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Abstract

We consider semilinear wave equations with focusing power nonlinearities in odd space dimensions d ≥ 5. We prove that 
for every p > d+3

d−1 there exists an open set of radial initial data in H
d+1

2 × H
d−1

2 such that the corresponding solution exists in a 
backward lightcone and approaches the ODE blowup profile. The result covers the entire range of energy supercritical nonlinearities 
and extends our previous work for the three-dimensional radial wave equation to higher space dimensions.
© 2016 
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1. Introduction

We consider the initial value problem for the focusing nonlinear wave equation

∂2
t u − �u = |u|p−1u,

u|t=0 = u0, ∂tu|t=0 = u1,
(1.1)

for (t, x) ∈ I ×R
d , d = 2k + 1, k ≥ 2 and I an interval, where 0 ∈ I . Eq. (1.1) is conformally invariant for p = d+3

d−1
and we restrict ourselves to the superconformal case

p >
d + 3

d − 1
. (1.2)
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The above equation enjoys scaling invariance in the sense that if u solves Eq. (1.1) then another solution can be 

obtained by setting uλ(t, x) := λ
− 2

p−1 u(t/λ, x/λ) for λ > 0. The conserved energy is given by

E(u(t, ·), ∂tu(t, ·)) = 1
2‖(u(t, ·), ∂tu(t, ·))‖2

Ḣ 1×L2(Rd )
− 1

p+1‖u(t, ·)‖p+1
Lp+1(Rd )

and it is invariant under the above scaling for p = d+2
d−2 , which defines the energy critical case. In general, the scaling 

invariant Sobolev spaces are Ḣ sp × Ḣ sp−1(Rd), where the index sp = d
2 − 2

p−1 is usually referred to as the critical 
regularity.

1.1. Basic well-posedness theory and explicit blowup solutions

One is usually interested in (strong) solutions of Eq. (1.1) that satisfy the equation in integral form by using 
Duhamel’s principle, see for example [45]. In this sense, Eq. (1.1) is locally well-posed in Ḣ sp × Ḣ sp−1(Rd) for d ≥ 5
and p > d+3

d−1 , given that the nonlinearity is sufficiently regular, cf. Lindblad and Sogge [32]. Moreover, solutions that 
correspond to sufficiently small initial data can be extended globally in time. We also note that local well-posedness in 
Hs × Hs−1(Rd) for s > d

2 and smooth nonlinearities is classical [45]. However, global well-posedness does not hold 
in general. A convexity argument by Levine [31] shows that initial data with negative energy (and finite L2-norm) 
lead to blowup in finite time, cf. also [24] for generalizations.

Explicit examples for singularity formation can be obtained by considering the so called ODE blowup solution

uT (t, x) = cp(T − t)
− 2

p−1 , cp :=
[

2(p+1)

(p−1)2

] 1
p−1

, (1.3)

which is independent of the space dimension and solves the ordinary differential equation utt = |u|p−1u for p > 1. By 
finite speed of propagation one can use uT to construct compactly supported smooth initial data such that the solution 
blows up as t → T .

In one space dimension the ODE blowup mechanism is universal, cf. the fundamental work by Merle and Zaag 
[36,37,40,39] and the references therein. In higher dimensions, the situation is more complex. Depending on d and 
p many other explicit examples for singular solutions were found in the past years, including the celebrated work of 
Krieger, Schlag and Tataru [29] on type II blowup solutions for the energy critical equation in three space dimensions, 
see below. For d = 3, p = 3 and p ≥ 7 an odd integer, it was proved by Bizoń, Breitenlohner, Maison and Wasserman 

[4,3] that Eq. (1.1) admits infinitely many radial self-similar blowup solutions of the form (T − t)
− 2

p−1 fn(
|x|

T −t
), 

n ∈N0, with uT corresponding to the groundstate, i.e., f0 = cp . Another blowup mechanism for Eq. (1.1), which only 
exists for d ≥ 11 and a range of supercritical nonlinearities p > p(d) > d+2

d−2 , was recently established by Collot [6], 
see below.

Most of these explicit solutions have unstable directions, i.e., they are unstable under generic small perturbations 
and are not supposed to describe the ‘typical’ blowup behavior for solutions of Eq. (1.1), see for example [26]. On the 
other hand, numerical experiments by Bizoń, Chmaj and Tabor [2] for the three-dimensional equation show that the 
behavior of generic radial blowup solutions can be characterized in terms of the ODE blowup solution locally around 
the blowup point.

The stability of uT in three space dimensions was established in our previous works [10,12] for radial perturbations 
and all p > 1. Recently, we could extend this to the general case (without symmetry) [11] for p > 3. For subconformal 
nonlinearities the dynamics around uT were also investigated by Merle and Zaag [41] in the non-radial setting and in 
arbitrary space dimensions.

In view of the findings in [6] for supercritical radial wave equations in high space dimensions, we extend our 
previous results and establish the stability of the ODE blowup solution in arbitrary odd space dimensions. Although 
for d = 3 we were able to drop the symmetry assumption, it is an open question how this can be accomplished for 
d ≥ 5, see the discussion below. We therefore restrict ourselves to the radial case and study solutions that blow up at 
the origin (which is the most interesting case).

We note that this work is not a mere technical generalization of [10,12]. It can rather be viewed as a systematization 
and refinement of our approach that has also been applied (with slight modifications) to establish stable self-similar 
blowup for equivariant wave maps [13,10] and Yang–Mills fields [8] in supercritical dimensions.
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1.2. Radial solutions in lightcones

In the following we use the abbreviation u[t] := (u(t, ·), ∂tu(t, ·)). We are interested in the behavior of radial 
solutions of Eq. (1.1) in backward lightcones

�T (Rd) := {(t, x) ∈ [0, T ) ×R
d : |x| ≤ T − t},

with vertex (T , 0) for T > 0. Consequently, a suitable concept of (strong) solutions in lightcones is required. This can 
be obtained for example by combining the classical Duhamel formula on Rd with suitable cut-off techniques, see [24]. 
Here, we pursue another approach which is based on the formulation of Eq. (1.1) in self-similar coordinates

τ := − log(T − t) + logT , ξ := x

T − t
.

To motivate the following, let u ∈ C∞(�T ) be a radial solution of Eq. (1.1). By setting

ψT
1 (− log(T − t) + logT , x

T −t
) := (T − t)

2
p−1 u(t, x),

ψT
2 (− log(T − t) + logT , x

T −t
) := (T − t)

2
p−1 +1

∂tu(t, x),

(1.4)

we obtain a smooth solution of the first order system

∂τψ
T
1 = ψT

2 − ξ · ∇ψT
1 − 2

p−1ψT
1 ,

∂τψ
T
2 = �ψT

1 − ξ · ∇ψT
2 − p+1

p−1ψT
2 + ψT

1 |ψT
1 |p−1.

(1.5)

By setting 	T (τ) := (ψT
1 (τ, ·), ψT

2 (τ, ·)) this can be written as

∂τ	
T (τ) = L0	

T (τ) + F(	T (τ)),

where L0 represents the linear part of the right hand side of Eq. (1.5). To formulate the following statement we define 
for k ∈ N0

Hk
rad(B

d) := {u ∈ Hk(Bd) : u is radial}.

Proposition 1.1. Let H := H
d+1

2
rad × H

d−1
2

rad (Bd). There is a dense domain D(L0) ⊂ H such that the operator L0 :
D(L0) ⊂ H → H is closable and its closure generates a strongly continuous one parameter semigroup {S0(τ ) : τ ≥ 0}
of bounded operators on H.

This is an immediate consequence of the results proved in Section 4.2.1. By Duhamel’s principle we can now 
formulate the above equation as an abstract integral equation

	T (τ) = S0(τ )	T (0) +
τ∫

0

S0(τ − τ ′)F(	T (τ ′))dτ ′. (1.6)

We take this as a defining equation for our notion of strong lightcone solutions.

Definition 1.2. We say that u: �T (Rd) → R is a radial (H
d+1

2 -)solution of Eq. (1.1) if the corresponding 	T belongs 
to C([0, ∞), H) and satisfies Eq. (1.6) for all τ ≥ 0.

Definition 1.3. Let (u0, u1) ∈ H
d+1

2
rad × H

d−1
2

rad (Rd). We say that T > 0 belongs to T (u0, u1) ⊆ (0, ∞) if there exists a 
solution u: �T (Rd) → R to Eq. (1.1) with u[0] = (u0, u1)|Bd

T
. Set

T(u0,u1) := sup{T (u0, u1) ∪ {0}}.
If T(u0,u1) < ∞, we call T(u0,u1) the blowup time at the origin.
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1.3. The main result

We prove the stability of the ODE blowup solution in the following sense.

Theorem 1.4. For d = 2k + 1, k ∈N, k ≥ 2, fix p > d+3
d−1 and T0 > 0. There are constants M, δ > 0 such that if u0, u1

are radial functions with

‖(u0, u1) − uT0[0]‖
H

d+1
2 ×H

d−1
2 (Bd

T0+δ)
< δ

M
(1.7)

the following statements hold:

i) The blowup time at the origin T := T(u0,u1) is contained in the interval [T0 − δ, T0 + δ].
ii) The solution u : �T (Rd) → R satisfies

(T − t)
2

p−1 ‖u(t, ·) − uT (t, ·)‖L∞(Bd
T −t )

� (T − t)μp ,

(T − t)−sp‖u(t, ·) − uT (t, ·)‖L2(Bd
T −t )

� (T − t)μp , (1.8)

(T − t)−sp+1‖u[t] − uT [t]‖Ḣ 1×L2(Bd
T −t )

� (T − t)μp ,

for sp = d
2 − 2

p−1 , μp = min{ 2
p−1 , 1} − ε and ε > 0 small. Furthermore, for j = 2, . . . , d+1

2 ,

(T − t)−sp+j‖u[t]‖Ḣ j ×Ḣ j−1(Bd
T −t )

� (T − t)μp . (1.9)

Remark 1. The normalizing factors in Eq. (1.8) and Eq. (1.9) appear naturally and reflect the behavior of uT in the 
respective norms. Since the ODE blowup solution has a trivial spatial profile, it vanishes identically in higher order 
homogeneous Sobolev norms, which yields Eq. (1.9). The ε-loss in the convergence rates is due to the application of 
abstract arguments from semigroup theory.

Remark 2. Our approach is perturbative, i.e., we construct solutions of the form u = uT +ϕ. This and the embedding 
H

d+1
2 ↪→ L∞ guarantee that the nonlinearity is smooth for all p > 1 provided that the perturbation is small enough. 

In particular, Theorem 1.4 can be extended to all p > 1 without modifications. We are therefore able to construct 
solutions of Eq. (1.1) (at least in a backward lightcone) for nonlinearities that are not covered by the standard local 
well-posedness theory.

If we restrict ourselves to Sobolev spaces of integer order, then the regularity required in Theorem 1.4 is optimal for 
p > 5 by local well-posedness (�sp� = d+1

2 ). However, for p ≤ 5 this might be improved and we show this explicitly 
for p = 3 in Theorem 1.5 below. In this case, �s3� = d−1

2 and H �s3�-solutions can be defined in a similar manner as 
above.

Theorem 1.5 (Improvement of the topology). Let p = 3. Then the first statement of Theorem 1.4 holds (mutatis 
mutandis) for radial initial data satisfying Eq. (1.7) in H �sp� × H �sp�−1, where sp = d

2 − 1. The corresponding 
solution u : �T (Rd) → R satisfies the estimates

(T − t)−sp‖u(t, ·) − uT (t, ·)‖L2(Bd
T −t )

� (T − t)
1
2 −ε,

(T − t)−sp+j‖u[t] − uT [t]‖Ḣ j ×Ḣ j−1(Bd
T −t )

� (T − t)
1
2 −ε,

for j = 1, . . . , �sp�.

We note that there are possibly other situations where the topology can be optimized and it will become clear in 
Section 1.5 how this could be realized within our framework. However, we do not pursue this here.
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1.4. Related results

Blowup for the wave equation with (sub)conformal focusing nonlinearities 1 < p ≤ d+3
d−1 , d ≥ 2, was considered in 

the seminal work of Merle and Zaag [34,35], cf. also Antonini and Merle [1]. They were able to prove that all blowup 
solutions diverge with the self-similar rate in the backward lightcone of the blowup point (at the energy level). They 
also extended their previous analysis for the one-dimensional wave equation to d dimensions in the subconformal case 
to characterize the behavior of radial solutions provided that the blowup occurs outside the origin [38]. In [41,42] they 
studied the dynamics around uT (without symmetry assumptions) and investigated properties of the blowup surface.

