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Morse index properties of colliding solutions to the N -body problem
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Abstract

We study a singular Hamiltonian system with an α-homogeneous potential that contains, as a particular case, the classical
N -body problem. We introduce a variational Morse-like index for a class of collision solutions and, using the asymptotic estimates
near collisions, we prove the non-minimality of some special classes of colliding trajectories under suitable spectral conditions
provided α is sufficiently away from zero. We then prove some minimality results for small values of the parameter α.

Résumé

Nous étudions un système dynamique de type hamiltonien avec un potentiel α-omogène et singulier. Nous introduisons un indice
variationnel de type Morse pour une classe de solutions avec collision et, à l’aide de certaines estimations asymptotiques dans un
entourage des collisions, nous prouvons des resultats de non-minimalité lorsque α ne devient pas trop petit, sous des hypothèses
spectrales. Enfin, nous prouvons aussi un résultat de minimalité lorsque α → 0.

Keywords: Collision solutions; Variational index

1. Introduction

In this paper we consider the second order Hamiltonian system

Mẍ = ∇U(x) (1)
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with

U(x) :=
N∑

i,j=1
i<j

Uij (xi − xj ), Uij (xi − xj ) = mimj

|xi − xj |α , (2)

x = (x1, . . . , xN) : [0,1] → RNd , d � 2, N � 2, α ∈ (0,2), and M = diag[m1, . . . ,mN ]. This system describes the
well-known generalized N -body problem, namely the motion of N particles x1, . . . xN of positive masses m1, . . . ,mN

under the external force ∇U due to the generalized Kepler potential (2). The classical Keplerian case corresponds to
the value α = 1. It is a classical result, see [17,29], that if x is a solutions of (1) on [0,1) and if x cannot be extended
to the whole interval [0,1], then limt→1 U(x(t)) = +∞; moreover, if ‖x‖ remains bounded, then there must be a
collision at t = 1, i.e. there exist two different indices i, j with |xi(t) − xj (t)| → 0 as t → 1.

It is evident that (1) has a rather delicate variational structure, since the Euler–Lagrange action functional

AN(x) = 1

2

1∫
0

∣∣ẋ(t)
∣∣2 dt +

1∫
0

U
(
x(t)

)
dt (3)

may blow up along orbits x(·) that approach the collision set

Δ = {x ∈ R
Nd : ∃i 	= j, xi = xj

}
. (4)

Several recent papers are concerned with existence and qualitative properties of collisionless solutions, i.e. solutions
such that x(t) /∈ Δ for all t . A first approach to avoid collision solutions is the introduction of the so-called strong
force assumption α � 2 (see [12]). This constraint makes it possible to prove that the Palais–Smale condition holds
and to find non-collision solutions by some standard tool of Critical Point Theory. Unfortunately, the Keplerian case
does not satisfies such a condition, for this reason much attention has been paid to the complementary case α ∈ (0,2).
The bibliography about this problem is huge, concerning the variational approach we cite, among others, [2,3,7–9,11,
16,20–22,27].

In this paper we deal with some variational properties of solutions to (1) possessing an isolated collision. Roughly
speaking, we will give an estimate of a generalized Morse index by means of the asymptotic behavior of such a
solution near the collision. It is known that the action functional lacks regularity at collision orbits, so that the usual
Morse index cannot be defined. This problem was overcome in [9] by the technique of approximate solutions. One
of the results of that paper is an upper bound on the number of total collisions for periodic solutions that can be
suitably approximated in the H 1-sense by solutions corresponding to a regularized potential. The proof relies on the
construction of suitable variations introduced in [21]. Later, Riahi (see [19]) generalized this result to solutions with
partial collisions, essentially by using the same method. We also cite the paper [26], where the author proves the
existence of one classical periodic solution in the case 1 < α < 2 and of one generalized periodic solution with at
most one collision in the case 0 < α � 1. The existence is proved again by the method of approximate solutions, and
the Author supplies some estimates on the Morse index of these approximations. In the quoted papers, one of the main
ideas is that whenever the ratio between the dimension of the space and the number of bodies involved in the collision
is big enough, then a collision gives a contribution to the Morse index of the corresponding trajectory.

The main novelty of this paper consists in the use of the asymptotic behavior near a collision in order to give
an estimate on the Morse index. After fixing notation and reviewing some known facts (Section 2), we introduce in
Section 3 the variational setting of our problem and recall the main asymptotic estimates (see [24,11,28]) that will be
used to prove our main results. In the next section we define the generalized Morse index and provide in Theorem 4.3
a sufficient spectral condition on the asymptotic configuration, ensuring that orbits with a single collision have an
infinite index. In particular, no standard (finite-dimensional) linking theorem in Critical Point Theory can identify
such solutions. Theorem 4.3 should be compared to the results of [10], where non-minimality for a different class of
colliding solutions is proved. In particular, no condition like (28) appears in that paper where, imposing reasonable
assumptions about central configurations and a symmetry assumption on the perturbation (the Author perturbs the
N -body potential with a term which is strongly dominated in a C2 sense near the collision set by the Newtonian
potential), it is shown that periodic orbits can be found with the calculus of variations approach which avoid binary
or triple collisions. An additional assumption avoids total collapse orbits. We also cite a recent paper by Ferrario and
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Terracini [11], in which the authors prove that colliding motions satisfying some symmetry assumptions cannot be
minimal. Our results are different in nature, and emphasize the variational properties of the solutions, rather than their
symmetries.

From Theorem 4.3, the non-minimality of orbits with a single collision will come out to depend strongly both
on the asymptotic configuration and on the value of α. The condition of non-minimality is indeed false for α close
to 0. Section 5 is devoted to showing that the condition of the last section is satisfied in some important cases, e.g.
the collinear central configuration of three equal masses or the polygonal configurations for N masses. In particular,
we will show that our abstract theorem applies for every α lying outside a small neighborhood of α = 0. Finally,
Section 6 is somewhat complementary to the previous ones. Indeed, we analyze in deeper detail what happens in the
limit α → 0, and prove that under suitable assumptions, families (xα)α of one-collision solutions are “minimal”, in
the sense that the second derivative of the action along compactly supported variations is positive.

