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Abstract

We prove that every endomorphism which satisfies Axiom A and the strong transversality conditions is C1-inverse limit struc-
turally stable. These conditions were conjectured to be necessary and sufficient. This result is applied to the study of unfolding of 
some homoclinic tangencies. This also achieves a characterization of C1-inverse limit structurally stable covering maps.
© 2016 

Résumé

Nous montrons qu’un endomorphisme a son extension naturelle qui est C1-structurellement stable s’il vérifie l’axiome A et la 
condition de transversalité forte. Ces conditions étaient conjecturées nécessaires et suffisantes. Ce résultat est appliqué à l’étude 
des déploiements des tangences homoclines. Aussi, cela accomplit la description des recouvrements dont l’extension naturelle est 
C1-structurellement stable.
© 2016 
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1. Introduction

Following Smale [19], a diffeomorphism f is Cr -structurally stable if any Cr -perturbation f ′ of f is conjugate to 
f via a homeomorphism h of M :

f ◦ h = h ◦ f ′.
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A great work was done by many authors to provide a satisfactory description of C1-structurally stable diffeomor-
phisms, which starts with Anosov, Smale, Palis (see [13,10]) and finishes with Robinson [18] and Mañé [6]. Such 
diffeomorphisms are those which satisfy Axiom A and the strong transversality condition.

The descriptions of the structurally stable maps for smoother topologies (Cr , Cω, holomorphic...) remain some of 
the hardest, fundamental and open questions in dynamics.

Hence the description of Cr -structurally stable endomorphisms (Cr -maps of a manifold not necessarily bijective) 
with critical points (points at which the differential is not surjective) is even harder.

Indeed, this implies that the critical set must be stable (i.e. the map must be equivalent to its perturbations via 
homeomorphisms) and so that r must be at least 2. We recall that the description of critical sets which are stable is 
still an open problem [7].

It is not the case when we consider the structural stability of the inverse limit. We recall that the inverse limit 
set of a C1-endomorphism f is the space of the full orbits (xi)i ∈ MZ of f . The dynamics induced by f on its 
inverse limit set is the shift. The endomorphism f is C1-inverse limit stable (or equivalently inverse limit of f is 
C1-structurally stable) if for every C1 perturbation f ′ of f , the inverse limit set of f ′ is homeomorphic to the one of 
f via a homeomorphism which conjugates both induced dynamics and which is C0-close to the canonical inclusion 
into MZ.

When the dynamics f is a diffeomorphism, the inverse limit set 
←−
Mf is homeomorphic to the manifold M . The 

C1-inverse limit stability of f is then equivalent to the C1-structural stability of f : every C1-perturbation of f is 
conjugated to f via a homeomorphism of M C0-close to the identity.

The concept of inverse limit stability is an area of great interest for semi-flows given by PDEs, although still at its 
infancy [16,4].

There were many works giving sufficient conditions for an endomorphism to be structurally stable [9,12,2]. The 
latter work generalized Axiom A and the strong transversality condition to differentiable endomorphisms of manifolds, 
and conjectured these conditions to be equivalent to C1-inverse limit stability. A main point of this work was to give 
evidences that the notion of inverse stability should be independent to the nature of the critical set (stable or not for 
instance). A similar conjecture was sketched in [15].

We prove here one direction of this conjecture, generalizing [9,12,2,17,18]:

Theorem 1.1 (Main result). Every C1-endomorphism of a compact manifold which satisfies Axiom A and the strong 
transversality condition is C1-inverse limit structurally stable.

The definitions of Axiom A and the strong transversality condition will be recalled in §2.3.
Joint with the works of [1] and [2], this proves that C1-inverse limit stable covering maps of manifolds are exactly 

the C1 covering maps which satisfy Axiom A and strong transversality conditions (see §3.1).
On the other hand, our main result applies to the dynamical studies of homoclinic tangencies unfolding as seen in 

section (see §3.2).
The proof of the main result is done by generalizing Robbin–Robinson proof of the structural stability with two 

new difficulties. We will have to handle the geometrical and analytical part of the argument on the inverse limit space 
which is in general not a manifold as it is the case for diffeomorphisms (see §6). Also we will have to take care of the 
critical set in the plane fields constructions and in the inverse of the operator considered (see §7, 8 and 9).

2. Notations and definitions

Along this article M will denote a smooth Riemannian compact manifold without boundary. The distance on M
induced by the Riemannian structure will be simply denoted by d . For any r ∈ N, we denote by Endr (M) the space 
of Cr endomorphisms of M . By Cr endomorphism of M , we mean a Cr map f of M into M , which is possibly non 
surjective and can have a non-empty critical set:

Cf := {x ∈ M : Txf not surjective}.
We endow Endr (M) with the topology of uniform convergence of the first r derivatives.

Given any f ∈ Endr (M), a subset � ⊂ M is forward invariant whenever f (�) ⊂ �, and totally invariant when 
f −1(�) = �. Note that totally invariance implies forward invariance.
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The set of periodic points of f is denoted by Per(f ) and we write �(f ) for the set of non-wandering points. 
Observe that f (Per(f )) = Per(f ) and f (�(f )) = �(f ), but in general they are not totally invariant.

Now, let K be a compact metric space and E → K a finite dimensional vector bundle over K . If F ⊂ E is a 
sub-vector-bundle of E → K , we denote by E/F the quotient bundle. Note that any (Riemannian) norm ‖·‖E on E
naturally induces a (Riemannian) norm on E/F defining

‖vx + Fx‖E/F := inf
wx∈Fx

‖vx + wx‖E , ∀x ∈ K, ∀vx ∈ Ex.

On the other hand, observe that any bundle map T : E → E that leaves invariant F (i.e. F is forward invariant 
for T ) naturally induces a bundle map [T ] : E/F → E/F .

2.1. Inverse limits

Given any set X and an arbitrary map f : X → X, we define its global attractor by Xf := ⋂
n≥1 f n(X) and its 

inverse limit by

←−
X f :=

{
x = (xn)n ∈ XZ : f (xn) = xn+1, ∀n ∈ Z

}
. (1)

Observe that f (Xf ) = Xf , but in general Xf is not totally invariant (Xf �= f −1(Xf )), and 
←−
X f ⊂ (Xf )Z. More-

over, f acts coordinate-wise on 
←−
X f . In fact, we can define 

←−
f : ←−

X f → ←−
X f by 

←−
f (x) := (f (xn))n = (xn+1)n, and in 

this way, 
←−
f turns out to be a bijection and f a factor of it. Indeed, for every j ∈ Z we can define the j th-projection 

πj : ←−
X f → Xf by πj (x) = xj and then we have

πj+1 = πj ◦ ←−
f = f ◦ πj .

Whenever X is a topological space and f is continuous, we shall consider XZ endowed with the product topology. In 
this case, 

←−
X f turns out to be closed in XZ and 

←−
f a homeomorphism. Of course, Per(f ) and �(f ) are contained in 

Xf and 
←−
X f is compact whenever Xf is compact itself.

Finally, when X is endowed with a finite distance d , we shall consider XZ equipped with the distance d1 given by

d1(x,y) :=
∑
n∈Z

d(xn, yn)

2|n| . (2)

The metric space (XZ, d1) is compact if and only if X is compact itself.

2.2. Structural and inverse limit stability

Two endomorphisms f, g ∈ Endr (M) are conjugate when there exists a homeomorphism h ∈ Homeo(M) satisfy-
ing h ◦ f = g ◦ h. More generally, the endomorphisms f and g are inverse limit conjugate whenever there exists a 
homeomorphism H : ←−

Mf → ←−
Mg such that H ◦ ←−

f = ←−
g ◦ H . Remark that the conjugacy relation implies the inverse 

limit conjugacy one.
A Cr -endomorphism f is Cs -structurally stable (with 0 ≤ s ≤ r) when there exists a Cs -neighborhood U of f

such that every g ∈ U is conjugate to f . Analogously, f is Cs -inverse limit stable when every g ∈ U is inverse limit 
conjugate to f .

2.3. Axiom A endomorphisms

Let f ∈ End1(M) and let � ⊂ M be a compact forward invariant set. The set � is hyperbolic whenever there exists 
a continuous sub-bundle Es ⊂ T�M satisfying the following properties:

1. Es is forward invariant by Tf , i.e.

Txf (Es
x) ⊂ Es

f (x), ∀x ∈ �;
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2. the induced linear map [Txf ] : TxM/Es → Tf (x)M/Es is an isomorphism, for every x ∈ �; (see §2 for notation 
of quotient bundles and induced maps)

3. ∀x ∈ �, 
∥∥∥Txf

∣∣
Es

x

∥∥∥ < 1 and 
∥∥[Txf ]−1

∥∥ < 1, where the first operator norm is induced by the Riemannian structure 
of M , and the second by its quotient.

Remark 2.1. Notice that despite Es is contained in T�M , in general we cannot define Eu as a sub-bundle of the 
tangent bundle.

However, using a classical cone field argument, we show:

Proposition 2.2. There exists a continuous family (Eu
x )

x∈←−
�f

of subspaces of T�M such that:

1. for every x ∈ ←−
� f , Eu

x ⊂ Tπ0(x)M and Tf (Eu
x ) = Eu←−

f (x)
,

2. for every x ∈ ←−
� f , the restriction Tf : Eu

x → Eu←−
f (x)

is invertible and∥∥∥(Tf
∣∣
Eu

x
)−1

∥∥∥ < 1.

Given any (small) ε > 0 and x ∈ ←−
� f , we define the ε-local stable set of x by

Ws
ε (x, f ) :=

{
y ∈ ←−

Mf : ε ≥ d1(
←−
f n(x),

←−
f n(y))

n→+∞−−−−−→ 0, ∀n ≥ 0
}
,

where d1 denotes the distance given by (2); and the ε-local unstable set of x is defined analogously by

Wu
ε (x, f ) :=

{
y ∈ ←−

Mf : ε ≥ d1
(←−
f −n(x),

←−
f −n(y)

) n→+∞−−−−−→ 0, ∀n ≥ 0
}
.

The geometry of these sets was described in [2]. Let us recall that π0
(
Wu

ε (x, f )
)

and π0
(
Ws

ε (x, f )
)

are submanifolds 
of M (for ε sufficiently small).

The endomorphism f satisfies Axiom A when �(f ) is hyperbolic and coincides with the closure of Per(f ).
An Axiom A endomorphism satisfies the strong transversality condition if for every x, y ∈ �(

←−
f ) and every n ≥ 0, 

the map f n
∣∣
π0(W

u
ε (x))

is transverse to π0(W
s
ε (y)). This means that for every z ∈ π0(W

u
ε (x)) ∩ f −n(π0(W

s
ε (y))) the 

following holds:

Tf n
(
Tzπ0(W

u
ε (x))

)+ Tf n(z)π0(W
s
ε (y)) = Tf n(z)M

An endomorphism which satisfies Axiom A and the strong transversality condition is called an AS-endomorphism.
This notion generalizes the one of diffeomorphism. Let us recall some other examples.

Examples 2.3.

– The action of any hyperbolic linear matrix in Mn(Z) in the n-dimensional torus is hyperbolic and so is AS. It is 
not structurally stable whenever the matrix is not in SLn(Z) nor expanding [11].

– The constant map Rn � x �→ 0 ∈R
n satisfies Axiom A and the strong transversality condition.

– The map Rn � x �→ x2 + c satisfies Axiom A and the strong transversality condition whenever c is such that a 
(possibly super) attracting periodic orbit exists.

