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Abstract

We prove local supremum bounds, a Harnack inequality, Hölder continuity up to the boundary, and a strong maximum principle 
for solutions to a variational equation defined by an elliptic operator which becomes degenerate along a portion of the domain 
boundary and where no boundary condition is prescribed, regardless of the sign of the Fichera function. In addition, we prove 
Hölder continuity up to the boundary for solutions to variational inequalities defined by this boundary-degenerate elliptic operator.
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1. Introduction

1.1. Overview

There is a distinguished history of research on local supremum estimates, Harnack inequalities, and local Cα

estimates and Cα regularity for weak solutions to equations,

Au = f a.e. on O, u = g on ∂O,

defined by an elliptic partial differential operator,2

Au = −āμνuzμzν − bμuzμ + cu, (1.1)
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Fig. 1.1. Boundaries and corner points for the elliptic boundary value and obstacle problems.

whose coefficient matrix, (āμν), is Lipschitz but which fails to be strictly or uniformly elliptic on an open subset 
O ⊂Rn (for n ≥ 2), in the sense of [29, p. 31]. For a selection of such results, see [4,15–17,28,35,40,41,44,47,53] and 
references contained therein. In those articles, Dirichlet boundary conditions are imposed on the full boundary, ∂O , 
in order to obtain local supremum estimates and Cα regularity which hold up to ∂O .

However, it is known from work of G. Fichera [26,27] and O. A. Oleı̆nik and E. V. Radkevič [43,45,46], building on 
prior observations of M. V. Keldyš [33], that when A is boundary-degenerate — that is, (āμν) fails to be locally strictly 
elliptic along a non-empty open portion �0 � ∂O of the boundary — then refined weak maximum principles imply 
that the boundary value problem or associated variational equation may have a unique solution, u in C2(O) ∩C(Ō) or 
W 1,2(O) respectively, with Dirichlet boundary condition prescribed only along a part of the boundary, �1 := ∂O \ �̄0
(the ‘non-degenerate boundary’) and no boundary condition along �0 (the ‘degenerate boundary’). However, the 
development of local supremum estimates, Harnack inequalities, and Hölder continuity up to �0 for solutions to varia-
tional equations defined by boundary-degenerate elliptic partial differential operators — where no boundary condition 
is imposed along �0 — is far less well developed and, with the exception of the Habilitation thesis of H. Koch [34]
(about which we shall say more below), there are far fewer results despite the need from important applications.

We shall consider suitably defined weak solutions, u, to the elliptic boundary value problem,

Au = f on O, u = g on �1, (1.2)

and the elliptic obstacle problem with partial Dirichlet boundary condition (see Fig. 1.1),

min{Au − f,u − ψ} = 0 a.e. on O, u = g on �1, (1.3)

where ψ : O → R is an obstacle function which is compatible with the Dirichlet boundary condition in the sense that

ψ ≤ g on �1. (1.4)

We note that obstacle problems are not considered by Koch in [34]. The purpose of this article is then to establish the 
following results for a variational equation corresponding to (1.2) defined by a class of boundary-degenerate operators 
that includes the Heston operator [31], which has wide application in mathematical finance:

(1) Local supremum estimate up to ∂O for a subsolution;
(2) A Harnack inequality for a non-negative solution on open subsets O ′ � O ∪ �0 when f = 0 on O ;
(3) A strong maximum principle for a subsolution;

and, in the case of a solution, u, to a variational equation corresponding to (1.2) or variational inequality corresponding 
to (1.3),

(4) Cα regularity up to ∂O , including the ‘corner points’ where �0 and �1 meet, and a local Cα estimate;

where in each of these results, points in �0 have the same role as those in the interior, O , and no boundary condition 
is prescribed along �0. The supremum and Cα estimates for u are expressed in terms of integral norms of u, the 
source function, f , the boundary data, g, and, in the case of the variational inequality, the obstacle function, ψ . 
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Unlike the analogous classical results described by Gilbarg and Trudinger [29] for strictly elliptic operators — for 
example, local supremum estimates up to ∂O [29, Theorem 8.25] or local Cα estimates and regularity up to ∂O
[29, Theorem 8.29] — or their analogues for degenerate-elliptic operators in the articles cited above (aside from [34]), 
we do not need to assume that u is bounded or Cα along �0: those properties are implied by the variational equation 
alone. In §1.3, we provide a detailed comparison with previous related results for solutions to variational equations 
defined by ‘degenerate elliptic’ operators. Our companion article [25] develops higher-order regularity properties up 
to �0 for weak solutions.

Some of the motivation for developing these results can be inferred from the work of P. Daskalopoulos and 
R. Hamilton [11], C. L. Epstein and R. Mazzeo [13,14], H. Koch [34], and the authors [25,24,23], where one dis-
covers that the imposition of a Dirichlet boundary condition along �0 can limit the regularity of the solution, u, to be 
at most Cα up to �0, whereas employing suitable weighted Hölder or Sobolev spaces to facilitate solving the partial 
boundary problem (with Dirichlet boundary condition prescribed only along �1) will yield a solution which is C∞
up to �0 (if the coefficients of A and source function f are also C∞ up to �0). Applications illustrate that the im-
position of a boundary condition along �0 is often not physically justified, as exemplified in work of Daskalopoulos 
and Hamilton and Koch on the porous medium equation, Daskalopoulos and the author [9,10] on stochastic volatility 
models in mathematical finance, E. Ekström and J. Tysk [12] on interest-rate models in mathematical finance, and 
Epstein and Mazzeo on Wright–Fisher diffusion models in mathematical biology, and many other examples. Instead, 
the relevant physical property sought is rather that the solution, u, be sufficiently smooth up to �0.

When the boundary-degenerate operator, A, can be expressed in both divergence and non-divergence forms (as we 
assume here), one has a choice of employing a Schauder approach to existence and regularity theory, as in [11,14,18,
24,23], or a variational approach as in [9,25,34]. However, for certain questions, the variational approach can have 
advantages over a Schauder approach. For example, it appears to be a challenging problem to use purely Schauder 
methods to prove that the solution, u, is Cα up to the ‘corner points’, where the degenerate and non-degenerate 
boundary portions, �0 and �1, meet; see [18,25,24] for discussions of this difficulty. As shown by Daskalopoulos and 
one of the authors (Feehan) [9], a framework for solving a non-coercive variational equation defined with the aid of 
appropriate weighted Sobolev spaces is readily extended to include variational inequalities.

Furthermore, Daskalopoulos and Feehan use the Harnack inequality and continuity (up to �0) developed in this 
article for a solution, u, to a variational inequality as important stepping stones in their proof of C1,1 regularity (up 
to �0) of a solution to an obstacle problem arising in mathematical finance. When A is as in (1.14) and f = 0, the 
solution, u, to the obstacle problem (1.3) can be interpreted as the value function for a perpetual American-style 
barrier option on a generalization of the Heston stochastic volatility asset price process [31], with payoff function 
ψ and barrier condition g on �1. The choice ψ(x, y) = (K − ex)+, for (x, y) ∈ R × R+, yields the price of an 
American-style put, where x represents the asset log-price, y is the asset variance, and K > 0 is the strike.

1.2. Summary of main results

We shall state a selection of our main results here and then refer the reader to our guide to this article in §1.4 for 
more of our results on existence, uniqueness and regularity of solutions to variational equations and inequalities and 
corresponding obstacle problems.

1.2.1. Mathematical preliminaries
In this article, we shall study boundary-degenerate elliptic operators (1.1) of the specific form, for all v ∈ C∞(O),

Av(z) = −yaμν(z)vzμzν (z) − bμ(z)vzμ(z) + c(z)v(z), a.e. z ∈ O, (1.5)

so āμν = yaμν , where we denote z = (z1, . . . , zn) = (x, y) ∈ H with x = (x1, . . . , xn−1) ∈ Rn−1 and xn = y ∈ R+. 
We require that the coefficients of the operator A satisfy

Assumption 1.1. There are positive constants, β , � and ν0, with the following significance.

(1) The coefficients aμν belong to W 1,∞(O) and c belongs to L∞(O);
(2) The coefficient matrix (aμν(z)) is symmetric and strictly elliptic,

ν0|ξ |2 ≤ aμν(z)ξμξν, ∀ ξ ∈ Rn, for a.e. z ∈ O; (1.6)
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(3) There are functions b̂μ ∈ L∞(O) such that

bμ = βaμn − yb̂μ, 1 ≤ μ ≤ n; (1.7)

(4) The coefficients obey the bound

max
1≤μ,ν≤n

‖aμν‖W 1,∞(O) + max
1≤μ≤n

‖b̂μ‖L∞(O) + ‖c‖L∞(O) ≤ �. (1.8)

We shall consider variational solutions to (1.2) and (1.3), so we introduce our weighted Sobolev spaces. For 1 ≤
q < ∞, let

Lq(O,w) := {u ∈ L1
loc(O) : ‖u‖Lq(O,w) < ∞}, (1.9a)

H 1(O,w) := {u ∈ L2(O,w) : (1 + y)1/2u, y1/2|Du| ∈ L2(O,w)}, (1.9b)

H 2(O,w) := {u ∈ L2(O,w) : (1 + y)1/2u, (1 + y)|Du|, y|D2u| ∈ L2(O,w)}, (1.9c)

where Du denotes the gradient of u, D2u denotes the Hessian of u, with all derivatives of u being defined in the sense 
of distributions, and

‖u‖q

Lq(O,w)
:=
∫
O

|u|qwdx dy, (1.10a)

‖u‖2
H 1(O,w)

:=
∫
O

(
y|Du|2 + (1 + y)u2

)
wdx dy, (1.10b)

‖u‖2
H 2(O,w)

:=
∫
O

(
y2|D2u|2 + (1 + y)2|Du|2 + (1 + y)u2

)
wdx dy, (1.10c)

with weight function w :H → (0, ∞) given by

w(x, y) := yβ−1e−τ |x|−μy, ∀ (x, y) ∈ H, (1.11)

where τ and μ are nonnegative constants. It will be convenient in our analysis to write A from (1.5), for all v ∈ C∞(O), 
in the equivalent form,3

Av(z) = −y
(
aij (z)vxixj

(z) + 2ain(z)vxiy(z) + ann(z)vyy(z)
)

− bi(z)vxi
(z) − bn(z)vy(z) + c(z)v(z), a.e. z ∈ O.

(1.12)

For all u, v ∈ C∞
0 (H), we define

a(u, v) := (Au,v)L2(O,w) =
∫
O

(
aijuxi

vxj
+ ain(uxi

vy + uyvxi
) + annuyvy

)
ywdxdy

+
∫
O

(
∂xj

aij + ∂ya
in + b̂i − τaij xj

|x| − μain

)
uxi

vywdxdy

+
∫
O

(
∂xi

ain + ∂ya
nn + b̂n − τain xi

|x| − μann

)
uyvywdxdy

+
∫
O

cuvwdxdy,

(1.13)

and we call a the bilinear form associated with the operator A. The assumptions (1.6) and (1.8) ensure that the 
bilinear form a : H 1(O, w) × H 1(O, w) → R is continuous and satisfies the Gårding inequality and this motivates 

3 We employ the Einstein summation convention with 1 ≤ i, j ≤ n − 1.
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the definition (1.10b) of the weighted Sobolev space, H 1(O, w). In definition (1.11) of the weight w, the power term 
yβ−1 is required in order to obtain a bilinear form a as in (1.13) that is continuous and satisfies the Gårding inequality. 
The role of the exponential term e−τ |x|−μy is mainly to ensure that the measure of subsets O �H is finite, when τ and 
μ are positive constants. Even though this property is used extensively in the results obtained in [9] and [20], it does 
not play any role in the proofs of the purely local results given in §2, §3, §4, §5 and §7, but we include the exponential 
term in the definition of the weight w for the sake of consistency with [9] and because positivity of τ is used in the 
proof of Claim 6.5 in §6.

Example 1.2 (Heston operator). A particular example of a degenerate operator as in (1.12) is the generator of the 
two-dimensional Heston stochastic volatility process with killing [31],

Av := −y

2

(
vxx + 2�σvxy + σ 2vyy

)
−
(
r − q − y

2

)
vx − κ(θ − y)vy + rv, v ∈ C∞(H), (1.14)

where κ > 0, θ > 0, r ≥ 0, and q ∈ R. We express the Heston operator A in (1.14) in divergence form as in (1.13) by 
choosing the weight w with

β := 2κθ

σ 2
and μ := 2κ

σ 2
, (1.15)

and τ is a positive constant; see [9, §1.1]. To ensure that the strict ellipticity condition (1.6) is satisfied, we assume 
that

σ �= 0 and − 1 < � < 1. (1.16)

We notice that the condition (1.7) is satisfied only if

r − q − κθ�

σ
= 0, (1.17)

and this can be accomplished by using a simple affine change of variables on R2 which maps (H, ∂H) onto (H, ∂H), 
as described in [9, Lemma 2.2]. Then the bilinear form associated with the Heston operator, A, in (1.14) is given by

a(u, v) := 1

2

∫
O

(
uxvx + �σuyvx + �σuxvy + σ 2uyvy

)
ywdx dy

− 1

2

∫
O

(τ sign(x) + μ�σ − 1)uxvywdx dy

− 1

2

∫
O

τ�σ sign(x)uyvywdx dy +
∫
O

ruvwdx dy, ∀u,v ∈ H 1(O,w).

(1.18)

This completes our discussion of this example.

We now return to the general setting described prior to Example 1.2. Given a subset T ⊂ ∂O we let H 1
0 (O ∪ T , w)

be the closure in H 1(O, w) of C∞
0 (O ∪ T ). Given a source function f ∈ L2(O, w), we call a function u ∈ H 1(O, w)

a solution to the variational equation defined by the operator A in (1.12), if

a(u, v) = (f, v)L2(O,w), ∀v ∈ H 1
0 (O ∪ �0,w). (1.19)

We call u a subsolution to (1.19) if a(u, v) ≤ (f, v)L2(O,w) for all nonnegative test functions, v, and call u a superso-
lution to (1.19) if −u is a subsolution.

Given g ∈ H 1(O, w), we say that u obeys an (inhomogeneous) Dirichlet boundary condition u = g on �1 in the 
sense of H 1 if

u − g ∈ H 1
0 (O ∪ �0,w),

and, of course, a homogeneous Dirichlet boundary condition on �1 if g = 0.
If u ∈ H 2(O, w), we recall from [9] that u is a solution to (1.2) if and only if u ∈ H 1

0 (O ∪�0, w) and u is a solution 
to (1.19).
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Fig. 1.2. Concentric half-balls centered at a ‘degenerate boundary interior’ point, z0 ∈ �0.

Fig. 1.3. Concentric half-balls centered at a ‘degenerate boundary corner point’, z0 ∈ �̄0 ∩ �̄0.

Definition 1.3 (Balls with respect to the Euclidean metric). We let

ER(z0) := {z ∈H : |z − z0| < R}, (1.20)

ER(z0) := {z ∈ O : |z − z0| < R}, (1.21)

for any given z0 ∈ H̄ and R > 0.

We say that an open subset, U ⊂ H, obeys an exterior cone condition relative to H at a point z0 ∈ ∂U if there 
exists a finite, right circular cone K = Kz0 ⊂ H̄ with vertex z0 such that Ū ∩ Kz0 = {z0} (compare [29, p. 203]). An 
open subset, U ⊂ H, obeys a uniform exterior cone condition relative to H on T ⊂ ∂U if U satisfies an exterior cone 
condition relative to H at every point z0 ∈ T and the cones Kz0 are all congruent to some fixed finite cone, K (compare 
[29, p. 205]). Recall that �0 is the interior of the portion, Ō ∩ ∂H, of the boundary, ∂O , of the open subset O �H.

Definition 1.4 (Interior and exterior cone conditions). Let K be a finite, right circular cone. We say that O obeys 
interior and exterior cone conditions at z0 ∈ �̄0 ∩ �̄1 with cone K if the open subsets O and H \ Ō obey exterior cone 
conditions relative to H at z0 with cones congruent to K . We say that O obeys uniform interior and exterior cone 
conditions on �̄0 ∩ �̄1 with cone K if the open subsets O and H \ Ō obey exterior cone conditions relative to H at 
each point z0 ∈ �̄0 ∩ �̄1 with cones congruent to K .

1.2.2. Boundary local supremum bounds
The volumes of bounded subsets in H are finite with respect to the weight yβ−1 dx dy, when β > 0, a fact which we 

repeatedly use in this article. We rely on the assumption that β > 0 in the statements and proofs of the local supremum 
estimates.

We have the following analogues of [34, Proposition 4.5.1] and [29, Theorem 8.15], but now for the cases of a 
‘degenerate-boundary interior’ point, z0 ∈ �0, and a ‘degenerate boundary corner point’, z0 ∈ �̄0 ∩ �̄0; see Figs. 1.2
and 1.3, respectively. Though Koch allows for points in the interior of �0, there is no analogue in [34] of our Theo-
rem 1.6, which allows for corner points, while Gilbarg and Trudinger [29] only allow for boundary points where the 
elliptic partial differential operator is strictly elliptic.
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Theorem 1.5 (Supremum estimates near points in �0). Let s > n + β and let R0 be a positive constant. Then there 
are positive constants, C = C(�, n, ν0, R0, s) and R1 = R1(R0) < R0, such that the following holds. Let O �H be 
an open subset. If u ∈ H 1(O, w) is a subsolution (respectively, supersolution) to the variational equation (1.19) with 
source function f ∈ L2(O, w), and z0 ∈ �0 is such that ER0(z0) ⊂ O , and f obeys

f ∈ Ls(ER0(z0), y
β−1), (1.22)

then u ∈ L∞(ER1(z0)), and

ess sup
ER1 (z0)

u(−u) ≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u+(u−)‖L2(ER0 (z0),y
β−1)

)
. (1.23)

Theorem 1.6 (Supremum estimates near points in �0 ∩ �1). Let K be a finite right circular cone, let s > n + β , 
and let R0 > 0 be a positive constant. Then there are positive constants, C = C(K, �, n, ν0, R0, s) and R1 =
R1(K, �, n, ν0, R0) < R0, such that the following holds. Let O � H be an open subset. If u ∈ H 1(O, w) is a sub-
solution (respectively, supersolution) of equation (1.19) with source function f ∈ L2(O, w) and z0 ∈ �0 ∩ �1 is such 
that O obeys an interior cone condition at z0 with cone K , and

u = 0 on �1 ∩ ĒR0(z0) (in the sense of H 1),

and f obeys (1.22), then ess supER1 (z0)
u(−u) < ∞ and the estimate (1.23) holds.

Remark 1.7 (Use of the weight yβ−1 versus w in Theorems 1.5 and 1.6). Notice that on the right-hand-side of es-
timate (1.23) we have ‖f ‖Ls(ER0 (z0),y

β−1) instead of ‖f ‖Ls(ER0 (z0),w). This allows us to conclude that the constant 

C appearing in (1.23) is independent of the point z0 ∈ �̄0. By (1.11), the weight w contains the term e−τ |x|, which 
means that the constant C will depend on the x-coordinate of the point z0 ∈ �̄0, if we replace ‖f ‖Ls(ER0 (z0),y

β−1) by 
‖f ‖Ls(ER0 (z0),w) on the right-hand-side of (1.23).

For g ∈ L∞
loc(�̄1) and z0 ∈ �̄0 ∩ �̄1 and R0 > 0, we set

M := ess sup
�1∩BR0 (z0)

g,

and define

uM(z) := (u(z) ∨ M)+ for a.e. z ∈ BR0(z0).

We then have the following analogue of [29, Theorem 8.25] which applies to a variational equation defined by strictly 
elliptic operator and an inhomogeneous Dirichlet boundary condition.

Corollary 1.8 (Supremum estimates near points in �0 ∩ �1 for variational subsolutions with inhomogeneous Dirich-
let boundary condition). Let s > n + β and let R0 be a positive constant. Then there are positive constants, 
C = C(K, �, n, ν0, R0, s) and R1 = R1(K, �, n, ν0, R0) < R0, such that the following holds. Let z0 ∈ �̄0 ∩ �̄1. 
If u ∈ H 1(O, w) is a subsolution of equation (1.19) with source function f ∈ L2(O, w) satisfying (1.22), and 
g ∈ H 1(O, w) ∩ L∞

loc(�̄1), in the sense that

u − g ∈ H 1
0 (O ∪ �0,w), (1.24)

then uM ∈ L∞(ER1(z0)), and

ess sup
ER1 (z0)

uM ≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1) + ‖g‖L∞(�̄1∩ĒR0 (z0))

)
. (1.25)

Remark 1.9 (Supremum estimates near points in �0 ∩ �1 for supersolutions with inhomogeneous Dirichlet boundary 
condition). Corollary 1.8 holds for supersolutions to equation (1.19) with the observation that in the estimate (1.25)
we need to replace uM with um where um is defined as follows. Let
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m := ess inf
�1∩BR0 (z0)

g,

and set

um(z) := (u(z) ∧ m)− for a.e. z ∈ BR0(z0).

Remark 1.10 (Inhomogeneous Dirichlet boundary conditions and variational equations). Given a (non-zero) 
boundary-data function g ∈ H 1(O, w) then, as an alternative to our proofs of Corollaries 1.8, 1.16, and 1.17, we 
could replace u and (f, v)L2(O,w) in (1.19) by ũ := u − g ∈ H 1

0 (O ∪ �0, w) and the functional F ∈ H−1(O, w) :=
(H 1

0 (O ∪ �0, w))′, where

F(v) := (f, v)L2(O,w) − a(g, v), ∀v ∈ H 1
0 (O ∪ �0,w), (1.26)

and instead of (1.19), consider the variational equation,

a(ũ, v) = F(v), ∀v ∈ H 1
0 (O ∪ �0,w). (1.27)

This reduction would bring our arguments into closer alignment with those of Gilbarg and Trudinger [29, Chapter 8], 
but at the cost of a slightly more complicated proofs than those we employ in this article and little gain.

1.2.3. Hölder continuity up to the boundary for solutions to the variational equation
We recall the definition of the Koch distance function, d(·, ·), on H introduced by Koch in [34, p. 11],

d(z, z0) := |z − z0|√
y + y0 + |z − z0| , ∀ z = (x, y), z0 = (x0, y0) ∈ H̄, (1.28)

where |z − z0|2 = (x − x0)
2 + (y − y0)

2. The Koch distance function is equivalent to the cycloidal distance function
introduced by Daskalopoulos and Hamilton in [11, p. 901] for the study of the porous medium equation.

Following [1, §1.26], for an open subset U ⊂ H, we let C(U) denote the vector space of continuous functions on 
U and let C(Ū) denote the Banach space of functions in C(U) which are bounded and uniformly continuous on U , 
and thus have unique bounded, continuous extensions to Ū , with norm

‖u‖C(Ū) := sup
U

|u|.

