
c

um of

when
ential

s
ion
il y a moins

intégralles
Ann. I. H. Poincaré – AN 23 (2006) 269–281
www.elsevier.com/locate/anihp

An inverse problem in the economic theory of demand

Problème inverse sur la théorie économique de la demande

Ivar Ekelanda, Ngalla Djittéb,∗

a Canada Research Chair in Mathematical Economics, University of British Columbia, Canada
b Laboratoire d’Analyse Numérique et d’Informatique, Université Gaston Berger de Saint-Louis, Sénégal

Received 10 February 2005; received in revised form 12 October 2005; accepted 17 October 2005

Available online 2 December 2005

Abstract

Given an exchange economy consisting ofk consumers, there is an associated collective demand function, which is the s
the individual demand functions. It maps the price systemp to a goods bundlex(p). Conversely, given a mapp → x(p), it is
natural to ask whether it is the collective demand function of a market economy. We answer that question in the casek is
less than the number of goodsn. The proof relies on finding convex solutions to a strongly nonlinear system of partial differ
equations.

Résumé

La fonction de demande agrégée d’une société composée dek individus résulte de la sommation dek fonctions de demande
individuelles. Elle fait correspondre à un système de prixp, un vecteur de biensx(p). Inversement, étant donnée une fonct
p → x(p), est-elle une fonction de demande agrégée ? Nous apporterons une réponse à cette question dans le cas où
de consommateurs que de biens.
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1. The disaggregation problem

Consider an exchange economy consisting ofk consumers. The space of goods isR
n, and agenti is characterized

by a strictly quasi-concave utility functionui and a wealthci . Given a set of non-negative pricesp ∈ R
n+, agenti

chooses its consumptionxi(p) by solving the optimization problem:
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ui(x), (1)

p′x � ci . (2)

Assume that, for everyp belonging to a convex subsetΩ of R
n, the solutionxi(p) exists, and satisfiesp′xi(p) = ci .

This will be the case, for instance, if theui are increasing with respect to every argument, and we can takeΩ = R
n.

The individual demandsxi(p) are then well-defined onΩ, and adding them up, we obtain themarket demand:

x(p) :=
k∑

i=1

xi(p). (3)

It obviously satisfies the Walras law:

p′x(p) =
k∑

i=1

ci = c. (4)

We are interested in the inverse problem: given a mapp → x(p) from a subsetΩ ⊂ R
n into R

n, an integerk, and
numberswi, 1 � i � k, can one find strictly concave utility functionsui(x), 1 � i � k, such that the decompositio
(3) holds,xi(p) being the solution of problem (1)? An obvious necessary condition is thatx(p) should satisfy the
Walras law, but is it sufficient?

This is the famous disaggregation problem, which has a long history. In the case whenk � n (there are more
consumers than goods), it was proved by Chiappori and Ekeland in [4] that the Walras law is sufficient. Much
in a celebrated series of papers, Sonnenschein, Mantel and Debreu had investigated the same question in
excess demand, that is when the linear constraint is of the formp′x � p′ωi , whereωi ∈ R

n is the initial endowment o
agenti. They proved that ifk � n, the Walras law was sufficient. We refer to [13] for a history of the Sonnensch
Debreu–Mantel results, and to [5] for a recent proof, in the spirit of the present paper.

Much less is known in the case whenk < n, except in the casek = 1, where the group reduces to one person
that collective demand coincides with individual demand. It is the aim of the present paper to fill that gap in t
of market demand. We do not treat the case of excess demand, which, to our knowledge, still remains open.

The casek = 1 is classical. It was first treated by Antonelli [1], whose results went forgotten and were redisc
by Slutsky [14]. We summarize these results, and sketch part of the proof; the reader will find the full argumen
for instance.

Here and later, we denote differentiation by the symbolD, so thatDu denotes the Jacobian matrix of the mapu:

Du =
(

∂ui

∂pj

)1�i�n

1�j�n

andD2u denotes the matrix of second derivatives of the functionu:

D2u =
(

∂2u

∂pj ∂pj

)1�i�n

1�j�n

.