In the superconformal regime, much less is known concerning the behavior of generic solutions. However, for 
energy subcritical nonlinearities, Killip, Stovall and Visan [24] as well as Hamza and Zaag [19] were able to derive 
upper bounds for the blowup rate.

In the energy critical case, uT is the unique self-similar solution and it can be used to construct blowup solutions 
that diverge in the scale invariant norm Ḣ 1 × L2(R3), cf. for example [30]. This behavior is referred to as type I and 
contrasted by type II blowup, where solutions stay bounded in the critical norm. First examples of type II solutions 
were obtained by Krieger, Schlag and Tataru [29,27] for the radial equation in three dimensions using the (up to 
scaling) unique solution of the corresponding elliptic problem. We also refer to [9] for solutions that blow up in 
infinite time. A detailed description of all possible type II blowup dynamics was provided in the celebrated work 
of Duyckaerts, Kenig and Merle, cf. [14] as well as [16] for further references. For d = 4, smooth type II blowup 
solutions were constructed by Hillairet and Raphaël [20], and we also refer to [21] for a recent result by Jendrej in 
five dimensions.

To the best knowledge of the authors, all currently available results for supercritical nonlinearities p > d+2
d−2 are 

either conditional or consider perturbations around certain special solutions. Type II blowup behavior for radial so-
lutions was excluded by Duyckaerts, Kenig and Merle [15] for d = 3 and by Dodson and Lawrie [7] for d = 5. We 
also refer to similar results for the defocusing case obtained in [23,25] or [5]. These works show that if the critical 
norm stays bounded up to the maximal time of existence, then the solution is global in time. We also mention a recent 
work by Krieger and Schlag [28], where smooth global solutions are constructed that have infinite critical norm (but 
are bounded in all higher norms). Recently, based on the pioneering work of Merle, Raphaël and Rodnianski [33] for 
the energy supercritical nonlinear Schrödinger equation, a new blowup mechanism was described by Collot [6] for 
the radial wave equation in d ≥ 11 and p > 1 + 4

d−4−2
√

d−1
. There, solutions blow up via concentration of the soliton 

profile, which is somewhat reminiscent of the type II behavior in the energy critical case. However, the solutions 
diverge in the critical norm and this blowup mechanism could therefore be referred to as type IIb in order to avoid 
confusion.

1.5. Strategy of the proof

We consider the radial equation

∂2
t u − 1

rd−1 ∂r(r
d−1∂ru) = |u|p−1u, (1.10)

for u = u(t, r) and initial data (u0, u1) = uT0 [0] + (f, g), where (f, g) are free radial functions. We study the initial 
value problem in a backward lightcone {(t, r) : t ∈ [0, T ), r ∈ [0, T − t]}, where T > 0 is a parameter that will be 
fixed in the final step of the proof. We introduce rescaled variables and rewrite Eq. (1.10) as a first order system in 
(radial) similarity coordinates

τ := − log(T − t) + logT , ρ := r
T −t

,

which yields the abstract evolution problem

∂τ	 = L0	 + F(	),

where 	 = (ψ1, ψ2). Here, L0 represents the radial wave operator and F(	) = (0, |ψ1|p−1ψ1). The backward light-
cone now corresponds to

{(τ, ρ) : τ ∈ [0,∞), ρ ∈ [0,1]}.
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Note that the parameter T does not appear in the equation itself, but it shows up in the initial data. In this formulation, 
the ODE blowup solution corresponds to the static solution cp. The ansatz 	 = cp + � yields

∂τ� = L� + N(�), (1.11)

with L := L0 + L′ representing the linearized part of the equation and N denoting the nonlinear remainder. Eq. (1.11)
is investigated as an abstract ODE on a Hilbert space with norm

‖u‖2 := ‖u1(| · |)‖2
Hk(Bd )

+ ‖u2(| · |)‖2
Hk−1(Bd )

,

for u = (u1, u2). For Theorem 1.4, we choose k = (d + 1)/2, whereas for the proof of Theorem 1.5, k = (d − 1)/2 is 
sufficient. The choice of the topology is motivated as follows.

First, we have to derive suitable Lipschitz estimates for N. In the first situation (Theorem 1.4), we can exploit the 
Sobolev embedding Hk ↪→ L∞ for k > d

2 to infer that the nonlinear remainder is smooth for all p > 1 (given that 
the perturbations are sufficiently small). An application of Moser’s inequality then yields the desired result. For p = 3
(Theorem 1.5), the nonlinearity is analytic, hence regularity is not an issue and the Lipschitz estimates can be obtained 
by using Hölder’s inequality and Sobolev embedding.

Furthermore, we need a decay estimate for the time evolution of the linear wave equation in similarity coordinates. 
To see what can be expected, let us drop the symmetry assumption for a moment and let u(t, x), x ∈R

d , be a generic 
solution of the free wave equation

∂2
t u − �u = 0.

Let ψ1 denote the rescaled solution in similarity coordinates as in Eq. (1.4). The scaling behavior of Sobolev norms 
implies that

‖ψ1(τ, ·)‖Ḣ k(Bd ) = (T − t)
2

p−1 − d
2 +k‖u(t, ·)‖Ḣ k(Bd

T −t )
,

where we write τ = − log(T − t) + logT for brevity. One can easily check that ‖u(t, ·)‖Ḣ k(Bd
T −t )

is bounded. However, 
without further assumptions on the regularity this cannot be improved since one can construct explicit solutions that 
decay arbitrarily slow in Ḣ k(Bd

T −t ). Hence, a decay estimate for ψ1 in Ḣ k(Bd) can only be obtained if 2
p−1 − d

2 +
k > 0. Unfortunately, in backward lightcones such homogeneous quantities are only seminorms and we have to work 
instead with

‖ψ1(τ, ·)‖Hk(Bd ) =
k∑

j=0

(T − t)
2

p−1 − d
2 +j‖u(t, ·)‖Ḣ j (Bd

T −t )
.

At first glance, the lower order terms seem to spoil the decay estimate. However, this can be overcome by considering 
equivalent norms. In the radial case, the construction is based on the reduction of the d-dimensional radial wave 
equation to the one-dimensional case (or simply to a lower dimensional equation, depending on the required level of 
regularity). For our purpose we set Du(t, r) := ( 1

r
∂r )

d−3
2 (rd−2u(t, r)) and observe that

(d−1)/2∑
j=0

(T − t)
2

p−1 − d
2 +j ‖u(t, | · |)‖Ḣ j (Bd

T −t )

� (T − t)
2

p−1 − 1
2 ‖Du(t, ·)‖Ḣ 1(0,T −t).

Since Du solves the one-dimensional equation, ‖Du(t, ·)‖Ḣ 1(0,T −t) is bounded. This equivalence is crucial in the 
proof of Theorem 1.5. It is also obvious that we have decay only if p < 5. For Theorem 1.4, this is not sufficient 
(also because the above quantity only provides d−1

2 derivatives). We could work instead with ‖Du(t, ·)‖Ḣ 2(0,T −t), but 
this is only a seminorm (the radial derivative of Du does not vanish at the origin). Adding the energy part solves this 
problem, but spoils again the decay estimate for p ≥ 5. Hence, we consider∥∥(ψ1(τ, ·),ψ2(τ, ·))‖2

D := (T − t)
4

p−1 +1‖Du(t, ·)‖2
Ḣ 2(0,T −t)

+ (T − t)
4

p−1 +1‖Dut(t, ·)‖2
Ḣ 1(0,T −t)

+ (T − t)
4

p−1
∣∣(Du)r(t, T − t) + (Du)t (t, T − t)

∣∣2
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and show that ‖ · ‖
H

d+1
2 ×H

d−1
2 (Bd )

� ‖ · ‖D . Observe that solutions of the one-dimensional equation wtt − wrr = 0

satisfy

d
dt

|wr(t, T − t) + wt(t, T − t)|2 = 0.

In view of this, the desired decay follows for all p > 1. We note that for d = 3 such an equivalent norm also exists in 
the non-radial context, cf. [11]. However, it is not clear how this can be generalized to arbitrary space dimensions.

To prove the results of Section 1.3 we proceed as in [10,12] and use the theory of strongly continuous one-parameter 
semigroups to address the linearized equation. Since the operator L is a highly non-selfadjoint object, semigroup 
theory can deploy its full strength and enables us to treat the problem on a very abstract level.

• With the above considerations and suitable equivalent norms it is easy to show that L0 is the generator of a semi-
group which satisfies a suitable decay estimate. Since L′ is bounded, well-posedness of the linearized problem 
and the existence of a strongly continuous semigroup (S(τ ))τ≥0 generated by L follow immediately.

• To deduce suitable growth estimates for the semigroup we analyze the spectrum of the generator. Compactness 
of the perturbation reduces matters to the investigation of the eigenvalue problem, which can be solved explicitly 
in terms of hypergeometric functions. We show that the spectrum of L is contained in a left half plane except 
for the point λ = 1, which is an eigenvalue with eigenfunction g. The existence of this unstable eigenvalue is a 
consequence of the time translation symmetry of the problem and we define a spectral projection P to analyze 
the behavior of solutions on the stable subspace. Note that we have to verify that rgP = 〈g〉, since we are dealing 
with a non-selfadjoint problem. In contrast to [10,12], where we used resolvent estimates and the Gearhardt–Prüss 
Theorem to deduce growth bounds for (1 − P)S(τ ), we employ a much simpler argument here and exploit the 
compactness of the perturbation directly. This is a substantial simplification relying only on standard results from 
semigroup theory. As a result we obtain that

‖(1 − P)S(τ )‖ � e−μpτ , PS(τ )u = eτ u, where μp > 0.

• We rewrite Eq. (1.11) in Duhamel form,

�(τ) = S(τ )U(v, T ) +
τ∫

0

S(τ − τ ′)N(�(τ ′))dτ ′, (1.12)

where U(v, T ) with v = (f, g) gives the original initial data. The main ingredients for the nonlinear theory are the 
above estimates for the semigroup and Lipschitz estimates for the nonlinearity of the form

‖N(u) − N(v)‖� (‖u‖ + ‖v‖)‖u − v‖.
The rest of the proof is purely abstract.

• We add a correction term to Eq. (1.12) in order to suppress the unstable behavior of S(τ ). An application of the 
Banach fixed point theorem shows the existence of a unique solution to the modified equation

�(τ) = S(τ ) U(v, T ) +
τ∫

0

S(τ − τ ′)N(�(τ ′))dτ ′

− eτ C(�,U(v, T )),

given that v is small and T is close to T0. Furthermore, the solution decays to zero with the linear decay rate.
• In the final step, we show that for every small v there exists a Tv close to T0 such that C(�, U(v, Tv)) = 0. We 

exploit the fact that C(�, u) ∈ 〈g〉 and apply the Brouwer fixed-point theorem as in [11]. This is a substantial 
simplification compared to [10,12], where differentiability of several quantities was required. Transforming back 
to original coordinates yields the result.
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2. Notation

Throughout the paper we assume that d = 2k + 1, k ∈ N, k ≥ 2 is fixed. We write N for the natural numbers 
{1, 2, 3, . . .} and set N0 := {0} ∪N. As mentioned above, Bd

R denotes the open ball in Rd centered at zero with radius 
R > 0. If R = 1, we simply write Bd . The notation a � b means a ≤ Cb for an absolute constant C > 0 and we also 
write a � b if a � b and b � a.

For a function x �→ g(x), we use the notation g(n)(x) = dng(x)
dxn for derivatives of order n ∈N. For n = 1, 2 we also 

write g′(x) and g′′(x), respectively. For a function (x, y) �→ f (x, y) partial derivatives of order n will be denoted by 
∂n
x f (x, y) = ∂n

∂xn f (x, y) = ∂n
1 f (x, y). For � ⊂ R

d a domain, Hm(�), m ∈ N0, denotes the standard Sobolev space 
with norm

‖u‖2
Hm(�) :=

∑
α:|α|≤m

‖∂αu‖2
L2(�)

,

where α = (α1, . . . , αd) ∈ N
d
0 is a multi-index, i.e., ∂α = ∂

α1
x1 . . . ∂

αd
xd

and |α| = α1 + · · · + αd .
The set of bounded linear operators on a Hilbert space H is denoted by B(H). For a closed linear operator L we 

write σ(L) and σp(L) for the spectrum and point spectrum, respectively. Furthermore, we set RL(λ) := (λ − L)−1 for 
λ /∈ σ(L).

