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Abstract

We consider the nonlocal diffusion equation ∂t u = J ∗ u − u + u1+p in the whole of RN . We prove that the Fujita exponent 
dramatically depends on the behavior of the Fourier transform of the kernel J near the origin, which is linked to the tails of J . In 
particular, for compactly supported or exponentially bounded kernels, the Fujita exponent is the same as that of the nonlinear Heat 
equation ∂tu = �u + u1+p . On the other hand, for kernels with algebraic tails, the Fujita exponent is either of the Heat type or of 
some related Fractional type, depending on the finiteness of the second moment of J . As an application of the result in population 
dynamics models, we discuss the hair trigger effect for ∂tu = J ∗ u − u + u1+p(1 − u).
© 2016 
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1. Introduction

In this work we consider solutions u(t, x) to the nonlinear (p > 0) partial integro-differential equation

∂tu = J ∗ u − u + u1+p in (0,∞) ×RN, (1)

in any dimension N ≥ 1. Equation (1) is supplemented with a nonnegative and nontrivial initial data, and we aim at 
determining the so-called Fujita exponent pF , that is the value of p that separates “systematic blow up solutions” 
from “blow up solutions vs global and extincting solutions” (see below for details). We shall prove that the Fujita 
exponent dramatically depends on the behavior of the Fourier transform of the kernel J near the origin, which is 
linked to the tails of J . Depending on these tails, it turns out that the Fujita phenomenon in (1) can be similar to that 
of the nonlinear Heat equation, or to that of a related nonlinear Fractional equation.

As an application of our main result, we consider

∂tu = J ∗ u − u + u1+p(1 − u) in (0,∞) ×RN, (2)
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which serves as a population dynamics model where both long range dispersal (via the kernel J ) and a weak Allee 
effect (via the degeneracy of the steady state u ≡ 0, due to p > 0) are taken into account. Depending on the balance 
between the tails of J and the strength of the Allee effect, we discuss the so-called hair trigger effect — meaning that 
any small perturbation from u ≡ 0 drives the solution to u ≡ 1 — or the possibility of extincting solutions.

In his seminal work [10], Fujita considered solutions u(t, x) to the nonlinear Heat equation

∂tu = �u + u1+p in (0,∞) ×RN, (3)

supplemented with a nonnegative and nontrivial initial data. For such a problem, the Fujita exponent is pF = 2
N

. 
Precisely, if 0 < p ≤ pF then any solution blows up in finite time; if p > pF then solutions with large initial data 
blow up in finite time whereas solutions with small initial data are global in time and go extinct as t → ∞. For a 
precise statement we refer to [10] for the cases 0 < p < pF and p > pF . The critical case p = pF is studied in [15]
when N = 1, 2, in [17] when N ≥ 3, and in [24] via a direct and simpler approach. Let us observe that, as is well 

known, solutions to the Heat equation ∂tu = �u tend to zero as t → ∞ like O
(
t− N

2

)
, which is a formal argument to 

guess pF = 2
N

.
Since then, the Fujita phenomenon has attracted much interest and the literature on refinements of the results or on 

various local variants of equation (3) is rather large. Let us mention for instance the works [24,19,7,21], or [22] for an 
overview, and the references therein.

When the Laplacian diffusion operator is replaced by the Fractional Laplacian, the situation is also well understood: 
the Fujita exponent for

∂tu = −(−�)s/2u + u1+p in (0,∞) ×RN, 0 < s ≤ 2, (4)

is pF = s
N

. We refer to the work of Sugitani [23]. See also, among others, [5] for a probabilistic approach, and [13] for 
a variant of (4). Let us observe that, as is well known, solutions to the Fractional diffusion equation ∂tu = −(−�)s/2u

tend to zero as t → ∞ like O
(
t− N

s

)
, which is again a formal argument to guess pF = s

N
.

As far as we know, much less is known for the nonlocal equation (1). Let us mention the work of García-Melián and 
Quirós [11] (and [26] for a variant) who treat the case of compactly supported dispersal kernel J . In such a situation, 
the Fujita exponent for (1) is the same as that of (3), namely pF = 2

N
. In order to take into account rare long-distance 

dispersal events, which are relevant in many population dynamics models (seeds dispersal for instance), we allow 
in this work kernels J which have nontrivial tails. Two typical situations are when J has (light) exponential tails or 
(heavy) algebraic tails, the latter case meaning

J (x) ∼ C

|x|α as |x| → ∞, with α > N. (5)

Owing to the decay of solutions to ∂tu = J ∗u −u proved by Chasseigne, Chaves and Rossi [6], we guess that pF = 2
N

in the exponential case, whereas

pF =
{

α
N

− 1 if N < α ≤ N + 2
2
N

if α > N + 2,
(6)

in the algebraic case (5). In other words, in the algebraic case α > N +2 the Fujita exponent is of the Heat type (3) (and 
so in the exponential case), but in the algebraic case N < α ≤ N + 2 the Fujita exponent becomes of the Fractional 
type (4) with s = α − N ∈ (0, 2]. This is the role of the present paper to prove, among others, these results.

Let us comment on some technical difficulties arising from (1). Notice first that, as far as (3) and (4) are concerned, 
some self-similarity properties of both the Heat kernel and the fundamental solution associated to the Fractional Lapla-
cian may be quite helpful, as seen in [23] or [24]. Those self-similarity properties are not shared by the fundamental 
solution of ∂tu = J ∗u −u. Secondly, notice that, when J is compactly supported, the underlying nonlocal eigenvalue 
problem to (1) is rather well understood [12] and the authors in [11] took advantage of its rescaling properties. As far 
as we know, such informations are not available for more general dispersal kernels, as those we consider. We therefore 
have to adapt some techniques, in particular when dealing with blow up phenomena.
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We now discuss the hair trigger effect in some population dynamics models. Let us start with the Fisher-KPP 
equation

∂tu = �u + u(1 − u),

which was introduced in [9,18], to model the spreading of advantageous genetic features in a population. From the 
linear instability of the steady state u ≡ 0, it is well known that any solution u(t, x) to the Fisher-KPP equation, with 
a nonnegative and nontrivial initial data, tends to 1 as t → ∞, locally uniformly in x ∈ RN . This is referred to as the 
hair trigger effect.

In order to take into account a weak Allee effect, meaning that the growth per capita is no longer maximal at small 
densities, one may consider

∂tu = �u + u1+p(1 − u), (7)

where p > 0. Then the hair trigger effect for (7) is naturally linked with the Fujita blow up phenomena for (3). Hence, 
in their seminal work, Aronson and Weinberger [3] showed that the hair trigger effect remains valid for (7) as long as 
0 < p ≤ pF = 2

N
, whereas some (small enough) initial data may lead to extinction, or quenching, when p > pF = 2

N
. 