2. Preliminaries

We consider the generalized Keplerian potential defined in (2) on collisionless configurations x = (x1, . . . , xN) ∈
R

Nd \ Δ, where Δ is the collision set defined in (4). The classical Keplerian interaction corresponds to the choice
α = 1. We study the dynamical system (1), recalling that it is conservative system, in the sense that the total energy

h = 1

2
〈Mẋ, ẋ〉 − U(x) = 1

2

N∑
i=1

mi |ẋi |2 − U(x) (5)

is constant along solutions. Since the center of mass moves with a uniform motion, without loss of generality, we can
fix it at the origin, that is

N∑
i=1

mixi = 0.

The potential (2) will be then defined on the configuration space

Λ =
{

x = (x1, . . . , xN) ∈ R
Nd \ Δ:

N∑
i=1

mixi = 0

}
(6)

For any x ∈ RNd , the moment of inertia is defined by

I = I (x) = 〈Mx,x〉 =
N∑

i=1

mi |xi |2

and its gradient is simply

∇I (x) = 2Mx.

The following definition is quite standard.

Definition 2.1. A central configuration is a critical point of the function U constrained to the set E = {x ∈ Λ |
I (x) = 1}. We will call E the standard ellipsoid.

Remark 2.2. An equivalent definition of central configuration is the following: x̄ ∈ E is a central configuration if there
exists a solution of (1) of the form x(t) = φ(t)x̄, for some real-valued C2-function φ. For these classical facts, we
refer to [18,28].

Let us denote the radial and the angular components of x ∈ R
Nd \ {0} by

r(x) =√I (x), s(x) = x√ .

I (x)
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In particular E is now described by the simple condition r = 1. Since U|E (s) = rαU(rs) = I
α
2 (x)U(x), it follows

easily that

∇U|E (s) · v = α

2
I

α
2 −1(x)U(x)∇I (x) · v + I

α
2 (x)∇U(x) · v, (7)

and

∇2U|E (s)(v, v) = I
α
2 (x)∇2U(x)(v, v) + αI

α
2 −1(x)

〈∇I (x), v
〉〈∇U(x), v

〉
+ α

2

(
α

2
− 1

)
I

α
2 −2(x)U(x)

〈∇I (x), v
〉2 + α

2
I

α
2 −1(x)U(x)∇2I (x)(v, v). (8)

As a consequence, when x is a central configuration, that is when x ∈ E and ∇U|E (x) · v = 0 for every v ∈ TxE , we
deduce from (7) that ∇U(x) = −αU(x)Mx. Replacing in (8) we get

∇2U|E (s)(v, v) = ∇2U(x)(v, v) − α(α + 2)U(x)〈Mx,v〉2 + αU(x)〈Mv,v〉.
Since v ∈ TsE , we must have 〈v,Mx〉 = 0, therefore the expression for the second derivative of U|E evaluated at s is,
for any v ∈ TsE with

∑
i mivi = 0,

∇2U|E (s)(v, v) = ∇2U(x)(v, v) + αU(x)〈Mv,v〉, (9)

where

∇2U(x)(v, v) = α
∑
i<j

mimj

[
(α + 2)

〈xi − xj , vi − vj 〉2

|xi − xj |α+4
− |vi − vj |2

|xi − xj |α+2

]
(10)

is the Hessian of U on the whole space R
Nd \ Δ. When each vj is orthogonal to the vector space generated by

{x1, . . . , xN }, we deduce from (10) that the Hessian of the potential U is simply

∇2U(x)(v, v) = −α
∑
i<j

mimj

|vi − vj |2
|xi − xj |α+2

= −α〈v,Av〉, (11)

where

A(x) = [aij (x)
]
, aij (x) =

{∑
k 	=i

mk

|xi−xk |α+2 , i = j,

− mj

|xi−xj |α+2 , i 	= j.
(12)

Remark 2.3. Every tangent vector v ∈ TsE can be seen as an N -uple of vectors (v1, . . . , vN), where each vj stands
for the position of the j -th particle in the euclidean space R

d . This justifies the slight abuse of looking at the Hessian
∇2U|E (s) as a quadratic form on R

N .

In this case the expression for the constrained second derivative (9) can be recast as

∇2U|E (s)(v, v) = α
(−〈v,MAv〉 + U(x)〈Mv,v〉) (13)

for all v = (v1, . . . , vN) ∈ R
N with

∑N
i=1 mivi = 0.

3. The variational setting

It is well known that standard Critical Point Theory cannot be applied to find solutions of (1) possessing a collision.
Indeed, the presence of collisions along a trajectory makes the action function AN (see definition (3) below) possibly
infinite. As such, it might even be impossible to say that a collision solution is a critical point of AN . For this reason,
let us define the function spaces

Ω = H 1((0,1),Λ
)
, X = H 1((0,1), Λ̄

)
,

where Λ̄ = {x ∈ R
Nd |∑n

i=1 mixi = 0} is the closure of the set Λ defined in (6). The elements of Ω will be termed
collisionless orbits and their center of mass lies at the origin at every time. Since each element of Ω is a continuous
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function, it follows from standard arguments that the action functional AN :Ω → R is smooth. Moreover, critical
points of AN inside the open set Ω are collisionless, classical solutions of (1). It is clear that, in general, it is impossible
to extend the definition of AN to X , and it is precisely this fact that prevents us from using standard tools for studying
colliding solutions to (1).

In this paper we will take into account colliding solutions of (1) with finite action and isolated collision. More
precisely, we introduce a class of “good” colliding solutions.

Definition 3.1. A one-collision solution of (1), is a map x ∈ C([0,1],R
Nd) ∩ C2((0,1),R

Nd) such that

1. x−1(Δ) ∩ [0,1] = {1}, i.e. no other collisions take place in the time interval [0,1);
2. x solves pointwise the system (1) in the interval [0,1).
3. AN(x) < +∞;

Remark 3.2. Roughly speaking, a one-collision solution tends to ∂Λ as, and only as, t → 1−. Conditions 1 and 3 are
strictly related (see for instance [5,24,25]), we impose both not to enter in the details of this matter. We only mention
that the action AN is finite whenever limt→1− x(t) exists. This is a consequence of the classical Sundman–Sperling
estimates [24,25].

Definition 3.3. Let n := {1,2, . . . ,N}. A colliding cluster for a one-collision solution x is a subset k ⊂ n such that

1. xi(1) = xj (1) for all indices i 	= j in k;
2. xi(1) 	= xj (1) for all i ∈ k and j ∈ n \ k.

A collision will be termed total if its associated cluster k = n.

The main property of a one-collision solution x is that the action AN has directional derivatives at x along
compactly-supported directions. This allows us to consider x as a “critical point” of AN . The proof of the next
lemma follows trivially from Definition 3.1.

