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Abstract

We show that the support of any local minimizer of the interaction energy consists of isolated points whenever the interaction 
potential is of class C2 and mildly repulsive at the origin; moreover, if the minimizer is global, then its support is finite. In addition, 
for some class of potentials we prove the validity of a uniform upper bound on the cardinal of the support of a global minimizer. 
Finally, in the one-dimensional case, we give quantitative bounds.
© 2016 
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1. Introduction

Consider the interaction energy E : P(Rn) → R ∪ {+∞}, defined on the set of Borel probability measures P(Rn)

by

E(μ) = 1

2

∫
Rn

∫
Rn

W(x − y)dμ(x)dμ(y) for all μ ∈ P(Rn), (1.1)

where W : Rn → R ∪ {+∞} is an interaction potential. In recent years, the study of local and global minimizers of 
energies of the form (1.1) has been in the spotlight of applied mathematics, in particular in the context of the variational 
approach to partial differential equations. The main reason for this interest is that E is a Lyapunov functional for the 
continuity equation

∂tμ = ∇ · (μ∇W ∗ μ) on R
n, for t > 0,
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called the aggregation equation, where ∗ is the convolution operator and μ : [0, ∞) → P(Rn) is here a probability 
curve. These equations describe the continuum behavior of agents interacting via the potential W , and are at the 
core of many applications ranging from mathematical biology to granular media and economics, see [16,14,11,17,4]
and the references therein. They can also be obtained as dissipative limits of hydrodynamic equations for collective 
behavior [13].

Typically, interaction potentials are repulsive towards the origin and attractive towards infinity; this reproduces 
the “social”, or natural, behavior of the agents that are usually considered in applications. In [2] the authors showed 
that the dimension of the support of a minimizer of E is directly related to the repulsiveness of the potential at the 
origin, i.e., to the strength of the repulsion of two very close particles. More precisely, the stronger the repulsion 
(up to Newtonian), the higher the dimension of the support. In particular, in the case of mild repulsion—when the 
potential behaves like a power of order α, with α > 2, near the origin—the Hausdorff dimension of each smooth 
enough component of the support has to be zero, see [2, Theorem 2]. The smoothness assumption on the connected 
components of the support was essential in the proof, hence several open problems immediately arise: Is it possible 
to have minimizers whose supports lie on sets of non-integer Hausdorff dimension? Or can the support have integer 
dimension but non-smooth components? And, assuming one can prove that it is of zero dimension, is the support 
discrete?

In this work we give a conclusive answer to all these questions. Let us first mention that extensive simulations [10,
12,3,2,1,8] showed that fractal supports were not numerically observed and, moreover, these numerical simulations 
were consistently giving minimizers supported on finite numbers of points. This is precisely the rigorous result we 
show in this work under suitable assumptions on the repulsive-attractive potential W . In the rest of the paper we 
always assume that W is radially symmetric, of class C2, and such that

W(0) = 0, and there is R > 0 s.t. W(x) < 0 if 0 < |x| < R, and W(x) ≥ 0 if |x| ≥ R. (1.2)

Let us write w(|x|) := W(x) for all x ∈ R
n. Remark that, by convention, w being repulsive (resp. attractive) at r > 0

means w′(r) < 0 (resp. w′(r) > 0). We suppose that W is mildly repulsive, that is,

there exist α ≥ 2 and C > 0 such that w′(r)r1−α → −C as r → 0. (1.3)

Note that, since w(0) = 0, (1.3) implies that w(r)r−α → −C/α as r → 0.
When we refer to minimizers of the energy (1.1), we either refer to global minimizers, in which case no underlying 

topology is required, or to local minimizers, in which case we need to specify the topology. In [2] it was proven that 
a natural topology to obtain suitable Euler–Lagrange conditions is that induced by the ∞-Wasserstein distance. We 
define the ∞-Wasserstein distance between two probability measures μ and ν by

d∞(μ, ν) = inf
π∈�(μ,ν)

sup
(x,y)∈supp π

|x − y|, (1.4)

where �(μ, ν) is the space of probability measures on Rn × R
n with first marginal μ and second marginal ν. We 

therefore say that μ ∈ P(Rn) is a d∞-local minimizer of E if there exists ε > 0 such that E(μ) ≤ E(ν) for all 
ν ∈ P(Rn) with d∞(μ, ν) < ε. We refer to [2,7,18] and the references therein for a good account on the properties of 
this distance and its relation to more classical metrics in optimal transport.

