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Abstract

We consider a class of nonlinear Klein–Gordon equations utt = uxx −u +f (u) and obtain a family of small amplitude periodic 
solutions, where the temporal and spatial period have different scales. The proof is based on a combination of Lyapunov–Schmidt 
reduction, averaging and Nash–Moser iteration.
© 2016 
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1. Introduction

The nonlinear Klein–Gordon equation

utt = uxx − u + f (u) , x ∈ R, (1.1)

is an important model in particle physics, which models the field equation for spineless particles. Classical examples 
include Sine-Gordon equation and φ4-model. The main result of this paper is to construct a family of small amplitude 
periodic (both in time and space) solutions of (1.1), where the temporal and spatial period have different scales. More-
over, we can approximate such periodic solutions by a simple periodic orbit for a planar system up to exponentially 
small errors. We will postpone the precise statement until the end of Section 2 after we introduce some mathematical 
notations. Throughout this paper, we will assume the nonlinear term f to be analytic and odd in u. The analyticity is 
crucial for us to prove the exponentially small error. The oddness is assumed just for convenience. We will comment 
on how to deal with general f containing quadratic terms later in this section.

The motivation of this paper originates from the sine-Gordon equation (f (u) = u − sinu)

utt = uxx − sinu, (1.2)

which has a family of time periodic solutions (breathers)
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u(x, t) = 4 arctan

√
1 − ω2 sinωt

ω cosh
√

1 − ω2x
. (1.3)

Clearly, the above formula is only defined for |ω| < 1. Since (1.1) can be viewed as a perturbation of (1.2) for small 
amplitude solutions, it is natural to ask if (1.1) admits any time periodic solution parameterized by ω. The author 
studied the problem for ω = √

1 − ε2 in [19], where he obtained small amplitude (of order ε) breather solutions with 
O(e− c

ε ) tails as |x| → ∞, i.e., the solution is 2π
ω

periodic in time and almost localized in space with exponentially 
small errors. In this manuscript, we continue our study for ω = √

1 + ε2. It turns out the solutions we obtain here have 
completely different behavior in spatial variable, namely, the solution is also periodic in x.

Since the temporal period is explicitly known, we use the spatial dynamics method (interchanging x and t ) to 
rewrite (1.1) as a nonlinear wave equation with periodic boundary condition

utt = uxx + u − f (u) , u(x, t) = u(x + 2π

ω
, t), (1.4)

where ω = √
1 + ε2. By normalizing the spatial period (temporal period for (1.1)) to be 2π , i.e. rescale x to ωx, we 

further transform (1.4) to

utt = ω2uxx + u − f (u) , u(x, t) = u(x + 2π, t). (1.5)

Since the nonlinearity f is odd in u, it suffices to restrict u to be odd in x. Consequently, the linear operator ω2∂xx + 1
has characteristic frequencies ±εi and ±√

ω2k2 − 1i for k ≥ 2 with multiplicity 1.
The strategy for finding periodic solutions of (1.1) ((1.5) under spatial dynamics formulation) is a combination 

of singular perturbation theory, averaging, Lyapunov–Schmidt reduction and Nash–Moser iteration. First of all, we 
observe that the characteristic frequencies of the linear operator ω2∂xx + 1 have two scales, namely, one pair of 
O(ε)-eigenvalues and infinitely many pairs of O(1)-eigenvalues. To obtain uniform knowledge in ε, we rescale time 
in (1.5) to blow up small eigenvalues from O(ε) to O(1), which makes the O(1)-eigenvalues become O( 1

ε
). With 

appropriate spatial rescaling, we obtain a singularly perturbed system (2.3) and (2.4). The singular limit of such system 
can be rigorously justified as a second order ordinary differential equation (2.11) whose phase plane contains a lot of 
periodic orbits. Secondly, we perform a sequence of partial normal form transformations to obtain a system whose 
solutions are exponentially close to the limit equation. Finally, we follow the Lyapunov–Schmidt type argument in 
[28] and the Nash–Moser iteration in [6] to find our periodic solutions near those unperturbed ones.

The problem of finding periodic solutions to Hamiltonian PDEs has been extensively studied since the 1960s, 
see for example [5,6,16,17,24–27] and references therein. The first breakthrough on this problem was due to Rabi-
nowitz [24]. He rephrased the problem as a variational problem and proved the existence of periodic solutions under 
the monotonicity assumption on the nonlinearity whenever the time period was a rational multiple of the length of the 
spatial interval. Subsequently, many authors, such as Brézis, Coron, Nirenberg etc., have used and developed Rabi-
nowitz’s variational methods to obtain related results, see [2,8,10]. In these papers, the time period T is required to be 
a rational multiple of π . The case in which T is some irrational multiple of π has been investigated by Fečkan [13] and 
McKenna [20]. At the end of the 1980s, a different approach which used the Kolmogorov–Arnold–Moser (KAM) the-
ory was developed from the viewpoint of infinite dimensional dynamical systems by Kuksin [18] and Wayne [29]. This 
method allows one to obtain solutions whose periods are irrational multiples of the length of the spatial interval, and 
it can also be easily extended to construct quasi-periodic solutions see [23,15,30] and references therein. Unlike the 
variational techniques, the KAM theory only yields solutions of small amplitude. Later, in the original work of Craig–
Wayne [12], the existence of periodic solutions for the one-dimensional conservative nonlinear wave equation was 
also proved by using the Lyapunov–Schmidt method and Newton iterations. Here we point out equation (1.1) is not 
completely resonant. Results on periodic/quasi-periodic solutions for completely resonant nonlinear wave equations 
can be found in [1,4,14]. For exponential stability of periodic solutions, we refer readers to Bambusi–Nekhoroshev 
[9] and Paleari–Bambusi–Cacciatori [22] and references therein.

The methodology employed in this paper is based on a perturbation argument, which is different from the varia-
tional technique and the KAM theory. Even though our solutions still have small amplitudes, which is due to scaling, 
we actually obtain them from some unperturbed periodic orbits which have large amplitudes. The central idea of KAM 
theory is to use successive approximate solutions (obtained by normal form transformations) with better accuracy to 
obtain the exact solution. This method usually requires the analyticity of nonlinearity to assure the convergence of 
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the normal form transformations. Here we assume the nonlinear term to be analytic is to obtain certain exponentially 
small error estimate. In fact, assuming f ∈ C5 is enough for the existence part. Although we assume f to odd in u, we 
can still deal with f containing quadratic terms. In that case, one needs to work on even function space, which makes 
the linear operator ω2∂xx + 1 to have an additional characteristic frequencies at ±1. Then one can perform a center 
manifold reduction to get rid of those frequencies, which reduces the problem to the case in this paper. By using the 
same method, we can also deal with ω = 1

k

√
1 + ε2 for any k ≥ 1, in which case a finite number of hyperbolic eigen-

values appear. The small divisor problem appears in this context which prevents us to prove the result for all small ε
but rather a subset with almost full measure. We mention that our proof does not rely on the Hamiltonian structure of 
the problem that much. The only property we use is the existence of some invariant quantity. Some related problems 
had been discussed by Pöschel [23], Berti–Bolle [6] and Berti–Bolle–Procesi [7]. In those cases, the characteristic 
frequencies are uniformly away from 0, which makes our problem different from theirs. As we mentioned earlier, the 
idea of the proof is similar to the one in [28]. Although we have simple geometry on the target space (flat), the techni-
cal analysis for finding periodic solutions corresponding to O( 1

ε
) frequencies is harder due to the infinite dimensional 

nature of our problem. We overcome this difficulty by a Nash–Moser iteration argument, which is adopted from [3,6]
with certain modifications. This is because during the iteration process, we need to carefully estimate the bounds of 
the inverse of some linear operators in terms of the perturbation parameter ε. In fact, one shall see in subsection 4.2
that these bounds are singular in ε. Such phenomena does not exist in the standard literature and will be taken care 
of by the smallness of nonlinear terms. Finally, we mention that our method can be applied to non-Hamiltonian (pos-
sibly with non-analytic nonlinearity) systems. Meanwhile, the method gives additional information for the perturbed 
periodic orbits.

