
Available online at www.sciencedirect.com
ScienceDirect

Ann. I. H. Poincaré – AN 34 (2017) 1155–1180
www.elsevier.com/locate/anihpc

BMO solvability and the A∞ condition for second order parabolic 

operators ✩

Martin Dindoš a, Stefanie Petermichl b, Jill Pipher c,∗

a School of Mathematics, The University of Edinburgh and Maxwell Institute of Mathematical Sciences, United Kingdom
b Institut de Mathématiques de Toulouse, France

c Department of Mathematics, Brown University, United States

Received 15 February 2016; accepted 12 September 2016

Available online 13 October 2016

Abstract

We prove that a sharp regularity property (A∞) of parabolic measure for operators in certain time-varying domains is equivalent 
to a Carleson measure property of bounded solutions. This equivalence was established in the elliptic case by Kenig, Kirchheim, 
Pipher and Toro, improving an earlier result of Kenig, Dindos and Pipher for solutions with data in BMO. The connection between 
regularity of the elliptic measure and certain Carleson measure properties of solutions was established in order to study solvability 
of boundary value problems for non-symmetric divergence form operators (Kenig, Koch, Pipher, and Toro). The extension to the 
parabolic setting requires an approach to the key estimates of the aforementioned works that primarily exploits the maximum 
principle. For various classes of parabolic operators ([24]), this criterion also provides an easier route to establish the solvability of 
the Dirichlet problem with data in Lp for some p, and also to quantify these results in several aspects.
© 2016 
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1. Introduction

In this paper, we prove a criterion for establishing the Lp solvability of the Dirichlet problem for parabolic opera-
tors L = ∂t − div(A∇·) in certain time-varying domains, and where the matrix A satisfies an ellipticity condition. Our 
results are analogous to similar criteria established in [9] and [16] for elliptic operators div(A∇·). With this criterion 
we are then able to give a simpler proof of existence of Lp solvability, for some p, for a class of operators, studied 
in [23], whose coefficients satisfy a Carleson-measure regularity condition, also permitting us to quantify the depen-
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dence on p. (See Section 6.) In virtue of the maximum principle, there is a natural (“parabolic”) representing measure 
associated with the solvability of the Dirichlet problem for such L with continuous data. In the domains considered 
here, this measure has been shown to be doubling in [15]. We will be interested in Lp solvability of boundary value 
problems with respect to a natural measure σ (see Definition 2.3) defined on the boundary of the time-varying domain, 
one which coincides with surface measure when that domain is sufficiently smooth.

The study of the heat equation in non-smooth domains, or more generally of parabolic operators with non-smooth 
coefficients, has historically closely followed the development of the elliptic theory, while presenting new challenges 
to finding the correct analogues of the elliptic results. See [2,3,12], and [21] for example.

Dahlberg [6] showed that, in a Lipschitz domain, harmonic measure and surface measure are mutually absolutely 
continuous, and that in fact the elliptic Dirichlet problem is solvable with data in L2 with respect to surface measure. 
R. Hunt then asked whether Dalhberg’s result held for the heat equation in domains whose boundaries are given 
locally as functions ψ(x, t), Lipschitz in the spatial variable. It was natural to conjecture that the correct regularity 
of ψ(x, t) in the time variable t should be a Hölder condition of order 1/2 in t (denoted Lip1/2 in t ). However, the 
counterexamples of [19] showed that this condition did not suffice. Lewis and Murray [20] then established mutual 
absolute continuity of caloric measure and a certain parabolic analogue of surface measure when ψ has 1/2 of a 
time derivative in the parabolic BMO(Rn) space, a slightly stronger condition than Lip1/2. Hofmann and Lewis ([14]) 
subsequently solved the L2 Dirichlet problem for the heat equation in graph domains of Lewis–Murray type when the 
BMO norm of the time derivative was sufficiently small.

In this paper, we consider parabolic operators of the form{
ut = div(A∇u) in �,

u = f on ∂�
(1.1)

where A = [aij (X, t)] is an n ×n matrix satisfying a uniform ellipticity condition: there exist positive constants λ and 
� such that

λ|ξ |2 <
∑
i,j

aij ξiξj < �|ξ |2 (1.2)

for all ξ ∈Rn.
Here and throughout we will consistently use ∇u to denote the gradient in the spatial variables, ut or ∂tu the 

gradient in the time variable and use Du = (∇u, ∂tu) for the full gradient of u.
As in [8], the results here are formulated for the class of admissible parabolic domains, which are, in effect, 

bounded time-varying domains that are “locally” of Lewis–Murray type. A related, but smaller, class of localized 
domains in which parabolic boundary value problems are solvable was considered in [24].

It is a fact that the parabolic PDE (2.12) with continuous boundary data is uniquely solvable (cf. discussion under 
Definition 2.7 in [8]) and that there exists a measure ω(X,t) such that

u(X, t) =
∫
∂�

f (y, s)dω(X,t)(y, s) (1.3)

for all continuous data, called the parabolic measure. Under the assumption of Definition 2.2, this measure is doubling 
(cf. [22]).

As ω(X,t) is a Borel measure, if follows that we can use (1.3) to extend the solvability to a class of bounded Borel 
measurable functions f . This observation will be important later.

In Sections 2 and 3, we recall the definitions of parabolic measure and the fact that solvability of the Dirichlet 
problem for L with data in some Lp space, for some p < ∞ is equivalent to the A∞ property relative to the boundary 
measure σ . Our main results are the following.

Theorem 1.1. Let � be a domain as in Definition 2.2 with character (
, N, C0). Let A = [aij ] be a matrix with 
bounded measurable coefficients defined on � satisfying uniform ellipticity and boundedness with constants λ and �.

If the parabolic measure for the operator L = ∂t − div(A∇·) is in the class A∞(dσ ) (cf. Definition 2.9), then the 
BMO Dirichlet boundary value problem defined in Definition 2.10 is solvable and the estimate
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sup
�⊂∂�

σ(�)−1
∫

T (�)

|∇u|2δ dXdt � ‖f ‖2
BMO(∂�,dσ)

holds for all continuous functions f ∈ C(∂�). Here δ = δ(X, t) is the parabolic distance to the boundary.

Theorem 1.2. Let � be a domain as in Definition 2.2 with character (
, N, C0). Let A = [aij ] be a matrix with 
bounded measurable coefficients defined on � satisfying uniform ellipticity and boundedness with constants λ and �.

Assume that for all continuous functions f ∈ C(∂�) the corresponding solution u satisfies the estimate

sup
�⊂∂�

σ(�)−1
∫

T (�)

|∇u|2δ dXdt ≤ C‖f ‖2
L∞(∂�,dσ), (1.4)

for a constant C = C(�, A) > 0. Then the parabolic measure for the operator L = ∂t −div(A∇·) belongs to the class 
A∞(dσ ). Hence for some p0 < ∞ the Lp Dirichlet boundary value problem for the operator L is solvable for all 
p ∈ (p0, ∞).

Both of these theorems are parabolic analogues of established results for elliptic operators: see [9] and [16]. Our 
proof of Theorem 1.2 uses the primary strategy laid out in [17] and [16], but with a simpler approach to the key 
estimate in order to adapt it to the parabolic setting.

A key feature of Theorem 1.2 is that one only needs to check the bound (1.4) using the L∞ norm of f , as opposed 
to a BMO norm. This condition is easier to verify since the BMO norm of a function can be smaller than its L∞ norm. 
The analogous elliptic result with L∞ norm, stated below, was established in [16] and the proof presented here also 
easily goes over to the elliptic setting.

Theorem 1.3. ([16]) Let � be a Lipschitz domain and A be a uniformly elliptic matrix on � with bounded measurable 
coefficients. If for all continuous functions f ∈ C(∂�) the corresponding solution u of the equation div(A∇u) = 0
satisfies the estimate

sup
�⊂∂�

σ(�)−1
∫

T (�)

|∇u|2δ dX ≤ C‖f ‖2
L∞(∂�,dσ), (1.5)

for a constant C = C(�, A) > 0, then the elliptic measure for the operator L = div(A∇·) belongs to the class 
A∞(dσ ). Hence for some p0 < ∞ the elliptic Lp Dirichlet boundary value problem for the operator L is solvable 
for all p ∈ (p0, ∞).

Our Theorem 1.2 also provides an easier proof of the main result of [24] on parabolic operators with coefficients 
whose gradients satisfy a Carleson condition, or a slightly weaker assumption on the oscillation. This complements 
the results of [8] where it was established that if

dμ = δ(X)−1 (oscBδ(X)/2(X)aij

)2
dXdt (1.6)

is a density of small Carleson measure with norm ‖μ‖Carl on an admissible parabolic domain �, then given 2 ≤ p < ∞
there exists a constant C(p, λ, �) > 0 such that for max{
2, ‖μ‖Carl} < C(p) then the Lp Dirichlet problem for the 
operator L = ∂t − div(A∇·) is solvable.

The next result, with no smallness assumptions, is a quantitative version of Theorem 3.3 of [24].

Theorem 1.4. (A Quantitative version of Theorem 3.3 of [24].) Let � with character (
, N, C0) and A be as in 
Theorem 1.1. Denote by μ the measure with density

dμ = δ(X)−1 (oscBδ(X)/2(X)aij

)2
dXdt (1.7)

and by ‖μ‖Carl its Carleson norm.
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For every 2 ≤ p ≤ ∞ there exists a constant C(p, λ, �) > 0 such that for max{
2, ‖μ‖Carl} < C(p) then the Lp

Dirichlet problem for the operator L = ∂t − div(A∇·) is solvable. Moreover, for λ, � fixed the constant

C(p,λ,�) → ∞, as p → ∞.

It follows that for any admissible domain � with character (
, N, C0) and any parabolic operator L = ∂t −
div(A∇·) with ellipticity constants λ, �, if the μ defined by (1.7) satisfies 
 < ∞, ‖μ‖Carl < ∞, then there exists

p0 = p0(λ,�,
,n,‖μ‖Carl) < ∞
such that for all p ∈ (p0, ∞) the Lp Dirichlet problem for the operator L is solvable. In particular, the parabolic 
measure of L belongs to Bp′(dσ ) ⊂ A∞(dσ ) (p′ = p/(p − 1)).