See also [25,4,28].
Based on our Fujita type results for (1), we shall discuss the hair trigger effect for (2), thus making more precise 

the balance between the effect of the dispersal tails and the strength of the Allee effect which allows or not the hair 
trigger effect. Let us mention that, rather recently, various new results studying the interplay between some heavy tails 
and an Allee effect have been proved. Let us mention [27,20,14,1,2], and the references therein. In those works, the 
issue is, in different situations permitting propagation, to determine whether invasion is performed at a constant speed 
or by accelerating.

2. Assumptions and results

Let us first present and discuss the assumptions on the dispersal kernel J . As observed and proved in [6], expansion 
(8) plays a crucial role in the behavior of the linear equation ∂tu = J ∗u −u, and so will for the nonlinear problem (1).

Assumption 2.1 (Dispersal kernel). J : RN → R is nonnegative, bounded, radial and satisfies 
∫
RN J = 1. Its Fourier 

transform has an expansion

Ĵ (ξ) = 1 − A|ξ |β + o(|ξ |β), as ξ → 0, (8)

for some 0 < β ≤ 2 and A > 0.

Notice that expansion (8) contains the information on the tails of J . Indeed, for kernels which have a finite second 
momentum, namely m2 := ∫

RN |x|2J (x)dx < +∞, expansion (8) holds true with β = 2, as can be seen in [8, Chap-
ter 2, subsection 2.3.c, (3.8) Theorem] among others. In particular, this is the case for kernels which are compactly 

supported, exponentially bounded, or which decrease like O
(

1
|x|N+2+ε

)
with ε > 0.

On the other hand, when m2 = +∞ then more general expansions are possible. For example, for algebraic tails 
satisfying

J (x) ∼ C

|x|α as |x| → ∞, with N < α < N + 2, (9)

then (8) holds true with β = α − N ∈ (0, 2). This fact is related to the stable laws of index β ∈ (0, 2) in probability 
theory, and a proof can be found in [8, Chapter 2, subsection 2.7]. In particular it contains the case of the Cauchy law 
J (x) = 1/π

1+x2 (when N = 1), for which

Ĵ (ξ) = e−|ξ | = 1 − |ξ | + o(|ξ |), as ξ → 0,

and β = 1, despite the nonexistence of the first momentum m1 := ∫ |x|J (x)dx.
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Remark 2.2 (Critical algebraic tails). For algebraic tails

J (x) ∼ C

|x|N+2
, as |x| → ∞,

which are critical for the nonexistence of the second momentum m2, expansion (8) is replaced by

Ĵ (ξ) = 1 + A|ξ |2 ln |ξ | + o(|ξ |2 ln |ξ |), as ξ → 0.

Nevertheless, as proved in [6, Theorem 5.1], the solutions to ∂tu = J ∗u −u still tend to that of the Heat equation, but 
with a different time velocity. In other words, for such tails, we do believe that pF = 2

N
and that this can be proved by 

additional technicalities and by using [6, Theorem 5.1] rather than [6, Theorem 1] to derive an analog of Lemma 5.1.

Before going further, we need to say a word on the notion of solutions. A function u ∈ C1((0, T ), L∞(RN) ∩
L1(RN)) ∪C0([0, T ), L∞(RN) ∩L1(RN)) for some T > 0, which satisfies the equation a.e. in (0, T ) ×RN is a local 
solution to (1) with u(0, ·) as initial data. For such solutions, the comparison principle is available. Furthermore, for a 
nonnegative u0 ∈ L∞(RN) ∩ L1(RN), the associated Cauchy problem (1) admits a unique solution defined on some 
maximal interval [0, T ). Moreover either T = ∞ and the solution is global, or T < ∞ and then ‖u(t, ·)‖L∞ tend to 
∞ as t ↗ T , which is called blow up in finite time. These facts are rather well-known, and parts of them can be found 
in [11] for instance.

As explained in the introduction, our main result is the identification of the Fujita exponent for the nonlocal equation 
(1) for a large class of dispersion kernels, namely those admitting an expansion (8). In this context, pF := β

N
is the 

Fujita exponent. More precisely, the following holds.

Theorem 2.3 (Systematic blow up). Let Assumption 2.1 hold. Assume 0 < p ≤ pF = β
N

. Assume u0 ∈ L∞(RN) ∩
L1(RN) is nonnegative and satisfies — for some ε > 0, x0 ∈ RN , r > 0 — u0(x) ≥ ε for all x ∈ B(x0, r). Then the 
solution to the Cauchy problem (1) with u0 as initial data blows up in finite time.

Theorem 2.4 (Blow up vs extinction). Let Assumption 2.1 hold. Assume p > pF = β
N

. Then the following holds.

(i) There is δ > 0 such that, for any nonnegative u0 ∈ L∞(RN) ∩ L1(RN) with

‖u0‖L1 + ‖û0‖L1 < δ,

the solution to the Cauchy problem (1) is global in time and satisfies, for some C > 0,

‖u(t, ·)‖L∞ ≤ C

(1 + t)N/β
, for any t ≥ 0. (10)

(ii) On the other hand, assume λ > 0 and R > 0 are such that

λ >

⎛⎜⎝1 − CN

∫
|z|≤R

J (z) dz

⎞⎟⎠
1/p

, (11)

where 0 < CN < 1 is a constant that depends only on the dimension N (see subsection 5.2 for the exact value of 
this constant). Then, the solution to the Cauchy problem (1) with λ1{|x|≤R} as initial data blows up in finite time.

As regards condition (11), let us notice that if λ > 1 then it is satisfied for any R > 0, indicating that large L∞ data 
always lead to blow up; if (1 − CN)1/p < λ ≤ 1 then (11) is satisfied by taking R > 0 sufficiently large, indicating 
that intermediate L∞ data require large initial mass to blow up (at least in our result); if λ ≤ (1 − CN)1/p then (11) is 
never satisfied, indicating that small L∞ data are bad candidates for blowing up.

Let us recall that, when J is compactly supported, the fact that the Fujita exponent pF = 2
N

is the same as that 
of the nonlinear diffusion equation (3) was already proved in [11]. Nevertheless, our results assert further that this 
remains true for kernels J which have a finite second momentum. On the other hand, when β < 2 in expansion (8)
the Fujita exponent becomes that of the Fractional equation (3) with s = β ∈ (0, 2). Hence, depending on the tails of 
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the dispersal kernel, the nonlocal equation (1) behaves with respect to blow up either like the local Heat equation (3), 
or like a Fractional equation (4). This sheds light on the richness of (1).

We now turn to the hair trigger effect for (2), whose analysis makes use of the Fujita type results for (1). Notice 
that if 0 ≤ u0 ≤ ‖u0‖∞ < +∞ then, from the comparison principle, we get that the solution to (2) satisfies

0 < u(t, x) ≤ max(1,‖u0‖∞), ∀(t, x) ∈ (0,∞) ×RN,

so that the solution is always global.