Lemma 3.4. Let x be a one-collision solution of (1). Then

d

dε

∣∣∣∣
ε=0

AN(x + εψ) = 0, ∀ψ ∈ C∞
0

(
(0,1)

)
.

Consider a one-collision solution x̄ with a colliding cluster k ⊂ n. Without loss of generality, we can assume
k = {1,2, . . . , k}, so that the N − k last components (x̄k+1, . . . , x̄N ) of the one-collision solution x̄ are kept fixed. We
define the restriction of the action functional

AN,k(x) =Ak(x) +
1∫

0

[
N∑

j=k+1

| ˙̄xj |2 + 1

2

N∑
j1,j2=k+1

j1 	=j2

Uj1j2(x̄j1 − x̄j2) + 1

2

k∑
i=1

N∑
j=k+1

Uji(x̄j − xi)

]
,

for every x ∈ H 1((0,1),R
kd) and

A(x) := Ak(x) +
1∫

0

W(t, x) dt,

where

W(t, x) := 1

2

k∑ N∑
Uji

(
x̄j (t) − xi

)
(14)
i=1 j=k+1
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is defined on [0,1] × R
kd . Since we have supposed that the action is finite at one-collision solutions the term∫ 1

0
1
2

∑
Uj1j2(x̄j1 − x̄j2) is finite (and constant), hence AN,k and A differ only by a constant. Of course, when all

the bodies collide the two functionals coincide on H 1((0,1),R
kd). In the sequel we will deal with the functional A.

Remark 3.5. Since at t = 1 the bodies in the cluster k do not collide with those in n \ k (and no other collision occurs
in [0,1)), there exists an open set U ⊂ R

kd such that (x̄1([0,1]), . . . , x̄k([0,1])) ⊂ U and W ∈ C2([0,1] × U).

For simplicity, we will write x̄ = (x̄1, . . . , x̄k). Indeed, the terms involving the remaining components are of
class C2. We define the radial and “angular” variables in the colliding cluster k

r := |x̄| = I
1
2 (x̄) ∈ R, s := x̄

|x̄| . (15)

Since we are dealing with a total collision solution, the following condition on the variable r holds:

lim
t→1

r(t) = 0 and r(t) 	= 0, ∀t ∈ [0,1). (16)

Condition (16) means that the particles in k collide in their center of mass when t = 1 and they do not have any other
collisions in the interval [0,1). Since

x̄ = rs, ˙̄x = ṙs + ṡr, | ˙̄x|2 = ṙ2 + r2|ṡ|2,
we can write the action functional at x = x̄ in terms of the new variables (r, s) as

A(r, s) :=
1∫

0

1

2
r−(2+α)

(
r

2+α
2 ṙ
)2 + r−α

(
1

2

∣∣r 2+α
2 ṡ
∣∣2 + U(s) + rαW(t, rs)

)
dt (17)

We consider the time scaling

dt = r
2+α

2 dτ, (18)

and in the sequel we will note with a dot “˙” the derivative with respect to the variable t and with a prime “ ′ ” the one
with respect to τ . Replacing (18) in (17) we then obtain

A(r, s) =
τ∗∫

0

1

2

(
r− 2+α

4 r ′)2 + r
2−α

2

(
1

2
|s′|2 + U(s) + rαW

( τ∫
0

r
2+α

2 , rs

))
dτ, (19)

where

τ ∗ =
1∫

0

r− 2+α
2 dt.

In Eq. (19) we make the variable change

ρ = r
2−α

4 , ρ′ = 2 − α

4
r− 2+α

4 r ′ (20)

to obtain the action functional depending on (ρ, s)

A(ρ, s) =
τ∗∫

0

1

2

(
4

2 − α

)2

(ρ′)2 + ρ2

(
1

2
|s′|2 + U(s) + ρ

4α
2−α W

( τ∫
0

ρβ,ρ
4

2−α s

))
dτ, (21)

where

β := 2(2 + α)

2 − α
> 2. (22)
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Remark 3.6. We notice that a set of quite similar variables were used in [14] to study the dynamical system (1) from
a geometrical viewpoint. As far as we know, the use of these coordinates in a variational setting is new.

In the variables (ρ, s, τ ), the Euler–Lagrange equations read

−
(

4

2 − α

)2

ρ′′ + ρ
(|s′|2 + 2Uα(s)

)+ βρβ−1

τ∗∫
τ

[
ρβ∇tW

( u∫
0

ρβ,ρ
4

2−α s

)]
du

+ βρβ−1W

( τ∫
0

ρβ,ρ
4

2−α s

)
+ 4

2 − α
ρ

3
2 β∇W

( τ∫
0

ρβ,ρ
4

2−α s

)
· s = λ1ρ

β−1, (23)

− 2ρρ′s′ − ρ2s′′ + ρ2∇Uα |E (s) + ρ2 4+α
2−α ∇tW

( τ∫
0

ρβ,ρ
4

2−α s

)
= λ2s. (24)

It will be useful to have a more explicit formula for the Lagrange multipliers λ1 and λ2. We suppose here W = 0,
since the computation is exactly the same in the general case. First of all, we observe that the total (constant) energy h

(see (5)) can be written as

h = 1

ρβ

(
1

2

(
4

2 − α

)2

(ρ′)2 + ρ2
(

1

2
|s′|2 − Uα(s)

))
.

Therefore, from (23)

d

dτ

(
1

2

(
4

2 − α

)2

(ρ′)2 + λ1

β
ρβ

)
=
((

4

2 − α

)2

ρ′′ + λ1ρ
β−1
)

ρ′ = ρ
(|s′|2 + 2Uα(s)

)
ρ′

= d

dτ

(
ρ2

2

)(|s′|2 + 2Uα(s)
)
,

which implies that

d

dτ

(
ρβ

(
hα + λ1

β

))
= d

dτ

(
1

2

(
4

2 − α

)2

(ρ′)2 + λ1

β
ρβ

)
+ d

dτ

(
ρ2

2

(|s′|2 − 2Uα(s)
))

= |s′|2 d

dτ
ρ2 + ρ2

2

d

dτ

(|s′|2 − 2Uα(s)
)

= 2ρρ′|s′|2 + ρ2s′ · s′′ − ρ2∇Uα |E (s) · s′ = 0.

Hence the constant hα + λ1/β must be zero, i.e.