Proposition 1. Let Ω be a convex open subset ofR
n, andx(p) be aC1 map fromΩ into R

n satisfying the Walras
law. A necessary and sufficient condition forx(p) to be the individual demand associated with some quasi-con
utility functionu is that the restriction ofDx(p) to [x(p)]⊥ is symmetric and negative definite for everyp ∈ Ω .

In other words, we can write:

Dx = Q + ξx′

whereQ is a symmetric,negative definite matrix, andξ is a vector (so that the last term in the above equation
matrix of rank 1). This is known in the literature as theSlutsky condition. For an analogue of this condition in the c
of individual excess demand, we refer to [5].

Let us sketch the proof that the Slutsky condition is necessary. Assume that the utilitity functionu of the sole
agent isC2, and that the restriction ofD2u(x(p)) to [p]⊥ is negative definite. Then the individual demandx(p) is
characterized by the first-order optimality condition:
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) = λ(p)p,

p′x(p) = c

whereλ(p) > 0 is the Lagrange multiplier. Applying the Inverse Function Theorem to this system, one finds t
mapx(p) and the functionλ(p) are well-defined andC1 onΩ .

Introduce now the indirect demand function:

v(p) = max
x

{
u(x) | p′x � c

}
. (5)

The functionv(p) is quasi-convex andC2. More precisely, the restriction ofD2v(p) to [x(p)]⊥ is positive definite.
In addition,u(x) can be obtained fromv(p) by the formula:

u(x) = min
p

{
v(p) | p′x � c

}
. (6)

Let us differentiatev(p) by applying the envelope theorem to the formulav(p) = maxx{u(x) − λ(p)(c − p′x)}.
We get:

Dv(p) = −λ(p)x(p), (7)

x(p) = −µ(p)Dv(p) (8)

whereµ(p) = 1/λ(p). Differentiating, we get:

Dx = −µD2v + (Dµ)(Dv)′.

The last term on the right-hand side vanish on[x(p)]⊥ = [Dv(p)]⊥, so that the restriction ofDx(p) to [x(p)]⊥
is negative definite, and the Slutsky condition is indeed necessary. The fact that it is also sufficient is proved
formula (6); we refer to [12] for details.

In the casek > 1, there is a natural extension of the Slutsky condition, which was first described by Diew
and by Geanakoplos and Polemarchakis [9] in the context of market demand:

Definition 2. Let Ω be a convex open subset ofR
n, andx(p) be aC2 map fromΩ into R

n satisfying the Walras law
We shall say thatx(p) satisfies the generalized Slutsky condition fork consumers, abbrevieated to GS(k), if for every
p ∈ Ω we have:

Dx(p) = Q(p) +
k∑

i=1

ξi(p)ηi(p)′ (9)

whereQ(p) is symmetric and negative definite, and the vectorsηi, 1� i � k, containx(p) in their linear span.

Proposition 3. Let Ω be a convex open subset ofR
n, andx(p) be aC2 map fromΩ into R

n satisfying the Walras
law. A necessary condition forx(p) to be the market demand for an exchange economy withk consumers is that i
x(p) satisfiesGS(k)onΩ .

Proof. Rewrite formula (3), using formula (8) for each individual demandxi(p). We get:

x(p) = −
k∑

i=1

µi(p)Dvi(p). (10)

Now we differentiate:

Dx = −
k∑

i=1

µiD
2vi −

k∑
i=1

Dµi(Dvi)
′. (11)

The first term on the right is a symmetric matrix, and the second has the desired form
∑k

i=1 ξiη
′
i , with ηi = Dvi .

Because of relation (10),x(p) belongs to thek-dimensional spaceEk(p) = Span[(Dvi(p)) | 1 � i � k]. Finally,
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Ek(p)⊥ is the intersection of all the[Dvi(p)]⊥ = [xi(p)]⊥, and the restriction ofD2vi(p) to [xi(p)]⊥ is positive
definite because of the Slutsky condition. So the restriction ofDx(p) to Ek(p)⊥ must be negative definite. Writing

Dx =
(

−
k∑

i=1

µiD
2vi −

k∑
i=1

αiDvi(Dvi)
′
)