Corollary 2.5 (Hair trigger effect along a subsequence vs quenching solutions). Let Assumption 2.1 hold.

(i) Assume 0 < p ≤ pF = β
N

. Assume u0 :RN → [0, 1] is continuous and nontrivial. Then the solution to the Cauchy 
problem (2) with u0 as initial data satisfies

lim sup
t→∞

inf|x|≤R
u(t, x) = 1, for any R ≥ 0. (12)

(ii) Assume p > pF = β
N

. Then there is δ > 0 such that, for any nonnegative, continuous, bounded and integrable u0
with ‖u0‖L1 + ‖û0‖L1 < δ, the solution to the Cauchy problem (2) satisfies, for some C > 0,

‖u(t, ·)‖L∞ ≤ C

(1 + t)N/β
, for any t ≥ 0. (13)

Observe that Corollary 2.5 (ii) directly follows from Theorem 2.4 (i) and the comparison principle. Corollary (i), 
whose proof is rather classical, is the hair trigger effect, but only along a subsequence of time. Under a more restrictive 
assumption on the exponent p, we can actually prove the following hair trigger effect.

Theorem 2.6 (Hair trigger effect). Let Assumption 2.1 hold. Assume 0 < p < 1
2pF = 1

2
β
N

. Assume u0 : RN → [0, 1]
is continuous and nontrivial. Then the solution to the Cauchy problem (2) with u0 as initial data satisfies

lim
t→∞ inf|x|≤R

u(t, x) = 1, for any R ≥ 0. (14)

The proof of the above result requires the combination of an elaborate subsolution and careful asymptotics of the 
solution to the linear nonlocal diffusion equation ∂tu = J ∗ u − u. Using such a strategy, it seems very difficult, if 
possible, to remove the restriction 0 < p < 1

2pF . Hence, different approaches should be used for the range 1
2pF ≤

p ≤ pF , where more complex scenarios may exist. We hope to address this issue in a future work.
Notice also that, these results remain valid for equation

∂tu = J ∗ u − u + f (u),

as long as f satisfies, for instance, f (u) ∼ ru1+p as u → 0 (for some r > 0), f > 0 on (0, 1), f (1) = 0, f ′(1) < 0, 
f < 0 on (1, ∞). Indeed, in such a case, we can sandwich mu1+p(1 − u) ≤ f (u) ≤ Mu1+p(1 − u) for some m > 0, 
M > 0, and then combine some comparison and rescaling arguments.

The paper is organized as follows. We recall basic facts in Section 3. In Section 4, we prove the systematic blow 
up of any solution when 0 < p ≤ pF , that is Theorem 2.3. We study the case p > pF in Section 5, proving blow up 
or extinction depending on the size of the initial data, as stated in Theorem 2.4. Last, in Section 6, we prove the hair 
trigger effect, as stated in Corollary 2.5 (i) and Theorem 2.6.

3. Notations and basic facts

Before proving our results, let us now introduce some notations and recall briefly some basic facts.

For any integrable function J , we define

K(t, ·) := e−t δ0 + e−t
+∞∑
k=1

tk

k!J
∗(k) =: e−t δ0 + ψ(t, ·) ,

where δ0 is the Dirac mass at 0 and J ∗(k) := J ∗ · · · ∗ J is the convolution of J with itself k − 1 times.
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Then, the (unique) bounded solution to ∂tu = J ∗ u − u with initial condition u0 ∈ L∞(RN) is given by

u(t, x) = K(t, ·) ∗ u0(x) = e−t u0(x) + ψ(t, ·) ∗ u0(x).

Obviously, though the convolution of a Dirac mass by an L∞ function is not pointwise well defined, we let δ0 ∗
u0 = u0. Also, from the normal convergence, in C([0, T ]; L1(RN)), of the series 

∑+∞
k=1

tk

k!J
∗(k) and 

∑+∞
k=1

tk−1

(k−1)!J
∗(k)

we deduce that the function t ∈ [0, ∞) �→ ψ(t, ·) ∈ L1(RN) is of class C1 and that

∂tψ(t, x) = J ∗ ψ(t, ·)(x) − ψ(t, x) + e−t J (x). (15)

Notice also that∫
RN

ψ(t, x)dx = 1 − e−t . (16)

For the sake of clarity, let us state our conventions on the Fourier transform. If f ∈ L1(RN), we define its Fourier 
transform F(f ) = f̂ and its inverse Fourier transform F−1(f ) by

f̂ (ξ) :=
∫
RN

e−iξ ·xf (x)dx, F−1(f )(x) :=
∫
RN

eix·ξ f (ξ)dξ.

With this definition, we have, for f , g ∈ L1(RN),

f̂ ∗ g = f̂ ĝ,

and f = 1
(2π)N

F−1(F(f )) if f , F(f ) ∈ L1(RN). Also, after defining the Fourier transform on L2(RN) we get the 

Plancherel formula∫
RN

f (x)g(x)dx = 1

(2π)N

∫
RN

f̂ (ξ)ĝ(ξ)dξ,

for f , g ∈ L2(RN).

4. Systematic blow up

In this section, we first provide a priori estimates on a crucial quantity related to possible global solutions of (1). 
They will then enable us to prove the blow up of any solution when 0 < p ≤ pF , as stated in Theorem 2.3.

4.1. Some a priori estimates

In this subsection, we assume that u0 is nonnegative, nontrivial, radial, continuous, bounded, and that both u0
and û0 are in L1(RN). We also assume that we are equipped with a global solution u(t, x) of the associated Cauchy 
problem (1). We then define, for any t ≥ 0, the quantity

f (t) :=
∫
RN

et(Ĵ (ξ)−1)û0(ξ)dξ. (17)

In the spirit of an original idea of Kaplan [16], also used in [10], we are going to estimate f (t) from below and above 
as t → ∞. As clear in the following, another key ingredient is the Fourier duality which enables to recast (17) as (21).

Lemma 4.1 (Estimate from below). There is a constant G > 0 depending only on the dimension N and the kernel J , 
and a constant t0 > 0 (that is allowed to depend on the initial data), such that

f (t) ≥ G‖u0‖L1

tN/β
for any t ≥ t0. (18)
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Proof. From (8), we can select ξ0 > 0 small enough so that

|ξ | ≤ ξ0 =⇒ Ĵ (ξ) − 1 ≥ −2A|ξ |β. (19)

Since û0(0) = ∫
RN u0 > 0 and û0 is a real-valued continuous function, up to reducing ξ0 > 0 if necessary, we can 

assume that

|ξ | ≤ ξ0 =⇒ û0(ξ) ≥ 0.