Remark 2.4. Let us notice that if two endomorphisms f1 ∈ C1(M1, M1) and f2 ∈ C1(M2, M2) satisfy Axiom A 
and the strong transversality condition, then the product dynamics f1 × f2 ∈ C1(M1 × M2, M1 × M2) also satisfy 
Axiom A and the strong transversality condition.

As an endomorphism is AS iff its one of its iterates is AS, it follows that the following delay dynamics is AS if 
f ∈ C1(M, M) is AS:

Mn � (xi)i �→ (f (xm), x1, . . . , xm−1,0, . . . ,0) ∈ Mn.
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From the latter example and remark, we have the following.

Example 2.5. For every c ∈R such that x2 + c has an attracting periodic orbit, the following map is AS:

(xi)i ∈R
n �→ (x2

m + c, x1, . . . , xm−1,0, . . . ,0) ∈ R
n.

We will see that this example appears in the unfolding of generics homoclinic tangency in §3.2.

3. Applications of main Theorem 1.1

3.1. Description of C1-inverse limit stable covering maps

A C1-covering map of a compact, connected manifold M is a surjective C1 endomorphism f of M without critical 
points. Then, every point of M has the same number p of preimages under f . We remark that every distinguish 
neighborhood U ⊂ M has its preimage π−1

0 (U) in the inverse limit 
←−
Mf which is homeomorphic to U × Zp where 

Zp is a Cantor set labeling the different f -preorbits of U . These homeomorphisms endow 
←−
Mf with a structure of 

lamination called the Sullivan solenoid [20].
It follows immediately from a theorem due to Aoki, Moriyasu and Sumi [1] that: if an endomorphism f is 

C1-inverse limit stable and has no critical point in the non-wandering set, then f satisfies Axiom A. By Theorem 2.4 of 
[2], if f is C1-inverse limit stable and satisfies Axiom A, then f satisfies the strong transversality condition. Together 
with Main Theorem 1.1, it comes the following description of C1-inverse stable covering maps.

Theorem 3.1. A C1-covering map of a compact manifold is C1-inverse limit stable if and only if it is an AS-
endomorphism.

3.2. Application to dynamical study of unfolding homoclinic tangencies

Let M be a manifold of dimension m and let (fμ)μ be a smooth family of diffeomorphisms of M which has 
a hyperbolic fixed point p with unstable and stable directions of dimensions u ≥ 1 and s ≥ 1 respectively. Hence 
m = u + s. The following Theorem has been proven in the general case as in [8] (Proposition 1). For more restricted 
cases see [14] when (s, u) = (1, 1) and Theorem 1 [21] when (s, u) = (1, 2).

Theorem 3.2 (L. Mora). There exist h ≥ u, an open set of families (fμ)μ∈Rh of smooth diffeomorphisms of M , 
which exhibit at μ0 ∈ R

h an unfolding of a homoclinic tangency at q ∈ Ws(p) ∩ Wu(p), such that there exists a 
small neighborhood Nq ⊂ M of q , there exists a small neighborhood Nμ ⊂ R

h of μ0 covered by submanifolds L of 
dimension u, satisfying for every n large:

– μ0 belongs to every submanifold L and the intersection of two different such manifolds L is the single point μ0,
– for every L, there is parametrization γn of L by Ru, such that for every μ = γn(b) ∈ L \ {μ0}, there is a chart φμ

of Nq , such that the rescaled first return map has the form:

φμ ◦ f n
γ (b) ◦ φ−1

μ : Ru ×R
s −→ R

u ×R
s =R

m

(x, y) �→ (x2
u + bu +

u−1∑
i=1

bixi, x1, . . . , xu−1,0, . . . ,0) + Eμ(x, y),

with b = b1, . . . bu, x = (x1, . . . , xu), y = (y1, . . . , ys) and Eμ ∈ C∞(Rm, Rm) small in the compact-open 
Cr -topology for every r when n is large.

In particular, near the curve {μn(a) := γn(0, . . . , 0, a), a ∈ R}, the rescaled first return map fμn(a) is Cr close to 
the endomorphism:

Fa := (x1, . . . , xu, y1, . . . , ys) �→ (x2
u + a, x1, . . . , xu−1,0, . . . ,0).
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For an open and dense set of parameters a, the map x �→ x2 + a has an attracting periodic orbit from [5,3]. Then 
its non-wandering set is the union of an attracting periodic orbit with an expanding compact set. By Example 2.5, 
we know that Fa is AS. Moreover we can extend Fa to the n-torus which is the product of n-times the one point 
compactification of R. Its extension is analytic and AS.

Hence by Theorem 1.1, the inverse limit of Fa restricted to bounded orbits is conjugate to an invariant compact set 
of f n

μn(a)|Un with n large.
In particular, if such an a is fixed and then n is taken large, then there exist an open set Vn of M and a neighborhood 

Wn of μn(a) such that for every a′ ∈ Wn, f nu
a′ |Vn has its maximal invariant compact set conjugated to the product of 

u-times the inverse limit dynamics of x2 + a (restricted to the bounded orbits).
For instance, when a = 0, then the non-wandering set of x �→ x2 consists of the attracting fixed point 0 and the 

repelling fixed point 1. On the other hand the non-wandering set of F0 is {0, 1}u × {0}. We remark also that the set of 
points for which the orbit is bounded is homeomorphic to the square [0, 1]u × {0} via the first coordinate projection. 
Hence for a small, the maximal invariant of Fa is a topological u-cube bounded by the stable and unstable manifolds 
of the hyperbolic continuation of the non-wandering points.

It will be useful to keep this example in mind because, even though the most interesting case is when x �→ x2 + a

exhibits positive entropy, this one (with the parameter a sufficiently close to 0) already presents most of the geometric 
difficulties that appear in the proof of Theorem 1.1.

4. Proof of Main Theorem 1.1

4.1. Sufficient conditions for the existence of a conjugacy

We want to find, for every g which is C1-close to f , a continuous map h : ←−
Mf → ←−

Mg which is close to the canon-

ical injection 
←−
Mf ↪→ MZ and satisfies h ◦ ←−

f = ←−
g ◦ h. This is equivalent to find a continuous map h0 : ←−

Mf → M

satisfying

h0 ◦ ←−
f = g ◦ h0, (C̊1)

and which is C0-close to the zeroth coordinate projection π0. This means that for every η > 0 small and every g
sufficiently C1-close to f , h0 satisfies

sup
x∈←−

Mf

d(h0(x),π0(x)) ≤ η. (C̊2)

Indeed, one can construct such an h0 from such an h and vice versa writing:

h0 := π0 ◦ h, h := (h0 ◦ ←−
f n)n∈Z.

Let us suppose the existence of such an h. We would like h to be a homeomorphism, so let us find sufficient 
conditions to ensure its injectiveness.

In the Anosov case this follows easily from (C̊1) and (C̊2). In fact, if two points x and y have the same image by 

h, then these two f -orbits must be uniformly close by (C̊1) and (C̊2), and so they are equal by expansiveness. In the 
wider case of AS dynamical systems, we shall consider the following Robbin metric on 

←−
Mf :

d∞(x, y) = sup
i∈Z

d(xi, yi).

For every x, y ∈ ←−
Mf , let us observe that:

d1(x, y) =
∑

i

d(xi, yi)

2|i| ≤
∑

i

d∞(x, y)

2|i| = 3d∞(x, y). (3)

This metric enabled Robbin [17] to find a sufficient condition on h to guarantee its injectiveness. We adapt it to our 
context.
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Proposition 4.14 of [2] gives a geometric interpretation of the metric d∞. After showing that 
←−
Mf is a finite union 

of laminations, the leaves of which are intersection of stable sets with unstable manifolds of points in 
←−
�f , we proved 

that d∞-distance between any two of these leaves is positive. Moreover the restriction of d∞ to each leaf is equivalent 
to a Riemannian metric on its manifold structure.

Choosing η > 0 small, any continuous map h0 : ←−
Mf → M satisfying (C̊2) can be written as a perturbation of π0

via the exponential map exp : T M → M associated to the Riemannian metric of M . For the sake of simplicity, let 
us fix a bundle trivialization T M ⊂ M × R

N , for some positive integer N . As h0 satisfies (C̊2) (with η small), there 
exists w : ←−

Mf → R
N such that (π0(x), w(x)) ∈ T M ⊂ M ×R

N and

h0(x) = expπ0(x)(w(x)). (4)

Now let us extend the Riemannian metric (〈·, ·〉x)x∈M of M to an Euclidean norm (‖ · ‖x)x∈M on the bundle M ×
R

N → M . Let us denote by �w ∈ [0, ∞] the d∞-Lipschitz constant of w, i.e.

�w := sup
x,x′∈←−

Mf

‖w(x) − w(x′)‖π0(x)

d∞(x, x′)
. (5)

Here is the Robbin condition:

�w ≤ η. (C3)

Proposition 4.1 (Robbin [17]). There exists η > 0 which depends only on the Riemannian metric of M , such that for 
every pair f and g of C1-endomorphisms of M , if there exists h : ←−

Mf → ←−
Mg satisfying (C̊1), (C̊2) and (C3), then h

is injective.

Proof. Let x, x′ ∈ ←−
Mf be such that h(x) = h(x ′). Note that by (C̊1) and (C̊2), the point πi ◦ h(x) is η-close to πi(x), 

for every i. Thus πi(x) and πi(x
′) are 2η-close for every i ∈ Z.

Let i ∈ Z be such that d∞(x, x′) ≤ 2d(xi, x′
i ). We recall that πi ◦ h(x) = h0 ◦ ←−

f i(x) = expxi
(w ◦ ←−

f i(x)), and so:

expxi
(w ◦ ←−

f i(x)) = expx′
i
(w ◦ ←−

f i(x′))

The exponential maps expxi
and expx′

i
produce two charts centered at xi and x′

i , and modeled on the vector subspaces 

Txi
M and Tx′

i
M of RN . The coordinates change of these charts is the translation by the vector exp−1

xi
x′
i plus a linear 

map L bounded by a constant K times d(xi, x′
i ), where K depends only on the curvature of M . Thus, in RN , it holds:

exp−1
xi

x′
i + (id + L) ◦ w ◦ ←−

f i(x) = w ◦ ←−
f i(x′) + o(d(xi, x

′
i )). (6)

We recall that d∞(x, x′) ≤ 2d(xi, x′
i ) ≤ 4η is small.

On the other hand by (C3):

‖w ◦ ←−
f i(x) − w ◦ ←−

f i(x ′)‖xi
≤ ηd∞(x, x′)

Thus, replacing each term of equality (6) by these estimates, it holds:

d∞(x, x′)
2

≤ d(xi, x
′
i ) = ‖ exp−1

xi
x′
i‖

≤ ‖w ◦ ←−
f i(x) − w ◦ ←−

f i(x′)‖xi
+ ‖L‖η + o(d(xi, x

′
i ))

≤ ηd∞(x, x′) + Kd∞(x, x′)η + o(d∞(x, x′))
This implies d∞(x, x′) = 0 and so x = x′. �

On the other hand, in Proposition 5.4 of [2] it is showed the following:

Proposition 4.2. For every AS C1-endomorphism f of M , there exists η > 0 such that for every endomorphism g
sufficiently close to f , if there exists a d1-continuous and injective h : ←−

Mf → ←−
Mg satisfying (C̊1) and (C̊2) with f , g

and η, then h is surjective onto 
←−
Mg .
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Hence if we prove that for every g C1-close to an AS endomorphism f , there exists a continuous map h0 satisfying 
(C̊1), (C̊2) and (C3), then Propositions 4.1 and 4.2 imply that g is inverse limit conjugate to f , and so that f is 
C1-inverse limit stable. In other words, to prove Theorem 1.1 it remains only to prove the following:

Proposition 4.3. Let f be a C1-AS endomorphism. For every η > 0 and for every endomorphism g sufficiently 
C1-close f , there exists a continuous map h0 : ←−

Mf → M satisfying (C̊1), (C̊2) and (C3) with f , g and η.