3. The radial wave equation in similarity coordinates

We restrict ourselves to radial solutions of Eq. (1.1) and write u(t, x) = u(t, r), where r = |x|, by slight abuse of 
notation. We introduce the radial Laplace operator on Rd ,

�ru(t, r) := ∂2
r u(t, r) + d−1

r
∂ru(t, r)

and study the equation

∂2
t u(t, r) − �ru(t, r) = |u(t, r)|p−1u(t, r). (3.1)

The initial data at t = 0 are assumed to be of the form

u[0] = uT0[0] + (f, g), (3.2)

where T0 > 0 is fixed and (f, g) can be chosen freely. At the origin we impose the natural boundary condition 
∂ru(t, 0) = 0 for all t > 0. We define rescaled variables

U1(t, r) := (T − t)
2

p−1 u(t, r), U2(t, r) := (T − t)
1+ 2

p−1 ∂tu(t, r),

where T > 0. This yields the first order system(
∂tU1
∂tU2

)
=
(

(T − t)−1U2 − 2
p−1 (T − t)−1U1

(T − t)�rU1 − (T − t)−1
(p+1

p−1U2 − |U1|p−1U1
))

with data

U1(0, r) = ( T
T0

)
2

p−1 cp + T
2

p−1 f (r), U2(0, r) = ( T
T0

)
p+1
p−1 2

p−1cp + T
p+1
p−1 g(r),

and boundary conditions

∂rU1(t,0) = ∂rU2(t,0) = 0,

for all t > 0. In the rescaled variables the blow-up solution uT is static and corresponds to cp := (cp, 2
p−1cp). We 

introduce similarity variables

ρ = r

T − t
, τ = − log(T − t) + logT .

Derivatives transform according to
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∂t = eτ

T
(∂τ + ρ∂ρ), ∂r = eτ

T
∂ρ.

Setting ψj(τ, ρ) := Uj(T − T e−τ , T e−τ ρ) for j = 1, 2, we obtain the system(
∂τψ1
∂τψ2

)
=
(

ψ2 − ρ∂ρψ1 − 2
p−1ψ1

�ρψ1 − ρ∂ρψ2 − p+1
p−1ψ2 + |ψ1|p−1ψ1

)
(3.3)

with the boundary conditions ∂ρψj (τ, 0) = 0 and initial data

ψ1(0, ρ) = ( T
T0

)
2

p−1 cp + T
2

p−1 f (Tρ),

ψ2(0, ρ) = ( T
T0

)
p+1
p−1 2

p−1cp + T
p+1
p−1 g(Tρ).

(3.4)

We restrict the problem to the backward lightcone of (T , 0), i.e., we study Eq. (3.3) for ρ ∈ [0, 1] and τ > 0.

3.1. Perturbations around the ODE blow up solution

Inserting the ansatz(
ψ1
ψ2

)
=
(
ϕ1
ϕ2

)
+ cp

into Eq. (3.3) we obtain(
∂τϕ1
∂τϕ2

)
=
(

ϕ2 − ρ∂ρϕ1 − 2
p−1ϕ1

�ρϕ1 − ρ∂ρϕ2 − p+1
p−1ϕ2 + pc

p−1
p ϕ1 + N(ϕ1)

)
for ρ ∈ [0, 1] and τ > 0 where

N(ϕ1) = |cp + ϕ1|p−1(cp + ϕ1) − c
p
p − pc

p−1
p ϕ1.

The initial data are given by

ϕ1(0, ρ) = ( T
T0

)
2

p−1 cp + T
2

p−1 f (Tρ) − cp

ϕ2(0, ρ) = ( T
T0

)
p+1
p−1 2

p−1cp + T
p+1
p−1 g(Tρ) − 2

p−1cp.

4. Proof of Theorem 1.4

Throughout this section, p > d+3
d−1 is a fixed real number.

4.1. Functional setting

We consider radial functions û defined on Bd
R , i.e., û(ξ) = u(|ξ |), ξ ∈ B

d
R . In order to avoid confusion owing to 

identification of û and u, we define

Hm
r (Bd

R) :={u : (0,R) → C such that u is m − times

weakly differentiable and ‖u(| · |)‖Hm(Bd
R) < ∞}, (4.1)

for m ∈ N0. The density of C∞(Bd
R) in Hm(Bd

R) implies the density of

C∞
e [0,R] := {u ∈ C∞[0,R] : u(2k+1)(0) = 0, k ∈N0}

in Hm
r (Bd

R). For the rest of the paper we set

md := d + 1

2

and introduce the Hilbert space
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H := Hmd
r × Hmd−1

r (Bd)

with norm

‖u‖2 := ‖u1(| · |)‖2
Hmd (Bd )

+ ‖u2(| · |)‖2
Hmd−1(Bd )

,

for u = (u1, u2)
T .

4.1.1. Equivalent norms on H
We define a norm on H which is ‘tailor-made’ for the investigation of the linearized time evolution of the pertur-

bation. First, we need the following auxiliary result.

Lemma 4.1. Let u ∈ H
md
r (Bd). Then

‖u(| · |)‖2
Hmd (Bd )

� ‖u‖2
L2(0,1)

+
md∑
n=1

‖(·)n−1u(n)‖2
L2(0,1)

.

Furthermore, for all u ∈ H
md−1
r (Bd),

‖u(| · |)‖2
Hmd−1(Bd )

�
md−1∑
n=0

‖(·)nu(n)‖2
L2(0,1)

.

The proof is given in Appendix B. To proceed, we define

Ddu(ρ) :=
(
ρ−1 d

dρ

) d−3
2

(ρd−2u(ρ)).

Note that

Ddu(ρ) =
md−2∑
n=0

anρ
n+1u(n)(ρ) = a1ρu(ρ) + · · · + ρ

d−1
2 u( d−3

2 )(ρ), (4.2)

for constants an > 0. The kernel of Dd consists of functions which are highly singular at the origin,

kerDd =
{

〈ρ−3〉, for d = 5,

〈ρ−3, ρ−5, . . . , ρ−(d−2)〉, for d ≥ 7.

We also introduce the integral operator

Kdu(ρ) := ρ2−dK d−3
2 u(ρ), Ku(ρ) :=

ρ∫
0

su(s)ds.

If u ∈ H, then u1, u2 are md -times, respectively, (md − 1)-times weakly differentiable functions. By Sobolev 
embedding, u2 ∈ Cmd−2[δ, 1] for every 0 < δ < 1 and, since md > d

2 , u1 ∈ C[0, 1] ∩ Cmd−1[δ, 1]. Hence, the expres-
sions Dduj , j = 1, 2, are defined as sums of weighted classical derivatives on (0, 1]. Furthermore, kerDd = {0} on 
H

md
r (Bd) and Hmd−1

r (Bd), respectively. We infer that Dd is invertible on H and

KdDdu = DdKdu = u.

Now, consider the sesquilinear form (·|·)D defined by

(u|v)D := (Ddu1|Ddv1
)
Ḣ 2(0,1)

+ (Ddu2|Ddv2
)
Ḣ 1(0,1)

+ ([Ddu1]′(1) + [Ddu2](1)
)([Ddv1]′(1) + [Ddv2](1)

)
,

and set ‖u‖D := √
(u|u)D . For u ∈H, (Ddu1)

′′ and (Ddu2)
′ have to be interpreted as sums of weighted weak deriva-

tives. The proof of the next Proposition is provided in Appendix C.
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Lemma 4.2. ‖ · ‖D and ‖ · ‖ are equivalent norms on H. In particular,

‖u‖2 � ‖Ddu1‖2
H 2(0,1)

+ ‖Ddu2‖2
H 1(0,1)

� ‖u‖2
D � ‖u‖2

for all u ∈H.

By using the results of Lemma 4.1 and Lemma 4.2 together with the Sobolev embedding Hm(0, 1) ↪→ Cm−1[0, 1]
and the density of C∞

e [0, 1]2 in H, we obtain the next result.

Corollary 4.3. Let u ∈H. Then Ddu1 ∈ C1[0, 1], Ddu2 ∈ C[0, 1] and

Dduj (0) = 0, j = 1,2.

4.2. The linearized problem

We exploit the following commutator relations satisfied by Dd and its inverse Kd .

Lemma 4.4. Let u ∈ H
md−1
r (Bd) ∩Cmd−1(0, 1) and let � denote the dilation operator defined by �u(ρ) := −ρu′(ρ). 

Then

Dd�u(ρ) = �Ddu(ρ) + Ddu(ρ) (4.3)

for ρ ∈ (0, 1). Furthermore, for u ∈ H
md
r (Bd) ∩ Cmd (0, 1) we have the identity

Dd�ρu(ρ) = [Ddu]′′(ρ) (4.4)

for ρ ∈ (0, 1).

Proof. We note that the assumptions on u imply that the above expressions vanish if and only if u = 0. To prove the 
identities, we proceed by induction. A direct calculation shows that for d = 5, D5�u = �D5u + D5u. Assuming that 
Eq. (4.3) is true for some odd number d > 5, we use the identities

(·)2�u = �[(·)2u] + 2(·)2u, (·)−1[�u]′ = �[(·)−1u′] − 2(·)−1u′,

to obtain

Dd+2�u(ρ) = ρ−1[Dd [(·)2�u]]′(ρ) = ρ−1[Dd�[(·)2u]]′(ρ) + 2Dd+2u(ρ)

= ρ−1[�Dd [(·)2u]]′(ρ) + 3Dd+2u(ρ) = �Dd+2u(ρ) + Dd+2u(ρ).

The identity given in Eq. (4.4) is well-known, cf. [18], p. 75. �
Lemma 4.5. Let w ∈ C1[0, 1] ∩ C2(0, 1) satisfy w(0) = 0. Then

Kd�w = �Kdw − Kdw, (4.5)

and

Kdw′′ = �ρKdw. (4.6)

Proof. For d = 5, Eq. (4.5) follows from integration by parts. Assume that it is true for some d > 5 odd. We use the 
identities

K�w = �Kw + 2K, (·)−2�w = �[(·)−2w] − 2(·)−2w

to infer that

Kd+2�w = (·)−2KdK�w = (·)−2Kd�Kw + 2Kd+2w

= (·)−2�KdKw + Kd+2w = �Kd+2w − Kd+2w.
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Using integration by parts one can easily check that Eq. (4.6) is true for d = 5 provided that w(0) = 0. Assume that 
it holds for some odd number d > 5. To clarify notation we write �(d)

ρ u(ρ) := ρ1−d(ρd−1u′(ρ))′. A straightforward 
calculation shows that

[Kd+2w
′′](ρ) = ρ−d

ρ∫
0

sd−1[Kdw′′](s)ds = ρ−d

ρ∫
0

sd−1[�(d)
s Kdw](s)ds

= ρ−1[Kdw]′(ρ) = (2 − d)ρ−dK d−3
2 w(ρ) + ρ2−dK d−5

2 w(ρ)

= �(d+2)
ρ Kdw(ρ). �

4.2.1. Well-posedness of the linearized time evolution
We define the operator (L̃0, D(L̃0)) by

L̃0u(ρ) :=
(

u2(ρ) + �u1(ρ) − 2
p−1u1(ρ)

�ρu1(ρ) + �u2(ρ) − p+1
p−1u2(ρ)

)
, (4.7)

D(L̃0) :=
{

u ∈ H ∩ C∞(0,1)2 : Ddu2 ∈ C2[0,1],
Ddu1 ∈ C3[0,1], [Ddu1]′′(0) = 0

}
.

Using the results of Lemma 4.4 we get that

Dd(L̃0u)j = (A0Ddu)j (4.8)

for j = 1, 2, where

A0w(ρ) :=
(

w2(ρ) − ρw′
1(ρ) + p−3

p−1w1(ρ)

w′′
1(ρ) − ρw′

2(ρ) − 2
p−1w2(ρ)

)
.

In view of Lemma 4.2 is now obvious that the regularity properties satisfied by functions in D(L̃0) imply that L̃0u ∈ H. 
We note that C∞

e [0, 1]2 ⊂D(L̃0), i.e., L̃0 is densely defined.

Lemma 4.6. Let u ∈D(L̃0). Then

Re(L̃0u|u)D ≤ − 2
p−1‖u‖2

D.