On the other hand, Ĵ is continuous, Ĵ (ξ) − 1 < 0 for all ξ �= 0, Ĵ (ξ) − 1 → −1 as |ξ | → +∞, hence there is δ > 0
such that

|ξ | ≥ ξ0 =⇒ Ĵ (ξ) − 1 ≤ −δ. (20)

Now, by cutting into two pieces, we get tN/βf (t) = g1(t) + g2(t), where

|g2(t)| ≤

∣∣∣∣∣∣∣
∫

|ξ |≥ξ0

tN/βet (Ĵ (ξ)−1)û0(ξ)dξ

∣∣∣∣∣∣∣ ≤ tN/βe−δt‖û0‖L1 → 0 as t → ∞,

and

g1(t) = tN/β

∫
|ξ |≤ξ0

et(Ĵ (ξ)−1)û0(ξ)dξ

≥ tN/β

∫
|ξ |≤ξ0

e−2At |ξ |β û0(ξ)dξ

=
∫
RN

e−2A|z|β û0

( z

t1/β

)
1(0,t1/βξ0)

(|z|)dz.

By the dominated convergence theorem, the last integral above tends, as t → ∞, to the constant

û0(0)

∫
RN

e−2A|z|β dz = ‖u0‖L1

∫
RN

e−2A|z|β dz =: ‖u0‖L1 2G,

where G > 0 depends only on the dimension N and the kernel J (via A and β). As a result, we can select t0 > 0 large 
enough so that (18) holds true. The lemma is proved. �

In order to derive an estimate from above, it is more convenient to use the dual expression (see below for a proof)

f (t) = (2π)N
∫
RN

e−t

(
δ0 +

+∞∑
k=1

tk

k!J
∗(k)(x)

)
u0(x)dx = (2π)N

∫
RN

K(t, x)u0(x)dx, (21)

where we recall that K(t, x) was defined in Section 3. Notice that, formally, the fundamental solution of ∂tu =
J ∗ u − u is F−1(et (Ĵ (ξ)−1)) = e−t

(
δ0 + ∑+∞

k=1
tk

k!J
∗(k)(x)

)
so that expression (21) is, again formally, derived from 

(17) by the Plancherel formula.

Proof of (21). From (17) we get

etf (t) −
∫
RN

û0(ξ)dξ =
∫
RN

+∞∑
k=1

tk

k! Ĵ
k(ξ)û0(ξ)dξ =

+∞∑
k=1

∫
RN

tk

k! Ĵ
k(ξ)û0(ξ)dξ,

since 
∑

k

∫ | tk

k! Ĵ
k(ξ)û0(ξ)|dξ ≤ ∑

k
tk

k! ‖û0‖L1 < +∞ (recall that |Ĵ (ξ)| ≤ 1). Next J ∈ L1(RN) implies Ĵ k(ξ) =
Ĵ ∗(k)(ξ), so that
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etf (t) −
∫
RN

û0(ξ)dξ =
+∞∑
k=1

∫
RN

tk

k! Ĵ
∗(k)(ξ)û0(ξ)dξ.

Next, both J ∗(k), u0 ∈ L∞(RN) ∩ L1(RN) ⊂ L2(RN) so that we can apply the Plancherel formula to get

etf (t) −
∫
RN

û0(ξ)dξ = (2π)N
+∞∑
k=1

∫
RN

tk

k!J
∗(k)(x)u0(x)dx

= (2π)N
∫
RN

+∞∑
k=1

tk

k!J
∗(k)(x)u0(x)dx, (22)

since 
∑

k

∫ | tk

k!J
∗(k)(x)u0(x)|dx ≤ ∑

k
tk

k! ‖J‖L∞‖u0‖L1 < +∞. Last, notice that 
∫
RN û0 = ̂̂u0(0). Since u0 is real and 

radial, so is û0, which in turn implies ̂̂u0 = F−1(û0) = (2π)Nu0 so that 
∫
RN û0 = (2π)Nu0(0) = (2π)N

∫
RN δ0u0, 

which we plug into (22) to conclude the proof of (21). �
Equipped with the dual formula (21), we can now prove the following.

Lemma 4.2 (Estimate from above). We have

f (t) ≤ (2π)N

((
p + 1

p

)1/p 1

t1/p
+ e−t u0(0)

)
for any t > 0. (23)

Proof. Let T > 0 be given. Denote CT := max0≤τ≤T +1 ‖u(τ, ·)‖L∞ + ‖u(τ, ·)‖L1 < +∞. Fix some 0 < t ≤ T .
First observe that (21) is recast

h(t) := f (t)

(2π)N
=

∫
RN

(
e−t δ0 + ψ(t, x)

)
u0(x)dx = e−t u0(0) +

∫
RN

ψ(t, x)u0(x)dx, (24)

where ψ(t, x) = e−t
∑+∞

k=1
tk

k!J
∗(k)(x) is as in Section 3.

For 0 < ε ≤ 1, let us define

gε(s) :=
∫
RN

ψ(t − s + ε, x)u(s, x)dx, 0 ≤ s ≤ t. (25)

Notice that, if k is sufficiently large, the support of J ∗(k) meets that of u(s, ·), and therefore 
∫
RN J ∗(k)(x)u(s, x)dx > 0, 

which in turn implies gε(s) > 0. Notice also that, using the dominated convergence theorem, we see that, as ε → 0,

gε(0) =
∫
RN

ψ(t + ε, x)u0(x)dx →
∫
RN

ψ(t, x)u0(x)dx = f (t)

(2π)N
− e−t u0(0). (26)

Using the constant CT defined above one can dominate the partial derivative with respect to s of the integrand in 
(25), and therefore prove that gε is differentiable. Using equations (15) and (1), we then compute

g′
ε(s) =

∫
RN

(−J ∗ ψ(t − s + ε, ·) + ψ(t − s + ε, ·) − e−(t−s+ε)J )u(s, ·)

+
∫
RN

ψ(t − s + ε, ·)(J ∗ u(s, ·) − u(s, ·) + u1+p(s, ·))

= −
∫
N

e−(t−s+ε)Ju(s, ·) +
∫
N

ψ(t − s + ε, ·)u1+p(s, ·), (27)
R R
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by Fubini theorem. From the expression of ψ , we see that e−τJ (x) ≤ ψ(τ,x)
τ

for τ > 0, so that∫
RN

e−(t−s+ε)Ju(s, ·) ≤ 1

t − s + ε
gε(s). (28)

Next, we write∫
RN

ψ(t − s + ε, ·)u1+p(s, ·) = (1 − e−(t−s+ε))

∫
RN

ψ(t − s + ε, ·)
1 − e−(t−s+ε)

u1+p(s, ·)

≥ 1

(1 − e−(t−s+ε))p
g1+p

ε (s)

≥ g1+p
ε (s), (29)

where we have used the Jensen inequality (notice that 
∫
RN

ψ(t−s+ε,·)
1−e−(t−s+ε) = 1 in view of (16)). Plugging (28) and (29)

into (27) and multiplying by the integrating factor (t − s + ε)p we arrive at(
g′

ε(s)

g
1+p
ε (s)

+ 1

t − s + ε

1

g
p
ε (s)

)
(t − s + ε)p ≥ (t − s + ε)p.