Given α ∈ (0, 1), we say that u ∈ Cα
s (Ū) if u ∈ C(Ū) and

‖u‖Cα
s (Ū) < ∞,

where

‖u‖Cα
s (Ū) := [u]Cα

s (Ū) + ‖u‖C(Ū), (1.29)

and

[u]Cα
s (Ū) := sup

z1,z2∈U

z1 �=z2

|u(z1) − u(z2)|
dα(z1, z2)

. (1.30)

Moreover, Cα
s (Ū) is a Banach space [11, §I.1] with respect to the norm (1.29). We say that u ∈ Cα

s (U) if u ∈ Cα
s (V̄ )

for all precompact open subsets V � U ∪ �0.
When U may be unbounded, we let Cloc(Ū) denote the linear subspace of functions u ∈ C(U) such that u ∈ C(V̄ )

for every precompact open subset V � Ū ; similarly, we let Cα
s,loc(Ū) denote the linear subspace of functions u ∈

Cα
s (U) such that u ∈ Cα

s (V̄ ) for every precompact open subset V � Ū .
We have the following analogues of [29, Theorem 8.27 and 8.29] and [34, Theorem 4.5.5 and 4.5.6], but again for 

the cases of a ‘degenerate-boundary interior’ point, z0 ∈ �0, and a ‘degenerate boundary corner point’, z0 ∈ �̄0 ∩ �̄0; 
see Figs. 1.2 and 1.3, respectively. Though Koch allows for points in the interior of �0, there is no analogue in [34]
of our Theorem 1.13, which allows for corner points; as before, Gilbarg and Trudinger [29] only allow for boundary 
points where the elliptic partial differential operator is strictly elliptic.
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Theorem 1.11 (Hölder continuity near points in �0 for solutions to the variational equation). Let s > max{2n, n +β}
and let R0 be a positive constant. Then there are positive constants, R1 = R1(R0) < R0, and C = C(�, n, ν0, R0, s), 
and α = α(�, n, ν0, R0, s) ∈ (0, 1) such that the following holds. Let O � H be an open subset. If u ∈ H 1(O, w)

satisfies the variational equation (1.19) with source function f ∈ L2(O, w) and z0 ∈ �0 is such that ER0(z0) ⊂ O , 
and f obeys (1.22), then u ∈ Cα

s (ĒR1(z0)), and

‖u‖Cα
s (ĒR1 (z0))

≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1)

)
. (1.31)

Remark 1.12 (Hölder continuity up to �0 and Sobolev embeddings). Hölder continuity of solutions does not follow 
by an embedding theorem for Sobolev weighted spaces, analogous to [29, Corollary 7.11], not even for functions 
u ∈ H 2(O, w). For example, for any β > 2, let q ∈ (0, (β − 2)/2) and

u(x, y) = y−q, ∀ (x, y) ∈ O.

Then, u ∈ H 2(O, w), but u /∈ Cα
s (O), for any α ∈ [0, 1], since, a fortiori, u /∈ C(O ∪ �0).

Theorem 1.13 (Hölder continuity near points in �0 ∩ �1 for solutions to the variational equation). Let K be a finite, 
right circular cone, let s > max{2n, n + β}, and let R0 be a positive constant. Then there are positive constants, 
R1 = R1(K, �, n, ν0, R0) < R0, and C = C(K, �, n, ν0, R0, s), and α = α(K, �, n, ν0, R0, s) ∈ (0, 1), such that the 
following holds. Let O �H be an open subset. If u ∈ H 1(O, w) satisfies the variational equation (1.19) with source 
function f ∈ L2(O, w) and z0 ∈ �0 ∩ �1 is such that f obeys (1.22), and

u = 0 on �1 ∩ ĒR0(z0) (in the sense of H 1),

and O obeys an interior and exterior cone condition with cone K at z0 and a uniform exterior cone condition with 
cone K along �1 ∩ ĒR0(z0), then u ∈ Cα

s (ĒR1(z0)) and satisfies (1.31).

Remark 1.14 (Comparison with analysis near the non-degenerate boundary). The term σ(
√

RR0), where σ(R) :=
osc∂O∩B̄R(z0)

u, which appears in [29, Equation (8.72)] in the statement of [29, Theorem 8.27] does not appear in 
the statement of our Theorem 1.13. The reason is that unlike in [29, Equation (8.71)], the test functions defined 
in the proof of Theorem 1.13 do not need to involve ess sup∂O∩B̄R(z0)

u or ess inf∂O∩B̄R(z0)
u since no boundary 

condition is imposed on v along �0, in contrast to the Dirichlet boundary condition assumed for v in the proofs of 
[29, Theorem 8.18 and 8.26].

By constructing suitable weighted Sobolev spaces adapted both to the degeneracy of the operator and the geometry 
of the corners, we may be able to obtain improved regularity estimates in a neighborhood of the points in �̄0 ∩ �̄1, 
similar to the ideas used for the study of strictly elliptic operators on polygonal domains described by Grisvard [30, 
§4.4.1]. We believe that this problem requires careful consideration and is best considered in a separate article.

Remark 1.15 (Counter-examples to higher-order regularity near corners for solutions to elliptic boundary value prob-
lems). It is worth recalling [36, §7.5] that the unique solution u ∈ C2(O) ∩ C(Ō) to the Dirichlet problem, �u = 1 on 
O := (0, π) × (0, π) and u = 0 on ∂O , belongs to C1(Ō) but not C2(Ō). (Following our customary sign convention, 
we denote �u = − 

∑n
i=1 uxixi

.) This example illustrates that the question of regularity near corner points is delicate 
even for boundary value problems defined by strictly elliptic operators and thus can be expected to be even more so 
in the case of degenerate-elliptic operators.

We have the following analogue of [29, Theorem 8.27] which applies to a variational equation defined by a strictly 
elliptic operator on an open subset satisfying an exterior cone condition and an inhomogeneous Dirichlet boundary 
condition.

Corollary 1.16 (Hölder continuity near points in �0 ∩ �1 for variational solutions with inhomogeneous Dirichlet 
boundary condition). Let K be a finite, right circular cone, let s > max{2n, n + β} and let R0 be a positive con-
stant. Assume g ∈ H 1(O, w) ∩ C

γ

s,loc(�̄1), where γ ∈ (0, 1]. Then there are positive constants, R1 = R1(K, �, n,

ν0, R0) < R0, and C = C(K, �, n, ν0, R0, s), and α = α(γ, �, n, ν0, R0, s) ∈ (0, 1) such that the following holds. Let 
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z0 ∈ �̄0 ∩ �̄1. Assume that O obeys an interior and exterior cone condition with cone K at z0 and a uniform exterior 
cone condition with cone K along �1 ∩ ĒR0(z0). If u ∈ H 1(O, w) satisfies the variational equation (1.19) and (1.24), 
and the source function f ∈ L2(O, w) obeys (1.22), then u ∈ Cα

s (ĒR1(z0)), and

‖u‖Cα
s (ĒR1 (z0))

≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1) + ‖g‖C

γ
s (�̄1∩ĒR0 (z0))

)
. (1.32)

When g ∈ H 1(O, w) ∩Cloc(�̄1), then u ∈ C(ĒR1(z0)) and there is a positive constant C = C(K, �, n, ν0, R0, s) such 
that

‖u‖C(ER1 (z0)) ≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1) + ‖g‖L∞(�̄1∩ĒR0 (z0))

)
. (1.33)

For any δ > 0, we let

Oδ := O ∩ (R× (0, δ)) . (1.34)

We then have the

Corollary 1.17 (Hölder continuity up to �̄0 for solutions to the variational equation). Let K be a finite, right circular 
cone, let s > max{2n, n + β}, δ > 0, and γ ∈ (0, 1]. Then there are constants C = C(δ, K, �, n, ν0, s) > 0 and 
α1 = α1(δ, γ, K, �, n, ν0, s) ∈ (0, 1) such that the following hold. Assume that O obeys a uniform interior and exterior 
cone condition with cone K on �̄0 ∩ �̄1 and a uniform exterior cone condition with cone K along �1 ∩ ∂Oδ . Let 
f ∈ L2(O, w), g ∈ H 1(O, w) ∩ C

γ
s (�̄1 ∩ Ōδ), and u ∈ H 1(O, w) obey (1.19) and (1.24), and assume that f and u

satisfy

sup
z0∈�0

‖f ‖Ls(Eδ(z0),y
β−1) < ∞ and sup

z0∈�0

‖u‖L2(Eδ(z0),y
β−1) < ∞. (1.35)

Then u ∈ C
α1
s (Ōδ/2) and satisfies

‖u‖
C

α1
s (Ōδ/2)

≤ C

(
sup

z0∈�0

‖f ‖Ls(Eδ(z0),y
β−1) + sup

z0∈�0

‖u‖L2(Eδ(z0),y
β−1) + ‖g‖

C
γ
s (�̄1∩Ōδ)

)
. (1.36)

When g ∈ H 1(O, w) ∩C(�̄1 ∩Ōδ), we have that u ∈ C(Ōδ/2), and there is a positive constant, C = C(δ, K, �, n, ν0, s),
such that

‖u‖
C(Ōδ/2)

≤ C

(
sup

z0∈�0

‖f ‖Ls(Eδ(z0),y
β−1) + sup

z0∈�0

‖u‖L2(Eδ(z0),y
β−1) + ‖g‖

L∞(�̄1∩Ōδ)

)
(1.37)

Condition (1.35) on u is satisfied when u ∈ L2(O, w) and the open subset, O , is bounded in the x-direction, as we 
can see from the definition (1.11) of the weight w.

1.2.4. Strong maximum principle
We also have the following analogue of [29, Theorem 8.19]. It is important to note that Theorem 1.18 is an analogue 

of the classical strong maximum principle, except that points in the degenerate-boundary portion, �0, play the same 
role as points in O . We now assume that O �H is domain, that is, a connected, open subset.

Theorem 1.18 (Strong maximum principle). Let O �H be a domain. Let z0 ∈ O ∪ �0, R0 be a positive constant, and 
u ∈ H 1(O, w) be a subsolution to equation (1.19) with f = 0. If the ball ER0(z0) as in (1.21) obeys ER0(z0) � O ∪�0
and

ess sup
ER0 (z0)

u = ess sup
O

u,

then u is constant on O .

Note that ess supER0 (z0)
u < ∞ by Theorem 1.5 when z0 ∈ �0, while [29, Theorem 8.17] yields this local bound-

edness result when ER0(z0) � O .
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1.2.5. Hölder continuity up to the boundary for solutions to the variational inequality
Given a source function f ∈ L2(O, w), an (inhomogeneous) Dirichlet boundary condition g ∈ H 1(O, w) on �1, 

and an obstacle function ψ ∈ H 1(O, w) obeying (1.4) in the sense that

(ψ − g)+ ∈ H 1
0 (O ∪ �0,w), (1.38)

we call u ∈ H 1(O, w) a solution to the variational inequality for the operator A defined in (1.12) with Dirichlet 
boundary condition along �1 if

u − g ∈ H 1
0 (O ∪ �0,w), u ≥ ψ a.e. on O,

a(u, v − u) ≥ (f, v − u)L2(O,w), (1.39)

∀v ∈ H 1(O,w), v − g ∈ H 1
0 (O ∪ �0,w), v ≥ ψ a.e. on O.

Given additional mild conditions on f and ψ , it is proved in [9] that there is a unique solution, u ∈ H 1(O, w), to 
(1.39), when A is the Heston operator defined in (1.14). For Theorem 1.20, we require

Hypothesis 1.19 (Conditions on the source and obstacle functions). For some δ > 0,

f ∈ L2(O,w) ∩ L∞(Oδ), (1.40)

ψ ∈ H 2(Oδ,w) ∩ L∞(Oδ), (1.41)

where Oδ is defined in (1.34).

We then have

Theorem 1.20 (Hölder continuity up to �̄0 for solutions to the variational inequality with homogeneous boundary 
condition). Require that O obeys a uniform interior and exterior cone condition on �̄0 ∩ �̄1 with cone K and a 
uniform exterior cone condition with cone K along �1 ∩ ∂Oδ , for some δ > 0. Assume that f obeys (1.40) and g = 0
and ψ obeys (1.38) (with g = 0) and (1.41), and that

ess sup
Oδ

(Aψ − f )+ < ∞. (1.42)

If Oδ is bounded, require that c ≥ 0 a.e. on Oδ; if Oδ is unbounded, require in addition that c ≥ c0 > 0 a.e. on Oδ for 
a positive constant c0. If u ∈ H 1

0 (O ∪ �0, w) is a solution to (1.39) such that at least one of the following conditions 
holds,

height(O) < ∞ or u ∈ W 1,∞(Oδ \ Oδ/2), (1.43)

then

u ∈ Cα1
s (Ōδ/2),

where α1 = α1(δ, K, �, n, ν0, s) ∈ (0, 1).

Corollary 1.21 (Hölder continuity up to �̄0 for solutions to the variational inequality with inhomogeneous Dirichlet 
boundary condition). Assume the hypotheses of Theorem 1.20 and g ∈ H 2(O, w) ∩ C

γ
s (�̄1 ∩ ∂Oδ/2), with γ ∈ (0, 1]. 

Let u ∈ H 1(O, w) be a solution to (1.39) such that

height(O) < ∞ or u − g ∈ W 1,∞(Oδ \ Oδ/2).

Then u ∈ C
α2
s (Ōδ/2), where α2 = α1 ∧ γ and the constant α1 is as in the conclusion of Theorem 1.20. If g ∈

H 2(O, w) ∩ C(�̄1 ∩ ∂Oδ/2), then u ∈ C(Ōδ/2).

Remark 1.22 (Hypotheses on the solution to the variational inequality). The second condition in (1.43) in Theo-
rem 1.20 is implied by the W 2,p

loc (O) regularity result [9, Theorem 6.18] for p > 2 and corresponding W 2,p(U) a 
priori estimates using the conditions (1.40) and (1.41), and the Sobolev embedding W 2,p(U) ↪→ C1

b(U) for open 
subsets U �H with the interior cone property [1, Theorem 5.4 (C)].



1086 P.M.N. Feehan, C.A. Pop / Ann. I. H. Poincaré – AN 34 (2017) 1075–1129
Remark 1.23 (Inhomogeneous Dirichlet boundary conditions and variational inequalities). Given a (non-zero) 
boundary-data function g ∈ H 1(O, w) then, as an alternative to our proof of Corollary 1.21, we could replace 
u, v, ψ ∈ H 1(O, w) and (f, v − u)L2(O,w) in (1.39) by ũ := u − g, ṽ := v − g, ψ̃ := ψ − g in H 1

0 (O ∪ �0, w)

and the functional F ∈ H−1(O, w) in (1.26) and, instead of (1.39), consider the variational inequality,

a(ũ,w − ũ) ≥ F(w − ũ), ∀w ∈ H 1
0 (O ∪ �0,w), w ≥ ψ̃ a.e. on O. (1.44)

This reduction would bring our arguments into closer alignment with those of Gilbarg and Trudinger [29, Chapter 8]
and Troianiello [49, Chapter 4], but at the cost of a slightly more complicated proofs than those we employ in this 
article and little gain.

It is interesting to note that the bilinear form a given by (1.13) is coercive if the height of the domain O is sufficiently 
small. Indeed, from the expression (1.13) for the bilinear form, we can write a(u, u) as a sum of four terms I1 + I2 +
I3 + I4. If O �Rn−1 × (0, δ), for a constant δ ∈ (0, 1], the expression (1.13) yields a positive constant, C = C(�, n), 
such that

|I2| + |I3| ≤
√

δC‖u‖2
H 1(O,w)

.

If in addition there is a positive constant, c0, such that c ≥ c0 on O , the preceding inequality and the strict ellipticity 
condition (1.6) gives the inequality,

a(u,u) ≥ (ν0 − √
δC)‖√yDu‖2

L2(O,w)
+ (c0 − δC)‖u‖L2(O,w), ∀u ∈ H 1(O,w).

Hence, there are positive constants

δ0 = δ0(c0,�,n, ν0) and C0 = C0(c0,�,n, ν0), (1.45)

such that

a(u,u) ≥ C0‖u‖H 1(O,w), ∀u ∈ H 1(O,w), (1.46)

for all subdomains O � Rn−1 × (0, δ0). Therefore, when O � Rn−1 × (0, δ0) and c ≥ c0 > 0 a.e. on O , the bilinear 
form a : H 1(O, w) × H 1(O, w) → R is coercive. We use this observation in Remark 6.7.

1.2.6. Harnack inequality for non-negative solutions to the variational equation
We also have the following analogue of [29, Theorem 8.20 and Corollary 8.21] and [34, Theorem 4.5.3]; it is 

important to note that Theorem 1.24 is a direct analogue of the classical interior Harnack inequality — with points in 
the degenerate-boundary portion, �0, playing the same role as points in O — and not a ‘boundary Harnack inequality’ 
(compare, for example, [3, Theorem 1.1]).

Theorem 1.24 (Harnack inequality near �0). Let O ′ ⊂ O � H be open subsets such that O ′ � O ∪ �0. Then there 
is a positive constant C, depending at most on diam(O ′), dist(∂O ∩ H, ∂O ′ ∩ H), �, ν0 and n, such that for any 
non-negative u ∈ H 1(O, w) obeying (1.19) with f = 0 on O , we have

ess sup
O ′

u ≤ C ess inf
O ′ u. (1.47)

Remark 1.25 (Applications to the proof of optimal regularity for variational solutions to the obstacle problem). 
Continuity up the ‘degenerate boundary’ (Theorem 1.20) and the Harnack inequality (Theorem 1.24) are among the 
results of this article which Daskalopoulos and Feehan apply in [10] to prove that a solution u ∈ H 1(O, w) to (1.3)
actually belongs to C1,1

s,loc(O ∪ �0).

1.3. Connections with previous research

As noted in §1.1, there is a long history of research on local L∞ and Cα estimates and Hölder regularity and 
Harnack inequalities for weak solutions to degenerate-elliptic equations, so a reader may reasonably ask what is new 
in this article. Because our article builds most directly on work of Koch, we begin with a comparison of our methods 
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and results with those in [34]. We then contrast our work with that of S. Chanillo and R. L. Wheeden [4], E. B. Fabes, 
C. E. Kenig and R. P. Serapioni [15], J. J. Kohn and L. Nirenberg [35], and M. K. V. Murthy and G. Stampacchia [41], 
as well as a selection of later articles which further develop their ideas.

The arguments in our article are not straightforward adaptations of the proofs of the analogous classical results 
described by Gilbarg and Trudinger [29, Theorems 8.15, 8.20, 8.22 and 8.27], due to the fact that our Sobolev spaces 
are weighted, so the standard Sobolev, Poincaré, and John–Nirenberg inequalities do not apply. We rely on the Moser 
iteration technique and the most difficult step in making this technique work involves the selection of a suitable John–
Nirenberg inequality. For this purpose, we use the so-called abstract John–Nirenberg inequality, due to Bombieri and 
Giusti [2, Theorem 4], which can be applied to any topological space endowed with a regular Borel measure satis-
fying some natural requirements. In order to verify the hypotheses of the abstract John–Nirenberg inequality in our 
weighted Sobolev space setting (Proposition 3.2), we prove a local version of the Poincaré inequality, Corollary 2.6, 
suitable for our weighted Sobolev spaces.

1.3.1. Connections with work of Koch
In [34], Koch considers weak solutions to a certain linear parabolic partial differential equation in divergence form 

and which arises in the study of the porous medium equation. He takes the spatial domain to be the whole upper 
half space, H = Rn−1 × R+, assumes a degeneracy similar to that in the operator (1.12) and obtains a local L∞
bound [34, Proposition 4.5.1], a Harnack inequality [34, Theorem 4.5.3], and a Cα estimate and Hölder continuity 
[34, Theorem 4.5.5] up to the degenerate boundary (y = 0) for weak solutions. Koch uses the same Sobolev weights 
as ours, but whereas he uses potential theory and pointwise estimates for fundamental solutions to prove the Harnack 
inequality and Hölder continuity, our method of proof is based on Moser iteration and avoids any need for potential 
theory or pointwise estimates of fundamental solutions. We believe that this is an important distinction: in this article 
we establish results, for a broader class of degenerate elliptic operators, that would be difficult to achieve using 
potential theory.

While Koch takes the spatial domain to be the whole upper half-space, O =H, we consider the variational equation 
(1.19) on subdomains of the half-space, O �H, with Dirichlet boundary condition along the non-degenerate bound-
ary, �1. In [34], Koch does not need to analyze the regularity of solutions at the ‘corner points’ (�̄0 ∩ �̄1), but in our 
article we establish local supremum bounds for weak subsolutions and Cα estimates and Hölder continuity up to �̄0

for weak solutions on neighborhoods of points in �̄0 ∩ �̄1 (see our Theorems 1.6 and 1.13, and Corollaries 1.8 and 
1.16) — results which appear difficult to obtain using pointwise estimates of the fundamental solution.

In [34], Koch uses Moser iteration but only to obtain the local L∞ bound for a weak solution [34, Proposition 4.5.1]. 
In order to prove Hölder regularity of solutions along the boundary �̄0, we need the version of the Poincaré inequality 
for weighted Sobolev spaces that we prove in Corollary 2.6. Koch also obtains a version of the Poincaré inequality 
for weighted Sobolev spaces [34, Lemma 4.4.4] that applies to functions defined on the whole half-space. The Hölder 
regularity results we establish in this article are local and they are most easily proved using a local version of the 
Poincaré inequality, such as our Corollary 2.6. The proof of our Poincaré inequality — relying only on integration 
by parts and the Poincaré inequality for standard Sobolev spaces — appears simpler to us than the proof of [34, 
Lemma 4.4.4].

Our local version of the Poincaré inequality (Corollary 2.6) allows us to appeal to the ‘abstract John–Nirenberg 
inequality’ [2, Theorem 4] and employ Moser iteration to obtain, as we noted above, Hölder regularity for weak solu-
tions up to the ‘corner points’ (�̄0 ∩�1) and a Harnack inequality (on neighborhoods of points in �0) for non-negative 
weak solutions without relying on pointwise estimates of fundamental solutions. In particular, Koch does not use a 
John–Nirenberg inequality for weighted Sobolev spaces to obtain the results we cited in [34].

Finally, Koch does not consider applications to Hölder regularity of solutions to variational inequalities as we do 
in our article.