−
k∑

i=1

(Dµi + αiDvi)(Dvi)
′

and takingαi > 0 large enough, we find that the first term on the right-hand side is symmetric and negative d
and this is the GS(k) condition. �

This paper aims at showing that the GS(k)condition is sufficient. We will prove the following:

Theorem 4.Letx(p) be an analytic map from some convex neighbourhoodΩ0 of p̄ ∈ R
n into R

n satisfyingp′x(p) =
w for somew > 0. Assume thatx(p) satisfies theGS(k) condition onΩ0 for somek > 1. Then, given any famil
wi > 0,1� i � k, such that

∑
wi = w, there exists some convex neighbourhoodΩ1 ⊂ Ω0 of p̄, such thatx(p) is the

market demand function for an exchange economy withk consumers with wealthsw1, . . . ,wk .

This theorem will be a consequence of another one, which we state in the next section.

2. A system of nonlinear PDEs

Let us rephrase the disaggregation problem as a system of partial differential equations. We are given a cc,
and a mapx(p) satisfyingp′x(p) = c > 0. We choose positive constantsc1, . . . , ck which sum up toc, and we seek
mapsx1(p), . . . , xk(p) such thatp′xi(p) = ci andxi(p) solves the optimization problem (1), (2) for some stric
quasi-concave functionui . Substituting the expression (8) for eachxi(p), we get the system of equations:

x(p) = −
k∑

i=1

µi(p)Dvi(p), (12)

p′Dvi(p) = − ci

µi(p)
, 1� i � k. (13)

Conversely, if there is a set of functionsvi(p) andµi(p), 1 � i � k, satisfying this system, if thevi(p) areC2

with D2vi positive definite, and if theµi(p) are positive, then theui(x) defined by formula (6) will beC2 and
strictly quasi-concave, andxi(p) will maximize ui(x) under the constraintp′x � wi . So the disaggregation proble
is equivalent to finding solutions(vi,µi), 1� i � k, of the system (12), (13) with thevi convex and theµi positive.

Let us rewrite the system as follows:

−
k∑

i=1

µi

∂vi

∂pj

= xj (p), 1� j � n, (14)

−µi

n∑
j=1

pj

∂vi

∂pj

= ci, 1� i � k. (15)

Theorem 5.Letx(p) be an analytic map from some convex neighbourhoodΩ0 of p̄ ∈ R
n into R

n satisfyingp′x(p) =∑k
i=1 ci . If x(p) satisfies theGS(k) condition onΩ0 for somek > 1, then there exists some neighbourhoodΩ1 ⊂ Ω0

of p̄, and analytic functionsvi(p) and µi(p), 1 � i � k, defined onΩ1, with D2vi positive definite andµi > 0,
satisfying equations(14)and (15).

Of course, we can eliminate theµi from the equations. We then get a system ofn nonlinear partial differentia
equations for thek unknown functionsvi :

k∑ ci∑n
pj

∂vi

∂vi

∂pj

= xj (p), 1� j � n. (16)

i=1 j=1 ∂pj
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This can be written in a more transparent way by introducing the vector field:

π(p) =
n∑

j=1

pj

∂

∂pj

(17)

and recognizing in the denominator of (16) the derivative ofvi in the directionπ , which we denote by∂/∂π :

k∑
i=1

ci

∂vi/∂pj

∂vi/∂π
= xj (p), 1� j � n. (18)

Again, the problem consists in finding convex solutionsv1, . . . , vk of system (18), and the answer is provided
Theorem 5: it is possible, provided thexi(p) satisfy the Walras law and the GS(k) condition, and they are analytic.

Before we proceed with the proof, let us comment on related results. Ifk < n, the system is clearly overdete
mined (there are more equations than unknown functions), and some compatibility condition on the right-ha
xj (p), 1 � i � n, is needed in order to find solutions; this is what Theorem 5 provides, with the added twist t
want the solutions to be convex.

