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Abstract

Suppose (X, ω) is a compact Kähler manifold. We introduce and explore the metric geometry of the Lp,q -Calabi Finsler structure 
on the space of Kähler metrics H. After noticing that the Lp,q -Calabi and Lp′

-Mabuchi path length topologies on H do not 
typically dominate each other, we focus on the finite entropy space EEnt, contained in the intersection of the Lp-Calabi and 
L1-Mabuchi completions of H and find that after a natural strengthening, the Lp-Calabi and L1-Mabuchi topologies coincide on 
EEnt. As applications to our results, we give new convergence results for the Kähler–Ricci flow and the weak Calabi flow.
© 2016 
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1. Introduction and main results

Suppose (Xn, ω) is a connected compact Kähler manifold. By H we denote the space of Kähler metrics ω′ that are 
cohomologous to ω. In the 1950s Calabi initiated the study of the infinite-dimensional space H, with the hopes of find-
ing Kähler metrics with special curvature properties [9]. He introduced a Riemannian structure on H and formulated 
many related questions, including his famous conjecture ultimately solved by Yau [35]. Addressing one of Calabi’s 
predictions, the path length completion of Calabi’s Riemannian space was computed by Clarke–Rubinstein [14], and 
they also found a novel relation between Calabi geometry and convergence of the Kähler–Ricci (KR) flow on Fano 
manifolds. One of our purposes in the present paper is to further develop this circle of ideas. The KR flow was in-
troduced by Hamilton [24], it satisfies the equation d

dt
ωrt = ωrt − Ricωrt with ω ∈ c1(X), and we refer to [6] for 

background, context and historic references.
In our first theorem, refining the findings of Clarke–Rubinstein (p = 2, q = 1) [14] and also that of Phong–

Song–Sturm–Weinkove (p = ∞, q = 1) [28], we obtain the following convergence theorem for the KR flow, whose 
statement on the surface bears no connection with infinite-dimensional geometry:
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Theorem 1.1. Suppose 1 ≤ q ≤ p ≤ ∞, q �= ∞ and (Xn, ω) is Fano with ω ∈ c1(X). Let [0, ∞) � t → ωrt ∈ H be a 
KR trajectory. Then a Kähler–Einstein metric in H exists if and only if

∞∫
0

‖n − Sωrt
‖Lp(X,(ωn

rt
/ωn)qωn)dt < ∞, (1)

where Sωrt
is the scalar curvature of ωrt . Additionally, if the above hold then t → rt converges exponentially fast to a 

Kähler–Einstein metric.

As we shall see, the proof of this result requires no new a priori estimates, but instead rests on the observation that 
condition (1) is equivalent to saying that the KR trajectory t → ωrt has finite length with respect to the Lp,q -Calabi 
Finsler metric on H, that we introduce now. By Hodge theory, if ω′ ∈ H then ω′ = ωu := ω + i∂∂̄u for some u ∈
C∞(X), hence H can be identified with Hω, the set of normalized Kähler potentials:

Hω := {u ∈ C∞(X) : ωu = ω + i∂∂̄u > 0,

∫
X

uωn = 0} 
H.

As our approach in this note makes heavy use of pluripotential theory, we will mostly work with potentials instead 
of metrics. Treating Hω as a (trivial) Frèchet manifold, one can introduce the Lp,q-Calabi Finsler metric for arbitrary 
1 ≤ q ≤ p < ∞:

‖β‖C
p,q,u =

[
1

V

∫
X

|�ωuβ|p
[ωu

n

ωn

]q

ωn

]1/p

, β ∈ TuHω, u ∈Hω, (2)

where V = ∫
X

ωn is the total volume. The case p = 2, q = 1 gives the Riemannian structure of Calabi [9] recently 
studied extensively in [12,14]. In the most important case q = 1, we will simply refer to the metric in (2) as the 
Lp-Calabi metric.