Proof. To abbreviate the notation we set wj := Dduj , j = 1, 2, for u ∈D(L̃0). By Eq. (4.8)

[Dd(L̃0u)1]′(ρ) + [Dd(L̃0u)2](ρ) = w′
2(ρ) − ρw′′

1(ρ) + w′′
1(ρ)

− ρw′
2(ρ) − 2

p−1

(
w′

1(ρ) + w2(ρ)
)
.

Evaluation at ρ = 1 yields

[Dd(L̃0u)1]′(1) + [Dd(L̃0u)2](1) = − 2
p−1

[
w′

1(1) + w2(1)
]
.

Furthermore,

[Dd(L̃0u)1]′′(ρ) = w′′
2(ρ) + �w′′

1(ρ) − p+1
p−1w′′

1(ρ),

and

[Dd(L̃0u)2]′(ρ) = w′′′
1 (ρ) + �w′

2(ρ) − p+1
p−1w′

2(ρ),

for ρ ∈ (0, 1). Note that for functions w ∈ C[0, 1] ∩ C1(0, 1) integration by parts yields

Re(�w|w)L2(0,1) = 1‖w‖2
2 − 1 |w(1)|2.
2 L (0,1) 2
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With this we infer that

Re
([Dd(L̃0u)1]′′

∣∣[Ddu1]′′
)
L2(0,1)

= Re
(
w′′

2 |w′′
1

)
L2(0,1)

− 1
2

∣∣w′′
1(1)

∣∣2
−
(

1
2 + 2

p−1

)∥∥w′′
1

∥∥2
L2(0,1)

,

and

Re
([Dd(L̃0u)2]′

∣∣[Ddu2]′
)
L2(0,1)

= Re
(
w′′′

1 |w′
2

)
L2(0,1)

− 1
2

∣∣w′
2(1)

∣∣2
−
(

1
2 + 2

p−1

)∥∥w′
2

∥∥2
L2(0,1)

.

Using these identities and performing one additional integration by parts we obtain

Re(L̃0 u|u)D = − 2
p−1

∣∣[Ddu1]′(1) + [Ddu2](1)
∣∣2

−
(

1
2 + 2

p−1

)(∥∥[Ddu1]′′
∥∥2

L2(0,1)
+ ∥∥[Ddu2]′

∥∥2
L2(0,1)

)
− 1

2

∣∣[Ddu1]′′(1) − [Ddu2]′(1)
∣∣2 ≤ − 2

p−1‖u‖2
D. �

Lemma 4.7. Set μ = 1 − 2
p−1 . For every f = (f1, f2)

T ∈ C∞
e [0, 1]2 there exists a function u ∈ D(L̃0) satisfying the 

equation

(μ − L̃0)u = f.

Proof. Trivially, for f = 0 we have u = 0. Assume that f ∈ C∞
e [0, 1]2 does not vanish identically. We set

F(ρ) := Ddf2(ρ) + Ddf1(ρ) + ρ[Ddf1]′(ρ)

and define functions

w1(ρ) :=
ρ∫

0

1

1 − s2

1∫
s

F (s′)ds′ds,

w2(ρ) := ρ

1 − ρ2

1∫
ρ

F (s)ds − Ddf1(ρ).

The properties of F imply that w1 ∈ C∞(0, 1) ∩ C3[0, 1], w2 ∈ C∞(0, 1) ∩ C2[0, 1] and the functions satisfy the 
boundary conditions w1(0) = w′′

1(0) = w2(0) = 0. A direct calculation shows that w1, w2 solve the system of equa-
tions

ρw′
1(ρ) − w2(ρ) = Ddf1(ρ),

w2(ρ) − w′′
1(ρ) + ρw′

2(ρ) = Ddf2(ρ).
(4.9)

We apply Kd to Eq. (4.9) and use the results of Lemma 4.5 to obtain

Kdw1(ρ) − Kdw2(ρ) − �Kdw1(ρ) = f1(ρ),

2Kdw2(ρ) − �ρKdw1(ρ) − �Kdw1(ρ) = f2(ρ).

Upon setting uj (ρ) := Kdwj for j = 1, 2 and defining u := (u1, u2)
T we obtain a solution of the equation (μ −

L̃0)u = f. The properties of the functions wj imply that u ∈D(L̃0) and the claim follows. �
Lemma 4.8. The operator L′ : H → H defined by

L′u :=
(

0

pc
p−1
p u1

)
(4.10)

is compact.
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Proof. Let (un)n∈N be a sequence that is uniformly bounded in H. By Lemma 4.2, (Ddu1,n)n∈N is uniformly bounded 
in H 2(0, 1). The compact embedding H 2(0, 1) ↪→ H 1(0, 1) implies the existence of a subsequence, again denoted by 
(Ddu1,n)n∈N, which is a Cauchy sequence in H 1(0, 1). The claim follows from the fact that

‖L′un − L′um‖� pc
p−1
p ‖Ddu1,n − Ddu1,m‖H 1(0,1). �

In view of Lemma 4.6, Lemma 4.7 and the boundedness of L′, we can apply the Lumer–Phillips Theorem [17], 
p. 83, Theorem 3.15, together with the Bounded Perturbation Theorem [17], p. 158, to show that the linearized time 
evolution is well-posed. In particular, by the equivalence of ‖ · ‖D and ‖ · ‖ we can formulate the following result.

Proposition 4.9. The operator (L̃0, D(L̃0)) is closable and its closure, denoted by (L0, D(L0)), generates a strongly-
continuous one-parameter semigroup of bounded operators (S0(τ ))τ≥0 on H satisfying the growth estimate

‖S0(τ )u‖ ≤ Me
− 2

p−1 τ‖u‖
for all u ∈H, τ > 0 and a constant M ≥ 1. Furthermore, the operator

L := L0 + L′, D(L) =D(L0),

is the generator of a strongly-continuous semigroup (S(τ ))τ≥0.

In order to derive a suitable growth estimate for S(τ ) we investigate the spectrum of the operator (L, D(L)).

4.2.2. Spectral properties of the generator

Lemma 4.10. Let λ ∈ σ(L). Then either λ = 1 or

Reλ ≤ max{− 2
p−1 ,−1}.

Moreover, λ = 1 is an eigenvalue and the corresponding eigenspace is spanned by the constant function g = (1, p+1
p−1 ).

Proof. Let λ ∈ σ(L). If Reλ ≤ − 2
p−1 then the assertion is obviously true. So assume that Reλ > − 2

p−1 . Then λ /∈
σ(L0) by standard semigroup theory. The identity (λ −L) = (1 −L′RL0)(λ −L0) and the compactness of L′ imply that 
λ ∈ σp(L). In particular, there exists an eigenfunction u ∈D(L) satisfying the eigenvalue equation (λ − L)u = 0. The 
regularity properties of functions in H imply that L acts as a classical differential operator on the interval (0, 1). By a 
straightforward calculation one can check that if u satisfies the eigenvalue equation then u1 ∈ C[0, 1] ∩ Cmd−1(0, 1)

is a nontrivial solution of the second order ordinary differential equation

ρ2u′′(ρ) − �ρu(ρ) + 2(λ + p+1
p−1 )ρu′(ρ)

+ (λ + 2
p−1 )(λ + p+1

p−1 )u(ρ) − pc
p−1
p u(ρ) = 0.

(4.11)

Since the coefficients are smooth on (0, 1) we infer that u1 ∈ C∞(0, 1) ∩ C[0, 1]. We apply Dd to the equation and 
use the results of Lemma 4.4, where we proved the identity

Dd [ρu′(ρ)] = ρ[Ddu]′(ρ) − Ddu(ρ).

Similarly, one can show that

Dd [ρ2u′′(ρ)] = ρ2[Ddu]′′(ρ) − 2ρ[Ddu]′(ρ) + 2Ddu(ρ).

Upon setting w := Ddu1 we infer that

−(1−ρ2)w′′(ρ) + 2ρ(λ + 2
p−1 )w′(ρ)

+ (λ + 2 − 1)(λ + 2 )w(ρ) − pc
p−1
p w(ρ) = 0,

(4.12)

p−1 p−1
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where w ∈ H 2(0, 1) ∩C1[0, 1] satisfies the boundary condition w(0) = 0, cf. Corollary 4.3. By substituting ρ �→ z :=
ρ2 and setting v(z) := w(

√
z) one obtains the hypergeometric differential equation

z(1 − z)v′′(z) + [c − (a + b + 1)z]v′(z) − abv(z) = 0

with parameters

a = 1
2 (λ − 2), b = 1

2 (λ + p+3
p−1 ), c = 1

2 .

The assumption Reλ > − 2
p−1 implies that Re(c − a − b) = 1 − 2

p−1 − Reλ < 1. Let us assume for the moment that 
Re(c − a − b) is not zero or a negative integer. Around ρ = 1 two linearly independent solutions are given by {v1, ṽ1}, 
where

v1(z) = 2F1(a, b;a + b + 1 − c;1 − z)

ṽ1(z) = (1 − z)c−a−b
2F1(c − a, c − b;1 + c − a − b;1 − z),

and 2F1 denotes the standard hypergeometric function, see e.g. [43]. If Re(c − a − b) = −n, for n ∈ N0, then one 
solution is still given by v1 and

ṽ1(z) = cv1(z) log(1 − z) + (1 − z)−nh(z),

where c might be zero for n ∈ N and h is analytic around z = 1. In all cases, the requirement w ∈ H 2( 1
2 , 1) excludes 

the solution ṽ1 and we infer that v is a multiple of v1. Around ρ = 0 we have the fundamental system {v0, ṽ0}, where

ṽ0(z) = 2F1(a, b; c; z),
v0(z) = z1/2

2F1(a + 1 − c, b + 1 − c;2 − c; z).
Hence, there are constants c0, c1 ∈ C such that

v1 = c0ṽ0 + c1v0.

The condition w(0) = 0 implies that v(0) = v1(0) = 0 and thus c0 must be zero. By [43],

c0 = �(a + b + 1 − c)�(1 − c)

�(a + 1 − c)�(b + 1 − c)
.

Since the gamma function has no zeros, c0 can only vanish if either a + 1 − c or b + 1 − c = 0 is a pole. This is 
equivalent to

λ = 1 − 2k or λ = −2k − 2p
p−1 − 2

p−1 for k ∈ N0.

The latter condition implies that λ < − 2
p−1 which is excluded by assumption. The first condition yields that λ = 1 −2k

for some k ∈N0, hence

λ ∈ {1,−1,−3, · · · }.
For p > 3, − 2

p−1 ∈ (−1, 0), hence λ = 1 is the only possibility. For d+3
d−1 < p ≤ 3, −∞ < − 2

p−1 ≤ −1 and in this 
case either λ = 1 or λ ≤ −1. This proves the first claim.

A straightforward calculation shows that g = (1, p+1
p−1 )T satisfies the equation

(1 − L)g = 0.

Furthermore, it is easy to check that Ddg1 = α1ρ, Ddg2 = α2ρ for constants α1, α2 > 0. Hence, g ∈ D(L̃0), which 
proves that 1 is an eigenvalue. Suppose that there is another eigenfunction g̃ ∈ H associated to λ = 1. Then Ddg̃1
satisfies Eq. (4.12). With the same arguments as before we infer that Ddg̃1(ρ) = α̃ρ · 2F1(a + 1 − c, b + 1 − c; 2 −
c; ρ2), for some α̃ ∈ C. For λ = 1, a + 1 − c = 0, hence Ddg̃1 = α̃ρ which implies that g̃1 = βg1 for some β ∈ C. 
The equation (1 − L)g̃ = 0 then shows that g̃2 = βg2, which proves that the eigenspace of λ = 1 is spanned by g. �
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4.2.3. Time evolution for the linearized problem

Lemma 4.11. There exists a projection P ∈ B(H) onto 〈g〉 which commutes with S(τ ) and

S(τ )Pf = eτ Pf

for all f ∈H and all τ > 0. Moreover,

‖(1 − P)S(τ )f‖ ≤ Me−μpτ‖(1 − P)f‖ (4.13)

for all f ∈H, τ > 0, some constant M ≥ 1 and

μp = min{ 2
p−1 ,1} − ε

for some small ε > 0.

Proof. The eigenvalue λ = 1 is isolated and we define P ∈ B(H) by

P = 1

2πi

∫
γ

RL(λ)dλ,

where γ is a positively oriented circle around 1 in the complex plane with radius rγ = 1
2 , cf. [22], p. 178, Theorem 6.5. 