In [24], it has been shown that there exists a p for which the Lp Dirichlet problem is solvable when ‖μ‖Carl is 
finite. However, it would not, given the method of proof, be easy to track the dependence of p on the Carleson norm, 
nor would it be possible to address solvability for a particular value of p. The fact that for every 2 ≤ p ≤ ∞ there 
exists a constant C(p, λ, �) > 0 such that the Lp Dirichlet problem for the operator L = ∂t − div(A∇·) is solvable 
whenever max{
2, ‖μ‖Carl} < C(p) is in [8]. But it was not evident that C(p) = C(p, λ, �) → ∞ asp → ∞. In 
fact, the estimates from below for C(p) in [8] are not (due to the method employed) powerful enough to show that 
C(p) → ∞ as p → ∞. This, then, is the main contribution of Theorem 1.4.

2. Preliminaries

2.1. Admissible parabolic domains

In this subsection we recall the class of “admissible” time-varying domains in [8] whose boundaries are given 
locally as functions ψ(x, t), Lipschitz in the spatial variable and satisfying the Lewis–Murray condition in the time 
variable. At each time τ ∈ R the set of points in � with fixed time t = τ , that is �τ = {(X, τ) ∈ �} will be assumed 
to be a nonempty bounded Lipschitz domain in Rn. We choose to consider domains that are bounded (in space) since 
this most closely corresponds to domains considered in the paper [10] (for the elliptic equation). However, our result 
can be adapted to the case of unbounded domains (in space). See [15] which focuses on the unbounded case.

We start with a few preliminary definitions, formulated exactly as in [8].
If ψ(x, t) : Rn−1 × R → R is a compactly supported function, the half derivative in time may be defined by the 

Fourier transform or by

Dt
1/2ψ(x, t) = cn

∫
R

ψ(x, s) − ψ(x, t)

|s − t |3/2
ds

for a properly chosen constant cn (depending on the dimension n).
We shall also need a local version of this definition. If I ⊂R is a bounded interval and ψ(x, t) is defined on {x} × I

we consider:

Dt
1/2ψ(x, t) = cn

∫
I

ψ(x, s) − ψ(x, t)

|s − t |3/2
ds, for all t ∈ I.

We define a parabolic cube in Rn−1 ×R, for a constant r > 0, as

Qr(x, t) = {(y, s) ∈Rn−1 ×R : |xi − yi | < r for all 1 ≤ i ≤ n − 1, |t − s|1/2 < r}. (2.1)

For a given f : Rn →R let,

fQr = |Qr |−1
∫
Qr

f (x, t) dx dt.

When we write f ∈ BMO(Rn) we mean that f belongs to the parabolic version of the usual BMO space with the 
norm ‖f ‖∗ where
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‖f ‖∗ = sup
Qr

⎧⎪⎨⎪⎩ 1

|Qr |
∫
Qr

|f − fQr |dx dt

⎫⎪⎬⎪⎭< ∞.

Again, we also consider a local version of this definition. For a function f : J × I → R, where J ⊂ Rn−1 and 
I ⊂ R are closed bounded balls we consider the norm ‖f ‖∗ defined as above where the supremum is taken over all 
parabolic cubes Qr contained in J × I .

The following definitions are motivated by the standard definition of a Lipschitz domain.

Definition 2.1. Z ⊂Rn ×R is an 
-cylinder of diameter d if there exists a coordinate system (x0, x, t) ∈ R ×Rn−1 ×R

obtained from the original coordinate system only by translation in spatial and time variables and rotation in the spatial 
variables such that

Z = {(x0, x, t) : |x| ≤ d, |t | ≤ d2, −(
 + 1)d ≤ x0 ≤ (
 + 1)d}
and for s > 0,

sZ := {(x0, x, t) : |x| < sd, |t | ≤ s2d2, −(
 + 1)sd ≤ x0 ≤ (
 + 1)sd}.

Definition 2.2. � ⊂ Rn × R is an admissible parabolic domain with ‘character’ (
, N, C0) if there exists a positive 
scale r0 such that for any time τ ∈ R there are at most N 
-cylinders {Zj }Nj=1 of diameter d , with r0

C0
≤ d ≤ C0r0 such 

that
(i) 8Zj ∩ ∂� is the graph {x0 = φj (x, t)} of a function φj , such that

|φj (x, t) − φj (y, s)| ≤ 
[|x − y| + |t − s|1/2], φj (0,0) = 0 (2.2)

and

‖Dt
1/2φj‖∗ ≤ 
. (2.3)

(ii) ∂� ∩ {|t − τ | ≤ d2} =
⋃
j

(Zj ∩ ∂�),

(iii) In the coordinate system (x0, x, t) of the 
-cylinder Zj :

Zj ∩ � ⊃
{
(x0, x, t) ∈ � : |x| < d, |t | < d2 , δ(x0, x, t) = dist ((x0, x, t), ∂�) ≤ d

2

}
.

Here the distance is the parabolic distance d[(X, t), (Y, τ)] = (|X − Y |2 + |t − τ |)1/2 and X = (x0, x).

Remark. It follows from this definition that for each τ ∈R the time-slice �τ = � ∩{t = τ } of an admissible parabolic 
domain � ⊂Rn ×R is a bounded Lipschitz domain in Rn with ‘character’ (
, N, C0). Due to this fact, the Lipschitz 
domains �τ for all τ ∈R have all uniformly bounded diameter (from below and above). That is

inf
τ∈Rdiam(�τ ) ≈ r0 ≈ sup

τ∈R
diam(�τ ),

where r0 is the scale from Definition 2.2 and the implied constants in the estimate above only depend on N and C0.

In particular, if O ⊂Rn is a bounded Lipschitz domain, then the parabolic cylinder � =O ×R is an example of a 
domain satisfying Definition 2.2.

Definition 2.3. Let � ⊂ Rn × R be an admissible parabolic domain with ‘character’ (
, N, C0). The measure σ , 
defined on sets A ⊂ ∂� is:

σ(A) =
∞∫

−∞
Hn−1 (A ∩ {(X, t) ∈ ∂�}) dt, (2.4)

where Hn−1 is the n − 1 dimensional Hausdorff measure on the Lipschitz boundary ∂�t = {(X, t) ∈ ∂�}.
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We are going to consider solvability of the Lp and BMO Dirichlet boundary value problems with respect to the 
measure σ . The measure σ may not be comparable to the usual surface measure on ∂�: in the t -direction the functions 
φj from the Definition 2.2 are only half-Lipschitz and hence the standard surface measure might not be locally finite.

Our definition assures that for any A ⊂Zj , where Zj is an L-cylinder we have

Hn(A) ≈ σ
({(φj (x, t), x, t) : (x, t) ∈ A}) , (2.5)

where the actual constants in (2.5) by which these measures are comparable only depend on the 
 of the ‘character’ 
(
, N, C0) of the domain �.

If � has smoother boundary, such as Lipschitz (in all variables) or better, then the measure σ is comparable to the 
usual n-dimensional Hausdorff measure Hn. In particular, this holds for a parabolic cylinder � =O ×R.

Definition 2.4. Let � be an admissible parabolic domain from Definition 2.2. For (Y, s) ∈ ∂�, (X, t) ∈ �, r > 0, and 
d the parabolic distance we write:

Br(Y, s) = {(X, t) ∈ Rn ×R : d[(X, t), (Y, s)] < r}
�r(Y, s) = ∂� ∩ Br(Y, s), T (�r) = � ∩ Br(Y, s).

Definition 2.5. Let T (�r) be the Carleson region associated to a surface ball �r in ∂�, as defined above. A measure 
μ : � → R+ is said to be Carleson if there exists a constant C = C(r0) such that for all r ≤ r0 and all surface balls �r

μ(T (�r)) ≤ Cσ(�r).

The best possible constant C will be called the Carleson norm and shall be denoted by ‖μ‖C,r0 . We write μ ∈ C. If 
lim

r0→0
‖μ‖C,r0 = 0, we say that the measure μ satisfies the vanishing Carleson condition and write μ ∈ CV .

When ∂� is locally given as a graph of a function x0 = ψ(x, t) in the coordinate system (x0, x, t) and μ is a 
measure supported on {x0 > ψ(x, t)} we can reformulate the Carleson condition locally using the parabolic cubes Qr

and corresponding Carleson regions T (Qr) where

Qr(y, s) = {(x, t) ∈Rn−1 ×R : |xi − yi | < r for all 1 ≤ i ≤ n − 1, |t − s|1/2 < r}
T (Qr) = {(x0, x, t) ∈ R×Rn−1 ×R : ψ(x, t) < x0 < ψ(x, t) + r, (x, t) ∈ Qr(y, s)}.

The Carleson condition becomes

μ(T (Qr)) ≤ C|Qr | = Crn+1.

We remark, that the corresponding Carleson norm will not be equal to the one from Definition 2.5 but these norms 
will be comparable. Hence the notion of vanishing Carleson norm does not change if we take this as the definition of 
the Carleson norm instead of Definition 2.5.

Observe also, that the function δ(X, t) := inf(Y,τ )∈∂� d[(X, t), (Y, τ)] that is measuring the distance of a point 
(X, t) = (x0, x, t) ∈ � to the boundary ∂� is comparable to x0 −ψ(x, t) which in turn is comparable to [ρ−1(X, t)]x0

(the first component of the inverse map ρ−1).

Definition 2.6. (Corkscrew points) Let � be an admissible parabolic domain from Definition 2.2 and r0 > 0 the 
scale defined there. For any boundary ball �r = �r(Y, s) ⊂ ∂� with 0 < r � r0 we say that a point (X, t) ∈ � is a
corkscrew point of the ball �r if

t = s + 2r2, δ(X, t) ≈ r ≈ d[(X, t), (Y, s)].
That is the point (X, t) is an interior point of � of distance to the ball �r and the boundary ∂� of order r . The point 
(X, t) lies at the time of order r2 later than the times for the ball �r . Finally, the implied constants in the definition 
above only depend on the domain � but not on r and the point (Y, s).

Each ball of radius 0 < r � r0 has infinitely many corkscrew points; for each ball we choose one and denote it by 
V (�r) or if there is no confusion to which ball the corkscrew point belongs just Vr .
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Remark. Given the fact that the time slices �τ of the domain � are of approximately diameter r0 the corkscrew 
points do not exist for balls of sizes r >> r0.

