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Abstract

We prove a Wσ,ε -estimate for a class of nonlocal fully nonlinear elliptic equations by following Fanghua Lin’s original approach 
[8] to the analogous problem for second order elliptic equations, by first proving a potential estimate, then combining this estimate 
with the ABP-type estimate by N. Guillen and R. Schwab to control the size of the superlevel sets of the σ -order derivatives of 
solutions.
© 2016 
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1. Introduction

Let M+
2 and M−

2 be the second order extremal Pucci operators [3], then a classical result by Lin [8] states that for 
some universal ε, one has an Lε-estimate on the Hessian of a function satisfying two differential inequalities:

Theorem 1.1. [Lin’s W 2,ε -estimate] There exist universal constants ε > 0 and C such that if

M+
2 u ≥ f ≥ M−

2 u

in B1, then

‖u‖W 2,ε (B1/2)
≤ C(‖u‖L∞(B1) + ‖f ‖Ln(B1)). (1.1)

Since the two inequalities impose very mild restrictions on u, this estimate is among the fundamental tools in the 
regularity theory of second order elliptic equations. For instance, it is the starting point of Caffarelli’s W 2,p-estimate 
for solutions to fully nonlinear elliptic equations [2]. Recently it was also used by Armstrong, Silvestre and Smart [1]
for their partial regularity result for fully nonlinear second order elliptic equations.

The idea of the proof for Theorem 1.1, as presented in [3], is a very clever use of the ABP-type estimate, which 
basically says that a function satisfying M−

2 u ≤ f must touch its convex envelope in a contact set � with large 
measure. Also note that on � we have one-sided control on the Hessian of u since it is touching a convex function that 
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has nonnegative Hessians. The other inequality M+
2 u ≥ f gives control from the other side, and together they imply 

that on a large set the Hessian of u is small. And an induction argument gives the smallness of |{|D2u| > t}| for all 
t > 0, which is enough for an Lε-estimate of |D2u|. Note that in this argument we used a very delicate structure of 
the envelope, namely, its Hessian has a sign at every point.

If one wishes to extend this argument to nonlocal equations, one difficulty is the lack of a good ABP-type estimate. 
The first nonlocal version of ABP-type estimate is given by Caffarelli and Silvestre [4], which says that if a function 
satisfies a differential inequality with a small right-hand side, then its enlarged contact set with its convex envelope is 
big in measure. This is in itself a fundamental estimate for nonlocal equations, and is the starting point of regularity 
theory of fully nonlinear nonlocal elliptic equations. However, it only gives estimate on an enlarged version of �, on 
which one does not have a smallness of D2u. Another disadvantage of this version of ABP-type estimate is that it 
only sees the L∞-norm of the right-hand side. For instance, this does not tell the difference between χE and χF , even 
when |E| is much larger than |F |. As a result, it is not accurate enough to estimate the measure of superlevel sets of 
D2u.

On the other hand, one does not expect a nice control on D2u, since a nonlocal equation is a much softer than 
second order equations. Instead, one expects to have estimate of σ -order. To this end, we have another replacement 
for ABP-type estimate, which is discovered by Guillen and Schwab in [7]. There, instead of the convex envelope, they 
used a σ -order envelope, given as a solution to a fractional order obstacle problem with u as the obstacle. By doing 
this they have estimate on the true contact set �σ . Another advantage of this estimate is that they used the Ln-norm of 
the right-hand side, which is suitable for estimating measure of superlevel sets. This is the main reason why we shall 
be using this version of ABP-type estimate.

However, there are some disadvantages too. For one thing, their class of operators is in a sense more restrictive than 
the most natural class considered by [4]. It remains open as for now whether a nice ABP-type estimate remains true 
in that generality. Nevertheless, the class considered by Guillen and Schwab is rich enough to recover second order 
theory in the limit when σ → 2.