The left hand side member is nothing else that d
ds

(
(t−s+ε)p

−pg
p
ε (s)

)
so that integrating from 0 to t , we get

− 1

p

1

g
p
ε (t)

εp + 1

p

1

g
p
ε (0)

(t + ε)p ≥ − εp+1

p + 1
+ (t + ε)p+1

p + 1
,

which in turn implies

1

g
p
ε (0)

≥ p

p + 1
(t + ε) − p

p + 1

εp+1

(t + ε)p
.

Letting ε → 0 and using (26), we get estimate (23), which concludes the proof of Lemma 4.2. �
4.2. Proof of systematic blow up

Proof of Theorem 2.3. Let u0 ∈ L∞(RN) be nonnegative and satisfying — for some ε > 0, x0 ∈ RN , r > 0 — 
u0(x) ≥ ε for all x ∈ B(x0, r). Thus there exists a nonnegative, nontrivial, radial and C∞

c (RN) function that is smaller 
than u0. By the comparison principle, it is enough to prove blow up for such an initial data. Hence we can assume 
without loss of generality that u0 is nonnegative, nontrivial, bounded, that u0 ∈ C∞

c (RN), and thus û0 ∈ S(RN). 
Hence, assuming by contradiction existence of a global solution, all the results of subsection 4.1 are available.

• When 0 < p <
β
N

, letting t → ∞ in (18) and (23) immediately gives a contradiction.

• In the critical case p = β
N

, letting t → ∞ in (18) and (23) only provides ‖u0‖L1 ≤ C, where the constant C > 0
depends on the dimension N and the kernel J but not on the size of the initial data. Thus, by regarding u(t, ·) as an 
initial value, we derive that

m(t) := ‖u(t, ·)‖L1 ≤ C, for any t ≥ 0. (30)

Integrating equation (1) over x ∈RN and using Fubini theorem, we get

d

dt
m(t) =

∫
RN

u1+p(t, x) dx,

so that 
∫ t

0

∫
RN u1+p(t, x) dxdt = m(t) − m(0) ≤ C, for all t ≥ 0. As a result we know that

∞∫ ∫
N

u1+p(t, x) dxdt < +∞. (31)
0 R
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We are going to derive below a contradiction, using a modification of an original technique of [21] for a local 
equation. Notice that our kernel J may not have finite second nor first moment, so we need to derive further estimates. 
Also, we shall again take advantage of the Fourier duality.

Consider ρ ∈ C∞
c (R) such that ρ ≡ 1 on (−1, 1), 0 ≤ ρ ≤ 1 and Suppρ = [−2, 2]. Let T > 0 be given. Let ε > 0

be given. For R > 0, we define

ψR(t) := ρ

(
t − T

RNp

)
= ρ

(
t − T

Rβ

)
, θR(x) := ρ

(
ε
|x|
R

)
.

We multiply equation (1) by θR(x)ψR(t) and integrate over (t, x) ∈ (T , ∞) ×RN to get

∞∫
T

∫
RN

u1+p(t, x)θR(x)ψR(t) = −
∞∫

T

∫
RN

(J ∗ u − u)(t, x)θR(x)ψR(t)

+
∞∫

T

∫
RN

∂tu(t, x)θR(x)ψR(t)

≤ −
∞∫

T

∫
RN

(J ∗ θR − θR)(x)u(t, x)ψR(t)

−
∞∫

T

∫
RN

u(t, x)θR(x)ψ ′
R(t) =: −I1 − I2, (32)

where we have used Fubini theorem, integration by part in time, in the first, respectively the second, integral of the 
right hand side member. In the sequel, we denote by C a positive constant that may change from place to place but 
that is always independent of ε > 0 and R > 0.

Let us deal with I2 = I2(R). Observe that

|ψ ′
R(t)| = | 1

Rβ
ρ′

(
t − T

Rβ

)
| ≤ C

Rβ
1(T +Rβ,T +2Rβ)(t),

so that

|I2| ≤ C

Rβ

T +2Rβ∫
T +Rβ

∫
|x|≤2R/ε

u(t, x) (33)

≤ C

Rβ

⎛⎜⎝ T +2Rβ∫
T +Rβ

∫
|x|≤2R/ε

1

⎞⎟⎠
p

p+1
⎛⎜⎝ T +2Rβ∫

T +Rβ

∫
|x|≤2R/ε

u1+p(t, x)

⎞⎟⎠
1

p+1

= C

Rβ

(
Rβ

(
2R

ε

)N
) p

p+1

⎛⎜⎝ T +2Rβ∫
T +Rβ

∫
|x|≤2R/ε

u1+p(t, x)

⎞⎟⎠
1

p+1

= C

ε
Np
p+1

⎛⎜⎝ T +2Rβ∫
T +Rβ

∫
|x|≤2R/ε

u1+p(t, x)

⎞⎟⎠
1

p+1

,

where we have used the Hölder inequality and equality β = Np. In view of (31), the last integral above tends to zero 
as R → ∞, and so does I2.
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Let us deal with I1 = I1(R) = ∫ T +2Rβ

T

∫
RN B(x)u(t, x), where

B(x) := (J ∗ θR − θR)(x) =
∫
RN

(θR(z − x) − θR(x)) J (z)dz.

First observe that if |x| ≥ 2R/ε then θR(x) = 0 so that B(x) ≥ 0. As a result

I1 ≥ I ′
1 :=

T +2Rβ∫
T

∫
|x|<2R/ε

B(x)u(t, x). (34)

In order to estimate B(x), we use the Plancherel formula and get

(2π)NB(x) = (2π)N
∫
RN

θR(z − x)J (z)dz − (2π)NθR(x)

=
∫
RN

Ĵ (ξ)e−ix·ξ θ̂R(ξ) dξ − (2π)NθR(x)

=
∫
RN

(1 −A(ξ)|ξ |β)e−ix·ξ θ̂R(ξ) dξ − (2π)NθR(x),

where function A is bounded in view of (8). Since 
∫
RN e−ix·ξ θ̂R(ξ) dξ = F(F(θR))(x) = (2π)NθR(x) and θ̂R(ξ) =(

R
ε

)N
ρ̂N(R

ε
ξ) — where ρN :RN →R is defined by ρN(x) := ρ(|x|) — we get

(2π)NB(x) = −
( ε

R

)β
∫
RN

A
( ε

R
ξ ′) |ξ ′|βe−i ε

R
x·ξ ′

ρ̂N (ξ ′) dξ ′,

so that

|B(x)| ≤ 1

(2π)N

( ε

R

)β ‖A‖∞
∫
RN

|ξ ′|β |ρ̂N (ξ ′)|dξ ′ = C
εβ

Rβ
,

since ρ̂N ∈ S(RN). As a result

|I ′
1| ≤ C

εβ

Rβ

T +2Rβ∫
T

∫
|x|<2R/ε

u(t, x).