The Euler–Lagrange conditions for d∞-local minimizers of E were used to give necessary and sufficient condi-
tions on repulsive-attractive potentials to have existence of global minimizers [5,15], and to analyze the regularity of 
the d∞-local minimizers for potentials which are as repulsive as, or more singular than, the Newtonian potential [7]. 
In both cases, d∞-local minimizers are solutions of some related obstacle problems for Laplacian or nonlocal Lapla-
cian operators, implying that they are bounded and smooth in their supports, or even continuous up to the boundary 
[7,9]. Similar Euler–Lagrange equations were also used for nonlinear versions of the Keller–Segel model in order to 
characterize minimizers of related functionals [6].

Our main theorem in this work is the following.

Theorem 1.1. Let μ ∈P(Rn) be a d∞-local minimizer of the interaction energy with E(μ) < ∞. Then every point in 
the support of μ is isolated. If moreover μ is a global minimizer, then the support of μ consists of finitely many points.

In Section 2 we show some preliminary results concerning minimizers that are needed for the proof of Theorem 1.1, 
which we give in Section 3. In Section 4 we prove upper estimates on the cardinal of the support of a global minimizer.
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2. Preliminary results

We give in this section the preliminary results needed to prove Theorem 1.1. For every μ ∈P(Rn), let us write

Vμ(x) := W ∗ μ(x) =
∫
Rn

W(x − y)dμ(y) for all x ∈R
n.

By the continuity of W it can be checked that, for any μ ∈ P(Rn), Vμ : Rn → [0, +∞] is lower semi-continuous. 
From [2, Proposition 2] we have the following lemma.

Lemma 2.1. Let μ be a d∞-local minimizer of the interaction energy with E(μ) < ∞. Then there exists ε > 0 such 
that any point x0 ∈ suppμ is a local minimizer of Vμ for the radius ε, that is, Vμ(x0) ≤ Vμ(x) for every x ∈ B(x0, ε).

Remark 2.2. The ε in the definition of a d∞-local minimizer (see below (1.4)) and the one in Lemma 2.1 are the 
same. This directly comes from the proofs of [2, Propositions 1 and 2].

By [2, Remark 3, Theorem 4] and the continuity of W we get the result below.

Lemma 2.3. Let μ be a d∞-local minimizer with E(μ) < ∞. Let K ⊂ suppμ be a bounded connected set. There 
exists CK ≥ 0 such that the Euler–Lagrange condition writes

Vμ(x) = CK for all x ∈ K.

If moreover μ is a global minimizer, then we know that CK = 2E(μ), which is independent of K , and we have{
Vμ(x) = 2E(μ) for all x ∈ suppμ,

Vμ(x) ≥ 2E(μ) for all x ∈R
n.

(2.1)

We now give the computation of the second variation of the energy functional (1.1), which is a crucial point of the 
proof of Theorem 1.1.

Lemma 2.4. Let μ be a d∞-local minimizer of the interaction energy with E(μ) < ∞. There exists δ > 0 such that 
for all x0 ∈ suppμ we have∫

Rn

∫
Rn

W(x − y)dν(x) dν(y) ≥ 0 (2.2)

for any signed measure ν verifying suppν ⊂ suppμ ∩ B(x0, δ) and ν(Rn) = 0.

Proof. Let ε > 0 be the constant of Lemma 2.1 for the local minimizer μ. Fix x0 ∈ suppμ and δ ≤ ε/2, and define

μ′ := μ0 + μ1,

where μ0 is an arbitrary nonnegative measure with

μ0(R
n) = μ(B(x0, δ)), suppμ0 ⊂ suppμ ∩ B(x0, δ),

and μ1 is defined as

μ1(A) := μ(A \ B(x0, δ)) for any Borel set A ⊂R
n.