The rest of the paper is organized as follows. In Section 2, we set up our problem in a suitable form and state 
our main result. In Section 3, we present the partial normal form transformations. In Section 4, we prove the main 
theorem.

2. Set up and main result

In this section, we introduce some notations that will be used throughout this paper. Then we perform scaling 
transformations to rewrite (1.5) in a suitable form. Finally, we state the main results.

The function space we will be working on is the standard Sobolev space consisting of odd periodic functions, 
namely,

Hk � {h =
∞∑

j=1

aj sin (jx)

∣∣∣ ∞∑
j=1

(1 + j2)ka2
j < ∞} , H 0 = L2

with norm

‖h‖k � ‖h‖Hk = (

∞∑
j=1

(1 + j2)ka2
j )

1
2 .

Given any g ∈ Hk , we define Pg and Qg as

Pg � 1

π

π∫
−π

g(x) sinx dx , Qg � g − (sinx)Pg,

i.e., P is the projection onto {R sinx} and Q is the orthogonal complement of P .
We will use C, C ′ to denote generic constants which may have different values in different places. However, all of 

them are independent of the perturbation parameter ε. The norm of an element in a Banach space X will be donated 
as ‖ · ‖X . A ball centered at the origin with radius in a Banach space X is denoted by Br(0, X).

We recall that for the nonlinear term f , we assume

(A) f is odd and holomorphic in u. Moreover, f ′(0) = 0, f ′′′(0) 	= 0.

Consequently, Pf and Qf are analytic functions of their arguments.
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Remark 2.1. The assumption f ′′′(0) 	= 0 is not essential and it can begin with 5th or any other higher order terms. We 
stick to this case in order to include classical examples like sine-Gordon equation and the φ4 model.

As we discussed above, the characteristic frequencies of ω2∂xx + 1 have two different scales, namely, O(ε) and 
O(1). To separate the small one from others, we write

u(x, t) = ṽ(t) sinx + w̃(x, t) � (Pu) sinx + Qu(x, t), (2.1)

where 
∫ π

−π
w̃(x, t) sinx dx = 0. Recall that ω = √

1 + ε2, we let

τ = εωt , v(τ ) = ṽ(ε−1ω−1τ)

ε
, w(x, τ ) = w̃(x, ε−1ω−1τ)

ε
. (2.2)

The rescaling for temporal variable is to blow up the O(ε) frequencies to O(1). The rescaling for u is the normalize 
the amplitude of the solution. Plugging the decomposition and rescaling into (1.5), we obtain

vττ = − 1

ω2
v − 1

ε3ω2
Pf (εv sinx + εw), (2.3)

wττ = ∂xx + 1
ω2

ε2
w − 1

ε3ω2
Qf (εv sinx + εw) , w(x, τ ) = w(x + 2π, τ). (2.4)

By the analyticity and leading order term assumption of f , it is easy to see Pf and Qf are analytic in (ε, v, w). The 
system (2.3) and (2.4) has an invariant quantity (Hamiltonian)

H(v, vτ ,w,wτ , ε)

= v2
τ

2
+ v2

2ω2
+ 1

ε4ω2
PF(εv sinx + εw) (2.5)

+
π∫

−π

1

2
w2

τ + 1

2ε2
(w2

x − 1

ω2
w2) + 1

ε4ω2
QF(εv sinx + εw) dx,

where F is the anti-derivative of f with F(0) = 0.
To simplify our notation, we let

Jε �
1

ω2
+ ∂xx, (2.6)

and

f̃ (v,w, ε)� −1

ε2ω2
Pf (εv sinx + εw) , g̃(v,w, ε) � −1

ε2ω2
Qf (εv sinx + εw). (2.7)

It is straightforward to verify that for small ε,

J−1
ε ∈ L(QHs,QHs+2) , ‖J−1

ε ‖L(QHs,QHs+2) ≤ 2. (2.8)

Using above notations, we can rewrite (2.3) and (2.4) as

vττ = − 1

ω2
v + f̃ (u, v, ε), (2.9)

wττ = Jε

ε2
w + g̃(v,w, ε). (2.10)

The system consists of (2.9) and (2.10) is singularly perturbed, where the singular motion corresponds to fast oscil-
lation in the normal direction. The singular limit is formally given by taking the first equation with w = 0 and ε = 0, 
namely,

p̄ττ = −p̄ − 1
f ′′′(0)p̄3. (2.11)
8
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Here the nonlinear term 1
8f ′′′(0)p̄3 is obtained by Taylor’s expansion. It turns out this formal limiting system can be 

rigorously justified by the using the Duhamel’s principle and Gronwall’s inequality.2 We note that (2.11) also has an 
invariant quantity

H�(p̄, p̄τ ) = 1

2
p̄2

τ + 1

2
p̄2 + 1

32
f ′′′(0)p̄4. (2.12)

It is clear that if f ′′′(0) > 0, every solution of (2.11) is a periodic orbit. If f ′′′(0) < 0, solutions in a small neighborhood 
of the origin are periodic orbits. Let p̄(τ ) be a periodic orbit of (2.11). We say p̄(τ ) is non-degenerate if ˙̄p(τ) is the 
only solution of the linearized equation of (2.11). If we rewrite (2.11) as a first order system for (p̄, p̄τ ), namely,

(
p̄

p̄τ

)
τ

=
(

0 1
−1 0

)(
p̄

p̄τ

)
+

(
0

− 1
8f ′′′(0)p̄3

)
(2.13)

and linearize it along (p̄, p̄τ ), we obtain

(
p̃

p̃1

)
τ

=
(

0 1
−1 − 3

8f ′′′(0)p̄2 0

)(
p̃

p̃1

)
.

By Floquet theory, the non-degeneracy assumption of p̄(τ ) implies

(ND) The monodromy matrix generated by 
(

0 1
−1 − 3

8f ′′′(0)p̄2 0

)
has 1 as an eigenvalue with geometric multi-

plicity 1.

Now we are ready to state our result.