Therefore the remaining part of this manuscript is devoted to the proof of this proposition, by using the contraction 
mapping Theorem.

4.2. A contracting map on a functional space

Let � be the space of functions w : ←−
Mf → R

N which are continuous for d1 and d∞-Lipschitz (i.e. they satisfy 
�(w) < ∞, where �(w) is defined as in (5)). We endow � with the uniform norm:

‖v‖C0 := max
x∈←−

Mf

‖v(x)‖π0(x).

Equivalent conditions in the space � We recall that M × R
N ⊃ T M is a trivialization. Moreover we have already 

fixed an Euclidean structure (‖ · ‖x)x∈M on M ×R
N which extends the Riemannian metric (〈·, ·〉x)x∈M on T M . Let 

px : RN → TxM be the orthogonal projection given by ‖ · ‖x .
Any g sufficiently C0-close to f induces the following map from a neighborhood N� of 0 ∈ � into �:


g
f (w) := x �→ exp−1

x0

(
g ◦ expx−1

(
px−1 ◦ w ◦ ←−

f −1(x)
))

, ∀w ∈ N�,

where xi = πi(x) for every i, as defined in §2.1.
For every η small, and for every g sufficiently close to f , to find h0 satisfying conditions (C̊1), (C̊2) and (C3) is 

equivalent to find w ∈ � satisfying


g
f (w) = w (C1)

‖w‖C0 ≤ η (C2)

�(w) ≤ η (C3)

Indeed, by (C1) any such w satisfies w(x) ∈ Tx0M , for every x ∈ ←−
Mf . It is then easy to remark that h0 : x �→

expx0
(w(x)) satisfies (C̊1) and (C̊2).

Strategy To solve this (implicit) problem, let us regard the partial derivative of f
f at 0 ∈ � with respect to w ∈ �:

D0
f
f = w �→ [

x �→ Tx−1f (px−1 ◦ w ◦ ←−
f −1(x))

]
.

The first difficulty that appears is the following: if f is only C1, in general the map D
f
f does not leave invariant 

the space �. In the C2-case, Robbin’s strategy in [17] consists in solving (C1)–(C2)–(C3) by finding a right inverse 
for D

f
f − id , and then by following a classical proof of the implicit function theorem which uses the contraction 

mapping Theorem.
A second difficulty which will appear is that Tf is possibly non-invertible, and this will give us many difficulties to 

construct this right inverse with bounded norm. To eliminate some of these, in Lemma 4.4, we will suppose N twice 
larger than necessary to embed T M into M ×R

N .

Robinson trick When f is just C1 and not C2, by classical argument of convoluting f with a smooth mollifier we can 
construct a family (fδ)δ such that f0 = f , fδ ∈ C∞(M, M) for every δ > 0 and such that the map δ �→ fδ ∈ C1(M, M)

is continuous.
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Then we can consider a continuous family of C0-maps (x �→ Fδ
x )δ from M into the space of linear maps of RN

given by Fδ
x = Txfδ ◦ px .

In such a way, for each δ we get a linear bundle morphism Fδ given by

Fδ : ←−
Mf ×R

N → ←−
Mf ×R

N

(x, v) �→ (
←−
f (x),F δ

x0
(v))

(7)

Note that Fδ is still over 
←−
f , i.e. the following diagram commutes:

←−
Mf ×R

N Fδ ←−
Mf ×R

N

←−
Mf

←−
f ←−

Mf

Lemma 4.4. If N is large enough, then we can suppose moreover that Fδ
x is invertible for every δ > 0 and x ∈ M .

Proof. Put N ′ = 2N . Let fδ be a smooth endomorphism C1-close f when δ is small. We extend the projection 
px : RN → TxM to RN ′ =R

N ×R
N by

px : RN ×R
N � (v1, v2) �→ px(v1) ∈R

N.

Also we identify RN to RN × {0} ⊂R
N ′

. Let us regard:

Fδ
x : RN ′ � v = (v1, v2) �→ (Txfδ ◦ px(v1) + δv2, δv1) = Txfδ ◦ px(v) + δ(v2, v1) ∈R

N ′
.

For every x ∈ M and δ > 0, such a map is invertible, depends smoothly on x and is δ-close to RN ′ � v → Txfδ ◦
px(v) ∈ R

N ′
. �

Corollary 4.5. The map Fδ is a homeomorphism of 
←−
Mf ×R

N , for every δ > 0.

For every v ∈ �, the following map is well defined:

Fδ
�(v) := x ∈ ←−

M �→ Fδ(v(
←−
f −1(x))).

This map is continuous, linear and for δ > 0 it is bijective.
Moreover, we remark that Fδ

�(v) belongs to �.
Now, let us suppose the existence of a right inverse J of Fδ

� − id . This means:(
Fδ

� − id
)
J = id.

Notice that the existence of a w ∈ � satisfying (C1), (C2) and (C3) is equivalent to find a fixed point φ ∈ � of the 
operator[(

Fδ
� − id

)− (


g
f − id

)] ◦ J = id − (
g
f − id) ◦ J

such that w = J (φ) satisfies (C2) and (C3).
We construct J in §5. From its construction we get

Proposition 4.6. For every ε > 0 and every η > 0 sufficiently small w.r.t. ε, there exists δ > 0 small enough such that 
for every g C1-close enough to f , the operator[(

Fδ
� − id

)− (


g
f − id

)] ◦ J = (F δ
� − 

g
f ) ◦ J

is well defined on a 2η-neighborhood of 0 in � and is C0-contracting.

Moreover, 
∥∥∥(Fδ

� − 
g
f

)
Jv

∥∥∥
C0

≤ η and �
((

Fδ
� − 

g
f

)
Jv

) ≤ ε, whenever ‖v‖C0 ≤ η and �(v) ≤ ε.

Together with Proposition 4.3, this implies the inverse limit structural stability of AS-endomorphisms.
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5. Construction of the right inverse J of Fδ
� − id

We recall that f denotes an AS-endomorphism of a compact manifold M . Let �(
←−
f ) be the non-wandering set 

of
←−
f . It is shown in [2] that:

�(
←−
f ) = ←−

Mf ∩ �(f )Z.

Moreover, the non-wandering set �(
←−
f ) is the disjoint union of compact, transitive subsets (

←−
� i)i , called basic 

pieces. The family of all basic pieces is finite and called the spectral decomposition of �(
←−
f ).

For every basic piece 
←−
� i , we define the stable and unstable sets of 

←−
� i , respectively, by

Ws(
←−
� i) = {x ∈ ←−

M : d(
←−
f n(x),

←−
� i) → 0, as n → +∞}

Wu(
←−
� i) = {x ∈ ←−

M : d(
←−
f

n
(x),

←−
� i) → 0, as n → −∞}

The geometry of these sets is studied in [2].
Given two basic pieces 

←−
� i and 

←−
� j , we write 

←−
� i � ←−

� j if Wu(
←−
� i) intersects Ws(

←−
� j) \ ←−

� j . In [2] it is shown 
that for any AS-endomorphism f , the relation � is an order relation. This enables us to enumerate the spectral 
decomposition (

←−
� i)

q

i=1 of �(
←−
f ) in such a way that 

←−
� i � ←−

� j implies i > j .

We recall that a filtration adapted to (
←−
�i)i is an increasing sequence of compact sets

∅ = M0 ⊂ M1 ⊂ · · · ⊂ Mi ⊂ · · · ⊂ Mq = ←−
Mf

such that for q ≥ i ≥ 1:⋂
n∈Z

←−
f n(Mi \ Mi−1) = ←−

� i and
←−
f (Mi) ⊂ int (Mi).

The existence of such a filtration is shown in Corollary 4.7 of [2].
The following proposition is formally similar to the one used by Robbin [17] or Robinson [18], but it is technically 

much more complicated and its proof requires to be handled very carefully. New ideas will be needed. The proof will 
be done in §7, 8, 9 and will use §6.

Proposition 5.1. There exist λ ∈ (0, 1), K > 0 and an open cover (Wi)
q

i=1 of 
←−
Mf , where each Wi is a neighborhood 

of 
←−
� i , and such that for every δ > 0, there exist vector subbundles Eu

i and Es
i of the trivial bundle Wi ×R

N → Wi

satisfying the following properties:

(i) For every x ∈ Wi ∩ ←−
f −1(Wi), the map Fδ sends Es

ix and Eu
ix onto Es

i
←−
f (x)

and Eu

i
←−
f (x)

respectively.

(ii) For any k ≥ j and every x ∈ Wk ∩ ←−
f −1(Wj ), the following inclusions hold:

Fδ(Es
kx) ⊂ Es

j
←−
f (x)

, F δ(Eu
kx) ⊃ Eu

j
←−
f (x)

.

(iii) Es
ix ⊕ Eu

ix =R
N , for any i ∈ {1, . . . , q} and every x ∈ Wi ; the angle between Es

i and Eu
i is bounded from below 

by K−1.
(iv) The subbundles Eu

i and Es
i are d1-continuous and d∞-Lipschitz.

(v) For every i and any x ∈ Wi , it holds

‖Fδ(vu)‖ ≥ ‖vu‖/K, ∀vu ∈ Eu
ix.

(vi) For every q ′, if x ∈ Wq ′ then 
←−
f (x) /∈ ∪j>q ′Wj and ∩n∈Z

←−
f n(Wq ′) = ←−

� q ′ .

(vii) For every i, any x in a neighborhood of 
←−
� i which does not depend on δ, and for all vs ∈ Es

ix and vu ∈ Eu
ix , it 

holds:

‖Fδ(vs)‖ ≤ λ‖vs‖ and ‖Fδ(vu)‖ ≥ ‖vu‖/λ.
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The subbundles Eu
i and Es

i can be considered as functions from Wi to the Grassmannian GN of RN . Property (iv) 
means that they are d1-continuous and d∞-Lipschitz. The Grassmannian GN is a manifold with as many connected 
components as possible dimension for RN -subspaces, i.e. N + 1.

Remark 5.2. A main difficulty in this proposition is that K does not depend on δ, whereas the norm of the inverse 
of Fδ blows up as δ approaches 0 whenever f has critical points. Hence the proof of this proposition will not be 
symmetric in u and s.

At this point is important to remark that the vector subbundles Es
i and Eu

i depend on δ.
We will prove in Corollary 6.2 the existence of a partition of the unity (γi)i subordinated to (Wi)

q

i=1, where each 
γi is d1-continuous and d∞-Lipschitz.

Given any x ∈ Wi , let πs
ix : RN → Es

ix denote the projection parallely to Eu
ix and πu

ix : RN → Eu
ix the projection 

parallely to Es
ix .

For v ∈ � and σ ∈ {s, u}, put:

vσ
i := πσ

i (γi · v), Jis(v) := −
∞∑

n=0

Fδn

�(v
s
i ) and Jiu(v) :=

−1∑
n=−∞

Fδn

�(v
u
i ). (8)

We can now define:

J :=
∑
i,σ

Jiσ . (9)

Let us define

C := sup
1≤i≤q

sup
x∈suppγi

{
‖πs

ix‖,‖πu
ix‖

}
.

