %). Then, takex,, > 0 sufficiently
large so that

amllvll2 = Am, J(amv) <0. (9.1)

By Lemma 9.1, we may find,, € .4 such that supgw,,) C £2/2 and
-2
J(wn) = ”2—||Vwm||§=m—J(amu) > m. (9.2)
p
Finally, letug = w;, + a,v. Then, sincan,, andv have disjoint supports, by (9.1) and (9.2) we have

lug 2 = lwmllz + amllviiz > An,
J(ug) = J(wp) + J (0nv) =m,
I(ug) =I(wy) + I (anv) =1 (ayv) <0,

the latter inequality following from (9.1) and the fact thats nonnegative in#,. U .4". Moreover,& (ug , u’') =
J(uy) = m. Hence,(ugy, u?') satisfies all the assumptions of Theorem 3.12 and the proof of Theorem 3.13 is
complete. O
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