The other disadvantage is more fundamental. Since the new envelope is given by an obstacle problem that is yet to 
be fully understood, it is not easy to pass estimates from this envelope to our u. As a result, Guillen and Schwab listed 
the Wσ,ε -estimates as one of the open problems in their paper, which remains open for any kind of fully nonlinear 
equations of fractional order.

In this work, we present a proof of a Wσ,ε-estimate for a class of nonlocal elliptic operators. To be precise, the 
main result is

Theorem 1.2. Suppose u ∈L∞(Rn) ∩ C(B1) satisfies in B1 the following inequalities

M−
σ u ≤ f ≤ M+

σ u,

then there exist universal constants ε > 0 and C such that

‖Dσ u‖Lε (B1/2) ≤ C(‖u‖L∞(Rn) + ‖f ‖
2−σ

2
L∞(B1)

‖f ‖
σ
2
Ln(B1)

). (1.2)

See Section 2 for the definition of the σ -order Hessian Dσ as well as the σ -order extremal operators M−
σ and M+

σ .
As corollaries we have the following, which are different forms of Wσ,ε-estimate that might be more applicable to 

certain situations. They are suggested to the author by Dennis Kriventsov.

Corollary 1.3. Suppose u ∈L∞(Rn) ∩ C(B1) satisfies in B1 the following inequalities{
M+

σ u(x) ≥ −f −(x)

M−
σ u(x) ≤ f +(x)

then for the same universal constant ε and another universal constant C one has

‖Dσ u‖Lε (B1/2) ≤ C(‖u‖L∞(Rn) + ‖f ‖
2−σ

2
L∞(B1)

‖f ‖
σ
2
Ln(B1)

).

and
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Corollary 1.4. Suppose u ∈L∞(Rn) ∩ C(B1) satisfies in B1 the following inequalities{
M+

σ u(x) ≥ −K

M−
σ u(x) ≤ K

then for the same universal constant ε and another universal constant C one has

‖Dσ u‖Lε(B1/2) ≤ C(‖u‖L∞(Rn) + K).

As mentioned before, we use the ABP-type estimate discovered by Guillen and Schwab. The main difficulty is then 
how to pass estimates on their fractional order envelope to the function u. We avoid this by following Lin’s original 
strategy [8], instead of the one in [3]. This strategy consists of two steps. The first step is a potential estimate, where 
one shows that for G, the Green’s function to a linear operator, one has∫

E

G(x, y)dy ≥ C|E|m, (1.3)

for any x ∈ B1/2. This estimate for second order equations was discovered independently by Evans [5], and Fabes and 
Stroock [6].

The second step is to apply this, and the ABP estimate, to the set E = {|D2u| > t}, which gives a bound on 
the distribution of |D2u|. A very nice feature of this argument is that one avoids using any delicate structure of the 
envelope, and hence suits very well for our purpose.

This paper is organized as follows: In Section 2, we give some basic definitions and review some known results 
that will be needed in our work; In Section 3, we prove a nonlocal analogue of the potential estimate, following the 
strategy of Evans [5]; In Section 4, we finish the proof by completing the second step argument as in Lin’s strategy. 
It should also be noted that we do not deal with existence issues in this work, and only focus on the estimates. Thus 
the result can either be viewed as an a priori estimate, or be made rigorous by an regularization and approximation 
procedure.

2. Preliminaries

We first define our σ -order replacement for the Hessian matrix:

Definition 2.1. For u satisfying∫
|δu(x, y)| 1

|y|n+σ
dy < ∞,

Dσ u(x) is the matrix with (i, j)-entry

Dσ
iju(x) = (2 − σ)

∫
δu(x, y)

〈y, ei〉〈y, ej 〉
|y|n+σ+2

dy.

Here δu(x, y) = u(x + y) + u(x − y) − 2u(x), and {ei} is the standard basis for Rn.