Clearly μ′ ∈ P(Rn) and d∞(μ, μ′) < ε. Let us write B0 := B(x0, δ). Then, since E(μ) ≤ E(μ′),∫
B0

∫
B0

W(x − y)dμ(y)dμ(x) + 2
∫
B0

∫
Rn\B0

W(x − y)dμ(y)dμ(x)

≤
∫
B

∫
B

W(x − y)dμ0(y) dμ0(x) + 2
∫
B

∫
n

W(x − y)dμ(y)dμ0(x).

(2.3)
0 0 0 R \B0
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By Lemma 2.1,

Vμ(x) ≤ Vμ(y) for all x ∈ suppμ ∩ B0 and y ∈ B0.

Then, since μ0(R
n) = μ(B0), it follows from integration against 

∫
B0

∫
B0

dμ0(x) dμ(y) that∫
B0

∫
Rn\B0

W(x − y)dμ(y)dμ0(x) −
∫
B0

∫
Rn\B0

W(x − y)dμ(y)dμ(x)

≤
∫
B0

∫
B0

W(x − y)dμ(y)dμ(x) −
∫
B0

∫
B0

W(x − y)dμ(y)dμ0(x).

Hence (2.3) implies

2
∫
B0

∫
B0

W(x − y)dμ(y)dμ0(x)

≤
∫
B0

∫
B0

W(x − y)dμ(y)dμ(x) +
∫
B0

∫
B0

W(x − y)dμ0(y) dμ0(x).

Then the above inequality becomes∫
B0

∫
B0

W(x − y)d[μ − μ0](y) d[μ − μ0](x) ≥ 0,

which, by the arbitrariness of μ0, gives the result. �
Remark 2.5. In Lemma 2.4, if μ is a global minimizer of the interaction energy, then the result is slightly stronger. 
Indeed, in this case, for all x0 ∈ suppμ we have∫

Rn

∫
Rn

W(x − y)dν(x) dν(y) ≥ 0 (2.4)

for any signed measure ν verifying suppν ⊂ suppμ and ν(Rn) = 0. This can be seen simply by adapting the proof of 
Lemma 2.4 to global minimizers.

Remark 2.5 yields the following lemma.

Lemma 2.6. Let μ be a global minimizer of the interaction energy. Then μ is compactly supported with 
diam(suppμ) ≤ R.

Proof. Let x, y ∈ suppμ. Take ν = δx − δy in (2.4) and get that W(x − y) ≤ 0. Hence the result follows from the 
assumption (1.2). �
3. Proof of Theorem 1.1

Suppose that μ is a d∞-local minimizer of the interaction energy, and let y0 ∈ suppμ. Then, given δ > 0 smaller 
than the one in Lemma 2.4, either there are two different points y1, y2 ∈ suppμ ∩B(y0, δ), or there is nothing to prove.

Step 1. Geometric constraint. We show that there is a geometric constraint for the points in the support of μ stemming 
from the minimality condition of Lemma 2.4. For convenience, let us write y0 = 0, y1 = x1 and y2 = −x2, and 
consider the measure

νλ = −δ0 + λδx1 + (1 − λ)δ−x2 for any λ ∈ [0,1].
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By plugging νλ in (2.2) in place of ν we get

λ(1 − λ)W(x1 + x2) ≥ λW(x1) + (1 − λ)W(x2).

By the assumption in (1.2), we can choose δ small enough such that W(x1), W(x2) and W(x1 + x2) are negative. 
Then, set a := W(x1)/W(x1 + x2) and b := W(x2)/W(x1 + x2), so that the above inequality is equivalent to

λ(1 − λ) ≤ λa + (1 − λ)b ∀λ ∈ [0,1] (3.1)

and implies
√

a + √
b ≥ 1. (3.2)

To see this, assume |b − a| ≤ 1 (otherwise the inequality is trivial since a, b ≥ 0 and therefore either a or b would be 
larger than 1). Then, choosing λ = (1 + b − a)/2, the inequality (3.1) becomes, after some rearrangement,

(1 − a)2 − 2(1 + a)b + b2 ≤ 0.

This implies in particular that

b ≥ 1 + a − 2
√

a = (1 − √
a)2,

which is the desired inequality (3.2). Now, recalling the definition of a and b, we get, from (3.2),√−W(x1) + √−W(x2) ≥ √−W(x1 + x2).