2.2. Parabolic non-tangential cones and related functions

We proceed with the definition of parabolic non-tangential cones. We define the cones in a (local) coordinate system 
where � = {(x0, x, t) : x0 > ψ(x, t)}. In particular this also applies to the upper half-space U = {(x0, x, t), x0 > 0}. 
We note here, that a different choice of coordinates (naturally) leads to different sets of cones, but as we shall establish 
the particular choice of non-tangential cones is not important as it only changes constants in the estimates for the area, 
square and non-tangential maximal functions defined using these cones. However the norms defined using different 
sets of non-tangential cones are comparable.

For a constant a > 0, we define the parabolic non-tangential cone at a point (x0, x, t) ∈ ∂� as follows

�a(x0, x, t) =
{
(y0, y, s) ∈ � : |y − x| + |s − t |1/2 < a(y0 − x0), y0 > x0

}
. (2.6)

We occasionally truncate the cone � at the height r

�r
a(x0, x, t) ={
(y0, y, s) ∈ � : |y − x| + |s − t |1/2 < a(y0 − x0), x0 < y0 < x0 + r

}
.

(2.7)

When working on the upper half space (domain U ), (0, x, t) is the boundary point of ∂U . In this case we shorten 
the notation and write

�a(x, t) instead of �a(0, x, t) (2.8)

and

�r
a(x, t) instead of �r

a(0, x, t). (2.9)

Observe that the slice of the cone �a(x0, x, t) at a fixed height h is the set

{(y, s) : (x0 + h,y, s) ∈ �a(x0, x, t)}
which contains and is contained in a parabolic box Qs(x, t) of radius s comparable to h, that is for some constants 
c1, c2 depending only on the dimension n and a we have

Qc1h(x, t) ⊂ {(y, s) : (x0 + h,y, s) ∈ �a(x0, x, t)} ⊂ Qc2h(x, t).

For a function u : � → R, the nontangential maximal function ∂� → R and its truncated version at a height r are 
defined as

Na(u)(x0, x, t) = sup
(y0,y,s)∈�a(x0,x,t)

|u(y0, y, s)| ,

Nr
a (u)(x0, x, t) = sup

(y0,y,s)∈�r
a(x0,x,t)

|u(y0, y, s)| for (x0, x, t) ∈ ∂�.
(2.10)

Now we define the square function ∂� → R (and its truncated version) assuming u has a locally integrable distri-
butional gradient by

Sa(u)(x0, x, t) =
⎛⎜⎝ ∫

�a(x0,x,t)

(y0 − x0)
−n|∇u|2(y0, y, s) dy0 dy ds

⎞⎟⎠
1/2

,

Sr
a(u)(x0, x, t) =

⎛⎜⎝ ∫
�r

a(x0,x,t)

(y0 − x0)
−n|∇u|2(y0, y, s) dy0 dy ds

⎞⎟⎠
1/2

.

(2.11)
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Observe that on the domain U = {(x0, x, t) : x0 > 0}

‖Sa(u)‖2
L2(∂U)

=
∫
U

y0|∇u|2(y0, y, s) dy0 dy ds.

2.3. Lp and BMO solvability of the Dirichlet boundary value problem

We are now in a position to define Lp solvability of a Dirichlet problem for a parabolic operator.

Definition 2.7. ([1]) We say that u is a weak solution to L in � if u, ∇u ∈ L2
loc(�) and supt ‖u(·, t)‖L2

loc(�t )
< ∞, and∫

�

(−uφt + A∇u.∇φ)dXdt = 0

for all φ ∈ C∞
0 (�).

Definition 2.8. Let 1 < p ≤ ∞ and � be an admissible parabolic domain from the Definition 2.2. Consider the 
parabolic Dirichlet boundary value problem⎧⎪⎨⎪⎩

ut = div(A∇u) in �,

u = f ∈ Lp on ∂�,

N(u) ∈ Lp(∂�,dσ),

(2.12)

where the matrix A = [aij (X, t)] satisfies the uniform ellipticity condition and σ is the measure supported on ∂�

defined by (2.4).
We say that Dirichlet problem with data in Lp(∂�, dσ) is solvable if the (unique) solution u with continuous 

boundary data f satisfies the estimate

‖N(u)‖Lp(∂�,dσ) � ‖f ‖Lp(∂�,dσ). (2.13)

The implied constant depends only the operator L, p, and the triple (L, N, C0) of Definition 2.2.

The Lp solvability of the Dirichlet boundary value problem for some p < ∞ is equivalent to the parabolic measure 
ω belonging to a “parabolic A∞” class with respect to the measure σ on the surface ∂� (Theorem 6.2 in [22]). We 
now recall the definition of parabolic A∞.

Definition 2.9. (A∞ and Bp) Let � be an admissible parabolic domain from Definition 2.2. For a ball �d with radius 
d � supτ diam(�τ ) we denote its corkscrew point by Vd .

We say that parabolic measure of an operator L = ∂t − div(A∇·) is A∞(�d) if for every ε > 0 there exists δ =
δ(ε) > 0 such that for any ball � ⊂ �d and subset E ⊂ � we have:

ωVd (E)

ωVd (�)
< δ =⇒ σ(E)

σ(�)
< ε.

The measure is A∞ if it belongs to A∞(�d) for all �d . If A∞ holds then the measures ωVd and σ are mutually 
absolutely continuous and hence one can write dωVd = KVd dσ .

For p ∈ (1, ∞) we say that ω belongs to the reverse-Hölder class Bp(dσ) if KVd satisfies the reverse Hölder 
inequality⎛⎝σ(�)−1

∫
�

(
KVd

)p

dσ

⎞⎠1/p

� σ(�)−1
∫
�

KVd dσ,

for all balls � ⊂ �d .
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Remark 1. It can be shown that A∞(dσ ) =⋃
p>1 Bp(dσ).

Remark 2. It has been shown in [23] that if the parabolic measure is A∞ with respect to the surface measure σ then 
the non-tangential maximal function and the square function of a solution are equivalent, that is for all 1 < p < ∞∫

∂�

Np(u)dx dt ≈
∫
∂�

Sp(u)dx dt +
∫
∂�

up dx dt

See also Theorem 6.2 of [8]. Here the implied constants do not depend on the solution u, only on p, the domain and 
the parabolic operator. Hence if follows that if (2.13) holds then also

‖S(u)‖Lp(∂�,dσ) � ‖f ‖Lp(∂�,dσ).

It turns out that this condition is more convenient to define the end-point BMO Dirichlet boundary value problem.

Definition 2.10. Let � and the matrix A be as in Definition 2.8. We say that the Dirichlet problem with data in 
BMO(∂�, dσ) is solvable if the (unique) solution u with continuous boundary data f satisfies the estimate

sup
�⊂∂�

σ(�)−1
∫

T (�)

|∇u|2δ dXdt � ‖f ‖2
BMO(∂�,dσ). (2.14)

The implied constant depends only the operator L and the triple (L, N, C0) of Definition 2.2. Here the supremum 
on the right-hand side is taken over all parabolic balls � ⊂ ∂�. T (�) denotes the corresponding Carleson region (as 
defined above).

Remark 3. The term on left-hand side of (2.14) is connected with the square function in the following way. If � = �r

is a parabolic boundary ball, then

σ(�)−1
∫

T (�)

|∇u|2δ dXdt ≈ σ(�)−1
∫
�

(Sr(u))2 dσ,

where Sr is the truncated square function at height r . To be completely correct, in the inequalities implied by the 
previous line in the bounds from above we should enlarge �r to its double, say �2r , this however makes no difference 
if we want to replace the left-hand side of (2.14) by the integral over the square function as we are taking the supremum 
over all boundary balls � anyway.

Remark 4. It is sufficient to assume (2.14) only holds for all balls � = �r of sizes r ≤ r0 for some r0 > 0. This is 
due to the fact that in the interior of the domain the solution is automatically in the class W 1,2

loc (�) implying that the 
estimate (2.14) will also holds on balls of sizes r ≥ r0 but with a slightly larger constant.

Remark 5. We only assume that the condition (2.14) holds for all continuous data f . However, we claim that this 
implies the same estimate holds for all bounded Borel measurable functions f as a consequence. To see this it is 
enough to realize that if fj → f in the sense that∫

fj dμ →
∫

f dμ, for any Borel probability measure μ on ∂�,

then if uj (or u) is the solution of the parabolic boundary value problem with data fj (or f ), respectively, then for 
any compact set K ⊂ � we have uj → u uniformly on K as j → ∞. Hence for any δ > 0 by Lemma 3.1 we have

σ−1(�r)

∫
T (�r )∩{(X,t)∈�:δ(X,t)>δ}

|∇(u − uj )|2δ dX → 0,

and therefore
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sup
�⊂∂�

σ(�)−1
∫

T (�)∩{(X,t)∈�:δ(X,t)>δ}
|∇u|2δ dX � ‖f ‖2

BMO(∂�,dσ),

provided we have (2.14) for uj and fj . As this holds uniformly for all δ > 0 taking a limit δ → 0 yields (2.14) for u
and f . In particular, this implies that (2.14) holds for all bounded Borel measurable boundary data f .

3. Basic results and interior estimates

We now recall some estimates and tools needed for the proofs of Theorems 1.1 and 1.2.

Lemma 3.1. (A Cacciopoli inequality, see [1]) Suppose that u is a weak solution of (1.1) in �. For an interior point 
(X, t) ∈ � and any 0 < r < δ(X, t)/4 such that Q4r (X, t) := {(Y, s) : |X − Y | < 4r and |t − s| < 16r2} ⊂ �, there 
exists a constant C such that

rn

(
sup

Qr(X,t)

u

)2

≤ C sup
t−(2r)2≤s≤t+(2r)2

∫
B2r (X)

u2(Y, s) dY + C

∫
Q2r (X,t)

|∇u|2 dY ds

≤ C2

r2

∫
Q4r (X,t)

u2(Y, s) dY ds.

Lemmas 3.4 and 3.5 in [15] give us the following estimates for a weak solution of (1.1).

Lemma 3.2. (Interior Hölder continuity) Suppose that u is a weak solution of (1.1) in �. If |u| ≤ K < ∞ for some 
constant K > 0 in Q4r (X, t) ⊂ �, then for any (Y, s), (Z, τ) ∈ Q2r (X, t) there exists a constant C > 0 and 0 < α < 1
such that

|u(Y, s) − u(Z, τ)| ≤ CK

( |Y − Z| + |s − τ |1/2

r

)α

.

