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Abstract

We consider the quadratic derivative nonlinear Schrödinger equation (dNLS) on the circle. In particular, we develop an infinite 
iteration scheme of normal form reductions for dNLS. By combining this normal form procedure with the Cole–Hopf transforma-
tion, we prove unconditional global well-posedness in L2(T), and more generally in certain Fourier–Lebesgue spaces FLs,p(T), 
under the mean-zero and smallness assumptions. As a byproduct, we construct an infinite sequence of quantities that are invari-
ant under the dynamics. We also show the necessity of the smallness assumption by explicitly constructing a finite time blowup 
solution with non-small mean-zero initial data.
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1. Introduction

In this paper, we consider the Cauchy problem for the following quadratic derivative nonlinear Schrödinger equa-
tion (dNLS) posed on the circle T =R/(2πZ):{

i∂tu + ∂2
xu = λu∂xu

u|t=0 = φ,
(t, x) ∈R×T, (1.1)

where u(t, x) is a complex-valued function and λ ∈C \ {0}. Our main goal is to study the global-in-time behaviour of 
solutions to (1.1). By the transformation u �→ λ

i
u, we may assume λ = i in (1.1). Therefore, in the remaining part of 

this paper, we consider the following Cauchy problem:{
∂tu = i∂2

xu + u∂xu

u|t=0 = φ.
(1.2)

Let us first compare some basic properties of (1.2) against the usual NLS with a power-type nonlinearity:

∂tu = i∂2
xu ± i|u|p−1u (1.3)

and the cubic derivative NLS (DNLS):

∂tu = i∂2
xu + ∂x(|u|2u). (1.4)

It is well known that (1.3) and (1.4) are invariant under modulations: u �→ eiθu, which leads to the conservation 
of mass (= the L2-norm). On the other hand, the equation (1.2) is not invariant under such modulations. Another 
difference from (1.3) and (1.4) is the lack of conservation laws. While (1.3) and (1.4) enjoy the conservation of mass, 
momentum, and energy, the equation (1.2) does not possess any ‘natural’ conservation law, except for the conservation 
of the spatial mean:∫

T

u(t, x)dx =
∫
T

φ(x)dx. (1.5)

The Cauchy problems for the usual NLS (1.3) and the cubic DNLS (1.4) have been studied extensively by many 
mathematicians [9,26,4,3,23,13,14,28] and they are known to be locally/globally well-posed in Sobolev spaces Hs

for some range of s. Moreover, the solution map: u(0) ∈ Hs �→ u(t) ∈ Hs is known to be uniformly continuous on 
bounded sets. The situation for dNLS (1.2) is entirely different. Indeed, Christ [6] proved that (1.2) on M = T or R
is ill-posed in Hs(M) for any s ∈ R by exhibiting the following norm inflation phenomenon; given any ε > 0, there 
exist a solution u to (1.2) on M and tε ∈ (0, ε) such that

‖u(0)‖Hs(M) < ε and ‖u(tε)‖Hs(M) > ε−1. (1.6)

This in particular implies the failure of continuity of the solution map (at the trivial function) and hence the ill-
posedness of (1.2). See also [25] (and [17,27] in the context of the related Benjamin–Ono equation) for the failure of 
local uniform continuity of the solution map on R.

In view of the above ill-posedness result [6], we can not expect to have well-posedness for (1.4) in the usual Sobolev 
spaces. In the non-periodic setting, however, there are several local well-posedness results for (1.2), either in weighted 
Sobolev spaces or by adding an extra condition on initial data. Kenig–Ponce–Vega [16] and Chihara [5] established 
local well-posedness of (1.2) on R in weighted Sobolev spaces with sufficiently high regularity. In [22], Stefanov 
proved local well-posedness of (1.2) in H 1(R) with the small ‘disturbance’ condition: supx∈R

∣∣ ∫ x

−∞ φ(y) dy
∣∣ < ε for 

some ε > 0. Note that these results make use of the strong dispersive effect on R such as local smoothing estimates 
that are not available on the circle. In fact, there seems to be no known well-posedness result of (1.2) on T.

Before we state our main results, let us define the homogeneous Fourier–Lebesgue space FL
s,p

0 (T) for mean-zero
functions on T via the norm:

‖φ‖FL
s,p

(T) = ∥∥|k|s φ̂(k)
∥∥

p ,

0 � (Z0)
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where Z0 := Z \ {0}. Note that, if we assume that an initial condition φ has mean 0, then the corresponding solution 
u(t) to (1.2) defined on a time interval I also has mean 0 for each t ∈ I thanks to the conservation of the spatial mean 
(1.5).

We now state our main results.

Theorem 1.1 (Small data global well-posedness for mean-zero initial data). Suppose that (s, p) satisfy (i) s > 1
2 − 1

p
, 

p > 2 or (ii) s ≥ 0, p = 2. Then, there exists δ0 = δ0(s, p) > 0 such that dNLS (1.2) is globally well-posed in 
FL

s,p

0 (T) ∩{‖φ‖FL
s,p
0 (T) ≤ δ0}. Moreover, the uniqueness holds unconditionally. Namely, the uniqueness holds in the 

entire C(R; FL
s,p

0 (T)).
Given a solution u to (1.2) constructed above, there exists an infinite sequence {Qk(t)}k∈Z0 such that Qk =Qk[u] :

R →C is invariant under the dynamics of (1.2) for each k ∈ Z0.

Note that we have FL
s,p

0 (T) ⊂ L2
0(T) := FL

0,2
0 (T) for (s, p) satisfying the condition in Theorem 1.1. Namely, 

L2
0(T) is the largest space where Theorem 1.1 holds. We point out that the quantity Qk(t) = Qk[u](t) constructed 

in Theorem 1.1 is not a conservation law in the usual sense. Given a global solution u constructed in Theorem 1.1, 
we have Qk[u](t) = Qk[u](0) for all t ∈ R and k ∈ Z0. However, the definition of Qk(t) depends on the information 
of the solution u on the entire interval [0, t], whereas a conservation law in the usual sense depends only on the 
information of the solution u at this specific time t . See (2.26) for the definition of Qk(t).

The smallness condition in Theorem 1.1 is sharp. In fact, we construct an explicit finite time blowup solution for a 
non-small mean-zero initial condition.

Theorem 1.2 (Finite time blowup solution). There exists a mean-zero function φ ∈ L2
0(T) and t∗ > 0 such that the 

corresponding solution u to (1.2) on the time interval [0, t∗) with u|t=0 = φ satisfies

lim
t→t∗−

‖u(t)‖Lp(T) = ∞
for any 1 ≤ p ≤ ∞. In particular, we have

lim
t→t∗−

‖u(t)‖FL
s,p
0 (T) = ∞

for (s, p) satisfying the condition in Theorem 1.1.

Recall the following Galilean invariance for (1.2) on T; if u is a solution to (1.2) on T, then

uc(t, x) := u(t, x + ct) + c (1.7)

is also a solution to (1.2) for any c ∈ R. This Galilean invariance allows us to convert a function of a real-valued spatial 
mean to a mean-zero function. Namely, given an initial condition φ ∈ L2(T) with φ̂(0) ∈ R, we can convert it into a 
mean-zero initial condition φc = φ + c with c = φ̂(0) and construct a global solution uc ∈ C(R; L2

0(T)) to (1.2) with 
uc|t=0 = φc as long as the transformed initial condition φc satisfies the smallness condition stated in Theorem 1.1. 
Then, by inverting (1.7), we obtain a global solution u ∈ C(R; L2(T)) to (1.2) with u|t=0 = φ.

Let us now point out how Theorem 1.1 does not contradict the ill-posedness result in [6] mentioned above. Christ 
proved the norm inflation (1.6), using initial data of the form φε(x) = iAε + iBεe

iNεx with Aε, Bε > 0 and Nε ∈ N. 
In particular, the spatial mean of φε is purely imaginary and hence this ill-posedness result is not applicable to our 
setting. Lastly, note that the Galilean invariance (1.7) does not allow us to convert a function of a purely imaginary 
spatial mean into a function of a real spatial mean since it would involve non-real c ∈ iR.

There are two main ingredients in the proof of Theorem 1.1: (i) normal form reductions and (ii) (modified) Cole–
Hopf transformation. The normal form approach will be used to handle local-in-time analysis in the low regularity 
setting, while the modified Cole–Hopf transformation will be used to construct smooth local-in-time solutions as well 
as obtain a global-in-time a priori estimate.

(i) Normal form reductions. The basic idea of normal form reductions from dynamical systems is to renormalize 
the flow by removing non-resonant terms in a nonlinearity at the expense of introducing higher order nonlinear terms. 
This is achieved by introducing a suitable new unknown; see [1,20]. We perform normal form reductions at the level 
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of the interaction representation v(t) := eit∂2
x u(t). If u is a smooth solution to (1.2) with spatial mean 0, then the 

interaction representation v satisfies

∂t v̂(k) = ik

2

∑
k=k1+k2
k1,k2 �=0

ei(k2−k2
1−k2

2)t v̂(k1)̂v(k2) = ik

2

∑
k=k1+k2
k1,k2 �=0

e2ik1k2t v̂(k1)̂v(k2) (1.8)

for each k ∈ Z0. Here, we used the fact that 
(k) := k2 − k2
1 − k2

2 = 2k1k2 under k = k1 + k2. Then, by performing 
differentiation by parts, i.e. integration by parts without an integral sign, we obtain

∂t v̂(k) = ∂t

[
k

2

∑
k=k1+k2
k1,k2 �=0

ei
(k)t v̂(k1)̂v(k2)


(k)

]
− k

2

∑
k=k1+k2
k1,k2 �=0

ei
(k)t
∂t

{̂
v(k1)̂v(k2)

}

(k)

=: ∂tN̂ 2(v)(k) + B̂3(v)(k), (1.9)

for each k ∈ Z0. By this process, we have the modulation function 
(k) = 2k1k2 appearing in the denominators, 
yielding gain of derivatives.1 The price we have to pay is that w := v − N 2(v) satisfies ∂tw = B3(v), where B3(v)

now consists of a cubic nonlinearity in view of (1.8) and (1.9). In order to handle B3(v), we need to perform differen-
tiation by parts again. In fact, we will iterate this differentiation by parts process infinitely many times (with suitable 
adjustments at each step) in Section 2 to renormalize (1.2) into a simpler equation (see the normal form equation (2.24)
below), where nonlinear analysis can be carried out with simple tools such as Hölder’s and Young’s inequalities. In 
particular, we do not employ any auxiliary function spaces such as Strichartz spaces and the Xs,b-spaces, allowing us 
to prove the unconditional uniqueness in Theorem 1.1.