By Property (iii) the constant C is bounded from above independently of δ.

Lemma 5.3. There exists a constant D independent of δ such that for every j , for all x ∈ Wj and u ∈ Es
jx (resp. 

u ∈ Eu
jx ), for every n ≥ 0 (resp. n ≤ 0):

‖(F δ)n(u)‖ ≤ Dλ|n|‖u‖

Proof. For every x ∈ Wj , since (Wk)k is a cover of 
←−
Mf , there exists a sequence (ni)i such that 

←−
f i(x) ∈ Wni

for 
every i. From property (vi), the sequence (ni)i must be decreasing.

As x ∈ Wj , we can suppose that n0 = j . By property (ii), for every k ≥ 0, Fδ−k
sends Eu

jx into Eu
nk

and Fδk
sends 

Es
jx into Es

nk
.

Let (Vk)k be the neighborhoods of respectively (
←−
� k)k on which (vii) holds. Since the non-wandering set contains 

the limit set and 
←−
Mf is compact, there exists m ≥ 0 such that there is no x ∈ ←−

Mf such that (x, 
←−
f (x), · · ·←−f m−1(x))

are all outside of ∪kVk . We can suppose Vk included in Wk for every k. Consequently, for every x, all the terms f i(x)

of the sequence (f i(x))i but qm are in Vni
. From (vii), it follows that for all x ∈ Wi and u ∈ Es

ix (resp. u ∈ Eu
ix ), for 

every n ≥ 0 (resp. n ≤ 0):

‖(F δ)n(u)‖ ≤ Dλ|n|‖u‖,
with D = max(‖Fδ‖, ‖(F δ|Eu

ix)
−1‖)qm, which is bounded by a constant independent of δ by (v). �

From Lemma 5.3, it holds that for every v ∈ �:

‖Jv‖C0 ≤ 2CDq

1 − λ
‖v‖C0, (10)

where C, D and λ are independent of δ > 0 small.
Moreover we easily compute the following.
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Proposition 5.4. The map J is the right inverse of Fδ
� − id:

(F δ
� − id) ◦ J = id.

To prove main Theorem 1.1, it remains only to prove Propositions 4.6 and 5.1.
To show Proposition 5.1, we will develop some analytical tools in the next section. On the other hand, we are ready 

to prove Proposition 4.6.

Proof of Proposition 4.6. Let us start by computing (F δ
� − 

g
f ) at 0 ∈ �:

(F δ
� − 

g
f )(0)(x) = Fδ

x−1
(0) − exp−1

x0
◦g ◦ expx−1

(px−1(0))

= − exp−1
x0

(g(x−1)).
(11)

In particular, this implies 
∥∥∥(Fδ

� − 
g
f

)
(0)

∥∥∥
C0

= dC0(f, g).

On the other hand, (F δ
� −

f
f ) is a C1 map defined on a neighborhood of 0 ∈ �. Thus we can compute its derivative 

at the origin:

D0
(
Fδ

� − 
f
f

)
(v)(x) =

(
Fδ

x−1
− Tx−1f

)
(px−1 ◦ v ◦ ←−

f −1(x)) (12)

for every v ∈ � and every x ∈ ←−
Mf . In particular, the operator norm subordinate to the C0 norm satisfies:∥∥∥D0

(
Fδ

� − 
f
f

)∥∥∥
C0

→ 0, as δ → 0.

At a neighborhood of 0, the derivative of Fδ
� is constant, whereas the one of φf

f is continuous. Furthermore, for g

C1-close to f , Dφ
g
f is close to Dφ

f
f .

Hence, for every μ > 0, there exists a small η(μ) > 0 such that for any g sufficiently close to f in the C1-topology 
and any w ∈ � with ‖w‖C0 ≤ η(μ) and δ ≤ η(μ), it holds∥∥∥Dw

(
Fδ

� − 
g
f

)∥∥∥
C0

≤ μ. (13)

Then, putting together (11), (13), we get∥∥∥(F δ
� − 

g
f )Jv

∥∥∥
C0

≤ dC0(f, g) + μ‖Jv‖C0

≤ dC0(f, g) + ‖J‖C0 μ‖v‖C0 .

By (10), ‖J‖C0 is bounded independently of δ, we put

μ0 = inf
δ small

min

(
1

2
,

1

2‖J‖C0

)
> 0. (14)

Hence for every η, δ < η(μ0), for every g moreover η/2-C0-close to f it holds for v ∈ �:

‖v‖C0 ≤ η ⇒
∥∥∥(F δ

� − 
g
f )Jv

∥∥∥
C0

≤ η

2
+ 1

2
‖v‖C0 < η.

Which is the second statement of the Proposition. Also inequalities (13) and (14) implies that (F δ
� − 

g
f )J contracts 

the C0-norm by a small factor when η, δ are small and g is close to f , which is the first statement of the Proposition. 
We remark that as far as δ ≤ η(μ0), which does not depend on η, we can suppose η ≤ η(μ0) as small as we want 
which satisfies the same property, if g is sufficiently close to f .

It remains only to estimate �((F δ
� −

g
f )(Jv)) for v ∈ �. To do that, we prove the following lemma similar to the 

Robin’s computation §6 of [17]:



P. Berger, A. Kocsard / Ann. I. H. Poincaré – AN 34 (2017) 1227–1253 1239
Lemma 5.5. For σ ∈ {s, u}, there exist a constant A which depends on f but not on δ, and a constant Bδ which 
depends on δ such that for every v ∈ �, for any i and σ = s, u:

�(Jiσ vσ
i ) ≤ A�(vσ

i ) + Bδ

∥∥vσ
i

∥∥
C0 . (15)

As the norm of �(vσ
i ) is dominated by �(v) times a constant independent of δ, it holds by taking the constants A

and Bδ larger:

�(Jv) ≤ A�(v) + Bδ ‖v‖C0 . (16)

Put Lx := Fδ
x−1

− exp−1
x0

◦g ◦ expx−1
◦px−1 . We have:

(F δ
� − 

g
f )J (v)(x) − (F δ

� − 
g
f )J (v)(y) = Lx(J (v)(x) − J (v)(y)) + (Lx − Ly)J (v)(y)

Hence:

�((F δ
� − 

g
f )J (v)) ≤ ‖L‖C0(A�(v) + Bδ ‖v‖C0) + �(L)‖J (v)‖C0 ,

where �(L) depends on δ.
By (13), we can suppose g sufficiently close to f and δ small enough so that ‖L‖C0 is 1/(2A) contracting on a 

small neighborhood of 0. From this:

�((F δ
� − 

g
f )J (v)) ≤ �(v)

2
+ (Bδ

2A
+ �(L)‖J‖C0

)‖v‖C0 .

Hence for every ε > 0, for every η such that:

η ≤ (
Bδ

2A
+ �(L)‖J‖C0)

−1 ε

2
If ‖v‖C0 ≤ η and �(v) ≤ ε and g sufficiently close to f , it holds:

�((F δ
� − 

g
f )J (v)) ≤ ε �

Proof of Lemma 5.5. We prove the case σ = s, since the other case σ = u is similar. For n ≥ 0, we evaluate:

‖Fδn
(x, vs

i (x)) − Fδn
(y, vs

i (y))‖
≤ ‖Fδn ◦ πs

i (x, vs
i (x) − vs

i (y))‖ + ‖Fδn ◦ πs
i (x, vs

i (y)) − Fδn ◦ πs
i (y, vs

i (y))‖
By Remark 5.3, there exists a constant D which does not depend on n nor δ such that:

‖Fδn|Es
i ‖ ≤ Dλn

Hence:

‖Fδn ◦ πs
i (x, vs

i (x) − vs
i (y))‖ ≤ DCλnC�(vs

i )d∞(x, y)

On the other hand,

‖Fδn ◦ πs
i (x, ·) − Fδn ◦ πs

i (y, ·)‖
≤

∑
k

‖Fδn−k−1|Es

nk
←−
f k+1(x)

‖ · ‖Fδ(
←−
f k(x), ·) − Fδ(

←−
f k(y), ·)‖ · ‖Tf k|Es

y‖,

where nk is such that 
←−
f k+1(x) ∈ Wnk

. This is less than:∑
k

CDλn−k−1 · ‖Fδ(
←−
f k(x), ·) − Fδ(

←−
f k(y), ·)‖ · CDλk.

Hence there exists a constant K(δ) which depends only on f and δ such that:

‖Fδn ◦ πs
i (x, ·) − Fδn ◦ πs

i (y, ·)‖ ≤ n · K(δ)λnd∞(x, y)

Consequently:

‖Fδn
(x, vs

i (x)) − Fδn
(y, vs

i (y))‖ ≤ (DC2λn�(vs
i ) + n · K(δ)λn‖v‖C0)d∞(x, y)

Summing over n we conclude. �
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6. Analysis on Mf

Let us introduce a few notations. Let N be an arbitrary Riemannian manifold. We recall that C0(
←−
Mf , N) denotes 

the space of d1-continuous maps φ : ←−
Mf → N . Also Lip∞(

←−
Mf , N) denotes the space of d∞-Lipschitz maps φ :←−

Mf → N . Let us define:

Mor∞0 (
←−
Mf ,N) := C0(

←−
Mf ,N) ∩ Lip∞(

←−
Mf ,N).

We endow C0(
←−
Mf , N) with the uniform distance given by the Riemannian metric of N . Note that C0(

←−
Mf , N) is a 

Banach manifold. Actually its topology does not depend on the Riemannian metric of N . The aim of this section is to 
prove the denseness of Mor∞0 (

←−
Mf , N) in C0(

←−
Mf , N). To do this, we will use a new technique based on convolutions.

Let ρ ∈ C∞(R) be a non-negative bump function with support in (−1, 1). Let μ be any Lebesgue measure on M
such that μ(M) = 1, and let μ̃ = ⊗

Z
μ be the induced probability on MZ.

For every map g from 
←−
Mf into Rn, for every r > 0, we define gr by:

gr : ←−
Mf � x �→

∫
MZ

g(y) · ρ
(

d1(x, y)

r

)
dμ̃(y).

The following result plays a key role:

Lemma 6.1. Let φ : ←−
Mf → R

n be a continuous function with respect to the distance d1. Let φ̃ be a continuous 
extension to (MZ, d1). Let 1 be the function on MZ constantly equal to 1 ∈ R. For every r > 0, the functions 1r and 
φ̃r (defined as above) satisfy:

(i) φ̃r and φ̃r/1r are well defined.

(ii) φ̃r is d1-continuous and d∞-Lipschitz, i.e. it belongs to Mor∞0 (
←−
Mf , Rn).

(iii) The function φ̃r/1r is C0-close to φ̃ whenever r is small.
(iv) The support of φ̃r is included in the r-neighborhood of the support of φ.

The following are immediate corollaries of this lemma:

Corollary 6.2. For every open cover (Ui)i of 
←−
Mf , there exists a partition of unity (ρi)i ⊂ Mor∞0 (

←−
Mf , R) subordinate 

to it.

Corollary 6.3. The subset Mor∞0 (
←−
Mf , N) is dense in C0(

←−
Mf , N).

Remark 6.4. Both above corollaries are also true if we replace 
←−
Mf by any compact subset E of it.