Lemma 3.3. (Boundary Hölder Continuity). Let u be a weak solution of (1.1) in T (�2r (y, s)). If r > 0 and u vanishes 
continuously on �2r (y, s), then there exists C and α, 0 < α < 1 � C < ∞, such that for (X, t) ∈ T (�r/2(y, s)),

u(X, t) = u(x0, x, t) � C(x0/r)α max
T (�r (y,s))

u.

If u � 0 in T (�2r (y, s)) then there exists C such that for (X, t) ∈ T (�r/2(y, s)),

u(X, t) � C(x0/r)αu(r, y, s + 2r2).

Lemma 3.4. (Harnack inequality) Suppose that u is a weak nonnegative solution of (1.1) in U such that 
Q4r (X, t) ⊂ U . Suppose that (Y, s), (Z, τ) ∈ Q2r (X, t). There exists an a priori constant c such that, for τ < s,

u(Z, τ) ≤ u(Y, s) exp

[
c

( |Y − Z|2
|s − τ | + 1

)]
.

If u ≥ 0 is a weak solution of the adjoint operator of (1.1), then this inequality is valid when τ > s.

We state a version of the maximum principle from [8], that is a modification of Lemma 3.38 from [15].

Lemma 3.5. (Maximum Principle) Let u, v be bounded continuous weak solutions to (1.1) in �. If |u|, |v| → 0
uniformly as t → −∞ and
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lim sup
(Y,s)→(X,t)

(u − v)(Y, s) ≤ 0

for all (X, t) ∈ ∂�, then u ≤ v in �.

Remark. The proof of Lemma 3.38 from [15] works given the assumption that |u|, |v| → 0 uniformly as t → −∞. 
Even with this additional assumption, the lemma as stated is sufficient for our purposes. We shall mostly use it when 
u ≤ v on the boundary of � ∩ {t ≥ τ } for a given time τ . Obviously then the assumption that |u|, |v| → 0 uniformly 
as t → −∞ is not necessary. Another case when the Lemma as stated here applies is when u|∂�, v|∂� ∈ C0(∂�), 
where C0(∂�) denotes the class of continuous functions decaying to zero as t → ±∞. This class is dense in any 
Lp(∂�, dσ), p < ∞ allowing us to consider an extension of the solution operator from C0(∂�) to Lp .

Lemma 3.6. (Parabolic doubling, corkscrew point, cf. [15], and [22] for the doubling property of parabolic measure 
in time-varying domains). Let �2r ⊂ �d be boundary balls and let V2r and Vd be their corkscrew points. Let ωVd be 
parabolic measure. There exists c > 1 (depending only on the domain and the parabolic operator ∂t −div(A∇·)) such 
that

a) cωVd (�d) ≥ 1
b) ωVd (�2r ) ≤ cωVd (�r) (doubling)
c) If E ⊂ �2r is a Borel set and ωV2r (E) ≥ η, then cωVd (E) ≥ ηωVd (�2r ).

4. Proof of Theorem 1.1

We shall establish that the estimate

sup
�⊂∂�

σ(�)−1
∫

T (�)

|∇u|2δ dX � ‖f ‖2
BMO(∂�,dσ)

holds for all solutions u in � with continuous boundary data f . As we have noted above it suffices to show this result 
for all balls � = �r of diameter ≤ r ′ for some r ′ > 0.

Consider any boundary ball �r = �r(y, s) of size ≤ r ′. Let �2j r (y, s) for j ≥ 0 be the 2j -fold enlargement of the 
original ball �r . We want to consider all j ≤ m where m is the smallest integer such that

(X, t) ∈ ∂� \ �2mr =⇒ |t − s| ≥ r2
0 ,

where r0 is the scale from Definition 2.2. From now on we denote d = 2mr .
Let f be in BMO(∂�) ∩ C(∂�) and let u be the unique solution of the boundary value problem with boundary 

data f . We decompose f into several pieces. First, decompose it into near and far parts:

f = (f − 〈f 〉�2r
)χ�2r

+ (f − 〈f 〉�2r
)χ�d\�2r

+ (f − 〈f 〉�2r
)χ∂�\�d

+ 〈f 〉�2r

= f1 + f2 + f3 + 〈f 〉�2r
.

Here and throughout the paper we use the notation 〈f 〉B = σ(B)−1
∫
B

f dσ . If ui is the solution for boundary data fi , 
then we have for the solution u with data f , ∇u = ∑3

i=1 ∇ui . We estimate the contribution of each ui separately. 
Observe that the term 〈f 〉�2r

plays no further role as the solution corresponding to it is constant and hence has zero 
gradient.

We start with u1, the solution for boundary data f1. For a fixed point (X, t) ∈ T (�r), let us consider the set 
T α

(X,t) = {(z, τ) ∈ �r : (X, t) ∈ �α(z, τ)}. Note that σ(T α
(X,t)) ∼ δ(X, t)n with constant dependent on α.

1

σ(�r)

∫
T (�r )

|∇u1|2δ(X, s)dXds

� 1

σ(�r)

∫
|∇u1|2δ(X, s)−n+1σ(T(X,s))dXds
T (�r )
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� 1

σ(�r)

∫
(x,s)∈�r

∫
�α,r (x,s)

δ(X, s)−n+1|∇u1|2dXdsdσ

� 1

σ(�r)

∫
�r

(
Sr

α

)2
(u1)dσ.

Since we assume that the parabolic measure to belong to A∞, there exists a (large) p < ∞ for which the Dirichlet 
problem is solvable in Lp. Hence by Hölder’s inequality and solvability (see the Remark 2 below Definition 2.9)

1

σ(�r)

∫
�r

(
Sr

α

)2
(u1)dσ �

⎛⎜⎝ 1

σ(�r)

∫
�r

(
Sr

α

)p
(u1)dσ

⎞⎟⎠
2/p

� 1

σ(�r)2/p

⎛⎜⎝∫
�2r

|f1|pdσ

⎞⎟⎠
2/p

.

Since f1 = f − 〈f 〉�2r
on �2r , this is the BMO estimate with exponent p. John–Nirenberg’s inequality

1

σ(�2r )1/p

⎛⎜⎝∫
�2r

|f − 〈f 〉�2r
|pdσ

⎞⎟⎠
1/p

� ‖f ‖BMO

and the fact that σ is doubling gives us our desired estimate.
In order to estimate the contribution of u2, we write f2 = f +

2 − f −
2 with f ±

2 � 0. Denote by u±
2 the corresponding 

solutions. By linearity of the equation we have for the solution u2 with data f2 that u2 = u+
2 −u−

2 , whose contributions 
we estimate separately. Let us denote by ũ the solution with boundary data |f2|.

We now cover T (�r) by a union of balls Bi , i ∈N, of finite overlap with the following properties.

T (�r) ⊂
⋃
i

Bi ⊂
⋃
i

(1 + δ)Bi ⊂ T (�3/2r ).

Here (1 + δ)Bi is a small enlargement of the ball Bi . All points (X, t) ∈ (1 + δ)Bi have comparable distance to the 
boundary, specifically, δ(X, t) ∼ diam(Bi). Furthermore, each point (X, t) ∈ ⋃

i (1 + δ)Bi is covered by at most K
enlarged balls (1 + δ)Bi , where K only depends on the character of the admissible domain �. We have

1

σ(�r)

∫
T (�r )

|∇u±
2 |2δ(X, t)dXdt

≤ 1

σ(�r)

∑
i

∫
Bi

|∇u±
2 |2δ(X, t)dXdt

� 1

σ(�r)

∑
i

(diam(Bi)
−1

∫
(1+δ)Bi

u±
2

2
(X, t)dXdt

� 1

σ(�r)

∑
i

∫
(1+δ)Bi

u±
2

2
(X, s)δ(X, t)−1dXdt (4.1)

� K

σ(�r)

∫
T (�3/2r )

ũ2(X, t)δ(X, t)−1dXdt

� ‖f ‖2
BMO

r−2ε

σ (�r)

∫
T (� )

δ(X, t)2ε−1dXdt
3/2r
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We use Lemma 3.1, a pointwise estimate u±
2 � ũ as well as the pointwise estimate of Lemma 4.1 below for the 

solution ũ in terms of ‖f ‖BMO which uses the fact that ũ vanishes on the boundary:
Observe now that the last expression is summable in the sense that

r−2ε

∫
T (�3/2r )

δ(X, t)2ε−1dXdt ∼ σ(�r).

Therefore we get a bound of ‖f ‖2
BMO for the term with u2.

We now state a lemma whose proof we postpone to the end.

Lemma 4.1. Let �d be a boundary cube of scale comparable to the diameter of the domain and �4r ⊂ �d . Let u
denote the solution to boundary data |f |χ�d\�2r

, where f is a function with 〈f 〉�2r
= 0. There exists ε > 0 such that 

∀(X, t) ∈ T (�r),

u(X, t) � ‖f ‖BMO and u(X, t) �
(

δ(X,t)
r

)ε ‖f ‖BMO.

For the solution u3 with boundary data f3 we consider a further decomposition. (Up to this point, the argument has 
been roughly following the elliptic case ([9]).) For all j ≥ 1 consider

Uj = {(X, t) ∈ � \ �d : t ∈ [s − jr2
0 , s − (j + 1)r2

0 )}.
Since the scale r0 is comparable to the diameter of each time slice of � each Uj is contained in some boundary ball 
�j of radius comparable to r0 (and d) with σ(Uj ) ≈ σ(�j ) ≈ rn

0 .
We write

f3 =
∑
j≥1

(f − 〈f 〉�2r
)χUj

+ h =
∑
j≥1

gj + h.

here h is the portion of f3 supported on � ∩{t − s ≥ r2
0 }. Observe that the term h plays no further role as we only need 

to prove the estimate for u on T (�r), where the contribution from h is zero. Hence it remains to deal with the data gj , 
we denote the corresponding solutions by wj . We estimate the Lp norm of wj . We can add and subtract constants in 
order to use the BMO condition, writing gj on Uj as:

gj = (f − 〈f 〉�j ) +
j∑

k=2

(〈f 〉�k − 〈f 〉�k−1) + (〈f 〉�1 − 〈f 〉�d
) +

m∑
k=2

(〈f 〉�2kr
− 〈f 〉�2k−1r

).