When there is a single equation,k = 1, the results of the preceding section show that there is a quasi-c
solutionv1(p) = v(p) provided thexj (p) satisfy the Walras law and the Slutsky condition. This solution is defi
globally (there is no need to restrict the initial neighbourhood), and it does not require that thexj (p) be analytic:C2 is
enough. On the other hand, it does not give a convex solution, only a quasi-convex one, so the conclusion m
to be weaker. This is not so; indeed, given a quasi-convex functionv and a pointp̄, we can always find a functionϕ(t)

such thatϕ ◦ v is convex in some neighbourhood ofp̄, and we then take advantage of the following remark.

Lemma 6. If (v1, . . . , vk) is a solution of system(18) near p̄ and theϕi :R → R satisfiesϕ′(vi(p̄)) �= 0, then
(ϕ1 ◦ v1, . . . , ϕk ◦ vk) is also a solution of system(18)nearp̄.

Proof. Clear. �
Whenk � n, then the GS(k) condition is vacuous, and all we are left with is the Walras law. Indeed, it has

proved by Chiappori and Ekeland [4] that in that case, the system (14), (15) always has local solutionsvi andµi , with
thevi convex and theµi positive, provided only that thexi(p) are analytic and satisfy

∑
pjx

j (p) = ∑
ci .

Whenk < n, and we consider only part of the system, that is equations (14) but not the constraints (15),
has been proved by Ekeland and Nirenberg [8] that there are local solutionsvi andµi , with thevi convex and theµi

positive, provided thexj (p) areC2 (not necessarily analytic) and satisfy the GS(k)condition.
This paper is the first one to consider the full problem withk < n. The proof is provided in the next section. It relie

as [4], on the Cartan–Kähler theorem, which is a very sophisticated tool for solving systems of partial diffe
equations in the analytic framework; see [3] for a detailed statement and proof. Let us conclude by rema
the requirement that the right-hand sidesxj (p) be analytic. This means that they can be expanded in conve
power series in the neighbourhood of any pointp. This is much stronger than simply being indefinitely differentiab
the Taylor series has to converge. The reason this is needed is that the proof of the Cartan–Kähler theorem
expanding both sides of the equations in power series and matching coefficients. Whether Theorem 5 still h
if the right-hand sidesxj (p) are only assumed to beC∞ is not known; we have investigated the question with
success.

3. Solving the system

3.1. Some simplifications

We will give the proof only in the casek = 2. This will considerably simplify the notations, and make the argum
more transparent by getting rid of half the indices. We will also takec1 = c2 = 1. Let us restate the problem in th
case.

We are given an analytic mapx(p) of Ω0 ⊂ R
n into R

n satisfying the Walras law:

p′x(p) = 2 (19)
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Dx(p) = Q(p) + ξ1(p)η1(p)′ + ξ2(p)η2(p)′ (20)

whereQ(p) is symmetric and negative definite, andx(p) belongs to the 2-dimensional subspace:

E2(p) = Span
[
η1(p)η2(p)

]
.

We want to find functionsu(p), v(p), λ(p) andµ(p) such thatu andv are convex,λ andµ are negative, and:

λ
∂u

∂pj

+ µ
∂v

∂pj

= xj (p), 1� j � n, (21)

λ

n∑
j=1

pj

∂u

∂pj

= 1, (22)

µ

n∑
j=1

pj

∂v

∂pj

= 1. (23)

This system naturally splits in two parts: then Eqs. (21), which express the vectorx(p) as a linear combination o
the two gradientsDu andDv:

λ(p)Du + µ(p)Dv = x(p) (24)

and the two Eqs. (22) and (23), which are constraints on the coefficientsλ andµ:

λ(p′Du) = 1, (25)

µ(p′Dv) = 1. (26)

If we define new variablesui andvj by:

ui := ∂u

∂pi

,

vi := ∂v

∂pi

Eqs. (21), (22) and (23) become algebraic relations between theui, vj , λ andµ:

λui + µvi = xi(p), 1� i � n, (27)

λ

n∑
j=1

pju
j = 1, (28)

µ

n∑
j=1

pjv
j = 1. (29)

DefineM to be the set of all(pi, u
j , vk, λ,µ), 1� i, j, k � n, satisfying (27), (28) and (29). The problem cons

in finding convex functionsu andv, negative functionsλ andµ such that:(
p,Du(p),Dv(p),λ(p),µ(p)

) ∈ M ∀p. (30)

In other words, we are looking for holonomic sections ofM overRn.