The projection commutes with the operator L and its resolvent, see [22], p. 173, Theorem 6.5, and thus with the 
semigroup. Furthermore, H = ker P ⊕ rg P and the operator L is decomposed into parts L|D(L)∩ker P and L|D(L)∩rg P, 
where L|D(L)∩rg Pu = Lu for u ∈ D(L) ∩ rg P (analogously for L|D(L)∩ker P). The spectrum of the restricted operator 
is given by

σ(L|D(L)∩ker P) = σ(L) \ {1}, σ (L|D(L)∩rg P) = {1}.
It is immediate that 〈g〉 ⊂ rg P. It remains to show the reverse inclusion. We first observe that if dim rg P = ∞, 

then λ = 1 would belong to the essential spectrum of L [22], p. 239, Theorem 5.28, which is invariant under compact 
perturbations [22], p. 244, Theorem 5.35. However, 1 /∈ σ(L0) and we infer that P has finite rank.

Next, we convince ourselves that rg P ⊂ D(L). Let u ∈ rgP. By density of D(L) in H, there exists a sequence 
(un)n∈N0 ⊂ D(L) such that un → u. The fact that P is bounded yields Pun → u and since PD(L) ⊂ D(L) by [22], 
p. 178, Theorem 6.17, (Pun)n∈N0 ⊂ rg P ∩ D(L). By boundedness of L|D(L)∩rg P we get that LPun → f, for some 
f ∈ rg P ∩D(L). The closedness of L now implies that LPun → Lu and u ∈ D(L). We infer that 1 − L|rg P acts on a 
finite dimensional Hilbert space and that λ = 0 is its only spectral point. Hence, it is nilpotent and (1 − L|rg P)ku = 0
for all u ∈ rg P and some minimal k ∈ N. If k = 1, then the claim follows. So let us assume that k ≥ 2. Then there 
exists a nontrivial function u ∈ rg P ⊂ D(L) such that (1 − L|rg P)u ∈ ker(1 − L|rg P) ⊂ ker(1 − L), i.e., u satisfies the 
equation

(1 − L)u = αg

for some α ∈C. A straightforward calculation shows that the first component then satisfies

ρ2u′′
1(ρ) − �ρu1(ρ) + 4p

p−1ρu′
1(ρ) = 3p+1

p−1 α.

Since u1 ∈ C[0, 1] ∩Cmd−1(0, 1) for u ∈ H the equation can be interpreted in a classical sense for ρ ∈ (0, 1). Smooth-
ness of the coefficients implies that u1 ∈ C∞(0, 1). We apply Dd and set w := Ddu1, where w ∈ H 2(0, 1) ∩C∞(0, 1)

and w(0) = 0 by Lemma 4.3. This yields

−(1 − ρ2)w′′(ρ) + 2(p+1)
p−1 ρw′(ρ) − 2(p+1)

p−1 w(ρ) = g(ρ),

with g(ρ) = α̃pρ for some α̃p ∈ C, α̃p �= 0. Recalling the proof of Lemma 4.10 we know that a fundamental system 
is given by w0(ρ) = ρ and

w1(ρ) = 2F1(− 1 ,
p+1

, 1 ;ρ2) = (1 − ρ2)
− 2

p−1 h(ρ),
2 p−1 2
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where h is continuous on [0, 1] and h(0) �= 0 as well as limρ→1 h(ρ) �= 0. For the Wronskian we obtain W(w0, w1) =
−(1 − ρ2)

− p+1
p−1 . From the variation of constants formula and the boundary condition w(0) = 0 we infer that

w(ρ) = c0ρ − α̃pρ

ρ∫
ρ0

sh(s)ds + α̃p(1 − ρ2)
− 2

p−1 h(ρ)

ρ∫
0

s2(1 − s2)
2

p−1 ds

for some constants c0 ∈ C and ρ0 ∈ [0, 1]. By continuity of w it is required that limρ→1(
∫ ρ

0 s2(1 − s2)
2

p−1 ds) = 0, 
which is impossible since the integrand is strictly positive. This proves that k = 1.

Finally, we establish the estimates for the semigroup. Recall that the growth bound ω0(S), cf. [17], p. 251, for a 
semigroup S = (S(τ ))τ>0 can be related to the spectral radius r(S(τ )) of the bounded operator S(τ ) for each τ > 0

by the Hadamard formula. This yields ω0(S) = 1
τ

log r(S(τ )). From Lemma 4.9 we know that r(S0(τ )) ≤ e
− 2

p−1 τ for 
all τ > 0. By the Duhamel formula, see [17], p. 258, Prop. 2.12,

(1 − P)S(τ ) = S0(τ ) +
τ∫

0

S0(τ − τ ′)L′S(τ ′)dτ ′ − PS(τ ).

Compactness of L′ and the fact that P has finite rank imply that for every τ > 0 the operator (1 − P)S(τ ) is the sum 

of S0(τ ) and a compact perturbation. If r((1 − P)S(τ )) ≤ e
− 2

p−1 τ for all τ > 0, Eq. (4.13) follows immediately. If 

r((1 − P)S(τ )) > e
− 2

p−1 τ , then (1 − P)S(τ ) has a spectral point μ ∈ C with |μ| = r((1 − P)S(τ )) = e
(− 2

p−1 +α)τ for 
some α > 0. Since μ is not in the spectrum of S0(τ ) it must be an eigenvalue and by the spectral mapping theorem 
for the point spectrum [17], IV.3.7, p. 277, the generator has an eigenvalue λ with Reλ = − 2

p−1 + α. In view of the 
spectrum of L on the stable subspace, this is a contradiction if p ≥ 3. If p < 3, then we know that Reλ ≤ −1 and we 
infer that |μ| ≤ e−τ . This implies that r((1 − P)S(τ )) ≤ e−ωpτ for all τ > 0, where ωp = min{ 2

p−1 , 1}. This and the 
definition of the growth bound show that for every ε > 0 and μp := ωp − ε there is a constant M ≥ 1 such that

‖(1 − P)S(τ )f‖ ≤ Me−μpτ‖(1 − P)f‖
for all f ∈H. The fact that λ = 1 is an eigenvalue with eigenfunction g yields S(τ )Pf = eτ Pf. �
4.3. Nonlinear perturbation theory

For the rest of this section we restrict ourselves to real valued functions. Furthermore, whenever the domain in the 
H

md
r -norm is not indicated, it is the unit ball Bd ⊂R

d . By Bδ we denote the open ball in H centered at the origin with 
radius δ > 0.

4.3.1. Estimates for the nonlinearity
For u = (u1, u2) we define

N(u)(ρ) :=
(

0
N(u1(ρ))

)
,

where

N(x) := n(cp + x) − n(cp) − n′(cp)x, n(x) = x|x|p−1,

and cp is the constant from Eq. (1.3). Obviously, N(0) = N ′(0) = 0.

Lemma 4.12. Let δ > 0 be sufficiently small. Then

‖N(u) − N(v)‖� (‖u‖ + ‖v‖)‖u − v‖ (4.14)

for all u, v ∈ Bδ ⊂H.
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Proof. We show that

‖N(u(| · |)) − N(v(| · |))‖Hmd

�
(‖u(| · |)‖Hmd + ‖v(| · |)‖Hmd

)‖u(| · |) − v(| · |)‖Hmd

(4.15)

for all u, v ∈ C∞
e [0, 1] that have Hmd

r -norm less than δ. By density, this estimate can be extended to all of Hmd
r (Bd)

and Eq. (4.14) follows.
Note that cp > 3

4 for all p > 1. In fact, cp → 1 for p → ∞ and cp → ∞ as p → 1. This implies that N : 
[− 1

2 , 12 ] → R is smooth. By the fundamental theorem of calculus,

N(x) − N(y) =
x∫

y

N ′(s)ds

= (x − y)

1∫
0

N ′(y + s(x − y))ds,

(4.16)

for all x, y ∈ [− 1
2 , 12 ]. From Sobolev embedding we know that

‖u‖L∞(0,1) � ‖u(| · |)‖Hmd

for all u ∈ Hmd (Bd). Hence, we choose δ > 0 so small that ‖u‖L∞(0,1) < 1
2 for all ‖u(| · |)‖Hmd < δ. Now let u, v ∈

C∞
e [0, 1] satisfy this smallness condition. Then v(ρ) + s(u(ρ) − v(ρ)) ∈ [− 1

2 , 12 ] for all s, ρ ∈ [0, 1]. The fact that 
Hmd (Bd) is a Banach algebra and Eq. (4.16) imply that

‖N(u(| · |)) − N(v(| · |))‖Hmd

≤ ‖u(| · |) − v(| · |)‖Hmd

1∫
0

∥∥[N ′ ◦ (v + s(u − v))
]
(| · |)∥∥

Hmd
ds.

We estimate the integral term with Moser’s inequality, see for example [44]. To this end, we extend the relevant 
functions to the whole space. Using a smooth cut-off function we can construct F : R → R such that F is smooth, 
F = N ′ on [− 1

2 , 12 ] and F = 0 on R \ [− 3
4 , 34 ]. The properties of N imply that F(0) = 0. To extend u and v we apply 

Lemma B.2 and note that the extension U ∈ Cmd [0, ∞) of u can always be constructed in such a way that

‖U(| · |)‖L∞(Rd ) = ‖u‖L∞(0,1).

By Lemma B.2,

‖U(| · |)‖Hmd (Rd ) � ‖u(| · |)‖Hmd (Bd ).

The respective extension for v is denoted by V . By Moser’s inequality,∥∥[N ′ ◦ (v + s(u − v))
]
(| · |)∥∥

Hmd (Bd )

≤ ∥∥[F ◦ (U + s(U − V ))
]
(| · |)∥∥

Hmd (Rd )

�
∥∥U(| · |) + s

(
U(| · |) − V (| · |))∥∥

Hmd (Rd )

� ‖U(| · |)‖Hmd (Rd ) + ‖V (| · |)‖Hmd (Rd )

� ‖u(| · |)‖Hmd (Bd ) + ‖v(| · |)‖Hmd (Bd )

for all s ∈ [0, 1]. This implies Eq. (4.15). �
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4.3.2. The nonlinear Cauchy problem
For u ∈H we consider integral equation

�(τ) = S(τ )u +
τ∫

0

S(τ − τ ′)N(�(τ ′))dτ ′

on the Banach space

X := {� ∈ C([0,∞),H) : ‖�‖X := sup
τ>0

eμpτ‖�(τ)‖ < ∞}.

Here, μp > 0 is the constant from Lemma 4.11. In the following we denote by Xδ the closed subspace

Xδ := {� ∈ X : ‖�‖X ≤ δ}.

4.3.3. Correction of the unstable behavior
We define

C(�,u) := Pu +
∞∫

0

e−τ ′
PN(�(τ ′))dτ ′,

and set

K(�,u)(τ ) := S(τ )u +
τ∫

0

S(τ − τ ′)N(�(τ ′))dτ ′ − eτ C(�,u).

Theorem 4.13. Let δ > 0 be sufficiently small and let c > 0 be sufficiently large (independent of δ). For every u ∈ H
with ‖u‖ ≤ δ

c
there exists a unique �(u) ∈Xδ that solves the equation

�(u) = K(�(u),u).

Furthermore, the map u �→ �(u) is continuous.

Proof. We argue along the lines of [10,12]. For fixed (�, u) ∈ Xδ × H, continuity of the map τ �→ K(�, u)(τ ): 
[0, ∞) → H follows essentially from the strong continuity of the semigroup. To see that K(·, u) maps Xδ into itself 
for ‖u‖ ≤ δ

c
, we decompose the operator according to

K(�,u) = PK(�,u) + (1 − P)K(�,u).

By Lemma 4.12 we have

‖N(�(τ))‖ � δ2e−2μpτ ,

for � ∈ Xδ and all τ > 0. Hence,

‖PK(�,u)(τ )‖ � eτ

∞∫
τ

e−τ ′ ‖PN(�(τ ′))‖dτ ′ � δ2e−2μpτ ,

and

‖(1 − P)K(�,u)(τ )‖ � e−μpτ‖u‖ +
τ∫

0

e−μp(τ−τ ′)‖N(�(τ ′))‖dτ ′

� ( δ
c

+ δ2)e−μpτ .