We are now in the footsteps of (33) so that — notice the presence of the crucial multiplicative factor εβ — similar 
arguments (Hölder inequality and β = Np) yield

|I ′
1| ≤ Cε

βp
p+1

⎛⎜⎝ T +2Rβ∫
T

∫
|x|≤2R/ε

u1+p(t, x)

⎞⎟⎠
1

p+1

. (35)

To conclude, plugging (34) and (35) into (32), we get

∞∫
T

∫
N

u1+p(t, x)θR(x)ψR(t) ≤ |I2| + Cε
βp

p+1

⎛⎜⎝ T +2Rβ∫
T

∫
|x|≤2R/ε

u1+p(t, x)

⎞⎟⎠
1

p+1

.

R
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Letting R → ∞ yields

∞∫
T

∫
RN

u1+p ≤ Cε
βp

p+1

⎛⎜⎝ ∞∫
T

∫
RN

u1+p

⎞⎟⎠
1

p+1

.

From the arbitrariness of ε > 0 and T > 0 we deduce that u ≡ 0 on (0, ∞) × RN , which is a contradiction. This 
concludes the proof of Theorem 2.3. �
5. Blow up vs extinction

In this section, we prove that when p > pF = β
N

, depending on the size of the initial data, the solution to the 
Cauchy problem (1) can be global and extincting, or blowing up in finite time, as stated in Theorem 2.4.

5.1. Extinction for small initial data

Proof of Theorem 2.4 (i). The proof, as that in [11], relies strongly on [6] which provides the rate of decrease of the 
L∞ norm of the solution of the nonlocal linear equation ∂tv = J ∗ v − v.

Lemma 5.1 (See Theorem 1 in [6] and Theorem 5 in [11]). There is C > 0 such that, for any initial data v0 ∈ L1(RN)

such that v̂0 ∈ L1(RN), the solution of the Cauchy problem ∂tv = J ∗ v − v satisfies

‖v(t, ·)‖L∞ ≤ C(‖v0‖L1 + ‖v̂0‖L1)

(1 + t)N/β
, for any t ≥ 0.

We look after a supersolution to (1) in the form g(t)v(t, x), where g(t) > 0 is to be determined (with g(0) = 1) 
and v(t, x) is the solution of ∂tv = J ∗ v − v with u0 as initial data. A straightforward computation shows that it is 
enough to have g′(t)

g1+p(t)
≥ ‖v(t, ·)‖p

L∞ . By the above lemma, it is therefore enough to have

g′(t)
g1+p(t)

= Cp(‖u0‖L1 + ‖û0‖L1)p

(1 + t)pN/β
, g(0) = 1.

If ‖u0‖L1 + ‖û0‖L1 < δ := 1
C

(
pN
β

−1

p

)1/p

(notice that pN
β

− 1 > 0) then the solution of the above Cauchy problem

g(t) = 1(
1 − pCp(‖u0‖L1 +‖û0‖L1 )p

pN
β

−1

(
1 − 1

(1+t)
pN
β

−1

))1/p
,

exists for all t ≥ 0, is increasing and bounded. It therefore follows from the comparison principle that u(t, x) ≤
g(t)v(t, x) ≤ ‖g‖∞v(t, x) so that the solution u(t, x) of (1) is global in time and, in view of Lemma 5.1, satisfies 
estimate (10). This concludes the proof of Theorem 2.4 (i). �
5.2. Blow up for large initial data

Proof of Theorem 2.4 (ii). Let λ > 0 and R > 0 be given such that (11) holds. Now, let us consider the solution 
u(t, x) to (1) with initial data u0 = λ1{|x|≤R} and prove the blow up of the “localized mass”

m(t) :=
∫

|x|≤R

u(t, x)dx, (36)

which is enough to prove the blow up of the solution.
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Integrating equation (1), we get

d

dt
m(t) =

∫
|x|≤R

J ∗ u(t, ·)(x) dx − m(t) +
∫

|x|≤R

u1+p(t, x) dx. (37)

Denoting by BN the volume of the unit ball in RN , we estimate the last term in the above right hand side member by∫
|x|≤R

u1+p(t, ·) = BNRN

∫
|x|≤R

1

BNRN
u1+p(t, ·) ≥ 1

B
p
NRNp

m1+p(t), (38)

thanks to the Jensen inequality. Let us now turn to the first term in the right hand side member of (37). Using Fubini 
theorem yields∫

|x|≤R

J ∗ u(t, ·) =
∫
RN

u(t, y)

∫
|x|≤R

J (x − y)dxdy

≥
∫

|y|≤R

u(t, y)

∫
|z−y|≤R

J (z) dzdy.

Now we claim that, for any y such that 0 < |y| < R,∫
|z−y|≤R

J (z) dz ≥ CN

∫
|z|≤R

J (z) dz, (39)

where 0 < CN < 1 is a constant that depends only on the dimension N . We postpone the proof of (39) and obtain∫
|x|≤R

J ∗ u(t, ·) ≥ m(t)CN

∫
|z|≤R

J (z) dz. (40)

Then, plugging (38) and (40) in (37), we arrive at the differential inequality

d

dt
m(t) ≥ m(t)

⎡⎢⎣ mp(t)

B
p
NRNp

−
⎛⎜⎝1 − CN

∫
|z|≤R

J (z) dz

⎞⎟⎠
⎤⎥⎦ .

Since m(0) = ∫
|x|≤R

u0 = λBNRN >
(

1 − CN

∫
|z|≤R

J (z) dz
)1/p

BNRN thanks to (11), the above differential in-

equality enforces1 the blow up of m(t) in finite time. This concludes the proof of Theorem 2.4 (ii). �
For the convenience of the reader, and also to give the exact value of the constant CN , we prove below the rather 

intuitive claim (39).

Proof of claim (39). In dimension N = 1, (39) clearly holds true with C1 = 1
2 since J is even. Let us now assume 

N ≥ 2. We denote by SN−1 the unit hypersphere of RN . Since J is radial we have∫
|z|≤R

J (z) dz = |SN−1|
R∫

0

rN−1J (r) dr, (41)

where we recall that |SN−1| = 2πN/2

�(N/2)
. Let us take y such that 0 < r0 := |y| < R. Define (e1 := y

r0
, e2, · · · , eN)

an orthonormal basis of RN . For a generic point z ∈ RN we denote by (z1, · · · , zN) its cartesian coordinates in 
(e1, · · · , eN) and (r, θ1, · · · , θN−1) ∈ [0, ∞) ×[−π

2 , π
2 [N−2 ×[−π, π) its polar coordinates, which are related through

1 Indeed, the Bernoulli equation ẋ = ax1+p − bx, a > 0, b > 0, can be solved explicitly and blows up in finite time as soon as x(0) >
(

b
a

)1/p
.
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z1 = r cos θ1 cos θ2... cos θN−2 cos θN−1

z2 = r cos θ1 cos θ2... cos θN−2 sin θN−1

z3 = r cos θ1 cos θ2... sin θN−2

...

zN−1 = r cos θ1 sin θ2

zN = r sin θ1.