In [2], Babin–Ilyin–Titi introduced this normal form approach via the differentiation by parts for constructing 
solutions to the KdV equation on T. Subsequently, this idea was applied to other dispersive PDEs [10,11,18], allowing 
us to construct solutions to dispersive PDEs without relying on the Fourier restriction norm method. In [10], we 
further developed this idea and successfully implemented an infinite iteration scheme of the so-called Poincaré–Dulac 
normal form reductions for the cubic NLS on T in the low regularity setting. This normal form approach has various 
applications such as exhibiting nonlinear smoothing [8] and establishing a good energy estimate [21].

(ii) (modified) Cole–Hopf transformation. It is well known that the Cole–Hopf transformation [7,15] transforms the 
viscous Burgers equation on R:

∂tu = ∂2
xu + u∂xu (1.10)

into the linear heat equation. More precisely, if u is a smooth solution to the viscous Burgers equation (1.10), then

w(t, x) := e− 1
2

∫ x
−∞ u(t,y)dy

solves the linear heat equation on R: ∂tw = ∂2
xw. A similar trick works for the quadratic dNLS (1.2) on R. If u ∈

C∞
t,loc(R; S(R)) solves dNLS (1.2) on R, then

w(t, x) := e− i
2

∫ x
−∞ u(t,y)dy (1.11)

solves the linear Schrödinger equation: ∂tw = i∂2
xw. See, for example, [25]. Similar gauge transformations played an 

important role in studying other dispersive PDEs with derivative nonlinearities such as the cubic DNLS (1.4) and the 
Benjamin–Ono equation [12,24].

In the periodic case, these gauge transformations have been suitably adjusted to study well-posedness of the cubic 
DNLS (1.4) and the Benjamin–Ono equation. See [13,19]. For our problem, a naive approach would be the following. 
Given a mean-zero function φ on T, we define the Cole–Hopf transformation G0 by

G0[φ] := e− i
2J (φ),

1 Compare this with the standard Fourier restriction norm method, where one gains only ∼ 1
2 -power of the modulation function 
(k).
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where J (φ) is the mean-zero primitive of φ defined by J (φ)k := φk

ik
if k �= 0, and J (φ)k := 0 if k = 0. Note that 

G0[φ] is a periodic function on T, since J (φ) is periodic. Given a smooth mean-zero solution u to dNLS (1.2) on T, 
let w(t) := G0[u(t)]. It turns out that w does not quite satisfy the linear Schrödinger equation. Hence, we need to 
introduce a suitable adjustment to the Cole–Hopf transformation; see (3.3) below.

Once we appropriately define the modified Cole–Hopf transformation G, we can transform any smooth mean-zero 
solution u to (1.2) to a solution W = G[u] to the linear Schrödinger equation. Note that, even if u is known to satisfy 
(1.2) locally in time, the gauged function W exists globally in time as a solution to the linear equation. Then, an 
important question is to investigate the invertibility of this transformation. It turns out that the inverse transformation 
is given by

u(t, x) = G−1[W ](t, x) := 2i
∂xW(t, x)

W(t, x)

for a smooth mean-zero solution u to (1.2). Thus, W(t, x) �= 0 guarantees the invertibility of the modified Cole–Hopf 
transformation. In Subsection 3.2, we discuss possible sufficient conditions for the invertibility in details and construct 
smooth global solutions to (1.2).

Interestingly, by interpreting this modified Cole–Hopf transformation from a geometric point of view, we obtain a 
necessary condition for possible spatial means of initial data φ for (1.2). Given a smooth solution u to (1.2) on some 
time interval I , u(t) is a periodic function for each t ∈ I . In particular, it is a closed loop in the complex plane. Then, 
the transformed function W(t) = G[u](t) is also a closed loop in the complex plane. Therefore, W must have a well 
defined index around the origin. This observation leads to 

∫
T

φ(x)dx = 4πn, n ∈ Z. See Remark 3.1.
We conclude this introduction by mentioning a hidden connection between the normal form reductions and the 

modified Cole–Hopf transformation. In Section 2, we obtain an infinite series as a result of an infinite iteration of 
normal form reductions. It turns out that this series is nothing but the Taylor expansion of (the derivative of the 
interaction representation of) the transformed function W = G[u] solving the linear Schrödinger equation. Namely, 
the two seemingly different approaches reduce (1.2) to the same linear Schrödinger equation (up to a differentiation); 
see Remark 3.2. Such a reducibility to a linear equation by normal form reductions is an important question, closely 
related to integrability. For example, see Nikolenko [20] in the smooth setting.

This paper is organized as follows. In Section 2, we implement an infinite iteration scheme of normal form reduc-
tions and rewrite (1.2) as the normal form equation (2.24). By establishing nonlinear estimates, we prove unconditional 
local well-posedness of the normal form equation. In Section 3, we introduce a modified Cole–Hopf transformation, 
converting (1.2) into the linear Schrödinger equation. By investigating a sufficient condition for inverting the modified 
Cole–Hopf transform, we prove small data global well-posedness of (1.2) in L2

0(T). In Section 4, we put together 
the results from Sections 2 and 3 and prove Theorem 1.1. In Appendix A, we present the proof of Theorem 1.2 by 
constructing an explicit example.

In view of the time-reversibility of the equation (1.2), we only consider positive times in the following.

2. Normal form reductions

In this section, we perform normal form reductions in an iterative manner and rewrite (1.2) as an equation involving 
infinite series. Then, we establish an a priori estimate on solutions in the Fourier–Lebesgue spaces. As mentioned in 
Section 1, our main approach is to apply differentiation by parts iteratively and reduce an equation into a simpler
form at each step. This procedure can be seen as an infinite dimensional version of the Poincaré–Dulac normal form 
reduction2 for a finite dimensional system of ODEs [1]. On the one hand, two iterations were sufficient in [2,11,18]. 
On the other hand, we needed to iterate normal form reductions infinitely many times in [10] to prove unconditional 
global well-posedness for the cubic NLS on T. In the following, we also set up an infinite iteration scheme for (1.2). As 
we see below, our argument for (1.2) is somewhat simpler than that in [10]. This is due to miraculous symmetrizations 
at each step of the normal form reductions, which allows us to write an equation at each step in a very simple form. In 
particular, there will be no resonant term in the equation at each step (modulo the correction terms Rn(v) appearing 
in (2.8), (2.14), and (2.20)). Note that all the analysis in this section is of local-in-time nature.

2 In fact, our approach for (1.2) is an infinite dimensional analogue of the Poincaré normal form reduction. Namely, there is no resonant term 
(modulo the correction terms) at each step of the iteration.
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2.1. Formal iteration argument

In the following, we first perform normal form reductions at a formal level. Namely, in this subsection, we do not 
worry about issues such as the convergence of infinite series, switching the time derivative with an infinite series, etc. 
These issues will be addressed in the next subsection.

Before proceeding further, let us introduce some notations. Given a periodic function f ∈ L2(T), we define its 
Fourier coefficient fk by

fk := 1

2π

∫
T

f (x)e−ikxdx.

The Fourier inversion formula states

f (x) =
∑
k∈Z

fk eikx.

Then, we can rewrite (1.2) as

∂tuk = −ik2uk + ik

2

∑
k=k1+k2

uk1uk2 . (2.1)

In the following, we assume that 
∫

φ dx = 0. Hence, it follows from the conservation of mean (1.5) that u0(t) = 0 for 
all t ∈R and it is understood that the summation is over non-zero frequencies Z0 := Z \ {0}.

We now introduce the interaction representation v by setting

v(t) := S(−t)u(t), (2.2)

where S(t) = eit∂2
x . In terms of the Fourier coefficients, we have vk(t) = eik2t uk(t). Then, the equation (2.1) becomes

∂tvk = ik

2

∑
k=k1+k2

ei(k2−k2
1−k2

2)t vk1vk2 . (2.3)

Given k = (k1, k2, · · · ) ∈ Z∞
0 and n ∈N, we define a length |k|n and a modulation function 
n(k) by setting

|k|n := k1 + k2 + · · · + kn,


n(k) :=
( n∑

i=1

ki

)2

−
n∑

i=1

k2
i =

∑
1≤i<j≤n

2kikj . (2.4)

By definition, we set 
1(k) = 0. Note that the modulation function 
2(k) appears as a phase factor in (2.3). As we 
see below, the modulation function 
n+1(k) appears as a phase factor at the nth step of the iteration argument. On the 
one hand, if 
n(k) �= 0, corresponding to the so-called non-resonant term, and it is large in particular, then we expect 
some cancellation under a time integration. On the other hand, if 
n(k) = 0, corresponding to the so-called resonant
term, then there is no cancellation under a time integration. In the following, we exploit symmetrizations at each step 
and show that all the terms we obtain are indeed non-resonant.

With 
2(k) = 2k1k2, we can rewrite (2.3) as

∂tvk = k

4

∑
|k|2=k

i
2(k)ei
2(k)t vk1vk2

k1k2
=: I2(v)(k). (2.5)

Note that there is no resonant term 
2(k) = 0 in (2.5) because k ∈ Z∞
0 . For conciseness, we use I2

k (v) to denote the 
kth Fourier coefficient I2(v)(k) of the multilinear form I2(v) in the following. A similar comment applies to other 
multilinear expressions.