Consequently, eμpτ‖K(�, u)(τ )‖ � δ
c

+ δ2 ≤ δ for all τ > 0, given that c > 0 is sufficiently large and δ > 0 is 
sufficiently small. For the contraction property of K(·, u) we use a similar decomposition and the fact that
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‖N(�(τ)) − N(	(τ))‖ � δe−μpτ‖�(τ) − 	(τ)‖
for any �, 	 ∈ Xδ and all τ > 0 by Lemma 4.12. In particular,

‖P[K(�,u)(τ ) − K(	,u)(τ )]‖ � δ‖� − 	‖X
∞∫

τ

eτ−τ ′(1+2μp)dτ ′

� δe−2μpτ‖� − 	‖X ,

and

‖(1 − P)[K(�,u)(τ ) − K(	,u)(τ )]‖ � δe−μpτ

τ∫
0

‖�(τ ′) − 	(τ ′)‖dτ ′

� δe−μpτ‖� − 	‖X ,

which implies that K(·, u) is contracting given that δ is sufficiently small. An application of the Banach fixed point 
theorem yields the existence of a unique solution �(u) ∈Xδ . Continuity of the solution map u �→ �(u) follows easily 
from the estimate

‖K(�,u)(τ ) − K(�,v)(τ )‖ = ‖S(τ )(1 − P)(u − v)‖ = e−μpτ‖u − v‖
and the fact that K(·, u) is a contraction mapping. �
4.3.4. The initial data operator

For R > 0 we set

HR := Hmd
r × Hmd−1

r (Bd
R)

with norm defined by

‖v‖2
HR = ‖v1(| · |)‖2

Hmd (Bd
R)

+ ‖v2(| · |)‖2
Hmd−1(Bd

R)
,

cf. (4.1). If R = 1, then we simply use the symbol H, as before. In particular, ‖ · ‖ = ‖ · ‖H1 . Set

V(v, T )(ρ) :=
(

T
2

p−1 v1(Tρ)

T
p+1
p−1 v2(Tρ)

)
, κ(T ) :=

⎛⎝ ( T
T0

)
2

p−1 cp

( T
T0

)
p+1
p−1 2

p−1cp

⎞⎠ ,

and

U(v, T ) := V(v, T ) + κ(T ) − κ(T0).

Lemma 4.14. Let v ∈ HT0+δ for δ > 0 sufficiently small. Then T �→ U(v, T ): [T0 − δ, T0 + δ] → H is continuous. 
Furthermore, if ‖v‖HT0+δ ≤ δ then

‖U(v, T )‖ � δ

for all T ∈ [T0 − δ, T0 + δ].

Proof. For simplicity we prove the result only for T0 = 1. The general case is analogous. Let v ∈H1+δ for 0 < δ ≤ 1
2 . 

To show continuity of the map T �→ U(v, T ) we consider the first component and estimate

‖[U(v, T )]1 − [U(v, T̃ )]1‖Hmd (Bd )

= ‖T 2
p−1 v1(|T · |) − T̃

2
p−1 v1(|T̃ · |) + T

2
p−1 cp − T̃

2
p−1 cp‖Hmd (Bd )

� ‖v1(|T · |) − v1(|T̃ · |)‖Hmd (Bd ) + |T 2
p−1 − T̃

2
p−1 |‖v1(|T · |)‖Hmd (Bd )

+|T 2
p−1 − T̃

2
p−1 |
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for T , ̃T ∈ [1 − δ, 1 + δ]. Scaling implies that for all T ∈ [1 − δ, 1 + δ]
‖v(|T · |)‖Hmd (Bd ) � ‖v(| · |)‖Hmd (Bd

1+δ)

for v ∈ H
md
r (Bd

1+δ). Using this and the triangle inequality we infer that for all v1, ṽ1 ∈ H
md
r (Bd

1+δ)

‖v1 (|T · |) − v1(|T̃ · |)‖Hmd (Bd ) ≤ ‖v1(|T · |) − ṽ1(|T · |)‖Hmd (Bd )

+‖ṽ1(|T · |) − ṽ1(|T̃ · |)‖Hmd (Bd ) + ‖ṽ1(|T̃ · |) − v1(|T̃ · |)‖Hmd (Bd )

� ‖v1(| · |) − ṽ1(| · |)‖Hmd (Bd
1+δ)

+ ‖ṽ1(|T · |) − ṽ1(|T̃ · |)‖Hmd (Bd ).

Since C∞
e [0, 1 + δ] is dense in Hmd

r (Bd
1+δ) there is a ṽ1 ∈ C∞

e [0, 1 + δ] such that ‖v1(| · |) − ṽ1(| · |)‖Hmd (Bd
1+δ)

< ε

for given ε > 0. From the smoothness of ṽ1 we infer that

lim
T →T̃

‖ṽ1(T ·) − ṽ1(T̃ ·)‖Hmd (Bd ) = 0.

Similar estimates can be obtained for the second component which yields the claimed continuity. For v ∈ H1+δ , 
‖v‖H1+δ ≤ δ and T ∈ [1 − δ, 1 + δ],

‖[U(v, T )]1‖Hmd (Bd ) � T
2

p−1 ‖v1(T ·)‖Hmd (Bd ) + cp|T 2
p−1 − 1|

� ‖v1‖Hmd (Bd
1+δ)

+ |T − 1|� δ.

A similar estimate can be obtained for the second component and we infer that

‖U(v, T )‖� δ. �
4.3.5. Variation of the blowup time

Theorem 4.15. Set R := T0 + δ
c

for c > 0 sufficiently large and δ > 0 sufficiently small. For every v ∈ HR with 
‖v‖HR ≤ δ

c2 there exists a T ∈ [T0 − δ
c
, T0 + δ

c
] and a function � ∈Xδ which satisfies

�(τ) = S(τ )U(v, T ) +
τ∫

0

S(τ − τ ′)N(�(τ ′))dτ ′ (4.17)

for all τ > 0. In particular, � is the unique solution of this equation in C([0, ∞), H).

Proof. Let v ∈ HR . For δ and c chosen appropriately, the smallness condition for v and Lemma 4.14 imply that 
U(v, T ) satisfies the assumptions of Theorem 4.13 for all T ∈ [T0 − δ

c
, T0 + δ

c
]. Hence, for every such T there exists 

a �T := �(U(v, T )) ∈ Xδ satisfying

�T (τ) = S(τ ) U(v, T ) +
τ∫

0

S(τ − τ ′)N(�T (τ ′))dτ ′

− eτ C(�T ,U(v, T ))

for all τ > 0. We show that there is a Tv ∈ [T0 − δ
c
, T0 + δ

c
] such that C(�Tv, U(v, Tv)) = 0. Note that rg C = 〈g〉, 

where g is the symmetry mode from Lemma 4.10. Hence, it suffices to show that(
C(�Tv ,U(v, Tv))

∣∣g)= 0.

We find that⎛⎝ ∞∫
0

e−τ PN(�T (τ))dτ

∣∣∣∣g
⎞⎠� ‖g‖

∞∫
0

e−τ‖PN(�T (τ))‖dτ

�
∞∫

e−τ‖�T (τ)‖2dτ � δ2.
0
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The key observation is that

∂T κ(T )|T =T0 = αg

for a constant α > 0. By Taylor expansion of κ we get

U(v, T ) = V(v, T ) + (T − T0)αg + (T − T0)
2qT

for all T ∈ [T0 − δ
c
, T0 + δ

c
] and for some remainder term qT . Thus,

(PU(v, T )|g) = (PV(v, T )|g) + α(T − T0)‖g‖2 + O(δ2

c2 )

= α(T − T0)‖g‖2 + O( δ

c2 )

by definition of V and the smallness of v in HT0+ δ
c . We notice that the order terms depend continuously on T . 

Summing up, we obtain that the equation(
C(�T ,U(v, T ))|g)= α(T − T0)‖g‖2 + O( δ

c2 ) + O(δ2) = 0

is equivalent to

T = T0 + F(T )

where F(T ) = O( δ

c2 ) + O(δ2). For c sufficiently large and δ = δ(c) sufficiently small we get |F(T )| ≤ δ
c
. Hence, the 

continuous function T �→ T0 + F(T ) maps the interval [T0 − δ
c
, T0 + δ

c
] to itself and has thus a fixed point at some 

T = Tv. We therefore obtain a solution �Tv ∈ Xδ of the original equation (4.17). For the uniqueness of the solution in 
C([0, ∞), H) we refer the reader to the proof of Theorem 4.11 in [10]. �
4.3.6. Proof of Theorem 1.4

Choose δ, c > 0 such that Theorem 4.15 holds and set δ′ = δ/c. Let (u0, u1) ∈ H
d+1

2 × H
d−1

2 (Rd) be radial func-
tions, i.e., (u0, u1) = (ũ0(| · |), ũ1(| · |)), that satisfy

‖(u0, u1) − uT0[0]‖
H

d+1
2 ×H

d−1
2 (Bd

T0+δ′ )
≤ δ′

c
.

For (f, g) = (ũ0, ũ1) − uT0 [0], cf. Eq. (3.2), this assumption implies that

‖(f, g)‖HT0+δ/c ≤ δ

c2 .

Hence, v := (f, g) satisfies the assumptions of Theorem 4.15. We infer that there exists a T ∈ [T0 − δ, T0 + δ] such 
that Eq. (4.17) has unique solution � ∈ C([0, ∞), H) with

‖�(τ)‖ ≤ δe−μpτ , ∀τ > 0.

Hence, 	 = � + cp is a solution of Eq. (3.3) in similarity coordinates (in the Duhamel sense) with initial data 
	(0) = U(v, T ) + cp . Consequently,

u(t, x) = (T − t)
− 2

p−1 ψ1(− log(T − t) + logT ,
|x|

T −t
)

is a radial solution of the original wave equation (1.1) with initial data

u(0, x) = T
− 2

p−1 ψ1(0,
|x|
T

) = uT0(0, x) + f (|x|) = u0(x)

∂tu(0, x) = T
− p+1

p−1 ψ1(0,
|x|
T

) = ∂tuT0(0, x) + g(|x|) = u1(x)

for x ∈ B
d . Furthermore, u satisfies the estimates
T
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(T − t)
2

p−1 − d
2 +k‖u(t, ·) − uT (t, ·)‖Ḣ k(Bd

T −t )

= (T − t)−
d
2 +k‖ψ1(− log(T − t) + logT ,

|·|
T −t

) − cp‖Ḣ k(Bd
T −t )

= ‖ψ1(− log(T − t) + logT , | · |) − cp‖Ḣ k(Bd )

= ‖ϕ1(− log(T − t) + logT , | · |)‖Ḣ k(Bd )

� ‖ϕ1(− log(T − t) + logT , | · |)‖Hmd (Bd )

� ‖�(− log(T − t) + logT )‖� (T − t)μp ,

for k = 0, . . . , d+1
2 . The bounds for the time derivative of the solution follow accordingly.

5. Improvement of the topology – proof of Theorem 1.5

The verification of Theorem 1.5 is analogous to the proof of Theorem 1.4 and we only discuss the main arguments. 
With the definitions of Section 4.1 we introduce the product space H̃ := H

md−1
r × H

md−2
r (Bd) with norm

‖|u‖|2 = ‖u1(| · |)‖2
Hmd−1(Bd )

+ ‖u2(| · |)‖2
Hmd−2(Bd )

.

5.0.7. Time evolution for the linearized problem
We proceed as in Section 4.2.1. Since most proofs are similar or can even be copied verbatim we only sketch the 

main steps and point out differences. With the same notation as in Section 4.1 we define

‖|u‖|2D := ‖Ddu1‖2
Ḣ 1(0,1)

+ ‖Ddu2‖2
L2(0,1)

.

Lemma 5.1. We have

‖|u‖|2 � ‖Ddu1‖2
H 1(0,1)

+ ‖Ddu2‖2
L2(0,1)

� ‖|u‖|2D
for all u ∈ H̃. Furthermore, Ddu1 ∈ C[0, 1] and Ddu1(0) = 0.