Assume, by homogeneity, that x1 + x2 = pe1, where e1 is the first unit vector of the orthonormal basis of Rn, and 
p > 0 is a small rescaling parameter. Then the above inequality becomes√−W(x1) + √−W(pe1 − x1) ≥ √−W(pe1).

Write x1 = p(te1 +y), where y ∈ R
n has zero first coordinate, and, by homogeneity, t ∈ [0, 1]. Then, using that |x1| ≤

pt +p|y| and |pe1 − x1| ≤ p(1 − t) +p|y|, and that, for p small enough, x �→ √−W(px) is radially non-decreasing 
in B(0, 1 + |y|), we get√−w(p(t + |y|)) + √−w(p(1 − t + |y|)) ≥ √−w(p).

Write wp(r) := w(pr)p−α for any r ≥ 0. Then, dividing the inequality above by pα/2 yields√−wp(t + |y|) + √−wp(1 − t + |y|) ≥ √−wp(1).

Observe that since the inequality above is invariant under the transformation t ↔ 1 − t , we could have assumed 
t ∈ [0, 1/2] without loss of generality when writing x1 = p(te1 + y). Define, for all s ∈ [0, 1] and z ∈ R

n, and for 
p > 0 small,

ηp(s, z) = √−wp(s + |z|) + √−wp(1 − s + |z|) − √−wp(1).

For any two v, v′ ∈ R
n distinct, define the open set

Sp(v, v′) :=
{
u ∈ R

n : π(v,v′)u ∈ [v, v′] and ηp

( |π(v,v′)u − v|
|v − v′| ,π(v,v′)u − u

)
< 0

}
,

where π(v,v′) denotes the orthogonal projection on the line (v, v′).
Since the point y0, taken above to be the origin, can be an arbitrary point of the support of μ, we just proved the 

validity of the following geometric constraint: for any y0, y1 ∈ suppμ such that |y0 − y1| = p with p small, we have

suppμ ∩ Sp(y0, y1) = ∅.

Step 2. Asymptotic geometric constraint. Define, for all s ∈ [0, 1] and z ∈ R
n,

η0,α(s, z) = (s + |z|)α/2 + (1 − s + |z|)α/2 − 1. (3.3)

For any two v, v′ ∈ R
n distinct, define the open set
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Fig. 1. The boundary {η0,α = 0} for n = 2 and different values of α.

S0,α(v, v′) :=
{
u ∈R

n : π(v,v′)u ∈ [v, v′] and η0,α

( |π(v,v′)u − v|
|v − v′| ,π(v,v′)u − u

)
< 0

}
.

By the assumption given in (1.3), and assuming with no loss of generality that C = α, we have wp(r) → −rα and 
w′

p(r) → −αrα−1 as p → 0, and{
ηp → η0,α,

∇ηp → ∇η0,α,
pointwise as p → 0. (3.4)

This shows that, for any y0, y1 ∈ suppμ asymptotically close, we have

suppμ ∩ S0,α(y0, y1) = ∅ (3.5)

The boundary {η0,α = 0} is represented in Fig. 1 for n = 2 and different values of α. It is important to keep in mind 
that this shape only depends on α and not on the choice of the minimizer μ.

Step 3. Understanding the geometric constraint. Given v, v′ ∈ R
n, define the open “double cone” with opening τ > 0

by

Cτ (v, v′) := {
u ∈R

n : π(v,v′)u ∈ [v, v′] and |π(v,v′)u − u| < τ min(|π(v,v′)u − v|, |π(v,v′)u − v′|)} .

Since α > 2, then S0,α(v, v′) is non-empty for any v, v′ ∈ R
n distinct and r �→ rα/2 is a strictly convex function on 

[0, ∞), which implies that S0,α(v, v′) is a convex set. Thus, if we set

γα = sup{τ > 0 : Cτ (v, v′) ⊂ S0,α(v, v′)},
we see that γα can be computed using that |z| = γαs when s = 1/2 and η0,α(s, z) = 0 in (3.3), and therefore we get

γα = 21−2/α − 1.

Note that γα only depends on α (and not on the choice of v and v′). Therefore, for any y0, y1 ∈ suppμ asymptotically 
close, (3.5) gives

suppμ ∩ Cγα (y0, y1) = ∅.