Main Theorem. Let p̄(τ ) be a non-degenerate periodic solution of (2.11) with period p. If f satisfies (A), then there 
exist ε0 � 1 and a (resonance) set Rp,α,l such that for every ε ∈ (0, ε0)\Rp,α,l , (1.1) has a solution u(x, t) even in x
and odd in t satisfying

u(x, t + 2π√
1 + ε2

) = u(x, t) , u(x + p

ε
√

1 + ε2
, t) = u(x, t). (2.14)

Moreover, there exist two positive constants C and c independent of ε such that

‖u‖C0
x,t

≤ Cε , ‖Qu(x, ·)
ε

+ ε2M(P
u(x, ·)

ε
, ε)‖C0

t
≤ Ce− c

ε , (2.15)

where P, Q are the orthogonal projectors onto the linear space {R sin (
√

1 + ε2t)} and ⊕∞
k=2{R sin (k

√
1 + ε2t)}, 

respectively. The nonlinear mapping M(·, ε) maps PH 1
t to QH 1

t for every x and is uniformly bounded on any 
compact subset of PH 1

t .

The non-degeneracy assumption is standard in the continuation theory of periodic orbits, see [11] for example. We 
will use (ND) which is derived from the non-degeneracy of p̄ to match all coordinates except one of the time p-map 
for the perturbed system near the unperturbed orbit p̄. The missing direction will be recovered by the invariance of 
the Hamiltonian defined in (2.5). The second inequality in (2.15) roughly says the difference between u and p̄ is 
exponentially small. More precisely, it indicates the fluctuation between u and p̄ is exponentially small when it is 
viewed in a slightly tilted coordinate system.

The following analysis will be based on (2.3) and (2.4), which is obtained through the spatial dynamics formulation 
of (1.1). Therefore, any result for (2.3) and (2.4) is reflected in (1.1) by swapping x and t .

2 Rewrite (2.9), (2.10) and (2.11) as first order systems.
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3. Partial normal form transformations

The plan of this section is to construct partial normal form transformations for (2.9) and (2.10). Such transforma-
tions average out the O(1) driving term g̃ to be O(e−[ c

ε
]). The transformations presented here is similar to the one 

in [21]. In general, as the example (an ODE system) shown in [21], one cannot use such transformations to eliminate 
g̃ completely. Consequently, the exponentially small estimates in the main theorem is optimal.

With slight abuse of notation, we will drop ̃ signs in (2.9) and (2.10), namely, we have⎧⎪⎨
⎪⎩

vττ = − 1

ω2
v + f (v,w, ε),

wττ = Jε

ε2
w + g(v,w, ε).

(3.1)

Let V = (v, vτ ). In the first step, we set w1 = w + ε2J−1
ε g(v, 0, ε), then

w1ττ = Jε

ε2
w1 + g(v,w1 − ε2J−1

ε g(v,0, ε), ε) − g(v,0, ε) + ε2(J−1
ε g(v,0, ε))ττ

= Jε

ε2
w1 +

( 1∫
0

D2g(v,p(w1 − ε2J−1
ε g(v,0, ε)), ε) dp

)
w1

− ε2
( 1∫

0

D2g(v,p(w1 − ε2J−1
ε g(v,0, ε)), ε) dp

)
L−1g(v,0, ε) (3.2)

+ ε2(J−1
ε g(v,0, ε))ττ

� Jε

ε2
w1 + g1(v,w1, ε)w1 + ε2ḡ1(V ,w1, ε).

We repeat such procedure k times to obtain

wkττ = Jε

ε2
wk + gk(v,wk, ε)wk + ε2kḡk(V ,wk, ε). (3.3)

In the next step, we set wk+1 = wk + ε2k+2J−1
ε ḡk(V , 0, ε) to have

∂ττwk+1 =Jε

ε2
wk+1 + gk(v,wk, ε)wk+1 + ε2k

( 1∫
0

D2ḡk(V ,pwk, ε) dp
)
wk+1

− ε2k+2( 1∫
0

D2ḡk(V ,pwk, ε) dp
)
J−1

ε ḡk(V ,0, ε)

− ε2k+2gk(v,wk, ε)J
−1
ε ḡk(V ,0, ε) + ε2k+2(J−1

ε ḡk(V ,0, ε))ττ

�Jε

ε2
wk+1 + gk+1(v,wk+1, ε)wk+1 + ε2k+2ḡk+1(v,wk+1, ε).

(3.4)

To obtain estimates on (gk, ḡk), we complexify H 1 to H 1 ⊕ iH 1. We define the complex neighborhood of the real 
axis

SK � {z ∈ C
∣∣|z| < K}.

Since we will construct bounded orbits in the phase space, we assume

(‖f ‖ + ‖g‖)C2(SK×SK×[0,ε0))
+ ‖u‖C1 ≤ C(K). (3.5)

Here we choose K to be large enough so that any prescribed non-degenerate periodic orbit of (2.11) have magnitude 
less than K .
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Proposition 3.1. Given K > 0, there exist C(K), K1 � 1 and 0 < ε0 � 1 such that for every ε ∈ [0, ε0),

‖gk‖C0(SK−εkK1×SK−εkK1 ×[0,ε0))
≤ (2 − 1

Kk−1
1

)C(K),

‖ε2kḡk‖C0(SK−εkK1 ×SK−εkK1×[0,ε0))
≤ C(K)

Kk−1
1

.

(3.6)

Proof. We will prove (3.6) inductively. For k = 1, by definition in (3.2), we have

‖g1‖C0(SK−εK1×SK−εK1×[0,ε0))
≤ ‖Dg‖C0(SK×SK×[0,ε0))

≤ C(K),

and

‖ε2ḡ1‖C0(SK−εkK1 ×SK−εkK1×[0,ε0))

≤ ε2‖J−1
ε ‖‖g‖C2(‖g‖C0 + ‖vx‖2

C0 + ‖v‖C0 + ‖f ‖C0) ≤ C(K).

Assuming (3.6) holds for k − 1, i.e.,

‖gk−1‖C0(SK−ε(k−1)K1 ×SK−ε(k−1)K1×[0,ε0))
≤ (2 − 1

Kk−2
1

)C(K),

‖ε2(k−1)ḡk−1‖C0(SK−ε(k−1)K1×SK−ε(k−1)K1×[0,ε0))
≤ C(K)

Kk−2
1

.

(3.7)

By definition of (gk, ḡk) in (3.4) and the Cauchy integral formula,

‖gk‖C0(SK−εkK1×SK−εkK1 ×[0,ε0))
≤ ‖gk−1‖C0(SK−ε(k−1)K1×SK−ε(k−1)K1×[0,ε0))

+ ε2
∣∣∣ 1

2πi

∮
BεK1 (C)

ε2k−2gk−1(ε, v + z,wk−1 + z)

z2
dz

∣∣∣
≤ (2 − 1

Kk−2
1

)C(K) + ε2 C(K)

Kk−2
1

1

K1ε
≤ (2 − 1

Kk−1
1

)C(K),

and

‖ε2kḡk‖C0(SK−εkK1×SK−εkK1 ×[0,ε0))

≤ 2ε2 2C(K)

K1ε
‖J−1

ε ‖C(K)

Kk−2
1

+ 2ε2 (|vx |2 + |v| + C(K))C(K)

Kk−2
1 (K1ε)2

≤ C(K)

Kk−1
1

.