3.2. Finding general solutions

In order to study the manifoldM and to have a convenient setting for the Cartan–Kähler theorem we will ch
coordinates inRn. We will then apply the Cartan–Kähler theorem to find holonomic sections ofM overR

n, that is,
to find functionsu, v, λ andµ which solve the system (21), (22) and (23) but which do not necessarily satis
further requirements of convexity and negativity.
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ω =
n∑

i=1

xi(p)dpi. (31)

Because of the GS(k) condition (20), we have:

ω ∧ dω∧ dω = 0. (32)

By the Darboux theorem (see [3] or [8]), we can find functions(q1(p), q2(p), q3(p), q4(p)) such that:

ω = q1 dq2 + q3 dq4. (33)

Find other functionsqi(p), 5� i � n, such that theDqi(p̄), 1� i � n, are linearly independent, and use theqi as
a nonlinear coordinate system nearp̄.

Note that, settingh = q1/q3, we have:

ω ∧ dω = (q3 dq1 − q1 dq3) ∧ dq2 ∧ dq4 = q2
3 dh∧ dq2 ∧ dq4. (34)

If there is another splitting ofω, namelyω = λdu+ µdv, then we must also have:

ω ∧ dω = (µdλ− λdµ)∧ du∧ dv = µ2d

(
λ

µ

)
∧ du∧ dv. (35)

Comparing formulas (34) and (35), we find that(dh,dq2,dq4) and (d(λ
µ
),du,dv) span the same subspace

follows that duand dvmust belong to the 3-dimensional subspaceE3(p) = Span[dq2,dq4,dh]. Writing:

du=
n∑

i=1

ui dqi (36)

we find that in fact:

du= u2 dq2 + u4 dq4 + uh dh= u2 dq2 + u4 dq4 + 1

q3
uh dq1 − q1

q2
3

uh dq3. (37)

Comparing formulas (36) and (37), we find that:

q1u
1 + q3u

3 = 0,

ui = 0, 5� i � n

and similar relations for thevj .
In this coordinate system,M is the set of(qi, u

j , vk, λ,µ), 1� i, j, k � n, such that:

λu1 + µv1 = 0, (38)

λu2 + µv2 = q1, (39)

λu4 + µv4 = q3, (40)

λui + µvi = 0, 5� i � n, (41)

u1q1 + u3q3 = 0, (42)

v1q1 + v3q3 = 0, (43)

λ

4∑
i=1

uiPi(q) = 1 (44)

where thePi(q) are theqi -coordinates of the vector fieldπ , defined by formula (17) in thepi -coordinates.
All these equations are independent, so thatM is a submanifold of codimensionn + 2 in R

3n+2, and hence
dimension 2n.
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Note that all points inM satisfy additional relations. From (42) and (43) we deduce thatu1/v1 = u3/v3, and
equation (38) then implies that:

λu3 + µv3 = 0.

Remembering the Walras law, we also find that Eq. (44) implies a similar relation forµ:

µ

4∑
i=1

viPi =
(

µ

4∑
i=1

viPi + λ

4∑
i=1

uiPi

)
− λ

4∑
i=1

uiPi = 1.

Consider the exterior differential system onM:

4∑
i=1

dui ∧ dqi = 0, (45)

4∑
i=1

dvj ∧ dqj = 0, (46)

dq1 ∧ · · · ∧ dqn �= 0, (47)

where the functionsPi(q
1, . . . , qn), 1� i � n, are given.

Lemma 7.Any integral manifold of this system is the graph of a map:

q →
(

∂u

∂qi

,
∂v

∂qj

, λ,µ

)

where the functionsu, v, λ, µ satisfy Eqs.(21)–(23)in thepi -coordinates.