We apply differentiation by parts and obtain

I2
k (v) = ∂t

[
k

4

∑
|k|2=k

ei
2(k)t vk1vk2

k1k2

]
− k

4

∑
|k|2=k

ei
2(k)t ∂t (vk1vk2)

k1k2

=: ∂tN 2
k (v) +B3

k(v). (2.6)
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By symmetry, we assume that the time derivative in ∂t(vk1vk2) falls only on vk2 and we double the contribution. From 
(2.6) with (2.3), we have

B3
k(v) = −2 · k

4

∑
|k|2=k

ei
2(k)t vk1∂tvk2

k1k2

= − ik

4

∑
k=k1+k2

ei
2(k)t vk1

k1

∑
k2=m1+m2

k2 �=0

ei(k2
2−m2

1−m2
2)t vm1vm2 . (2.7)

In order to apply a symmetrization, we need to add and subtract the contribution from m1 + m2 = 0. For this purpose, 
define R2

k(v) and I3
k (v) by

R2
k(v) = i

4
vkM(u) = i

4
vk

∑
m∈Z0

e−2im2t vmv−m and I3
k (v) : = B3

k(v) −R2
k(v), (2.8)

where M(u) is given by

M(u) := P0[u2] = 1

2π

∫
T

u2dx. (2.9)

Here, P0 denotes the Dirichlet projection onto the zeroth frequency. We point out that M(u) �= ‖u‖2
L2 . From (2.6) and 

(2.8), we have

I2
k (v) = ∂tN 2

k (v) +R2
k(v) + I3

k (v). (2.10)

By symmetrization in {k1, k2, k3}, we have

I3
k (v) := B3

k(v) −R2
k(v) = − ik

4

∑
k=k1+m1+m2

ei(k2−k2
1−m2

1−m2
2)t

vk1

k1
vm1vm2

= − ik

8

∑
|k|3=k

2k2k3 ei
3(k)t vk1vk2vk3

k1k2k3

= − k

4 · (3
2

) ∑
|k|3=k

i
3(k)ei
3(k)t vk1vk2vk3

k1k2k3

= − k

22 · 3!
∑

|k|3=k

i
3(k)ei
3(k)t vk1vk2vk3

k1k2k3
. (2.11)

Note that the symmetrization cancelled out the resonant terms (
3(k) = 0) and there is no resonant term in the final 
expression in (2.11). Therefore, we can perform differentiation by parts on I3

k (v)

Remark 2.1. Due to the presence of ei
n(k)t in their definitions, the multilinear expressions In(v) and N n(v) are non-
autonomous and in fact depend on t . Thus, strictly speaking, we should denote them by In

k (t)(v(t)) and N n
k (t)(v(t)). 

For simplicity of notations, however, we suppress such t -dependence when there is no confusion. The same comment 
applies to Bn(v) and Rn(v).

Differentiating I3
k (v) by parts yields

I3
k (v) = ∂t

[ −k

22 · 3!
∑

|k|3=k

ei
3(k)t vk1vk2vk3

k1k2k3

]
+ k

22 · 3!
∑

|k|3=k

ei
3(k)t ∂t (vk1vk2vk3)

k1k2k3

=: ∂tN 3
k (v) +B4

k(v). (2.12)
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R2 R3 R4

∂t v = I2 I3 I4 · · ·

∂tN 2 ∂tN 3 ∂tN 4

Fig. 1. Schematic diagram of the iteration process.

Then, by symmetry as above, we have

B4
k(v) = 3 · k

22 · 3!
∑

|k|3=k

ei
3(k)t vk1vk2∂tvk3

k1k2k3

= ik

24

∑
|k|3=k

ei
3(k)t vk1vk2

k1k2

∑
k3=m1+m2

k3 �=0

ei(k2
3−m2

1−m2
2)t vm1vm2 . (2.13)

Define R3
k(v) and I4

k (v) by

R3
k(v) = −ik

24
M(u)

∑
|k|2=k

ei
2(k)t vk1vk2

k1k2
and I4

k (v) = B4
k(v) −R3

k(v). (2.14)

From (2.12) and (2.14), we have

I3
k (v) = ∂tN 3

k (v) +R3
k(v) + I4

k (v). (2.15)

From (2.13), (2.14), and symmetrization, we have

I4
k (v) = ik

25

∑
|k|4=k

2k3k4e
i
4(k)t vk1vk2vk3vk4

k1k2k3k4

= k

25 · (4
2

) ∑
|k|4=k

i
4(k)ei
4(k)t vk1vk2vk3vk4

k1k2k3k4

= k

23 · 4!
∑

|k|4=k

i
4(k)ei
4(k)t vk1vk2vk3vk4

k1k2k3k4
.

Fig. 1 shows this iteration procedure schematically. We iterate this process of differentiation by parts and sym-
metrization indefinitely.

The following lemma describes the equation we obtain after the nth step.

Lemma 2.2. Let n ∈N. Then, the equation (2.3) can be rewritten as follows:

∂tvk = I2
k (v) = ∂tN 2

k (v) +R2
k(v) + I3

k (v)

= · · · = ∂t

( n∑
j=2

N j
k (v)

)
+

n∑
j=2

Rj
k (v) + In+1

k (v), (2.16)

where In(v), N n(v), and Rn(v) satisfy the following recursive relation:

In
k (v) = ∂tN n

k (v) +Rn
k(v) + In+1

k (v), n ≥ 2. (2.17)

Moreover, the Fourier coefficients of In(v), N n(v), and Rn(v), n ≥ 2, are given by

In
k (v) = (−1)nk

2n−1 · n!
∑

i
n(k)ei
n(k)t
n∏ vkj

kj

, (2.18)

|k|n=k j=1
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N n
k (v) = (−1)nk

2n−1 · n!
∑

|k|n=k

ei
n(k)t
n∏

j=1

vkj

kj

, (2.19)

Rn
k(v) = −i

4
M(u) ·N n−1

k (v), (2.20)

with the convention that

N 1(v) = −v. (2.21)

Remark 2.3. We point out that the factor n! appears in the denominator of N n(v). This corresponds to a functional 
version of the Taylor expansion of an exponential function. See Section 3.

Proof. We argue by induction. The case n = 1, 2, 3 follows from (2.5), (2.10), and (2.15). Now, suppose that (2.16) – 
(2.20) hold for some n ∈N. Differentiating In+1

k (v) by parts, we have

In+1
k (v) = ∂t

[
(−1)n+1k

2n · (n + 1)!
∑

|k|n+1=k

ei
n+1(k)t

n+1∏
j=1

vkj

kj

]

+ (−1)n+2k

2n · (n + 1)!
∑

|k|n+1=k

ei
n+1(k)t ∂t

( n+1∏
j=1

vkj

kj

)
=: ∂tN n+1

k (v) +Bn+2
k (v). (2.22)

The first term N n+1
k (v) readily satisfies (2.19). Let Rn+1

k (v) be as in (2.20). By symmetrization as before, we have

In+2
k (v) : = Bn+2

k (v) −Rn+1
k (v)

= (n + 1) · (−1)n+2ik

2n+1 · (n + 1)!
∑

|k|n+1=k

ei
n+1(k)t
n∏

j=1

vkj

kj

×
∑

kn+1=m1+m2

ei(k2
n+1−m2

1−m2
2)t vm1vm2

= (−1)n+2k

2n · n! · 4 · (n+2
2

) ∑
|k|n+2=k

i
n+2(k)ei
n+2(k)t

n+2∏
j=1

vkj

kj

,

which agrees with (2.18). Lastly, (2.16) for the (n + 1)-st step follows from (2.16) for the nth step and (2.22). �
The proof of Lemma 2.2 shows that, at each step of the normal form reductions, the symmetrization completely 

eliminates the resonant terms in In(v). Now, suppose that In+1
k (v) → 0 as n → ∞. Then, by taking n → ∞ in (2.16), 

we formally arrive at the limit equation:

∂tvk = ∂t

( ∞∑
n=2

N n
k (v)

)
+

∞∑
n=2

Rn
k(v). (2.23)

Integrating (2.23) in time and applying the Fourier inversion formula, we obtain the following normal form equation:

v(t) = φ +
∞∑

n=2

N n(v(t)) −
∞∑

n=2

N n(φ) +
t∫

0

∞∑
n=2

Rn(v(t ′))dt ′. (2.24)

In the following, we refer to (2.24) as the normal form equation.

Remark 2.4. (i) With (2.20) and (2.21), we can rewrite (2.23) as

∂t

( ∞∑
N n

k (v)

)
= i

4
M(u)

( ∞∑
N n

k (v)

)
, (2.25)
n=1 n=1
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where u(t) = eit∂2
x v(t). Given a smooth function v on R ×T, define

Qk(t) =Qk([0, t]) := e− i
4

∫ t
0 M(u)(t ′)dt ′

∞∑
n=1

N n
k (v) (2.26)

for k ∈ Z0. Then, given a global solution v to (2.24), the equation (2.25) formally yields

Qk(t) =Qk(0) (2.27)

for any t ∈ R. Hence, we found an infinite sequence {Qk(t)}k∈Z0 of the quantities that are formally invariant under the 
dynamics of the normal form equation (2.24). We point out, however, that Qk is not a conservation law in the usual 
sense. Namely, the definition (2.26) of Qk(t) depends on the information of the solution v on the entire interval [0, t].
(ii) Define q(t, x) by setting

qk(t) = e−ik2tQk(t), k ∈ Z0.

Then, it follows from (2.27) that qk(t) = e−ik2tQk(0). Namely, q is a solution to the linear Schrödinger equation: 
∂tq = i∂2

xq . Therefore, via the infinite iteration of normal form reductions, we have found, at least at a formal level, 
a transformation u �→ q , mapping a solution to (1.2) to a solution to the linear Schrödinger equation. See Section 3
for more discussion on this issue.

2.2. Analysis of the normal form equation

In the previous subsection, we reduced the original dNLS (1.2) to the normal form equation (2.24) through an infi-
nite sequence of normal form reductions. In this subsection, we first justify the formal computations performed in the 
previous section, at least for smooth solutions to (1.2). Then, we prove local well-posedness of (2.24) by establishing 
certain multilinear estimates. In Section 3, we transfer this well-posedness of (2.24) to the original problem (1.2).

We first introduce a constant Zs,p which we will frequently use.