λ1 = −βhα. (25)

As for λ2, we take the inner product of (24) with s and deduce immediately

λ2 = ρ2|s′|2, (26)

since |s|2 = 1, s · s′ = 0 and s · s′′ = −|s′|2. The next result describes the behavior of the new variables (ρ, s, τ ) and
of the potential U near the collision time. We do not give a proof here, but we refer to [4] for a variational proof of
these results, which were already proved in a different way [11,24,25].

Proposition 3.7 (Asymptotic estimates). Let x be a one-collision solution, k its colliding cluster and ρ, s, τ be defined
by (15), (18), (20). The following properties hold true:

(a) τ ∗ = +∞;
(b) There exists b > 0 such that limτ→+∞ ρ′

ρ
= − 2−α

4

√
2b;

(c) limτ→+∞ U(s(τ )) = b;
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(d) limτ→+∞ dist(Cb, s(τ )) = limτ→+∞ infs̄∈Cb |s(τ ) − s̄| = 0, where

Cb := {s: U(s) = b,∇U|E (s) = 0
}
.

is the set of central configurations (for the potential U ) at level b;
(e)

∫∞
0

ρ′
ρ

|s′|2 < +∞.
(f) limτ→+∞ |s′(τ )| = 0.

Point (d) of Proposition 3.7 does not mean that the variable s converges to an element of the set Cb; in this section
we will deal with those collision solutions that admit a limiting central configuration. This fact is expressed as follows.

Definition 3.8. We say that a one-collision solution x is asymptotic to a central configuration s0 if limτ→+∞ s(τ ) = s0.
More generally, we say that the one-collision solution x is asymptotic to the set of central configurations Cb if (d) in
Proposition 3.7 is verified.

Remark 3.9. The existence of a limiting configuration s0 for a collision motion x turns out to be guaranteed for
instance when the collision is total and the set of central configurations is made of isolated points (up to isometries).
This is true for the three-body problem. We refer to [15] for the details. Quite recently, the same has been proved for
the four-body problem in [13].

4. A class of colliding motions with non-trivial Morse index

We now introduce a notion of Morse index for one collision solutions with respect to the angular variable s. The
idea is to use the fact that in the new coordinates set (τ , ρ and s) the collision take place at +∞.

Lemma 4.1. Let x be a one-collision solution, and let v ∈ TsE be a compactly-supported function. Then

∂2A
∂s2

(ρ, s)(v, v) =
+∞∫
0

ρ2[|v′|2 + ∇2U|E (s)(v, v)
]+ ρ2 6+α

2−α
∂2

∂x2
W

( τ∫
0

ρβ,ρ
4

2−α s

)
(v, v) dτ. (27)

Proof. The proof relies on very standard arguments. Take formula (21) and observe that the term

+∞∫
0

1

2

(
4

2 − α

)2

(ρ′)2 + ρ2 |s′|2
2

dτ

represents
∫ 1

0 |ẋ|2 dt , which is clearly smooth for x ∈ H 1((0,1),R
kd). Therefore, we need to show that the functional

Ψ : (ρ, s) ∈ [0,+∞) × E �→
+∞∫
0

ρ2

(
U(s) + ρ

4α
2−α W

( τ∫
0

ρβ,ρ
4

2−α s

))
dτ,

is twice differentiable in the variable s along compactly supported directions. It follows at once from Proposition 3.7
that ρ decays exponentially fast and both U(s(τ )) and W(

∫ τ

0 ρβ,ρ4/(2−α)s) remain bounded as τ → +∞. Hence we
can apply the Dominated Convergence Theorem to show that

∂2Ψ

∂s2
(ρ, s)(v, v) = d2

dε2

∣∣∣∣
ε=0

Ψ

(
ρ,

s + εv√
I (s + εv)

)

=
+∞∫
0

ρ2∇2U|E (s)(v, v) + ρ2 6+α
2−α

∂2

∂x2
W

( τ∫
0

ρβ,ρ
4

2−α s

)
(v, v) dτ. �
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Definition 4.2. Let x = ρ4/(2−α)s be a one-collision solution. We define the collision Morse index mc = mc(A, ρ, s)

of A at (ρ, s) as the supremum of all integers m such that there exist m linearly independent functions

ψ1, . . . ,ψm ∈ C∞
0 (R+, TsE) with the property that ∂2A

∂s2 (ρ, s) is negative definite on span{ψ1, . . . ,ψm}. More pre-

cisely, ∂2A
∂s2 (ρ, s)(v, v) < 0 for all v ∈ span{ψ1, . . . ,ψm}. Moreover, we will also say that AN has collision Morse

index mc at x.

Our aim is to show that, under a suitable assumption on the eigenvalues of the Hessian ∇2U|E (s0), a one-collision
solution asymptotic to s0 cannot be locally minimal for the action functional (21). This is the content of the next
theorem.

Theorem 4.3. Let x ∈X be a one-collision solution of (1) asymptotic to a central configuration s0. Then the collision
Morse index of An at (ρ, s) is infinite, provided that the smallest eigenvalue μ1 of ∇2U|E (s0) satisfies

μ1 < − (2 − α)2

8
U(s0). (28)

Proof. We introduce the variables ρ, s and τ defined in (20), and according with Definition 4.2 we will show that there

exist infinitely many linearly independent functions w1,w2, . . . such that ∂2A
∂s2 (ρ, s)(wi,wi) < 0 for every index i. For

any smooth, compactly supported function v such that v(τ) ∈ Ts(τ)E for all τ � 0, we set w = ρv. Then w′ = ρ′v+ρv′
and

ρ2|v′|2 = |w′|2 + |ρ′|2|v|2 − 2ρ′w′v = |w′|2 +
(

ρ′

ρ

)2

|w|2 − 2
ρ′

ρ
ww′. (29)

In terms of w, Eq. (27) becomes

∂2A
∂s2

(ρ, s)(v, v) =
+∞∫
0

[
|w′|2 +

(
ρ′

ρ

)2

|w|2 − 2
ρ′

ρ
w′w + ∇2U|E (s)(w,w)

+ ρ2β ∂2

∂x2
W

( τ∫
0

ρβ,ρ
4

2−α s

)
(w,w)

]
dτ. (30)

Setting

Q(w) =
+∞∫
0

[
|w′|2 +

(
ρ′

ρ

)2

|w|2 − 2
ρ′

ρ
w′w + ∇2U|E (s)(w,w) + ρ2β ∂2

∂x2
W

( τ∫
0

ρβ,ρ
4

2−α s

)
(w,w)