1.3.2. Connections with other closely related work
Kohn and Nirenberg prove an a priori estimate, existence, and uniqueness of a solution in a certain weighted 

Sobolev space [35, Equation (1.6)] to a variational equation defined by a boundary-degenerate, linear, second-order 
elliptic operator [35, Theorem 1]. They assume that the domain boundary is smooth, while we allow the domain to 
have singularities (at points in �̄0 ∩ �̄1). Rather than exploit the regularity of the solution implied by a suitable choice 
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of weighted Sobolev space, they use the sign of the Fichera function4 to determine when to impose Dirichlet boundary 
condition on portions of the domain boundary. In the case of Heston operator A in (1.14), this implies a dichotomy, 
0 < β < 1 and β ≥ 1, when applying a Dirichlet boundary condition along �0, whereas our choice of rather different 
weighted Sobolev spaces removes this undesirable dichotomy entirely and we never need to prescribe a Dirichlet 
boundary condition along �0; see Appendix B in the earlier preprint version [19] of [20] for a detailed discussion. 
When 0 < β < 1 (recall that β = 2κθ/σ 2 from (1.15)), Kohn and Nirenberg would require a homogeneous Dirichlet 
condition along the full boundary, ∂O , in their main [35, Theorem 1]: while this is in accordance with the Fichera 
sign condition [35, pp. 798–801], a boundary condition along �0 limits the regularity of the solution, u, to being at 
most continuous up to �0.

Even when β ≥ 1, their additional technical conditions [35, (a)–(d), pp. 799–800] mean that their main result does 
not apply to the problem we consider in this article. For example, they use the Fichera condition to partition the 
boundary as ∂O = �1 ∪ �2 ∪ �3 and, when β ≥ 1, �1 = �̄0, �2 = ∅, and �3 = �1. They require that �2 ∪ �3 be 
relatively closed, which means that �1 should be relatively closed, which is not true in our problem. Moreover, the 
closures of the portions of the boundary with a Dirichlet condition, �2 ∪ �3, and of the portion without any boundary 
condition, �1, are disjoint, while in our problem, they are allowed to intersect.

While [35, Theorem 1] provides a global a priori estimate (see [35, Inequality (1.7)]), along with existence and 
uniqueness of a solution in a certain weighted Sobolev space, it bounds the weighted Sobolev norm [35, Equa-
tion (1.6)] of u ∈ W

2,k
loc (O) in terms of the same weighted Sobolev norm of f ∈ W

2,k
loc (O), for any k ≥ 1, and this 

regularity requirement on f is unusually strong. While we might try to extract global regularity for u (in terms of 
Hölder norms) up to ∂O , that would require a suitable embedding theorem for weighted Sobolev spaces and, as far 
as we can tell (see, for example, [38]), such an embedding theorem is not available for the weighted Sobolev space 
defined in [35, Equation (1.6)]. Simple localization procedures, using cutoff functions, usually require appropriate 
interpolation inequalities and these are not developed in [35] and may not be straightforward. On the other hand, more 
advanced methods of developing local supremum or Hölder estimates usually require Sobolev, Poincaré, and John–
Nirenberg inequalities and these are not developed in [35] and, again, may not be straightforward for the choices of 
weights selected in [35]. Indeed, the Sobolev weights in [35, Theorem 1] appear to have a technical motivation, while 
the weights used in our article are directly motivated by the discussion in [20, Section 8].

Murthy and Stampacchia [41,42] establish local supremum estimates, Hölder regularity, and global Lp estimates 
for solutions in weighted Sobolev spaces to a variational equation defined by a boundary-degenerate, linear, second-
order elliptic operator. They assume that the (Lipschitz) coefficients āμν in (1.1) obey

〈ā(z)ξ, ξ〉 ≥ m(z)|ξ |2, ∀ ξ ∈ Rn and a.e. z ∈ O,

where the weight, m ≥ 0 a.e. on a bounded domain O , is required to obey [41, p. 1]

m ∈ Ls(O) and m−1 ∈ Lt(O),

for some s, t ≥ 1 such that 1/s+1/t < 2/n. The operator A defined in (1.12) does not satisfy the Murthy–Stampacchia 
condition since we would need to choose m(x, y) = ν0y and clearly m−1 /∈ Lt(O) for any t ≥ 1 whenever �0 is 
non-empty (as we allow throughout our article).

Fabes, Kenig and Serapioni [15] consider operators of the form Au = (aμνuxμ)xν , and Lipschitz coefficients aμν

obeying [15, p. 78]

C−1w(z)|ξ |2 ≤ 〈ā(z)ξ, ξ〉 ≤ Cw(z)|ξ |2, ∀ ξ ∈ Rn and a.e. z ∈ O,

where C is a positive constant, and w is a weight that belongs to the Muckenhoupt class, A2. They use Moser iteration 
to establish local supremum estimates and Hölder continuity for solutions and a Harnack inequality for non-negative 
solutions, u ∈ H 1

0 (O, w), to the variational equation [15, p. 94]∫
O

āμνuzμvzν dz =
∫
O

f v dz, ∀v ∈ C∞
0 (O),

4 Namely, (bμ − a
μν
zν )ημ , where (η1, . . . , ηn) is the inward-pointing unit normal vector field along ∂O [45, Equation (1.1.3)].
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given f ∈ L2(O) (by [15, p. 81]) and where they define [15, p. 91] (note the contrast with our definition (1.9b) of 
H 1(O, w))

‖u‖H 1(O,w) :=
⎛⎝∫

O

(
|Du|2 + u2

)
w dx

⎞⎠1/2

,

and H 1(O, w) is the completion of C∞
0 (O) in H 1(O, w). The Poincaré inequality holds in the case of A2 weights 

[15, p. 95, Item (4)] and the Sobolev inequality holds in the case of Ap weights [15, Theorems 1.2, 1.3, 1.5 and 1.6]. 
A calculation shows that our choice of weight, w(x, y) = yβ−1e−τ |x|−μy in (1.11) — or any of its variants which 
keep the important factor yβ−1 — is not contained in the Ap class when β ≥ p, and therefore the crucial Sobolev and 
Poincaré inequalities established in [15] do not apply. Even if we restrict to the case β < 2, Fabes, Kenig and Serapioni 
only obtain results for solutions obeying a homogeneous Dirichlet boundary condition along the full boundary, ∂O , 
whereas the essential feature of our article is that we impose no boundary condition along �0. Finally, the absence 
of the lower-order terms in (1.1) considerably simplifies the problem since, in a degenerate-elliptic operator, the term 
bμuzμ may be as significant as aμνuzμzν .

The method of Moser iteration has also been extended to degenerate operators in divergence form in articles such 
as [6–8,5,28], where the properties of A2 and An/2+1 weights are used to derive the Harnack inequality and Hölder 
regularity properties of solutions. We remark that the weight yβ−1 considered in our article does not belong to these 
classes of functions, when β ≥ 2 and β ≥ n/2, respectively. Moreover such a restriction would not be natural in the 
present context.

Chanillo and Wheeden [4] prove a Harnack inequality, extending that of [15] by allowing unequal weights,

w(z)|ξ |2 ≤ 〈ā(z)ξ, ξ〉 ≤ v(z)|ξ |2, ∀ ξ ∈ Rn and a.e. z ∈ O.

While they also relax the condition that w ∈ A2, they require that v, w obey a doubling condition5 and Poincaré 
and Sobolev inequalities [4, §1.2]. However, their Harnack inequality has the traditional, interior form (compare [29, 
Theorem 8.21] for the case of a strictly elliptic operator) for a subdomain O ′ � O . Mohammed [40] extends the work 
of Chanillo and Wheeden by allowing general, non-zero coefficients bμ and c for A in (1.1). Pingen also extends the 
work of Chanillo and Wheeden, but rather by considering quasilinear elliptic system in pure divergence form and no 
lower-order terms. He obtains an interior Harnack inequality and interior Hölder continuity, under suitable conditions 
on the structure of the quasilinearity and doubling conditions on the weights w and z := v2/w. Di Fazio, Fanciullo, and 
Zamboni [16,17,53] and Stredulinsky [47] also obtain an interior Harnack inequality and interior Hölder continuity 
for quasi-linear degenerate elliptic equations in divergence form under related hypotheses.

Lierl and Saloff-Coste use Moser iteration to establish a parabolic Harnack inequality for time-dependent, non-
symmetric, local Dirichlet forms [39, Theorem 3.14]. Their hypotheses, [39, Assumptions 0,1,2 and 4], are sat-
isfied by the bilinear form (1.13) defined by the operator A in (1.12) on domains of finite height, for example, 
O � Rn−1 × (0, y0), where y0 is a positive constant. The Poincaré inequality is a crucial ingredient in the proof 
of the Harnack inequality, which we prove in Corollary 2.10 by elementary methods. Lierl and Saloff-Coste state in 
[39, Theorem 3.11] a different version of the Poincaré inequality that involves the distance to the boundary of the ball, 
which in turn is proved in [48, Corollary 2.5]. In our Poincaré inequality, Corollary 2.10, we do not need to use the 
distance to the boundary of the ball.

Lierl and Saloff-Coste also prove Hölder continuity of solutions [39, Corollary 3.17] with zero source function. 
To prove the Hölder continuity of solutions with non-zero source function, f , we need the stronger weak Harnack 
inequality (compare [29, Theorem 8.18] for the case of a strictly elliptic operator), which is embedded in our proof 
of Theorem 1.11 in estimate (5.34). Since the weak Harnack inequality allows non-zero source functions (unlike the 
Harnack inequality), it enables us to establish Hölder continuity of solutions with non-zero source function. Because 
the Harnack inequality is an ‘interior estimate’ (recall that �0 essentially plays the same role as the interior of O
in our article), it cannot be used to obtain Hölder continuity of solutions to the variational equation at corner points 
(�̄0 ∩ �̄1), as we do in our Theorem 1.13.

5 This is also true for our weight, w, by Lemma 2.4.
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For variational inequalities defined by degenerate elliptic or parabolic operators, there has been little previous 
research. Vitanza and Zamboni [51,52] describe existence and uniqueness results for solutions in certain weighted 
Sobolev spaces, but do not consider boundary regularity of solutions or partial Dirichlet boundary conditions.

1.4. Mathematical highlights and guide to the article

For the convenience of the reader, we provide a brief outline of the article. We begin in §2 by describing a Sobolev 
inequality due to H. Koch [34] and prove a Poincaré inequality for our weighted Sobolev spaces. In §3, we recall 
the abstract John–Nirenberg inequality (Theorem 3.1) due to E. Bombieri and E. Giusti [2] and justify its application 
(via Proposition 3.2) in the setting of our weighted Sobolev spaces. The supremum estimate near �̄0 for solutions 
to the variational equation (1.19) (Theorems 1.5 and 1.6) is proved in §4 by adapting the Moser iteration technique 
employed in the proof of [29, Theorem 8.15] to the setting of our degenerate elliptic operators and weighted Sobolev 
spaces. Section 5 contains our proof of local Hölder continuity along �̄0 of solutions to the variational equation 
(1.19) (Theorems 1.11 and 1.13). The essential difference between the proofs of Theorems 1.11 and 1.13 and the 
proof of their classical analogue for variational solutions to non-degenerate elliptic equations [29, Theorems 8.27 
and 8.29] consists in a modification of the methods of [29, §8.6, §8.9, and §8.10] when deriving our energy estimates 
(5.15), where we adapt the application of the John–Nirenberg inequality and Poincaré inequality to our framework of 
weighted Sobolev spaces. In this section we also prove the Strong Maximum Principle (Theorem 1.18). In §6, we apply 
the penalization method and techniques of [9], together with Theorems 1.11 and 1.13, to prove local Hölder continuity 
along �̄0 of solutions to the variational inequality (1.3) (Theorem 1.20). Finally, in §7 we prove the Harnack inequality 
(Theorem 1.24) for solutions to the variational equation (1.19). Appendix A contains the proofs of auxiliary results 
employed throughout the article whose proofs are sufficiently technical that they would have otherwise interrupted 
the logical flow of our article.

A longer, unpublished version of this article appeared as [21] and additional details for some lengthy but routine 
calculations are available there.

1.5. Notation and conventions

In the definition and naming of function spaces, including spaces of continuous functions, Hölder spaces, or 
Sobolev spaces, we follow Adams [1] and alert the reader to occasional differences in definitions between [1] and 
standard references such as Gilbarg and Trudinger [29] or Krylov [36,37]. We denote R+ := (0, ∞), R̄+ := [0, ∞), 
H := Rn−1 × R+, and H̄ := Rn−1 × R̄+, where n ≥ 2. We let N := {1,2,3, . . .} denote the set of positive integers. 
For x, y ∈ R, we denote x ∧ y := min{x, y}, x ∨ y := max{x, y}. Moreover, x+ := x ∨ 0 and x− := −(x ∧ 0), so 
x = x+ − x− and |x| = x+ + x−, a convention which differs from that of [29, §7.4]. If V ⊂ S is an open subset of a 
subset S ⊂Rn, we write U � S when Ū is compact and Ū ⊂ S.

When we label a condition an Assumption, then it is considered to be universal and in effect throughout this article 
and so not referenced explicitly in theorem and similar statements; when we label a condition a Hypothesis, then it is 
only considered to be in effect when explicitly referenced.

1.6. Acknowledgments

We would like to thank Panagiota Daskalopoulos for many useful discussions on degenerate partial differential 
equations and for proposing some of the questions considered in this article. In addition we want to thank Sagun 
Chanillo and Richard Wheeden for many helpful references concerning the method of Moser iteration. The second 
author gratefully acknowledges the support and hospitality provided by the Institute of Mathematics and Its Applica-
tions during the academic year 2015–2016.

2. Sobolev and Poincaré inequalities for weighted Sobolev spaces

The main result of this subsection is a Poincaré inequality (Lemma 2.5) for weighted Sobolev spaces. In addition, 
we review a Sobolev inequality (Lemma 2.2) due to H. Koch [34]. Recall from [34, Corollary 4.3.4] that the weight 
yβ−1 defines a doubling measure, yβ−1 dx dy on H for any β > 0 (see, for example, [50, Definition 1.2.6]), where 
dx dy is Lebesgue measure on H. In the following Lemma 2.2 and the sequel, we will need the following
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Definition 2.1. Throughout our article, we fix

p := 2(n + β)

n + β − 1
, (2.1)

for any β > 0.

We recall the

Lemma 2.2 (Weighted Sobolev inequality). [34, Lemma 4.2.4] Let p be as in (2.1). Then there is a positive constant 
C = C(n, p) such that

∫
H

|u|pyβ−1 dx dy ≤ c

⎛⎝∫
H

|u|2yβ−1 dx dy

⎞⎠
p−2

2 ∫
H

|∇u|2yβ dx dy, (2.2)

for any u ∈ L2
(
H, yβ−1

)
such that ∇u ∈ L2

(
H, yβ

)
.

For R > 0 and z0 ∈ Ō , we denote

BR(z0) = {z ∈ O : d(z, z0) < R} , (2.3)

BR(z0) = {z ∈ H : d(z, z0) < R} , (2.4)

while

B̄R(z0) = {z ∈ Ō : d(z, z0) ≤ R
}

and B̄R(z0) = {z ∈ H̄ : d(z, z0) ≤ R
}
,

are the usual closures of BR(z0) in Ō and of BR(z0) in H̄. Using definition (1.28) of the cycloidal distance, we obtain 
the following inclusions. For all R > 0, we have

ER2(z0) ⊂ BR(z0), ∀ z0 ∈ H̄, (2.5)

BR(z0) ⊂ E2R2(z0), ∀ z0 ∈ ∂H. (2.6)

Throughout the article we also use the following

Definition 2.3 (Volume of sets). If S ⊂ H̄ is a Borel measurable subset, we let |S|β denote the volume of S with respect 
to the measure yβ dx dy, and |S|w denote the volume of S with respect to the measure w dx dy.

We now recall

Lemma 2.4. [34, Lemma 4.3.3] There is a positive constant c ≥ 1, depending only on n and β , such that, for any 
R > 0 and z0 ∈ H̄,

c−1Rn(R + √
y0)

n+2β ≤ |BR(z0)|β ≤ cRn(R + √
y0)

n+2β. (2.7)

Moreover, the following inclusions hold,

ER1(z0) � BR(z0) � ER2(z0), (2.8)

where R1 = R
(
R + √

y0
)
/2000 and R2 = R

(
R + 2

√
y0
)
.

We have the following Poincaré inequalities, adapted to our weighted Sobolev spaces.

Lemma 2.5 (Poincaré inequality). Let z0 ∈ ∂H and R > 0. Then there is a positive constant C, depending on β , n
and R, such that for any u ∈ H 1(BR(z0), w), we have

inf
c∈R

⎛⎜⎝ ∫
BR(z0)

|u(z) − c|2yβ−1 dx dy

⎞⎟⎠
1/2

≤ C

⎛⎜⎝ ∫
BR(z0)

|∇u(z)|2yβ dx dy

⎞⎟⎠
1/2

. (2.9)
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As a consequence of Lemma 2.5, we obtain

Corollary 2.6 (Poincaré inequality with scaling). There is a positive constant C0, depending only on β and n, such 
that for any z0 ∈ ∂H, R > 0 and u ∈ H 1(BR(z0), w) we have

inf
c∈R

⎛⎜⎝ 1

|BR(z0)|β−1

∫
BR(z0)

|u(z) − c|2yβ−1 dx dy

⎞⎟⎠
1/2

≤ C0R
2

⎛⎜⎝ 1

|BR(z0)|β
∫

BR(z0)

|∇u(z)|2yβ dx dy

⎞⎟⎠
1/2

.

(2.10)

To prove Lemma 2.5 and Corollary 2.6, we make use of the following extension property.

Lemma 2.7 (Extension operator). Let z0 ∈ ∂H and R > 0. Let ai, bi ∈ R, ai < bi , for all 1 ≤ i ≤ n, be such that 
D =∏n

i=1(ai, bi) is a rectangle with the property that BR(z0) � D. Then, there is a continuous extension

E : H 1(BR(z0),w) → H 1(D,w),

and there exists a positive constant C, depending on D, R, n and β , such that for any u ∈ H 1(BR(z0), w) we have

‖Eu‖L2(D,yβ−1) ≤ C‖u‖L2(BR(z0),y
β−1),

‖∇Eu‖L2(D,yβ) ≤ C‖∇u‖L2(BR(z0),y
β ).

(2.11)

Remark 2.8. Without loss of generality, in the proofs of Lemmas 2.5 and 2.7 and Corollary 2.6 we may assume 
z0 = (0, 0).

Proof of Lemma 2.5. Let ai < bi , for all 1 ≤ i ≤ n − 1, and let δ > 0 be such that BR(z0) � D0 × (0, δ), where we 
denote D0 :=∏n−1

i=1 (ai, bi). Let k > 1 be such that

2k−β = 1

2
. (2.12)

Let û = Eu be the extension of u to D given by Lemma 2.7. Assuming that (2.9) holds for û, we obtain that it holds 
for u also in the following way,

inf
c∈R

⎛⎜⎝ ∫
BR(z0)

|u(z) − c|2yβ−1 dx dy

⎞⎟⎠
1/2

≤ inf
c∈R

⎛⎝∫
D

|û(z) − c|2yβ−1 dx dy

⎞⎠1/2

≤ C

⎛⎝∫
D

|∇û(z)|2yβ dx dy

⎞⎠1/2

≤ C

⎛⎜⎝ ∫
BR(z0)

|∇u(z)|2yβ dx dy

⎞⎟⎠
1/2

.

In the last inequality above, we made use of (2.11).
Therefore, we may assume u ∈ H 1(D, w). Our goal is to prove that (2.9) holds for u ∈ H 1(D, w). By [9, Corol-

lary A.14], we may assume without loss of generality that u ∈ C1(D̄). Let c ∈R and let v = u − c. Then, by the mean 
value theorem, we have for any y ∈ (0, δ) and x ∈ D0,
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v(x, y) = v(x, ky) +
y∫

ky

vy(x, t)dt.

Squaring both sides of the preceding equation and integrating in y with respect to yβ−1 dy, we obtain

δ∫
0

|v(x, y)|2yβ−1 dy ≤ 2

δ∫
0

|v(x, ky)|2yβ−1 dy + 2

δ∫
0

∣∣∣∣∣∣∣
y∫

ky

vy(x, t)dt

∣∣∣∣∣∣∣
2

yβ−1 dy. (2.13)

By applying the change of variable y′ = ky, we see that

δ∫
0

|v(x, ky)|2yβ−1 dy = k−β

kδ∫
0

|v(x, y′)|2y′ β−1 dy′. (2.14)

Also, we have for β �= 1,

δ∫
0

∣∣∣∣∣∣∣
y∫

ky

vy(x, t)dt

∣∣∣∣∣∣∣
2

yβ−1 dy =
δ∫

0

∣∣∣∣∣∣∣
y∫

ky

vy(x, t)tβ/2t−β/2dt

∣∣∣∣∣∣∣
2

yβ−1 dy

≤ 1

|1 − β|
δ∫

0

ky∫
y

|vy(x, t)|2tβdt

∣∣∣y−β+1 − (ky)−β+1
∣∣∣yβ−1 dy

≤ δ
1 + k−β+1

|1 − β|
kδ∫

0

|vy(x, y)|2yβ dy.

(2.15)

For β = 1, a similar calculation gives us

δ∫
0

∣∣∣∣∣∣∣
y∫

ky

vy(x, t)dt

∣∣∣∣∣∣∣
2

dy ≤ δ logk

kδ∫
0

|vy(x, y)|2y dy. (2.16)

Define a positive constant C0 ≡ C0(β, δ) by C0 = 2δ(1 + k−β+1)/|1 −β| when β �= 1, and C0 = 2δ logk when β = 1. 
By combining equations (2.13), (2.14), (2.15) and (2.16), we obtain

δ∫
0

|v(x, y)|2yβ−1 dy ≤ 2k−β

kδ∫
0

|v(x, y)|2yβ−1 dy + C0

kδ∫
0

|vy(x, y)|2yβ dy

≤ 2k−β

δ∫
0

|v(x, y)|2yβ−1 dy + 2k−β

kδ∫
δ

|v(x, y)|2yβ−1 dy

+ C0

kδ∫
0

|vy(x, y)|2yβ dy.

Recall that k > 1 was chosen such that (2.12) is satisfied. Therefore, by integrating also in x, there exists C = C(β, δ)
such that∫ kδ∫

|v(x, y)|2yβ−1 dy dx ≤ C

∫ kδ∫
|v(x, y)|2yβ−1 dy dx + C

∫ kδ∫
|vy(x, y)|2yβ dy dx.
D0 0 D0 δ D0 0
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Since v = u − c, we have

inf
c∈R

∫
D

|u(x, y) − c|2yβ−1 dy dx

≤ C inf
c∈R

∫
D0

kδ∫
δ

|u(x, y) − c|2yβ−1 dy dx + C

∫
D

|uy(x, y)|2yβ dy dx.