Thus, the proof is completed. �
The proposition implies we can perform the partial normal form transformations [ c

ε
] times, where c is possibly 

small but independent of ε. Then the driving term ε2[ c
ε
]ḡ[ c

ε
] is exponentially small in ε. Define the nonlinear mapping 

M(·, ε) : PH 1
x −→ QH 1

x as

ε2M(v, ε) � ε2J−1
ε g(v,0, ε) +

[ c
ε
]∑

k=2

ε2kJ−1
ε ḡk(v, vτ ,0, ε). (3.8)

Thus, w + ε2M(v, ε) satisfies

(w + ε2M(v, ε))ττ = Jε

ε2
(w + ε2M(v, ε)) + g[ c

ε
](v,w + ε2M(v, ε), ε)

+ ḡ[ c
ε
](v, vτ ,w + ε2M(v, ε), ε).

With slight abuse of notation, we write the transformed system as
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⎧⎪⎨
⎪⎩

vττ = − 1

ω2
v + f (v,w, ε),

wττ = Jε

ε2
w + g(v,w, ε) + ḡ(v, vτ ,w, ε),

(3.9)

By shrinking K − cK1 a little bit, we can assume

(‖f ‖ + ‖g‖ + e[ c
ε
]‖ḡ‖)C2(SK−2cK1×SK−2cK1×[0,ε0))

≤ C. (3.10)

The partial normal form transformations can be thought as an averaging procedure, which makes {w = 0} to be almost 
invariant up to an error of O(e−[ c

ε
]).

Remark 3.2. If f ∈ Ck , where k ≥ 5, we can obtain {w = 0} is almost invariant up to O(ε2(k−5)).

4. Proof

In this section, we give the proof for the Main Theorem. To find periodic solutions of (3.9), we study their time-p
map around the periodic orbit of (2.11). The main difficulty is the small divisor problem, which is overcome by 
carefully choosing a non-resonance set and running a Nash–Moser iteration argument. We adopt and modify the 
strategy introduced in [3,6] to handle the singular parameter of our problem. We start by rewriting (3.9) in a slightly 
different form⎧⎪⎨

⎪⎩
(

v

v1

)
τ

=
(

0 1
ω− 1

ω
0

)(
v

v1

)
+

(
0

ωf (v,w, ε)

)
,

(Jε − ε2∂ττ )w + ε2((g(v,w, ε) + ḡ(v, vτ ,w, ε))
) = 0,

(4.1)

where we recall that ω = √
1 + ε2 and Jε = ∂xx + 1

1+ε2 .
Let P� be a non-degenerate (in the sense of (ND) in Section 2) periodic orbit of (2.13) with period p. We choose 

P0 = P�(0) ∈ P� and use v, v⊥ to denote Ṗ�(0) and DH�(P0), respectively. The invariance of H� (defined in (2.14)) 
for (2.13) implies v is perpendicular to v⊥. Let V(V (0); w, ε) be the time p-map of the first equation of (4.1) with 
initial condition at V (0) and parameters (w, ε). We look for periodic solutions of (4.1) as follows:

(1) Given any p-periodic function V (·) such that there exists V (0) ∈ V (·) with

V (0) = P0 + δ1v
⊥.

We identify a resonance set Rp,α,l such that for ε ∈ (0, ε0)\Rp,α,l , we obtain a solution w(V, ε) that satisfies the 
second equation of (4.1).

(2) Plugging such w into the first equation of (4.1) to find V (ε) such that

Pv

(
V(P0 + δ1(ε)v

⊥;w(V (ε), ε), ε) − P0
) = 0, (4.2)

where Pv is the orthogonal projection onto Rv.
(3) Use the invariance of H defined in (2.5) to recover the missing direction of V (ε) and thus conclude V (ε) satisfies 

the first equation of (4.1).

The rest of this section is split into 4 subsections. In subsection 4.1, we introduce the function space and the linear 
operator L associated to the w-equation. In the next subsection, we identify the resonance set and analyze the bounds 
on the inverse of L. In subsection 4.3, we go through the Nash–Moser iteration to obtain solution for the w-equation. 
Finally, we solve the V -equation.

4.1. Function space �s and linear operator L

The function space we will be working on for the p-equation is the Sobolev space involving space and time. We 
restrict ourselves to solutions that are even in τ . Define the space
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�s = {w ∈ H 1([0,p],QHs)
∣∣w(x, t) =

∑
|k|≥2
j∈Z

wj,ke
i

2πj
p

τ+ikx
,

wj,k = w−j,k = −wj,−k},
(4.3)

which is equipped with the standard space–time Sobolev norm

‖w‖2
s =

∑
|k|≥2,j

(1 + |j |)2|k|2s |wj,k|2.

Let �N and �c
N be the projection operators (along x-direction) given by

�̂Nf (k) =
{

f̂ (k) , |k| ≤ N

0 , |k| > N
, �̂c

Nf (k) =
{

0 , |k| ≤ N

f̂ (k) , |k| > N
.

By standard argument, we have

Proposition 4.1. For any N ≥ 1, 0 ≤ m1 < m2 and m = (1 − t)m1 + tm2,

‖�Nh‖m2 ≤ Nm2−m1‖h‖m1 , ∀h ∈ �m1, (4.4)

‖�c
Nh‖m1 ≤ N−(m2−m1)‖h‖m2 , ∀h ∈ �m2 . (4.5)

Let

g̃(V ,w, ε) = g(v,w, ε)w + ḡ(V ,w, ε), (4.6)

where (g, ḡ) are from (4.1) and V = (v, v1). Let H 1
τ be the function space that consists of H 1 functions which are 

p-periodic and even in τ endowed with the inner product

〈u,v〉 =
p∫

0

uτ vτ + (
1

π

π∫
−π

Dwg̃(V,w, ε) dx + C)uv dτ , C � 1.3 (4.7)

It is easy to verify that (−∂ττ + 1
π

∫ π

−π
Dwg̃(V, w, ε) dx + C)−1 is a compact, positive and self-adjoint op-

erator on H 1
τ under the inner product 〈·, ·〉 introduced above. It implies the eigenvalues λj of linear operator 

−∂xx + 1
π

∫ π

−π
Dwg̃(V, w, ε) dx are simple, bounded from below and grow like O(j2). Moreover, there exists an 

orthonormal basis {φj (τ )}j≥1 (with respect to the inner product in (4.7)) such that

( − ∂ττ + 1

π

π∫
−π

Dwg̃(V,w, ε) dx
)
φj (τ ) = λjφj (τ ).

Let εk,j > 0 be the solution of

−k2 + 1

1 + ε2
k,j

+ ε2
k,j λj = 0,

where |k| ≥ 2. It is easy to calculate for j � 1,

εk,j = p

2π
|
√

k2 − 1

j
| + O(|

√
k2 − 1

j3
|). (4.8)

Given any (V , w) and 2 ≤ N1 ≤ N2, we let

R
N1,N2
V,w =

⋃
N1≤|k|≤N2,j

(εk,j − |k|α
j l

, εk,j + |k|α
j l

), (4.9)

where 2 ≤ 2 + α < l < 3.