Proof. Condition (45) mean that the functionsui do not depend on theqj , 5 � j , and that the cross-derivativ
∂ui/∂qj and∂uj /∂qi are equal, for 1� i, j � 4. By the Poincaré lemma, there is a functionu(q1, q2, q3, q4) such
that ui = ∂u/∂qi . Similarly, condition (46) means that there is a functionv(q1, q2, q3, q4) such thatvi = ∂v/∂qi .
These partial derivatives lie inM for all q. Going back to thepi -coordinates, this means precisely that they sa
all the equations (21)–(23).�

We claim that the Cartan–Kähler theorem applies, so that there is an integral manifold going through an
integral element. To prove it, we will have to check successively that the system is closed, that there is an
element through every point inM, and that the Cartan test is satisfied.

It is obvious from the form of Eqs. (45) and (46) that the system is closed.
Let us now look for integral elements. Setting:

dui =
n∑

j=1

Uij dqj ,

dvi =
∑

V ij dqj ,

dλ =
∑

Lj dqj ,

dµ =
∑

Mj dxj

and substituting in Eqs. (45) and (46) we get:

Uij − Uji = 0, 1� i, j � 4, i �= j, (48)

V ij − V ji = 0, 1� i, j � 4, i �= j, (49)

Uij = 0, 1 � i � 4; 5� j, (50)

V ij = 0, 1� i � 4; 5� j. (51)
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Note that theUij , theV ij , theLj and theMj also have to satisfy the relations obtained by differentiating Eqs. (
(44), which express that we are working in the Grassmannian bundle ofn-planes inT ∗M. All these equations ar
linearly independent. Eqs. (48)–(51) number 12+ 4(n− 4)+ 4(n− 4)= 8n− 20, so that the set of integral elemen
has codimensionc = 8n− 20 in the Grassmannian.

Let us now perform Cartan’s test. Write:

αi = dui −
4∑

i=1

Uij dqj ,

βi = dvi −
4∑

i=1

V ij dqj .

Note that, because of relations (48) to (51), we have∑
αi ∧ dqi =

∑
dui ∧ dqi = 0,∑

βi ∧ dqi =
∑

dvi ∧ dqi = 0.

We then apply the Cartan procedure, as described in [3]. We have:

H0 = {0},
H1 = span

[
α1, β1],

H2 = span
[
α1, β1, α2, β2],

H3 = span
[
α1, β1, α2, β2, α3, β3],

Hi = span
[
α1, β1, α2, β2, α3, β3, α4, β4] for 4� i

and hence:

c0 = 0, c1 = 2, c2 = 4, c3 = 6, c4 = · · · = cn−1 = 8,

C = c0 + · · · + cn−1 = 0+ 2+ 4+ 6+ 8(n− 4)= 8n− 20

which is exactly the codimension we found earlier:C = c. So the exterior differential system passes the Cartan
By the Cartan–Kähler theorem, for every point(qi, u

j , vk, λ,µ), 1 � i, j, k � n in M, and every integral elemen
(Uij ,V k�,Lr,Ms) through that point, there is an integral manifold of the exterior differential system (45)–(47)

Of course, the conclusion is coordinate-independent. Let us revert to the original coordinates inR
n, so thatω

no longer has the special formq1 dq2 + q3 dq4.The relations defining an integral element are then obtaine
rectly by writing that they are tangent to holonomic sections ofM. A point in M is then specified by coordinate
(pi, u

j , vk, λ,µ), 1� i, j, k � n satisfying relations (27), (28) and (29). Introduce the notations:

ξ = (
u1, . . . , un

)
, η = (

v1, . . . , vn
)
.

An integral element then is simply a set(U,V,L,M), whereU andV are symmetricn × n matrices, andL and
M aren-vectors satisfying:

Ω = λU + µV + Lξ ′ + Mη′, (52)

λUp = −(ξ ′p)L − λξ, (53)

µVp = −(η′p)M − µη. (54)

HereΩ is the Jacobian matrix∂xi/∂pj . Note for future use that, by differentiating the relation
∑

xi(p)pi = 2
with respect top, we get

n∑ ∂xi

∂pj

pi + xj = 0,
i=1
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so that:

Ωp + λξ + µη = 0. (55)

The Cartan–Kähler theorem tells us that, given such an integral element at(p, ξ, η,λ,µ), there are function
(u, v,λ,µ) such that:

D2u(p̄) = U, D2v(p̄) = V, (56)

Du(p̄) = ξ, Dv(p̄) = η. (57)

3.3. Finding convex solutions

Given relations (56) and (57), all we have to prove is that there is an integral element(U,V,L,M) at p̄ with U

andV positive definite. ThenD2u(p̄) andD2v(p̄) will be positive definite, and sou andv will be strictly convex in
a neighbourhood of̄p.