Remark 2.2. For a nice function u, δu(x, y) = 〈D2u(x)y, y〉 + O(|y|3), thus we can split the integral into two parts, 
one for y ∈ Br and the other y ∈ Bc

r . Then it follows from direct computation that the integral outside Br goes to 0 as 
σ → 2. As for the integral inside Br , contribution from O(|y|3) can be made as small as desirable once we pick r to 
be small. Consequently the only integral of substance is

(2 − σ)

∫
Br

〈D2u(x)y, y〉 〈y, ei〉〈y, ej 〉
|y|n+σ+2

dy = r2−σ

∫
Sn−1

〈D2u(x)θ, θ〉〈θ, ei〉〈θ, ej 〉dθ,

which converges to 
∫
Sn−1〈D2u(x)θ, θ〉〈θ, ei〉〈θ, ej 〉dθ as σ → 2.

From here we see Dσ
iju, in the limit σ → 2, is an average of second derivatives of u, with mass concentrating along 

the (ei, ej )-direction.
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Moreover, for a positive matrix A, it is clear

|A| ∼
∫

Sn−1

〈Aθ, θ〉dθ ∼ �i,j

∫
Sn−1

〈Aθ, θ〉〈θ, ej 〉〈θ, ei〉dθ.

Thus one recovers Lin’s result as σ → 2 by showing that both (Dσu)+ and (Dσ u)− are in Lε .

These operators have the following nice localization property:

Proposition 2.3. Let η be a smooth cut-off function that is 1 in B3/4 and vanishes outside B1, then for p ≥ 1 one has

‖Dσ u‖Lp(B1/2) ≤ ‖Dσ (ηu)‖Lp(B1/2) + C‖u‖L∞(Rn);
for 0 < p < 1 one has similarly

‖Dσ u‖Lp(B1/2) ≤ C(p)‖Dσ (ηu)‖Lp(B1/2) + C(p)‖u‖L∞(Rn).

Proof. Denote u1 = ηu and u2 = (1 − η)u. Then u2 = 0 inside B3/4. Thus for x ∈ B1/2 one has

|Dσ u2|(x) ≤ (2 − σ)

∫
|y|>1/4

|δu2(x, y)| 1

|y|n+σ
dy

≤ C‖u‖L∞(Rn).

Thus for p ≥ 1,

‖Dσ u‖Lp(B1/2) ≤ ‖Dσ u1‖Lp(B1/2) + ‖Dσ u2‖Lp(B1/2)

≤ ‖Dσ u1‖Lp(B1/2) + |B1/2|‖Dσ u2‖L∞(B1/2)

≤ ‖Dσ u1‖Lp(B1/2) + C|B1/2|‖u‖L∞(Rn).

For 0 < p < 1, one uses instead

‖Dσ u‖Lp(B1/2) ≤ C(p)‖Dσ u1‖Lp(B1/2) + C(p)‖Dσ u2‖Lp(B1/2). �
The reader could see more properties of this operator in [9].
Now we define the extremal operators we use.

Definition 2.4. Let L be the collection of kernels of the form

K(y) = (2 − σ)
〈Ay,y〉

|y|n+σ+2
,

where 0 < λ ≤ A ≤ � < ∞.
Then the extremal operators are defined by

M−
σ u(x) = inf

K∈L

∫
δu(x, y)K(y)dy,

and

M+
σ u(x) = sup

K∈L

∫
δu(x, y)K(y)dy.

Also, for 0 < λ ≤ A(x) ≤ � < ∞ we denote LA the operator

LAu(x) =
∫

δu(x, y)
(2 − σ)〈A(x)y, y〉

|y|n+σ+2
dy.
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Note that this class of kernels is essentially the class considered by Guillen and Schwab in their ABP-type estimate, 
although they do allow some degeneracy by only assuming λ ≤ Trace(A). Also note that a class of operators elliptic 
with respect to L has been recently shown to admit smooth solution [9]. This hints that this class is nice in the sense 
that results from second order theory pass relatively directly to this class, while it is still rich enough to recover the 
second order theory in the limit as σ → 2.