The BMO condition on f entails that for a ball of any radius s, and its double:

|〈f 〉�2s
− 〈f 〉�s |� ‖f ‖BMO,

and hence

‖gj − (f − 〈f 〉�j )‖L∞ � (j + m)‖f ‖BMO.

Again by John–Nirenberg we have for f − 〈f 〉�j and any p > 1 on �j :

1

σ(�j )1/p

⎛⎜⎝∫
�j

|f − 〈f 〉�j |pdσ

⎞⎟⎠
1/p

� ‖f ‖BMO,

and therefore for any p > 1 we have that

‖gj‖Lp(Uj ) � σ(�j )1/p(j + m + 1)‖f ‖BMO.

The A∞ assumption as already noted above implies Lp solvability of the Dirichlet boundary value problem for some 
large p; in particular this gives that ‖N(wj)‖Lp(∂�) � σ(�j )1/p(j +m + 1)‖f ‖BMO . Recall that gj = 0 for all times 
larger than s − jr2.
0
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Since wj vanishes on the boundary of Uj−1, boundary Hölder regularity gives

‖wj‖∞ � 1

r0σ(�j )1/p

⎛⎜⎝ ∫
Uj−1

|wj |pdXdt

⎞⎟⎠
1/p

.

The solid integral over Uj−1 can be dominated by a nontangential maximal function:

1

r0σ(�j )1/p

⎛⎜⎝ ∫
Uj−1

|wj |pdXdt

⎞⎟⎠
1/p

� 1

σ(�j )1/p

⎛⎜⎝∫
�j

|N(wj )|pdσ

⎞⎟⎠
1/p

.

And the above estimate for the nontangential maximal function of wj implies

‖wj‖
L∞

(
�

s−(j−1)r2
0

) � (j + m + 1)‖f ‖BMO.

Here, as before, �τ denotes the time slice at time τ of the domain �.
Now we are able to use the exponential decay for the solution of any parabolic PDE with vanishing Dirichlet data 

on the lateral boundary. It follows that

‖wj‖L∞(�t ) � eβ(s−(j−1)r2
0 −t)(j + m + 1)‖f ‖BMO, for all t ≥ s − (j − 2)r2

0 ,

where the decay parameter β > 0 only depends on the ellipticity constants and supt diam(�t ). In particular for T (�d)

we get

‖wj‖L∞(T (�d)) � e−βjr2
0 (j + m + 1)‖f ‖BMO.

Finally, we use this to get an L∞ estimate on T (�2r ). From Lemma 3.3 on the ball �d with x0 ≤ 2t we obtain

‖wj‖L∞(T (�2r )) � 2−αme−βjr2
0 (j + m + 1)‖f ‖BMO.

This final estimate allows us to do the same calculation as (4.1) for u±
2 . We obtain:

1

σ(�r)

∫
T (�r )

|∇w±
j |2δ(X, t)dXdt � 2−2αme−2βjr2

0 (j + m + 1)‖f ‖2
BMO.

Finally, as 2−2αmm can be bounded independent of m and e−2βjr2
0 j can be summed over all j ≥ 1 we get for u3:

1

σ(�r)

∫
T (�r )

|∇u3|2δ(X, t)dXdt

�
∑
j≥1

1

σ(�r)

∫
T (�r )

[|∇w+
j |2 + |∇w−

j |2]δ(X, t)dXdt

� ‖f ‖2
BMO

⎛⎝∑
j≥1

e−2βjr2
0 j

⎞⎠� ‖f ‖2
BMO.

This concludes the proof of Theorem 1.1, apart from the proof of Lemma 4.1. �
Proof of Lemma 4.1. We first note that the estimate

u(X, t) �
(

δ(X,t)
r

)ε ‖f ‖BMO

follows from the estimate u(X, t) � ‖f ‖BMO by applying Lemma 3.3, hence we shall only establish this bound.
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We fix a corkscrew point of the ball �d and denote it by Vd . Recall that 〈f 〉B denotes the average of f over a ball 
B with respect to the surface measure σ . As we want to consider averages with respect to the parabolic measure ω as 
well, we use the notation

〈f 〉ω,B = ω(B)−1
∫
B

f dω,

occasionally using 〈f 〉ωVd ,B as well if we have to emphasize with respect to which point ωVd is defined.
We would like to replace the assumption 〈f 〉�2r

= 0 by 〈f 〉ωVd ,�2r
= 0. We can do that by considering a boundary 

value problem with data |g|χ�d\�2r
instead, where g = f − 〈f 〉ωVd ,�2r

. Denote the solution of this boundary value 
problem by v. If follows by the maximum principle that

‖u − v‖L∞(�) ≤ ‖f − g‖L∞(∂�) ≤
∣∣∣〈f 〉ωVd ,�2r

∣∣∣ .
Because the measures σ and ωVd are A∞ with respect to each other, arguments exactly as in [11] entail that the 
difference of averages 〈f 〉�2r

and 〈f 〉ωVd ,�2r
satisfy the following:∣∣∣〈f 〉ωVd ,�2r

∣∣∣= ∣∣∣〈f 〉ωVd ,�2r
− 〈f 〉�2r

∣∣∣� ‖f ‖BMO.

This gives ‖u − v‖L∞(�) � ‖f ‖BMO , hence if v(X, t) � ‖g‖BMO = ‖f ‖BMO for (X, t) ∈ T (�r) then we have 
u(X, t) � ‖f ‖BMO as well. From now on we can therefore assume that 〈f 〉ωVd ,�2r

= 0.
For j ≥ 2 we consider dyadic annuli Sj = �2j r \ �2j−1r .

u(Z, τ) �
m∑

j=2

∫
Sj

∣∣∣f − 〈f 〉ωVd ,�2j r

∣∣∣K(Z,τ)(y, s)dyds

+
m∑

j=2

∣∣∣〈f 〉ωVd ,�2j r

∣∣∣ ∫
Sj

K(Z,τ)(y, s)dyds.

Here K(Z,τ) denotes the Radon–Nikodyn derivative of the parabolic measure at point (Z, τ), i.e., dω(Z,τ)(y, s) =
K(Z,τ)(y, s)dσ (y, z). m is the scale at which 2mr ≈ d , as elsewhere f = 0.

We have for the first sum:∑
j�2

∫
Sj

∣∣∣f − 〈f 〉ωVd ,�2j r

∣∣∣K(Z,τ)(y, s)dyds

�
∑
j�2

∫
�2j r

∣∣∣f − 〈f 〉ωVd ,�2j r

∣∣∣K(Z,τ)(y, s) dyds

�
∑
j�2

2−αj 1

ωVd (�2j r )

∫
�2j r

∣∣∣f − 〈f 〉ωVd ,�2j r

∣∣∣dωVd (y, s)

� ‖f ‖BMO,ωVd

∑
j�2

2−αj � ‖f ‖BMO.

In the second line, we use Lemma 4.2 (see below). In the last line we use equivalence of BMO norms with respect to 
parabolic and surface measures that holds due to the A∞ assumption we have made.

For the second sum we have (using 〈f 〉ωVd ,�2r
= 0):

m∑
j=2

∣∣∣〈f 〉ωVd ,�2j r

∣∣∣ ∫
S

K(Z,τ)(y, s)dyds =
m∑

j=2

∣∣∣〈f 〉ωVd ,�2j r

∣∣∣ ∫
S

dω(Z,τ)(y, s)
j j
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�
∑
j�2

⎛⎝ j∑
i=2

∣∣∣〈f 〉ωVd ,�2i r
− 〈f 〉ωVd ,�2i−1r

∣∣∣
⎞⎠∫

Sj

dω(Z,τ)(y, s)

�
m∑

j=2

j sup
i

∣∣∣〈f 〉ωVd ,�2i r
− 〈f 〉ωVd ,�2i−1r

∣∣∣ ∫
Sj

dω(Z,τ)(y, s)

� ‖f ‖BMO,ωVd

∑
j�0

j

∫
Sj

dω(Z,τ)(y, s)

� ‖f ‖BMO,ωVd

∑
j�0

j2−αj

∫
�2j r

1

ωVd (�2j r )
dωVd (y, s)

= ‖f ‖BMO,ωVd

m∑
j=2

j2−αj � ‖f ‖BMO.

Here we again have used Lemma 4.2 stated below. Hence the result holds. �
Lemma 4.2. Let, d � r0, �d ⊂ ∂� and Vd the corkscrew point of �d . Let �r ⊂ �d and denote by Vr the cork screw 
point of �r . We have for each j ≥ 1 such that �2j r ⊂ �d

sup
(y,s)∈�2j r

sup
(Z,τ)∈T (�r )

K(Z,τ)(y, s)

KVd (y, s)
� 2−αj 1

ωVd (�2j r )
.

Proof. First observe that from assertion c) in Lemma 3.6 follows that for E ⊂ �r we have

ωVr (E)� ωVd (E)

ωVd (�r)
.

Let Sj be as before the dyadic annuli �2j r\�2j−1r . Let Vj be the corkscrew point of the surface cube �2j r . We apply 
the above inequality for an infinitesimally small cube (that is t is tiny) �t ⊂ Sj ⊂ �2j r . We get

ωVj (�t ) �
ωVd (�t )

ωVd (�2j r )
and thus

ωVj (�t )

ωVd (�t )
� 1

ωVd (�2j r )
.

Now for (Z, τ) ∈ T (�r) and (y, s) ∈ �t ⊂ Sj

K(Z,τ)(y, s)

KVd (y, s)
= lim

t→0

ω(Z,τ)(�t )

ωVd (�t )
= lim

t→0

ω(Z,τ)(�t )

ωVj (�t )
· ωVj (�t )

ωVd (�t )
.

Note that dist(�t , �r) ∼ 2j r . Applying Boundary Hölder, Lemma 3.3, using that the boundary data for ω(Z,τ)(�t )

vanishes on �2j−1r we have

ω(Z,τ)(�t ) �
(

dist((Z, τ), ∂�)

2j r

)α

ωVj (�t ) � 2−jαωVj (�t )

and the lemma is completely proved. �
5. Proof of Theorems 1.2 and 1.3

We focus primarily on the parabolic case, since the elliptic case is less complicated. We start by recalling the 
existence of a dyadic grid that can be constructed for any doubling measure ([4]).