Proof of Lemma 6.1. Let us start by proving (i). As φ̃ and ρ are continuous on a compact space, they are bounded. 
As μ̃(MZ) = 1, the functions φ̃r and 1r are well defined. Let x ∈ MZ. There exists δ > 0 such that ρ|Bd1(0, δ/r) is 
greater than δ. For every x ∈ MZ, the μ̃-volume of the ball Bd1(x, δ/r) is greater than:

N∏
−N

μ

(
B
(
xi,

δ

6r

))
> 0,

where N is any natural number satisfying 
∑

|n|≥N 2−|n|diam(M) ≤ δ
2r

.

Thus, m := inf{μ̃(Bd1(x, δ/r)) : x ∈ ←−
M } is positive and 1r > mδ. Consequently, φr/1r is everywhere well defined.

Let us proof (iii). As (MZ, d1) is compact, the function φ̃ is uniformly continuous: for every δ > 0, there exists 
r > 0 such that the image by φ̃ of any d1-ball of radius r has diameter less than δ. Thus for every x ∈ ←−

Mf :
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|φ̃r (x) − φ̃(x) · 1r (x)| ≤
∫

MZ

δ · ρ
(

d1(x, y)

r

)
μ̃(y) ≤ δ · 1r (x)

Let us proof (ii). We remark that if a function is d1-Lipschitz, then it is d∞-Lipschitz, and so it belongs to 
Mor∞0 (

←−
Mf , Rm). Then, let us prove φ̃r is d1-Lipschitz. For every x′ ∈ ←−

Mf :

φ̃r (x) − φ̃r (x
′) =

∫
MZ

φ̃(y) ·
(

ρ

(
d1(x, y)

r

)
− ρ

(
d1(x

′, y)

r

))
dμ̃(y)

As ρ is smooth, its derivative is bounded by some L, and so:∣∣∣∣∣ρ
(

d1(x, y)

r

)
− ρ

(
d1(x

′, y)

r

)∣∣∣∣∣ ≤ L

r
|d1(x, y) − d1(x

′, y)| ≤ L

r
d1(x, x′)

Consequently:

|φ̃r (x) − φ̃r (x
′)| ≤ L

r
d1(x, x′)

∫
MZ

|φ̃(y)|dμ̃(y)

Thus, since φ̃ is bounded and μ̃ is a probability, we get that φ̃r is d1-Lipschitz as desired. �
7. Proof of Proposition 5.1

Let f be an AS endomorphism of a compact manifold M .

7.1. Preliminaries

Distance on Grassmannian bundles We endow the space of linear endomorphisms of RN with the operator norm 
‖ · ‖ induced by the Euclidean one of RN . We recall that the Grassmannian GN of RN is the space of d-planes of RN , 
for 0 ≤ d ≤ N . Given two planes P, P ′ ∈ GN let πP and π ′

P be their associated orthogonal projections. The metric 
dG on GN is defined by:

dG(P,P ′) = ‖πP − πP ′ ‖

Angle between planes Two planes P and P ′ of Rn make an angle greater than η if for all u ∈ P \{0} and v ∈ P ′ \ {0}, 
the angle between u and v is greater than η (for the Euclidean norm), in particular they are in direct sum.

Definition of Es We recall that for any (x, a) ∈ ←−
Mf ×R

N , Fδ(x, a) = (
←−
f (x), Fδ

x0
(a)), where x0 = π0(x).

The stable direction Es
x of F 0 at x is given by

Es
x := Ker px0 ⊕ Tx0W

s(x0, f ), (17)

where Ws(x0, f ) is the stable set of x0; its intersection with a neighborhood of π0(
←−
Mf ) is an immersed manifold (see 

Proposition 4.11 [2]).
We remark that Es

x depends only on x0, for every x ∈ ←−
Mf .

In order to construct the plane fields of Proposition 5.1, we will have to take care of the critical points of f . The 
unique control that we have on them is the strong transversality condition. This condition implies, in particular, that 
for every x ∈ ←−

Mf it holds

Es←−
f (x)

+ Tf (Tx0M) =R
N. (18)

Therefore we shall construct the distributions (Es
i )

q

i=1 “close” to Es in GN . Let us explain how we will proceed, 
and what does it mean.
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Topology on plane fields of nested domains of definition For a subset C ⊂ ←−
Mf , we denote by C0(C, GN) the space 

of d1-continuous maps from C into GN . When C is compact, we endow this space with the uniform metric:

d(g,g′) = max
x∈C

d(g(x), g′(x)).

Given a plane field E ∈ C0(C, GN) and η > 0, we denote by B(E, η) (resp. B̄(E, η)) the open (resp. closed) ball 
centered at E and radius η.

Let W be subset of 
←−
Mf and V a neighborhood of W . Let EW ∈ C0(W, GN) and EV ∈ C0(V , GN) be two plane 

fields. We say that EW is compact-open close to EV if for any compact subset C ⊂ W , there exists a small compact 
neighborhood N of C in V such that the graph of EV |N is close to the graph of EW |C for the Hausdorff distance on 
compact subsets of Mf × GN induced by d1 + dG. This will be explained in greater details for its application case in 
Remark 7.2.

7.2. Splitting Proposition 5.1 into the stable and unstable fields

We are going to illustrate the geometrical part of the proof of Proposition 5.1 by depicting the construction for the 
following example. Let f : (x, y, z) ∈ R

3 �→ (x2, y2, 0). This map is AS and can be extended to an AS endomorphism 
of the compactification (R ∪ {∞})3 of R3 equal to the 3-torus. On this compact manifold, its inverse limit is homeo-
morphic to [0, ∞]3, via the projection π0. Since this map is invariant via the symmetries (x, y, z) �→ (xδx , yδy , zδz ), 
(δx, δy, δz) ∈ {−1, 1}3, we will focus only on the restricted dynamics on π−1

0 ([0, 1]3) which is the inverse limit of f

restricted to the set of points with bounded orbit. The restricted non-wandering set 
←−
� f is formed by 4 fixed points 

(0, 0, 0)Z, (0, 1, 0)Z, (1, 0, 0)Z, (1, 1, 0)Z.
Let us split Proposition 5.1 into two propositions.

Proposition 7.1. There exist neighborhoods (Vi)
q

i=1 of respectively (Ws(
←−
� i))

q

i=1 in 
←−
Mf , and for every small δ, there 

are functions

Es
i : Vi → GN

satisfying the following properties for every i:

(i) for every x ∈ Vi ∩ ←−
f −1(Vi) the following inclusion holds:

Fδ(Es
ix) ⊂ Es

i
←−
f (x)

.

(ii) for every k ≥ j , for every x ∈ Vk ∩ ←−
f −1(Vj ) the following inclusion holds:

Fδ(Es
kx) ⊂ Es

j
←−
f (x)

.

(iii) Es
i is compact-open close to Es|Ws(

←−
� i), when δ is small.

(iv) Es
i is of constant dimension, d1-continuous, and locally Lipschitz for the metric d∞.

Fig. 1 depicts an example of such plane fields.

Remark 7.2. From the definition given in §7.1, Property (iii) means that for every i, for every compact subset C of 
Ws(

←−
� i), for every ε > 0, there exists a compact neighborhood U of C in Vi such that for every δ sufficiently small

dH (Graph(Es
i |U),Graph(Es |C)) ≤ ε,

where dH (·, ·) denotes the Hausdorff distance of compact subsets of 
←−
Mf × GN induced by the distance d1 + dG. We 

notice that U depends on C and ε but not on δ small enough.
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Fig. 1. Plane fields Es
i

in the example given by f : (x, y, z) �→ (x2, y2,0).

Remark 7.3. Property (iv) means that Es
i is of constant dimension, d1-continuous, and that for every compact subset 

C of Vi there exists a constant Lδ
C such that:

dG(Es
ix,E

s
iy) ≤ Lδ

Cd∞(x, y), ∀x, y ∈ C.

In the diffeomorphism case, to obtain the existence of (Eu
iδ)i it suffices to first push forward by Fδ each of the plane 

field Es
i on ∪n

←−
f n(Vi) (which is a neighborhood of Wu(

←−
� i), and then to apply the same proposition to 

←−
f −1. In our 

case, even though 
←−
f is invertible, the bundle map F 0 is not. However, in Lemma 4.4, we saw that Fδ is invertible for 

every δ > 0. Nonetheless, the norm of the inverse of this map depends on δ, and so the angle between Es
i and Eu

i as 
well. However in Proposition 5.1 such an angle must be bounded by a constant which is independent of δ (and this is 
necessary in the proof of Proposition 4.6).

Hence we must redo a similar construction, still in a neighborhood of each Ws(
←−
� i) since it is the only place where 

we control the singularities.
Another difference in the construction of Eu

i is the following: to construct the plane field Eu
i we will not be allowed 

to pull back, since the critical set might intersect Ws(
←−
� i), and a pull back by F 0 would contain critical vectors which 

belong to Es , this would contradict the angle condition (iii) for δ > 0. Hence the construction of Eu
i must be done in 

compact set in a small neighborhood of Ws(
←−
� i) via push forward.

Proposition 7.4. There exist K > 0, an open cover (Wi)
q

i=1 of 
←−
Mf , where each Wi contains 

←−
� i and is included in 

Vi , such that for every δ > 0, there exists a subbundle Eu
i of Wi × R

N → Wi satisfying the following properties for 
i ∈ [1, q]:

(i) For every x ∈ Wi ∩ ←−
f −1(Wi), the map Fδ sends Eu

ix into Eu

i
←−
f (x)

.

(ii) For every j ≥ i, for every x ∈ Wi ∩ ←−
f −1(Wj ) the following inclusion holds:

Fδ(Eu
jx) ⊃ Eu

i
←−
f (x)

.

(iii) Es
ix ⊕ Eu

ix =R
N , for every x ∈ Wi , the angle between Es

i and Eu
i is bounded from below by K−1.

(iv) The subbundle Eu
i is of constant dimension, d1-continuous and d∞-Lipschitz.

(v) For every x ∈ Wi , it holds

‖Fδ(vu)‖ ≥ ‖vu‖/K, ∀vu ∈ Eu
ix.

(vi) For every q ′, if x ∈ Wq ′ then 
←−
f (x) /∈ ∪j>q ′Wj and ∩n∈Z

←−
f n(Wq ′) = ←−

� q ′ .

Fig. 2 depicts an example of such plane fields.
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Fig. 2. Plane fields Eu
i

in the example given by f : (x, y, z) �→ (x2, y2,0).

Fig. 3. A filtration for the example given by f : (x, y, z) �→ (x2, y2,0).

From the two latter propositions, we easily deduce:

Proof of Proposition 5.1. By Propositions 7.1 and 7.4, we have immediately properties (i)–(ii)–(iii)–(iv)–(v)–(vi) 
of Proposition 5.1. To prove property (vii), we remark that by Proposition 7.1 (i) and (iii) together with the hyper-
bolicity of 

←−
� , the bundle Es

i is contracted by Fδ over a neighborhood of 
←−
� i , for every i. Moreover, by properties 

(i)–(iii)–(iv) of Proposition 7.4, the bundle Eu
i is close to Eu|←−� i , and so expanded by Fδ on a neighborhood of 

←−
� i

(see Proposition 2.2). �
8. Proof of Proposition 7.1

Let us recall that (Mj )
q

j=1 is a filtration adapted (
←−
� j)

q

j=1 (see §5 for details). An example of such a filtration is 
depicted Fig. 3.