(2.17)

The rectangle D′ := D0 × (δ, kδ) is a convex domain and so we may apply the classical Poincaré inequality [29, 
Equation (7.45)] to give

inf
c∈R

∫
D0

kδ∫
δ

|u(x, y) − c|2 dy dx ≤ C

∫
D0

kδ∫
δ

|∇u(x, y)|2 dy dx.

Let C′ := (kδ)β−1 if β ≥ 1, and C′ = δβ−1 if β < 1. Then we see that yβ−1 ≤ C′, for all y ∈ (δ, kδ), which gives

∫
D0

kδ∫
δ

|u(x, y) − c|2yβ−1 dy dx ≤ C′
∫
D0

kδ∫
δ

|u(x, y) − c|2 dy dx, ∀ c ∈ R.

Using in addition the inequality,

∫
D0

kδ∫
δ

|∇u(x, y)|2 dy dx ≤ δ−β

∫
D0

kδ∫
δ

|∇u(x, y)|2yβ dy dx,

and combining it with the preceding two inequalities, we obtain that

inf
c∈R

∫
D0

kδ∫
δ

|u(x, y) − c|2yβ−1 dy dx ≤ C

∫
D0

kδ∫
δ

|∇u(x, y)|2yβ dy dx,

where C = C(β, D0, δ, k) is a positive constant. Because the domain D0 and δ depend only on R, and k depends on 
β , the constant C in the preceding inequality depends only on β , n and R. Combining the preceding inequality with 
(2.17) yields (2.9). �
Remark 2.9. Koch states a weighted Poincaré inequality on the half-space [34, Lemma 4.4.4], with weight 
yβ−1e−κρ(z,z0), where κ is a positive constant, z0 is a fixed point in H̄, and ρ(z, z0) is equivalent to d2(z, z0), in 
the sense that there exists a constant c > 0 such that

cd2(z, z0) ≤ ρ(z, z0) ≤ 1

c
d2(z, z0), ∀ z ∈H.

The proof of this result is long and technical. So, rather than use this result to prove a weighted Poincaré inequality 
on a ball using an extension principle, we give a much simpler proof for balls and weights yβ−1 and yβ .

Remark 2.10 (Scaling under Koch metric). Using the definitions (1.28) for the cycloidal distance and (2.4) for the 
ball BR(z0), we obtain the following scaling property

BR1(z0) =
(

R1

R2

)2

BR2(z0), ∀R1,R2 > 0 and z0 ∈ ∂H, (2.18)

since d(z0 + t2(z − z0), z0) = td(z, z0) for all z ∈ H, z0 ∈ ∂H, and t > 0. Notice that (2.18) does not hold if z0 =
(x0, y0) with y0 > 0.
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Proof of Corollary 2.6. Let R > 0 and R̄ > 0 and define v by rescaling

u(z) = v

(
z0 +

(
R̄

R

)2

(z − z0)

)
, ∀ z ∈ BR(z0).

The rescaling map defined by z �→ z0 + (R̄/R)2(z − z0) maps BR(z0) into BR̄(z0) by Remark 2.10. By applying 
Lemma 2.5 to v on BR̄(z0), there is a positive constant C0, depending only on R̄, n and β , such that (2.9) holds. By 
changing variables, we obtain

inf
c∈R

(
R̄

R

)2(β−1) ∫
BR(z0)

|u − c|2yβ−1 dx dy ≤ C0

(
R

R̄

)4(
R̄

R

)2β ∫
BR(z0)

|∇u|2yβ dx dy. (2.19)

Using Lemma 2.4, we rewrite (2.19) in the following form

inf
c∈R

|BR̄(z0)|β−1

|BR(z0)|β−1

∫
BR(z0)

|u − c|2yβ−1 dx dy ≤ C0

(
R

R̄

)4 |BR̄(z0)|β
|BR(z0)|β

∫
BR(z0)

|∇u|2yβ dx dy,

from which (2.10) follows immediately by taking R̄ = 1. �
3. John–Nirenberg inequality

In this section we recall the abstract John–Nirenberg inequality (Theorem 3.1) due to E. Bombieri and E. Giusti 
[2] and, in particular, provide a justification — via Proposition 3.2 — that its hypotheses hold in the setting of the 
problems described in §1.

We restrict the statement of [2, Theorem 4] to the framework of our problems, so in [2, Theorem 4] we choose H
to be the topological space and dμ = yβ−1 dx dy to be the regular positive Borel measure on H. Let Sr , 0 ≤ r ≤ 1 be 
a family of non-empty open sets in H such that

Ss � Sr, 0 ≤ s ≤ r ≤ 1,

0 < |Sr |β−1 < ∞, ∀ r ∈ [0,1]. (3.1)

Let w be a measurable positive function on S1. For t �= 0 and 0 ≤ r ≤ 1, we denote by

|w|t,r =
⎛⎜⎝ 1

|Sr |β−1

∫
Sr

|w|t yβ−1 dx dy

⎞⎟⎠
1/t

,

|w|∞,r = ess sup
Sr

w,

|w|−∞,r = ess inf
Sr

w.

We now recall the

Theorem 3.1 (Abstract John–Nirenberg inequality). [2, Theorem 4] Let 0 < θ0, θ1 ≤ ∞ and w be a measurable 
positive function on S1 such that

|w|θ0,1 < ∞ and |w|θ1,1 > 0.

Suppose there exist constants γ > 0, 0 < t∗ ≤ 1
2 min{θ0, θ1} and Q > 0 such that for all 0 ≤ s < r ≤ 1 and 0 < t ≤ t∗,

|w|θ0,s ≤ (Q(r − s)γ
)1/θ0−1/t |w|t,r ,

|w|−θ1,s ≥ (Q(r − s)γ
)1/t−1/θ1 |w|−t,r .

(3.2)

Assume further that
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A := sup
0≤r≤1

inf
c∈R

1

|Sr |β−1

∫
Sr

| logw − c|yβ−1 dx dy < ∞. (3.3)

Then, we have

|w|θ0,0 ≤
( |S1|β−1

|S0|β−1

)1/θ0+1/θ1

exp
{
c2Q

−2 (A + 1/t∗
)} |w|−θ1,0, (3.4)

where c2 is a constant depending only on γ , but not on Q, θ0, θ1, t∗, A and β .

In many of our proofs, we will make use of a sequence of cutoff functions, {ηN}N∈N. Let ϕ : R → [0, 1] be a 
smooth function such that ϕ(x) ≡ 1 for x < 0, and ϕ ≡ 0 for x > 1. Let z0 ∈H and let {RN }N≥0 be an non-increasing 
sequence of positive numbers. We define

ηN(z) := ϕ

(
1

R2
N−1 − R2

N

(d2(z0, z) − R2
N)

)
, ∀ z ∈ H̄, ∀N ∈ N. (3.5)

Then, the sequence {ηN }N≥1 has the following properties,

ηN |BRN
(z0) ≡ 1, ηN |Bc

RN−1(z0)
≡ 0, (3.6)

|∇ηN | ≤ C

R2
N−1 − R2

N

, (3.7)

where Bc
RN−1

(z0) := H \ B̄RN−1(z0) and C is a positive constant independent of N and the sequence {RN }N≥0. The 
bound in (3.7) can be deduced from the calculation,

∇ηN = ϕ′
(

1

R2
N−1 − R2

N

(d2(z0, z) − R2
N)

)
1

R2
N−1 − R2

N

∇d2(z0, z).

Also, we have that |∇d2(z0, z)| ≤ 5, for all z0, z ∈ H. Since ϕ′ is also uniformly bounded on R, we obtain the 
forthcoming inequality (3.10).

Similarly, we can construct a sequence of cutoff functions, {ηN }N∈N, when {RN }N≥0 is a non-decreasing sequence 
of positive numbers.

We now provide a justification that the hypotheses of Theorem 3.1 hold in the setting of the problems discussed in 
this article.

Proposition 3.2 (Application of Theorem 3.1). Let z0 ∈ ∂H and 0 < 4R ≤ 1. Let Sr = B(2+r)R(z0), for all 0 ≤ r ≤ 1. 
Let θ0, θ1 be as in Theorem 3.1 and set t∗ = 1

2 min{θ0, θ1}. Then, there exist positive constants Q and γ , independent 
of R and z0, such that (3.4) holds for any bounded positive function w on S1 which satisfies the forthcoming energy 
estimates (5.15) or (7.4), where we recall that p is defined in (2.1).

Proof. We begin by proving the first inequality in (3.2) by applying Moser iteration finitely many times. The second 
inequality in (3.2) can be proved by a similar technique. We give the proof when w satisfies the energy estimate (5.15), 
but the proof applies as well to positive bounded functions w satisfying the energy estimate (7.4).

As in the hypotheses of Theorem 3.1, we let t ∈ (0, t∗]. First, we consider the special case when θ0 and t satisfy 
the requirement: There exists an integer N∗ ≥ 1 such that θ0 can be written as

θ0 = t
(p

2

)N∗
. (3.8)

Let 0 ≤ s < r ≤ 1 and set R0 = (2 + r)R. We denote

c :=
∞∑

k=1

1

k2

and we let
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R2
N :=

(
(2 + r)2 − (r − s)2

N∑
k=1

1

ck2

)
R2, N = 1, . . . ,N∗. (3.9)

We observe that (2 + s)R < RN < RN−1 ≤ (2 + r)R. Let {ηN }N∈N be a sequence of non-negative, smooth cutoff 
functions as constructed in (3.5), by choosing RN as in (3.9). Then, (3.7) becomes

|∇ηN | ≤ CN2

R2(r − s)2
. (3.10)

Let PN := t (p/2)N , for N = 1, . . . , N∗, and αN = pN − 1, for all N = 0, . . . , N∗ − 1. We set

I (N) :=
⎛⎜⎝ ∫
BRN

(z0)

|w|pN yβ−1 dx dy

⎞⎟⎠
1/pN

, (3.11)

From our hypothesis, w satisfies (5.15), that is,

‖ηw(α+1)/2‖Lp
(
H,yβ−1

) ≤ C0(R,α)‖w(α+1)/2‖L2
(
supp η,yβ−1

), (3.12)

where

C0(R,α) := (C|1 + α|)(ξ+1)/p
(

1 + ‖√y∇η‖2
L∞(H)

)1/p

, (3.13)

and ξ and C are positive constants, independent of w, α and η. We choose α = αN−1 and η = ηN in (3.12), so the 
definition (3.11) gives us, for all N ≥ 1,

I (N) ≤ C1(R, r, s,N)I (N − 1), (3.14)

where

C1(R, r, s,N) := (C|pN−1|)(ξ+1)/pN

(
1 + ‖√y∇ηN‖2

L∞(H)

)1/pN

.

From Lemma 2.4, we have y ≤ CR2 on BRN
(z0), where C is a positive constant independent of R and N . Using the 

bound (3.10), we obtain

C1(R, r, s,N) := (C|pN−1|)(ξ+1)/pN

(
CN4

R2(r − s)4

)1/pN

.

By iterating inequality (3.14), we obtain

I (N∗) ≤ C2(R, r, s)I (0), (3.15)

where

C2(R, r, s) :=
N∗∏

N=1

(
Cp

ξ+1
N−1N

4R−2(r − s)−4
)1/pN

. (3.16)

Next, we prove the

Claim 3.3. There are positive constants Q and γ , independent of N∗, R, r and s, such that

C2(R, r, s) ≤ (Q(r − s)γ
)1/θ0−1/t

R
4

p−2 (1/θ0−1/t)
. (3.17)

Proof of Claim 3.3. We can rewrite the expression (3.16) for C2(R, r, s) to obtain

C2(R, r, s) ≤
(
Ctξ+1R−2(r − s)−4

)∑N∗
N=1 1/pN

(
C

p

2

)∑N∗
N=1 N/pN

, (3.18)

where we used in the last line that N4 ≤ C(p/2)N , for some positive constant C = C(p). Equation (3.8) leads to the 
identities
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N∗∑
N=1

1

pN

= 2

p − 2

(
1

t
− 1

θ0

)
and

N∗∑
N=1

N

pN

= 4

p(p − 2)

(
1

t
− 1

θ0

)
.

Therefore, inequality (3.17) becomes

C2(R, r, s) ≤
(
R−2(r − s)−4

) 2
p−2

(
1
t
− 1

θ0

) (
Cθ

ξ+1
0

p

2

) 4
p(p−2)

(
1
t
− 1

θ0

)
, (3.19)

which is equivalent to (3.17) with the choice of the constants Q =
(
Cθ

ξ+1
0 p/2

)−1
and γ = 8/(p−2). This completes 

the proof of Claim 3.3. �
From identity (2.1), we have that 4/(p − 2) = 2(n + β − 1), and so Lemma 2.4 (with constant c0 = c0(n, β) > 1) 

yields

|B(2+s)R(z0)|1/θ0
β−1

|B(2+r)R(z0)|1/t

β−1

≥ c
−1/θ0
0 ((2 + s)R)2(n+β−1)/θ0

c
1/t

0 ((2 + r)R)2(n+β−1)/t

= c
−1/θ0−1/t

0

(
2 + s

2 + r

)2(n+β−1)(1/θ0−1/t)

R2(n+β−1)(1/θ0−1/t)

≥ C1/θ0+1/tR(4/(p−2))(1/θ0−1/t),

for a positive constant C = 1/c0 < 1 and recalling that 0 ≤ s < r ≤ 1 and θ0 > t by (3.8). Therefore, inequality (3.17)
becomes

C2(R, r, s) ≤ C−1/θ0−1/t
(
Q(r − s)γ

)1/θ0−1/t |B(2+s)R(z0)|1/θ0
β−1

|B(2+r)R(z0)|1/t

β−1

. (3.20)

From the hypothesis of Proposition 3.2 that t ≤ t∗ ≤ θ0/2, we have

3(1/θ0 − 1/t) ≤ −1/θ0 − 1/t ≤ 1/θ0 − 1/t,

and so, for a new positive constant Q, the inequality (3.20) leads to

C2(R, r, s) ≤ (Q(r − s)γ
)1/θ0−1/t |B(2+s)R(z0)|1/θ0

β−1

|B(2+r)R(z0)|1/t

β−1

. (3.21)

By employing the inequalities (3.21) and (3.15) and the definition (3.11) of I (N), we obtain⎛⎜⎝ ∫
B(2+s)R(z0)

|w|θ0yβ−1 dx dy

⎞⎟⎠
1/θ0

≤ (Q(r − s)γ
)1/θ0−1/t |B(2+s)R(z0)|1/θ0

β−1

|B(2+r)R(z0)|1/t

β−1

⎛⎜⎝ ∫
B(2+r)R(z0)

|w|t yβ−1 dx dy

⎞⎟⎠
1/t

,

from which we readily obtain the first inequality in (3.2), in the special case where t and θ0 satisfy (3.8) for some 
integer N∗ ≥ 1.

Next, we show that the first inequality in (3.2) holds for any t ∈ (0, t∗). For this purpose, we choose an integer 
N∗ ≥ 1 such that

t
(p

2

)N∗−1
< θ0 < t

(p

2

)N∗
.

We denote θ∗ = t (p/2)N
∗

and we apply the previous analysis to t and θ∗, which now satisfy (3.8), to give
0 0
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|w|θ∗
0 ,s ≤ (Q(r − s)γ

)1/θ∗
0 −1/t |w|t,r .

Using Hölder’s inequality with p = θ∗
0 /θ0 > 1, we find that

|w|θ0,s ≤ |w|θ∗
0 ,s ,

and so

|w|θ0,s ≤ (Q(r − s)γ
)1/θ∗

0 −1/t |w|t,r
≤ (Q(r − s)γ

) 1/θ∗
0 −1/t

1/θ0−1/t (1/θ0−1/t) |w|t,r .
Notice that 2θ∗

0 /p ≤ θ0 ≤ θ∗
0 and 0 < t < θ0/2. Then,

1 ≤ 1/θ∗
0 − 1/t

1/θ0 − 1/t
≤ 1/θ∗

0 − 1/t

p/2θ∗
0 − 1/t

≤ (2/p)N
∗ − 1

(2/p)N
∗+1 − 1

≤ p

p − 2
.

Consequently, we define Q̃ to be Qp/(p−2) if Q < 1, and we leave Q unchanged if Q ≥ 1 and, setting 
γ̃ := γp/(p − 2), the preceding estimate for |w|θ0,s becomes

|w|θ0,s ≤ (Q̃(r − s)γ̃
)1/θ0−1/t |w|t,r ,

which is precisely the first inequality in (3.2). �
4. Supremum estimates near the degenerate boundary

In this section, we prove Theorems 1.5 and 1.6 and Corollary 1.8, that is, local boundedness up to �̄0 for subsolu-
tions (respectively, supersolutions), u, to the variational equation (1.19). Our choice of test functions when applying 
Moser iteration follows that employed in the proof of [29, Theorem 8.15]. However, the choice of test functions used 
in the proof of the classical local supremum estimates [29, Theorem 8.17] is not suitable in our case because the test 
functions in (1.19) are not required to satisfy a homogeneous Dirichlet boundary condition along �̄0. In addition, the 
method of deriving the energy estimate (4.5) is slightly different from [29, Theorem 8.18] because, instead of using 
the classical Sobolev inequalities [29, Theorem 7.10], we use Lemma 2.2.

We begin with the

Lemma 4.1. Let K be a finite, right circular cone and O be an open subset which obeys the uniform interior and 
exterior cone condition on �̄0 ∩ �̄1 with cone K . Then, there are positive constants R̄ and c depending on K , n and 
β such that, for all R ∈ (0, R̄], we have

c−1|BR(z0)|β−1 ≤ |BR(z0)|β−1 ≤ c|BR(z0)|β−1, ∀ z0 ∈ �̄0, (4.1)

and also

c−1|BR(z0)|β−1 ≤ |BR(z0)\BR(z0)|β−1 ≤ c|BR(z0)|β−1, ∀ z0 ∈ �̄0 ∩ �̄1. (4.2)

An open subset, O , which does not satisfy condition (4.1) can be created along the lines of [32, Example 4.2.17]
(Lebesgue’s thorn); see [22, Example A.1].

Proof of Lemma 4.1. The proof of the lemma can be obtained just as in the case of the Euclidean distance function 
with the aid of Lemma 2.4. Complete details are provided in the proof of [21, Lemma 4.1]. �

We can now proceed to the

Proof of Theorems 1.5 and 1.6. For the proof of Theorem 1.5, we choose R̄ <
√

R0/2. For the proof of Theorem 1.6, 
we choose R̄ smaller than 

√
R0/2 and than the constant R̄ appearing in the conclusion of Lemma 4.1. Notice that 

(2.6) shows that BR̄(z0) ⊂ ER0(z0).
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Step 1 (Energy estimates). Let α ≥ 1 and let η ∈ C1
0(H̄) be a non-negative cutoff function with support in B̄2R(z0), 

where R is chosen such that 0 < 2R < R̄. We define

A := ‖f ‖Ls(supp η,yβ−1). (4.3)

We will apply the calculations in Steps 1 and 2 to w defined by

w := u+(u−) + A. (4.4)

For concreteness, we will illustrate our calculations with the choice w = u+ + A (when u is a subsolution), but they 
apply equally well to the choice w = u− + A (when u is a supersolution). Our goal in Step 1 is to prove the following

Claim 4.2 (Energy estimate). There are positive constants C = C(�, ν0, n, s, R̄), and ξ = ξ(n, β, s), such that⎛⎝∫
O

|ηwα|pyβ−1 dx dy

⎞⎠1/p

≤ (Cα)ξ+1
(
‖√y∇η‖2/p

L∞(H)
+ | suppη|1/p−1/2

β−1

)⎛⎝ ∫
supp η

w2αyβ−1 dx dy

⎞⎠1/2

.

(4.5)

Proof of Claim 4.2. We fix k ∈ N. As in the proof of [29, Theorem 8.15], we consider the functions Hk :R → [0, ∞),

Hk(t) :=

⎧⎪⎨⎪⎩
0, t < A,

tα − Aα, A ≤ t ≤ k,

αkα−1(t − k) + Hk(k), t > k.

(4.6)

and

Gk(t) =
t∫

0

|H ′
k(s)|2ds. (4.7)

Then,

v = Gk(w)η2 (4.8)

is a valid test function in H 1
0 (O ∪ �0, w) in (1.13) by [21, Lemma A.1]. Using the strict ellipticity of the operator 

y−1A, together with the fact that ∇v = G′
k(w)η2∇w + 2Gk(w)η∇η and Gk(w) = 0 when w ≤ A, we obtain as in the 

proof of [29, Theorem 8.15] that there is a positive constant, C = C(�, n, ν0, R̄), such that∫
O

|∇w|2η2G′
k(w)yβ dx dy ≤ C

⎡⎣∫
O

η2 |f |
A

w2G′
k(w)yβ−1 dx dy

+
∫
O

(
η2 + y|∇η|2

)
w2G′

k(w)yβ−1 dx dy

⎤⎦ .

(4.9)

Hölder’s inequality applied to the conjugate pair (s, s∗) gives∫
O

η2 |f |
A

w2G′
k(w)yβ−1 dx dy

≤
⎛⎝ ∫

supp η

|f |s
As

yβ−1 dx dy

⎞⎠1/s⎛⎝∫
O

|η2w2G′
k(w)|s∗

yβ−1 dx dy

⎞⎠1/s∗

,
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and thus, by definition (4.3) of A,∫
O

η2 |f |
A

w2G′
k(w)yβ−1 dx dy ≤

⎛⎝∫
O

|η2w2G′
k(w)|s∗

yβ−1 dx dy

⎞⎠1/s∗

. (4.10)

We need to justify first that the right-hand side in (4.10) is finite. First, we notice that the following identities hold

|∇Hk(w)|2 = |∇w|2|H ′
k(w)|2 = |∇w|2G′

k(w),

|wH ′
k(w)|2 = |w|2G′

k(w),
(4.11)

From the hypothesis s > n + β in Theorems 1.5 and 1.6, we observe that 2 < 2s∗ < p, so we may apply the interpo-
lation inequality [29, Inequality (7.10)]. For any ε ∈ (0, 1), we have

‖ηwH ′
k(w)‖L2s∗ (H,yβ−1) ≤ ε‖ηwH ′

k(w)‖Lp(H,yβ−1) + ε−ξ‖ηwH ′
k(w)‖L2(H,yβ−1), (4.12)

where

ξ ≡ ξ(p, s) := p(s∗ − 1)

p − 2s∗ . (4.13)

We notice that |H ′
k(w)| ≤ αkα−1 and ηw ∈ H 1(O, w) has compact support in B̄2R(z0). Therefore, we may ap-

ply Lemma 2.7 to build an extension ŵ of ηw to a rectangle D containing B̄2R(z0). Lemma 2.2, shows that 
ŵ ∈ Lp(D, yβ−1), which implies that

‖ηwH ′
k(w)‖Lp(H,yβ−1) < ∞,

and so, the right-hand side of (4.10) is finite.
Inequalities (4.9) and (4.10), together with the identities (4.11) yield∫

O

η2|∇Hk(w)|2yβ dx dy ≤ C

⎡⎢⎣
⎛⎝∫

O

|ηwH ′
k(w)|2s∗

yβ−1 dx dy

⎞⎠1/s∗

+
∫
O

(
η2 + y|∇η|2

)
|wH ′

k(w)|2yβ−1 dx dy

⎤⎦ .