]
dτ

we will prove that Q < 0 on a vector space of infinite dimension. Let 0 < �1 < �2 be arbitrary numbers, and take a
positive real function ϕ ∈ C∞

0 (�1, �2); let {τn}n be a strictly increasing, divergent sequence of positive numbers. We
define wn(τ) = ϕ(τ − τn)ξ , where ξ ∈ Ts0E will be chosen hereafter. In particular wn ∈ C∞

0 ((�1 + τn, �2 + τn), Ts0E).
It follows from Proposition 3.7 that the following estimates hold:

+∞∫
0

ρ2β ∂2

∂x2
W

( τ∫
0

ρβ,ρ
4

2−α s

)
(wn,wn)dτ � C1

�2+τn∫
�1+τn

ρ2β |wn|2 dτ � C1‖ϕ‖∞ e−C2τn ,

+∞∫
0

ρ′

ρ
wnw

′
n dτ =

�2+τn∫
�1+τn

ρ′

ρ
wnw

′
n dτ = −2 − α

4

√
2U(s0)

�2+τn∫
�1+τn

wnw
′
n dτ + o(1) = o(1)

as n → +∞. In a similar way,

+∞∫ ∣∣∣∣ρ′

ρ

∣∣∣∣2|wn|2 dτ = (2 − α)2

8
U(s0)

�2+τn∫
|wn|2 dτ + o(1).
0 �1+τn
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Putting together these estimates, using the continuity of ∇2U at s0 and the fact that x is asymptotic to the central
configuration s0, we get

Q(wn) =
�2+τn∫

�1+τn

(
|w′

n|2 + (2 − α)2

8
U(s0)|wn|2 + ∇2U|E (s0)(wn,wn)

)
dτ + o(1). (31)

We choose now ξ ∈ Ts0E as a normalized eigenvalue of ∇2U|E (s0) corresponding to the eigenvalue μ1, verifying
assumption (28). Then equation (31) becomes

Q(wn) =
�2+τn∫

�1+τn

[
|w′

n|2 +
(

(2 − α)2

8
U(s0) + μ

)
|wn|2

]
dτ + o(1).

Since both ϕ and its support (�1, �2) are arbitrary, it follows from (28) that ∂2A
∂s2 (ρ, s)(wn,wn) < 0 for all n � 1. We

can now repeat the same construction with different choices of ϕ and of the sequence {τn}n, and build a countable

family of functions {wn}n with disjoint supports and such that ∂2A
∂s2 (ρ, s)(w,w) < 0 for all w ∈ span{w1,w2, . . .}.

From Definition 4.2 it follows that the collision Morse index of A at x is infinite. �
In the next section we will present some concrete examples in which our Theorem 4.3 applies.

5. Applications of Theorem 4.3

In this section we discuss the applicability of Theorem 4.3 to concrete examples of limiting central configurations.
Clearly, the hardest assumption to check is inequality (28). Since it is known that the smallest eigenvalue μ1 of
∇2U|E (s0) at the central configuration s0 is characterized by

μ1 = min

{
∇2U|E (s0)(v, v)

∣∣∣ v ∈ Ts0E,
∑

i

mivi = 0, ‖v‖ = 1

}
, (32)

using (8) we obtain that (28) is implied by the existence of a vector v ∈ Ts0E such that
∑

i mivi = 0, ‖v‖ = 1 and

∇2U(s0)(v, v) + αU(s0)〈Mv,v〉 < − (2 − α)2

8
U(s0). (33)

In particular, when all the masses are equal to 1, we obtain the simpler condition

∇2U(s0)(v, v) < − (2 + α)2

8
U(s0). (34)

When each vj is assumed to be orthogonal to the vector space generated by the configuration s0 (see (11)) we can
introduce the square matrix A, defined in (12). Hence (33) and (34) are satisfied provided we can find a vector
v = (v1, . . . , vN) ∈ R

N , such that ‖v‖ = 1 and

−〈v,MAv〉 + U(s0)〈v,Mv〉 < − (2 − α)2

8α
U(s0) (35)

and

〈v,Av〉 >
(α + 2)2

8α
U(s0), (36)

respectively. We will prove that for a wide range of values of α (including the value α = 1) the collinear central
configuration of three equal masses and the regular N -gon configuration satisfy (28), showing (36). In particular, in
the second case, when N is even, we will prove that (36) is satisfied for a vector w ∈ R

N that verifies the hip-hop
symmetry (see [6] and [27]).
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5.1. Collinear central configurations for three equal masses

We consider the collinear central configuration of three particles of masses m1 = m2 = m3 = 1, lying on a straight
line

s0 = ((−1/
√

2,0), (0,0), (1/
√

2,0)
)
.

We perform a planar variation as follows:

v = ((cos θ, sin θ), (0,−2 sin θ), (− cos θ, sin θ)
)
,

where θ ∈ [0,π/2]. We remark that v = (v1, v2, v3) ∈ Ts0E ,
∑3

i=1 vi = 0, and ‖v‖2 = 2(1 + 2 sin2 θ). With these
choices the Hessian at the configuration s0 is (see (10))

∇2U(s0)(v, v) = 2α
{
cos2 θ

[
2(α + 10)2α/2 + (α + 1)2−α/2]− 18 · 2α/2}.

Therefore, after dividing out by ‖v‖2, (28) reads

1

1 + 2 sin2 θ

{
cos2 θ

[
2(α + 10)2α/2 + (α + 1)2−α/2]− 18 · 2α/2}< − (α + 2)2

8α

(
2 · 2α/2 + 2−α/2). (37)

It is apparent that the most convenient choice, in order to get the widest range of α’s, is θ = π/2, i.e. to take normal
variations. Hence (37) reduces to

6 · 2α

2 · 2α + 1
>

(α + 2)2

8α
. (38)

Let f (α) := 6·2α

2·2α+1 and g(α) := (α+2)2

8α
be respectively the left and right-hand side of (38); since g strictly decreases

on (0,2], f strictly increases [0,2] and f (0) = g(6 − 4
√

2), we conclude the existence of ᾱ < 6 − 4
√

2 such that for
every α ∈ [ᾱ,2] the inequality (38) holds true.

In a similar way, we can consider the central configuration of three masses m1 = m3 but m2 different. Indeed, in
this case we have a central configuration s0 whose points are

s0 = ((−1/
√

2m1,0), (0,0), (1/
√

2m1,0)
)
.