3 The function Dwg̃(V, w, ε) is even in x. This is because g̃ is odd in p and V enters g̃ as V siny.
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We define the nonlinear map F and its linearization L as

F(V ,w, ε)� (Jε − ε2∂ττ )w + ε2g̃(V ,w, ε), (4.10)

L(V ,w, ε)� Jε + ε2(−∂ττ + Dwg̃(V,w, ε)). (4.11)

Thus, finding a solution for the w-equation is equivalent to solving

F(V ,w, ε) = 0. (4.12)

We will find a solution of (4.12) through a sequence of approximate solutions {wi}i≥1, where each wi ∈ �Ni
�s

satisfies

�Ni
F(U,wi, ε) = 0 , lim

i→∞Ni = ∞. (4.13)

We will solve (4.13) for each i by a contraction mapping argument. It involves inverting the linear operator �Ni
L, 

which is analyzed in the next subsection.

4.2. Resonance set Rp,α,l and bounds on (�NL)−1

In this subsection, we identify the resonance set Rp,α,l so that for ε /∈ Rp,α,l , each (�NL(U, wi, ε))−1 has a good 
enough bound to complete the Nash–Moser iteration. To simplify our notations, we let

γ = l − α − 2 ∈ (0,1). (4.14)

Proposition 4.2. For any s >
γ+1

2 , N ≥ 2, w ∈ �s+ γ
2

and ε ∈ (0, ε0)\R2,+∞
V,w and h ∈ �N�s , we have

‖(�NL(V ,w, ε))−1h‖s−γ ≤ Cε−(l−1)‖h‖s , (4.15)

where C is independent of ε and h. Consequently,

‖(�NL(V ,w, ε))−1h‖s ≤ CNγ ε−(l−1)‖h‖s . (4.16)

Proof. We first rewrite �NL(V , w, ε) as

�NL(V ,w, ε) = L1(V ,w, ε) + ε2A(V,w, ε),

where

L1(V ,w, ε) = Jε + ε2(−∂xx + 1

π

π∫
−π

�NDwg̃(V,w, ε) dx),

A(V,w, ε) = �N

(
Dwg̃(V,w, ε) − 1

π

π∫
−π

Dwg̃(V,w, ε) dx
)
.

(4.17)

For ε ∈ (0, ε0)\R2,+∞
V,w , L1 is invertible and we define |L1|− 1

2 as

|L1|− 1
2 h =

∑
2≤|k|≤N

∑
j≥1

hj,k√
| − k2 + 1

1+ε2 + ε2λj |
φj (τ )eikx

for h =
∑

2≤|k|≤N

∑
j≥1

hj,kφj (τ )eikx . Then we can write

�NL = |L1| 1
2
(|L1|− 1

2 L1|L1|− 1
2 + ε2|L1|− 1

2 A(V,w, ε)|L1|− 1
2
)|L1| 1

2 .

It is clear that∥∥|L1|− 1
2 L1|L1|− 1

2
∥∥ = 1.
L(�N�s,�N�s)
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By (4.8) and (4.9), we have

∥∥|L1|− 1
2
∥∥

L(�N�s,�N�
s− γ

2
)
≤ C

√
kα+1+γ

j l−1
≤ Cε− l−1

2 .

Therefore, we finish the proof if we can show ε2|L1|− 1
2 A(V, w, ε)|L1|− 1

2 is a small bounded linear operator on 
�N�s− γ

2
. For any h(x, y) ∈ �N�s− γ

2
,

|L1|− 1
2 A(V,w, ε)|L1|− 1

2 h

= |L1|− 1
2 �N

(∑
k∈Z

Ak(x, ε)eikx
)( ∑

2≤|k|≤N

(
∑
j≥1

hk,j√
| − k2 + 1

1+ε2 + ε2λj |
φj (τ ))eikx

)

= |L1|− 1
2

[ ∑
|k′|≤N

( ∑
2≤|k|≤N

(∑
j≥1

hk,j√
| − k2 + 1

1+ε2 + ε2λj |
Ak′−k(x, ε)φj (τ )

))
eik′y

]
,

which implies(|L1|− 1
2 A(V,w, ε)|L1|− 1

2 h
)
k′

=
∑

2≤|k|≤N

(∑
j≥1

hk,j√
| − k′ 2 + 1

1+ε2 + ε2λj |
√

| − k2 + 1
1+ε2 + ε2λj |

Ak′−k(x, ε)φj (τ )
)
.

Let mk := min
j≥1

| − k2 + 1

1 + ε2
+ ε2λj |. There exists a unique j (k) such that

mk := min
j≥1

| − k2 + 1

1 + ε2
+ ε2λj | = | − k2 + 1

1 + ε2
+ ε2λj(k)| ≥ Cεl−1

|k|γ ,

where C is independent of k, j and ε. Note that the norm induced by the inner product defined in (4.7) is equivalent 
to the standard H 1 Sobolev norm. Consequently,

‖(|L1|− 1
2 A(V,w, ε)|L1|− 1

2 h
)
k′ ‖H 1

τ
≤

∑
|k|≥2

‖ 1√
mk′mk

Ak′−k‖H 1
τ
‖hk‖H 1

τ
, (4.18)

where hk = hk(x) =
∑
j≥1

hk,jφj (τ ). The definition of A in (4.17) implies A0 = 0. Now we claim that for k 	= k′,

1√
mk′mk

≤ Cε−(l−1)|k′ − k|γ . (4.19)

Without loss of generality, we assume 0 < k′ < k. For each ε ∈ (0, ε0)\R2,+∞
V,w , there exist j (k′) and j (k) such that

ε ∈ (
k′

j (k′)
,

k′

j (k′) − 1
) ∩ (

k

j (k)
,

k

j (k) − 1
). (4.20)

If 2k′ ≤ k, then (recall that γ = l − (α + 2))

√
mk′mk ≥

√
k′ α+1

j (k′)l−1

kα+1

j (k)l−1
≥ C

ε(l−1)

(k′k)
γ
2

≥ C
εl−1

|k − k′|γ .

For k′ < k < 2k′, we note

|k − k′ − ε(j (k) − j (k′))| ≥ C
|k − k′|α

′ l−1
.
|j (k) − j (k )|
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From (4.20), one has

0 < j(k) − j (k′) <
k

ε
+ 1 − k′

ε
≤ C

ε
|k − k′|.

Combining with the above inequality, one has

|k − k′ − ε(j (k) − j (k′))| ≥ C|k − k′|α
ε−(l−1)|k − k′|l−1

= C

ε−(l−1)|k − k′|γ+1
,

which implies

max{|k − εj (k)|, |k′ − εj (k′)|} ≥ Cεl−1

2|k − k′|γ+1
.

If |k′ − εj (k′)| ≥ Cεl−1

2|k−k′|γ+1 , then

√
mkmk′ ≥

√
Cεl−1k′

2|k − k′|γ+1

εl−1

kγ
≥

√
Cεl−1k1−γ εl−1

4|k − k′|γ+1
≥

√
Cε2(l−1)

4|k − k′|2γ
= Cεl−1

|k − k′|γ .

The case for |k − εj (k)| ≥ Cεl−1

2|k−k′|γ+1 is similar. Thus, we obtain (4.19). Since A is smooth in U and p, we use (4.18)
to conclude

‖ε2(|L1|− 1
2 A(V,w, ε)|L1|− 1

2 h
)
k′ ‖H 1

τ
≤ Cε3−l

∑
|k|≥2

‖|k − k′|γ Ak′−k‖H 1
τ
‖hk‖H 1

τ
,

which implies (thanks to the fact s > 1
2 and Sobolev embedding)

ε2
∥∥|L1|− 1

2 A(V,w, ε)|L1|− 1
2 h‖s− γ

2
≤ Cε3−l‖A(V,w, ε)‖s+ γ

2
‖h‖s− γ

2
≤ 1

2
‖h‖s− γ

2
.