(4.14)

From Lemma 2.2, we obtain∫
O

|ηHk(w)|pyβ−1 dx dy ≤
⎛⎝∫

O

η2|Hk(w)|2yβ−1 dx dy

⎞⎠(p−2)/2 ∫
O

|∇(ηHk(w))|2yβ dx dy

≤ 2

⎛⎝∫
O

η2|Hk(w)|2yβ−1 dx dy

⎞⎠(p−2)/2

×
⎛⎝∫

O

|∇η|2|Hk(w)|2yβ dx dy + η2|∇Hk(w)|2yβ dx dy

⎞⎠ .

(4.15)

Using Hk(w) ≤ wH ′
k(w) and inequality (4.14) in (4.15), we see that

∫
O

|ηHk(w)|pyβ−1 dx dy ≤ C

⎡⎢⎣(1 + ‖√y∇η‖2
L∞(H)

)⎛⎝ ∫
supp η

|wH ′
k(w)|2yβ−1 dx dy

⎞⎠p/2

+
⎛⎝∫ |ηwH ′

k(w)|2yβ−1 dx dy

⎞⎠(p−2)/2⎛⎝∫ |ηwH ′
k(w)|2s∗

yβ−1 dx dy

⎞⎠1/s∗⎤⎥⎦ ,

(4.16)
O O
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where C = C(�, n, ν0, R̄) > 0. We rewrite the estimate for ηwH ′
k(w) in (4.12) in the form⎛⎝∫

O

|ηwH ′
k(w)|2s∗

yβ−1 dx dy

⎞⎠1/s∗

= ‖ηwH ′
k(w)‖2

L2s∗ (H,yβ−1)

≤ 2ε2‖ηwH ′
k(w)‖2

Lp(H,yβ−1)
+ 2ε−2ξ‖ηwH ′

k(w)‖2
L2(H,yβ−1)

.

Applying the preceding inequality in (4.16), we obtain

‖ηHk(w)‖p

Lp(H,yβ−1)
≤ C(1 + ε−2ξ )

(
1 + ‖√y∇η‖2

L∞(H)

)
‖wH ′

k(w)‖p

L2(supp η,yβ−1)

+ Cε2‖ηwH ′
k(w)‖p−2

L2(H,yβ−1)
‖ηwH ′

k(w)‖2
Lp(H,yβ−1)

.

To estimate the last term in the preceding inequality, we apply Young’s inequality with the conjugate pair of exponents, 
(p/2,p/(p − 2)), to give

‖ηHk(w)‖p

Lp(H,yβ−1)
≤ C

(
1 + (ε2 + ε−2ξ )

)(
1 + ‖√y∇η‖2

L∞(H)

)
‖wH ′

k(w)‖p

L2(supp η,yβ−1)

+ Cε2‖ηwH ′
k(w)‖p

Lp(H,yβ−1)
.

(4.17)

Employing the definition (4.6) of Hk(w) gives 0 ≤ wH ′
k(w) ≤ αHk(w) + αAα , and so∫

O

|ηwH ′
k(w)|pyβ−1 dx dy ≤ |2α|p

⎡⎣∫
O

|ηHk(w)|pyβ−1 dx dy + | suppη|β−1A
αp

⎤⎦ ,

and thus, applying inequality (4.17) yields∫
O

|ηHk(w)|pyβ−1 dx dy ≤ C
(

1 +
(
ε2 + ε−2ξ

))(
1 + ‖√y∇η‖2

L∞(H)

)
‖wH ′

k(w)‖p

L2(supp η,yβ−1)

+ C|2α|pε2
(
‖ηHk(w)‖p

Lp(yH,β−1)
+ | suppη|β−1A

αp
)

.

By choosing ε = 1/(2
√

C(2α)p) and taking p-th order roots, we obtain⎛⎝∫
O

|ηHk(w)|pyβ−1 dx dy

⎞⎠1/p

≤ (Cα)ξ

⎛⎜⎝(1 + ‖√y∇η‖2
L∞(H)

)1/p

⎛⎝ ∫
supp η

|wH ′
k(w)|2yβ−1dx dy

⎞⎠1/2

+ | suppη|1/p

β−1A
α

⎞⎟⎠ .

Because the positive constants C and ξ are independent of k, we may take limit as k goes to ∞, in the preceding 
inequality, and we obtain⎛⎝∫

O

|ηwα|pyβ−1 dx dy

⎞⎠1/p

≤ (Cα)ξ+1

⎛⎜⎝(1 + ‖√y∇η‖2
L∞(H)

)1/p

⎛⎝ ∫
supp η

|w|2αyβ−1 dx dy

⎞⎠1/2

+ | suppη|1/p

β−1A
α
)

.

We also have

Aα ≤
⎛⎝ 1

| suppη|β−1

∫
supp η

w2αyβ−1 dx dy

⎞⎠1/2

.

Combining the last two inequalities gives (4.5). This completes the proof of Claim 4.2. �
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This completes Step 1.

Step 2 (Moser iteration). The purpose of this step is to apply the Moser iteration technique to w in (4.4) with a suitable 
choice of α ≥ 1 and of a sequence of non-negative cutoff functions, {ηN}N≥1 ⊂ C1

0(H̄), with support in B̄2R(z0). We 
choose {ηN }N∈N as in (3.5) with RN := R (1 + 1/(N + 1)). Then, (3.6) and (3.7) become

ηN |BRN
(z0) ≡ 1, ηN |Bc

RN−1
(z0) ≡ 0, |∇ηN | ≤ cN3

R2
, (4.18)

where c is a positive constant independent of R and N . For each N ≥ 0, we set pN := 2(p/2)N and αN := (p/2)N . 
Let AN := ‖f ‖Ls(supp ηN ,yβ−1) and wN := u+ + AN or wN := u− + AN . Define

I (N) :=
⎛⎜⎝ ∫

BRN
(z0)

|wN |pN yβ−1 dx dy

⎞⎟⎠
1/pN

.

Applying the energy estimate (4.5) with w = wN , α = αN−1, and η = ηN , we obtain for all N ≥ 1 that

I (N) ≤ C0(R,N)I (N − 1), (4.19)

where we denote

C0(R,N) := (C|αN−1|)2(ξ+1)/pN−1
(
‖√y∇ηN‖2/p

L∞(H)
+ | suppηN |1/p−1/2

β−1

)2/pN−1
, (4.20)

and C = C(�, n, ν0, R̄). By applying (4.1) and (2.7), there is a constant c > 0 such that

c−1R4/(p−2) ≤ |B2R(z0)|β−1 ≤ cR4/(p−2), ∀R ∈ (0, R̄], (4.21)

where we used the fact that 2(n +β − 1) = 4/(p − 2) by (2.1); the positive constant c depends only on n and β in the 
case of Theorem 1.5, and on n, β and K , in the case of Theorem 1.6. Moreover, by (2.6) we know that 0 ≤ y ≤ 2R2

on BR(z0), for all R ≥ 0. Consequently, we have

‖√y∇ηN‖2/p

L∞(H)
+ | suppηN |1/p−1/2

β−1 ≤ cN6/pR−2/p,

and so, using (4.21), we obtain∏
N≥1

C0(R,N) ≤ C1|B2R(z0)|−1/2
β−1 ,

where C1 = C1(�, n, ν0, R̄, s). In the case of Theorem 1.6, the constant C1 depends in addition on K . By iterating 
(4.19), we obtain, after using [1, Theorem 2.8],

ess sup
BR(z0)

w = I (+∞) ≤ C1

⎛⎜⎝ 1

|B2R(z0)|β−1

∫
B2R(z0)

|w|2yβ−1 dx dy

⎞⎟⎠
1/2

. (4.22)

Applying (4.22) to w as in (4.4) yields

ess sup
BR(z0)

u+(u−) ≤ C
(
|B2R(z0)|−1/2

β−1 ‖u+(u−)‖L2(B2R(z0),y
β−1) + ‖f ‖Ls(B2R(z0),y

β−1)

)
, (4.23)

for all 0 < R < R̄/2, where C = C(�, n, ν0, R̄, s). In the case of Theorem 1.6, the constant C1 depends in addition 
on K . This completes Step 2.

Step 3 (Completion of the proof of Theorem 1.5). Recall that we have chosen R̄ so that R0 > 2R̄2 (we see by (2.6)
that this implies BR̄(z0) ⊂ ER0(z0)). For any R > 0, we have by (2.5) that ER(z0) ⊂ B√

R
(z0). Therefore, using (2.5), 

(2.6) and (4.23) we obtain, for all R > 0 obeying 2
√

R < R̄ or, equivalently, R < R0/8,



1104 P.M.N. Feehan, C.A. Pop / Ann. I. H. Poincaré – AN 34 (2017) 1075–1129
ess sup
ER(z0)

u+(u−) ≤ C
(
‖u+(u−)‖L2(ER0 (z0),y

β−1) + ‖f ‖Ls(ER0 (z0),y
β−1)

)
,

where C = C(�, n, ν0, R0, s). We obtain the desired inequality (1.23) by choosing R1 < R0/8 and setting R = R1 in 
the preceding last inequality. This completes Step 3 and the proof of Theorem 1.5.

Step 4 (Completion of the proof of Theorem 1.6). The proof of Theorem 1.6 follows exactly in the same way as the 
proof of Theorem 1.5, with the only observation that all constants now also depend on the cone, K . (The dependence 
on K is due to the choice of R̄ via Lemma 4.1 at the start of the proof.) This completes Step 4 and the proof of 
Theorem 1.6.

This concludes the proofs of Theorems 1.5 and 1.6. �
We now complete the

Proof of Corollary 1.8. Theorem 1.6 can be extended to the case of non-zero Dirichlet boundary condition given by 
a function g ∈ H 1(O, w) ∩ L∞

loc(�̄1), in the sense that

u − g ∈ H 1
0 (O ∪ �0,w),

with the aide of the following modifications to the proof of Theorem 1.6. Let

M := ess sup
�1∩B2R(z0)

g and m := ess inf
�1∩B2R(z0)

g,

and replace the definitions of the functions u+ and u− (the positive and negative part of the variational subsolution 
and supersolution, respectively) by

uM(z) := (u(z) ∨ M)+ and um(z) := (u(z) ∧ m)− for a.e. z ∈ B2R(z0).

We also need to redefine the function Hk in (4.6) by

Hk(t) :=

⎧⎪⎨⎪⎩
0, t < A + |M|,
tα − (A + |M|)α, A + |M| ≤ t ≤ k,

αkα−1(t − k) + Hk(k), t > k,

when we apply Step 1 in the proof of Theorem 1.6 to the function w = uM +A (when u is assumed to be a subsolution), 
and by

Hk(t) :=

⎧⎪⎨⎪⎩
0, t < A + |m|,
tα − (A + |m|)α, A + |m| ≤ t ≤ k,

αkα−1(t − k) + Hk(k), t > k,

when we apply the same step to w = um + A (when u is assumed to be a supersolution). Then, the argument used in 
the proof of Theorem 1.6 to obtain (4.22) now yields

ess sup
BR(z0)

uM ≤ C1

⎡⎢⎣
⎛⎜⎝ 1

|B2R(z0)|β−1

∫
B2R(z0)

|uM |2yβ−1 dx dy

⎞⎟⎠
1/2

+ ‖f ‖Ls(B2R(z0),y
β−1)

⎤⎥⎦ ,

ess sup
BR(z0)

um ≤ C1

⎡⎢⎣
⎛⎜⎝ 1

|B2R(z0)|β−1

∫
B2R(z0)

|um|2yβ−1 dx dy

⎞⎟⎠
1/2

+ ‖f ‖Ls(B2R(z0),y
β−1)

⎤⎥⎦ ,

when u is assumed a subsolution and supersolution, respectively. The preceding estimates imply (1.25) and the state-
ment in Remark 1.9, just as estimate (4.23) implies (1.23) in Step 4 of the proof of Theorem 1.6. �
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5. Hölder continuity for solutions to the variational equation

In this section, we prove Theorems 1.11 and 1.13 and Corollaries 1.16 and 1.17, that is, local Hölder continuity 
on a neighborhood of �̄0 for solutions u to the variational equation (1.19). We consider separately the case of the 
interior boundary points z0 ∈ �0 and of the ‘corner points’ z0 ∈ �̄0 ∩ �̄1. (While �̄0 ∩ �̄1 is a set of geometric corner 
points for the open subset, O , the lesson of [11] is that the solution, u, along �0 behaves, in many respects, just as 
it does in the interior of O .) The proof of the second case, for corner points, is easier than the proof of the first case 
as it does not require an application of the John–Nirenberg inequality. The essential difference between the proofs 
of Theorems 1.11 and 1.13 and the proof of its classical analogue for variational solutions to non-degenerate elliptic 
equations [29, Theorems 8.27 and 8.29] consists in a modification of the methods of [29, §8.6, §8.9, and §8.10] when 
deriving our energy estimates (5.15), where we adapt the application of the John–Nirenberg inequality and Poincaré 
inequality to our framework of weighted Sobolev spaces. Moreover, because the balls defined by the Koch metric, d , 
do not have good scaling properties unless they are centered at a point z0 ∈ ∂H (see Remark 2.10), the Moser iteration 
technique applies only to such balls. Therefore, the estimate (5.5) holds only for points z0 ∈ ∂H, and in order to obtain 
the full Hölder continuity of solutions (1.31), we need to apply a rescaling argument which is outlined in the last steps 
of the arguments below. Therefore, boundary Hölder continuity does not follow in the same way as in [29]. We also 
prove Theorem 1.18.

We now proceed to the proofs of Theorems 1.11 and 1.13, first in §5.1 for the case of points z0 ∈ �0 and then in 
§5.2 for points z0 ∈ �̄0 ∩ �̄1. The proofs of Corollaries 1.16 and 1.17 can be found in §5.2.

5.1. Local Hölder continuity in the interior the degenerate boundary

In this subsection, we prove Theorem 1.11. Let z0 ∈ �0 and R0 > 0 be as in the hypotheses of Theorem 1.11, and 
let R̄ be small enough such that

BR̄(z0) ⊂ ER0(z0), (5.1)

and for all zi = (xi, yi) ∈ BR̄(z0), i = 1, 2, we have

0 < y1 < 1, 0 < y2 < 1, 0 ≤ |z1 − z2| < 1, and 0 ≤ d(z1, z2) < 1. (5.2)

For z0 ∈ Ō and 0 < R < R̄, we denote

MR := ess sup
BR(z0)

u, (5.3)

mR := ess inf
BR(z0)

u, (5.4)

and we let

osc
BR(z0)

u := MR − mR

denote the oscillation of u over the ball BR(z0). From Theorem 1.5, we know that MR and mR are finite quantities 
and oscBR(z0) u is well-defined. Before proceeding to the proof of Theorem 1.11, we first establish the

Theorem 5.1 (Oscillation estimate). There is a positive constant, C, depending at most on �, ν0, R0, n, s, and a 
constant α0 ∈ (0, 1), depending at most on s, n and β , such that the following holds. For all R such that 0 < 4R ≤ R̄, 
we have

osc
BR(z0)

u ≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1)

)
Rα0 . (5.5)

Proof. We choose

q ∈ (n + β, s), (5.6)

ω ∈ (0,2(n + β − 1)/q), (5.7)

and define k(R) > 0 by
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k ≡ k(R) := ‖f ‖Lq(B4R(z0),y
β−1) + (|mR̄| + |MR̄|)Rω. (5.8)

The remaining steps in the proof will apply to either of the following choices of functions w defined on B4R(z0),

w = u − m4R + k(R) or w = M4R − u + k(R), (5.9)

but, for concreteness, we choose

w = u − m4R + k(R). (5.10)

If mR̄ = MR̄ = 0 or m4R = M4R = 0, then we automatically have u = 0 on B4R(z0) and (5.5) holds on B4R(z0). 
Therefore, without loss of generality, we may assume

m4R �= 0 or M4R �= 0, (5.11)

and mR̄ �= 0 or MR̄ �= 0. The last assumption implies that

k(R) �= 0, (5.12)

by (5.8). Therefore, we notice that both choices of w in (5.10) are bounded, positive functions.

Step 1 (Energy estimate for w). Let η ∈ C1
0(H̄) be a non-negative cutoff function with suppη � B̄4R(z0). For any 

α ∈R with α �= −1, let

v := η2wα. (5.13)

Then, v is a valid test function in H 1
0 (O ∪ �0, w) by [21, Lemma A.2]. Let

H(w) := w(α+1)/2, (5.14)

and notice that Theorem 1.5 implies that H(w) is a positive, bounded function, so the following operations are 
justified. The goal in this step is to prove

Claim 5.2 (Energy estimate). There are positive constants, C = C(�, ν0, n, R̄) and ξ = ξ(n, β, q), such that

‖ηH(w)‖Lp
(
H,yβ−1

) ≤ C0(R,α)‖H(w)‖L2
(
supp η,yβ−1

), (5.15)

where the constant C0(R, α) is defined by

C0(R,α) := (C|1 + α|)(ξ+1)/p
(

1 + ‖√y∇η‖2
L∞(H)

)1/p

, (5.16)

and the constant ξ is given by

ξ ≡ ξ(p, q) := p(q∗ − 1)

p − 2q∗ , (5.17)

where q∗ is the conjugate exponent for q in (5.6), that is, 1/q + 1/q∗ = 1.

The estimate (5.15) will be used in Moser iteration.

Proof of Claim 5.2. Notice that estimate (5.15) is similar to (4.5). The proofs of the two estimates are also very 
similar and we only outline the differences.

Substituting the choice (5.13) of v in (1.13), using ∇v = αη2wα−1∇w + 2η∇ηwα together with ∇H(w) =
α+1

2 w(α−1)/2∇w (see (5.14)) and w ≥ k (by (5.10)), gives∫
H

η2|∇H(w)|2yβ dx dy ≤ C|1 + α|
⎡⎣∫

H

(
η2 + y|∇η|2

)
wα+1yβ−1 dx dy

+
∫

η2 |f + c(k − m4R)|
k

wα+1yβ−1 dx dy

⎤⎦ ,

(5.18)
H
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where C = C(�, ν0, R̄). By Hölder’s inequality, we have∫
H

η2 |f + c(k − m4R)|
k

wα+1yβ−1 dx dy ≤
⎛⎝ ∫

supp η

∣∣∣∣f + c(k − m4R)

k

∣∣∣∣q yβ−1 dx dy

⎞⎠1/q

×
⎛⎝∫

H

∣∣∣ηw(α+1)/2
∣∣∣2q∗

yβ−1 dx dy

⎞⎠1/q∗

.

(5.19)

From our definition of k in (5.8), the choice of ω in (5.7) and (2.7), we see that⎛⎝ ∫
supp η

∣∣∣∣f + c(k − m4R)

k

∣∣∣∣q yβ−1 dx dy

⎞⎠1/q

≤ 1 + c + R̄2(n+β−1)/q−ω

and so, because ω was chosen such that ω < 2(n + β − 1)/q in (5.7), there is a positive constant, C = C(�, R̄), such 
that ⎛⎝ ∫

supp η

∣∣∣∣f + c(k − m4R)

k

∣∣∣∣q yβ−1 dx dy

⎞⎠1/q

≤ C. (5.20)

From inequalities (5.18), (5.19) and (5.20), we obtain∫
H

η2|∇H(w)|2yβ dx dy ≤ C|1 + α|
⎡⎣∫

H

(
η2 + y|∇η|2

)
wα+1yβ−1 dx dy

+
⎛⎝∫

H

∣∣∣ηw(α+1)/2
∣∣∣2q∗

yβ−1 dx dy

⎞⎠1/q∗⎤⎥⎦ ,

(5.21)

where C = C(�, ν0, R̄).
Now, we can follow the argument used in the proof of estimate (4.5). We first apply Lemma 2.2 to ηH(w) which 

we combine with (5.21) to obtain∫
H

|ηH(w)|pyβ−1 dx dy

≤ C|1 + α|
(

1 + ‖√y∇η‖2
L∞(H)

)⎛⎝ ∫
supp η

|H(w)|2yβ−1 dx dy

⎞⎠p/2

+ C|1 + α|
⎛⎝∫

H

η2|H(w)|2yβ−1 dx dy

⎞⎠(p−2)/2⎛⎝∫
H

|ηH(w)|2q∗
yβ−1 dx dy

⎞⎠1/q∗

.

(5.22)

Next, using the fact that 2 < 2q∗ < p (by (5.6)), we apply the interpolation inequality [29, Inequality (7.10)], for any 
ε > 0, to give

‖ηH(w)‖L2q∗
(H,yβ−1) ≤ ε‖ηH(w)‖Lp(H,yβ−1) + ε−ξ‖ηH(w)‖L2(H,yβ−1),

where ξ is given by (5.17). Applying the preceding inequality in (5.22), we obtain

‖ηH(w)‖p

Lp(H,yβ−1)

≤ C|1 + α|
(

1 + ε−2ξ
)(

1 + ‖√y∇η‖2
L∞(H)

)
‖H(w)‖p

L2(supp η,yβ−1)

+ C|1 + α|ε2‖ηH(w)‖2
p β−1 ‖ηH(w)‖p−2

2 β−1 .

L (H,y ) L (H,y )
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To bound the last term in the preceding inequality, we apply Young’s inequality with the conjugate exponents 
(p/2,p/(p − 2)). By choosing ε = 1/ (2C|1 + α|)1/2 and taking roots of order p, we obtain (5.15) and (5.16). This 
concludes the proof of Claim 5.2. �

This concludes Step 1.

Step 2 (Moser iteration with negative power). In this step we apply the Moser iteration technique starting with a 
suitable α = α0 < −1 in (5.15) to functions w as in (4.4). Let {ηN }N∈N be the sequence of cutoff functions considered 
in Step 2 in the proof of Theorem 1.5. Let α0 < −1, p0 := α0 + 1, pN := p0(p/2)N , where p is as in (2.1), and 
αN + 1 := pN . We notice that pN → −∞ as N increases. Set

I (N) :=
⎛⎜⎝ ∫

BRN
(z0)

|w|pN yβ−1 dx dy

⎞⎟⎠
1/pN

.