Using this Finsler metric it is possible to compute the length of smooth curves, and introduce the associated path 
length pseudometric dC

p,q on Hω. It turns out that (Hω, dC
p,q) is a bona fide metric space and its completion and 

metric growth can be analytically characterized using elements from the finite energy pluripotential theory of Guedj–
Zeriahi [23], generalizing [14, Theorem 5.4] in the process:

Theorem 1.2. Suppose (Xn, ω) is Kähler and 1 ≤ q ≤ p < ∞. Then (Hω, dC
p,q) is a metric space whose completion 

is (ELq
, dC

p,q). Characterizing convergence, a sequence {uj }j ⊂Hω is dC
p,q -Cauchy if and only if

∫
X

∣∣∣∣
ωn

uj

ωn
− ωn

uk

ωn

∣∣∣∣
q

ωn → 0 as j, k → ∞. (3)

Additionally, (EL1
, dC

2,1) is a CAT(1/4) geodesic metric space.

This theorem seems to give the first geometric characterization of the well known potential space ELq
. Roughly 

speaking, ELq
contains degenerate metrics with volume measure having Lq-density, and we give now the precise 

definition, referring to [23] for additional details. In [23], associated to any u ∈ PSH(X, ω) the authors introduce a 
non-pluripolar measure ωn

u on X, satisfying 
∫
X

ωn
u ≤ ∫

X
ωn, generalizing the usual complex Monge–Ampère measure 

of Bedford–Taylor in case u is additionally bounded. By definition, u ∈ E ⊂ PSH(X, ω) if u has “full volume”, i.e., ∫
X

ωn
u = ∫

X
ωn. Given p, q ≥ 1, two important subclasses of potentials inside E are as follows:

ELq := {
u ∈ E,

∫
X

uωn = 0,
ωn

u

ωn
∈ Lq(X,ωn)

}
, Ep := {

u ∈ E,

∫
X

uωn = 0,

∫
|u|pωn

u < ∞}
.

Remark 1.3. By basic analysis, the dC
p,q -convergence characterization (3) extends to sequences inside the completion 

ELq
as well.
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One can derive the equation for Lp,q -Calabi geodesics by computing the variation of the Finsler energy along 
curves with fixed endpoints. Contrary to the findings of [12] in the particular case p = 2, q = 1, this geodesic equation 
does not admit smooth solutions for general p and q , and to avoid complications we omit the discussion of “weak 
geodesics” in this note.

A distinguishing feature of the Lp,q -Calabi geometry is that the associated path length metric dC
p,q induces the 

same completion on Hω for all p ≥ 1 and fixed q , even though the corresponding Finsler metrics for different p
are not even fiberwise conformally equivalent. Indeed, as follows from (3), dC

p,q -convergence does not depend on the 
value of p. We are not aware of other families of infinite dimensional Finsler structures that would enjoy this same 
property. See [15] for a treatment of conformal deformations of the Ebin metric on the space of Riemannian metrics, 
where a related but different phenomenon occurs.

As we learned after the completion of this paper, in [13, Section 4], motivated by different goals, a family of 
Riemannian metrics was introduced and studied in detail that overlaps with our construction of Lp,q-Calabi metrics 
when p = 2.

On top of applications to geometric flows, our motivation for studying the Lp,q generalization of Calabi’s Rieman-
nian structure comes from the corresponding Lp generalization of the Mabuchi geometry on H [18], that led to many 
applications in the study of canonical Kähler metrics [1,2,19,20], and Theorem 1.2 stands in direct analogy with the 
findings of [17,18] that we recall now. The Lp-Mabuchi Finsler metric of Hω is defined as follows:

‖φ‖p,u =
[

1

V

∫
X

|φ − φ̄ωu |pωn
u

]1/p

, φ ∈ TuHω, u ∈Hω, (4)

where φ̄ωu = 1
V

∫
X

φωn
u. The case p = 2 gives the Riemannian structure of Mabuchi–Semmes–Donaldson [26,31,22], 

a space with non-positive sectional curvature, with close ties to canonical Kähler metrics. As shown in [19,20], the 
case p = 1 gives a geometry with good compactness properties, suitable for the variational study of canonical metrics 
by way of infinite-dimensional convex optimization.