We are going to construct (Es
i )i by (increasing) induction on i. Here it is the induction hypothesis at the step i:

For every Ni ≤ 0, there exist neighborhoods (V i
j )ij=1 of respectively (Ws(

←−
� j) ∩←−

f Ni (Mi))
i
j=1 in 

←−
f Ni (Mi), there 

are functions

Es
j : V i

j → GN

which satisfy the following properties for every j ≤ i:

(i) for every x ∈ V i
j ∩ ←−

f −1(V i
j ) the following inclusion holds:

Fδ(Es
jx) ⊂ Es

j
←−
f (x)

.

(ii) for every k ≥ j , for every x ∈ V i ∩ V i the following inclusion holds:
k j
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Es
kx ⊂ Es

jx.

(iii) Es
j is compact-open close to Es|Ws(�j ) ∩ V i

j , when δ-is small.
(iv) Es

j is of constant dimension, d1-continuous, and locally Lipschitz for the metric d∞.

Remark 8.1. The induction hypothesis at step i ≥ 0 states that for any Ni ≤ 0 there exists a covering of (V i
j )j≤i

of 
←−
f Ni (Mi) which satisfies the above properties. We recall that Mi is a compact included in ∪j≤iW

s(
←−
� j). But in 

general, for i < q , it does not contain Ws(
←−
� j) (see Fig. 3). Thus V i

j is in general not a neighborhood of Ws(
←−
� j), 

but only a neighborhood of Ws(
←−
� j) ∩ ←−

f Ni (Mi) in the space 
←−
f Ni (Mi) endowed with the topology induced by 

←−
Mf .

Nevertheless, when i = q , then Mq = ←−
Mf , and so V q

j is a neighborhood of Ws(
←−
� j) for every j ≤ q .

Hence the step i = q gives the statement of Proposition 7.1 with for every j , Vj := ←−
f −1(V

q
j ) ∩ V

q
j . Indeed, Vj is 

a neighborhood of Ws(
←−
� j) since V q

j is so.

We recall that each Es
j depends on δ. During the induction, several parameters will be fixed.

The order is the following at the step i. First an arbitrary negative integer Ni is given. Then η > 0 is chosen. 
Depending on Ni and η, we will suppose δ small. The induction hypothesis is used with δ and Ni−1 chosen large in 
function of Ni and η.

Step i = 1 Let N1 ≤ 0, and put K1 := ←−
f N1(M1). We notice that Ws(

←−
� 1) is an open set of 

←−
Mf . Hence we put 

V 1
1 := K1. Note that 

←−
f (K1) ⊂ K1.

Let K1 � x �→ E′
x be the restriction to K1 of a smooth approximation of the continuous map Es|Ws(

←−
� 1) :

Ws(
←−
� 1) → GN given by Corollary 6.3.

Observe that E′ is uniformly close to Es |K1. Moreover it is d1-continuous and d∞-Lipschitz. We recall that the 
Banach manifold C0(K1, GN) was defined in §7.1.

For all η > 0 and δ > 0, the following is well defined on the closed ball B̄C0(E′, η) ⊂ C0(K1, GN) with image in 
C0(K1, GN):

Fδ# := B̄C0(E
′, η) � P �→

[
x �→ Fδ−1

x0
(P←−

f (x)
)
]
, with x0 := π0(x).

By hyperbolicity, for δ small enough and E′ sufficiently close to Es , there exists some k ∈ N such that Fδ#k
is 

λ-contracting and sends the closed ball B̄C0(E′, η) into itself.
Let Es

1 be the unique fixed point of Fδ# in BC0(E′, η). By definition, condition (i) is satisfied.
Condition (iii) follows from the fact that η can be taken small when δ is small.
It remains only to show that (iv) holds. First let us recall that Es

1 ∈ BC0(E′, η) and x0 ∈ M �→ Fδ
x0

∈ LN(R) is of 
class C1, and so, K1 � x �→ Fδ

x0
is d∞-Lipschitz. Since Fδ is moreover invertible, there exists Lδ,k such that for all 

x, y ∈ K1 and P ∈ BC0(E′, η) it holds

d
(
Fδk

x

−1
(P←−

f k(y)
),F δk

y

−1
(P←−

f k(y)
)
) ≤ Lδ,kd∞(x, y), (19)

where Fδk
x := Fδ

xk−1
◦ · · · ◦ Fδ

x0
and xi := πi(x) the ith coordinate of x.

On the other hand, the map Fδ#k
is pointwise λ-contracting:

d
(
Fδk

x

−1
(P←−

f k(x)
),F δk

x

−1
(P←−

f k(y)
)
) ≤ λd(P←−

f k(x)
,P←−

f k(y)
). (20)

Consequently, adding (19) and (20) we get

d
(
Fδ−k

x (P←−
f k(x)

),F δ−k

y (P←−
f k(y)

) ≤ Lδ,kd∞(x, y) + λd(P←−
f k(x)

,P←−
f k(y)

). (21)

For every d∞-Lipschitz distribution P let us denote by �(P ) its Lipschitz constant. It holds for every k:
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Fig. 4. Construction of Z2 = f N2 (M2) \ int f N1+1(M1) in the example given by f : (x, y, z) �→ (x2, y2,0).

d(P←−
f k(x)

,P←−
f k(y)

) ≤ �(P )d∞(x, y). (22)

Thus by (21) and (22):

d
(
Fδk−1

x (P←−
f k(x)

),F δk−1
y (P←−

f k(y)

) ≤ (Lδ,k + λ�(P ))d∞(x, y)

Consequently the closed subset of BC0(E′, η) formed by sections with d∞-Lipschitz constant smaller or equal than 

any � ≥ (1 − λ)−1Lδ,k is forward invariant under Fδ#k
. We recall that E′ is d∞-Lipschitz. Hence if � ≥ �(E′), this 

subset is non empty (it contains E′), thus there exists a fixed point d∞-Lipschitz in B̄C0(E′, η). By uniqueness, the 
fixed point K1 � x �→ Es

1x ∈ GN is d∞-Lipschitz. �
Step i − 1 → i Let Ni be an arbitrary negative integer. Put:

Ki := Ws(
←−
� i) ∩ ←−

f Ni (Mi).

Let us begin as in the step i = 1.
We can extend d1-continuously the section Es |Ki : Ki → GN to an open neighborhood of Ki . Let x �→ E′

x be a 
smooth approximation given by Corollary 6.3 of such a continuous extension.

The section E′ is well defined on a small neighborhood Zi of Ki in 
←−
f Ni (Mi) of the form:

Zi := ←−
f Ni (Mi) \ int

←−
f Ni−1+1(Mi−1), Ni−1 ≤ 0

Indeed note that Ki = ←−
f Ni (Mi) \∪n≤0

←−
f n(Mi−1), so Zi is close to Ki whenever −Ni−1 is large enough (see Fig. 4).

Observe that E′|Ki is C0-close to Es |Ki , d1-continuous and d∞-Lipschitz.
Hence, for every η small, for every Zi and δ small enough, for E′ sufficiently close to Es , the following is well 

defined on the ball B̄C0(E′, η) ⊂ C0(Zi, GN) with image in C0(Zi ∩ ←−
f −1(Zi), GN):

Fδ# := B̄C0(E
′|Zi, η) � P �→

[
Zi ∩ ←−

f −1(Zi) � x �→ Fδ−1

x0
(P (

←−
f (x)))

]
.

By hyperbolicity, for η small and then for Zi and δ small enough and E′ sufficiently close to Es , there exist some 
k ∈N, such that the following map:

Fδ#k := B̄C0(E
′|Zi, η) � P �→

⎡
⎣ ⋂

0≤l≤k

←−
f −l (Zi) � x �→ Fδ

x0

−k
(P (

←−
f k(x)))

⎤
⎦ ,

is contracting and sends the closed ball B̄C0(E′|Zi, η) into B̄C0(E′| ∩l≤k
←−
f −l(Zi), η).

As the target space is not the same as the source space, we cannot conclude to the existence of a fixed point. We 
are going to extend the sections in the image of Fδ# by a section constructed by the following lemma shown below:

Lemma 8.2. There exist a sequence of negative integers (Nj )j<i−1 and a section Ẽ ∈ BC0(E′|Zi, η/2) which is 
d1-continuous and d∞-Lipschitz such that for every j < i:
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(1) Zj := ←−
f Nj (Mj ) \ int

←−
f Nj−1+1(Mj−1) ⊂ int V i−1

j .

(2) ∀x ∈ Zj ∩ Zi, Ẽ(x) ⊂ Es
j (x).

Gluing Ẽ to Fδ#Ẽ and definition of Es
i We remark that Ẽ and Fδ#Ẽ are well defined on:

V i
i := ←−

f Ni (Mi) \ ←−
f Ni−1(Mi−1).

By Corollary 6.2, there exists a partition of the unity (ρ, 1 − ρ) ∈ Mor∞0 (
←−
Mf )2 subordinated to the cover 

(
←−
f Ni−1−1(int Mi−1), 

←−
Mf \ ←−

f Ni−1(Mi−1)).
For x ∈ V i

i , let px and p′
x be the orthogonal projections of RN onto respectively Ẽ(x) and F #Ẽ(x). Put

E0(x) := {(ρ(x)px + (1 − ρ(x))p′
x)(u); u ∈ Ẽ(x)}.

We notice that V i
i � x �→ E0(x) ∈ GN is d1-continuous and d∞-Lipschitz. Furthermore, for x ∈ V i

i close to ←−
f Ni−1(Mi−1), the plane E0(x) is equal to Ẽ(x) and for x ∈ V i

i \ ←−
f Ni−1−1(int Mi−1), the plane E0(x) is equal 

to Fδ#Ẽx .
We define

�η := {P ∈ C0(V i
i ,GN) : P = E0 on V i

i \ ←−
f Ni−1−1(Mi−1) and

the restriction P and E′ to ∩k
j=0

←−
f j (V i

i ) are η − C0 − close}.
We remark that the following map is continuous:

Fδ� := P ∈ �η �→
⎡
⎣V i

i � x �→
⎧⎨
⎩

E0(x) if x ∈ V i
i \ ←−

f Ni−1−1(Mi−1)

F δ−1
x (P (

←−
f (x))) otherwise.

⎤
⎦

As Fδ#k
is contracting and sends B̄C0(E′|Zi, η) into B̄C0(E′| ∩j

←−
f j (Zi), η), the map Fδ�k

is contracting and 
sends �η into itself.

Let Es
i be the fixed point of Fδ�.

By definition, Es
i satisfies property (i). Similarly to the step i = 1, the section Es

i satisfies Properties (iii) and (iv). 
However all the sections (Es

j )j≤i need to be extended from (V i−1
j )j≤i to (V i

j )j≤i which remains to be constructed.

Construction of (V i
j )j≤i and extension of (Es

j ) For every j < i, we recall that for every x ∈ Zj ∩Zi , the plane Ẽx is 

included in Es
jx . By induction hypothesis (i) and since V i

i = Zi ∩ ←−
f −1(Zi), for every x ∈ Zj ∩ V i

i , the plane Fδ#Ẽx

is included in Es
jx . Hence, for every x ∈ Zj ∩ V i

i , the plane E0
x is included in Es

jx . Again by induction hypothesis (i), 

since the fixed point Es
ix of F� is obtained by iterating it, for every x ∈ Zj ∩ V i

i , the plane Es
ix is included in Es

jx . Put

Ṽj := V i−1
j ∩ ∪i−1

l=jZl

By induction hypothesis (ii), for every x ∈ Ṽj ∩ V i
i , the plane Es

ix is included in Es
jx . Using that Zj = ←−

f Nj (Mj ) \
int

←−
f Nj−1+1(Mj−1), we remark that:

Ṽj ⊃ V i−1
j ∩ ←−

f Ni−1(Mi−1) \ int
←−
f Nj−1+1(Mj−1) = V i−1

j \ int
←−
f Nj−1+1(Mj−1).