To do this, we shall use a lemma of Pierre-Louis Lions [11]:

Lemma 8.Given a symmetric, positive definite matrixQ, a vectorp and two vectorsq1 andq2 satisfyingq1 + q2 =
Qp, a necessary and sufficient condition for the existence of two symmetric, positive definite matricesQ1 and Q2
such that:

Q = Q1 + Q2,

Q1p = q1,

Q2p = q2

is that:

(p, q1) > 0, (58)

(p, q2) > 0, (59)

(q1,Q
−1q2) > 0. (60)

Proof. Let us setx = Q1/2p, y = Q−1/2q1 andz = Q−1/2q2. Set also

M = Q−1/2Q1Q
−1/2 and N = Q−1/2Q2Q

−1/2.

We have:

M + N = I, (61)

Mx = y, (62)

Nx = z (63)

andy + z = x. So it is enough to prove the lemma for the particular case whereQ = I . Let us do it.
Using the three equations, we find easily:

(x, y) = (x,Mx) > 0, (64)

(x, z) = (x,Nx) > 0. (65)

Both M andI − M are positive definite. This means that 0< M < I in the sense of symmetric matrices, so t
M2 < M . It follows that:

(y, z) = (Mx,Nx) = (
Mx, (I − M)x

) = (x,Mx) − (x,M2x) > 0. (66)

So the conditions (58), (59), and (60) are necessary.
Let us now prove that they are sufficient. Given three vectorsx, y, z satisfying (64), (65), and (66) we seek

symmetric matrixM such thatMx = y and 0< M < 1. Indeed, we then setN = I − M , which is still symmetric and
positive definite, and we haveNx = x − Mx = x − z = y, as desired.
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It is enough to solve the problem in the plane spanned byx andy. Without loss of generality, we assume th
‖x‖ = 1. Take an orthonormal basis(e1, e2)in that plane withx = (1,0) andy = (y1, y2). Eqs. (64), (65) and (66
yield 0< y1 < 1 andy1 − ‖y‖2 > 0.

The matrix we are looking for is:

M =
(

y1 y2

y2 c

)

where we will adjust the constantc. Since(x, y) and(x, z) are positive, we have 0< y1 < 1.
ClearlyMx = y. We will adjust the constantc to have 0< M < I . This requires that the determinant and the tr

of M and(I − M) are positive.
Writing that both determinants are positive, we get:

y2
2

y1
< c < 1− y2

2

1− y1
.

Sincey1 > ‖y‖2, the left-hand side is smaller than the right-hand side, so we can find somec in that interval. Since
0< y1 < 1, we must have 0< c < 1.

Writing that both traces are positive, we get:

−y1 < c < 2− y1.

Since 0< y1 < 1, this inequality follows from 0< c < 1. So anyc that satisfies the first inequality satisfies
second. �

We now return to our main argument. By assumption, the GS(k) condition is satisfied, so that there is a symmet
positive definiten × n matrixQ andn-vectorsL andM such that:

Ω = Q + Lξ ′ + Mη′. (67)

Lemma 9. Denote byL0 andM0 the projections ofL andM on [ξ, η]⊥ and byQ0 the restriction ofQ to [ξ, η]⊥.
Without loss of generality, it can be assumed that

(ξ ′p)(η′p)L′
0Q

−1
0 M0 > 0.

Proof. Take any numbersα, β, γ andδ such thatβγ − αδ = 1. RewriteΩ as follows:

Ω = Q + L̄ξ̄ ′ + �Mη̄′

with:

L̄ = αL + βM, �M = γL + δM,

ξ̄ = −δξ + γ η, η̄ = βξ − αη.