Applying an argument very similar to that in Step 2 of the proof of Theorem 1.5, with the aid of (5.15) instead of 
(4.5), we find that

I (N) ≥ C1(R,N)I (N − 1), (5.23)

where C1(R, N) is given by

C1(R,N) =
(
C|pN−1|N6

)(ξ+1)/pN

R−2/pN , (5.24)

and C = C(�, ν0, R̄) is a positive constant, independent of R and N . Using (4.21), we obtain∏
N≥1

C1(R,N) ≥ C2|B2R(z0)|1/|p0|
β−1 ,

where C2 = C2(�, ν0, R̄, q). By iterating (5.23), we obtain I (−∞) ≥ I (0) 
∏

N≥1 C0(R, N), which gives us

ess inf
BR(z0)

w = I (−∞) ≥ C2

⎛⎜⎝ 1

|B2R(z0)|β−1

∫
B2R(z0)

|w|p0yβ−1 dx dy

⎞⎟⎠
1/p0

. (5.25)

This concludes Step 2.

Step 3 (Application of Theorem 3.1). The purpose of this step is to show that we may apply Theorem 3.1 to w with 
Sr = B(2+r)R(z0), 0 ≤ r ≤ 1, and θ0 = θ1 = 1. By Proposition 3.2, we find that w satisfies the inequalities (3.2), so it 
remains to show that (3.3) holds for logw. For A as defined in (3.3) and Sr = B(2+r)R(z0) = B(2+r)R(z0), we have by 
Hölder’s inequality that

A ≤ sup
0≤r≤1

inf
c∈R

⎛⎜⎝ 1

|B(2+r)R(z0)|β−1

∫
B(2+r)R(z0)

| logw − c|2yβ−1 dx dy

⎞⎟⎠
1/2

,

and so, Corollary 2.6 gives us

A ≤ sup
0≤r≤1

((2 + r)R)2

⎛⎜⎝ 1

|B(2+r)R(z0)|β
∫

B(2+r)R(z0)

|∇ logw|2yβ dx dy

⎞⎟⎠
1/2

. (5.26)

Let η ∈ C1
0(H̄) be a non-negative cutoff function such that η = 1 on B(2+r)R(z0), and η = 0 outside B4R(z0), and 

|∇η| ≤ C/R2. We choose v = η2/w, where w is given by (5.9), or (5.10) for concreteness, and notice that v ∈
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H 1
0 (O ∪ �0, w), which can be shown by modifying the corresponding argument in the proof of [29, Theorem 8.18]. 

With this choice of v as a test function in the variational equation (1.13) satisfied by u, using the strict ellipticity of 
the operator y−1A defined by (1.12) and Hölder’s inequality, we see that there is a positive constant C = C(�, ν0, R̄), 
such that∫

O

η2|∇ logw|2yβ dx dy ≤ C

∫
O

(|∇η|2 + η2)yβ dx dy + C

∫
O

η2 |f | + |u|
w

yβ−1 dx dy. (5.27)

From Lemma 2.4 and the fact that |∇η| ≤ C/R2, we have∫
O

(|∇η|2 + η2)yβ dx dy ≤ C ((2 + r)R)−4 |B(2+r)R(z0)|β. (5.28)

Using the definition (5.8) of k(R) and Hölder’s inequality, we obtain∫
O

η2 |f | + |u|
w

yβ−1 dx dy ≤ C
(
R2(n+β−1)/q∗ + R2(n+β−1)−ω

)
. (5.29)

The condition q > n + β implies

2(n + β − 1)/q∗ − 2(n + β) > −4, (5.30)

since 1/q + 1/q∗ = 1. Also, because ω is chosen in (0, 2(n + β − 1)/q) in (5.7) and q > n + β in (5.6), we see that 
ω ∈ (0, 2), and we obviously have

−2 − ω > −4. (5.31)

Using (5.30) and (5.31), and 0 < R ≤ R̄, we obtain in inequality (5.29) that there is a positive constant C =
C(�, ν0, R̄), such that∫

O

η2 |f | + |u|
w

yβ−1 dx dy ≤ C ((2 + r)R)−4 |B(2+r)R(z0)|β. (5.32)

In the last inequality, we used Lemma 2.4. By combining equations (5.27), (5.28) and (5.32), we obtain∫
B(2+r)R(z0)

|∇ logw|2yβ dx dy ≤ C ((2 + r)R)−4 |B(2+r)R(z0)|β.

Then, it immediately follows that the right hand side of (5.26) is finite, and so, (3.3) holds for logw. This concludes 
Step 3.

Step 4 (Proof of inequality (5.5)). In the previous step we showed that Theorem 3.1 applies to w with θ0 = θ1 = 1. 
Hence, there is a positive constant C = C(�, ν0, R̄), independent of R and w, such that⎛⎜⎝ 1

|B2R(z0)|β−1

∫
B2R(z0)

|w|yβ−1 dx dy

⎞⎟⎠

≤ C

⎛⎜⎝ 1

|B2R(z0)|β−1

∫
B2R(z0)

|w|−1yβ−1 dx dy

⎞⎟⎠
−1

. (5.33)

From (5.25) and [1, Theorem 2.8], we obtain

ess inf
BR(z0)

w = I (−∞) ≥ C

⎛⎜⎝ 1

|B2R(z0)|β−1

∫
B (z )

|w|yβ−1 dx dy

⎞⎟⎠ . (5.34)
2R 0



1110 P.M.N. Feehan, C.A. Pop / Ann. I. H. Poincaré – AN 34 (2017) 1075–1129
We now choose w = u − m4R + k and w = M4R − u + k in (5.34). By adding the following two inequalities

mR − m4R + k(R) ≥ C

|B2R(z0)|β−1

∫
B2R(z0)

(u − m4R)yβ−1 dx dy,

M4R − MR + k(R) ≥ C

|B2R(z0)|β−1

∫
B2R(z0)

(M4R − u)yβ−1 dx dy,

we obtain

(M4R − m4R) − (MR − mR) + 2k(R) ≥ C (M4R − m4R) .

Without loss of generality, we may assume C < 1 (if not, we can make C smaller on the right-hand side of the 
preceding inequality). Therefore, the preceding inequality can be rewritten in the form

osc
BR(z0)

u ≤ C osc
B4R(z0)

u + 2k(R). (5.35)

Because q ∈ (n + β, s) by (5.6) and f ∈ Ls(BR̄(z0), w) for some s > n + β , by hypothesis in Theorem 1.11 and the 
assumption BR̄(z0) ⊂ ER0(z0), Hölder’s inequality yields

‖f ‖Lq(B4R(z0),y
β−1) ≤ CR

2(n+β−1)
s−q
sq ‖f ‖Ls(BR̄(z0),y

β−1).

Let

ν := min

{
ω,2(n + β − 1)

s − q

sq

}
.

Consequently, from (5.8), we see that there is a positive constant C = C(n, β), such that

k(R) ≤ C
(
‖f ‖Ls(BR̄(z0),y

β−1) + |mR̄| + |MR̄|
)

Rν. (5.36)

Therefore, by applying [29, Lemma 8.23] to (5.35) and using the inequality (5.36), we find that there are positive 
constants, C = C(�, ν0, R̄, n, s) and α0 = α0(s, n, β) ∈ (0, 1), such that

osc
BR(z0)

u ≤ C
(
‖f ‖Ls(BR̄(z0),y

β−1) + ‖u‖L∞(BR̄(z0))

)
Rα0 , ∀R ∈ (0, R̄/4).

Without loss of generality, we may assume that R̄ ≤ R1, where R1 is the constant appearing in the conclusion of 
Theorem 1.5. Then the preceding estimate together with (1.23) gives us (5.5). This concludes Step 4.

This concludes the proof of Theorem 5.1. �
We can now conclude the

Proof of Theorem 1.11. Notice that if z ∈ BR̄/16(z0), then BR̄/16(z) ⊂ BR̄/4(z0) ⊂ ER0(z0) (by (5.1)), and so in-
equality (5.5) applies in the form

osc
BR(z)

u ≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1)

)
Rα0, (5.37)

for all z ∈ BR̄/16(z0) and 0 < R ≤ R̄/64. In the remainder of the proof of Theorem 1.11, we assume that R obeys

0 < R ≤ R̄/64. (5.38)

In particular, for any points6 (x1, y1), (x1, 0), (x2, 0) ∈ B̄R(z0), the estimate (5.37) gives

6 Here, we are using x1, x2 ∈ Rn−1 to denote marked points rather than coordinates.
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|u(x1, y1) − u(x1,0)|
≤ C

(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1)

)
dα0 ((x1, y1), (x1,0)) ,

|u(x1,0) − u(x2,0)|
≤ C

(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1)

)
dα0 ((x1,0), (x2,0)) .

(5.39)

Notice that from (1.28) we have the simple identities,

d ((x1, y1), (x1,0)) =√y1/2,

d ((x1,0), (x2,0)) =√|x1 − x2|,
(5.40)

and so, we can rewrite (5.39) in the form

|u(x1, y1) − u(x1,0)| ≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1)

)
|y1|α0/2,

|u(x1,0) − u(x2,0)| ≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1)

)
|x1 − x2|α0/2.

(5.41)

The proof of inequality (1.31) now follows the proofs of [11, Corollary I.9.7 and Theorem I.9.8], but with certain 
differences which we outline for clarity.

Claim 5.3. There are constants C = C(�, n, ν0, R0, s) > 0, and α = α(�, n, ν0, R0, s) ∈ (0, 1) such that

|u(z1) − u(z2)| ≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1)

)
dα(z1, z2), (5.42)

for all points z1, z2 ∈ BR̄/16(z0).

Proof. Let ε ∈ (0, 1/8) be fixed and consider the following two cases.

Case 1 (Pairs of points in BR(z0) obeying (5.43)). Let zi = (xi, yi) ∈ BR(z0), for i = 1, 2, be such that

|z1 − z2| ≥ ε(y2
1 + y2

2). (5.43)

We want to show that (5.42) holds, for all points z1, z2 ∈ BR(z0) satisfying (5.43).
From (5.2), we can find a positive constant C such that

|x1 − x2| ≤ Cd(z1, z2). (5.44)

Using our current assumption (5.43), in addition to (5.2), we also have

d(z1, z2) ≥ εCy2
i , i = 1,2,

and so, there exists a positive constant C, depending on ε, such that

yi ≤ Cd1/2(z1, z2), i = 1,2. (5.45)

Denote z′
i = (xi, 0), for i = 1, 2. Applying (5.44) and (5.45) in (5.41), we obtain

|u(zi) − u(z′
i )| ≤ C

(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1)

)
dα0/4(z1, z2),i = 1,2,

|u(z′
1) − u(z′

2)| ≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1)

)
dα0/2(z1, z2),

and hence, using (5.2),

|u(z1) − u(z2)| ≤ |u(z1) − u(z′
1)| + |u(z′

1) − u(z′
2)| + |u(z2) − u(z′

2)|
≤ C

(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1)

)
dα0/4(z1, z2).

Therefore, the estimate (5.42) holds in the special case |z1 − z2| ≥ ε(y2 + y2).
1 2
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Now we prove (5.42) for pairs of points obeying |z1 − z2| < ε(y2
1 + y2

2).

Case 2 (Pairs of points in BR(z0) obeying (5.46)). Now we consider points zi = (xi, yi) ∈ BR(z0), for i = 1, 2, such 
that

|z1 − z2| < ε(y2
1 + y2

2). (5.46)

By scaling and using interior Hölder estimates [29, Theorem 8.22], we show that the estimate (1.31) also holds in this 
case. We proceed by analogy with the proofs of [11, Theorems I.9.1–4 and Corollary I.9.7]. We may assume without 
loss of generality that

1 > y2 ≥ y1 and x2 = 0. (5.47)

Let a = y2. We consider the function v defined by rescaling,

u(x, y) =: v(x/a, y/a).

The rescaling z �→ z′ = z/a maps Ey2/2(z2) into E1/2(z
′
2). Recall that Eρ(z) denotes the Euclidean ball centered at z

of radius ρ relative to H (see (1.20)). From our assumptions (5.2), (5.46) and the choice of ε ∈ (0, 1/8), we see that

|z′
1 − z′

2| ≤ 2εy2 < 1/4, (5.48)

and so z′
1 ∈ E1/4(z

′
2). From [9, Theorem 5.10], we know that u ∈ H 2

loc(BR̄(z0)), and so by direct calculation, we 
conclude that v(z′) solves

Ãv(z′) = af (az′) on E1/2(z
′
2),

where we define

Ãv(z′) := y′ (aij (az′)vxixj
(z′) + 2ain(az′)vxiy(z

′) + ann(az′)vyy(z
′)
)

+ bi(az′)vxi
(z′) + bn(az′)vy(z

′) − c(az′)v(z′).

On the ball E1/2(z
′
2), the operator Ã is strictly elliptic with bounded coefficients. For brevity, we denote fa(z

′) :=
af (az′). By [29, Theorem 8.22], there are positive constants C and α1 ∈ (0, 1), depending only on �, n, ν0 and s, 
such that

osc
ER(z′

2)
v ≤ CRα1

(
‖v‖L∞(E1/2(z

′
2))

+ ‖fa‖Ls(E1/2(z
′
2))

)
, ∀R ∈ (0,1/2], (5.49)

because s was assumed to satisfy s > 2n. We see that

‖v‖L∞(E1/2(z
′
2))

= ‖u‖L∞(Ey2/2(z2)) ≤ ‖u‖L∞(BR̄(z0)), (5.50)

where we used the fact that Ey2/2(z2) � BR̄(z0), which in turn follows from our assumption (5.38). We also have

‖fa‖s
Ls(E1/2(z

′
2))

=
∫

E1/2(z
′
2)

|af (az′)|s dx′ dy′ =
∫

Ey2/2(z2)

|f (z)|sas−n dx dy,

that is,

‖fa‖s
Ls(E1/2(z

′
2))

=
∫

Ey2/2(z2)

|f (z)|sas−n dx dy.
(5.51)

Using the fact that y2/2 ≤ y ≤ 3y2/2 for all z = (x, y) ∈ Ey2/2(z2), assumption (5.2), and the fact that s > n + β by 
hypothesis of Theorem 1.11, the estimate (5.51) yields

‖fa‖s
Ls(E1/2(z

′
2))

≤ C

∫
BR̄(z0)

|f (z)|syβ−1 dx dy, (5.52)

where C is a positive constant depending only on β . Applying (5.50) and (5.52) in (5.49) yields
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osc
ER(z′

2)
v ≤ C

(‖u‖L∞(BR̄(z0)) + ‖f ‖Ls(BR̄(z0))

)
Rα1 , ∀R ∈ (0,1/2].

In particular, because z′
1 ∈ E1/2(z

′
2), we see that

|v(z′
1) − v(z′

2)| ≤ C
(‖u‖L∞(BR̄(z0)) + ‖f ‖Ls(BR̄(z0))

) |z′
1 − z′

2|α1 ,

where the positive constant C depends on �, n, ν0 and s. By rescaling back, we obtain

|u(z1) − u(z2)| ≤ C
(‖u‖L∞(BR̄(z0)) + ‖f ‖Ls(BR̄(z0))

)( |z1 − z2|
y2

)α1

. (5.53)

Using (5.2) and the fact that ε ∈ (0, 1/8), we see that

|z1 − z2|
y2

≤ Cd1/2(z1, z2), (5.54)

for some positive constant C. Consequently, (5.53) and (1.23) give us

|u(z1) − u(z2)| ≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1)

)
dα1/2(z1, z2).

This implies estimate (5.42) in the special case |z1 − z2| < ε(y2
1 + y2

2).

This completes the proof of Claim 5.3 by choosing α := min{α0/4, α1/2}. �
By choosing R1 smaller than (R̄/16)2 and than the constant R1 in the conclusion of Theorem 1.5, we see by 

(2.5) that ER1(z0) ⊂ BR̄/16(z0), and so estimates (5.42) and (1.23) now give us (1.31). This completes the proof of 
Theorem 1.11. �
5.2. Hölder continuity on neighborhoods of the corner points of the degenerate boundary

We now have the

Proof of Theorem 1.13. Suppose z0 ∈ �̄0 ∩ �̄1. We let R̄ be as in the proof of Theorem 1.11, but in addition we 
require that R̄ be small enough so that the conclusion of Lemma 4.1 holds with the cone, K , given in the hypotheses 
of Theorem 1.13. From the standard theory of non-degenerate elliptic partial differential equations (for example, [29, 
Theorem 8.30]), we know that

u ∈ C(B̄R̄(z0) ∩H) and u = 0 on ∂BR̄(z0) ∩ �1. (5.55)

Recalling that u+ = max{u, 0} and u− = max{−u, 0} denote the positive and negative parts of u, respectively, we 
have that u± ∈ C(B̄R̄(z0) ∩H) and u± = 0 along the portion of the boundary ∂BR̄(z0) ∩ �1.

Our goal is first to prove that there are constants C, depending only on �, ν0, K , n, s, R̄, and α0, depending only 
on n, s and β , such that

osc
BR(z0)

u± ≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1)

)
Rα0, ∀R ∈ (0, R̄/4], (5.56)

which obviously implies that (5.5) holds for u, for possibly a different constant C with the same dependency as above.
Our proof uses the same method as in the case of points in �0 but a choice of w which is different from that of 

(4.4), and a choice of test function v which is different from that of (5.13). Moreover, we do not need to appeal to the 
John–Nirenberg inequality. Since z0 ∈ �̄0 ∩ �̄1, however, it is important to make a distinction between BR(z0) and 
BR(z0).

We denote

M±
R := ess sup

BR(z0)

u±. (5.57)

Let k ≡ k(R) be defined as in (5.8). Therefore, we now define w± on B4R(z0) by
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w±(z) := k +
{

−u±(z) + M±
4R, z ∈ B4R(z0) ∩ B4R(z0),

+M±
4R, z ∈ B4R(z0)\B4R(z0).

(5.58)

As in the case of points in �0, we may assume without loss of generality that (5.11) and (5.12) hold. From (5.55), 
we notice that M4R ≥ 0 and m4R ≤ 0, and so it follows that M4R = M+

4R and m4R = −M−
4R . Therefore, assumption 

(5.11) becomes

M+
4R �= 0 or M−

4R �= 0.

If M−
4R = 0, then u = u+ on B4R(z0), and it suffices to continue the following argument only for u+. The same remark 

applies to M+
4R = 0. Thus, we may assume without loss of generality that

M+
4R �= 0 and M−

4R �= 0. (5.59)

Let α < −1, and let η be a smooth cutoff function such that suppη � B4R(z0). We now define

v± := η2 ((w±)α − (k + M±
4R)α

)
. (5.60)

We notice that v± is a well-defined function, for any choice of α ∈ R, by (5.59) and (5.12), and v± ∈ H 1
0 (O ∪ �0, w)

is a valid test function in (1.13) by [21, Lemma A.3]. We observe that the function w± obeys

k ≤ w± ≤ k + M±
4R on B4R(z0),

and, because α is non-positive, we also have

kα ≥ (w±)α ≥ (k + M±
4R

)α
on B4R(z0).

These inequalities are important in deriving the analogues of the energy estimates in the proof of Theorem 1.11 for 
points in �0. Steps 1 and 2 in the proof of Theorem 1.11 for points in �0 apply to our current choice of w± for points 
in �̄0 ∩ �̄1, with the only exception that we now define I (N) by

I (N) :=
⎛⎜⎝ ∫
BRN

(z0)

|w±|pN yβ−1 dx dy

⎞⎟⎠
1/PN

.

Therefore, using the fact that

|BR(z0)\BR(z0)|β−1 �= 0, (5.61)

we obtain the analogue of (5.25),

ess inf
BR

w± ≥ C

⎛⎜⎝ 1

|B2R(z0)|β−1

∫
B2R(z0)\B2R(z0)

|w±|p0yβ−1 dx dy

⎞⎟⎠
1/p0

, (5.62)

where p0 is a negative power and C = C(K, �, ν0, n, s). Condition (5.61) is implied by (4.2), which follows from the 
exterior cone condition on �̄0 ∩ �̄1, by (4.2). Notice that (5.58) implies

w± = k + M±
4R ≥ M±

4R on B2R(z0)\B2R(z0), (5.63)

ess inf
BR(z0)

w± = k − M±
R + M±

4R. (5.64)

Using (5.64) on the left-hand-side of (5.62) and (5.63) on the right-hand-side of (5.62), we obtain

k(R) − M±
R + M±

4R ≥ CM±
4R. (5.65)

Indeed, (5.65) follows because p0 < 0 and

|B2R(z0)|β−1

|B (z )\B (z )| ≥ 1.

2R 0 2R 0 β−1
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We rewrite (5.65), using oscBR(z0) u
± = M±

R , as

osc
BR(z0)

u± ≤ C osc
B4R(z0)

u± + k(R),

where C ∈ (0, 1) is a constant independent of R. Just as in the proof of Theorem 1.11 for the case of points in �0, we 
can apply [29, Lemma 8.23] to conclude that (5.56) holds for u± with positive constants C = C(K, �, ν0, n, s, R̄), 
and α0 = α0(s, n, β) ∈ (0, 1), which implies that (5.5) holds for u with z0 ∈ �̄0 ∩ �̄1, for possibly a different constant 
C with the same dependencies as before.

To establish (1.31), we proceed as in the proof of Theorem 1.11 for the case of points in �0. In order to adapt the 
argument for the case of points in �0 to points in �̄0 ∩ �̄1, we need analogues of the inequalities (5.39) to hold in a 
neighborhood in O of z0 ∈ �̄0 ∩ �̄1. Given these analogues of the inequalities (5.39), we can apply the same argument 
as used in the proof of Theorem 1.11 for the case of points in �0, but instead of applying [29, Theorem 8.22], we now 
apply [29, Theorem 8.27]. As before, we assume (5.38) holds.

Without loss of generality, we may assume z0 = (0, 0). Let z1 = (x1, 0), z2 = (x2, 0), z3 = (x, y) and z4 = (x, 0)

be points in B̄R(z0). We claim that the following analogues of the inequalities (5.39) (for points z0 ∈ �0) hold for 
points z0 ∈ �̄0 ∩ �̄1,

|u(z1) − u(z2)| ≤ C3

(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0,y
β−1))

)
dα3(z1, z2),

|u(z3) − u(z4)| ≤ C3

(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0,y
β−1))

)
dα3(z3, z4),

(5.66)

for some positive constant C3 and α3 ∈ (0, 1) satisfying the same dependency conditions as in the statement of Theo-
rem 1.13. For the first inequality in (5.66), we consider two cases.