Therefore, we finish the proof of (4.15). Finally, we note h is finite dimensional in x. Thus, we can apply (4.4) to 
obtain (4.16). �
Remark 4.3. From the above analysis, one can see there is a trade-off among the loss of spatial (x-variable) regularity, 
temporal (τ -variable) and the bound on (�NL)−1. If we choose to sacrifice the temporal regularity, we can bound 
(�NL)−1 like O( 1

εα+1 ), which is smaller than O( 1
εl−1 ). However, the solution of the p-equation w(V, ε) has less 

temporal regularity than U , which makes the solution scheme for U incoherent. Since the V -equation is finite dimen-
sional in y, sacrificing the spatial regularity will not cause any trouble. Even though we get a worse bound O( 1

εl−1 ) in 
this case, it still can be controlled by the ε2 term in the nonlinear part of F .

In order to make sure �Ni
L(V , wi−1, ε) satisfies a similar bound as in (4.16) for each i, we need to control 

‖wi − wi−1‖s and remove ε out of a set that is slightly larger than R2,+∞
U,0 . We choose {Ni}i≥1 to ε by setting

ε−1 < N1 = [1

2
(ε−1 + ε−2)] < ε−2 , Ni+1 = N2

i , (4.21)

where [·] denotes the largest integer that is less than or equal to the number inside the bracket. We will skip writing 
the dependence of �NL on (U, ε) in the rest of this section, i.e., �NL(w) = �NL(V , w, ε).

Lemma 4.4. Suppose ‖wi −wi−1‖s ≤ N−σ
i and ‖∂εwi‖s ≤ 1

2 , where 0 < γ + l < σ , there exists a set Rp,α,l ⊂ (0, ε0)

with zero measure as ε0 → 0 such that for any ε ∈ (0, ε0)\Rp,α,l ,

‖(�Ni
L)−1(wi−1)‖L(�i

s ,�
i
s )

≤ CN
γ

i

εl−1
. (4.22)
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Proof. We first define the parameter set for any given w (V is fixed)

SN(w) � {ε
∣∣∣‖(�NL(w))−1‖L(�N�s,�N�s) ≤ CNγ

εl−1
}, (4.23)

where C is the same one as in (4.15). The above definition can also be understood as none of the eigenvalues of 
�NL(w) is in the interval [− εl−1

CNγ , εl−1

CNγ ].
We will only prove the result for i = 1, 2 and the general result follows similarly. For i = 1 and ε ∈ (0, ε0)\R2,+∞

U,0 , 

the result is proved in Proposition 4.2. For i = 2, we need to estimate the measure of 
( ∪N2

N=2 SN(w1)
)c\( ∪N1

N=2 SN(0)
)c. Note that

R1 �
( N2⋃

N=2

SN(w1)
)c\( N1⋃

N=2

SN(0)
)c

⊂ ( ⋃
2≤N≤N1

(Sc
N(w1) ∩ SN(0)

)⋃( ⋃
N>N1

Sc
N(w1)

)
.

By definition, for each N ≤ N1, we have

Sc
N(w1) ∩ SN(0) ⊂ {ε∣∣L(0) has an eigenvalue in [− εl−1

CNγ
− N−σ

1 ,
εl−1

CNγ
+ N−σ

1 ]}.

Since ε ∈ (0, ε0)\R2,+∞
U,0 ,

Sc
N(w1) ∩ SN(0) ⊂ {ε∣∣L(0) has an eigenvalue in [− εl−1

CNγ
− N−σ

1 ,− εl−1

CNγ
]

or [ εl−1

CNγ
,

εl−1

CNγ
+ N−σ

1 ]}.

By (4.8) and the assumption ‖∂εwi‖s ≤ 1
2 ,

d

dε
(−k2 + 1

1 + ε2
+ ε2λj )

∣∣
ε=εN,j

≤ −|N |j.
Consequently, the measure

|R1| � |( ⋃
2≤N≤N1

(Sc
N(w1) ∩ SN(0)

)( ⋃
N>N1

Sc
N(w1)

)|
≤ C′( ∑

2≤N≤N1

∞∑
j= N

ε0

N−σ
1

Nj
+

∑
N≥N1

∞∑
j= N

ε0

εl−1

CNγ

1

Nj

)

≤ C′( ∑
2≤k≤N1

∞∑
j= k

ε0

(N
j
)l−1

kjNγ
+

∑
N≥N1

∞∑
j= N

ε0

N
j

l−1

CNγ

1

Nj

)

≤ C′( ∑
2≤N≤N1

εl−1
0

NN
σ−(l−1)
1

+
∑

N≥N1

εl−1
0

CN1+γ

) ≤ C′ ε
l−1
0

N
γ

1

,

where we use the fact N−1
1 ≤ ε and l + γ < σ to obtain the second inequality. Now we update the resonance set to be 

R
2,+∞
V,0 ∪ R1. By iterating the above procedure, one can obtain (4.22) for all i on (0, ε0)\Rp,α,l , where

Rp,α,l = R
2,+∞
V,0

⋃
(

∞⋃
i=1

Ri) , Ri = ( Ni⋃
N=2

SN(wi)
)c\(Ni−1⋃

N=2

SN(wi−1)
)c

.

The only thing left is to prove the measure estimate. It is easy to see that the measure of Rp,α,l can bounded above by
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(

∞∑
|k|=2

∞∑
j= |k|

ε0

2|k|α
j l

)(1 +
∞∑
i=1

C′

N
γ

i

) ≤ C

∞∑
|k|=2

|k|α(
k

ε0
)1−l ≤ C′εl−1

0 = ε0O(εl−2
0 ),

where we use the fact 2 + α < l < 3 to obtain the last step. The proof is completed. �
4.3. The Nash–Moser iteration

In this subsection, we apply the Nash–Moser iteration technique to find a convergent sequence {wi}i≥1 ∈ �Ni
�s

such that each wi satisfies

�Ni
F(wi) = 0. (4.24)

To simplify the following presentation, we introduce some notations

w̃i = wi − wi−1 , Li = �Ni
L(wi−1) , �i

s = �Ni
�s, (4.25)

ri = (�Ni
− �Ni−1)F(wi−1) = (�Ni

− �Ni−1)ε
2g̃(wi−1), (4.26)

Ri(w̃i) = �Ni
(F(wi) −F(wi−1) −Li w̃i), (4.27)

where p0 = 0 and N0 = 2. Here each ri and Ri satisfy the tame property. More precisely, for s ≤ s̄ and ‖wi‖s ≤ 1, we 
have

‖ri‖s̄ + ‖DV,wri‖s̄ ≤ C(s̄)(1 + ‖wi−1‖s̄ ), (4.28)

‖Ri(w̃i)‖s̄ ≤ C(s̄)(‖wi−1‖s̄‖w̃i‖2
s + ‖w̃i‖s‖w̃i‖s̄ ). (4.29)

We also need for any s > 1
2 , ̄s ≥ 0 and u1,2 ∈ �s ∩ �s̄ ,

‖u1u2‖s̄ ≤ C(s̄)(‖u1‖s‖u2‖s̄ + ‖u1‖s̄‖u2‖s). (4.30)