We then have:(
ξ̄ ′p

)(
η̄′p

)
L̄′

0Q
−1
0

�M0 = [−δ(ξ ′p) + γ (η′p)
][

β(ξ ′p) − α(η′p)
](

αL′
0 + βM ′

0

)
Q−1

0 (γL0 + δM0)

= [−δ(ξ ′p) + γ (η′p)
][

β(ξ ′p) − α(η′p)
][

αγL′
0Q

−1
0 L0 + (αδ + βγ )L′

0Q
−1
0 M0 + βδM ′

0Q
−1
0 M0

]
.

Set the value ofδ to δ̄ = (η′p). The first term on the right-hand side then changes sign forγ = γ̄ = (ξ ′p).We will
find valuesᾱ andβ̄, with γ̄ β̄ − δ̄ᾱ = 1 such that the two other terms are non-zero for(ᾱ, β̄, γ̄ , δ̄). It then follows that
the right hand side has two opposite signs for(ᾱ, β̄, γ̄ + ε, δ̄) and for(ᾱ, β̄, γ̄ − ε, δ̄), whenε > 0 is small enough
and the result obtains.�

Rewrite Eq. (67) as follows:

Ω = Q + αξξ ′ + βηη′ + (L − αξ)ξ ′ + (M − βη)η′ (68)
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with α andβ � 0, so that the matrixQ + αξξ ′ + βηη′ is positive definite. Let us apply the lemma of Pierre-Lo
Lions to find positive definite matricesQ1 andQ2 such that:

Q1 + Q2 = Q + αξξ ′ + βηη′,
Q1p = −(ξ ′p)(L − αξ) − λξ,

Q2p = −(η′p)(M − βη) − µη.

We first check thatQ1p andQ2p add up toQp + αξ(ξ ′p) + βη(η′p). Using (68), and (52), we have:

Q1p + Q2p = −(ξ ′p)(L − αξ) − (η′p)(M − βη) − λξ − µη,

Qp + αξ(ξ ′p) + βη(η′p) = Ωp − (L − αξ)(ξ ′p) − (M − βη)(η′p).

Subtracting, we get:

Qp − Q1p − Q2p = Ωp + λξ + µη

and the right-hand side vanishes by relation (55).
The first condition holds, and we proceed to the others. Conditions (58) and (59) become:

−(ξ ′p)
[
(p′L) − α(ξ ′p) − λ

]
> 0,

−(η′p)
[
(p′M) − β(η′p) − µ

]
> 0

both of which hold true forα > 0 andβ > 0 large enough.
Whenα,β → ∞, we have, for anyξ andη in R

n:(
ξ,

[
Q + αξξ ′ + βηη′]−1

η
) → (

ξ0,Q
−1
0 η0

)
where the subscript 0 denotes the projection on[ξ, η]⊥. Applying this with ξ = −(ξ ′p)(L − αξ) − λξ and η =
−(η′p)(M − βη) − µη, we find:(

ξ0,Q
−1
0 η0

) = (ξ ′p)(η′p)L′
0Q

−1
0 M0

and the right-hand side is positive by the lemma.
The proof is thus happily concluded in the casek = 2. In the casek > 2, the same argument goes through, exc

for the last Lemma, which relies on the fact thatM and(I −M) commute. One must then use another characterisa
which is due to Inchakov [10]. Without loss of generality, assumeQ = I, and consider the quadratic form:

(Cz, z) =
∑ (xn, z)

2

(xn, y)
− (z, z).

Lemma 10.Assume(xn, y) �= 0 for all n. Then a necessary and sufficient condition for the existence of positive d
matricesMn such thatMny = xn for all n and

∑
Mn = I is that

∑
xn = y, (xn, y) > 0 for all n,and(Cz, z) < 0 for

all z not collinear withy.

A proof of Inchakov’s lemma is provided in [7].

4. Conclusion

We would like to conclude with a remark of some economic interest. It has been shown by Browning and
pori [2] that condition GS(k) is necessary in the case of household demand – that is, when there are public g
the economy and externalities between consumers. In other words, ifx(p) is the demand function of a household w
k < n consumers, then it must satisfy GS(k). But it follows from our result that the samex(p) also is the deman
function of an exchange economy, where there are only private goods and no externalities. In other words, ho
and exchange economies cannot be distinguished by looking at the demand functions only.
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