Proof. The equivalence of the parts involving only u1 follows from Lemma 4.1 and the proof of Lemma 4.2. For the 
second component the same methods can be used to show that

‖u(| · |)‖2
Hmd−2(Bd )

�
md−2∑
n=0

‖(·)n+1u(n)‖2
L2(0,1)

� ‖Ddu‖2
L2(0,1)

for all u ∈ H
md−2
r (Bd). The properties of Ddu1 are a consequence of the density of C∞

e [0, 1] in H̃ and the embedding 
H 1(0, 1) ↪→ L∞(0, 1). �

We note that Eq. (4.3) and Eq. (4.4) of Lemma 4.4 hold for all u ∈ Hmd−2 ∩ Cmd−1(0, 1) and u ∈ Hmd−1 ∩
Cmd (0, 1), respectively. For the moment, we leave the value of p unspecified and consider L̃0 as defined in Eq. (4.7)
on the domain

D(L̃0) :=
{

u ∈ H̃ ∩ C∞(0,1)2 : Ddu1 ∈ C2[0,1],
Ddu2 ∈ C1[0,1], (Ddu2)(0) = 0

}
.

The perturbation L′ is defined as in Eq. (4.10) and Lemma 4.8 holds with H replaced by H̃. It is easy to check that

Re
(
Dd(L̃0u)1

∣∣Ddu1
)
Ḣ 1(0,1)

+ Re
(
Dd(L̃0u)2

∣∣Ddu2
)
L2(0,1)

≤ ( 1
2 − 2

p−1 )‖|u‖|2D
for all u ∈ D(L̃0) and that rg(μ − L̃0) is dense in H̃ for μ = 1 − 2

p−1 . With L0 denoting the closure of L̃0, we use 
the same arguments as in Section 4.2.1 to infer that L := L0 + L′, D(L) = D(L0), generates a strongly-continuous 
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semigroup (S(τ ))τ>0 of bounded operators on H̃. As an analogue to Lemma 4.10 we obtain the following result for 
the spectrum of L, where we fix p = 3.

Lemma 5.2. Let p = 3. If λ ∈ σ(L) and Reλ > − 1
2 , then λ = 1. Furthermore, it is an eigenvalue and ker(1 −L) = 〈g〉, 

where g = (1, 2).

Proof. The assumptions on λ imply that λ /∈ σ(L0) and the fact that λ is an eigenvalue follows from the compactness 
of L′. By definition, if u ∈ H̃ then u1 and u2 are md − 1-times, respectively, md − 2-times weakly differentiable. 
Sobolev embedding yields u1 ∈ Cmd−2[δ, 1], u2 ∈ Cmd−3[δ, 1] for arbitrary δ > 0. For d ≥ 7, this already implies that 
eigenfunctions corresponding to the eigenvalue λ satisfy the equation (λ − L)u = 0 in a classical sense on (0, 1). For 
d = 5, one can use the definition of the closure to check that u1 ∈ H 3

loc(0, 1) ∩ C2(0, 1), u2 ∈ H 2
loc(0, 1) ∩ C1(0, 1) if 

u ∈ D(L). Hence, for all d ≥ 5 odd, the first component of an eigenfunction solves Eq. (4.11) in a classical sense on 
(0, 1). By smoothness of the coefficients on the open interval, we get that u1 ∈ C∞(0, 1) and the application of Dd

shows that w := Ddu1 solves Eq. (4.12) on (0, 1). By Lemma 5.1, w ∈ H 1(0, 1) ∩ C[0, 1] and w(0) = 0. We now 
argue as in the proof of Lemma 4.10, cf. also [10], to infer that λ = 1 and that the corresponding eigenspace is spanned 
by g. �

With similar arguments as in the proof of Lemma 4.11 we obtain the following result.

Lemma 5.3. Let p = 3. There exists a projection P ⊂ B(H̃), rgP = 〈g〉, that commutes with S(τ ) and

S(τ )Pf = eτ Pf

for all f ∈ H̃ and all τ > 0. Moreover,

‖|(1 − P)S(τ )f‖| ≤ Me−( 1
2 −ε)τ‖|(1 − P)f‖|

for all f ∈ H̃, τ > 0, some M ≥ 1 and some small ε > 0.

5.0.8. Lipschitz estimates for the nonlinearity
In the following, B denotes the unit ball in H̃. For p = 3, the nonlinear remainder is given by

N(u) :=
(

0
u3

1 + 3cpu2
1

)
.

Lemma 5.4. The operator N: H̃ → H̃ satisfies

‖|N(u) − N(v)‖| � (‖|u‖| + ‖|v‖|)‖|u − v‖|
for all u, v ∈ B ⊂ H̃.

Proof. For u ∈ H
md−1
r (Bd), md − 1 = d−1

2 , we set û(ξ) := u(|ξ |), ξ ∈ R
d . In the following we do not indicate the 

domain in the Sobolev norms, since it is always the unit ball Bd ⊂R
d . The Sobolev embedding Wj+m,2 ↪→ Wj,q for 

2 ≤ q ≤ 2d
d−2m

implies that

‖∂αû‖Lq � ‖û‖Hmd−1

for α ∈ N
d , 0 ≤ |α| ≤ d−3

2 and 2 < q ≤ 2d
1+2|α| . We first consider the cubic part of the nonlinearity. To estimate the 

L2-part we use Hölder’s inequality with q1 = 2d
d−2 , q2 = 2d , 1

q1
+ 2

q2
= 1

2 , to show that

‖û3 − v̂3 ‖L2 = ‖(û − v̂)(û2 + v̂2 + ûv̂)‖L2

� ‖û − v̂‖Lq1 (‖û‖2
Lq2 + ‖v̂‖2

Lq2 + ‖û‖Lq2 ‖v̂‖Lq2 )

� (‖û‖2
Hmd−1 + ‖v̂‖2

Hmd−1)‖û − v̂‖Hmd−1 .

For higher order derivatives we have to estimate terms of the form
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∂β(û − v̂)∂α−β(û2 + v̂2 + ûv̂),

for 0 ≤ β ≤ α. For |α| = d−3
2 , β = α, we apply again Hölder’s inequality and Sobolev embedding to get for example

‖(∂αû − ∂αv̂)û2‖L2 � ‖∂α(û − v̂)‖Lq1 ‖û‖2
Lq2 � ‖û − v̂‖Hmd−1‖û‖2

Hmd−1

for q1 = 2d
d−2 , q2 = q3 = 2d . Since ∂αû2 is equal to a sum of terms of the form ∂α1 û∂α2 û, where α1 + α2 = α, we 

infer that for β = 0,

‖(û − v̂)∂α1 û∂α2 û‖L2 � ‖û − v̂‖Lq1 ‖∂α1 û‖Lq2 ‖∂α2 û‖Lq3

� ‖û − v̂‖Hmd−1‖û‖2
Hmd−1 ,

where q1 = 2d , q2 = 2d
1+2|α1| , q3 = 2d

1+2|α2| , 
∑3

j=1
1
qj

= 1
2 . All other terms can be estimated similarly.

For the quadratic part of the nonlinearity we set for example q1 = 2d , q2 = 2d
d−1 , to get

‖(û − v̂)(û + v̂)‖L2 � ‖û − v̂‖Lq1 ‖û + v̂‖Lq2

� ‖û + v̂‖Hmd−1‖û − v̂‖Hmd−1

or, for |α| = d−3
2 , q1 = 2d , q2 = 2d

d−1 ,

‖(û − v̂)∂αû‖L2 � ‖û − v̂‖Lq1 ‖∂αû‖Lq2 � ‖û − v̂‖Hmd−1‖û‖Hmd−1 .

Estimates for the remaining terms follow from similar considerations. �
With Lemma 5.3 and Lemma 5.4, Theorem 1.5 follows by proceeding as above, starting with Section 4.3.2.
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Appendix A. Hardy’s inequality

Lemma A.1. Let α ∈N. Assume that f ∈ C∞[0, 1] satisfies f (j)(0) = 0 for j = 0, . . . , α − 1. Then,

‖(·)−αf ‖L2 � ‖(·)−α+1f ′‖L2 .

Proof. For f = 0, the assertion is trivial. Let f �= 0. We use integration by parts, l’Hospital’s rule and the Cauchy–
Schwarz inequality to obtain the estimate

1∫
0

ρ−2α|f (ρ)|2dρ ≤ lim
ρ→0

(
|2α − 1|−1ρ−2α+1|f (ρ)|2

)

+|2α − 1|−1

1∫
0

ρ−2α+1(f ′(ρ)f (ρ) + f (ρ)f ′(ρ))dρ

�
1∫

0

ρ−2α+1Re[f ′(ρ)f (ρ)]dξ �
1∫

0

ρ−2α+1|f ′(ρ)||f (ρ)|dρ

�

⎛⎝ 1∫
0

ρ−2α|f (ρ)|2dρ
⎞⎠1/2⎛⎝ 1∫

0

ρ−2α+2|f ′(ρ)|2dρ
⎞⎠1/2

.

This implies the claim. �
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Appendix B. Proof of Lemma 4.1

It suffices to show that the claimed inequality holds for all u ∈ C∞
e [0, 1]2. By density this can be extended to all 

of H. In the following we set

∇n
rad :=

{
�

n/2
ρ for n even,

d
dρ

�
(n−1)/2
ρ for n odd,

where �ρu(ρ) = u′′(ρ) + d−1
ρ

u′(ρ). To abbreviate the notation we define

‖u‖2
�1

:= ‖u‖2
L2(0,1)

+
md∑
n=1

‖(·)n−1u(n)‖2
L2(0,1)

,

‖u‖2
�2

:=
md−1∑
n=0

‖(·)nu(n)‖2
L2(0,1)

.

(B.1)

Lemma B.1. Let u ∈ C∞
e [0, 1]. Then

‖u‖�1 � ‖u(| · |)‖Hmd (Bd ), and ‖u‖�2 � ‖u(| · |)‖Hmd−1(Bd ).

Proof. We prove the first estimate. Let ∇ := (∂1, . . . , ∂d)T . Then

md∑
n=0

1∫
0

ρd−1|∇n
radu(ρ)|2dρ �

md∑
n=0

∫
Bd

|∇nu(|ξ |)|2dξ

�
∑

|α|≤md

‖∂αu(| · |)‖2
L2(Bd )

= ‖u(| · |)‖2
Hmd (Bd )

.

In view of this, it suffices to show that

‖u‖2
�1

�
md∑
n=0

1∫
0

ρd−1|∇n
radu(ρ)|2dρ. (B.2)

First, observe that

‖u‖2
L2(0,1)

+
md∑
n=1

‖(·)n−1u(n)‖2
L2(0,1)

� ‖u‖2
L2(0,1)

+
1∫

0

ρd−1|∇md

rad u(ρ)|2dρ +
md−1∑
n=1

1∫
0

ρ2(n−1)|u(n)(ρ)|2dρ

�
1∫

0

|u(ρ)|2 +
1∫

0

ρd−1|∇md

rad u(ρ)|2dρ +
md−1∑
n=1

1∫
0

ρ2(n−1)|∇n
radu(ρ)|2dρ.

We show that

1∫
0

ρ2(n−1)|∇n
radu(ρ)|2dρ �

md∑
j=0

1∫
0

ρd−1|∇j

radu(ρ)|2dρ (B.3)

for all n = 1, . . . , md − 1. Recall that for radial functions the trace theorem, cf. for example [18], p. 258, implies that
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|∇n
radu(1)|2 �

1∫
0

ρd−1|∇n
radu(ρ)|2dρ +

1∫
0

ρd−1|∇n+1
rad u(ρ)|2dρ

for all n = 0, . . .md − 1. Assume md is odd and let n = md − 1. Then integration by parts and the Cauchy inequality 
imply that

1∫
0

ρd−3|∇md−1
rad u(ρ)|2dρ

�
∣∣∣[∇md−1

rad u](1)

∣∣∣2 +
1∫

0

ρd−2|∇md−1
rad u(ρ)||∇md

rad u1(ρ)|dρ

�
∣∣∣[∇md−1

rad u](1)

∣∣∣2 + 1

ε

1∫
0

ρd−1|∇md

rad u(ρ)|2dρ + ε

1∫
0

ρd−3|∇md−1
rad u(ρ)|2dρ,

for any ε > 0. For md even one can easily check that the function (·)d−1∇md−1
rad u satisfies the assumption of 

Lemma A.1 for α = (d + 1)/2. Hence, Hardy’s inequality can be applied to obtain

1∫
0

ρd−3 |∇md−1
rad u(ρ)|2dρ =

1∫
0

ρ−d−1|ρd−1[∇md−2
rad u]′(ρ)|2dρ

�
1∫

0

ρ−d+1
∣∣∣∣(ρd−1[∇md−2

rad u]′(ρ)
)′∣∣∣∣2 dρ �

1∫
0

ρd−1|∇md

rad u(ρ)|2dρ.