We refer the proof of (4.28)–(4.30) to Sections 2 and 4 in [3]. Using notations in (4.25), (4.26) and (4.27), one can 
solve (4.24) by finding a fixed point w̃i ∈ �i

s for

w̃i = −L−1
i (ri + Ri(w̃i)). (4.31)

Proposition 4.5. There exists ε0 � 1 and a set Rp,α,l such that for every ε ∈ (0, ε0)\Rp,α,l , the equation 
F(V , w, ε) = 0 has a solution w(V, ε) ∈ �1. Moreover,

‖w(V, ε)‖1 + ‖DV w(V, ε)‖L(R2,�1)
+ ‖∂εw(V, ε)‖L(R,�1) ≤ Ce− 1

4 [ c
ε
]. (4.32)

Proof. We will solve (4.31) for each i on �Ni �s and show that 
∑∞

p=1 w̃i converges in �s . Let

C2 := ‖g̃‖C2(BK(R2×�s),R),

where K > 1. By (3.10) and (4.6),

‖g̃(0)‖s+s̄ + ‖DV g̃(0)‖s+s̄ ≤ C′e−[ c
ε
], (4.33)

where s̄ > 0 will be chosen later. We claim that for i ≥ 1,

‖w̃i‖s ≤ N−σ
i e− 1

2 [ c
ε
] , ‖w̃i‖s+s̄ ≤ N

2γ

i e− 1
2 [ c

ε
], (4.34)

‖DV w̃i‖L(R2,�i
s )

≤ N
−(σ−γ )

i e− 1
2 [ c

ε
] , ‖DV w̃i‖L(R2,�i

s+s̄ )
≤ N

3γ

i e− 1
2 [ c

ε
]. (4.35)

where σ > γ + l. With slight abuse of notation, we write the operator norm ‖ · ‖L(R2,�i
s )

simply as ‖ · ‖s and �Ni
= �i . 

In order to apply Lemma 4.4, we also need estimates on ∂εwi , which will be postponed to the end of the proof.
For i = 1, we look for a solution of

w̃1 = −L−1
1 (r1 + R1(w̃1)). (4.36)

By (4.22),
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‖L−1
1 ‖s = ‖(�N1L(0))−1‖L(�N1�s,�N1 �s) ≤ CN

γ

1

εl−1
.

Moreover,

‖r1‖�1
s
≤ ε2C′e−[ c

ε
] , ‖R1(w̃1)‖s ≤ ε2C2‖w̃1‖2

s .

One can easily verify for ε small enough such that

N
σ+γ

1 e− 1
2 [ c

ε
] ≤ ε−2(σ−γ )e− 1

2 [ c
ε
] <

1

2
, (4.37)

the right hand side of (4.36) defines a contraction mapping on the ball with radius N−σ
1 e− 1

2 [ c
ε
] in �1

s . Thus, (4.36) has 
a unique solution w̃1 such that

‖w̃1‖s = ‖w̃1‖�1
s
≤ N−σ

1 e− 1
2 [ c

ε
]. (4.38)

To estimate ‖w̃1‖s+s̄ , we use (4.36), (4.33) and (4.29) to obtain

‖w̃1‖s+s̄ ≤ CN
γ

1

εl−1
ε2(C′e−[ c

ε
] + C(s̄)N−σ

1 e− 1
2 [ c

ε
]‖w̃1‖s+s̄ ), (4.39)

which implies

‖w̃1‖s+s̄ ≤ 2CC′ε3−lN
γ

1 e−[ c
ε
] ≤ N

2γ

1 e− 1
2 [ c

ε
]. (4.40)

Let z1 = DV w̃1. Differentiating �1F(V , w1, ε) = 0 with respect to U yields

z1 = −(�1L(w1))
−1�1(ε

2DV g̃(V,w1, ε)).

Since ‖w1‖s ≤ N−σ
1 , ‖(�N1L(w1))

−1‖s ≤ 2CN
γ

1
εl−1 . Consequently,

‖z1‖s ≤ 2CN
γ

1 ε3−l (‖DV g̃(V,w1, ε) − DV g̃(v,0, ε)‖s + ‖DV g̃(v,0, ε)‖s)

≤ 2CN
γ

1 ε3−l (C2N
−σ
1 e− 1

2 [ c
ε
] + C′e−[ c

ε
]) ≤ N

−(σ−γ )

1 e− 1
2 [ c

ε
],

and by (4.40) and (4.30),

‖z1‖s+s̄ ≤ 2CN
γ

1 ε3−l‖DV g̃(V,w1, ε)‖s+s̄

≤ C(s̄)N
γ

1 ε3−l (N
γ

1 e− 1
2 [ c

ε
] + (1 + N

γ

1 e− 1
2 [ c

ε
])N−σ

1 e− 1
2 [ c

ε
] + C′e−[ c

ε
]) ≤ N

2γ

1 e− 1
2 [ c

ε
].

Thus, we finish the proof of (4.34) and (4.35) for i = 1.
Suppose (4.34) and (4.35) hold for i = i′. We have

‖wi′‖s ≤ 2N−σ
1 e− 1

2 [ c
ε
] , ‖wi′‖s+s̄ ≤ 2N

2γ

i′ e− 1
2 [ c

ε
], (4.41)

‖DV wi′‖s ≤ 2N
−(σ−γ )

1 e− 1
2 [ c

ε
] , ‖DV wi′ ‖s+s̄ ≤ 2N

3γ

i′ e− 1
2 [ c

ε
]. (4.42)

For i = i′ + 1, by (4.28), (4.30), (4.33) and (4.41),

‖ri′+1‖s = ‖(�Ni′+1
− �Ni′ )ε

2g̃(wi′)‖s

≤ ε2

Ns̄
i′
(‖g̃(wi′) − g̃(0)‖s+s̄ + ‖g̃(0)‖s+s̄ )

≤ ε2C(s̄)

N
s̄
2
i′+1

(‖Dwg̃‖s‖wi′ ‖s+s̄ + ‖Dwg̃‖s+s̄‖wi′‖s + C′e−[ c
ε
])

≤ ε2C(s̄)

N
s̄
2′

(
2N

2γ

i′ e− 1
2 [ c

ε
] + C′e−[ c

ε
]) ≤ ε2C′(s̄)Nγ− s̄

2
i′+1 e− 1

2 [ c
ε
].
i +1
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We also note ‖Ri′+1‖s is quadratic in ‖w̃i′+1‖s . Thus, we can verify L−1
i′+1(ri′+1 +Ri′+1(w̃i′+1)) defines a contraction 

mapping on the ball with radius N−σ
i′+1e

− 1
2 [ c

ε
] in �s

i′+1 provided that

γ + (γ − s̄

2
) < −σ ⇐⇒ 4γ + 2σ < s̄. (4.43)

By using (4.28) and (4.29), we have

‖w̃i′+1‖s+s̄ ≤ CN
γ

i′+1

εl−1
(‖ri′+1‖s+s̄ + ‖Ri′+1(w̃i′+1)‖s+s̄ )