As in the case of the Lp,q -Calabi metric, using the Finsler structure of (4) we can measure the length of smooth 
curves, and for the associated path length pseudometric dM

p on Hω we recall now the Mabuchi analog of Theorem 1.2, 
concatenating the relevant parts of [17, Theorem 1] and [18, Theorem 2, Theorem 3]. We refer to [17,18] for further 
details.

Theorem 1.4. Suppose (Xn, ω) is Kähler and p ≥ 1. Then (Hω, dM
p ) is a metric space whose completion is (Ep, dM

p ). 
Characterizing convergence, a sequence {uj }j ⊂Hω is dM

p -Cauchy if and only if∫
X

|uj − uk|pωn
uj

+
∫
X

|uj − uk|pωn
uk

→ 0 as j, k → ∞. (5)

Additionally, (E2
M, dM

2 ) is a CAT(0) geodesic metric space.

With Theorems 1.2 and 1.4 in hand, we can answer in a much more general context the questions of Clarke–
Rubinstein [14, Section 7.2], who proposed to compare the L2-Mabuchi and L2-Calabi metric structures. It follows 
from the proof of Theorem 1.2 that (Hω, dC

p,1) has finite diameter. As (Hω, dM
p′ ) has infinite diameter [18], it is not 

possible for dC
p,1 to globally dominate dM

p′ . Even in the absence of global metric domination, one may still hope 
that domination holds on the level of the induced topologies. In case q > 1, thanks to strong estimates of Kolodziej 
[25, p. 668], the dC

p,q -topology dominates the C0-topology hence implicitly also the dM
p′ -topology. However the case 

q = 1 is much more delicate and does not allow any kind of domination (see [3, Theorem 1.3] for related a priori 
estimates), as we summarize in the following result that fully characterizes the relationship between the Lp,q-Calabi 
and Lp′

-Mabuchi topologies:

Theorem 1.5. Suppose (H, ω) is Kähler, 1 ≤ q ≤ p < ∞ and 1 ≤ p′. The following hold:

(i) There exists a sequence {vk}k∈N ⊂Hω that is dM′ -Cauchy but does not contain any dC
p,q-Cauchy subsequences.
p
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(ii) If q > 1, then any dC
p,q -Cauchy sequence inside Hω is dM

p′ -Cauchy as well.

(iii) There exists a sequence {uk}k∈N ⊂Hω that is dC
p,1-Cauchy but does not contain any dM

p′ -Cauchy subsequences.

For the rest of the introduction, let us focus on the case q = 1, most important from the point of view of geometric 
applications. An important step in the proof of the previous theorem is noticing that the completion of Hω with respect 
to the Lp-Calabi and Lp′

-Mabuchi metrics cannot contain each other. Though containment is not possible, it is natural 
to search for interesting subspaces of the intersection (Hω, dM

p′ ) ∩ (Hω, dC
p,1) = Ep′ ∩ EL1

.

Given the importance of the L1-Mabuchi metric in applications to existence/uniqueness of canonical Kähler metrics 
[20,19,1], we further restrict attention to the case p ≥ 1 and p′ = 1. A natural subspace of the intersection E1 ∩ EL1

is 
the space of potentials with finite entropy, studied in [7,2] in connection with canonical Kähler metrics:

EEnt := {u ∈ E : Ent(ωn,ωn
u) < ∞,

∫
X

uωn = 0},

where Ent(ωn, ωn
u) = ∞ if ωn

u is not absolutely continuous with respect to ωn, and is equal to 
∫
X

log
(ωn

u

ωn

)ωn
u

ωn ωn

otherwise. By definition, EEnt ⊂ EL1
and it is well known that also EEnt ⊂ E1 (see [7,2]), hence as proposed

EEnt ⊂ E1 ∩ EL1
.

It follows that EEnt can be endowed with two different non-complete topologies induced by dC
p,1 and dM

1 . A natural 
way to make these topologies complete on EEnt is to strengthen them enough to make the map u → Ent(ωn, ωn

u)

continuous. It turns out this procedure gives equivalent topologies and in fact much more is true:

Theorem 1.6. Suppose uj , u ∈ EEnt satisfy Ent(ωn, ωn
uj

) → Ent(ωn, ωn
u). Then the following are equivalent:

(i) uj → u in L1(X, ωn).
(ii) ωn

uj
→ ωn

u in the weak sense of measures.