Definition 2.5. For s, p ∈R satisfying s > − 1
p

and p ≥ 1, we define a constant Zs,p by

Zs,p := ∥∥|k|−(s+1)
∥∥

�p′
(Z0)

=
[
2 ζ

(
(s + 1)p′)] 1

p′
< ∞,

where ζ(τ ) = ∑∞
k=1 k−τ is the Riemann zeta function and p′ is the Hölder conjugate of p: 1

p
+ 1

p′ = 1. If p = 1, we 
can also define Zs,p for all s ≥ −1 by

Zs,1 := ∥∥|k|−(s+1)
∥∥

�∞(Z0)
= 1 for all s ≥ −1.

For s, p ∈ R satisfying s > 1
2 − 1

p
and p > 2, we also define a constant zs,p by

zs,p := Z
s−1,

2p
p+2

< ∞
such that we have

‖f ‖L2 ≤ zs,p‖f ‖FL
s,p
0

(2.28)

for any mean-zero function f on T.

The following proposition shows that a smooth solution to (1.2) indeed satisfies the normal form equation (2.24).

Proposition 2.6. Given T > 0, let u be a smooth solution to dNLS (1.2) on [0, T ] with a smooth initial data u|t=0 = φ

satisfying 
∫
T

φ dx = 0. Then, its interaction representation v(t) = e−it∂2
x u(t) satisfies the normal form equation (2.24)

on [0, T ].
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Proof. We break the proof into two parts. We first prove that v satisfies (2.23) for each k ∈ Z0, assuming that v ∈
C([0, T ]; L2(T)). Then, by imposing a higher regularity, we show that v satisfies the normal form equation (2.24).

Part 1: In view of the time reversibility of (1.2) and (2.24), we only consider positive times. Fix T > 0 and define 
constants C0 = C0(T ) by

C0 = C0(T ) := sup
t∈[0,T ]

‖u(t)‖L2
x
.

Then, from |vk(t)| = |uk(t)| and Cauchy–Schwarz inequality, we have

sup
t∈[0,T ]

‖vk(t)‖�∞ ≤ C0 and sup
t∈[0,T ]

‖k−1vk(t)‖�1 ≤ Z0,2C0.

Hence for given k ∈ Z0, it follows from (2.18) with (2.4) and Young’s inequality that

|In
k (v(t))| ≤ |k|

2n−1n!
∑

|k|n=k

∣∣
n(k)
∣∣ n∏
�=1

|vk�
(t)|

|k�|

≤ |k|
2n−2n!

∑
1≤i<j≤n

∑
|k|n=k

|vki
(t)| |vkj

(t)|
∏

1≤�≤n
��=i,j

|vk�
(t)|

|k�|

≤ |k|
2n−2n!

∑
1≤i<j≤n

‖vk(t)‖2
�2‖k−1vk(t)‖n−2

�1

≤ |k| Zn−2
0,2 Cn

0

2n−1(n − 2)! (2.29)

uniformly in t ∈ [0, T ]. Therefore, we have

lim
n→∞ sup

t∈[0,T ]
In

k (v(t)) = 0 (2.30)

for each k ∈ Z0. By a similar computation with (2.19) and the triangle inequality |k| ≤ ∑n
j=1 |kj |, we have

sup
t∈[0,T ]

|N n
k (v(t))| ≤ sup

t∈[0,T ]
1

2n−1(n − 1)! ‖vk(t)‖�∞‖k−1vk(t)‖n−1
�1 ≤ Zn−1

0,2 Cn
0

2n−1(n − 1)! . (2.31)

In particular, 
∑∞

n=2 N n
k (v(t)) converges (absolutely and uniformly in t ∈ [0, T ]).

From (2.20) and (2.31), we obtain

sup
t∈[0,T ]

|Rn
k(v(t))| ≤ Zn−2

0,2 Cn−1
0

2n(n − 2)! sup
t∈[0,T ]

M(u(t)) ≤ Zn−2
0,2 Cn+1

0

2n(n − 2)! (2.32)

for n ≥ 3. When n = 2, we have

sup
t∈[0,T ]

|R2
k(v(t))| ≤ 1

4
C0 sup

t∈[0,T ]
|vk(t)| ≤ 1

4
C3

0 ,

which is precisely (2.32) with n = 2. Hence, 
∑∞

n=2 Rn
k(v(t)) converges absolutely and uniformly in t ∈ [0, T ].

Lastly, it follows from (2.17), (2.29), and (2.32) that 
∑∞

n=2 ∂tN n
k (v(t)) converges absolutely and uniformly in 

t ∈ [0, T ]. Indeed, we have

sup
t∈[0,T ]

|∂tN n
k (v(t))| ≤ sup

t∈[0,T ]
|In

k (v(t))| + sup
t∈[0,T ]

|In+1
k (v(t))| + sup

t∈[0,T ]
|Rn

k(v(t))|

≤ |k|
[

Zn−2
0,2 Cn

0
n−1

+ Zn−1
0,2 Cn+1

0
n

]
+ Zn−2

0,2 Cn+1
0

n
.

2 (n − 2)! 2 (n − 1)! 2 (n − 2)!
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Hence, we have ∂t

(∑∞
n=2 N n

k (v(t))) = ∑∞
n=2 ∂tN n

k (v(t)). Therefore, with (2.16), we have∣∣∣∣∂tvk(t) − ∂t

( ∞∑
n=2

N n
k (v(t))

)
−

∞∑
n=2

Rj
k (v)

∣∣∣∣
=

∣∣∣∣∂tvk(t) −
∞∑

n=2

∂tN n
k (v(t)) −

∞∑
n=2

Rj
k (v)

∣∣∣∣
≤ lim

N→∞

∞∑
n=N+1

(|∂tN n
k (v(t))| + |Rn

k(v)|) + lim
N→∞|IN+1

k (v(t))| = 0

for each k ∈ Z0 and t ∈ [0, T ]. This proves (2.23) on [0, T ].
Part 2: In order to obtain the normal form equation (2.24), we need to invert the Fourier transform and thus need to 
use a control on a higher regularity. By a computation similar to (2.31), we have

sup
k∈Z0

sup
t∈[0,T ]

|k|2|N n
k (v(t))| ≤ C2

Zn−1
0,2 Cn−1

0

2n−1(n − 1)! ,

where C2 = C2(T ) := supt∈[0,T ] ‖u(t)‖H 2
x

. In particular, 
∑

k∈Z0

∑∞
n=2 N n

k (v(t)) converges absolutely (and uniformly 
in [0, T ]). Hence, we have

∞∑
n=2

N n(v(t)) −
∞∑

n=2

N n(φ) =
∞∑

n=2

∑
k∈Z0

(
N n

k (v(t)) −N n
k (φ)

)
eikx

=
∑
k∈Z0

( ∞∑
n=2

N n
k (v(t)) −

∞∑
n=2

N n
k (φ)

)
eikx. (2.33)

Similarly, 
∑

k∈Z0

∑∞
n=2 Rn

k(v(t)) converges absolutely (and uniformly in [0, T ]) with a uniform bound:

sup
k∈Z0

sup
t∈[0,T ]

∑
k∈Z0

∞∑
n=2

|Rn
k(v(t))| �

∑
k∈Z0

1

|k|2
∞∑

n=2

C2
Zn−2

0,2 Cn
0

2n(n − 2)! < ∞.

Hence, by Dominated Convergence Theorem, we have

t∫
0

∞∑
n=2

Rn(v(t ′))dt ′ =
∞∑

n=2

t∫
0

∑
k∈Z0

Rn
k(v(t ′))eikxdt ′

=
∑
k∈Z0

t∫
0

∞∑
n=2

Rn
k(v(t ′))eikxdt ′ (2.34)

for t ∈ [0, T ].
Therefore, from (2.23), (2.33), and (2.34), we have

v(t) =
∑
k∈Z0

vk(t)e
ikx

=
∑
k∈Z0

(
φk +

∞∑
n=2

N n
k (v(t)) −

∞∑
n=2

N n
k (φ) +

t∫
0

∞∑
n=2

Rn
k(v(t ′))dt ′

)
eikx

= φ +
∞∑

n=2

N n(v(t)) −
∞∑

n=2

N n(φ) +
t∫

0

∞∑
n=2

Rn(v(t ′))dt ′

for t ∈ [0, T ]. This completes the proof. �
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In the remaining part of this section, we consider the normal form equation (2.24). In particular, we prove local 
well-posedness of (2.24) in the Fourier–Lebesgue spaces FL

s,p

0 for small initial data. See Proposition 2.8 below. 
This will be achieved by the contraction mapping principle. In the following lemma, we establish the key multilinear 
estimates of N n(v) in FL

s,p

0 .

Lemma 2.7. Assume that (s, p) satisfy (i) s > − 1
p
, p > 1 or (ii) s ≥ −1, p = 1. Then, for each integer n ≥ 2, there 

exists Cs(n) > 0 such that

‖N n(v)‖FL
s,p
0

≤ Cs(n)
Zn−1

s,p

2n−1(n − 1)! ‖v‖n

FL
s,p
0

(2.35)

and

‖N n(v) −N n(̃v)‖FL
s,p
0

≤ Cs(n)
nZn−1

s,p

2n−1(n − 1)!
(‖v‖FL

s,p
0

+ ‖̃v‖FL
s,p
0

)n−1‖v − ṽ‖FL
s,p
0

, (2.36)

where Cs(n) satisfies

Cs(n) =
{

1, if s ≤ 0,

ns, if s > 0.

Proof. Recall the following estimate:( n∑
j=1

aj

)θ

≤
{∑n

j=1 aθ
j , if 0 ≤ θ ≤ 1,

nθ−1 ∑n
j=1 aθ

j , if 1 ≤ θ < ∞,
(2.37)

where the first estimate follows from the concavity of x �→ xθ and the second from Hölder’s inequality. Let wk :=
|k|svk so that ‖v‖FL

s,p
0

= ‖wk‖�p . Then, by (2.19) and (2.37) followed by Young’s and Hölder’s inequalities, we have

‖N n(v)‖FL
s,p
0

�n

∥∥∥∥|k|sk
∑

|k|n=k

ei
n(k)t

n∏
j=1

vkj

kj

∥∥∥∥
�p

≤
∥∥∥∥|k|s+1

∑
|k|n=k

n∏
j=1

|wkj
|

|kj |s+1

∥∥∥∥
�p

≤ Cs(n)

n∑
�=1

∥∥∥∥ ∑
|k|n=k

|wk�
|
∏
j �=�

|wkj
|

|kj |s+1

∥∥∥∥
�p

≤ Cs(n)n‖wk‖�p

∥∥∥∥ wk

|k|s+1

∥∥∥∥n−1

�1

≤ Cs(n)nZn−1
s,p ‖wk‖n

�p . (2.38)

Noting that the omitted constant in the first inequality is 1/(2n−1 n!), we obtain (2.35). The second estimate (2.36)
follows from a similar argument with the telescoping sum:

n∏
j=1

wkj
−

n∏
j=1

w̃kj
=

n∑
i=1

wk1 · · ·wkj−1 · (wkj
− w̃kj

) · w̃kj+1 · · · w̃kn .