Hence Ṽj is a neighborhood of Ws(
←−
� j) ∩ ←−

f Ni−1(Mi−1) since Ws(
←−
� j) does not intersect 

←−
f Nj−1+1(Mj−1). Put

V i
j := ∪n≥0(

←−
f |V i

i )−n(Ṽj ) where V i
i = ←−

f Ni (Mi) \ ←−
f Ni−1(Mi−1)

Lemma 8.3. For every j ≤ i, the set V i is a neighborhood of Ws(�j ) ∩ f Ni (Mi) in f Ni (Mi).
j
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Proof. As the case i = j is obvious, we suppose j < i. For every x ∈ f Ni (Mi) ∩ Ws(
←−
� j) there exists n such that ←−

f n(x) ∈ int (f Ni−1(Mi−1)). Consequently, for every y ∈ ←−
f Ni (Mi) nearby x, there exists m such that 

←−
f m(y) ∈

←−
f Ni−1(Mi−1). Let us consider such an m minimal. Since Ṽj is a neighborhood of Ws(

←−
� j) ∩ f Ni−1(Mi−1) in 

f Ni−1(Mi−1), the point 
←−
f m(y) belongs to Ṽj for y sufficiently close to x. Also for every k < m the point 

←−
f k(y)

belongs to the complement of f Ni−1(Mi−1). On the other hand, 
←−
f k(y) belongs to f Ni (Mi) for every k. Thus for 

every k < m, the point 
←−
f k(y) belongs to V i

i = ←−
f Ni (Mi) \ ←−

f Ni−1(Mi−1). As 
←−
f m(y) belongs to Ṽj , it follows that 

y belongs to V i
j . �

We extend Es
j on V i

j by:

∀x ∈ V i
j ,∀n ≥ 0 minimal such that

←−
f n(x) ∈ Ṽj , Es

jx = Fδ
x

−n
(Es

j
←−
f n(x)

).

Induction hypotheses (i), (iii) and (iv) for j < i imply properties (i), (iii) and (iv) for Es
j on V i

j .
Let us check property (ii). As this property is invariant by pull back, property (i) implies that property (ii) holds 

for every k ≤ j both less than i. Let x ∈ V i
i ∩ V i

j . Let n be such that x belongs to 
←−
f −n(Ṽj ) ∩ V i

i . We recall that 

V i
i = ←−

f Ni (Mi) \ ←−
f Ni−1(Mi−1), hence 

←−
f n(x) belongs to 

←−
f Ni+n(Mi) ⊂ ←−

f Ni (Mi). Also 
←−
f n(x) belongs to Ṽj ⊂

V i−1
j ⊂ f Ni−1(Mc

i−1). Thus 
←−
f n(x) ∈ Ṽj ∩ V i

i . Consequently, Property (ii) holds at 
←−
f n(x). By pull back invariance 

and property (i), Property (ii) holds at x.

Proof of Lemma 8.2. We are going to project E′ onto each Es
j , j ≤ i. The following is a consequence of the Lambda-

lemma and the strong transversality condition.

Claim 8.1. For Zi small enough (that is −Ni−1 large enough), for δ small enough, for every j < i, every 
x ∈ Ws(

←−
� j) ∩ Zi , if qj (x) denotes the orthogonal projection of RN onto Es

x , the distance between qj (x)(E′
x) and 

E′
x is less than η/4i.

Proof. By the strong transversality condition, on Wu
ε (

←−
� i) \ ←−

� i the stable direction Es is transverse to T Wu
ε (

←−
� i). 

This is true in particular on Wu
ε (

←−
� i) ∩ Ws(

←−
� j). By hyperbolicity and the strong transversality condition, for every 

(xn)n in Wu
ε (

←−
� i) ∩Ws(

←−
� j) approaching x ∈ �i , every accumulation plane P of (Es

xn
)n contains the plane Es

x . This 

implies that for every (xn)n in Ws(
←−
� j) approaching x ∈ Ki = ←−

f Ni (Mi) ∩ Ws(
←−
� i), every accumulation plane P of 

(Es
xn

)n contains the plane Es
x . The claim follows since E′ is close to Es |Ki for δ small and Zi small. �

We will perform orthogonal projections of Es
i on compact subsets of each Zi ∩ Ws(

←−
� j).

Let us implement these compact subsets.
First let us notice that cl(Zi \ ←−

f −1(Zi)) is a compact subset of ∪j<iW
s(�j ):

Zi \ ←−
f −1(Zi) = ←−

f Ni (Mi) \ int
←−
f Ni−1+1(Mi−1) \ (←−

f Ni−1(Mi) \ int
←−
f Ni−1(Mi−1)

)
.

As 
←−
f Ni (Mi) is included in 

←−
f Ni−1(Mi) it comes:

Zi \ ←−
f −1(Zi) = ←−

f Ni (Mi) ∩ int
←−
f Ni−1(Mi−1) \ int

←−
f Ni−1+1(Mi−1) ⊂ ∪j<iW

s(
←−
� j).

Let (V i−1
k )k≤i−1 be the neighborhoods given by the induction hypothesis at step i − 1 for the integer Ni−1 defined 

above.
By decreasing induction we construct (Nk)

i−2 ∈ Z
− such that, the following holds.
k=1



P. Berger, A. Kocsard / Ann. I. H. Poincaré – AN 34 (2017) 1227–1253 1249
Claim 8.2. For every k ≤ i − 1, the set Zk := ←−
f Nk (Mk) \ ←−

f Nk−1+1(Mk−1) has its closure included in the interior of 
V i−1

k . Moreover, for δ small enough, the distance between the orthogonal projection pk onto Es
k satisfies:

‖pk(x)(E′
x) − E′

x‖ ≤ η/3i, ∀x ∈ Zk. (23)

Proof. For k ≤ i −1, suppose Nk constructed. Then for −Nk−1 large, the set Zk is close to the compact set Ws(
←−
� k) ∩

f Nk (Mk), and so it is included in Vk . Moreover, by Remark 7.3 and Claim 8.1 for −Nk−1 large and δ small, inequality 
(23) holds. �

Let Ẑk be a neighborhood of Zk in V i−1
k such that for all x ∈ Ẑk ,

‖pk(x)(E′
x) − E′

x‖ ≤ η

2i
.

By Corollary 6.2, there exists a dump function ρ ∈ Mor∞
0 (

←−
f Ni−1(Mi−1), [0, 1]) equal to 1 on Zk and to 0 on Ẑc

k . We 

construct (P j
x )j<i by induction. Put P 0 = E′, and for j ∈ [1, i − 1] put

Px = {ρj (x) · qj (x)(u) + (1 − ρj (x)) · u : u ∈ P
j−1
x }

Let Ê = P i−1
x . By induction hypothesis (ii), for every x ∈ Zi ∩ Zj , it holds Ẽx ⊂ Es

jx .

By definition of Ẑk , the section Ẽ is in BC0(E′|Zi, η/2) and is d∞-Lipschitz. �
9. Proof Proposition 7.4

The proof of Proposition 7.4 is done by decreasing induction on q ′ ∈ [1, q]. We recall that Proposition 7.1 con-
structed sections (Es

j )j on neighborhoods (Vj )j of respectively (Ws
j (

←−
� j))j , which satisfy properties (i)–(ii)–(iii) and 

(iv). Here is the induction hypothesis.
For every q ′ ≤ q , there exist K > 0 and an open cover (Wi)

q

i=q ′ of ∪j≥q ′Ws(
←−
� j), where each Wi is a neighborhood 

of 
←−
� i included in V i

i and such that for every δ > 0, there exists a function Eu
i ∈ C0(Wi, GN) satisfying the following 

properties for i ∈ [q ′, q]:

(i) For every x ∈ Wi ∩ ←−
f −1(Wi), the map Fδ sends Eu

ix into Eu

i
←−
f (x)

.

(ii) For every j ≥ i, for every x ∈ Wi ∩ ←−
f −1(Wj ) the following inclusion holds:

Eu
ix ⊂ Eu

j
←−
f (x)

.

(iii) Es
ix ⊕ Eu

ix =R
N , for every x ∈ Wi ; the angle between Es

i and Eu
i is bounded from below by K−1.

(iv) The subbundle Eu
i is of constant dimension, d1-continuous and d∞-Lipschitz.

(v) For any x ∈ Wi , it holds

‖Fδ(vu)‖ ≥ ‖vu‖/K, ∀vu ∈ Eu
ix.

(vi) It holds cl(
←−
f −1(∪q

q ′Wi)) ⊂ ∪q

q ′Wi . Moreover, for every j ≥ i, if x ∈ Wj then 
←−
f (x) /∈ ∪k>jWk and 

∩n∈Z
←−
f n(Wj ) = ←−

� j .

We continue to denote by (Mj)
q

j=1 a filtration adapted to (
←−
� j)

q

j=1 (see §5 for details and Fig. 3).
At each step q ′ of the induction we will work with a small η and we will suppose an integer −Nq ′ large and δ small 

both depending on η.
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Step q ′ = q The subset 
←−
� q = Ws(

←−
� q) is compact. Moreover there exists an arbitrarily small compact neighbor-

hood Wq of 
←−
� q which satisfies (vi) for i = q ′. Indeed, consider Wq of the form 

←−
Mf \ ←−

f −N(Mq−1). Hence we can 
suppose that Wq is included in Vq .

Let η > 0 be small, in particular smaller than the angle between Es|�(
←−
f ) and Eu|�(

←−
f ).

Let x �→ E′
x be the restriction to Wq of a smooth approximation of a continuous extension of the continuous map 

Eu|←−� q : ←−
� q → GN given by Corollary 6.3. This means that on the one hand, E′ is d1-continuous and d∞-Lipschitz, 

and that for every ε small, if Wq is sufficiently small then for every x ∈ Wq there exists y ∈ ←−
� q ε-close to x such that 

the distance between E′
x and Eu

y is η small.

By hyperbolicity of 
←−
� q , the angle between Es

y and Eu
y is uniformly bounded from below on y ∈ ←−

� q and Tf |Eu
y

is bijective. By property (iii) of Proposition 7.1 and Remark 7.2, there exists K large such that for every η > 0 small, 
for every Wq sufficiently small, for all δ ≥ 0 small, and for every y ∈ Wq the following holds:

(a) the angle between Es
qy and E′

y is greater than K−1,

(b) for every plane P making an angle with E′
y smaller than η, it holds:

∀u ∈ P, ‖Fδ(u)‖ ≥ ‖u‖/K.

Indeed, for x ∈ ←−
� q , every vector u in Eu is expanded by F 0.

We can now proceed as in the step i = 1 of the proof of Proposition 7.1.
Since for every δ > 0, the map Fδ is bijective, the following is well defined

F# := B̄C0(E
′, η) � P �→

[
x �→ Fδ

x0
(P←−

f −1(x)
)
]

∈ C0(Wq,GN).