(iii) dM
1 (uj , u) → 0.

(iv) dC
p,1(uj , u) → 0.

An immediate application of the equivalence between (iii) and (iv) in the last theorem and [2, Theorem 1.2, The-
orem 1.11] is a new convergence result for the weak Calabi flow. This weak flow is a generalization of the classical 
smooth Calabi flow [10,11] (that is governed by the equation d

dt
ct = Sωct

− S̄) and was initially introduced and studied 

by Streets in the context of the abstract metric completion (H, dM
2 ) [32,33]. A better understanding of this latter space 

in [17] led to more precise long time convergence and asymptotics results for the weak Calabi flow in [2] and for more 
details, related terminology and historic references we refer to this last paper. We note the following corollary, which 
is a direct consequence of Theorem 1.6 above and [2, Theorem 1.5, Theorem 1.11]:

Corollary 1.7. Suppose p ≥ 1 and there exists a constant scalar curvature metric in H. Then, given any weak 
Calabi flow trajectory [0, ∞) � t → ct ∈ E2, there exists a constant scalar curvature potential c∞ ∈ Hω such that 

dC
p,1(ct , c∞) → 0, in particular 

∫
X

∣∣ωn
ct

ωn − ωn
c∞
ωn

∣∣ωn → 0.

2. The Lp,q -Calabi geometry of Hω

As we will see, Hω equipped with the Lp,q -Calabi Finsler structure can be embedded isometrically into Lp(X, ωn). 
For this reason, we focus on the “flat” geometry of Lp(X, ωn) in the next short subsection.

2.1. Lp-geometry on Lp/q -spheres

Let 1 ≤ q ≤ p < ∞ and X be a compact manifold with a positive Borel measure μ satisfying μ(X) = ∫
X

μ < ∞. 
As a Fréchet manifold, C∞(X) can be equipped with the trivial Lp-Finsler structure:
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‖ψ‖p,f =
( 1

μ(X)

∫
X

|ψ |pμ
)1/p

, ψ ∈ Tf C∞(X) 
 C∞(X), f ∈ C∞(X). (6)

It is a classical fact that straight segments joining various points of C∞(X) are geodesics for this metric. The 
Lp/q -sphere with radius r is denoted by:

SLp/q (μ, r) = {f ∈ C∞(X) s.t.
1

μ(X)

∫
X

|f |p/qμ = rp/q}.

Unfortunately, for most p and q , the Lp/q -sphere is not even a smooth submanifold of C∞(X), however if we restrict 
to the “octant” S+

Lp/q (μ, r) = SLp/q (μ, r) ∩ {f > 0}, we do get a smooth submanifold. As such, one can pullback 
the Lp-Finsler metric of (6) to S

+
Lp/q (μ, r), and study the resulting path length metric space (S+

Lp/q (μ, r), dS
+

p,q). We 
will need the following basic result in this direction, which roughly says that the “chordal metric” is equivalent to the 
“round metric” on S+

Lp/q (μ, r):

Proposition 2.1. Fix f ∈ S
+
Lp/q (μ, r). Then there exists C := C(μ, p, q, f, r) > 0 such that for any f0, f1 ∈

S
+
Lp/q (μ, r) the following holds:

C

dS+
p,q(f,f0) + dS+

p,q(f,f1) + 1
dS+
p,q(f0, f1) ≤

( 1

μ(X)

∫
X

|f0 − f1|pμ
)1/p ≤ dS+

p,q(f0, f1). (7)

Proof. The inequality ( 1
μ(X)

∫
X

|f0 − f1|pμ)1/p ≤ dS
+

p,q(f0, f1) follows from the fact that [0, 1] � t → ft :=
f0 + t (f1 − f0) ∈ C∞(X) is a geodesic in C∞(X) with respect to the Lp-Finsler metric and has length equal to 
( 1
μ(X)

∫
X

|f0 − f1|pμ)1/p . Any curve joining f0, f1 inside S+
Lp/q (μ, r) has to have length less than t → ft .