We then choose again the normal variation

v1 = (0,1), v2 = (0,−2), v3 = (0,1)

and observe that condition (35) reads now

9 · 2
α+2

2 m
α+4

2
1 m2 − (m1 + 2m2)(2

α+2
2 m

α+2
2

1 m2 + 2− α
2 m

α+4
2

1 )

2
α+2

2 m
α+2

2
1 m2 + 2− α

2 m
α+4

2
1

>
3(2 − α)2

8α
.

After some simplifications, this is equivalent to the inequality

9 · 2α+1m1m2 − (m1 + 2m2)(2α+1m2 + m1)

2α+1m2 + m1
>

3(2 − α)2

8α
.

Since this inequality is homogeneous with respect to the masses m1 and m2, we can suppose now m2 = 1. Hence we
should solve

2α(16m1 + 4) − m2
1 + 2m1

2α+1 + m1
>

3(2 − α)2

8α
. (39)

Set now

f (α) = 2α(16m1 + 4) − m2
1 + 2m1

2α+1 + m1
, g(α) = 3(2 − α)2

8α
.

One checks easily that g(2) = 0 and g is a positive, strictly decreasing function on (0,2). Moreover, since

f ′(α)

α
= 18m2

1
α+1 2

,

2 log 2 (2 + m1)
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the function f is strictly increasing to the value f (2) = −m2
1+66m1+16
m1+8 . We conclude that we can find a number

α∗ > 0 such that (39) is satisfied for all α > α∗ if and only if f (2) > g(2), i.e. m2
1 − 66m1 − 16 < 0, or m1 <

33 + √
332 + 16. The Newtonian case α = 1 is admissible if and only if f (1) > g(1), i.e.

2(16m1+4)−m2
1+2m1

4+m1
> 3/8,

or 8m2
1 − 269m1 + 52 > 0. Hence m1 < 34 is enough.

Remark 5.1. For the collinear configuration of three equal masses we can try to verify (28) instead of the stronger (34).
Observe that the vector (1,1,1) is an eigenvector for A with eigenvalue 0. Hence we restrict the matrix A to the space
orthogonal to this vector that is Y = {v = (v1, v2, v3):

∑
i vi = 0} spanned by

w1 = (1,0,−1), w2 = (0,1,−1).

If B = [bhk] denotes the symmetric matrix A restricted to the space Y we have that

bhk = wT
hAwk = ahk − (ah3 + ak3) + a33 = bkh,

where wT denotes transposition of the vector w. Explicitly,

B =
(

2γ + 4γ −1 γ + 2γ −1

γ + 2γ −1 5γ + γ −1

)
, with γ = 2

α+2
2 ,

and its eigenvalues are

λ
1,2
B = 7γ + 5γ −1 ±√13γ 2 − 2 + 25γ −2

2
.

It is easy to check that condition (36) is implied by the inequality

(γ + 2γ −1)−1 7γ + 5γ −1 +√13γ 2 − 2 + 25γ −2

2
>

(2 + α)2

8α
. (40)

This approach gives a wider range of “good” values for the parameter α but is clearly impossible to apply in more
general situations. In Fig. 1, we compare (38) with (40).

Fig. 1. Validity of (38) compared with the validity of (40). The values of α lie on the horizontal axis. The continue line represents the quantity
(2+α)2

8α
. The dotted line is the left-hand side of (38) and the remaining line is the left-hand side of (40).
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5.2. The regular N -gon central configuration

We now consider the case of a planar central configuration of N � 4 equal bodies with equal masses, lying at the
vertices of a regular N -gon inscribed in a circle of radius 1/

√
N . In the sequel, we will systematically use the notation

rij = rij (N) = 2√
N

sin

( |i − j |
N

π

)
for the distance between the i-th and the j -th bodies. We remark that rij = r1k , where k = |i − j | + 1.

The aim of this section is to show that when s0 is the polygonal central configuration, then relation (28) is verified
for a whole interval of α’s including the Newtonian case α = 1. This will prove that collisions ending up in a polygonal
configuration cannot be minima for the action.

Condition (36) in this case reads

∑
i,j

aijwiwj >
(α + 2)2

8α
U(s0) = (α + 2)2

8α

N

2

N∑
k=2

1

rα
1k

. (41)

We rewrite (41) in the form

ΨN(α) := 2

N

∑
i,j aijwiwj∑N

k=2 r−α
1k

>
(α + 2)2

8α
. (42)

Define, for simplicity, r̃ij =
√

N
2 rij = sin(

|j−i|
N

π), ãij = (
√

2
N

)α+2aij , so that the matrix Ã = [ãij ] can be constructed
by writing r̃ij instead of rij in (12). Observe that

ΨN(α) = 1

2

∑
i,j ãijwiwj∑N

k=2 r̃−α
1k

= 1

2

∑N
i=1 ãiiw

2
i + 2

∑
i<j ãijwiwj∑N

k=2 r̃−α
1k

.

We choose w as follows:

w =
{

(1/2,−1/2,1/2,−1/2) for N = 4,

(1/
√

2,−1/
√

2,0, . . . ,0) for N � 5.
(43)

Remark 5.2. Equivalently, when N � 5, we could choose w such that wi = 1/
√

2, wi+1 = −1/
√

2, and wk = 0 for
any k /∈ {i, i + 1}. We will use this observation later on.

Therefore

Ψ4(α) = Φ4(α) + 1

2

2r̃−α−2
12 − r̃−α−2

13∑4
k=2 r̃−α

1k

,

ΨN(α) = ΦN(α) + 1

2

r̃−α−2
12∑N
k=2 r̃−α

1k

(N � 5),

where

ΦN(α) := 1

2

∑N
k=2 r̃−α−2

1k∑N
k=2 r̃−α

1k

, for all N � 4. (44)

We now state and prove some technical lemmata that are useful for the proof of the main theorem of this section. The
first one is a simple exercise in first year calculus.

Lemma 5.3. Let {bj }j=1,...,n be a family of n positive real numbers such that

b1 > b2 > · · · > bn > 1.
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Then the two functions

f (x) :=
∑n

j=1 bx+2
j∑n

j=1 bx
j

and g(x) := 1 +∑n
j=1 bx+2

j

1 +∑n
j=1 bx

j

are strictly increasing on the interval [0,2].