This completes the proof. �
We conclude this section by proving small data local well-posedness of the normal form equation (2.24).

Proposition 2.8. Suppose that (s, p) satisfy (i) s > 1
2 − 1

p
, p > 2 or (ii) s ≥ 0, p = 2. Then, there exists a constant 

δ1 = δ1(s, p) > 0 such that if φ ∈FL
s,p

0 (T) satisfies

‖φ‖FL
s,p
0

≤ δ1, (2.39)

then there exist T = T (‖φ‖FL
s,p
0

) > 0 and a unique solution v to the normal form equation (2.24) in C([0, T ];
FL

s,p
(T)) with v|t=0 = φ.
0
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Proof. Part 1: We first construct a local weak solution in L∞([0, T ]; FL
s,p

0 (T)).3 Given φ ∈ FL
s,p

0 (T), define a 
map  = φ on L∞([0, T ]; FL

s,p

0 (T)) by

[v](t) := φ +
∞∑

n=2

(
N n(t)(v(t)) −N n(t)(φ)

) +
t∫

0

∞∑
n=2

Rn(t ′)(v(t ′))dt ′. (2.40)

Define As > 0 to be a constant such that

Cs(n)n

2n−1
≤ As (2.41)

for all n ∈ N. Let Bs
R = Bs

R(T ) be the closed ball in Xs(T ) := L∞([0, T ]; FL
s,p

0 (T)) of radius R = 2‖φ‖FL
s,p
0

centred at the origin. In addition, we assume that ‖φ‖FL
s,p
0

is sufficiently small such that

As(e
2Zs,pR − 1) ≤ 1

4
(2.42)

Lastly, we choose T = T (R) = T (‖φ‖FL
s,p
0

) > 0 such that

T = min

(
1

2Asz2
s,pR2eZs,pR

,
1

Asz2
s,pR2eZs,pR

(
2 + eZs,pR

))
. (2.43)

Let v, ̃v ∈ Bs
R . Then, from Lemma 2.7 with (2.20), (2.28), (2.42), and (2.43), we have

‖[v]‖Xs(T ) ≤ ‖φ‖FL
s,p
0

+
∞∑

n=2

(‖N n(v(t))‖Xs(T ) + ‖N n(φ)‖Xs(T )

)
+ 1

4
T z2

s,p‖v‖2
Xs(T )

∞∑
n=1

‖N n(v)‖Xs(T )

≤ ‖φ‖FL
s,p
0

+
∞∑

n=2

Cs(n)

2n−1

Zn−1
s,p

(n − 1)!
(‖v‖n

Xs(T ) + ‖φ‖n

FL
s,p
0

)
+ 1

4
T z2

s,p‖v‖2
Xs(T )

∞∑
n=1

Cs(n)

2n−1

Zn−1
s,p

(n − 1)! ‖v‖n
Xs(T )

= ‖φ‖FL
s,p
0

{
As

(
e
Zs,p‖φ‖FL

s,p
0 − 1

)
+ 1

}
+ As‖v‖Xs(T )

(
eZs,p‖v‖Xs (T ) − 1

)
+ 1

4
T Asz

2
s,p‖v‖3

Xs(T )e
Zs,p‖v‖Xs (T )

≤ R. (2.44)

Similarly, we have

∥∥[v] − [̃v]∥∥
Xs(T )

≤
∞∑

n=2

∥∥N n(v) −N n(̃v)
∥∥

Xs(T )
+ T

∞∑
n=2

‖Rn(v) −Rn(̃v)‖Xs(T )

≤ As

∞∑
n=2

Zn−1
s,p

(n − 1)!
(‖v‖Xs(T ) + ‖̃v‖Xs(T )

)n−1‖v − ṽ‖Xs(T )

+ 1

4
T Asz

2
s,p

∞∑
n=1

Zn−1
s,p

(n − 1)! ‖v‖n
Xs(T )

(‖v‖Xs(T ) + ‖̃v‖Xs(T )

)‖v − ṽ‖Xs(T )

3 Here, by a “weak” solution, we mean a solution without continuity in time.
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+ 1

4
T Asz

2
s,p‖̃v‖2

Xs(T )

∞∑
n=1

Zn−1
s,p

(n − 1)!
(‖v‖Xs(T ) + ‖̃v‖Xs(T )

)n−1‖v − ṽ‖Xs(T )

≤ As

(
e2Zs,pR − 1

)‖v − ṽ‖Xs(T ) + 1

4
T Asz

2
s,p

(
2R2eZs,pR + R2e2Zs,pR

)‖v − ṽ‖Xs(T )

≤ 1

2
‖v − ṽ‖Xs(T ). (2.45)

Hence, it follows from (2.44) and (2.45) that  is a contraction on Bs
R . Therefore, there exists a unique weak solution 

v ∈ L∞([0, T ]; FL
s,p

0 (T)) to (2.24) as long as ‖φ‖FL
s,p
0

≤ δ1 � 1, satisfying (2.42).

Note that the argument above does not yield continuity in time of the solution v ∈ L∞([0, T ]; FL
s,p

0 (T)). This is 
due to the presence of the boundary terms N n(t)(v(t)) without time integration in the definition (2.40) of [v]. In the 
following, we will present an additional argument to show the fixed point v indeed lies in C([0, T ]; FL

s,p

0 (T)).

Part 2: Next, we prove the persistence of regularity. We now suppose that φ ∈ FL
s+σ,p

0 (T) for some σ > 0. Let 
v ∈ Bs

R ⊂ L∞([0, T ]; FL
s,p

0 ) be the solution to (2.24) with v|t=0 = φ constructed in Part 1, where T = T (‖φ‖FL
s,p
0

)

is chosen as in (2.43).
Proceeding as in (2.38) with wk = |k|svk , we have

‖N n(v)‖FL
s+σ,p
0

≤ 1

2n−1n!
∥∥∥∥|k|s+σ+1

∑
|k|n=k

n∏
j=1

|wkj
|

|kj |s+1

∥∥∥∥
�p

≤ Cs+σ (n)nZn−1
s,p

2n−1n! ‖v‖n−1
FL

s,p
0

‖v‖FL
s+σ,p
0

. (2.46)

Then, proceeding as in (2.44) with (2.46), we have

‖v‖Xs+σ (T ) ≤ ‖φ‖FL
s+σ,p
0

+
∞∑

n=2

Cs+σ (n)

2n−1

Zn−1
s,p

(n − 1)!
(‖v‖n−1

Xs(T )
‖v‖Xs+σ (T ) + ‖φ‖n−1

FL
s,p
0

‖φ‖FL
s+σ,p
0

)
+ 1

4
T z2

s,p

∞∑
n=1

Cs+σ (n)

2n−1

Zn−1
s,p

(n − 1)! ‖v‖n+1
Xs(T )‖v‖Xs+σ (T )

= ‖φ‖FL
s+σ,p
0

{
As+σ

(
e
Zs,p‖φ‖FL

s,p
0 − 1

)
+ 1

}
+ As+σ ‖v‖Xs+σ (T )

(
eZs,p‖v‖Xs (T ) − 1

)
+ 1

4
T As+σ z2

s,p‖v‖2
Xs(T )e

Zs,p‖v‖Xs (T )‖v‖Xs+σ (T ), (2.47)

where As+σ is as in (2.41). Given σ > 0, we choose δ(s, σ) > 0 sufficiently small such that R = 2‖φ‖FL
s,p
0

with 
‖φ‖FL

s,p
0

≤ δ(s, σ) satisfies

As+σ (eZs,pR − 1) ≤ 1

4
. (2.48)

If necessary, we make T smaller such that

T ≤ 1

As+σ z2
s,pR2eZs,pR

. (2.49)

Hence, from (2.47), (2.48), and (2.49), we obtain

‖v‖Xs+σ (T ) ≤ 5

2
‖φ‖FL

s+σ,p
0

.

Therefore, we conclude that v ∈ L∞([0, T ]; FL
s+σ,p

0 ). The important point is that, while T = T (s, σ) now depends 
on ‖φ‖FL

s,p and σ , it is independent of ‖φ‖ s+σ,p .

0 FL0
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Part 3: Lastly, we prove that the solution constructed in Part 1 is indeed in C([0, T ]; FL
s,p

0 (T)). We first prove 

continuity in FL
s,p

0 (T) for smoother solutions. Given small φ ∈ FL
s+1,p

0 (T), let v ∈ Bs
R ⊂ L∞([0, T ]; FL

s,p

0 (T))

be the weak solution with v|t=0 = φ constructed in Part 2, where T = T (s, σ) with σ = 1. Note that from Part 2, we 
have

‖v‖
L∞([0,T ];FL

s+1,p
0 )

≤ Rs+1 := Rs+1(‖φ‖FL
s+1,p
0

). (2.50)

Write (2.24) as

v(t) = φ +N (t) +R(t), (2.51)

where

N (t) =
∞∑

n=2

N n(v(t)) −
∞∑

n=2

N n(φ) and R(t) =
t∫

0

∞∑
n=2

Rn(v(t ′))dt ′.