For the other inequality, we will estimate the length of the curve

[0,1] � t → αt := rft

‖ft‖p/q

= r(f0 + t (f1 − f0))

‖f0 + t (f1 − f0)‖p/q

∈ S
+
Lp/q (μ, r),

joining f0, f1. Note that the denominator of the expression above is nonzero, as f0, f1 > 0. Using that

α̇t = r(f1 − f0)

‖ft‖p/q

− rft

‖ft‖p/q+1
p/q

∫
X

(f1 − f0)f
p/q−1
t dμ,

we have the following sequence of estimates:

1∫
0

‖α̇t‖pdt ≤
1∫

0

r‖f1 − f0‖p

‖ft‖p/q

dt +
1∫

0

r‖ft‖p

‖ft‖p/q+1
p/q

∫
X

|f1 − f0|f p/q−1
t dμdt

≤
1∫

0

r‖f1 − f0‖p

‖ft‖p/q

dt +
1∫

0

r‖ft‖p

‖ft‖p/q+1
p/q

‖f1 − f0‖p/q‖ft‖p/q−1
p/q dt

≤ r‖f1 − f0‖p

1∫
0

1

‖ft‖p/q

dt + C′(μ,p,q)‖f1 − f0‖p

1∫
0

‖ft‖p

‖ft‖2
p/q

dt

≤ r‖f1 − f0‖p

1∫
0

1

‖ft‖p/q

+ C′(μ,p,q)
(1 − t)‖f − f0‖p + t‖f − f1‖p + ‖f ‖p

‖ft‖2
p/q

dt

≤ C(μ,p,q, r, f )(dS
+

p,q(f,f0) + dS
+

p,q(f,f1) + 1)‖f1 − f0‖p,

where to obtain the second line we have used the Hölder inequality with exponents p/q ≥ 1 and (p/q)/(p/q −1) ≥ 1
in the last integrand. To get the third line, we have used that ‖f0−f1‖p/q ≤ C′(μ, p, q)‖f0 −f1‖p . For the fourth line, 
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we have used the triangle inequality for the Lp-norm. To get the last line, we have used that ‖f −f0‖p ≤ dS
+

p,q(f, f0), 

‖f − f1‖p ≤ dS
+

p,q(f, f1), ft ≥ f0/2 ≥ 0 for t ∈ [0, 1/2] and ft ≥ f1/2 ≥ 0 for t ∈ [1/2, 1], hence ‖ft‖p/q ≥ r/2 for 
all t ∈ [0, 1]. To finish the proof, we conclude:

dS
+

p,q(f0, f1) ≤
1∫

0

‖α̇t‖pdt ≤ C(μ,p,q,f )(dS
+

p,q(f,f0) + dS
+

p,q(f,f1) + 1)‖f1 − f0‖p. �

2.2. Proof of Theorem 1.2 and Theorem 1.1

Proof of Theorem 1.2. To start the proof, we notice that for arbitrary 1 ≤ q ≤ p < ∞ the infinite-dimensional Finsler 
manifolds (Hω, ‖ · ‖C

p,q,(·)) and (S+
Lp/q (ω

n, p/q), ‖ · ‖p,(·)) are isometric via the map F : Hω → S
+
Lp/q (ω

n, p/q), given 
by the formula

F(u) := p

q

(ωn
u

ωn

) q
p
.

By the Calabi–Yau theorem, the map F is bijective. As F(u)∗(δu) = (ωn
u/ωn)q/p�ωuδu, by inspection we see that 

F ∗‖ · ‖p,F (·) = ‖ · ‖C
p,q,(·). All this implies that

dC
p,q(u0, u1) = dS+

p,q(F (u0),F (u1)),

in particular, (7) gives that dC
p,q is indeed a metric on Hω. From (7) it also follows that {uj }j ⊂Hω is dC

p,q -Cauchy if 
and only if

∫
X

∣∣∣(ωn
uj

ωn

)q/p −
(ωn

uk

ωn

)q/p∣∣∣pωn → 0, j, k → ∞.