These extremal operators also localize well:

Proposition 2.5. Let η be as in the previous proposition. If

M−
σ u(x) ≤ f (x)

in B1, then in B1/2 one has

M−
σ (ηu)(x) ≤ f (x) + C‖u‖L∞(Rn).

Proof. Let u1 and u2 be as in the last proof. Then for x ∈ B1/2

M−
σ u2(x) = inf

K∈L

∫
δu2(x, y)K(y)dy

≥ −(2 − σ)�

∫
|y|>1/4

|δu2(x, y)| 1

|y|n+σ
dy

≥ −C‖u‖L∞(Rn).

Thus

M−
σ u1(x) ≤ M−

σ u(x) − M−
σ u2(x)

≤ f (x) + C‖u‖L∞(Rn). �
We will also need the following version of the Carlderón–Zygmund decomposition as an inductive tool. Throughout 

this paper we denote by Q(x; r) the cube centred at x ∈R
n, with sides parallel to coordinate axis and of length 2r .

Proposition 2.6. Suppose E ⊂ Q(0; 1) satisfies |E| < α|Q(0; 1)| for some α ∈ (0, 1). Then there are cubes {Q̃j } with 
mutually disjoint interior covering E almost everywhere, and

| ∪ Q̃j | > 1/α|E|.
Moreover, each Q̃j contains at least a dyadic subcube Qj such that

|E ∩ Qj | ≥ α|Qj |.

Proof. Begin with Q(0; 1), we divide a cube dyadically if |Q ∩ E| < α|Q|. And we keep a cube if this inequality 
fails. In particular our hypothesis says Q(0; 1) is divided.

Let {Qj } denote the collection of cubes that we keep. Then ∪Qj covers E up to a null set, since any point outside 
∪Qj is contained in a sequence of nested cubes with |Q ∩ E|/|Q| < α < 1.

Now let Q̃j be the dyadic predecessor of Qj . If several Qj ’s share the same predecessor then we just pick one. 
Then obviously Q̃j ’s have mutually disjoint interior. Also they cover E up to a null set.

Moreover since each Q̃j is further divided, one has |Q̃j ∩ E| < α|Q̃j |, then

| ∪ Q̃j | = �|Q̃j | > 1/α|�Q̃j ∩ E| ≥ 1/α|E|. �
Finally we recall the nonlocal ABP-type estimate we shall be using in this work. It is a deep result by Guillen and 

Schwab [7]. We will need a scaled version of their original theorem. Note that their theorem is more general than the 
following version in the sense that they allow more degenerate kernels. Also their estimate is more accurate than the 
following because they only need information of f on a σ -order contact set. However, we shall not need that in this 
work.
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Theorem 2.7. Assume u ∈L∞(Rn) ∩ LSC(Rn) satisfies{
M−

σ u ≤ f in BR

u ≥ 0 in Bc
R,

then there is a constant C(n) such that

− inf
BR

u ≤ C(n)

λ

1

Rσ/2
‖f ‖

2−σ
2

L∞(BR)
‖f ‖

σ
2
Ln(BR)

.

Remark 2.8. It is pointed out by T. Jin to the author that N. Guillen has an improved version of this result, where the 
right-hand side depends only on ‖f ‖2n/σ . As a result, we have corresponding improvement of all results in this paper.

This clearly implies the following corollary concerning solutions with non-vanishing boundary data:

Corollary 2.9. Assume u ∈L∞(Rn) ∩ LSC(Rn) satisfies{
M−

σ u ≤ f in BR

u ≥ −B in Bc
R,

then there is a constant C(n) such that

− inf
BR

u ≤ C(n)

λ

1

Rσ/2
‖f ‖

2−σ
2

L∞(BR)
‖f ‖

σ
2
Ln(BR)

+ B.