Thanks to the time integral, using Lemma 2.7 with (2.20), one can easily show that R(t) ∈ C([0, T ]; FL
s,p

0 (T)). 
Indeed, given t1, t2 ∈R, we have

‖R(t1) −R(t2)‖FL
s,p
0

≤ 1

4
Asz

2
s,pR3eZs,pR|t1 − t2|. (2.52)

By the triangle inequality, we have

‖N n(t1)(v(t1)) −N n(t2)(v(t2))‖FL
s,p
0

≤ ‖N n(t1)(v(t1)) −N n(t2)(v(t1))‖FL
s,p
0

+ ‖N n(t2)(v(t1)) −N n(t2)(v(t2))‖FL
s,p
0

=: In + IIn. (2.53)

Arguing as in (2.45) with (2.42), we have

∞∑
n=2

IIn ≤ As

∞∑
n=2

(2Zs,pR)n−1

(n − 1)! ‖v(t1) − v(t2)‖FL
s,p
0

≤ 1

4
‖v(t1) − v(t2)‖FL

s,p
0

. (2.54)

By Mean Value Theorem with wk := |k|svk , (2.4), and (2.37), we have

In ≤ 1

2n−1n!
∥∥∥∥|k|s+1

∑
|k|n=k

|
(k)(t1 − t2)|
n∏

�=1

|wk�
(t1)|

|k�|s+1

∥∥∥∥
�p

≤ |t1 − t2| 1

2n−2n!
∥∥∥∥|k|s+1

∑
1≤i<j≤n

∑
|k|n=k

|ki ||kj |
n∏

�=1

|wk�
(t1)|

|k�|s+1

∥∥∥∥
�p

≤ |t1 − t2| Cs(n)n

2n−1(n − 2)!
∥∥|k|wk(t1)

∥∥
�p

∥∥∥∥wk(t1)

|k|s
∥∥∥∥

�1

∥∥∥∥wk(t1)

|k|s+1

∥∥∥∥n−2

�1

≤ |t1 − t2|
Cs(n)nZn−1

s,p

2n−1(n − 2)! ‖v(t1)‖2
FL

s+1,p
0

‖v(t1)‖n−2
FL

s,p
0

.

Choosing Bs > 0 such that 2−(n−1)Cs(n)nZs,p ≤ Bs for all n ∈N, and recalling (2.50), we have

∞∑
n=2

In ≤ BsR
2
s+1e

Zs,pR|t1 − t2| (2.55)

Hence, from (2.51) – (2.55) we have

‖v(t1) − v(t2)‖FL
s,p
0

� BsR
2
s+1e

Zs,pR|t1 − t2| + Asz
2
s,pR3eZs,pR|t1 − t2|.

Therefore, we conclude that v ∈ C(R; FL
s,p

(T)).
0
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Now, given small φ ∈ FL
s,p

0 (T), let v ∈ L∞([0, T ]; FL
s,p

0 (T)) be the weak solution with v|t=0 = φ constructed 

in Part 2, where T = T (s, σ) with σ = 1. Let {φ(j)}j∈N ⊂ FL
s+1,p

0 (T) such that φ(j) converges to φ in FL
s,p

0 (T), 

as j → ∞. Denote by v(j) the corresponding global solutions in L∞([0, T ]; FL
s+1,p

0 (T)) ∩ C([0, T ]; FL
s,p

0 (T)). 
Recalling that T = T (s, σ) depends only on ‖φ(j)‖FL

s,p
0

and σ > 0 but is independent of ‖φ(j)‖FL
s+1,p
0

, we can 

choose T = T (s, σ) independent of j ∈N. Then, arguing as in (2.45), we have

‖v − v(j)‖Xs(T ) ≤ 2‖φ − φ(j)‖FL
s,p
0

Therefore, v(j)(t) converges to v(t) in the FL
s,p

0 -topology, uniformly in t ∈ [0, T ]. Hence, as a uniform limit of 
continuous functions, we conclude that v ∈ C([0, T ]; FL

s,p

0 (T)). �
Remark 2.9 (Unconditional uniqueness). Given φ ∈FL

s,p

0 satisfying (2.39), suppose that v, ̃v ∈ C([0, T ]; FL
s,p

0 ) are 
two solutions to (2.24) with v|t=0 = ṽ|t=0 = φ. Without loss of generality, assume that v is the solution constructed in 
Proposition 2.8. In particular, we have v ∈ Bs

R(T ) with R = 2‖φ‖FL
s,p
0

. In the following, redefine the local existence 
time T in (2.43) and (2.49) by replacing R with 4R.

In general, we may have ṽ /∈ Bs
R(T ). By the continuity in time with ṽ|t=0 = φ, there exists small τ1 > 0 such 

that supt∈[0,τ1] ‖̃v(t)‖FL
s,p
0

≤ 2R. Then, it follows from (2.45) that v = ṽ in C([0, τ1]; FL
s,p

0 ). Since ‖̃v(τ1)‖FL
s,p
0

=
‖v(τ1)‖FL

s,p
0

≤ R, there exists small τ2 > 0 such that supt∈[τ1,τ2] ‖̃v(t)‖FL
s,p
0

≤ 2R. Then, it follows from (2.45) that 

v = ṽ in C([τ1, τ2]; FL
s,p

0 ) and conclude that ‖̃v(τ2)‖FL
s,p
0

≤ R. In this way, we can cover the entire interval [0, T ]
and conclude that v = ṽ in C([0, T ]; FL

s,p

0 ). Namely, we have unconditional uniqueness.

Remark 2.10. In Part 2 of the proof of Proposition 2.8, we proved the persistence of regularity only for a fixed value 
of p ≥ 2. In general, the persistence of regularity also holds for different values of p as long as a proper embedding 
holds. Let Bs,p

R = B
s,p
R (T ) be the closed ball in Xs,p(T ) := L∞([0, T ]; FL

s,p

0 (T)) in the following.

Suppose that φ ∈FL
s,p

0 (T) with s > 1
2 − 1

p
such that FL

s,p

0 (T) ⊂ L2(T). Let v ∈ B
0,2
R ⊂ X0,2(T ) be the solution 

to (2.24) with v|t=0 = φ constructed in Part 1, where T = T (‖φ‖L2) is chosen as in (2.43). Proceeding as in (2.38)
and (2.46) with wk = |k|svk , we have

‖N n(v)‖FL
s,p
0

≤ Cs(n)nZn−1
0,2

2n−1n! ‖v‖n−1
L2 ‖v‖FL

s,p
0

. (2.56)

Then, a computation analogous to (2.47) with (2.56) yields

‖v‖Xs,p(T ) ≤ ‖φ‖FL
s,p
0

{
As

(
eZ0,2‖φ‖

L2 − 1
)

+ 1
}

+ As‖v‖Xs,p(T )

(
e
Z0,2‖v‖

X0,2(T ) − 1
)

+ 1

4
T As‖v‖2

X0,2(T )
e
Z0,2‖v‖

X0,2(T )‖v‖Xs,p(T ). (2.57)

Then, by choosing R and T sufficiently small such that

As(e
Z0,2R − 1) ≤ 1

4
and T ≤ 1

AsR2eZ0,2R
,

it follows from (2.57) that

‖v‖Xs,p(T ) ≤ 5

2
‖φ‖FL

s,p
0

.

Therefore, we conclude that v also lies in L∞([0, T ]; FL
s,p

0 ).

3. Small data global existence of smooth solutions

3.1. Cole–Hopf transformation

In the non-periodic setting, we can use the Cole–Hopf transformation (1.11) to transform smooth solutions to (1.2)
on R into solutions of the linear Schrödinger equation. In the periodic case, however, we need to make a suitable 



1290 J. Chung et al. / Ann. I. H. Poincaré – AN 34 (2017) 1273–1297
W(0) = G0[φ]
(3.1), (3.3)

∂tW=i∂2
xW

W(t)

(3.6)

u(0) = φ
dNLS

u(t) = G−1[W ](t)

Fig. 2. Relation between dNLS and the linear Schrödinger equation.

adjustment so that a modified Cole–Hopf transformation converts smooth mean-zero solutions to (1.2) on T into 
solutions of the linear Schrödinger equation.

Given a mean-zero function φ on T, we follow the Cole–Hopf transformation (1.11) on R and define a gauge 
transformation G0 by setting

G0[φ] := e− i
2J (φ), (3.1)

where J (φ) is the mean-zero primitive of φ given by

J (φ)k =
{

φk

ik
, k �= 0,

0, k = 0.

Note that G0[φ] is a periodic function on T, since J (φ) is periodic. Suppose that u is a smooth mean-zero solution to 
dNLS (1.2) on T and let w(t) := G0[u(t)]. Unfortunately, such w does not satisfies the linear Schrödinger equation. 
Indeed, we have

i∂tw + ∂2
xw = −1

4
P0[u2] · w, (3.2)

where P0[u2] is defined in (2.9).
In view of (3.2), we define a new “gauge” transformation G on functions depending on both x and t . Given a 

smooth function u(t, x) on [0, T ] ×T such that 
∫
T

u(t)dx = 0 for all t ∈ [0, T ], define a gauge transformation G by

W(t) = G[u](t) := e− i
4

∫ t
0 P0[u2(t ′)]dt ′e− i

2J (u(t)). (3.3)

In particular, we have G[u](0) = G0(u(0)). Note that

‖∂xW(0)‖L2 ≤ 1

2

∥∥e
1
2 ImJ (u(0))

∥∥
L∞‖u(0)‖L2 ≤ 1

2
e

1
2 Z0,2‖u(0)‖

L2 ‖u(0)‖L2 , (3.4)

where Z0,2 is as in Definition 2.5.
Suppose that u(t, x) is a smooth mean-zero solution to (1.2) on an interval [0, T ]. Define W by (3.3). Then, it is 

easy to see that W satisfies the linear Schrödinger equation on (0, T ) ×T:

∂tW = i∂2
xW. (3.5)

Given a smooth mean-zero initial condition φ, we can use the gauge transformation G to construct a smooth solution u
to (1.2). Indeed, set W(0) = G0[φ] and let W(t) be the global solution to the linear Schrödinger equation (3.5). Then, 
applying the inverse gauge transformation:

u(t, x) = G−1[W ](t, x) := 2i
∂xW(t, x)

W(t, x)
, (3.6)

we see that u is a solution to (1.2) as long as (3.6) makes sense. See Fig. 2. Note that the smoothness of φ (and hence 
of W(t)) was needed to consider the pointwise division in (3.6). Obviously, (3.6) makes sense as long as W(t, x) �= 0.