Let �d ⊂ ∂� where d is of the size comparable to the scale r0 from Definition 2.2. As before let V d be the 
corkscrew point of �d . By Lemma 3.6, the parabolic measure ωVd has the doubling property in �d , therefore the 
metric space �d has a dyadic grid with the following properties. D(�d) = {I l

j : j ∈ Z, l ∈ Ij } with I l
j ⊂ �d and Ij

an index set. This dyadic grid possesses the following properties:
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(1)
⋃

l I
l
j = �d ; ω(∂I l

j ) = 0 for all j, l.
(2) ∅ ∈ D(�d); �d ∈D(�d).
(3) int(I l

j ) ∩ int(I l′
j ) = ∅ if l �= l′. (Here int(B) means the interior of the set B).

(4) There exist (xl, tl), called the center of I l
j , so that �2−j (xl, tl) ⊆ I l

j ⊆ �M2−j (xl, tl) where M only depends on 
the doubling constant of ω.

(5) If j ≥ j ′ then I l
j ⊆ I l′

j ′ or I l
j ∩ I l′

j ′ = ∅.

(6) When I l
j � I l′

j ′ then there exists C < 1 so that ω(I l
j ) < Cω(I l′

j ′).

(7) Any open set O ⊂ �d can be decomposed as O = ⋃
j,l I

l
j where int(I l

j ) are pairwise disjoint and for each I l
j , 

there is a point P l
j ∈ �d\O such that dist(P l

j , I
l
j ) ∼ diam(I l

j ) ∼ 2−j .

Remark. If S is an element of the dyadic grid we shall say that S has scale j if S = I l
j for some l.

Definition 5.1. (cf. [17]) Let ε0 be given. Let E ⊂ �r ⊆ �d . A good ε0-cover for E in �r of length k is a collection 
of nested open sets {Ol}kl=1 with E ⊆ Ok ⊆ . . . ⊆ O0 = �r . Moreover, each Ol decomposes as Ol = ⋃∞

i=1 Sl
i such 

that

(1) Sl
i ∈D(�d) ∀i, l

(2) ωVd (Ol ∩ Sl−1
i ) � ε0ω

Vd (Sl−1
i ) ∀ 1 � l � k.

Note that when k � l > m > 0, then ωVd (Sm
j ∩Ol ) � εl−m

0 ωVd (Sm
j ).

Lemma 5.2. (cf. Lemma 2.6 of [17]) Let E ⊂ �r ⊂ �d . Given ε0 > 0, there exists δ0 > 0 such that if

ωVd (E)/ωVd (�r) � δ0

then E has good ε0-cover of length k = k(ε0, δ0). In fact, k ∼ −ε0 log δ0.

As explained in Remark 5, we may assume that for all Borel-measurable bounded f , the solution u with boundary 
data f satisfies:

σ(�r)
−1

∫
T (�r )

|∇u(Y, s)|2δ(Y, s)dYds � ‖f ‖∞,

uniformly for all balls �r ⊂ ∂� with r ≤ r ′ for some r ′ > 0. As we have noted above this condition is equivalent to 
saying that the truncated square function Sr satisfies∫

�r

(Sr(u))2dσ � σ(�r),

for all ‖f ‖L∞ ≤ 1 and 0 < r ≤ r ′. Recall that our goal is to prove that for all E ⊂ �r ⊂ �d :

ωVd (E)/ωVd (�r) < δ =⇒ σ(E)/σ(�r) < ε.

We pursue the following strategy, as in [16]. We will establish that, given δ > 0, one can find K(δ) (with K(δ) → ∞
as δ → 0+) such that for some f with ‖f ‖L∞ ≤ 1 we have for the solution u corresponding to the boundary data f :

(Sr(u))2(x, t) ≥ K, for all (x, t) ∈ E.

This would imply that

K(δ)σ (E) ≤
∫
E

(Sr(u))2dσ ≤
∫
�r

(Sr(u))2dσ � σ(�r),

and hence
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ωVd (E)/ωVd (�r) < δ =⇒ σ(E)/σ(�r) ≤ C

K(δ)
,

from which A∞ follows as we choose δ > 0 such that K(δ) > C/ε.
It remains to construct f with the stated properties. Assume therefore that E ⊂ �r is given and that

ωVd (E)/ωVd (�r) < δ where δ > 0 will be determined later. Without loss of generality we may assume that d ≤ r0
C0

(cf. Definition 2.2) and hence our ball �d is contained in one 
-cylinder Z in which the boundary ∂� is given as 
a graph of a function φ. On such local coordinate system we can simplify the geometry through the use of a pull-
back transformation which transforms our PDE into a new parabolic PDE on a subset of U = R+ × Rn−1 × R. Let 
U =R+ ×Rn−1 ×R. We will consider a mapping ρ : U → � known as the Dalhberg–Kenig–Stein adapted distance 
mapping, which appears also in Nečas in the elliptic setting. In the parabolic setting this was studied in [15], and has 
been extensively used in a variety of contexts including [18,24], and [8]. The mapping is given in local coordinates as 
follows:

ρ(x0, x, t) = (x0 + Pγx0ψ(x, t), x, t). (5.1)

Here, P(x, t) ∈ C∞
0 (Q1(0, 0)) is a non-negative function, defined for (x, t) ∈Rn−1 ×R, and

Pλ(x, t) ≡ λ−(n+1)P

(
x

λ
,

t

λ2

)
and

Pλψ(x, t) ≡
∫

Rn−1×R

Pλ(x − y, t − s)ψ(y, s) dy ds.

Then ρ satisfies

lim
(y0,y,s)→(0,x,t)

Pγy0ψ(y, s) = ψ(x, t)

and extends continuously to ρ : U → �. As follows from the discussion above the usual surface measure on ∂U is 
comparable with the measure σ defined by (2.4) on ∂�. By setting v = u ◦ ρ and f v = f ◦ ρ, one finds that the 
equation (1.1) transforms to a new equation satisfied by v:{

vt = div(Aρ∇v) + Bρ · ∇v in U,

v = f on ∂U
(5.2)

where Aρ = [aρ
ij (X, t)], Bρ = [bρ

i (X, t)] are (n × n) and (1 × n) matrices.
Hence for this new equation one can think of the ball �d as the set

{(0, y, s) ∈ U : |y − x| < r and |s − t | < r2}.
The simplicity of this geometry is the primary reason for introducing the adapted distance mapping.

Consider a good ε0-cover for E relative to �r (ε0 to be determined). This gives rise to sets {Om}km=0 and to 
ωVd -dyadic cubes Sm

i so that Om =⋃
i S

m
i . When m = 0 then O0 = �r and S0 = �r . Notice that there exist σ -dyadic 

cubes so that �m
i ⊂ Sm

i ⊂ M�m
i where the scales of Sm

i and �m
i are comparable to, say, rm

i . We make the following 
convention on notation. If �m

i = �rm
i
(ym

i , sm
i ) is said boundary cube, we denote by �m

i
′ the boundary cube of scale

rm
i

′ = rm
i /

√
2

centered at

(ym
i , sm

i
′
) = (ym

i , sm
i − (rm

i )2/2) = (ym
i , sm

i − (rm
i

′
)2).

The function f will be a sum of functions fm that we now define. For m even and 0 ≤ m < k, we set

fm(0, y, s) =
{

1, for (0, y, s) ∈⋃
i �

m
i

′ ⊂Om,

0, elsewhere.
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For m odd we set

fm+1 = −fmXOm+1 .

Observe that

f =
k∑

m=0

fm

is a non-negative Borel function with 0 ≤ f ≤ 1.
Let us denote by u the solution corresponding to f , by um we denote the solutions with boundary data fm. We will 

show that the data fm for m an even integer, generates oscillation of the square function of u on a large enough subset 
Aa,m(x, t) ⊂ �a(x, t). Moreover, sufficiently many of the sets Aa,m(x, t) will be disjoint for distinct m.

Let m be even. Take any (x, t) ∈ E ⊂ Om =⋃
i S

m
i and find Sm ∈ {Sm

i } that contains (x, t). Recall that fm = 1 on 
�m′ and fm = 0 elsewhere in Sm. Let rm be the scale of the radius of �m. If (ym, sm) is the center of �m, then

V ′
m := (rm′

, ym, sm + (rm′
)2)

is the cork screw point of �m′. We later choose a to ensure that V ′
m ∈ �a(x, t).

Clearly, by Lemma 3.6 part a),

ωV ′
m(�m′

) � 1.

Since f ≥ fm + fm+1 by the maximum principle we have

u(Vm
′) =

∫
�r

f (y, s)KVm
′
(y, s)dyds

�
∫
�r

(fm(y, s) + fm+1(y, s))KV ′
m(y, s)dyds

�
∫

�m

(fm(y, s) + fm+1(y, s))KV ′
m(y, s)dyds

= ωV ′
m(�m′

) − ωV ′
m(�m′ ∩Om+1)

= O(1) − ωV ′
m(�m′ ∩Om+1),

where in the fifth line we have used the definition of fm and fm+1. By Lemma 3.6 part c) for E = �m′ ∩ Om+1 we 
have

ωV ′
m(�m′ ∩Om+1) �

ωVd (�m′ ∩Om+1)

ωVd (Sm)
≤ ωVd (Sm ∩Om+1)

ωVd (Sm)
< Cε0,

where the C in the last line depends on doubling constants, and is independent of m. It follows that for ε0 chosen 
sufficiently small one has u(Vm

′) � 1. By the Harnack inequality, Lemma 3.4, there exists a substantial set of points 
later in time where this inequality holds. Namely

u(rm′
, y, s) � 1 for all (y, s) ∈ Hm

where

Hm := {|ym − y|� rm′′} ×
{

1
2 (rm′′

)2 � s − (sm + (rm′
)2) � (rm′′

)2
}

,

with rm′′ = rm′/4. Again we postpone the considerations that will guarantee that Hm ⊂ �a(x, t). In the elliptic case, 
similarly by the Harnack inequality, there is a small ball around Vm

′ where u � 1 holds.
We now produce another set of points closer to the boundary than Hm where u is small. This will give us an 

estimate on the oscillation of the square function of u. Let us consider the values of u(ρrm′, y, s), for small ρ and for 
(y, s) ∈ Hm.
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Observe that by the construction of f ,

fm + χOm+1∩�m � f on �m,

since 
∑m−1

l=0 fl = 0 on �m (m is even).
As fm = 0 on �rm′(ym, sm + (rm′)2) we see that if we set g = χ∂U\�rm′ (ym,sm+(rm′)2) then g + χOm+1∩�m ≥ f on 

∂U .
Let v be the solution with boundary data g. As 0 ≤ v ≤ 1 on U by Lemma 3.3 we have an estimate for some 

0 < β < 1,

v(ρrm′
, y, s) � ρβ when (y, s) ∈ Hm.