Case 1 (Points z1, z2 ∈ B̄R(z0) obeying (5.67)). If

d(z1, z2) ≥ 1

8
max {d(z1, z0), d(z2, z0)} , (5.67)

then we have

|u(z1) − u(z2)| ≤ |u(z1) − u(z0)| + |u(z2) − u(z0)|
≤ C

(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0,y
β−1))

)
dα0(z1, z2) (by (5.5) and (5.67)),

and so the first inequality in (5.66) holds in this case.

Case 2 (Points z1, z2 ∈ B̄R(z0) obeying (5.68)). If

d(z1, z2) ≤ 1

8
max {d(z1, z0), d(z2, z0)} , (5.68)

then, we apply (5.42) on the ball B
R̃
(z2) with R̃ = d(z1, z2).

Combining the preceding two cases, we obtain the first inequality in (5.66).
Next, we consider the second inequality in (5.66). By (5.40), we have

d(z3, z4) =√y/2 and d(z4, z0) =√|x|. (5.69)

As in the proof of the first inequality in (5.66), we consider two possible cases.

Case 1 (Points z3, z4 ∈ B̄R(z0) obeying (5.70)). If

|x| ≥ 32y, (5.70)

then, by (5.69), we have d(z3, z4) ≤ (1/8)d(z4, z0). We may apply (5.42) on the ball B
R̃
(z4) with R̃ = d(z3, z4), and 

we obtain the second inequality in (5.66).
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Case 2 (Points z3, z4 ∈ B̄R(z0) obeying (5.71)). If

|x| < 32y, (5.71)

then we have d(z4, z0) ≤ 8d(z3, z4). Also, a direct calculation gives us d(z3, z0) ≤ Cd(z3, z4), for some positive 
constant C. By (5.5), we obtain

|u(z3) − u(z4)| ≤ |u(z3) − u(z0)| + |u(z4) − u(z0)|
≤ 2C

(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0,y
β−1))

)
dα0(z3, z4),

and we obtain the second inequality in (5.66).

The proof of (5.66) is complete. We may now conclude that (1.31) holds at points z0 ∈ �̄0 ∩ �̄1, by applying the 
same argument as in the proof of Theorem 1.11. �
Proof of Corollary 1.16. Theorem 1.13 can now be extended to the case when we assume that the Dirichlet boundary 
condition along �1 is defined by a function g ∈ H 1(O, w) ∩ C

γ

s,loc(�̄1) with γ ∈ (0, 1] or a function g ∈ H 1(O, w) ∩
Cloc(�̄1), so that u − g ∈ H 1

0 (O ∪ �0, w). Corollary 1.8 and Remark 1.9 shows that the solutions are essentially 
bounded in neighborhoods of points z0 ∈ �̄0 ∩ �̄1. In the proof of Theorem 1.13 for points z0 ∈ �̄0 ∩ �̄1, we need to 
make the following modifications. Let

M := ess sup
�1∩B4R(z0)

g and m := ess inf
�1∩B4R(z0)

g.

As in the proof of [29, Theorem 8.27], we replace our definitions of the functions u± (the positive and negative part 
of the variational solution, respectively), w± in (5.58) and v± in (5.60) by

uM(z) := u(z) ∨ M and um(z) := u(z) ∧ m for a.e. z ∈ B4R,

and

wM(z) := k +
{

−uM(z) + M4R, for a.e. z ∈ B4R(z0) ∩ B4R(z0),

−M + M4R, for a.e. z ∈ B4R(z0)\B4R(z0),

wm(z) := k +
{

um(z) − m4R, for a.e. z ∈ B4R(z0) ∩ B4R(z0),

m − m4R, for a.e. z ∈ B4R(z0)\B4R(z0),

and

vM := η2 ((wM)α − (k + M4R − M)α
)
,

vm := η2 ((wm)α − (k + m − m4R)α
)
.

Inequality (5.62) applied to wM and wm now becomes

k + M4R − MR ≥ C (k + M4R − M),

k + mR − m4R ≥ C (k + m − m4R) ,

and by adding, we obtain

(1 − C)(M4R − m4R) ≥ 2(C − 1)k + (MR − mR) − C(M − m),

for a constant C ∈ (0, 1). Therefore, instead of

osc
BR(z0)

u ≤ C osc
B4R(z0)

u + k(R),

we now obtain

osc
B (z )

u ≤ C osc
B (z )

u + C osc
¯ ¯ g + k(R). (5.72)
R 0 4R 0 �1∩B4R(z0)
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Assuming that g ∈ C
γ

s,loc(�̄1) with Hölder exponent γ ∈ (0, 1], we see that

osc
�̄1∩B̄4R(z0)

g ≤ C[g]Cγ
s (�̄1∩B̄4R(z0))

Rγ ,

for a positive constant C = C(�, n, ν0). Applying [29, Lemma 8.23] and proceeding as in Step 4 in the proof of 
Theorem 1.11, we again obtain the following analogue of estimate (5.5),

osc
BR(z0)

u ≤ C
(
‖f ‖Ls(ER0 (z0),y

β−1) + ‖u‖L2(ER0 (z0),y
β−1) + [g]Cγ

s (�̄1∩ĒR0 (z0))

)
Rα0 ,

where the constants C and α0 satisfy the same dependencies, with the exception that α0 depends now in addition on γ . 
Then the argument in the proof of Theorem 1.13, following the oscillation estimate (5.5) at points z0 ∈ �̄0 ∩ �̄1, can 
be applied to show that u satisfies (1.32) with α depending now in addition on γ .

Set ϕ(R) := (RR̄)1/2. When we assume g ∈ Cloc(�̄1), [29, Lemma 8.23] applied to (5.72) with μ = 1/2 gives

osc
BR(z0)

u ≤ C

(
Rα‖u‖L∞(B4R(z0)) + osc

�̄1∩B̄4ϕ(R)(z0)

g + k(ϕ(R))

)
,

for some positive constants, C and α ∈ (0, 1), depending only on K , �, n, ν0, R0 and s. Because the right-hand-side 
in the preceding inequality converges to 0 as R tends to 0, we see that u is continuous at z0. Therefore, using also 
Theorem 1.11 and [29, Theorem 8.27], we obtain that u ∈ C(B̄R̄/4(z0)). Letting 4R2

1 = R̄, we see by (2.5) that 
BR̄/4(z0) ⊂ ER1(z0), and so u ∈ C(ĒR1(z0)). �

We now have the

Proof of Corollary 1.17. The proof of the corollary follows by a standard covering argument as in [23, Lemma 3.17]
with the aid of Theorem 1.11 and Corollary 1.17 in place of [23, Theorem 3.8 and Proposition 3.13]. More details can 
be found in the proof of [21, Corollary 1.17]. �

We conclude this section with the

Proof of Theorem 1.18. Suppose first that ER0(z0) � O . Then the classical strong maximum principle [29, Theo-
rem 8.19] implies that u is constant on O , since the hypotheses [29, Equations (8.5), (8.6), and (8.8)] are obeyed on 
precompact open subdomains of H, as one can easily see by examining the coefficients of our bilinear form (1.13)
and this is sufficient for the proof of [29, Theorem 8.19].

Otherwise, by (2.6), we may assume that there is a constant R > 0 and a point z′
0 ∈ O ∪ �0 such that B4R(z′

0) �
O ∪ �0 and

ess sup
BR(z′

0)

u = ess sup
O

u.

If B4R(z′
0) � O , we can apply (2.5) to find a ball ER1(z

′′
0) � O obeying the hypothesis of [29, Theorem 8.19] and the 

previous case applies. If z′
0 ∈ �0, the argument in the proof of [29, Theorem 8.19] applies to show that u is constant on 

a ball centered at z′
0, except that instead of using the classical weak Harnack inequality [29, Inequality (8.47)], we use 

estimate (5.34) applied to w = M4R − u, where we recall that M4R = ess supB4R(z′
0)

u. Notice that in the definition 
of w = M4R − u + k(R) in (5.9), we can take k(R) = 0 because u is a subsolution to equation (1.19) with f = 0. To 
complete the proof, we can use the argument employed in the proof of [29, Theorems 2.2 and 8.19], except that when 
z′

0 ∈ �0, the role of the Euclidean ball is replaced by that of the ball defined by the cycloidal distance function. �
6. Hölder continuity for solutions to the variational inequality

In this section, we use the penalization method and a priori estimates for solutions to the penalized equation 
derived in [9] together with Theorems 1.11 and 1.13 to prove local Hölder continuity on a neighborhood of �̄0 in Ō
for solutions u to the variational inequality (1.39) (Theorem 1.20).
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6.1. Reduction to an open subset with finite-height

If height(O) = ∞, we shall need to avail of the second condition in (1.43) to enable cutting off the solution and 
use localization to reduce to the case of an open subset with finite-height.7 Let U � O be an open subset. Suppose 
we are given an open subset V ⊂ U with V̄ \ ∂O ⊂ U and

dist(O ∩ ∂V ,O ∩ ∂U ) > 0. (6.1)

Let ζ ∈ C∞(H̄) be a cutoff function such that 0 ≤ ζ ≤ 1 on H, ζ = 1 on V , ζ > 0 on U , and ζ = 0 on O \ U . By 
(6.1) and construction of ζ , there is a positive constant, C0, depending only on dist(O ∩ ∂V , O ∩ ∂U ) such that

‖ζ‖C2(H̄) ≤ C0. (6.2)

We obtain ζψ ∈ H 1(U , w) by (6.2) and the fact that ψ ∈ H 1(O, w). Because ζ = 0 on ∂U \ ∂O and ψ ≤ 0 on 
�1 = ∂O \ �̄0 (trace sense), then ζψ ≤ 0 on ∂U \ �̄0 (trace sense). Similarly, as ζ = 0 on ∂U \ ∂O and u = 0 on 
∂O \ �̄0 (trace sense), then ζu = 0 on ∂U \ �̄0 (trace sense) and therefore

ζu ∈ H 1
0 (U ∪ �0,w) (6.3)

by [9, Lemma A.31].

Lemma 6.1 (Localization of solutions to variational inequalities). [9, Claim 6.16] If u ∈ H 1
0 (O ∪�0, w) is a solution 

to (1.39) with obstacle function, ψ ∈ H 1(O, w) with ψ+ ∈ H 1
0 (O ∪ �0, w), and source function, f ∈ L2(O, w), then 

ζu ∈ H 1
0 (U ∪ �0, w) is a solution to the variational inequality (1.39) on U with obstacle function, ζψ ∈ H 1(U , w)

with ζψ+ ∈ H 1
0 (U ∪ �0, w), and source function,

fζ := ζf + [A,ζ ]u ∈ L2(U ,w), (6.4)

where A is as in (1.12) and the commutator [A, ζ ]u is given by

[A,ζ ]u = −y
(

2aij ζxi
uxj

+ 2ainζyuxi
+ 2(ainζxi

+ annζy)uy

)
− y(aij ζxixj

+ 2ainζxiy + annζyy)u − biζxi
u − bnζyu.

Remark 6.2 (Reduction to the case of an open subset with finite-height). In order to reduce the case of an open subset 
O � H with height(O) = ∞ to the case of an open subset O � R × (0, δ) with finite height δ > 0, we can apply 
Lemma 6.1 to the choice

ζ =
{

1 on R× (−∞, δ/2],
0 on R× [3δ/4,∞),

(6.5)

given by ζ(x, y) = χ(y/δ), for (x, y) ∈ R2, where χ ∈ C∞(R̄) is a cutoff function with 0 ≤ χ ≤ 1 on R, χ(t) = 1
for t ≤ 1/2, and χ(t) = 0 for t ≥ 3/4. Observe that supp[A, ζ ]u ⊂ R × [δ/2, 3δ/4] in (6.4) and that, because u obeys 
(1.43), we obtain

fζ ∈ L2(Oδ,w) ∩ L∞(Oδ),

and thus fζ obeys (1.40), while

ζu = u on Oδ/2, (6.6)

with Oδ as in Hypothesis 1.19.

7 It is important to remember that we cannot use a cutoff function to localize solutions to the variational equation or inequality without assuming 
information about regularity of the solution u up to �0 that is stronger than what we are trying to prove.
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6.2. Proof of Hölder continuity up to �̄0 for solutions to the variational inequality

By Remark 6.2, we may assume without loss of generality for the remainder of this section that O has finite height,

O �Rn−1 × (0, δ), (6.7)

where δ > 0 is as in Hypothesis 1.19, with source function (relabeled if necessary), f , obeying (1.40) and obtain the 
desired Hölder continuity for u along the open subset Oδ/2 via (6.6).

We shall prove Theorem 1.20 using the method of penalization, following the pattern in [9], by first deriving an L∞
bound on a penalization term, βε(uε −ψ) in the semilinear penalized equation (6.10) corresponding to the variational 
inequality (1.39), which is uniform with respect to ε ∈ (0, ε0], for some sufficiently small positive constant ε0. We 
then appeal to Theorems 1.11 and 1.13 to conclude that the family of functions {uε}ε∈(0,ε0] solving the penalized 
equation is Cα0 -continuous up to �̄0 and hence, by passing to a subsequence and taking limits, via the convergence 
results in [9], that the same is true for a solution, u ∈ H 1

0 (O ∪ �0, w), to (1.39). Following [9, Equations (3.1) and 
(3.2)], we denote8

aλ(u, v) := a(u, v) + λ((1 + y)u, v)L2(O,w), ∀u,v ∈ H 1(O,w), (6.8)

Aλ := A + λ(1 + y), (6.9)

where λ ≥ 0 and, as usual, a(u, v) is given by (1.13) and A by (1.12).

Lemma 6.3 (Uniform bound on the penalization term). Let f ∈ L2(O, w) ∩ L∞(O) and ψ ∈ H 2(O, w) ∩ L∞(O)

obey (1.38). For u ∈ H 1
0 (O ∪�0, w) obeying u ≥ ψ a.e. on O and λ ≥ 0, and ε > 0, let uε ∈ H 1

0 (O ∪�0, w) ∩L∞(O)

be a solution to the penalized equation,

aλ(uε, v) + (βε(uε − ψ), v)L2(O,w) = (fλ, v)L2(O,w), ∀v ∈ H 1
0 (O ∪ �0,w), (6.10)

defined by the penalization function,

βε(t) := −1

ε
t−, t ∈R, (6.11)

where t− := − min{t, 0}, and9

fλ := f + λ(1 + y)u ∈ L2(O,w). (6.12)

If c := ess infO c and 10 λ + c > 0, there is a positive constant ε0, depending only on n, λ, � and ν0, such that

‖βε(uε − ψ)‖L∞(O) ≤ 2 ess sup
O

(Aψ − f )+, ∀ ε ∈ (0, ε0]. (6.13)

Proof. We adapt an argument used in the proof of [49, Theorem 4.38]. Integration by parts [9, Lemma 2.23] with 
ψ ∈ H 2(O, w) and v ∈ H 1

0 (O ∪ �0, w) yields

aλ(ψ, v) = (Aλψ,v)L2(O,w). (6.14)

Since uε ∈ H 1
0 (O ∪ �0, w) and ψ+ ∈ H 1

0 (O ∪ �0, w), it follows that βε(uε − ψ) ∈ H 1
0 (O ∪ �0, w) by the proof of 

[9, Lemma A.33]. In order to use βε(uε − ψ) to construct suitable test functions, we need the forthcoming Claim 6.5
and that relies in turn on the

Claim 6.4 (Boundedness of the solution u to the variational inequality). Assume that O is bounded and c ≥ 0 a.e. on 
O or that O is unbounded and c ≥ c0 > 0 a.e. on O , for a positive constant c0, and τ > 0 in (1.11). Then the solution 
u to the variational inequality (1.39) belongs to L∞(O).

8 We add a term λ(1 + y)u, rather than just λu, due to the presence of the factor 1 + y in our definition (1.10b) of the norm H 1(O, w).
9 Not to be confused with fζ as defined in equation (6.4).

10 Recall that ‖c‖L∞(O) ≤ � by (1.8).
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Proof of Claim 6.4. According to [9, Theorem 3.16], there exists a solution w ∈ H 1
0 (O ∪ �0, w) to the inhomoge-

neous variational equation (1.19), namely

a(w,v) = (f, v)L2(O,w), ∀v ∈ H 1
0 (O ∪ �0,w). (6.15)

(While [9, Theorem 3.16] was proved for the Heston operator (1.14), the proof for the more general operator A in 
(1.12) is identical; moreover, as is clear from the proof of existence in [9, pp. 34–35], a condition such as r > 0 in 
(1.14) or more generally c ≥ c0 > 0 a.e. on O in (1.12) is not required for existence even when O is unbounded.) We 
rewrite the preceding variational equation as

a(w,v − u) = (f, v − u)L2(O,w), ∀v ∈ H 1
0 (O ∪ �0,w)

and subtract from the variational inequality (1.39) to give the equivalent variational inequality,

a(u − w,v − u) ≥ 0, ∀v ∈ H 1
0 (O ∪ �0,w), v ≥ ψ.

Set u0 := u −w and ψ0 := ψ −w and v0 = v −w, and observe that u ∈ H 1
0 (O ∪�0, w) is a solution to the preceding 

variational inequality if and only if u0 ∈ H 1
0 (O ∪ �0, w) is a solution to the variational inequality,

a(u0, v0 − u0) ≥ 0, ∀v0 ∈ H 1
0 (O ∪ �0,w), v0 ≥ ψ0.

The bilinear form a given by (1.13) has the weak maximum principle property by [20, Theorem 8.7] when O is a 
bounded domain and c ≥ 0 a.e. on O while a has the weak maximum principle property by [20, Theorem 8.14] when 
O is a (finite height) unbounded domain and c ≥ c0 > 0 a.e. on O and τ > 0. Consequently, the weak maximum 
principle estimates [20, Proposition 7.9 (1) and (3)] for a imply that

0 ≤ u0 ≤ 0 ∨ ess sup
O

ψ a.e. on O,

where x ∨ y := max{x, y}, ∀ x, y ∈ R. In particular, u0 ∈ L∞(O) in either case. Moreover, the local supremum esti-
mates provided by Theorems 1.5 and 1.6 for the solution w ∈ H 1

0 (O ∪ �0, w) to the variational equation imply that 
w ∈ L∞(O) and thus u = u0 + w ∈ L∞(O), as desired. This completes the proof of Claim 6.4. �

Next, we have the key11

Claim 6.5 (Boundedness of the penalization term). Assume that O is bounded and c ≥ 0 a.e. on O or that O is 
unbounded and c ≥ c0 > 0 a.e. on O , for a positive constant c0, and τ > 0 in (1.11). Then the penalization term, 
βε(uε − ψ), belongs to L∞(O).

Proof of Claim 6.5. Since βε(u − ψ) ≤ 0 a.e. on O , we have

aλ(uε, v) = (fλ, v)L2(O,w) − (βε(uε − ψ), v)L2(O,w) ≥ (fλ, v)L2(O,w), (6.16)

for all v ∈ H 1
0 (O ∪�0, w) with v ≥ 0 a.e. on O . The bilinear form aλ given by (6.8) has the weak maximum principle 

property by [20, Theorem 8.7], when O is a bounded domain and c ≥ 0 a.e. on O , and by [20, Theorem 8.14], when 
O is a (finite height) unbounded domain and c ≥ c0 > 0 a.e. on O and τ > 0. Hence, the a priori weak maximum 
principle estimate [20, Proposition 6.5 (4)] for aλ implies that

uε ≥ 0 ∧ 1

λ + c
ess inf

O
fλ a.e. on O,

where x ∧ y := min{x, y}, for all x, y ∈ R. Because fλ = f + λ(1 + y)u and u ∈ L∞(O) by Claim 6.4 and O has 
finite height and f ∈ L∞(O) by hypothesis (1.40), then fλ ∈ L∞(O) and the preceding lower bound for uε is indeed 
finite. In particular,

(uε − ψ)− ≤
(

ess sup
O

ψ − 0 ∧ 1

λ + c
ess inf

O
fλ

)+
a.e. on O.

11 The hypothesis in Claim 6.5 that τ > 0 can be removed by the alternative proof for that case in Remark 6.7.
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Since (uε − ψ)− ≥ 0 and ψ ∈ L∞(O) by hypothesis, it follows that (uε − ψ)− ∈ L∞(O) and thus βε(uε − ψ) ∈
L∞(O). This completes the proof of Claim 6.5. �

If F(t) := tq−1, for q > 2, and F ′(t) = (q − 1)tq−1, for t ∈ R, then the proofs of [29, Lemmas 7.5 and 7.6 and 
Theorem 7.8] (see [9, Lemma A.33] and its proof) and the fact that βε(uε − ψ) ∈ L∞(O) by Claim 6.5 show that

v := |βε(uε − ψ)|q−1 ∈ H 1
0 (O ∪ �0,w). (6.17)

By subtracting (6.14) from (6.10) and choosing v as in (6.17), we obtain

aλ(uε − ψ, |βε(uε − ψ)|q−1) + (βε(uε − ψ), |βε(uε − ψ)|q−1)L2(O,w)

= (fλ − Aλψ, |βε(uε − ψ)|q−1)L2(O,w).
(6.18)

Since u ≥ ψ a.e. on O by hypothesis, the term on the right-hand side of equation (6.18) obeys

(fλ − Aλψ, |βε(uε − ψ)|q−1)L2(O,w) ≥ (f − Aψ, |βε(uε − ψ)|q−1)L2(O,w), (6.19)

since fλ − Aλψ = f + λ(1 + y)(u − ψ) − Aψ ≥ f − Aψ a.e. on O by (6.9) and (6.12). Notice that

(βε(uε − ψ), |βε(uε − ψ)|q−1)L2(O,w) = −
∫
O

|βε(uε − ψ)|qwdx dy, (6.20)

and so (6.18), (6.19), and (6.20) yield

aλ(uε − ψ, |βε(uε − ψ)|q−1) −
∫
O

|βε(uε − ψ)|qwdx dy

≥ (f − Aψ, |βε(uε − ψ)|q−1)L2(O,w).