Proof. One computes the first derivatives of f and g by the rule for a quotient. Then the sign of these derivatives is
the sign of the numerator. When dealing with f , after simplifying some terms, we end up with a sum of terms like

bx
i bx

j (b2
i − b2

j )(logbi − logbj ) (i < j)

and these are all positive, because of the monotonicity of the family {bj }. When dealing with g, an extra term appears
due to the presence of the number 1. Nevertheless, we easily check that the extra term is just∑

j

bx
j (b2

j − 1) logbj ,

which is positive since bj > 1. �
Lemma 5.4. For every N � 4, the function ΦN : [0,2] → R is strictly increasing and satisfies

ΦN(0) >
N − 1

N
. (45)

Proof. The monotonicity of ΦN follows easily from Lemma 5.3, by exploiting the symmetry of the regular N -gon
with respect to a straight line passing through a fixed vertex. If N is odd, one has

ΦN(α) := 1

2

∑(N+1)/2
k=2 r̃−α−2

1k∑(N+1)/2
k=2 r̃−α

1k

,

where 0 < r̃1k = sin( k−1
N

π) � sin(N−1
N

π) < 1. Now we can use the monotonicity of f . If N is even one uses the

monotonicity of g with aj := sin(
j
N

π), j = 1, . . . , [N+1
2 ] − 1. The proof of (45) is equivalent to the following in-

equality

N∑
k=2

r̃−2
1k >

2(N − 1)2

N
.

Since t �→ t−2 is a convex function on (0,∞), the discrete Jensen inequality tells us that(
1

N − 1

N∑
k=2

r̃1k

)−2

� 1

N − 1

N∑
k=2

r̃−2
1k , i.e.

(N − 1)3

(
∑N

k=2 r̃1k)2
�

N∑
k=2

r̃−2
1k .

Hence the following inequality implies (45)

(N − 1)3

(
∑N

k=2 r̃1k)2
>

2(N − 1)2

N
, or

N∑
k=2

r̃1k <

√
N(N − 1)

2
.

Since r̃1k = Im ei k−1
N

π , we can easily compute

N∑
r̃1k = cotan

π

2N
= sin π

N

1 − cos π
N

.

k=2
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Therefore, we have to prove that

sin π
N

1 − cos π
N

<

√
N(N − 1)

2
, for all N � 4.

We set x = π/N , so that the last inequality reads

sinx

1 − cosx
<

√
π(π − x)

2x2
= 1

x

√
π(π − x)

2
.

We will now show that

x sinx

1 − cosx
<

√
π(π − x)

2
for all x ∈

(
0,π

4

)
.

Set

f (x) = x sinx

1 − cosx
, g(x) =

√
π(π − x)

2
.

We now prove that g −f is strictly decreasing in the interval (0,π/4) and that g(π/4)−f (π/4) > 0. More precisely,
we claim that

g′(x) − f ′(x) = cosec2 x
2

8
√

π − x

{√
2π (cosx − 1) + 4(x − sinx)

√
π − x

}
< 0.

All we have to show is that√
2π (cosx − 1) + 4(x − sinx)

√
π − x < 0

for all x ∈ (0,π/4), or√
2π(cosx − 1) < 4

√
π − x (sinx − x).

But

sinx − x > −x3

6
, cosx − 1 < −x2

2
+ x4

4!
and this implies that we can check the inequality

√
2π x2

(
x2

4! − 1

2

)
< −2

3
x3√π − x,

or √
2π (x2 − 12) < −16x

√
π − x.

Both sides of this inequality are negative, since x ∈ (0,π/4). We now square and reverse the sense of the inequality,
and have to prove that

2πx4 + 256x3 − 304πx2 + 288π > 0.

This is clearly true, since 2πx4 + 256x3 − 304πx2 + 288π > 2πx4 − 304πx2 + 288π and this bi-quadratic equation
has no real roots in (0,π/4). To complete the proof, we need to show that g(π/4) − f (π/4) > 0. But

g

(
π

4

)
− f

(
π

4

)
= π

2

√
3

2
− π

4
√

2 − 1
> 0. �

Lemma 5.5. For each fixed N � 4, the map ΨN : [0,2] → R is strictly increasing.

Proof. With the same arguments contained in the proof of Lemma 5.3, one can prove that

2r̃−α−2
12 − r̃−α−2

13∑4
r̃−α

and
r̃−α−2

12∑N
r̃−α

(N � 5)
k=2 1k k=2 1k
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are monotone functions of α ∈ (0,2). In particular for the first one, we exploit the fact that r̃12 = r̃14. �
We conclude using Lemma 5.4.

Lemma 5.6. For each N � 4, there results ΨN(0) > 9/8.

Proof. When N = 4 we compute easily that Ψ4(0) > 5/4 > 9/8. When N = 5 we use sin(π/5) =
√

10 − 2
√

5/4 and

easily verify that Ψ5(0) > 6
√

5−1
5(

√
5−1)

> 9/8. For N � 6, we have to verify that ΨN(0) = ΦN(0)+ 1
2(N−1)

1
sin2(π/N)

. From

(45) we have that this inequality is implied by

1

sin2( π
N

)
>

(N + 8)(N − 1)

4N
for all N � 6.

To conclude, recall that sin π
N

< π
N

. Hence

1

sin2( π
N

)
>

N2

π2
,

and it is simple to check that for all N � 6 there results

4N3 > π2N2 + 7π2N − 8π2. �
Theorem 5.7. Let d � 3. For every N � 4, there exists αN < 1 such that (42) holds for every α � αN .

Proof. Let f (α) = (α+2)2

8α
be the right-hand side of (42). This is a strictly decreasing function on the interval (0,2).

Since f (1) = 9/8, we deduce from Lemmas 5.5 and 5.6 that the graphs of ΦN and of f must intersect at a unique
point αN < 1. This concludes the proof. �

When N is even and greater than 4, we provide an example of a vertical variation that verifies (36) and also
satisfies the hip-hop symmetry (in R

3). Denoting xk = (ξk, zk) ∈ R
3 = C × R the position of the k-th body, this

symmetry constraint, studied in [6] and [27], imposes that

∀k = 1, . . . ,N − 1 ξk+1(t) = e
π i
N ξk(t), zk+1(t) = −zk(t).

The simple variation on the N -gon configuration introduced in (43) is then no longer admissible as soon as N � 6;
however, we can consider the equivariant vector w orthogonal to the plane of the central configuration whose “vertical”
components are wi = (−1)i/

√
N , for i = 1,2, . . . ,N . Inequality (41) is then equivalent to

1

N

∑
i,j

(−1)i+j aij > hN(α), where hN(α) = (α + 2)2

8α

N

2

N∑
k=2

1

rα
1k

. (46)

We already know (see Remark 5.2) that whenever we choose two consecutive bodies of the polygon (say the i-th and
the (i + 1)-th) and we take wi = −wi+1 = 1/

√
2 then

1

2
(aii + ai+1 i+1 − 2ai i+1) > hN(α).