Moreover, ∂sη0,α(0, 0) = −α/2 and |∇η0,α(0, 0)| = α/
√

2, so that no tangent plane to S0,α(v, v′) at s = 0 and z = 0
contains v′ − v. By symmetry, this also holds at s = 1 and z = 0.

This, along with the convexity of S0,α(v, v′) for any distinct v, v′ ∈ R
n and (3.4), gives us the final form of the 

geometric constraint needed in order to conclude: there exist p′ > 0 and τp′ < γα such that, for all p < p′ and 
y0, y1 ∈ suppμ with |y0 − y1| = p, we have Cτp′ (y0, y1) ⊂ Sp(y0, y1).

Step 4. Conclusion. We now proceed by contradiction. Let us assume that y0 is an accumulation point in suppμ. Then 
there exist a sequence (xk)k∈N ⊂ suppμ converging to y0 and a unit direction e such that
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xk − y0

|xk − y0| → e as k → ∞.

This implies that if we fix k̂ large enough so that |x
k̂
− y0| is sufficiently small and x

k̂
− y0 is almost parallel to e, then 

for k � k̂ the point xk belongs to the cone Cτp′ (y0, xk̂
), a contradiction to Steps 2 and 3.

This proves that every point y0 ∈ suppμ is isolated. Finally, when μ is a global minimizer, we know from 
Lemma 2.6 that suppμ is compact, hence suppμ must be finite.

Remark 3.1. Let n = 2. Then, ∇η0,α → α(−1/2, ±1/2) at the origin, meaning that the angle that tangent planes to 
the shape S0,α(x, y) make with the base of the shape at s = z = 0 is π/4. By symmetry, this is also true at s = 1 and 
z = 0.

4. Estimate on the cardinal of the support of a global minimizer

We give here upper estimates on the cardinal of the support of a global minimizer of the interaction energy. We 
obtain a non-quantitative bound in any dimension, and a quantitative one in the one-dimensional case.

For any m ∈N and unit direction e, we write

Dm
e W(x) := dm

dεm

∣∣∣
ε=0

W(x + εe).

Note that, for every unit direction e, Lemma 2.1 implies that for any d∞-local minimizer μ,{
D1

eVμ(x) = D1
eW ∗ μ(x) = 0,

D2
eVμ(x) = D2

eW ∗ μ(x) ≥ 0,
for all x ∈ suppμ. (4.1)

4.1. Non-quantitative estimates in arbitrary dimension

In addition to the hypotheses on the potential W given in Section 1, we also consider the following assumption:

W ∈ C4
loc(R

n \ {0}), W satisfies (1.3) with α < 4,

and for any r > 0 there exists Mr > 0 such that, for any unit direction e,

D4
eW(x) ≤ Mr for all x ∈ B(0, r) \ {0}.

(4.2)

We give below an example of potential satisfying (4.2).

Example 4.1. Assume that there exists U ∈ C4(Rn) such that

W(x) = −|x|α/α + U(x) for all x ∈ R
n, with 3 ≤ α < 4. (4.3)

We claim that W satisfies (4.2). For this, compute, for all x ∈R
n and unit direction e,

D4
eW(x) = −(α − 2)

(
3|x|α−4 + 6(α − 4)(x · e)2|x|α−6 + (α − 4)(α − 6)(x · e)4|x|α−8

)
+ D4

eU(x).

Therefore W ∈ C4(Rn \ {0}) and D4
eW blows up at the origin (since α < 4). We thus want the term within parentheses 

to be non-negative. By dilation, we can assume |x| = 1. Then, since (x · e)2 ∈ [0, 1], it is necessary and sufficient to 
show that

f (ξ) := 3 − 6βξ + β(β + 2)ξ2 ≥ 0 for all ξ ∈ [0,1], (4.4)

where β := 4 − α ∈ (0, 1]. Now, one can check that the minimum of f is reached at ξ̄ = 1 and f (ξ̄ ) = (β − 3)(β −
1) ≥ 0, which proves the claim. We can also show that the condition 3 ≤ α in (4.3) is sharp. Indeed, let 2 < α < 3; 
then β ∈ (1, 2), and the minimum of f is reached at ξ̄ = 3/(β + 2) ∈ (3/4, 1) and f (ξ̄ ) = 6(1 − β)/(β + 2) < 0, 
which violates (4.4).