(6.21)

Observe that (6.17) and the fact that |βε(uε − ψ)| = −βε(uε − ψ) by (6.11) gives

vxi
= −(q − 1)|βε(uε − ψ)|q−2β ′

ε(uε − ψ)(uε − ψ)xi
, 1 ≤ i ≤ n − 1, (6.22)

and similarly for vy . By a straightforward calculation using the expression (6.8) for aλ(u, v) and (1.13) for a(u, v)

and the expressions (6.22) for vxi
(and vy ), we find that

aλ(uε − ψ, |βε(uε − ψ)|q−1)

= −
∫
O

(
aij (uε − ψ)xi

(uε − ψ)xj
+ 2ain(uε − ψ)xi

(uε − ψ)y + ann((uε − ψ)y)
2
)

× (q − 1)|βε(uε − ψ)|q−2β ′
ε(uε − ψ)ywdx dy

+
∫
O

(
∂xj

aij + ∂ya
in + b̂i − τaij xj

|x| − μain

)
(uε − ψ)xi

|βε(uε − ψ)|q−1ywdxdy

+
∫
O

(
∂xi

ain + ∂ya
nn + b̂n − τain xi

|x| − μann

)
(uε − ψ)y |βε(uε − ψ)|q−1ywdxdy

+
∫
O

(c + λ(1 + y))(uε − ψ)|βε(uε − ψ)|q−1wdxdy.

(6.23)

We write the sum of integrals on the right-hand side of (6.23) as I1 + I2 + I3 + I4. By the strict ellipticity of the 
operator y−1A, we find that there exists a positive constant, C1 = C1(�, ν0), such that

−I1 ≥ (q − 1)C1

∫
|∇(uε − ψ)|2β ′

ε(uε − ψ)|βε(uε − ψ)|q−2ywdx dy,
O
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noting that β ′
ε(t) ≥ 0 a.e. t ∈R. Indeed, by (6.11) we have12

β ′
ε(t) = 1

ε
1{t≤0} ≤ 1

ε
a.e. t ∈R,

and so the identity,

∇βε(uε − ψ) = β ′
ε(uε − ψ)∇(uε − ψ) = 1

ε
1{uε≤ψ}∇(uε − ψ) a.e. on O, (6.24)

yields

|∇(uε − ψ)|2β ′
ε(uε − ψ) = 1

ε
|∇(uε − ψ)|21{uε≤ψ}

= ε|∇βε(uε − ψ)|21{uε≤ψ}
= ε|∇βε(uε − ψ)|2 a.e. on O.

Hence, by combining the preceding inequality and identity, we see that

I1 ≤ −ε(q − 1)C1

∫
O

|∇βε(uε − ψ)|2|βε(uε − ψ)|q−2ywdx dy. (6.25)

Using (6.24) and the fact that βε(t)1{t≤0} = βε(t), we can write I2 in the form

I2 = ε

∫
O

(
∂xj

aij + ∂ya
in + b̂i − τaij xj

|x| − μain

)
(βε(uε − ψ))xi

× |βε(uε − ψ)|(q−2)/2|βε(uε − ψ)|q/2ywdx dy.

Hence, there is a positive constant C2, depending only on �, ν0 and τ , such that for any η > 0,

|I2| ≤ εη

∫
O

|∇βε(uε − ψ)|2|βε(uε − ψ)|q−2ywdx dy + C2
ε

η

∫
O

|βε(uε − ψ)|qywdx dy. (6.26)

Similarly, we obtain for I3, for any η > 0,

|I3| ≤ εη

∫
O

|∇βε(uε − ψ)|2|βε(uε − ψ)|q−2ywdx dy + C3
ε

η

∫
O

|βε(uε − ψ)|qywdx dy, (6.27)

where C3 is a positive constant depending only on � and ν0. We can also estimate I4 by

|I4| ≤ εC4

∫
O

|βε(uε − ψ)|qwdx dy, (6.28)

where C4 is a positive constant depending only on λ, �, ν0, and the height of the open subset O . Substituting (6.25), 
(6.26), (6.27) and (6.28) in (6.23), we obtain

aλ(uε − ψ, |βε(uε − ψ)|q−1)

≤ ε

(
C2

η
+ C3

η
+ C4

)∫
O

|βε(uε − ψ)|qwdx dy

− ε((q − 1)C1 − 2η)

∫
O

|∇βε(uε − ψ)|2|βε(uε − ψ)|q−2ywdx dy.

Choose η := C1/2 and, noting that q > 2, we have (q − 1)C1 − 2η ≥ 0 and thus

12 Recall that we define t− = 0 ∨ (−t).
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aλ(uε − ψ, |βε(uε − ψ)|q−1) ≤ εC

∫
O

|βε(uε − ψ)|qwdx dy, (6.29)

where C := 2C2/C1 + 2C3/C1 + C4. But (6.21) gives∫
O

|βε(uε − ψ)|qwdx dy

≤ −(f − Aψ, |βε(uε − ψ)|q−1)L2(O,w) + εC

∫
O

|βε(uε − ψ)|qwdx dy, (by (6.29))

and thus,

(1 − εC)

∫
O

|βε(uε − ψ)|qwdx dy ≤ ((Aψ − f )+, |βε(uε − ψ)|q−1)L2(O,w).

Now choose ε0 = 1/(2C) and so (1 − εC) ≥ 1/2, for any 0 < ε ≤ ε0. By applying the Hölder inequality on the 
right-hand side, we see that

1

2
‖βε(uε − ψ)‖Lq(O,w) ≤ ‖(Aψ − f )+‖Lq(O,w), for q > 2 and 0 < ε ≤ ε0,

which yields, by taking the limit as q → ∞ and applying [1, Theorem 2.8], the desired inequality (6.13). This com-
pletes the proof of Lemma 6.3. �
Remark 6.6 (Existence of solutions to the penalized equation). When we specialize the variable-coefficient operator 
A in (1.12) to the Heston operator (1.14), then solutions to (6.10) exist by [9, Theorem 4.18] for all ε > 0 and λ ≥ λ0, 
where λ0 is a positive constant depending only on � and ν0 (see [9, Lemma 3.2]), chosen such that aλ is coercive; the 
proof of the corresponding existence result for A in (1.12) is identical.

Remark 6.7 (Alternative proof of Claim 6.5 when O is unbounded and c ≥ c0 > 0). When O is unbounded but c ≥
c0 > 0 a.e. on O , we may give an alternative proof of Claim 6.5. According to (1.46), the bilinear form a is coercive 
for 0 < δ < δ0(c0, �, n, ν0) and we may set λ = 0. The variational inequality (6.16) then simplifies to

a(uε, v) = (f, v)L2(O,w) − (βε(uε − ψ), v)L2(O,w) ≥ (f, v)L2(O,w), (6.30)

for all v ∈ H 1
0 (O ∪ �0, w) with v ≥ 0 a.e. on O . Let w ∈ H 1

0 (O ∪ �0, w) be as in the proof of Claim 6.4 and recall 
that w ∈ L∞(O). Subtracting the variational equation (6.15) from (6.30) yields

a(uε − w,v) ≥ 0, ∀v ∈ H 1
0 (O ∪ �0,w) with v ≥ 0 a.e. on O.

By choosing v := (uε − w)− in the preceding inequality, we obtain

−a((uε − w)−, (uε − w)−) ≥ 0.

Coercivity of the bilinear form (1.46) implies that C0‖v‖2
H 1(O,w)

≤ a(v, v). Hence, −C0‖v‖2
H 1(O,w)

≥ 0 and conse-

quently v = 0 a.e. on O , and thus uε ≥ w a.e. on O . Since w, ψ ∈ L∞(O), it follows that (uε − ψ)− ∈ L∞(O) and 
therefore βε(uε − ψ) ∈ L∞(O), as desired for this case. Note that this method does not require the hypothesis τ > 0.

We can now proceed to the

Proof of Theorem 1.20. Fix u ∈ H 1
0 (O ∪ �0, w) as in the hypothesis of Theorem 1.20 and, with fλ as in (6.12) with 

this choice of u, set

fλ,ε := fλ − βε(uε − ψ) ∈ L2(O,w). (6.31)

Since f, ψ ∈ L∞(O) by (1.40) and (1.41) and u is a solution to the variational inequality (1.39) with g = 0 a.e. on O , 
then u also solves
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aλ(u, v − u) ≥ (fλ, v − u)L2(O,w) and u ≥ ψ a.e. on O,

∀v ∈ H 1
0 (O ∪ �0,w) with v ≥ ψ a.e. on O.

For a Euclidean ball Eδ(z0) with z0 ∈ �0, as in the statement of Corollary 1.17, we observe that

‖fλ,ε‖Ls(Eδ(z0)) ≤ vol1/s(Eδ(z0),w)‖fλ,ε‖L∞(Eδ(z0)), ∀ ε > 0, (6.32)

where we take s > 2n ∨ (n + β). Claim 6.4 implies that u ∈ L∞(O) and the bound (6.13) for βε(uε − ψ) and the 
definitions (6.12) for fλ and (6.31) for fλ,ε imply that

‖fλ,ε‖L∞(O) ≤ ‖f ‖L∞(O) + λ(1 + height(O))‖u‖L∞(O) + 2 ess sup
O

(Aψ − f )+, ∀ ε ∈ (0, ε0],

where ε0 > 0 is as in Lemma 6.3. Because f, u ∈ L∞(O) and ess supO (Aψ − f )+ < ∞ by (1.42), then (6.32)
implies that fλ,ε in (6.31) obeys the hypothesis (1.35) of Corollary 1.17 and so, by application to the solution uε ∈
H 1

0 (O ∪ �0, w) to (6.10), that is

aλ(uε, v) = (fλ,ε, v)L2(O,w), ∀v ∈ H 1
0 (O ∪ �0,w),

we see that uε ∈ C
α1
s (Ōδ/2) satisfies estimate (1.36) with g = 0, where the Hölder exponent α1 = α1(δ, K, �,

n, ν0, s) ∈ (0, 1) and the constant C = C(δ, K, �, n, ν0, s) > 0 in (1.36) are independent of ε ∈ (0, ε0]. By the 
Arzelá–Ascoli Theorem, we can find a subsequence which converges uniformly on compact subsets of Ōδ/2 to a 
function u0 ∈ C

α1
s (Ōδ/2). But [9, Theorem 6.2] and the choice (6.12) of fλ = f + λ(1 + y)u imply that uε → u

strongly in L2(O, w) (in fact, H 1
0 (O ∪ �0, w)) as ε ↓ 0 and thus, after passing to a subsequence, uε → u pointwise 

a.e. on O as ε ↓ 0. Therefore, by choosing a diagonal subsequence, we obtain u = u0 a.e. on Oδ/2, and the result 
follows. �

Now we can give the

Proof of Corollary 1.21. We reduce the proof to the setting of Theorem 1.20 by defining

ũ := u − g, ψ̃ := ψ − g, f̃ := f − Ag.

Notice that ũ, ψ̃ and f̃ satisfy the assumptions of Theorem 1.20 for u, ψ and f , respectively. Therefore, we obtain 
that ũ ∈ C

α1
s (Ōδ/2), for a constant α1 = α1(δ, K, �, ν0, n, s) ∈ (0, 1). When we assume g ∈ C

γ
s (�̄1 ∩ ∂̄Oδ/2) for 

γ ∈ (0, 1], we see that u ∈ C
α2
s (Ōδ2), where we choose α2 := α1 ∧ γ . When g ∈ H 2(O, w) ∩ C(�̄1 ∩ ∂Oδ/2), we see 

that α2 = α1 ∧ 0, and so u ∈ C(Ōδ/2). �
7. Harnack inequality

In this section, we prove Theorem 1.24, that is, the Harnack inequality for solutions u ∈ H 1
0 (O ∪ �0, w) to the 

variational equation (1.19). The key differences from the proof of the classical Harnack inequality for variational 
solutions to non-degenerate elliptic equations [29, Theorem 8.20] are essentially those which we already outlined in 
§5 and the proof follows the same pattern as that of Theorem 1.11. Therefore, we only point out the major steps in the 
proof of Theorem 1.24, as the details were explained in the preceding sections. We now proceed to the

Proof of Theorem 1.24. Let R̄ := dist(∂O ∩ H, ∂O ′ ∩ H), and R := R̄/4. We first show that there is a positive 
constant C = C(�, ν0, n, R̄), such that for all z0 ∈ �0 ∩ ∂0O ′, we have

ess sup
BR(z0)

u ≤ C ess inf
BR(z0)

u. (7.1)

For clarity, we split the proof into principal steps.

Step 1 (Energy estimates). Let η ∈ C1
0(H̄) be a non-negative cutoff function with support in B̄4R(z0). Let ε > 0 and

w = u + ε. (7.2)
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We consider α ∈R, α �= −1. We set H(w) = w(α+1)/2 and

v = η2wα. (7.3)

Then, v ∈ H 1
0 (O ∪�0, w) is a valid test function in (1.13) by [21, Lemma A.4]. By applying the same arguments as in 

the proofs of Theorem 1.5 and Theorem 1.11, we obtain the following analogous energy estimate to (4.5) and (5.15), 
respectively(∫

|ηH(w)|pyβ−1 dx dy

)1/p

≤ (C|1 + α|)1/p ‖√y∇η‖2/p

L∞(H)

⎛⎝ ∫
supp η

|H(w)|2yβ−1 dx dy

⎞⎠1/p

,

(7.4)

where C = C(�, ν0, n, R̄) is independent of ε.

Step 2 (Moser iteration). By applying Moser iteration as described in the proofs of Theorem 1.5, for α > 0, and of 
Theorem 1.11, for α < 0, we obtain

ess sup
BR(z0)

w ≤ C

⎛⎜⎝ 1

|B2R(z0)|β−1

∫
B2R(z0)

w2yβ−1 dx dy

⎞⎟⎠
1/2

,

ess inf
BR(z0)

w ≥ C−1

⎛⎜⎝ 1

|B2R(z0)|β−1

∫
B2R(z0)

w−2yβ−1 dx dy

⎞⎟⎠
−1/2

,

(7.5)

where C satisfies the same dependencies as the constant in (7.4).

Step 3 (Application of Theorem 3.4). In this step, we verify that w satisfies the requirements of the abstract John–
Nirenberg inequality (Theorem 3.1) with θ0 = θ1 = 2 and Sr = B(2+r)R(z0), for all 0 ≤ r ≤ 1. From the hypotheses, 
we have that 0 < 4R < dist(z0, �1), and so Sr = B(2+r)R(z0), for all 0 ≤ r ≤ 1, by (2.4) and (2.3). By Proposition 3.2, 
we see that w satisfies condition (3.2) of Theorem 3.1. Therefore, it remains to verify condition (3.3), which follows 
in precisely the same way as in the proof of Theorem 1.11.

Step 4 (Proof of the Harnack inequality (7.1) on a half-ball). Because w satisfies the conditions of Theorem 3.1 by 
the preceding step, there is a positive constant C, independent of ε, such that⎛⎜⎝ 1

B2R(z0)|β−1

∫
B2R(z0)

w2yβ−1 dx dy

⎞⎟⎠
1/2

≤ C

⎛⎜⎝ 1

|B2R(z0)|β−1

∫
B2R(z0)

w−2yβ−1 dx dy

⎞⎟⎠
−1/2

.

(7.6)

Thus, combining inequalities (7.5) and (7.6) and recalling that w = u + ε, we obtain

ess sup
BR(z0)

(u + ε) ≤ C ess inf
BR(z0)

(u + ε),

for all ε > 0. Taking the limit as ε ↓ 0, we obtain the Harnack inequality (7.1) on a half-ball.

The proof of (1.47), the Harnack inequality on an open subset O ′ � O ∪ �0, follows by a standard covering 
argument similar to that in the proof of [29, Corollary 8.21], with (7.1) replacing [29, Inequality (8.63)] on half-balls 
centered at boundary points. More details can be found in the proof of [21, Theorem 1.23]. �
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Appendix A. Auxiliary results

In this section we give the proof of Lemma 2.7. As in §2, we work under the assumption stated in Remark 2.8 that 
z0 = (0, 0).

Proof of Lemma 2.7. By [9, Corollary A.14], it is enough to prove the existence of an extension operator for func-
tions u ∈ C1(B̄R(z0)). Fix a point z′

0 = (0, y′
0) ∈ BR(z0), say with y′

0 = R2/100. We consider two different cases 
depending on whether 0 < y ≤ y ′

0 or y > y′
0.

First, we consider the points z = (x, y) ∈ D\BR(z0) such that 0 < y ≤ y′
0. Let z′ = (x′, y) be the intersection of 

∂BR(z0) with the line through z and (0, y). Then, we define Eu(z) by reflection (with respect to the point z′ in the 
hyperplane at level y):

Eu(z) := u

( |x′|2
|x|2 x, y

)
, ∀ z = (x, y) ∈ (D\BR(z0)) ∩ {y < y′

0}.

Next, we consider the case of points z = (x, y) ∈ D\BR(z0) such that y > y′
0. Again let z′ = (x′, y′) be the intersection 

of ∂BR(z0) with the line through z and z′
0. Then, we define Eu(z) by reflection

Eu(z) := u

(
z′

0 + |z′ − z′
0|2

|z − z′
0|2

(z − z′
0)

)
.

Therefore,

Eu(x, y) := u

(
|z′ − z′

0|2
|z − z′

0|2
x, y′

0 + |z′ − z′
0|2

|z − z′
0|2

(y − y′
0)

)
, ∀ z = (x, y) ∈ (D\BR(z0)) ∩ {y > y′

0},

and so it is clear that the function Eu is continuous on D and is equal to u on BR(z0). Because H ∩ ∂BR(z0) is a 
smooth surface, Eu has well-defined weak derivatives in D. Next, we show that (2.11) holds. For this purpose, we 
denote by

D1 := (D\BR(z0)) ∩ {y < y′
0},

D2 := (D\BR(z0)) ∩ {y ≥ y′
0}.

To prove (2.11), it is enough to show there is a positive constant C, depending on R and D, such that∫
D1

|Eu(x, y)|2yβ−1 dx dy ≤ C

∫
BR(z0)

|u(x, y)|2yβ−1 dx dy,

∫
D1

|∇Eu(x, y)|2yβ dx dy ≤ C

∫
BR(z0)

|∇u(x, y)|2yβ dx dy,

∫
D2

|Eu(x, y)|2yβ−1 dx dy ≤ C

∫
BR(z0)

|u(x, y)|2yβ−1 dx dy,

∫
D2

|∇Eu(x, y)|2yβ dx dy ≤ C

∫
BR(z0)

|∇u(x, y)|2yβ dx dy,

(A.1)

We begin by evaluating the integrals over D1 in (A.1) and we denote by

(x′′, y) = ϕ(x, y) :=
( |x′|2

2
x, y

)
. (A.2)
|x|
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We notice that ϕ(x, y) ∈ BR(z0), for all (x, y) ∈ D1, so Eu(x, y) is well-defined on D1. The coordinate x′ = x′(y) is 
determined by the condition d((x′, y), z0) = R. Direct calculations give us that

x′(y) =
⎛⎝(R2 +√R4 + 4R2y

2

)2

− y2

⎞⎠1/2
x

|x| .

We can find a positive constant C1, depending only on R, such that

|x| ≥ |x′′| ≥ C1, ∀ (x, y) ∈ D1,

and using the fact that

ϕ−1(x′′, y) =
( |x′|2

|x′′|2 x′′, y
)

,

we can find a positive constant C2, depending on R and D, such that

|∇ϕ(x, y)| ≤ C2, ∀ (x, y) ∈ D1,

|∇ϕ−1(x′′, y)| ≤ C2, ∀ (x′′, y) ∈ ϕ(D1).
(A.3)

Using the change of variable (x′′, y) = ϕ(x, y), we obtain∫
D1

|Eu(x, y)|2yβ−1 dx dy ≤
∫

ϕ(D1)

|u(x′′, y)|2yβ−1|det∇ϕ−1(x′′, y)|dx′′dy

≤ C2

∫
BR(z0)

|u(x, y)|2yβ−1 dx dy, (by (A.3)).
(A.4)

Using

∂xi
Eu(x, y) =

n−1∑
j=1

uxj
(ϕ(x, y), y)∂xi

ϕj (x, y), 1 ≤ i ≤ n − 1,

∂yEu(x, y) =
n−1∑
j=1

uxj
(ϕ(x, y), y)∂yϕj (x, y) + uy(ϕ(x, y), y),

the change of variable (x′′, y) = ϕ(x, y) and the upper bound (A.3), we obtain for a positive constant C3, depending 
on R and D,∫

D1

|∇Eu(x, y)|2yβ dx dy ≤ C

∫
ϕ(D1)

|∇u(x′′, y)|2|∇ϕ(x, y)|2|det∇ϕ−1(x′′, y)|yβdx′′dy,

and thus∫
D1

|∇Eu(x, y)|2yβ dx dy ≤ C3

∫
BR(z0)

|∇u(x, y)|2yβ dx dy. (A.5)

Therefore, (A.4) and (A.5) give us the first two inequalities in (A.1).
Next, we consider the last two integrals in (A.1). Notice that on D2 we have y ≥ y′

0 > 0 and so it is enough to 
show ∫

D2

|Eu(z)|2 dz ≤ C4

∫
BR(z0)

|u(z)|2 dz,

∫
D2

|∇Eu(z)|2 dz ≤ C4

∫
BR(z0)

|∇u(z)|2 dz,

(A.6)

for some positive constant C4, depending on R and D. For all z ∈ D2, we now denote
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z′′ = ϕ(z) := z′
0 + |z′ − z′

0|2
|z − z′

0|2
(z − z′

0).

Analogous to (A.3), we can find a positive constant C5, depending on R and D, such that for all z ∈ D2,

|∇ϕ(z)| ≤ C5, ∀ z ∈ D2,

|∇ϕ−1(z′′)| ≤ C5, ∀ z′′ ∈ ϕ(D2).
(A.7)

We notice that ϕ(z) ∈ BR(z0), for all z ∈ D2. Therefore, using the change of variable z′′ = ϕ(z), we obtain∫
D2

|Eu(z)|2 dz ≤
∫

ϕ(D2)

|u(z′′)|2|det∇ϕ−1(z′′)|dz′′

≤ C5

∫
BR(z0)

|u(x, y)|2 dx dy (by (A.7)).
(A.8)

Using

∂xi
Eu(z) =

n−1∑
j=1

uxj
(ϕ(z))∂xi

ϕj (z) + uy(ϕ(z))∂xi
ϕn(z), 1 ≤ i ≤ n − 1,

∂yEu(z) =
n−1∑
j=1

uxj
(ϕ(z))∂yϕj (z) + uy(ϕ(z))∂yϕn(z),

we obtain∫
D2

|∇Eu(z)|2 dz ≤ C

∫
ϕ(D2)

|∇u(z′′)|2|∇ϕ(z)|2|det∇ϕ−1(z′′)|dz′′

≤ CC5

∫
BR(z0)

|∇u(z)|2 dz, (by (A.7)).
(A.9)

From (A.8) and (A.9), we obtain (A.6). This concludes the proof of Lemma 2.7. �
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[45] E.V. Radkevič, Equations with nonnegative characteristic form. I, J. Math. Sci. 158 (2009) 297–452.
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