We claim that

D :=
{
z : 0 < r < R, |θi | < θ∗ := arccos

1

2
1

N−1

}
⊂ {z : |z − y| < R} . (42)

Indeed, for z ∈ D, we have

|z − y|2 = (z1 − r0)
2 + z2

2 + · · · + z2
N = r2 − 2rr0 cos θ1... cos θN−1 + r2

0

≤ r2 − 2rr0 cosN−1 θ∗ + r2
0 = r2 − rr0 + r2

0 ≤ max(r2, r2
0 ) < R2.

It therefore follows from (42) that∫
|z−y|≤R

J (z)dz ≥
∫
D

J(z)dz

=
θ∗∫

−θ∗
(cos θ1)

N−2dθ1

θ∗∫
−θ∗

(cos θ2)
N−3dθ2...

θ∗∫
−θ∗

dθN−1

R∫
0

rN−1J (r)dr

= CN

∫
|z|≤R

J (z)dz,

in view of (41) and where

CN : =
∫ θ∗
−θ∗(cos θ1)

N−2dθ1
∫ θ∗
−θ∗(cos θ2)

N−3dθ2...
∫ θ∗
−θ∗ dθN−1

|SN−1|

=
∫ θ∗
−θ∗(cos θ1)

N−2dθ1
∫ θ∗
−θ∗(cos θ2)

N−3dθ2...
∫ θ∗
−θ∗ dθN−1∫ π/2

−π/2(cos θ1)N−2dθ1
∫ π/2
−π/2(cos θ2)N−3dθ2...

∫ π

−π
dθN−1

∈ (0,1),

which concludes the proof of (39). �
6. Hair trigger effect

6.1. Hair trigger effect along a subsequence

Following the strategy of [22, Theorem 18.7], we prove here the hair trigger effect along a subsequence of time.

Proof of Corollary 2.5 (i). First, let v0 ∈ C(RN, [0, 1]) be such that v0(x0 + ·) is radial nonincreasing, for some 
x0 ∈ RN . Let v(t, x) be the global solution of (2) with v0 as initial data. Then, J being radial, v(t, x0 + ·) remains 
radial nonincreasing for later times t > 0. Let us prove that

lim sup
t→∞

v(t, x0) = 1. (43)

Assume by contradiction that there are 0 < ε < 1 and T > 0 such that v(t, x0) ≤ 1 − ε for all t ≥ T , which in turn 
implies v(t, x) ≤ 1 − ε, for all (t, x) ∈ [T , ∞) ×RN . As a result

∂tv ≥ J ∗ v − v + εv1+p in (T ,∞) ×RN.
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Hence w := ε1/pv satisfies ∂tw ≥ J ∗ w − w + w1+p in (T , ∞) × RN . Since 0 < p ≤ pF = β
N

, it follows from 
Theorem 2.3 and the comparison principle that w is non-global, which is a contradiction.

Now, let u0 :RN → [0, 1] be as in Corollary 2.5 (i), that is continuous and nontrivial. We need to prove

lim sup
t→∞

inf|x|≤R
u(t, x) = 1, for any R ≥ 0. (44)

By a time shift if necessary, we can assume further that u0 > 0. Therefore u0 dominates some ũ0 : RN → [0, 1] which 
is nontrivial and radial nonincreasing. Hence, by comparison, it suffices to prove (44) for ũ(t, x) the solution of (2)
with ũ0 as initial data, for which we can take advantage of the fact that ũ(t, ·) is radial nonincreasing for later times 
t > 0. Again, by a time shift if necessary, we can assume further that ũ0 > 0. Now, for a given x0 ∈RN , ũ0 dominates 
some v0 ∈ C(RN, [0, 1]) such that v0(x0 +·) is radial nonincreasing. It follows from (43) and the comparison principle 
that

lim sup
t→∞

ũ(t, x0) = 1.

Since x0 is arbitrary and since ũ(t, ·) is radial nonincreasing, this implies

lim sup
t→∞

inf|x|≤R
ũ(t, x) = 1, for any R ≥ 0.

This concludes the proof of (44). �
6.2. Actual hair trigger effect

In this subsection, we prove the actual hair trigger effect as stated in Theorem 2.6. This requires the combination 
of an elaborate subsolution involving two different time scales — see [28] for a related argument in a local case — 
and the following asymptotics for the solution to the linear nonlocal diffusion equation.

Lemma 6.1 (The linear equation from below). Let Assumption 2.1 hold. For a given R > 0, let ϕ(t, x) be the solution 
of ∂tϕ = J ∗ ϕ − ϕ with initial data ϕ0 ≡ 1BR

. Then there are γ > 0 and m > 0 such that

ϕ(t, x) ≥ γ

tN/β
1B

mt1/β
(x),

for t > 0 large enough and x ∈ RN .

Proof. This is a direct consequence of [6]. Indeed in virtue of [6, Corollary 2.1], we have

tN/βϕ(t, x) = tN/βϕ
(
t, t1/β x

t1/β

)
− ‖ϕ0‖L1GA

( x

t1/β

)
+ ‖ϕ0‖L1GA

( x

t1/β

)
= o(t) + ‖ϕ0‖L1GA

( x

t1/β

)
,

as t → ∞, where

GA(y) := 1

(2π)N

∫
RN

eiy·ξ e−A|ξ |β dξ.

Noticing that GA(y) → 1
(2π)N

∫
RN e−A|ξ |β dξ > 0 as y → 0 enables to select m > 0 small enough so that, for any 

x ∈ Bmt1/β , we have ‖ϕ0‖L1GA

(
x

t1/β

)
≥ 2γ for some γ > 0. This concludes the proof of the lemma. �

Proof of Theorem 2.6. Let u0 : RN → [0, 1] be as in Theorem 2.6, that is continuous and nontrivial. Let ε > 0 and 
R > 0 be given. In view of the hair trigger effect along a subsequence (44) and thanks to the comparison principle, it 
is enough to consider the solution u(t, x) to (2) with the initial datum u0 ≡ (1 − ε)1BR

.
Let ϕ(t, x) denote the solution to ∂tϕ = J ∗ ϕ − ϕ with initial datum u0 ≡ (1 − ε)1BR

. Notice that, from the 
comparison principle, we get ϕ ≤ u. From Lemma 6.1 we deduce that there is τ0 > 0 such that
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ϕ(τ, x) ≥ (1 − ε)
γ

τN/β
1B

mτ1/β
(x) =: �0(x), ∀(τ, x) ∈ (τ0,∞) ×RN.