Using this, Lemma 2.2 below implies that {uj }j is dC
p,q -Cauchy if and only if (3) holds. The identification 

(Hω, dC
p,q) = ELq

readily follows as well.
Lastly, we focus on the case p = 2, q = 1 extensively treated in [12,14]. As observed in [12, Theorem 1.1] (see 

also the discussion following [14, Remark 4.2]), the Riemannian space (Hω, ‖ · ‖C
2,1,(·)) has positive constant sectional 

curvature equal to 1/4, what is more, any two points of Hω can be joined by a Riemannian geodesic. Roughly, this 
follows from the fact that (Hω, ‖ · ‖C

2,1,(·)) is isometric to (S+
L2(ω

n, 2), ‖ · ‖2,(·)), which is a totally geodesic open subset 
of an infinite-dimensional sphere with radius 2.

Given u, v, w ∈ Hω , let U = F(u), V = F(v), W = F(w) ∈ S
+
L2(ω

n). Also let V ⊂ L2(X, ωn) be the 3 dimen-

sional subspace spanned by U , V , W and SUV W = V ∩ S
+
L2(ω

n, 2). Together with the induced Riemannian metric, 
SUV W is isometric to an open subset of the 2-dimensional round sphere with its round metric, hence it has constant 
sectional curvature 1/4. The geodesic triangle UV W of S+

L2(ω
n, 2), with edges at U , V , W lies inside SUV W [12, 

Theorem 1.4]. As SUV W is a model space with constant scalar curvature equal to 1/4, the geodesic triangle UVW

(lying inside it) has to satisfy the CAT(1/4) inequality [8], ultimately giving that (Hω, dC
2 ) is a CAT(1/4) space.

To finish the proof, we can use [8, Corollary 3.11, p. 187] to conclude that the metric completion (Hω, dC
2 ) =

(EL1
, dC

2 ) is a CAT(1/4) geodesic metric space as well. �
As promised in the above proof, let us state the following measure theoretic lemma, whose proof uses the classical 

Vitali convergence theorem [29, Theorem 8.5.14], and is exactly the same as the argument of [14, Lemma 5.3]:

Lemma 2.2. Suppose fj , f ∈ Lq(X, ωn) with fj , f ≥ 0. Then ‖fj −f ‖Lq → 0 if and only if ‖f q/p
j −f q/p‖Lp → 0.

Lastly, we provide the following theorem, which contains Theorem 1.1 as a particular case. We refer to [18,19,27]
for analogous results on the Lp′

-Mabuchi convergence of the Kähler–Ricci flow.
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Theorem 2.3. Suppose (Xn, ω) is Fano with [ω] = −c1(KX) and 1 ≤ q ≤ p ≤ ∞. Suppose [0, ∞) � t → rt ∈ Hω is 
a Kähler–Ricci trajectory. Then the following are equivalent:

(i) There exists a Kähler–Einstein potential inside Hω.
(ii) t → rt converges C∞-exponentially fast to some Kähler–Einstein potential r∞ ∈ Hω.

(iii) t → rt has finite dC
p,1-length, i.e., 

∫ ∞
0 ‖n − Sωrt

‖Lp(X,(ωn
rt

/ωn)qωn) < ∞.

(iv) {rt }t≥0 ⊂Hω forms a dC
p,q -Cauchy sequence.

Proof. Let us first assume that p �= ∞. If (i) holds then by results of Perelman, Tian–Zhu, Phong–Song–Sturm–
Weinkove and Collins–Székelyhidi [34,28,16] imply that the Kähler–Ricci trajectory t → rt converges C∞ expo-
nentially fast to some Kähler–Einstein potential r∞ ∈ Hω , hence (ii) holds. C∞-exponential convergence of t → rt
implies the finiteness of the integral in (iii). Condition (iii) implies (iv) trivially.