Lemma 4.2. Suppose that W satisfies (4.2) and let μ ∈ P(Rn) be a global minimizer of the interaction energy. Then 
D2

eVμ(x) > 0 for all x ∈ suppμ and unit direction e.
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Proof. By Theorem 1.1 we know that the support of μ is discrete. Also, by the minimality conditions (4.1) we know 
that the Hessian of Vμ is positive semi-definite on the support of μ. Let {xk}k≥1 := suppμ and denote by mk the mass 
of particle xk for any k ≥ 1. Without loss of generality, assume by contradiction that D2

eVμ(x1) = 0. We want to build 
a probability measure with smaller energy than μ. Define, for all ε > 0,

με :=
∑
i≥2

miδxi
+ m1

2
δyε + m1

2
δzε ,

where yε and zε are distinct points belonging to the boundary of B(x1, ε/2) such that xε −x1 and yε −x1 are collinear 
to e, and which we can suppose to be different from xk for all k ≥ 2. Clearly με is the probability measure resulting 
from splitting the mass present at x1 under μ and moving it evenly to two opposite points in the direction e at a 
distance ε/2 from x1. Then,

E(με) = 1

2

∑
i≥2

mi

( ∑
j≥2
j �=i

mjW(xi − xj ) + m1W(xi − yε) + m1W(xi − zε)

)
+ m2

1

4
W(yε − zε)

= E(μ) + m1

2

∑
i≥2

mi

(
W(xi − yε) + W(xi − zε) − 2W(xi − x1)

)
+ m2

1

4
w(ε).

Note that, by (1.2), (1.3) and (4.2), D2
eW(0) = 0. Hence, using the upper boundedness of D4

eW (see (4.2)) and the 
bound on the diameter of suppμ (see Lemma 2.6), a Taylor expansion yields

E(με) ≤ E(μ) + m1

8

∑
i≥2

miD
2
eW(xi − x1)ε

2 + m2
1

4
w(ε) + C′ε4

= E(μ) + m1

8
D2

eVμ(x1)ε
2 − m1

8
D2

eW(0)ε2 + m2
1

4
w(ε) + C′ε4 = E(μ) + m2

1

4
w(ε) + C′ε4,

for some constant C′ ∈ R depending on MR . Then

E(με) ≤ E(μ) − m2
1

4
(C/α)εα + C′ε4,

where C is as in (1.3). Since α < 4 we get E(με) < E(μ) for ε small enough, which contradicts the fact that μ is a 
global minimizer of E. �
Theorem 4.3. Let (Wk)k∈N be a family of potentials, compact in C2(Rn), and satisfying the assumptions in (1.2) and 
(4.2) with uniform constants. Then there exists N ∈ N such that any global minimizer μk ∈ P(Rn) of the interaction 
energy for Wk satisfies card(suppμk) ≤ N .

Proof. We proceed by contradiction. Since {Wk}k∈N is compact in C2(Rn) and satisfies the assumptions in (1.2) and 
(4.2) with uniform constants, it has a limit W satisfying (1.2) and (4.2). Let μk ∈ P(Rn) be global minimizers of the 
interaction energy associated to Wk , and assume by contradiction that card(suppμk) → ∞ as k → ∞. By Lemma 2.6, 
up to a translation, suppμk ⊂ B(0, R) for all k ∈ N. Thus, up to a subsequence, (μk)k∈N converges narrowly to some 
μ ∈ P(Rn) as k → ∞, which, by lower semi-continuity of the energy (since W is bounded from below and lower 
semi-continuous), is a global minimizer associated to W . We can pick xk, yk ∈ suppμk for all k ∈ N such that the 
sequences (xk)k∈N and (yk)k∈N converge to some x ∈ suppμ as k → ∞. Let ek := (xk − yk)/|xk − yk| for all k ∈ N, 
and, up to a subsequence, define e := limk→∞ ek . Thanks to the first line of (4.1) and the C2-continuity of W ,

0 = D1
ek

Vμk
(xk) − D1

ek
Vμk

(yk)

|xk − yk| =
1∫

0

D2
ek

Vμk
(xk + t (yk − xk)) dt −−−→

k→∞ D2
eVμ(x).