Proof. Apply the theorem to u + B . �
3. The potential estimate

The goal of this section is to prove the following theorem:

Theorem 3.1. There are universal constants δ > 0 and C, such that for u solving{
LAu(x) = ∫

δu(x, y)
(2−σ)〈A(x)y,y〉

|y|n+σ+2 dy = −χE in B1

u = g outside B1
(3.1)

for some E ⊂ B1/2 and λ ≤ A(·) ≤ �, one has

inf
B1/2

u ≥ C|E|δ − ‖g‖L∞(Rn).

For the theory of this estimate for second order equations, see [5].
As remarked before, we do not deal with the existence issues, and hence our estimates are a priori in nature. They 

can also be made rigorous for viscosity solutions by a regularization and approximation procedure.
Moreover, since we are dealing with a linear operator, superposition implies that it suffices to deal with solutions 

with 0 boundary data, and to prove

inf
B1/2

u ≥ C|E|δ

for such solutions.
We begin with the following:

Lemma 3.2. There are universal constants γ, β ∈ (0, 1) such that if Q, E ⊂ B1/8 satisfies

|Q ∩ E| ≥ β|Q|,
then the solutions to
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{
LAu = −χE∩Q in B1

u = 0 in Bc
1,

and to{
LAv = −χ3Q in B1

v = 0 in Bc
1

satisfy the following estimate in B1

u ≥ γ v.

Proof. Suppose Q = Q(x0; l). Recall that this is a cube centred at x0, with sides parallel to coordinate axis and with 
length 2l. We first rescale the problem by defining

ũ(x) = l−σ u(x0 + lx)

and

ṽ(x) = l−σ v(x0 + lx).

They solve the following equations, respectively,{
LÃ

ũ = −χE∩Q−x0
l

in B1−x0
l

ũ = 0 outside,

and {
L

Ã
ṽ = −χ 3Q−x0

l

in B1−x0
l

ṽ = 0 outside.

Here Ã(x) = A(x0 + lx) satisfies the same ellipticity condition. Also note that the original cube Q(x0; l) is rescaled 
to Q(0; 1).

Now let w be the solution to{
LÃ

w = −χQ(0;1) in B1−x0
l

w = 0 in outside.

We compare w to a barrier � ∈ C(Rn) such that⎧⎪⎨⎪⎩
�(x) ≥ C� > 0 in Q(0;6)

� = 0 outside B8
√

n

M−
σ � ≥ −� in R

n,

where 0 ≤ � ≤ 1 and � = 0 outside B1.
For the existence of such a barrier, see [4].
Since l < 1

8
√

n
, one has B8

√
n ⊂ B1−x0

l
. In particular w ≥ � outside B8

√
n. Also since B1 ⊂ Q(0; 1), inside B8

√
n

one has

L
Ã
w ≤ M−

σ � ≤ L
Ã
�.

Thus comparison principle for linear equations gives

w ≥ �

in B8
√

n. In particular in Q(0; 6) one has

w ≥ C�. (3.2)
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Now ũ − w satisfies{
LÃ

(ũ − w) = χQ(0;1)\(E−x0/l) in B1−x0
l

ũ − w = 0 outside.

In particular the equation implies

M−
σ (ũ − w) ≤ χQ(0;1)\(E−x0/l),

hence Theorem 2.7 implies

− inf
B1−x0

l

(ũ − w) ≤ C(n)

λ
lσ/2‖χQ(0;1)\(E−x0/l)‖σ/2

Ln(
B1−x0

l
)

≤ C(n)

λ
lσ/2|Q(0;1)\(E − x0/l)|σ/2n

≤ C(n)

λ
lσ/2(1 − β)σ/2n

≤ C(n)

λ
(1 − β)σ/2n.