Moreover, for δ, Wq small enough and E′ close enough to Eu, there exists some k ∈ N such that Fk
# is contracting 

and sends the closed ball B̄C0(E′, η) into itself.
Let Es

q be the unique fixed point of F# in BC0(E′, η). In this way, condition (i) is clearly satisfied.
Properties (iii) and (v) follow from respectively Properties (a) and (b) above. Property (ii) is empty.
To prove property (iv), we proceed as in the proof of Proposition 7.1, step i = 1. �

Step q ′ + 1 → q ′ Let us suppose the neighborhoods (Wi)
q

i=q ′+1 constructed so that

– property (vi) holds,
– Wi is a neighborhood of 

←−
� i ,

Let us proceed again as in the proof of Proposition 7.1 step i − 1 → i.
We remark that Cq ′ := Ws(

←−
� q ′) \ ←−

f −2(Oq ′) is compact, with Oq ′ := ∪q

i=q ′+1Wi . Moreover for every Nq ′ ≤ 0, 
the following is a compact set containing Cq ′ :

Yq ′ := ←−
f

Nq′ (Mc
q ′−1) \ ←−

f −2(Oq ′).

Moreover, when −Nq ′ is large, Yq ′ is close to Cq ′ for the Hausdorff metric. By Yq ′ small we mean −Nq ′ large.
First, we assume −Nq ′ large enough so that the set Yq ′ is included in Vq ′ .
By strong transversality and property (iii) of Proposition 7.1, for every η > 0, there exists K large such that for 

every δ and Yq ′ small, it holds:

∀x ∈ Yq ′ , ∀u ∈ R
N \ {0} : |� (u,Es

q ′x)| > η ⇒ ‖Fδ(u)‖ ≥ ‖u‖/K. (24)

Indeed, if x ∈ Cq ′ , a unit vector u making an angle at least η with Es
x has its image by F 0 not in Es←−

f (x)
, by the strong 

tranversality condition. Hence the norm if its image is bounded from below by a certain 1/2K . Consequently for δ
and Yq ′ small inequality (24) holds.
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For η > 0, let Uη be the closed subset of C0(Yq ′ , GN) made by sections P such that for every x ∈ Yq ′ the angle 
between Px and Es

q ′x is at least η.

For all η, δ and Yq ′ , the following is well defined with image in C0(Yq ′ ∩ ←−
f (Yq ′), GN):

F# := Uη � P �→
[
x ∈ Yq ′ ∩ ←−

f (Yq ′) �→ Fδ
x0

(P←−
f −1(x)

)
]
.

Similarly, for every k ≥ 0, for all η, δ and Yq ′ , the following is well defined with image in C0(∩k
i=0

←−
f i(Yq ′), GN):

Fk
# := Uη � P �→

[
x ∈ ∩k

i=0
←−
f i(Yq ′) �→ Fδ

x0

k
(P←−

f −k(x)
)
]
.

We remark that ∩k
i=0

←−
f i(Yq ′) = f

Nq′ (Mc
q ′−1) \

←−
f −2+k(Oq ′) is close to 

←−
� q ′ , when k is large and Yq ′ is small (that is 

−Nq ′ large). We assume η > 0 smaller than the angle between Es|�q ′ and Eu|�q ′ . Hence by hyperbolicity, for Yq ′
and δ sufficiently small, there exists k such that Fk

# is contracting for the C0-metric. Note that k does not depend on η. 

Moreover, by hyperbolicity, if k is large enough and δ small enough, for every x ∈ ←−
f k(Cq ′), for every Px η-close to 

Es
q ′x , the plane Fδ

x
−k

(Px) is η-close to Es←−
f −k(x)

. Hence every x ∈ Cp , every P making an angle greater than η with 

Es
x , the plane Fδ

x
k
(Px) makes an angle greater than η with Es

q ′←−f k(x)
.

Consequently, for −Nq ′ large enough, Fk
# takes its values in the subspace of C0(∩k

i=0f
i(Yq ′), GN) formed by 

sections P such that for every x ∈ ∩k
i=0f

i(Yq ′), Px makes an angle with Es
q ′x greater than η > 0.

However, the target space of F# is not the same as the source space. So we cannot conclude to a fixed point. We 
are going to complement the sections in the image of F# by sections obtained by the following lemma shown below:

Lemma 9.1. For δ and Yq ′ small enough, there exists a d1-continuous and d∞-Lipschitz section Ẽ ∈ Uη such that for 
every j > q ′:

x ∈ Yq ′ ∩ ←−
f (Wj ), Ẽx ⊂ Fδ(Eu

j
←−
f −1(x)

).

Gluing Ẽ to F#Ẽ and definition of Eu
i We remark that Ẽ and F#Ẽ are well defined on:

Wq ′ := ←−
f

Nq′ (int Mc
q ′−1) \ cl(

←−
f −1(Oq ′)) ⊂ Yq ′ ∩ ←−

f (Yq ′).

We remark that induction hypothesis (vi) is satisfied.
By Corollary 6.2, there exists a partition of the unity (ρ, 1 − ρ) ∈ Mor∞

0 (
←−
Mf )2 subordinated to the cover 

(Oq ′ , int
←−
f −1(Oq ′)c).

Let px and p′
x be the orthogonal projections of RN onto respectively Ẽ and F#Ẽ. For x ∈ Wq ′ , put

E0
x := {(ρ(x)px + (1 − ρ(x))p′

x)(u); u ∈ Ẽx}.
We notice that x ∈ Wq ′ �→ E0

x ∈ GN is d1-continuous and d∞-Lipschitz. Furthermore, for x ∈ Wq ′ close to 
←−
f −1(Oq ′), the plane E0

x is equal to Ẽx and for x ∈ Wq ′ \ Oq ′ , the plane E0
x is equal to F#Ẽx .

We put

�η := {P ∈ C0(Wq ′ ,GN) : P = E0 on Wq ′ \ Oq ′ and

P and Es
q ′ makes an angle greater than η on Wq ′ \ ←−

f −2+k(Oq ′)}.
We put:

Fδ
� := P ∈ �η �→

⎡
⎣x ∈ Wq ′ �→

⎧⎨
⎩

E0
x if x ∈ Wq ′ \ ←−

f −1(Oq ′)

F δ
x(P←−−1 ) otherwise.

⎤
⎦

f (x)
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We notice that the map Fδ
� takes its values in C0(Wq ′ , GN). Moreover, from the properties of Fδ

# , the map Fδ
� is 

λ-contracting and takes its values in �η.
Let Eu

q ′ be the fixed point of Fδ
� .

By definition, Eu
q ′ satisfies property (i). Similarly to the step i = 1, the section Es

i satisfies Property (iv).

Also, Property (iii) is satisfied for every P ∈ Fδk

� �η , if −Nq ′ is large enough and δ small enough. Hence it holds 
for Eu

q ′ . Likewise by (24), if −Nq ′ is large enough and δ small enough, property (v) holds for Eu
q ′ . This gives a bound 

on K . Such a bound at this step does not depend on δ small enough.
Let us check Property (ii). We only need to check that for j > q ′, for x ∈ ←−

f −1(Wq ′) ∩ Wj it holds:

Eu

q ′←−f (x)
⊂ Fδ(Eu

jx).

That is for every x ∈ Wq ′ ∩ ←−
f (Wj ) it holds:

Eu
q ′x ⊂ Fδ(Eu

j
←−
f −1(x)

).

Let x ∈ Wq ′ ∩ ←−
f (Wi) = ←−

f
Nq′ (int Mc

q ′−1) \ cl(
←−
f −1(Oq ′)) ∩ ←−

f (Wj ). In particular x belongs to Wq ′ ∩ ←−
f (Oq ′) \

←−
f −1(Oq ′).

If x belongs to Wq ′ ∩ Oq ′ \ ←−
f −1(Oq ′), then Eu

q ′x is a linear sum of vectors included in Ẽx and Fδ(Ẽ←−
f −1(x)

). We 

recall that Ẽx is included in Fδ(Eu

i
←−
f −1(x)

) by Lemma 9.1. Also Ẽ←−
f −1(x)

is included in Fδ(Eu

j
←−
f −2(x)

) with j ≥ i such 

that 
←−
f −2(x) ∈ Wj . By (ii), Fδ(Ẽ←−

f −1(x)
) is included in Fδ(Eu

i
←−
f −1(x)

). Hence Eu
q ′x is included in Fδ(Eu

i
←−
f −1(x)

).

If x belongs to Wq ′ ∩←−
f (Oq ′) \Oq ′ , then Eu

q ′x is a linear sum of vectors included in Fδ(Ẽ←−
f −1(x)

) and Fδ2
(Ẽ←−

f −2(x)
). 

As in the previous case, Fδ(Ẽ←−
f −1(x)

) is included in Fδ(Eu

i
←−
f −1(x)

). Similarly, Ẽ←−
f −2(x)

is included in Fδ(Eu

j
←−
f −3(x)

) with 

j ≥ i such that 
←−
f −3(x) ∈ Wj . By (ii), Fδ2

(Ẽ←−
f −2(x)

) is included in Fδ3
(Eu

j
←−
f −3(x)

) ⊂ Fδ(Eu

i
←−
f −1(x)

). Hence Eu
q ′x is 

included in Fδ(Eu

i
←−
f −1(x)

).

Proof of Lemma 9.1. We want to construct Ẽ ∈ Uη which is d1-continuous and d∞-Lipschitz and such that for every 
j > q ′:

x ∈ Yq ′ ∩ ←−
f (Wj ), Eu

q ′x ⊂ Fδ(Eu

j
←−
f −1(x)

).

By property (v), the section

x ∈ ←−
f (Wj ) �→ Fδ(Eu

j
←−
f −1(x)

)

is d1-continuous and d∞-Lipschitz.
For every j > q ′, let W ′

j be an open neighborhood of 
←−
� j with closure in Wj and such that ∪j>q ′′W ′

j contains 

∪j>q ′′Ws(
←−
� j) for every q ′′ ≥ q ′ and (vi) is satisfied.

For every j > q ′, let ρj be a dump function equal to 1 on 
←−
f (W ′

j ) ∪ W ′
j and with support in 

←−
f (Wj ) ∪ Wj . We 

remark that (ρj , 1 − ρj ) is a partition of the unity subordinate to the cover (
←−
f (Wj ) ∪ Wj, 

←−
f (W ′

j )
c ∩ W ′

j
c
).

Let pj (x) be the projection of RN onto Fδ(Eu

j
←−
f −1(x)

) parallely to Es
jx .

Let Ẽq ′ be the orthogonal of Es
q ′ |Yq ′ .

By Claim 8.1, for every j , for Yq ′ and δ-small enough, the plane Ẽq ′ makes an angle greater than a certain η > 0
with Es

q ′δ(x). Hence its projection by pj remains of constant dimension and so is d1-continuous and d∞-Lipschitz.

We now construct inductively (Ẽj )j≥q ′ .
Let j ≥ q ′ and let us suppose the section Ẽj ∈ Uη, d1-continuous and d∞-Lipschitz, constructed so that for every 

i ∈ (q ′, j):
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– for every x ∈ ←−
f (W ′

i ), the plane Ẽjx is included in Fδ(Eu

i
←−
f −1(x)

).

– for every x ∈ W ′
i , the plane Ẽjx is included in Eu

ix .

Put:

Ẽj+1x := {
ρj+1(x) · pj+1(x)(u) + (1 − ρj+1(x)) · (u) : u ∈ Ẽjx

}
.

We define Ẽ = Ẽq .
We remark that by (ii):

∀x ∈ Yq ′ ∩ ←−
f (W ′

j+1), Eu
q ′x ⊂ Fδ(Eu

j
←−
f −1(x)

).

Hence by replacing (Wj)j by (W ′
j )j , Lemma 9.1 is proved. �
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