However, Lemma 4.2 gives D2
eVμ(x) > 0, which leads to the wanted contradiction. �
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4.2. Quantitative estimate in one dimension

We fix n = 1. In addition to the assumptions discussed in Section 1, we consider the following:

There exists r ∈ (0,R] such that
√−w is strictly convex on (0, r). (4.5)

Lemma 4.4. Suppose that W satisfies (4.5). Let μ be a global minimizer of the interaction energy. Then any interval 
of length strictly less than r contains at most two points of suppμ.

Proof. Without loss of generality, we take three distinct points 0, x1, −x2 ∈ suppμ with −x2 < 0 < x1. By applying 
the reasoning in the proof of Theorem 1.1 to a global minimizer, we get√−w(x1) + √−w(x2) ≥ √−w(x1 + x2). (4.6)

By contradiction, suppose that x1 + x2 ∈ (0, r). Then, since 
√−w is strictly convex on (0, r),√−w(x1) <

x1

x1 + x2

√−w(x1 + x2) + x2

x1 + x2

√−w(0),

which, since w(0) = 0, yields√−w(x1) <
x1

x1 + x2

√−w(x1 + x2).

Similarly, for −x2,√−w(x2) <
x2

x1 + x2

√−w(x1 + x2).

Thus, by adding up the last two inequalities,√−w(x1) + √−w(x2) <
√−w(x1 + x2),

which contradicts (4.6). Therefore x1 + x2 ≥ r , which is the desired result. �
As a direct consequence of Lemmas 2.6 and 4.4, we get the theorem below.

Theorem 4.5. Suppose that W satisfies (4.5). Let μ ∈ P(R) be a global minimizer of the interaction energy. Then 
card(suppμ) ≤ 2�R/r� + 1.

We give now an example of potential for which we can apply the result above to estimate the number of points in 
the support of a global minimizer.

Example 4.6. Consider the power-law potential

W(x) = |x|a
a

− |x|b
b

for all x ∈ R with 2 < b < a. (4.7)

We want to use Theorem 4.5 to estimate the number of points in the support of a global minimizer μ for the poten-
tial (4.7) as a function of a and b. Clearly, W satisfies the assumptions in (1.2), with R = R(a, b) = (a/b)1/(a−b), and 
in (1.3). After some computation, we get that the condition in (4.5) is fulfilled for r = r(a, b), where

r(a, b) =
⎛
⎝a(a − 1) + b(b − 1) − ab

b(a − 2)
−

√(
a(a − 1) + b(b − 1) − ab

b(a − 2)

)2

− a(b − 2)

b(a − 2)

⎞
⎠

1/(a−b)

Then, Theorem 4.5 gives us an upper estimate on card(suppμ). To make it simpler, let us assume that a = 2b. By 
injecting this into the above equation, we obtain

r(a, b) = r(b) =
(

3

2
− 1

2

√
5b − 1

b − 1

)1/b

.



1308 J.A. Carrillo et al. / Ann. I. H. Poincaré – AN 34 (2017) 1299–1308
Since now R(a, b) = R(b) = 21/b , Theorem 4.5 gives

card(suppμ) ≤ 2

⎡
⎢⎢⎢

(
4
√

b − 1

3
√

b − 1 − √
5b − 1

)1/b
⎤
⎥⎥⎥ + 1.

Note that the right-hand side of the formula is infinity for the limit case b = 2. When b → ∞, however, the right-hand 
side of the above formula gives an upper bound of 5 points in the support.

Remark 4.7. When W is a power-law potential as in (4.7) with even powers, we can estimate the number of points in 
the support of a global minimizer as follows: if a > b > 0 are even integers and μ is a global minimizer, then Vμ is a 
polynomial of degree a. Since (2.1) implies that every point in suppμ is a double root of such polynomial, this cannot 
happen more than a/2 times, so that card(suppμ) ≤ a/2. Note that this estimate, unlike the one of Theorem 4.5, is 
independent of b and is thus valid also for the limit case b = 2.
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