For the last inequality we used l < 1.
In particular this implies that in Q(0; 6) one has

ũ ≥ w − C(n)

λ
(1 − β)σ/2n ≥ 1

2
C� (3.3)

once we choose β universally close to 1.
Now we apply Theorem 2.7 to −ṽ, which satisfies

M−
σ (−ṽ) ≤ L

Ã
(−ṽ) = χ 3Q−x0

l

in B1−x0
l

, to get

sup
B1−x0

l

ṽ ≤ C(n)

λ
lσ/2|3Q − x0

l
|σ/2n ≤ C(n)

λ
lσ/2|Q(0;3)|σ/2n ≤ C(n)

λ
. (3.4)

Combining the previous two estimates one has

ũ ≥ Cṽ

in Q(0; 6). And hence ũ ≥ Cṽ outside (B1−x0
l

\Q(0; 6)).

On the other hand, since Q(0; 6) ⊃ Q(0; 3) = 3Q−x0
l

, we have

LA(ũ − Cṽ) = 0

in B1−x0
l

\Q(0; 6). Consequently the comparison principle for linear equation gives us

ũ ≥ Cṽ (3.5)

in B1−x0
l

\Q(0; 6), and hence in B1−x0
l

since we already have the estimate in Q(0; 6).
Now rescale back to u and v to get the desired estimate. �
We now combine the previous lemma and the Carlderón–Zygmund decomposition to prove the potential estimate. 

This is the same strategy Evans used in [5].

Proof. The proof is by an induction on the size of E. Also we prove the theorem when E ⊂ Q(0; 1/2) instead of 
B1/2. This has no effect on the estimate after a covering argument.

If |E| ≥ β|Q(0; 1/2)|, then a similar argument as in the proof for the lemma (when we show w ≥ C in Q(0; 6)) 
gives u ≥ C.
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Suppose we have proved the following for all k ≤ k0:
If |E| ≥ βk|Q(0; 1/2)| then u ≥ Cγ k . (*)
We proceed to prove the statement when |E| ≥ βk0+1|Q(0; 1/2)|. The Carlderón–Zygmund decomposition gives a 

covering of E by essentially disjoint cubes {Q̃j }, each containing a dyadic subcube Qj with |E ∩ Qj | ≥ β|Qj |, and 
also | ∪ Q̃j | ≥ 1

β
|E|.

In particular, | ∪ Q̃j | ≥ βk0 |Q(0; 1/2)| and thus we apply the induction hypothesis to conclude

inf
Q(0;1/2)

v ≥ Cγ k0, (3.6)

where v is the solution to{
LAv = −χ∪Q̃j

in B1

v = 0 outside.

Also by the previous lemma one has

uj ≥ γ vj ,

where uj and vj solve{
LAuj = −χQj ∩E in B1

uj = 0 outside,

and {
LAvj = −χ3Qj

in B1

vj = 0 outside.

Now note that 3Qj ⊃ Q̃j , hence vj ≥ ṽj , where ṽj solves{
LAṽj = −χQ̃j

in B1

ṽj = 0 outside.

To conclude,

inf
Q(0;1/2)

u = inf
Q(0;1/2)

�uj

≥ inf
Q(0;1/2)

�γ vj

≥ inf
Q(0;1/2)

�γ ṽj

= γ inf
Q(0;1/2)

�ṽj

= γ inf
Q(0;1/2)

v.

Combining this with (3.6) one completes the inductive step, and hence (*) is true for any k.
This implies

inf
Q(0;1/2)

u ≥ C|E|logβ γ . �
4. Wσ,ε -estimate

In this section be begin our proof for the Wσ,ε-estimate. As in the classical strategy, the key point is to control 
the size of {|Dσu| > t}. This is done by using two competing estimates: while an ABP-type estimate bounds the 
solution from above with the right-hand side, the previous potential estimate gives a bound from below. These two 
must balance for a function satisfying two differential inequalities.
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We first prove several preparatory lemmas concerning solutions to linear equations. Our estimates will be indepen-
dent of any regularity of the kernels, and hence they imply an estimate for solutions to the differential inequalities.