≤ CN
γ

i′+1

εl−1
ε2[C′e−[ c

ε
] + ‖Dwg̃‖sN

2γ

i′ e− 1
2 [ c

ε
] + ‖Dwg̃‖s+s̄2N−σ

1 e− 1
2 [ c

ε
]

+ C(s̄)
(
N

2γ

i′ e− 1
2 [ c

ε
](N−σ

i′+1e
− 1

2 [ c
ε
])2 + (N−σ

i′+1e
− 1

2 [ c
ε
])‖w̃i′+1‖s+s̄

)]
≤ CN

γ

i′+1ε
3−l

[
C′e−[ c

ε
] + C(s̄)N

γ

i′+1e
− 1

2 [ c
ε
] + 1

2
‖w̃i′+1‖s+s̄

]
,

from which one can deduce

‖w̃i′+1‖s+s̄ ≤ N
2γ

i′+1e
− 1

2 [ c
ε
]. (4.44)

Set zi = DV w̃i . Differentiating �i′+1F(wi′ + w̃i′+1) = 0 and �i′F(wi′) = 0 with respect to V yields

�i′+1FV (wi′+1) +Li′+1(

i′∑
i=1

zi + zi′+1) = 0 , �i′FV (wi′) +Li′+1(

i′∑
i=1

zi) = 0.

Subtracting the second equality from the first one, we have

−Li′+1zi′+1 = �i′+1FV (wi′+1) − �i′FV (wi′) +Li′+1(

i′∑
i=1

zi) −Li′(
i′∑

i=1

zi)

= (�i′+1 − �i′)FV (wi′+1) + (�i′+1 − �i′)Fw(wi′+1)(

i′∑
i=1

zi)

+ �i′(FV (wi′+1) −FV (wi′)) + �i′((Fw(wi′+1) −Fw(wi′))(
i′∑

i=1

zi))

� I + II + III + IV.

By (4.28), (4.30), (4.41) and (4.42), we can estimate terms on the right hand side as

‖I‖s ≤ 1

Ns̄
i′
‖(�i′+1 − �i′)FV (wi′+1)‖s+s̄ ≤ ε2C(s̄)N

2γ− s̄
2

i′+1 e− 1
2 [ c

ε
],

‖II‖s ≤ ε2

Ns̄
i′
‖(�i′+1 − �i′)g̃w(wi′+1)(

i′∑
i=1

zi)‖s+s̄ ≤ ε2C(s̄)N
2γ− s̄

2
i′+1 e− 1

2 [ c
ε
],

‖III‖s + ‖IV‖s ≤ C2ε
2‖w̃i′+1‖s(1 + ‖

i′∑
i=1

zi‖s) ≤ ε2C2N
−σ
i′+1e

− 1
2 [ c

ε
].

Therefore, we have

‖zi′+1‖s ≤ CN
γ

i′+1

εl−1
(ε2C(s̄)N

2γ− s̄
2

i′+1 e− 1
2 [ c

ε
] + ε2C2N

−σ
i′+1e

− 1
2 [ c

ε
]) ≤ N

−(σ−γ )

i′+1 e− 1
2 [ c

ε
],

where the last inequality holds because of (4.43). By (4.44), (4.42) and (4.30), we have
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‖III‖s+s̄ + ‖IV‖s+s̄ ≤ ε2C(s̄)(N
2γ

i′+1 + N
3γ
2

i′+1)e
− 1

2 [ c
ε
],

which implies

‖zi′+1‖s+s̄ ≤ ε3−lCN
γ

i′+1C
′(s̄)N2γ

i′+1e
− 1

2 [ c
ε
] ≤ N

3γ

i′+1e
− 1

2 [ c
ε
].

The proof of (4.34) and (4.35) is completed.
Let

w := lim
i→∞wi =

∞∑
i′=1

w̃i′ , DV w = lim
i→∞DV wi =

∞∑
i′=1

zi′ .

Clearly, w satisfies F(V , w, ε) = 0. Moreover,

‖w‖s ≤
∞∑
i=1

N−σ
i e− 1

2 [ c
ε
] ≤ e− 1

2 [ c
ε
] , ‖DV w‖s ≤

∞∑
i=1

N
−(σ−γ )

i e− 1
2 [ c

ε
] ≤ e− 1

2 [ c
ε
].

Finally, we estimate ∂εw̃i to fulfill the assumption in Lemma 4.4. We claim that

‖∂εw̃i‖s ≤ N
γ+2−σ

i

εl+1
e− 1

2 [ c
ε
] , ‖∂εw̃i‖s+s̄ ≤ N

3γ+2
i

εl+1
e− 1

2 [ c
ε
].

The verification of the above estimates is similar to the estimate of DV w̃i by differentiating �i
1
ε2 F(wi) = 0 with 

respect to ε. Therefore, the proof of (4.32) is completed. �
4.4. Solution of V -equation

With the solution w(V, ε) obtained in previous subsection, we solve the V -equation in this subsection and thus 
complete the proof of the Main Theorem. We begin with solving (4.2), which is

Pv

(
V(P0 + δ1(ε)v

⊥;w(V (ε), ε), ε) − P0
) = 0.

Lemma 4.6. For any non-resonant ε, there exists a function U : (0, ε0)\Rp,α,l →R2 such that

Pv

(
V(P0 + δ1(ε)v

⊥;w(V (ε), ε), ε) − P0
) = 0. (4.45)

Proof. Let T (δ1, ε) � Pv

(
V(P0 + δ1v

⊥; w(V (δ1), ε), ε) − P0
)
. Note that T (0, 0) = 0 and by (4.32) and non-

degeneracy of P�,

Dδ1T (0,0) = Pv(D1V(P0;0,0)v⊥) 	= 0.

By (4.32) and the implicit function theorem, we complete the proof. �
We now conclude V (ε) obtained in (4.45) satisfies the first equation of (4.1) by showing

(I − Pv)
(
V(P0 + δ1(ε)v

⊥;w(V (ε), ε), ε) − P0
) = δ1(ε). (4.46)

Let d = (I − Pv)
(
V(P0 + δ1(ε)v

⊥; w(V (ε), ε), ε) − P0
) − δ1(ε). Recall the definition of H� in (2.12) and v⊥ =

DH�(P0). If d 	= 0, then

∣∣H�(V(P0 + δ1(ε)v
⊥;w(V (ε), ε), ε)) − H�(P0 + δ1(ε)v

⊥)
∣∣ ≥ d

2
‖v⊥‖2 	= 0.

By (2.5) and (2.12), we have

∣∣H(v, vτ ,w,wτ , ε) − H�(v, vτ )
∣∣ = O(ε2 + |wτ |2 + 1

ε2
|w|2).

Since w is exponentially small in ε (by (4.32)), we can replace (4.46) by
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H
(
V(P0 + δ1(ε)v

⊥,w(ε), ε),w(ε)(p),wτ (ε)(p)
)

= H
(
P0 + δ1(ε)v

⊥,w(ε)(0),wτ (ε)(0)
)
.

Since H is invariant under (4.1), we conclude V (ε) is p-periodic. To conclude the Main Theorem, we recall (4.1) is 
obtained from (1.1) through the spatial dynamics formulation (by swapping x and t ). Together with rescaling in (2.2), 
we have (2.14). We obtain (2.15) by combining (2.2), (4.32) and (3.8).
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