Now these arguments can be iterated to get Eq. (B.3). Finally,

1∫
0

|u(ρ)|2dρ � |u(1)|2 +
1∫

0

ρ|u(ρ)||u′(ρ)|dρ

� |u(1)|2 + 1

ε

1∫
0

|u′(ρ)|2dρ + ε

1∫
0

|u(ρ)|2dρ,

for any ε > 0 and the first line of Eq. (B.2) follows. The second estimate in Lemma B.1 can be obtained analo-
gously. �
Lemma B.2. Let u ∈ C∞

e [0, 1]. There exists a compactly supported function U ∈ Cmd [0, ∞) such that U(ρ) = u(ρ)

for all ρ ∈ [0, 1] and

‖u(| · |)‖Hmd (Bd ) � ‖U(| · |)‖Hmd (Rd ) � ‖u‖�1 .

Similarly, one can construct an extension Ũ ∈ Cmd−1[0, ∞) such that Ũ(ρ) = u(ρ) on [0, 1] and

‖u(| · |)‖Hmd−1(Bd ) � ‖Ũ(| · |)‖Hmd−1(Rd ) � ‖u‖�2 .

Proof. For m ∈ N, let f ∈ C∞[0, 1] and let ϕ ∈ C∞[0, ∞) be a monotonically decreasing function such that ϕ = 1
on [0, 54 ] and ϕ = 0 on [ 3

2 , ∞). We define

Emf (ρ) :=

⎧⎪⎨⎪⎩
f (ρ) for ρ ∈ [0,1]
ϕ(ρ)hm(ρ) for ρ ∈ (1,3/2)

0 for ρ ∈ [3/2,∞)



1208 R. Donninger, B. Schörkhuber / Ann. I. H. Poincaré – AN 34 (2017) 1181–1213
where

hm(ρ) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−f (2 − ρ) +

(m−1)/2∑
n=0

2(ρ − 1)2n

(2n)! f (2n)(1) m is odd,

f (2 − ρ) +
m/2∑
n=1

2(ρ − 1)2n−1

(2n − 1)! f (2n−1)(1) m is even.

.

Then, Emf ∈ Cm[0, ∞) and Emf |[0,1] = f . We define U := Emd
u. Our aim is to prove the estimate

‖U(| · |)‖2
L2(Rd )

+ ‖∇md U(| · |)‖2
L2(Rd )

� ‖u‖2
�1

. (B.4)

Given that Eq. (B.4) holds, we can use the fact that Hm(Rd) can be equivalently defined in terms of the Fourier 
transform to infer that

‖u(| · |)‖2
Hmd (Bd )

≤ ‖U(| · |)‖2
Hmd (Rd )

� ‖〈·〉mdF[U(| · |)]‖2
L2(Rd )

� ‖U(| · |)‖2
L2(Rd )

+ ‖∇md U(| · |)‖2
L2(Rd )

� ‖u‖2
�1

.

If md is odd we estimate

‖U(| · |)‖2
L2(Rd )

�
∞∫

0

ρd−1|U(ρ)|2dρ

=
1∫

0

ρd−1|u(ρ)|2dρ +
3
2∫

1

ρd−1|ϕ(ρ)hmd
(ρ)|2dρ

� ‖u‖2
L2(0,1)

+ ‖ϕ‖2
L∞[0,∞)

( 3
2∫

1

ρd−1|u(2 − ρ)|2dρ +
(md−1)/2∑

n=0

|u(2n)(1)|2
)

� ‖u‖2
L2(0,1)

+
1∫

1
2

|u(ρ)|2dρ +
(md−1)/2∑

n=0

|u(2n)(1)|2 � ‖u‖2
�1

,

where we used the fact that

|u(n)(1)|2 � ‖u‖2
Hmd (δ,1) � ‖u‖2

L2(0,1)
+

md∑
j=1

‖(·)j−1u(j)‖2
L2(0,1)

for n = 0, . . . , md − 1. For the derivative we get

∞∫
0

ρd−1|∇md

rad U1(ρ)|2dρ =
1∫

0

ρd−1|∇md

rad u(ρ)|2dρ

+
3
2∫

1

ρd−1
∣∣∇md

rad

[
ϕ(ρ)hmd

(ρ)
]∣∣2 dρ.

To bound the first integral we exploit the fact that for d ≥ 5 odd and m ∈N there exist constants c(d,m)
j ∈R such that

∇m
radu(ρ) =

m∑
c(d,m)
n ρn−mu(n)(ρ). (B.5)
n=1
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Hence,

1∫
0

ρd−1|∇md

rad u(ρ)|2dρ �
md∑
n=1

1∫
0

|ρn−1u(n)(ρ)|2dρ � ‖u‖2
�1

.

It remains to estimate the second term. It follows from Eq. (B.5) and the Leibniz rule that there exist constants c(d)
n,j ∈ R

such that

∇md
ρ

[
ϕ(ρ)hmd

(ρ)
]= md∑

n=1

n∑
j=0

c
(d)
n,j ρ

n−md ϕ(n−j)(ρ)h
(j)
md

(ρ).

Hence,

3
2∫

1

ρd−1
∣∣∇md

rad

[
ϕ(ρ)hmd

(ρ)
]∣∣2 dρ

�
md∑
n=1

n∑
j=0

3
2∫

1

ρ2n−2
∣∣∣ϕ(n−j)(ρ)h

(j)
md

(ρ)

∣∣∣2 dρ

�
(

md∑
n=0

‖ϕ(n)‖2
L∞[0,∞)

)⎛⎜⎝ md∑
n=0

3
2∫

1

ρd−1
∣∣∣h(n)

md
(ρ)

∣∣∣2 dρ

⎞⎟⎠

�
md∑
n=0

3
2∫

1

|u(n)(2 − ρ)|2dρ +
(md−1)/2∑

n=0

|u(2n)(1)|2

�
md∑
n=0

1∫
1
2

|u(n)(ρ)|2dρ + ‖u‖2
�1

� ‖u‖2
�1

.

If md is even the proof works similarly. In fact, the extension was constructed in such a way, that the boundary terms 
involve only derivatives that can be bounded by the �-norm. The proof for the second estimate is analogous. �
Appendix C. Proof of Lemma 4.2

Again, it suffices to prove the inequality for all u ∈ C∞
e [0, 1]2. We split the proof into several lemmas and use the 

result of Lemma 4.1. With the definition (B.1) we set

‖u‖2
� := ‖u1‖2

�1
+ ‖u2‖2

�2

for u = (u1, u2) ∈ C∞
e [0, 1]2.

Lemma C.1. We have that ‖u‖D � ‖u‖� , for all u ∈ C∞
e [0, 1]2.

Proof. With Eq. (4.2) and the triangle inequality we immediately obtain

‖Ddu1‖2
Ḣ 2(0,1)

�
md∑
n=1

‖(·)n−1u
(n)
1 ‖2

L2(0,1)
,

‖Ddu2‖2
Ḣ 1(0,1)

�
md−1∑

‖(·)nu(n)
2 ‖2

L2(0,1)
.

n=0
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We use the Sobolev embedding H 1(0, 1) ↪→ L∞(0, 1) and the fact that Ddu2(0) = 0 to infer that∣∣[Ddu1]′(1) + Ddu2(1)
∣∣2 � ∣∣[Ddu1]′(1)

∣∣2 + ∣∣Ddu2(1)
∣∣2

� ‖[Ddu1]′‖2
H 1(0,1)

+ ‖Ddu2‖2
Ḣ 1(0,1)

.

Now,

‖[Ddu1]′‖2
L2(0,1)

�
md−1∑
n=0

‖(·)nu(n)
1 ‖2

L2(0,1)

� ‖u1‖2
L2(0,1)

+
md∑
n=1

‖(·)n−1u
(n)
1 ‖2

L2(0,1)
,

which implies the claim. �
Lemma C.2. For all u ∈ C∞

e [0, 1]2 the following inequality holds

‖Ddu1‖2
H 2(0,1)

+ ‖Ddu2‖2
H 1(0,1)

� ‖u‖2
D.

Proof. Set wj := Dduj for j = 1, 2. Since wj(0) = 0 for j = 1, 2, the above inequality is true if

‖w′
1‖2

L2(0,1)
� |w′

1(1) + w2(1)|2 + ‖w′′
1‖2

L2(0,1)
+ ‖w′

2‖2
L2(0,1)

.

By the fundamental theorem of calculus 
∫ 1
ρ

w′′
1(s)ds = w′

1(1) − w′
1(ρ) and 

∫ 1
ρ

w′
2(s)ds = w2(1) − w2(ρ). Hence,

|w′
1(ρ) + w2(ρ)| ≤ |w′

1(1) + w2(1)| + ‖w′′
1‖L2(0,1) + ‖w′

2‖L2(0,1).

Using this together with Sobolev embedding we obtain

|w′
1(ρ)| ≤ |w′

1(ρ) + w2(ρ)| + |w2(ρ)|
� |w′

1(1) + w2(1)| + ‖w′′
1‖L2 + ‖w′

2‖L2(0,1).

Squaring and integrating implies the claim. �
Lemma 4.2 follows from Lemma 4.1 in combination with the following result.

Lemma C.3. We have that

‖u‖2
� � ‖Ddu1‖2

H 2(0,1)
+ ‖Ddu2‖2

H 1(0,1)
,

for all u ∈ C∞
e [0, 1]2.

Proof. We show that

‖(·)nu(n)‖L2(0,1) � ‖Ddu‖H 1(0,1) (C.1)

for n = 0, . . . , md − 1 and all u ∈ C∞
e [0, 1], and

‖(·)n−1u(n)‖L2(0,1) � C‖Ddu‖H 2(0,1) (C.2)

for n = 1, . . . , md , by using the fact that KdDd = I on C∞
e [0, 1]. Let u ∈ C∞

e [0, 1] and set w := Ddu. Then, w ∈
C∞[0, 1], w(2n)(0) = 0, n ∈ N0, and Kdw = u. One can easily check that there exist constants αn,j , α̃n,j ∈ R such 
that

ρn(Kdw)(n)(ρ) =
n∑

αn,jKd−2jw =
(d−3)/2∑

α̃n,j ρ
−2j−1Kjw(ρ)
j=0 j=(d−3)/2−n
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for n = 0, . . . , md − 2 = (d − 3)/2. Furthermore,

ρmd−1(Kdw)(md−1)(ρ) =
(d−3)/2∑

j=0

αjρ
−2j−1Kjw(ρ) + w′(ρ).

Since w(0) = 0 and[
dk

dρk Knw
]
(0) = 0

for n ∈N0, k = 0, . . . , 2n, repeated application of Hardy’s inequality yields

1∫
0

ρ−4n−2|Knw(ρ)|2dρ ≤ Cn

1∫
0

|w′(ρ)|2dρ

for n ∈N0 and some constant Cn > 0. This in particular implies that

1∫
0

|ρn(Kdw)(n)(ρ)|2dρ �
1∫

0

|w′(ρ)|2dρ

which proves Eq. (C.1). By the fundamental theorem of calculus

w(ρ) = ρw′(0) +
ρ∫

0

s∫
0

w′′(t)dtds.

Upon setting Vw(ρ) := ∫ ρ

0 w(s)ds we infer that

Kdw(ρ) = KdV2w′′(ρ) + kdw′(0)

for some constant kd > 0. Using this we obtain for n = 1, . . . , md − 2 and constants βn, β̃n ∈R,

ρn−1(Kdw)(n)(ρ) =
n∑

j=0

βn,j ρ
−1Kd−2jV2w′′(ρ)

=
(d−3)/2∑

j=(d−3)/2−n

β̃n,j ρ
−2j−2KjV2w′′(ρ).

Furthermore,

ρmd−2(Kdw)(md−1)(ρ) =
(d−3)/2∑

j=0

γjρ
−2j−2KjV2w′′(ρ) + ρ−1Vw′′(ρ)

and

ρmd−1(Kdw)(md)(ρ) =
(d−3)/2∑

j=0

γ̃j ρ
−2j−2KjV2w′′(ρ)

+ γdρ−1Vw′′(ρ) + w′′(ρ)

for γ̃j , γj , γd ∈ R. By repeated application of Hardy’s inequality we can now show that

1∫
0

ρ−4n−4|KnV2w′′(ρ))|2dρ ≤ Cn

1∫
0

|w′′(ρ)|2dρ

for n ∈N and a constant Cn > 0. This implies Eq. (C.2). �
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