The first lemma is a technical device to realize the σ -order Hessian as the right-hand side of an equation. This is 
essentially how we avoid using any delicate structure of the envelope and still get an estimate on {|Dσu| > t}.

Lemma 4.1. Suppose u solves{
LAu = −f in B1

u = g outside

for some λ ≤ A(·) ≤ �, then there is Ã(·) with λ2 ≤ Ã(·) ≤ 2� such that

L
Ã
u(x) = −f (x) − ν|Dσ u|(x)

where ν ≥ C(λ, �).

Proof. For each x one finds λ2 ≤ Ã(x) ≤ 2� such that

Ãij (x)Dσ
ij u(x) = 2��e<0e + λ

2
�e>0e,

where {e} are the eigenvalues of Dσu(x).
Then

L
Ã
u(x) =

∫
δu(x, y)

(2 − σ)〈Ã(x)y, y〉
|y|n+σ+2

dy = 2��e<0e + λ

2
�e>0e.

By ellipticity of LA, one has

LAu(x) ≥ λ�e>0e + ��e<0e.

Combining these two gives

L
Ã
u(x) − LAu(x) ≤ ��e<0e − λ

2
�e>0e ≤ −min{�,

λ

2
}|Dσ u|(x).

Consequently,

L
Ã
u(x) = LAu(x) − (−L

Ã
u(x) + LAu(x)) = −f (x) − (−L

Ã
u(x) + LAu(x))

where the term in the parenthesis is of the form ν|Dσu|(x) with ν ≥ min{�, λ2 }. �
The second lemma gives a bound on |{|Dσu| > t}| for a solution with negative right-hand side:

Lemma 4.2. Suppose u solves{
LAu = −f ≤ 0 in B1

u = g outside
,

then

|{|Dσ u| > t} ∩ B1/2|δ ≤ C

t
(‖f ‖

2−σ
2

L∞(B1)
‖f ‖

σ
2
Ln(B1)

+ ‖g‖L∞(Rn)), (4.1)

where δ is as in the potential estimate and C is a universal constant.

Proof. Let Ã(·) and ν be as in the previous lemma. Let v be the solution to{
LÃ

v = −ν|Dσ u| in B1

v = g outside
.
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Then comparison principle for linear equations gives

u ≥ v.

For t > 0, let vt be the solution to{
L

Ã
vt = − infν · tχ{|Dσ u|>t} in B1

vt = g outside
.

Then tχ{|Dσ u|>t} ≤ |Dσ u| implies vt ≤ v. Thus

u ≥ vt . (4.2)

Now let w be the solution to{
L

Ã
w = −χ{|Dσ u|>t} in B1

w = g
inf ν·t outside

.

Then the potential estimate on w gives

inf
B1/2

vt = infν · t inf
B1/2

w

≥ infν · t (C|{|Dσ u| > t}|δ − ‖ g

infν · t ‖L∞(Rn))

≥ Ct |{|Dσ u| > t}|δ − C‖g‖L∞(Rn).

For the last inequality we used ν ≥ C(λ, �).
Combining this with (4.2), and the ABP-type estimate for u to obtain

C(n)

λ
‖f ‖

2−σ
2

L∞(B1)
‖f ‖

σ
2
Ln(B1)

+ ‖g‖L∞(Rn) ≥ sup
B1

u

≥ inf
B1/2

vt

≥ Ct |{|Dσ u| > t}|δ − C‖g‖L∞(Rn).

This gives the desired estimate. �
As remarked at the beginning of this section, since our estimate for linear equations depends only on universal 

properties, it is as good as one for the two differential inequalities. Hence we can finish the proof for the main result:

Proof. We again let g denote the boundary datum.
The two inequalities give A+(·) and A−(·) between λ and � such that∫

δu(x, y)
(2 − σ)〈A+(x)y, y〉

|y|n+σ+2
dy ≥ f (x) ≥

∫
δu(x, y)

(2 − σ)〈A−(x)y, y〉
|y|n+σ+2

dy.