It remains to control the contribution of χOm+1∩�m . We want to control ω(ρrm′,y,s)(Om+1 ∩ �m) but we first look at 
ωVm(Om+1 ∩ �m), where Vm is the corkscrew point of �m. By Lemma 3.6 part c) we get

ωVm(Om+1 ∩ �m) � ωVd (Om+1 ∩ �m)

ωVd (�m)

≤ CM

ωVd (Om+1 ∩ �m)

ωVd (M�m)

≤ CM

ωVd (Om+1 ∩ Sm)

ωVd (Sm)
≤ CMε0.

The dependence on M stems from �m ⊂ Sm ⊂ M�m, where M is an absolute constant.
Our goal is to bound ω(ρrm′,y,s)(Om+1 ∩�m) by some η2 small. Assume instead that ω(ρrm′,y,s)(Om+1 ∩�m) ≥ η2. 

Then by Lemma 3.4 since the time coordinate of Vm is larger than s, one can construct a Harnack chain B1, B2, . . . , Bj

consisting of interior balls such that Bi ∩ Bi+1 �= ∅, (ρrm′, y, s) ∈ B1, Vm ∈ Bj and 4Bi ⊂ U for all i. The minimal 
length j of such chain depends on ρ. By repeated application of Lemma 3.4 on each Bi it follows that

CMε0 ≥ ωVm(Om+1 ∩ �m) ≥ Cρω(ρrm′,y,s)(Om+1 ∩ �m) ≥ Cρη2,

where Cρ is a small positive constant depending on ρ. If ε0 is chosen small enough such that ε0 <
Cρ

Cm
η2 this is a 

contradiction. Hence we must have ω(ρrm′,y,s)(Om+1 ∩ �m) < η2 and hence from

v(ρrm′
, y, s) + ω(ρrm′,y,s)(Om+1 ∩ �m) ≥ u(ρrm′

, y, s),

it follows that

u(ρrm′
, y, s) ≤ η2 + Cρβ.

Let us clarify the order in which we choose the parameters. Firstly, on Hm we have u(rm′, ·, ·) � 1, or more precisely 
we have u ≥ 1 − η1. Choose ρ > 0 such that Cρβ ≤ 1

3 (1 − η1) and pick 0 < η2 = 1
3 (1 − η1). Then we choose ε0 so 

small such that ε0 <
Cρ

CM
η2. This yields

u(ρrm′
, y, s) ≤ 2

3 (1 − η1), and u(rm′, y, s) ≥ 1 − η1,

for (y, s) ∈ Hm and hence

|u(rm′
, y, s) − u(ρrm′

, y, s)| ≥ 1
3 (1 − η1) > 0, for all (y, s) ∈ Hm.

This is the key estimate that will allow us to show that the square function of u is large on the set:

Am = {(y0, y, s) : ρrm′
< y0 < rm′

, (y, s) ∈ Hm}
We claim that for large enough aperture a, Am ∈ �r

a(x, t) for our initial point (x, t) ∈ E. The choice of a will depend 
on the 
 in the character (
, N, C0) of the domain � and the ellipticity constant of the matrix A and on ρ: the 
construction above ensures that
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rm ≈ diam(Am) ≈ dist(Am, ∂U) ≈ dist(Am, (x, t)),

where the implied constants depend on ρ and rm denotes, as before, the scale of radius of the ball �m � (x, t).
It follows that for any (y, s) ∈ Hm

1 � |u(rm′
, y, s) − u(ρrm′

, y, s)|2

=
∣∣∣∣∣∣

1∫
0

∇u(ρrm′ + t (rm′ − ρrm′
), y, s)(rm′ − ρrm′

)dt

∣∣∣∣∣∣
2

� (1 − ρ)2(rm′
)2

1∫
0

|∇u(ρr(m) + t (rm′ − ρrm′
), y, s)|2dt

� (rm′
)n+1

1∫
0

|∇u(ρrm′ + t (rm′ − ρrm′
), y, s)|2(rm′

)−n+1dt

� (rm′
)n+1

rm ′∫
ρrm ′

|∇u(y0, y, s)|2(rm′
)−ndy0.

Hence integrating both sides over Hm and dividing by σ(Hn) ≈ (rm′)n+1 will give us

1 �
∫

Am

|∇u(y0, y, s)|2y−n
0 dy0 dy ds.

This is the contribution of each Am to the lower bound on the square function Sa
r (u)(x, t) for Am ⊂ �a

r (x, t). However, 
not all Am (m even) are necessary disjoint. To ensure (Amj

) are disjoint we take a subsequence mj of even integers 
such that

ρrmj ′
> rmj+1 ′

.

Note that by property (6) of the dyadic grid, and for any level m, we have obtained a sequence, Sm
j , of elements of 

the dyadic grid with the property that Sm
j is properly contained in the Sm+1

j . If Sm
j has scale 2−i then Sm+1

j must 

have scale at most 2−i−1, since by property (5) any two dyadic cubes at the same scale that are not identical are 
disjoint. Thus, by skipping a fixed finite number of levels, choosing mj+1 = mj + 2k for some fixed k ∈N we see that 
rmj+1 ≤ M2−2krmj < ρrmj , with M from property (4) and k chosen such that M2−2k ≤ ρ.

The number of disjoint Amj
is proportional to the length of a good ε0-cover, i.e.,ε0 log

(
ωVd (�r)/ω

Vd (E)
)
. This, 

for (x, t) ∈ E we have

(Sr)2(u)(x, t) �
∑
j

∫
Amj

|∇u(y0, y, s)|2y−n
0 dy0 dy ds � ε0 log

(
ωVd (�r)/ω

Vd (E)
)

.

Recall that we have already chosen ε0 previously. It remains to choose δ > 0. For a given ε, let δ be small enough 
to ensure that when ωVd (E)/ωVd (�r) < δ, then the length of good ε0-cover is sufficiently large so that (Sr)2(u) � K

and thus σ(E)/σ(�) �K−1 < ε. This concludes our proof. �
6. Proof of Theorem 1.4

This proof of Theorem 1.4 is based on the following lemma from [8].

Lemma 6.1. (Lemma 3.3 of [8]) Let � be an admissible domain from Definition 2.2 of character (
, N, C0). Let 
L = ∂t − div(A∇·) be a parabolic operator with matrix A satisfying uniform ellipticity with constants λ and �, and 
such that, for all 0 < r ≤ r ′,
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dμ = δ(X)

(
sup

Bδ(X)/2(X)

|∇aij |
)2

dX dt (6.1)

is a Carleson measure with norm ‖μ‖Carl.
Then there exists a constant C = C(λ, �, N, C0) such that for any solution u with boundary data f on any ball 

�r ⊂ ∂� with r ≤ min{r ′/4, r0/(4C0)} (cf. Definition 2.2 for the meaning of r0 and C0) we have∫
T (�r )

|∇u|2x0 dX dt ≤ C(1 + ‖μ‖C,2r0)(1 + 
2)

∫
�2r

(N2r )2(u) dX dt. (6.2)

Here N2r denotes the truncated non-tangential maximal function.

Remark. Let u be a solution of Lu = 0 in � with bounded boundary data f . Since ‖N2r‖2
L∞(�2r )

≤ ‖u‖2
L∞(�)σ (�2r )

and by the maximum principle ‖u‖L∞ ≤ ‖f ‖L∞ , it follows from (6.2) that∫
T (�r )

|∇u|2x0 dX dt ≤ C(1 + ‖μ‖C,2r0)(1 + 
2)‖f ‖2
L∞σ(�2r ),

hence by doubling for all �r with 0 < r ≤ r ′′ we have

σ−1(�r)

∫
T (�r )

|∇u|2x0 dXdt ≤ C(1 + ‖μ‖C,2r0)(1 + 
2)‖f ‖2
L∞, (6.3)

which by Theorem 1.2 shows A∞. We shall track how the Lp solvability depends on the ellipticity λ, � and the 
constant K = C(1 + ‖μ‖C,2r0)(1 + 
2) in the estimate (6.3).

We have the following:

Lemma 6.2. Let � be an admissible domain from Definition 2.2 and L = ∂t − div(A∇·) be a parabolic operator with 
matrix A satisfying uniform ellipticity with constants λ and �. Suppose that for all solutions u with boundary data 
f ∈ L∞ we have

σ−1(�r)

∫
T (�r )

|∇u|2x0 dXdt ≤ K‖f ‖2
L∞, (6.4)

for all 0 < r ≤ r ′′. Then there exists p0 = p0(λ, �, K) > 0 such that for all p0 < p ≤ ∞ the Lp Dirichlet problem is 
solvable for the operator L.

Proof. We revisit the proof of Theorem 1.2 from the previous section, tracking how the result depends on various 
parameters. Assuming (6.4) we have established that for E ⊂ �r ⊂ �d

(β, ε)A∞ : ωVd (E)

ωVd (�r)
< β =⇒ σ(E)

σ(�r)
< ε for ε = C(λ,�,
)(1 + K)

− logβ
. (6.5)

Here we took into account that the ε0 in the good-ε0 cover depended on λ, � and 
 and that the length of the good-ε0
cover was ≈ −ε0 logβ . We have established this for balls on ∂� but the same will also hold for parabolic cubes (in 
fact the metric d can be defined such that “balls” in d are just parabolic cubes).

Given the (β, ε)A∞ statement we want to show that (β, ε)A∞ =⇒ (β, α)A′∞ , for α = 1 − ε where

(β,α)A′∞ : σ
(
{(x, t) ∈ � : KVd (x, t) > βωVd (�)/σ(�)}

)
> ασ(�), for all � ⊂ �d.