Let �(t, x) denote the solution to ∂t� = J ∗ � − � with initial datum �0. Let U(t, x) denote the solution to ∂tU =
J ∗ U − U + U1+p(1 − U) with initial datum �0. Since U(0, x) = �0(x) ≤ ϕ(τ, x) ≤ u(τ, x), the comparison 
principle yields

u(τ + t, x) ≥ U(t, x), ∀(t, x) ∈ (0,∞) ×RN. (45)

Next, for X > 0, let us define

w(t,X) := 1(
X−p − εpt

)1/p
= X

(1 − εptXp)1/p
, 0 < t <

1

εpXp
,

that is the solution to the Cauchy problem

∂tw(t,X) = εw1+p(t,X), w(0,X) = X.

Notice that ∂Xw = w1+p

X1+p and ∂XXw = (1 + p) w1+p

X2+2p (wp − Xp) ≥ 0 so that X �→ w(t, X) is convex.

Lemma 6.2 (A subsolution). Function

W(t, x) := w(t,�(t, x))

is a subsolution to (2) on (0, T ) ×RN , where time

T = T (τ) := 1

εp

(
τpN/β

(1 − ε)pγ p
− 1

(1 − ε)p

)
(46)

is positive for any τ ≥ τ0, up to enlarging τ0 > 0 if necessary.

Proof. Since �(t, x) ≤ ‖�0‖L∞ = (1−ε)γ

τN/β , we see that W(t, x) ≤ 1 − ε on (0, T ) ×RN . As a result

∂tW − (J ∗ W − W) − W 1+p(1 − W) ≤ ∂tW − (J ∗ W − W) − εW 1+p

= W 1+p

�1+p
(J ∗ � − �) − (J ∗ W − W),

by a direct computation. On the other hand

(J ∗ W − W)(t, x) =
∫
RN

J (y) (w(t,�(t, x − y)) − w(t,�(t, x))) dy

≥
∫
RN

J (y)(�(t, x − y) − �(t, x))
w1+p(t,�(t, x))

�1+p(t, x)
dy

= W 1+p(t, x)

�1+p(t, x)
(J ∗ � − �)(t, x),

where we have used the convexity of X �→ w(t, X). This concludes the proof of the lemma. �
Since W(0, x) = �0(x) = U(0, x), the comparison principle yields

U(T ,x) ≥ W(T,x) = (
�(T ,x)−p − εpT

)−1/p

=
(

�(T ,x)−p − τpN/β

(1 − ε)pγ p
+ 1

(1 − ε)p

)−1/p

,

by definition of time T . But, in view of Section 3, one can write
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�(T ,x) = K(T , ·) ∗ �0(x) = (1 − ε)γ

τN/β
K(T , ·) ∗ 1B

mτ1/β
(x)

= (1 − ε)γ

τN/β

(
e−T 1B

mτ1/β
(x) + ψ(T , ·) ∗ 1B

mτ1/β
(x)

)

= (1 − ε)γ

τN/β

⎛⎜⎝1 − e−T (1 − 1B
mτ1/β

(x)) −
∫

|y|≥mτ 1/β

ψ(T , x − y)dy

⎞⎟⎠ ,

using (16). From now, we restrict ourselves to x ∈ BR . Hence, up to enlarging τ0 > 0 if necessary, we can get rid of 
the term 1 − 1B

mτ1/β
(x) for any τ ≥ τ0 and get

�(T ,x)−p = τpN/β

(1 − ε)pγ p

⎛⎜⎝1 −
∫

|y|≥mτ 1/β

ψ(T , x − y)dy

⎞⎟⎠
−p

,

so that

U(T ,x) ≥
⎛⎜⎝ 1

(1 − ε)pγ p
τpN/β

⎡⎢⎣
⎛⎜⎝1 −

∫
|y|≥mτ 1/β

ψ(T , x − y)dy

⎞⎟⎠
−p

− 1

⎤⎥⎦ + 1

(1 − ε)p

⎞⎟⎠
−1/p

. (47)

We now need to estimate 
∫
|y|≥mτ 1/β ψ(T , x − y)dy. Again, up to enlarging τ0 > 0, we have for any τ ≥ τ0∫

|y|≥mτ 1/β

ψ(T , x − y)dy ≤
∫

|z|≥ m
2 τ 1/β

ψ(T , z)dz = e−T
∞∑

k=1

T k

k!
∫

|z|≥ m
2 τ 1/β

J ∗(k)(z)dz. (48)

We use the fact that the decay of the kernel J is associated to the behavior of Ĵ near zero. Precisely, quoting 
[8, Chapter 2, subsection 2.3.c, (3.5)], we get a constant C > 0 such that, for all k ≥ 1,∫

|z|≥ m
2 τ 1/β

J ∗(k)(z)dz ≤ CτN/β

∫
|ξ |≤ 1

Cτ1/β

(1 − Ĵ ∗(k)(ξ))dξ

= CτN/β

∫
|ξ |≤ 1

Cτ1/β

(1 − Ĵ k(ξ))dξ

≤ CτN/β

∫
|ξ |≤ 1

Cτ1/β

k(1 − Ĵ (ξ))dξ.

Since 1 − Ĵ (ξ) ∼ A|ξ |β as ξ → 0, it follows that, up to enlarging τ0 > 0, we have for all τ ≥ τ0 and all k ≥ 1∫
|z|≥ m

2 τ 1/β

J ∗(k)(z)dz ≤ kC2AτN/β

∫
|ξ |≤ 1

Cτ1/β

|ξ |βdξ ≤ k
C′

τ
,

for some C′ > 0. Plugging this into (48) we get∫
1/β

ψ(T , x − y)dy ≤ e−T
+∞∑
k=1

T k

k! k
C′

τ
= C′ T

τ
. (49)
|y|≥mτ
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To conclude, the key point is that, in view of (49), (46) and assumption 0 < p < 1
2

β
N

,

τpN/β

⎡⎢⎣
⎛⎜⎝1 −

∫
|y|≥mτ 1/β

ψ(T , x − y)dy

⎞⎟⎠
−p

− 1

⎤⎥⎦ → 0, as τ → ∞,

uniformly with respect to x ∈ BR . Hence, in view of (47) and up to enlarging τ0 > 0, we have U(T , x) ≥ 1 − 2ε for 
any τ ≥ τ0, any x ∈ BR . Hence, we deduce from (45) that

u(τ + T (τ), x) ≥ 1 − 2ε, ∀τ ≥ τ0,∀x ∈ BR,

which in turn implies

u(t, x) ≥ 1 − 2ε, ∀t ≥ t0 := τ0 + T (τ0),∀x ∈ BR.

This concludes the proof of Theorem 2.6. �
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