Now, let us introduce a geometric view point. The image of a complex-valued periodic function is a closed loop 
in C. Thus, the inverse transformation (3.6) makes sense at time t if the loop W(t) stays away from the origin in 
the complex plane. Note that the trivial solution u(t) ≡ 0 to (1.2) is transformed into W(t) ≡ 1. Thus, a small initial 
condition u(0) to (1.2) are transformed into a small loop W(0) around 1 ∈C. In particular, it is away from the origin in 
the complex plane. Then, we expect that the solution W(t) to (3.5) remains as a small loop around 1 ∈C for all t ∈ R, 



J. Chung et al. / Ann. I. H. Poincaré – AN 34 (2017) 1273–1297 1291
allowing us to apply the inverse transformation (3.6). In the following, we make this intuition precise. In particular, 
by assuming that a smooth mean-zero initial condition u(0) = φ is sufficiently small, we show that W(t) stays away 
from the origin for all time, giving rise to a smooth global solution u to (1.2).

Remark 3.1. Given a smooth periodic function u(t, x) on [0, T ] ×T such that 
∫
T

u(t)dx = μ ∈ C for all t ∈ [0, T ], let 
W(t) be the gauge transformation of u(t) defined in (3.3). We need to make sure that W(t) is a periodic function for 
each t ∈ [0, T ]. From the geometric point of view, W(t) must be a closed loop in C for each t ∈ [0, T ]. In particular, 
the index (= winding number) of the loop γ = W(t) at the origin must be well defined. By a direct computation, we 
have

Indγ (0) = 1

2πi

∫
γ

dz

z
= 1

2πi

∫
T

∂xW(t)

W(t)
dx = − 1

4π

∫
T

u(t)dx = − μ

4π
,

where the third equality follows from (3.6). Hence, we must have μ ∈ 4πZ.
In this paper, we only consider the mean-zero functions u, corresponding to the loop W of index 0 at the origin. It 

may be of interest to study well-posedness of (1.2) with 
∫
T

u(0)dx = −4πm, m ∈ Z, corresponding to the loop W(0)

of index m at the origin.

Remark 3.2. The normal form reduction performed in Section 2 corresponds to the Taylor expansion of (the derivative 
of the interaction representation of) the gauge transformation W defined in (3.3). Indeed, we have

∂xS(−t)W(t) = e− i
4

∫ t
0 P0[u2(t ′)]dt ′∂xS(−t)e− i

2J (u(t))

= e− i
4

∫ t
0 P0[u2(t ′)]dt ′∂xS(−t)

[ ∞∑
n=0

1

n!
(

− i

2
J (u(t))

)n]

= e− i
4

∫ t
0 P0[u2(t ′)]dt ′∂x

∞∑
n=1

Mn(u(t)). (3.7)

Here, Mn(u(t)), n ≥ 1, is given by

(
Mn(u(t))

)
k
= 1

n!
(

−1

2

)n ∑
|k|n=k

ei
n(k)t

n∏
j=1

vkj
(t)

kj

= 1

2k
N n

k (v(t)), (3.8)

where v denotes the interaction representation of u defined in (2.2) and the last equality follows from (2.19) and 
(2.21). Then, from (3.7), (3.8) and (2.26), indeed we have(

∂xS(−t)W(t)
)
k
= i

2
e− i

4

∫ t
0 P0[u2(t ′)]dt ′

∞∑
n=1

N n
k (v(t)) = i

2
Qk(t) (3.9)

for k ∈ Z0. Since W is a solution to the linear Schrödinger equation, 
(
S(−t)W(t)

)
k

is conserved under the dynamics. 
This fact can be also seen from (3.9) and Remark 2.4:(

S(−t)W(t)
)
k
= 1

2k
Qk(t) = 1

2k
Qk(0) = Wk(0).

3.2. Global existence of smooth solutions

In this subsection, we prove global existence of smooth solutions to (1.2) with small mean-zero initial data. As 
mentioned in the previous subsection, the main goal is to make sure that the loop W(t) in the complex plane does not 
intersect the origin for any t ∈ R. The following simple lemma provides a sufficient condition.

Lemma 3.3. Suppose that W 0 ∈ H
1
2 +ε(T), ε > 0, satisfies

|W 0
0 | −

∑
|W 0

k | ≥ δ > 0, (3.10)

k �=0
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for some δ > 0. Here, W 0
k is the k-th Fourier coefficient of W 0. Then, when viewed as a loop in the complex plane, 

the solution W(t) to the linear Schrödinger equation (3.5) with W |t=0 = W 0 never intersect the origin for any t ∈ R. 
Furthermore, we have

|W(t, x)| ≥ δ > 0.

Proof. By Sobolev embedding and the unitarity of the linear Schrödinger flow, we have W(t, x) ∈ C(R × T). Note 
that the solution W(t) to the linear Schrödinger equation (3.5) is given by

W(t, x) =
∑
k∈Z

W 0
k eikx e−ik2t .

Therefore, from (3.10), we have

|W(t, x)| =
∣∣∣∣W 0

0 +
∑
k �=0

W 0
k eikxe−ik2t

∣∣∣∣ ≥ |W 0
0 | −

∑
k �=0

|W 0
k | ≥ δ > 0,

for all (t, x) ∈R ×T. �
Remark 3.4. The condition (3.10) is sharp. Consider

W 0(x) = −2ζ(2) +
∑
k �=0

1

k2
eikx,

where ζ(τ ) = ∑∞
k=1 k−τ is the Riemann zeta function. Then, clearly (3.10) is violated. Moreover, we have W 0(0) = 0.

As a corollary of Lemma 3.3, we obtain the following a priori bound on the L2-norm of smooth solutions to (1.2).

Lemma 3.5. Suppose that u is a smooth global solution to (1.2) with a mean-zero initial condition: 
∫
T

u(0) dx = 0. 
Let W(t) = G[u](t) be the gauge transformation defined in (3.3). If W 0 = W(0) satisfies (3.10) for some δ > 0, then 
we have the following a priori bound:

‖u(t)‖L2(T) ≤ 1

δ
e

1
2 Z0,2‖u(0)‖

L2 ‖u(0)‖L2

for all t ∈ R.

Proof. By Lemma 3.3, we have |W(t, x)| ≥ δ > 0 for all (t, x) ∈ R × T. Then, from (3.6), the unitary of the linear 
Schrödinger flow on Ḣ 1, and (3.4), we have

‖u(t)‖L2(T) ≤ 2

δ
‖∂xW(t)‖L2(T) = 2

δ
‖∂xW(0)‖L2(T) ≤ 1

δ
e

1
2 Z0,2‖u(0)‖

L2 ‖u(0)‖L2 . �
Given a smooth mean-zero function φ on T, let W be the solution to (3.5) with W(0) = W 0 := G0[φ]. In the 

following proposition, we transfer the condition (3.10) on W 0 to a condition on φ guaranteeing that the loop W(t)

does not intersect the origin for any t ∈ R. This allows us to apply the inverse transformation (3.6) and construct a 
smooth global solution u(t) = G−1[W ](t) to (1.2).

Proposition 3.6. Suppose that (s, p) satisfy (i) s > 1
2 − 1

p
, p > 2 or (ii) s ≥ 0, p = 2. Let φ be a smooth function 

on T, satisfying 
∫
T

φ dx = 0. Define M = M(φ) by

M := sup
x∈T

|J (φ)(x)|. (3.11)

If M < π and

e
1
2 Zs,p‖φ‖FL

s,p
0 < 2e− M

2 cos

(
M

)
, (3.12)
2
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then there exists a smooth global solution u to dNLS (1.2) with u|t=0 = φ. Moreover, there exists C(φ) > 0 such that 
we have

‖u(t)‖L2(T) ≤ C(M,‖φ‖FL
s,p
0

) < ∞, (3.13)

for all t ∈ R.

Remark 3.7. This type of small “disturbance” condition also appears in the corresponding problem on R. In [22], 
Stefanov proved local well-posedness of the quadratic dNLS (1.2) in H 1(R), assuming that supx∈R

∣∣ ∫ x

−∞ φ(y) dy
∣∣ is 

sufficiently small. This is analogous to the condition M < π in Proposition 3.6.

Proof. Let W 0 = G0[φ]. Then, we have

W 0(x) = e− i
2J (φ)(x) =

∞∑
n=0

1

n!
(−i

2

)n

[J (φ)(x)]n

=
∞∑

n=0

1

n!
(−i

2

)n ∑
k∈Z

∑
|k|n=k

n∏
j=1

J (φ)kj
eikx =:

∑
k∈Z

W 0
k eikx, (3.14)

where

W 0
k =

∞∑
n=0

1

n!
(−i

2

)n ∑
|k|n=k

n∏
j=1

J (φ)kj
.

Then, by Young’s inequality and

‖J (φ)k‖�1 =
∑
k �=0

|φk|
|k| ≤ Zs,p‖φ‖FL

s,p
0

, (3.15)

we have∑
k∈Z

|W 0
k | ≤

∞∑
n=0

1

2nn!
∑
k∈Z

∑
|k|n=k

n∏
j=1

|J (φ)kj
| ≤

∞∑
n=0

1

2nn! ‖J (φ)k‖n
�1

≤
∞∑

n=0

1

n!
(Zs,p‖φ‖FL

s,p
0

2

)n

= e
1
2 Zs,p‖φ‖FL

s,p
0 . (3.16)

Note that the absolute convergence of the summations in n and k of (3.16) justifies the interchange of the summations 
in (3.14).

On the other hand, let r(x) := exp
{

Re(− i
2J (φ)(x))

}
and θ(x) := Im(− i

2J (φ)(x)). Then, by (3.11), we have

W 0(x) = r(x)eiθ(x), r(x) ≥ e− M
2 , and |θ(x)| ≤ M

2

for all x ∈ T. Hence, by Mean Value Theorem, there exists x0 ∈ T such that

|W 0
0 | = 1

2π

∣∣∣∣ ∫
T

W 0dx

∣∣∣∣ = 1

2π

∣∣∣∣ ∫
T

r(x)eiθ(x)dx

∣∣∣∣ ≥ 1

2π

∣∣∣∣ ∫
T

r(x) cos θ(x)dx

∣∣∣∣
= ∣∣r(x0) cos θ(x0)

∣∣
≥ e− M

2 cos

(
M

2

)
. (3.17)

The condition 0 ≤ M < π guarantees that the right-hand side of (3.17) is positive.
In view of (3.12), (3.16) and (3.17), we see that the condition (3.10) in Lemma 3.3 is satisfied for some δ > 0. 