Here KVd is the Radon–Nykodim derivative dωVd

dσ
. To see this let

E = {(x, t) ∈ � : KVd (x, t) ≤ βωVd (�)/σ(�)}.
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Then

ωVd (E) =
∫
E

KVd dσ ≤ βωVd (�)

σ(�)

∫
E

dσ ≤ βωVd (�).

Hence since ωVd (E)

ωVd (�)
< β by (β, ε)A∞ we have that σ(E)

σ(�)
< ε. Hence

σ(Ec) = σ(�) − σ(E) > (1 − ε)σ (�),

which is exactly (β, 1 − ε)A′∞ . We use standard arguments to show that (β, α)A′∞ implies a reverse-Hölder inequality 
for KVd . That is, (β, α)A′∞ implies that ωVd belongs to B1+δ(σ ), where we track the dependence of δ on n, ε, β .

As in [5], for any λ > m� := ωVd (�)/σ(�) the Calderón–Zygmund lemma produces a family of pairwise disjoint 
cubes Qi such that KVd ≤ λ for a.e. x ∈ � \⋃i Qi and

λ ≤ σ(Qi)
−1

∫
Qi

KVd dσ ≤ 2nλ.

Hence by (β, α)A′∞ we obtain∫
{(x,t)∈�: KVd (x,t)>λ}

KVd dσ ≤
∑

i

∫
Qi

KVd dσ ≤ 2nλ
∑

i

σ (Qi)

≤ 2nλ

α

∑
i

σ
(
{(x, t) ∈ Qi : KVd (x, t) > βωVd (Qi)/σ (Qi)}

)
≤ 2nλ

α

∑
i

σ
(
{(x, t) ∈ Qi : KVd (x, t) > βλ}

)
≤ 2nλ

α
σ
(
{(x, t) ∈ � : KVd (x, t) > βλ}

)
.

Hence using this we get for the integral:
∞∫

m�

λδ−1
∫

{(x,t)∈�: KVd (x,t)>λ}
KVd dσdλ ≤ 2n

α

∞∫
0

λδσ
(
{(x, t) ∈ � : KVd (x, t) > βλ}

)
dλ

which further (after a substitution t = βλ) equals to

= 2n

αβ1+δ

∞∫
0

tδσ
(
{(x, t) ∈ � : KVd (x, t) > t}

)
dt = 2n

αβ1+δ(1 + δ)

∫
�

(KVd )1+δdσ.

On the other hand by Fubini
∞∫

m�

λδ−1
∫

{(x,t)∈�: KVd (x,t)>λ}
KVd dσdλ

≥
∫

{(x,t)∈�: KVd (x,t)>m�}
KVd (x, t)

KVd (x,t)∫
m�

λδ−1dλdσ

=
∫

{(x,t)∈�: KVd (x,t)>m�}
KVd (x, t)

[
KVd (x, t)δ

δ
− mδ

�

δ

]
dσ

≥ 1

δ

∫
(KVd )1+δdσ − 2m1+δ

�

δ
σ (�).
�
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It follows that(
1

δ
− 2n

αβ1+δ(1 + δ)

)
σ(�)−1

∫
�

(KVd )1+δdσ ≤ 2

δ

⎛⎝σ(�)−1
∫
�

KVd dσ

⎞⎠1+δ

,

from which our claim follows.
Thus if (β, ε)A∞ holds, then ωVd ∈ B1+δ(σ ) for all 0 < δ < δ0 where

1

δ0
= 2n

(1 − ε)β1+δ0(1 + δ0)
.

The duality relationship tells us that the Lp Dirichlet problem is solvable for p = (1 + δ)/δ. To obtain an estimate 
from below on p we may assume that δ < 1. Hence if

p = 1 + δ

δ
>

2n

(1 − ε)β2
≥ 2n

(1 − ε)β1+δ
,

and if we choose ε = 1/2, and the corresponding β = exp(−2C(λ, �, 
)(1 + K)) given by (6.5) then for

p > p0 := 2n+1 exp(4C(λ,�,
)(1 + K)) (6.6)

the Lp Dirichlet problem for the operator L satisfying (6.4) is solvable. This establishes Lemma 6.2. �
In particular by (6.3), Lemma 6.2 applies directly to operators L = ∂t − div(A∇·) on admissible domains � whose 

matrix A satisfies

dμ = δ(X)

(
sup

Bδ(X)/2(X)

|∇aij |
)2

dX dt

is a Carleson measure. Thus, there exists p0 = p0(n, λ, �, ‖μ‖Carl, L) < ∞ such that the Lp Dirichlet problem for 
such an operator L is solvable for all p > p0. In particular this implies that Theorem 1.4 holds for such operators L. 
Indeed, by [8] for all p ≥ 2 if max{
2, ‖μ‖Carl} is sufficiently small then the Lp Dirichlet problem is solvable for an 
operator L. Let C(p) = C(p, λ, �, n) > 0 be the largest number for which the condition max{
2, ‖μ‖Carl} < C(p)

implies Lp solvability. To show that C(p) → ∞ we only have to prove two claims. The first one is that the function 
C(p) is monotone non-decreasing in p. This is due to the fact that Lp solvability implies Lq solvability for all q > p. 
The second that is that for an arbitrary fixed M > 0, if max{
2, ‖μ‖Carl} < M then there exists p < ∞ such that 
C(p) ≥ M . An estimate of how large such a p must be is given by (6.6). Observe that 
 and K on the righthand side 
of (6.6) are both bounded by M , and hence the value of p for which C(p) ≥ M only depends on n, λ, � and M . 
Combining these two claim yields

lim
p→∞C(p) = ∞,

as desired.
We will use the theory of perturbation of operators to conclude that Theorem 1.4 holds for operators, where the 

condition on the gradient has been replaced by the oscillation condition (1.7). Let L0 = ∂t − div(A0∇·) be an operator 
satisfying (1.7) with Carleson norm K0.

We will proceed in two steps, introducing two intermediate operators L1 and L2 to which L0 will be compared.
Following [10], create a new operator L2, namely L2 = ∂t − div(A2∇·), where A2 is the mollification of A0

obtained by convolving the coefficients with a smooth bump function. Then the coefficients of L2 satisfy the Carleson 
gradient condition (6.1) with norm K2 := ‖dμ̃‖Carl, bounded by a multiple of K0. (See the proof of Corollary 2.3 of 
[10] and the proof of Theorem 3.1 in [8] for more details on this construction.)

Precisely, the difference between the coefficients of L0 and L2 satisfies the perturbation-Carleson condition ([22,
25,13]) with constant C(K0), a multiple of K0:

sup
�r

⎛⎜⎝σ(�r)
−1

∫
�

∫
�r

δ(X)−2−n

(
sup

Bδ(X)/2(X)

|A0(X) − A2(X)|
)2

dXdt dσ

⎞⎟⎠< C(K0) (6.7)
r
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Here, �r is the truncated cone of (2.7) and, after integrating, the condition (6.7) is equivalent to stating that 

δ(X)−1
(

supBδ(X)/2(X) |A0(X) − A2(X)|
)2

dXdt is itself a Carleson measure.

However, it is useful to write this in the form written in (2.7), to recall that the Carleson measure condition tells 
us that the (truncated) area integral is bounded on a large fraction of �r . We now, as in [22,13], introduce another 
operator L1 = ∂t − div(A1∇·), which will have the stronger property that

A2
r (Q) :=

∫
�r(Q)

δ(X)−2−n

(
sup

Bδ(X)/2(X)

|A0(X) − A1(X)|
)2

dXdt ≤ C1(K0) (6.8)

The construction of A1 proceeds as follows. Fix a set F ⊂ �r with σ(F ∩ �r) > σ(�r)/2 and A2
r (Q) < CK0

on F . As in [22], Section 3, a sawtooth region is formed over F : the new matrix A1 will equal A2 in that sawtooth 
region over F , and equal A0 otherwise. It is argued in [22], following [13], that the resulting operator L1 satisfies (6.8).

We summarize the steps, and make some comments regarding tracking the dependence on p for solvability of the 
Lp Dirichlet problem.

Step 1. The solvability of Dp for L2, for all p > p2, with an estimate of the dependence of p2 on K2 was carried 
out above in the proof of Lemma 6.2. Thus (suppressing the dependence on the corkscrew point), we have that the 
(β, ε)A∞ condition holds for ωL2 , which gives a constant δ = δ(β, ε) such that ωL2 belongs to B1+δ .

Step 2. The solvability of Dp for L1, for all p > p1, and with p1 = p1(β, ε) is a consequence of the construction of 
sawtooth regions and a comparison of the parabolic measures dωL2 and dωL1 . The constants will depend on domain 
parameters, and will introduce no further dependence upon the Carleson norm. The comparison of these two measures 
is carried out in [22], following the construction in [7] in the elliptic case.

Step 3. The solvability of a Dp0 for L0, will result from the a chain of comparisons starting with L1 and ending 
with L0. The parameter p0 can be tracked explicitly through the transitivity of the reverse Hölder classes, Bq . The 
method ([13]) is as follows: Form the family of parabolic operators Ls , moving from L1 at s = 1 to L0 at s = 0 where 
As = (1 − s)A0 + sA1 and Ls = ∂t −div(As∇·). Theorem 6.6 of [22] provides a small ε0 that depends only on domain 
parameters and ellipticity for which ωLkη

belongs to B2 with respect to ωL(k+1)η
, for any η < ε0.

Remark. Suppose that ω0, ω1 and ω2 are weights satisfying ω1 ∈ Bp1(ω0) and ω2 ∈ Bp2(ω1) with constants 
‖ω1‖Bp1 (ω0) and ‖ω2‖Bp2 (ω1) respectively. Then ω2 ∈ Br(ω0) where r = p1p2

p1+p2−1 and the ‖ω2‖Br (ω0) depends upon 
p1, p2, ‖ω1‖Bp(ω0), ‖ω2‖Bp(ω1).

To conclude, this will be applied approximately ε−1
0 times and we find that ωL0 ∈ B1+δ′(dσ ) for some positive 

δ′ = δ′(n, λ, �, 
, ‖μ‖Carl) from which Lp solvability of the Dirichlet problem follows for all p > (1 + δ′)/δ′. As 
above, this implies C(p) in Theorem 1.4 has the property that C(p) → ∞ as p → ∞.
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