We are left to show that (iv) implies (i). The ideas of [14, Corollary 6.7] apply again, but we give here a slightly 
different argument. Suppose (iv) holds but (i) does not. Let r∞ ∈ ELq

be the dC
p,q -limit of rt . It follows from the 

convergence criterion of (3) and Remark 3.2 below that we also have weak convergence on the level of potentials, 
namely rt →L1(X,ωn) r∞. On the other hand, by [30, Theorem 1.3], there exists tj → ∞ and ψ ∈ PSH(X, ω) such that 
ψ has proper multiplier ideal sheaf, in particular by Skoda’s theorem ψ has non-zero Lelong number at some x ∈ X. 
By [23, Corollary 1.8] this implies that ψ /∈ E . But by uniqueness of L1(X, ωn)-limits, we have ψ = r∞ ∈ ELq ⊂ E , 
a contradiction.

Now we deal with the case p = ∞. Clearly, the directions (i) → (ii) → (iii) → (iv) still hold. To prove that 
(iv) implies (i) we just need to notice that dC∞-convergence trivially implies dC

p,q -convergence for any 1 ≤ q ≤ p <

∞. �
3. Lp,q -Calabi vs. Lp′

-Mabuchi geometry

3.1. Proof of Theorem 1.5

To prove (i), we recall first that Ep′ �⊂ ELq
. Indeed, we can choose v0, v1 ∈Hω such that the level set {v0 − v1 = 0}

does not contain critical points of v0 −v1. Then a basic calculation yields that the bounded potential u = max(v0, v1) −∫
X

max(v0, v1)ω
n satisfies u ∈ Ep′ \ ELq

, because ωn
u charges the hypersurface {v0 = v1}, a set of Lebesgue measure 

zero.
Now let u ∈ Ep′ \ ELq

arbitrary. By Theorem 1.4 there exists uj ∈ Hω such that dM
p′ (uj , u) → 0. This in particular 

gives that ωn
uj

→ ωn
u weakly [18, Theorem 5(i)]. We claim that {uj }j cannot contain a dC

p,q -Cauchy subsequence. 
Indeed, if this were the case, then by Theorem 1.2 above, for some subsequence of uj , again denoted by uj , the 
densities ωn

uj
/ωn would converge in Lq(X, ωn) to some f ∈ Lq(X, ω). But as ωn

uj
→ ωn

u weakly, this would imply 
that ωn

u/ωn = f ∈ Lq(X, ωn), a contradiction with u ∈ Ep′ \ ELq
.

To argue (iii), we first show that EL1 �⊂ Ep′
. This is again likely known to experts, however we could not find an 

exact reference, so we give a construction allowing a great amount of flexibility. Let u ∈ Ep′
, u ≤ −1 and unbounded 

such that for each set Uk = {k < |u|p′ ≤ k + 1} we have ωn(Uk) > 0, k ≥ 1. By the construction in [23, Example 2.14]
(see also [4, Proposition 5]), such u can be found. We introduce f ∈ L1(X, ωn):

f (x) =
∑
k≥1

6V

(πk)2ωn(Uk)
1Uk

(x).

Clearly f ∈ L1(X) with 
∫
X

f ωn = V , hence by [23, Theorem A] there exists v ∈ EL1
such that ωn

v = f ωn. We claim 
that v /∈ Ep′

. Indeed, if this were not true, then [23, Theorem C] would give that

∞ = 6V

π2

∑
k≥1

1

k
≤

∫
X

|u|p′
ωn

v < ∞,

a contradiction. Finally, as v ∈ EL1 \Ep′
, the same argument as in the previous step yields now a dC

p,1-Cauchy sequence 
{vj }j ⊂Hω for which dC (vj , v) → 0, without any dM′ -Cauchy subsequences.
p,1 p
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Finally, to argue (ii), we have to use jointly the dC
p,q -convergence criteria (3) and the estimates of Kolodziej 

[25, p. 668], according to which dC
p,q -convergence implies C0-convergence of potentials. According to the 

dM
p′ -convergence criteria (5), C0-convergence in turn implies dM

p′ -convergence, finishing the proof.

3.2. Proof of Theorem 1.6

The following basic consequence of the dominated convergence theorem will be used shortly:

Lemma 3.1. Suppose f ≥ 0 such that 
∫
X

f log(f )ωn < ∞. Then there exists f̃k ∈ C∞(X) such that f̃k > 0, 
∫
X

|f −
f̃k|ωn → 0 and 

∫
X

f (log(f ) − log(f̃k))ω
n → 0.