Hence, letting W denote the smooth global solution to (3.5) with W |t=0 = W 0, Lemma 3.3 allows us to apply the 
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inverse transformation (3.6) and construct a smooth global solution u to (1.2) with u|t=0 = φ. Lastly, the global 
L2-bound (3.13) follows from Lemma 3.5. �

We now transfer the conditions in Proposition 3.6 to a smallness condition on the FL
s,p

0 -norm of smooth mean-zero 
initial data.

Corollary 3.8. Suppose that (s, p) satisfy (i) s > 1
2 − 1

p
, p > 2 or (ii) s ≥ 0, p = 2. Then, there exists δ2 > 0 such 

that if a smooth mean-zero function φ on T satisfies

‖φ‖FL
s,p
0 (T) ≤ δ2,

then there exists a smooth global solution u to dNLS (1.2) with u|t=0 = φ, satisfying (3.13).

Proof. From (3.15), we have

M = sup
x∈T

|J (φ)(x)| ≤ Zs,p‖φ‖FL
s,p
0

≤ Zs,p δ2. (3.18)

Hence, the first condition M < π in Proposition 3.6 is satisfied if Zs,p δ2 < π .
Let f (x) = 2e−2x cosx. Then, there exists unique α ∈ (

0, π2
)

such that f (α) = 1 since f is strictly decreasing on 
[0, π2 ], f (0) = 2, and f

(
π
2

) = 0. Now, choose δ2 > 0 sufficiently small such that Zs,pδ2 < 2α. Then, we have

e
1
2 Zs,p‖φ‖FL

s,p
0 ≤ e

1
2 Zs,pδ2 < eα = 2e−α cosα < 2e− M

2 cos
(

M
2

)
,

where the last inequality follows from (3.18) and the fact that g(x) = e−x cosx is strictly decreasing on x ∈ [
0, π2

]
. 

This shows that the second condition (3.12) in Proposition 3.6 also holds. �
4. Proof of Theorem 1.1

We are now ready to present the proof of Theorem 1.1. The main ingredients are the normal form reductions and 
small data global existence of smooth solutions via the gauge transformation discussed in Sections 2 and 3.

Given small δ0 > 0 (to be chosen later), fix φ ∈FL
s,p

0 such that ‖φ‖FL
s,p
0

≤ δ0. For j ∈N, let φ(j) = P≤jφ, where 

P≤j is the Dirichlet projection onto the frequencies {|k| ≤ j}. Note that we have {φ(j)}j∈N ⊂ C∞(T), 
∫
T

φ(j)dx = 0, 
and ‖φ(j)‖FL

s,p
0

≤ δ0 for all j ∈ N. Then, by Corollary 3.8, there exist global smooth solutions u(j) to (1.2) with 

u(j)|t=0 = φ(j), as long as δ0 ≤ δ2.
We first consider the case (s, p) = (0, 2). Letting W(j),0 = G0[φ(j)], it follows from (3.16) and (3.17) with (3.18)

that

|W(j),0
0 | −

∑
k �=0

|W(j),0
k | = 2|W(j),0

0 | −
∑
k∈Z

|W(j),0
k |

≥ 2e− 1
2 Z0,2δ0 cos

(
Z0,2δ0

2

)
− e

1
2 Z0,2δ0 =: A(δ0) > 0

for all j ∈N. From the continuity of A(δ0) and A(0) = 1, we have A(δ0) ≥ 1
2 for all sufficiently small δ0 > 0. Hence, 

it follows from Lemma 3.5 that by choosing δ0 > 0 sufficiently small, we have

‖u(j)(t)‖L2 ≤ ‖u(t)‖L2(T) ≤ 2e
1
2 Z0,2δ0δ0 < δ1, (4.1)

for all t ∈R and all j ∈N, where δ1 is as in Proposition 2.8.
Fix T = T (δ1), where T is the local existence time in Proposition 2.8. Then, from a slight modification of (2.45)

applied to v(j)(t) = S(−t)u(j)(t), we obtain

‖u(j) − u(�)‖C([0,T ];L2) ≤ 2‖φ(j) − φ(�)‖L2 (4.2)

for all j, � ∈N. In view of (4.1), we can iterate the argument on intervals [iT , (i + 1)T ], i = 1, 2, . . . , and obtain

‖u(j) − u(�)‖C([0,τ ];L2) ≤ 2[ τ
T

]+1‖φ(j) − φ(�)‖L2 (4.3)
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for any τ > 0. Since φ(j) converges in L2, it follows from (4.3) that u(j) converges to some u in C(R; L2) endowed 
with the compact-open topology, i.e. u(j) converges to some u(t) in L2, uniformly on each compact time interval. In 
particular, we have

∂tu − i∂2
xu − u∂xu = lim

j→∞

{
∂tu

(j) − i∂2
xu(j) − 1

2∂x

[
(u(j))2]} = 0

in the sense of distributions. Therefore, u is a distributional solution to (1.2) with u|t=0 = φ. The continuous depen-
dence follows from a slight modification of (2.45). See (4.2) above.

Next, we discuss the issue of uniqueness. Given φ ∈ L2 such that ‖φ‖L2 < δ0, let u ∈ C(R; L2) be solutions to (1.2). 
Then, it follows from (2.1) that uk ∈ C1(R; C) for each k ∈ Z0. Letting v(t) = S(−t)u(t), we also have vk ∈ C1(R; C)

for each k ∈ Z0. Moreover, {vk}k∈Z0 satisfies (2.3) for each k ∈ Z0. We now need to verify the differentiation by parts 
step (2.6). Recall the following lemma from [10].

Lemma 4.1. Let {fn}n∈N be a sequence in D′
t . Suppose that 

∑
n fn converges (absolutely) in D′

t . Then, 
∑

n ∂tfn

converges (absolutely) in D′
t and ∂t (

∑
n fn) = ∑

n ∂tfn.

By Young’s inequality, we have∑
|k|n=k

∣∣∣∣ei
n(k)t

n∏
j=1

vkj
(t)

kj

∣∣∣∣ ≤
∥∥∥∥vk(t)

k

∥∥∥∥2

�2

∥∥∥∥vk(t)

k

∥∥∥∥n−2

�1
� ‖vk(t)‖n

�2 .

Hence, Lemma 4.1 justifies the computation in (2.6). Note that in transition from (2.6) to (2.7), we used the product 
rule: ∂t (vk1vk2) = ∂tvk1vk2 + vk1∂tvk2 . This is justified by the fact that vk ∈ C1(R; C) for each k ∈ Z0. Proceeding in 
a similar manner, we can justify all the subsequent steps in the normal form reductions.

Noting that Part 1 of Proposition 2.6 relies only on the L2-regularity of v(t), we see that (2.30) holds. Moreover, 
the normal form equation (2.24) holds for each frequency k ∈ Z0 on the Fourier side. Namely, we have

vk(t) = φk +
∞∑

n=2

N n
k (v(t)) −

∞∑
n=2

N n
k (φ) +

t∫
0

∞∑
n=2

Rn
k(v(t ′))dt ′ (4.4)

for each k ∈ Z0. Then, the uniqueness part of Theorem 1.1 follows from the corresponding uniqueness statement for 
(4.4). See Remark 2.9.

The general case (s, p) with (i) s > 1
2 − 1

p
, p > 2 or (ii) s ≥ 0, p = 2 follows from the persistence of regularity 

for the normal form equation (2.24) and (2.28); see Remark 2.10. This completes the proof of Theorem 1.1.
We conclude this section by stating the following corollary.

Corollary 4.2. Assume the hypotheses of Theorem 1.1. Let u be a global solution to (1.2) with u|t=0 = φ ∈ FL
s,p

0 . 
Then, Qk =Qk[u], k ∈ Z0, defined in (2.26) is invariant under the dynamics of (1.2).

Proof. In view of Remark 2.4 and Proposition 2.6, this proposition follows from a standard approximation argument, 
using a computation similar to (2.45), and thus we omit details. �
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Appendix A. Large data finite time blowup solution

In this appendix, we present the proof of Theorem 1.2. Recall that in establishing global well-posedness of (1.2)
through the gauge transformation (3.3), it was essential to guarantee that the gauged function W stays away from the 
origin. This was achieved by imposing smallness assumption, since if u(0) = φ is small, the gauge transformation 
W(0) = G0[φ] is a loop close to 1 ∈ C. In the following, we construct an example of a finite time blowup solution to 
(1.2) by first constructing an example of W(t) which approaches the origin such that the inverse gauge transformation 
(3.6) ceases to make sense. As W(t) evolves linearly, it suffices to find a linear solution that touches the origin in finite 
time. By choosing

W(t, x) := 1 − ie−it cosx,

we see that W
(

π
2 , 0

) = 0. Indeed, the loop W(t) touches the origin for the first time at t = π
2 .

On the other hand, the inverse gauge transformation (3.6) gives a solution u to (1.2):

u(x, t) = −2e−it sinx

1 − ie−it cosx
.

Note that 
∫
T

u(0)dx = 0. We claim that the L1-norm of u(t) diverges as t → π
2 −. The modulus of u is

|u(t, x)| = 2| sinx|√
1 − 2 sin t cosx + cos2 x

.

In particular, when t = π
2 ,∣∣u(

π
2 , x

)∣∣ = 2| sinx|
1 − cosx

.

For |x| � 1, we have

2| sinx| ≥ 2

∣∣∣∣x − x3

3!
∣∣∣∣ ≥ |x| and 1 − cosx ≤ x2

2! .

Hence∫
T

∣∣u(
π
2 , x

)∣∣dx ≥
∫

|x|�1

2

|x|dx = ∞.

Therefore, every Lp-norm of u(t), 1 ≤ p ≤ ∞, diverges as t → π
2 . Also, given (s, p) as in Theorem 1.1, the 

FL
s,p

0 -norm of u(t) diverges as t → π
2 .
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