In particular one finds t : B1 → [0, 1] such that∫
δu(x, y)

(2 − σ)〈(t (x)A+(x) + (1 − t (x))A−(x))y, y〉
|y|n+σ+2

dy = f (x).

Take A(x) = t (x)A+(x) + (1 − t (x))A−(x), then λ ≤ A(·) ≤ � and u solves{
LAu = f in B1

u = g outside.

By linearity, u is the sum of two functions, solving the equation with data (f +, 0) and (−f −, g) respectively. By 
applying the previous lemma to each piece, we have
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|{|Dσ u| > t} ∩ B1/2|δ ≤ C

t
(‖f ‖

2−σ
2

L∞(B1)
‖f ‖

σ
2
Ln(B1)

+ ‖g‖L∞(Rn)).

This implies∫
B1/2

|Dσ u|εdx ≤ C +
∞∫

1

tε−1|{|Dσ u| > t} ∩ B1/2|dt

≤ C +
∞∫

1

tε−1t−1/δdt · (‖f ‖
2−σ

2
L∞(B1)

‖f ‖
σ
2
Ln(B1)

+ ‖g‖L∞(Rn))
1/δ.

The integral converges once we choose ε < 1/δ, and this implies

‖Dσ u‖Lε (B1/2) ≤ C(1 + (‖f ‖
2−σ

2
L∞(B1)

‖f ‖
σ
2
Ln(B1)

)1/δ + ‖g‖L∞(Rn))
1/ε.

Then note that such an estimate must be scalable in u, f and g, hence one has the desired estimate. �
We now prove Corollary 1.3 by reducing it to our main theorem by taking certain convex combinations of extremal 

operators. As mentioned in Introduction, this corollary is suggested to the author by Dennis Kriventsov.

Proof. Since M+
σ u(x) ≥ −f −(x) in B1, one finds A+

1 : B1 → [λ, �] such that for all x ∈ B1

LA+
1
u(x) ≥ −f −(x).

Define �1 = {x ∈ B1 : M−
σ u(x) ≤ −2f −(x)}, then there is A+

2 : �1 → [λ.�] such that for all x ∈ �1

LA+
2
u(x) ≤ −2f −(x).

Consequently we can find t+1 : �1 → [0, 1] such that for all x ∈ �1

t+1 (x)LA+
1
u(x) + (1 − t+1 (x))LA+

2
u(x) = −3

2
f −(x).

Define t+ : B1 → [0, 1] by{
t+ = 1 outside �1

t+ = t+1 inside �1,

and A+ = t+A+
1 + (1 − t+)A+

2 . Then

LA+u(x) =
{

LA+
1
u(x) ≥ −f −(x) outside �1

− 3
2f −(x) inside �1.

Similarly one finds A− : B1 → [λ, �] such that

LA−u(x) =
{

≤ f +(x) outside �2
3
2f +(x) inside �2,

where �2 = {x ∈ B1 : LA+u(x) ≥ 2f +(x)}. In particular we can assume

�1 ∩ �2 = ∅.

As a result we can define t : B1 → [0, 1] such that t = 1 in �1 and t = 0 in �2. By taking A = tA+ + (1 − t)A− one 
has inside �1

LAu(x) = t (x)LA+u(x) + (1 − t (x))LA−u(x)

= LA+u(x)

≥ −f −(x),
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and outside �1

LAu(x) = t (x)LA+u(x) + (1 − t (x))LA−u(x)

≥ −f −(x)t (x) + (−2f −(x))(1 − t (x))

≥ −2f −(x).

To conclude LAu(x) ≥ −2f −(x) in B1. Similarly LAu(x) ≤ 2f +(x) in B1. As a result u solves in B1

LAu(x) = g(x)

where −2f − ≤ g ≤ 2f +.
Applying the main result to this equation clearly gives the desired estimate. �
Similar proof applies to Corollary 1.4.
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