Proof. Let f m = max{min{f, m}, 1/m}. By the dominated convergence theorem every sequence {gj }j ⊂ C∞(X) sat-
isfying m > gj > 1/m and 

∫
X

|f m − gj |ωn → 0 contains an element f̃m := gjm with 
∫
X

f (log(f m) − log(f̃m))ωn ≤
1/n and 

∫
X

|f m − f̃m|ωn ≤ 1/n. By the absolute continuity of the Lebesgue integral, it follows that {f̃k}k satisfies the 
properties of the lemma. �
Proof of Theorem 1.6. First we show the equivalence between (i), (ii) and (iii). From [18, Theorem 5(i)] it follows 
that (iii) → (i) and (iii) → (ii).

The proof of (i) → (iii) and (ii) → (iii) are almost the same and we only carry out the latter. It follows from the 
compactness theorem [7, Theorem 2.17] (for a statement most suitable for our purposes see [20, Theorem 5.6]) that 
any subsequence of {uj } contains a subsubsequence {ujk

} such that d1(ujk
, v) → 0 for some v ∈ EEnt. If we can show 

that v = u then we are done. By [18, Theorem 5(i)] again, we have ωn
uj

→ ωn
v weakly, hence by the assumption we get 

ωn
u = ωn

v . As u, v ∈ E1, by uniqueness [23, Theorem B] (see [21] for a more general result), we conclude that v = u.
The direction (iv) → (ii) is trivial and the main step is to argue that (ii) → (iv). Let fj = ωn

uj
/ωn and f = ωn

u/ωn. 
By the dC

p,1-convergence criteria (3), we have to show that 
∫
X

|f −fj |ωn → 0. Let f̃j ∈ C∞(X) be the sequence from 
the previous lemma. For fixed k we have

lim
j

∫
X

|f − fj |ωn ≤ lim sup
j

∫
X

|f̃k − fj |ωn +
∫
X

|f − f̃k|ωn,

hence we only need to check that the first term on the right hand side goes to zero as k → ∞. Using the classical 
Küllback–Pinsker inequality (see [7, Proposition 2.10(ii)] for statement tailored to our setting) we have the following 
sequence of estimates:

lim sup
j

(∫
X

|fj − f̃k|ωn

)2

≤ lim sup
j

∫
fj log

(fj

f̃k

)
ωn

≤ lim sup
j

∫
fj logfjω

n − lim inf
j

∫
fj log f̃kω

n

=
∫

f logf ωn −
∫

f log f̃kω
n, (8)

where to get the last line we have used that Ent(ωuj
, ω) → Ent(ωu, ω) and that ωn

uj
= fjω

n converges weakly to ωn
u. 

By the previous lemma, the expression in (8) tends to zero as k → ∞, hence we are done. �
It is perhaps worth noting that (iv) implies (ii) in Theorem 1.6 without the assumption on the convergence of 

entropy, as we elaborate now. Suppose uj , u ∈ EL1
with dM

p,1(uj , u) → 0. As {uj }j is L1(X, ωn)-compact (since ∫
X

ujω
n = 0), we have to argue that any L1(X, ω)-convergent subsequence of {uj } L1-converges to u. Suppose 

ujk
→L1 v ∈ PSH(X, ω). By [5, Proposition 2.10(i)] it follows that v ∈ E1, in particular ωn

v has full mass (u ∈ E ). As 
a consequence of [5, Corollary 2.21] we now obtain that ωn

v ≥ ωn
u. As both of these last measures have the same total 

volume we have in fact ωn
v = ωn

u, hence v = u as desired (here we used again [23, Theorem B]).
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For q > 1, dC
p,q -convergence implies C0-convergence (hence also L1(X, ωn)-convergence of potentials) as was 

noted in the proof of Theorem 1.5, and we summarize our findings in the next remark, obtaining a partial analog of 
[18, Theorem 5(i)] for the dC

p,q metric in the process:

Remark 3.2. Suppose 1 ≤ q ≤ p < ∞ and uj , u ∈ ELq
. Then dC

p,q(uj , u) → 0 implies that uj →L1(X,ωn) u.
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