In particular if we take i = 1,3,5, . . . ,N − 1 and we sum the corresponding N/2 inequalities we obtain

1

2

(
N∑

i=1

aii − 2
∑

i∈{1,3,5,...,N−1}
ai i+1

)
> N

2 hN(α),

or

1

N

(
N∑

aii − 2
∑

ai i+1

)
= 1

N

(
Na11 − 2

N

2
a1 2

)
> hN(α). (47)
i=1 i=1,3,5,...,N−1
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Comparing (46) and (47) we conclude if we can prove

−2
N

2
a1 2 − 2N

N/2∑
j=3

(−1)j a1 j − 2
N

2
(−1)N/2+1a1N/2+1 > 0

that is

−a1 2 − 2
N/2∑
j=3

(−1)j a1 j − (−1)N/2+1a1N/2+1 > 0.

Replacing the expression of ai j (always negative when i 	= j ) we have to prove that

1

rα+2
1 2

+ 2
N/2∑
j=3

(−1)j

rα+2
1 j

+ (−1)N/2+1

rα+2
1N/2+1

> 0

and recalling that rij (N) = 2√
N

sin(
|i−j |

N
π), inequality (46) will follow from

g(N,α) = 1

sinα+2( π
N

)
+ 2

N/2∑
j=3

(−1)j

sinα+2(
j−1
N

π)
+ (−1)N/2+1 > 0, (48)

where g is defined on the product {6,8,10, . . .}× [0,2]. We then would like to prove (48) for every N � 6, N even, in
an interval of values of α containing α = 1. The sum of the first two terms of the function g is always positive, indeed

1

sinα+2( π
N

)
− 2

sinα+2( 2π
N

)
= [2 cos( π

N
)]α+2 − 2

sinα+2( 2π
N

)
=
(

2

sin( 2π
N

)

)α+2[
cosα+2

(
π

N

)
− 1

2α+1

]
and for every N greater then 6

cos

(
π

N

)
> cos

(
π

4

)
=

√
2

2
� 2− α+1

α+2 , ∀α ∈ [0,2].

The remaining terms can be collected in pairs of the kind

1

sinα+2(
(j−1)π

N
)

− 1

sinα+2(
jπ
N

)
, with j even, 4 � j � N

2

whose sum is positive being sinx an increasing function when x ∈ [0,π/2] and α positive. Concerning the other terms
in g, two different situations can occur: when N/2 is even or when N/2 is odd. In the first case the last two terms of
the function g are 2 sin−α−2(

(N−2)π
2N

) and −1 whose sum is strictly positive. When N/2 is odd there is just a positive
remaining term in g which is +1.

6. Asymptotic minimality for the weak-force case

Eq. (35) in Section 5 suggests that there should exist minimal colliding motions for small values of α. For the
reader’s sake, we will use a somehow more transparent notation to stress the dependence on the parameter α by
writing Uα and Aα instead of U and A defined in (2) and (3) respectively. Similarly hα = 1

2 |ẋα|2 − Uα(xα) denotes
the energy of xα , Cα ⊂ E the set of central configurations of Uα and we refer to (1)α to recall the dynamical system
(1) with the α-homogeneous potential Uα .

Throughout this section, we will consider total one-collision solutions (see Definition 3.3) xα to (1)α with the
following “initial conditions” independent of α:∣∣ẋα(0)

∣∣= ∣∣xα(0)
∣∣= 1.
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In particular, the function W defined in (14) is identically zero. In Section 3 we have seen that there exists a diffeo-
morphism Ψ that rewrites any non-trivial x ∈ H 1([0,1],R

Nd) in the coordinates (ρ, s) and changes the time t ∈ [0,1]
into a new time τ ∈ [0,+∞). On the space of these new variables we will use the norm

∥∥(ζ, v)
∥∥2
H =

+∞∫
0

(∣∣ζ ′(τ )
∣∣2 + ζ(τ )2)dτ +

+∞∫
0

(∣∣v′(τ )
∣∣2 + ∣∣v(τ)

∣∣2)dτ.

With an abuse of notation, we will continue to write Aα instead of Aα ◦ Ψ . Since the function W is identically zero,
the Euler–Lagrange equations (23) and (24) reduce to

−
(

4

2 − α

)2

ρ′′ + ρ
[|s′|2 + 2Uα(s)

]= −βhαρβ−1, (49)

−2ρρ′s′ − ρ2s′′ + ρ2∇Uα |E (s) = ρ2|s′|2s. (50)

It is convenient to introduce some terminology.

Definition 6.1. Let x ∈ H 1([0,1],R
Nd) be given, and let s be the second component of Ψ (x). A function ϕ is

compactly supported variation on (a, b) ⊂ (0,1) corresponding to x if ϕ ∈ TxH
1([0,1],R

Nd) � H 1([0,1],R
Nd)

and if v : [0,1] → TsE , where Ψ (ϕ) = (ζ, v).

Furthermore, if Δ ⊂ R
Nd is the set of collision configurations defined in (4), fixed δ > 0 we term Δδ its open

δ-neighborhood. The following lemma is crucial for the proofs of Theorems 6.5, 6.8 and 6.16.

Lemma 6.2. Let (xα)α∈A, A ⊂ (0,2), be a family of one-collision solutions for (1)α , α ∈ A, and let (Kα)α∈A, Kα ⊂ Cα ,
be the sets of central configurations to which xα is asymptotic, for every α ∈ A, in the sense of Definition 3.8. If

Kα ⊂ Cα \ Δδ, ∀α ∈ A (51)

for some δ > 0, then there exists m > 0, which does not depend on α, such that

∇2Uα |E (sα)(v, v) � −αm|v|2, ∀v ∈ TsαE

where sα = xα/|xα|, for every α ∈ A.

Proof. The conclusion follows from Eqs. (9) and (10) and the uniform assumption (51). �
Remark 6.3. Condition (51) is reminiscent of the result proved in [23] for the Newtonian case. However the quantity
δ in our condition must be the same for all α ∈ A. It seems quite hard to adapt the proof of [23] to our setting.

We recall some terminology.

Definition 6.4. A solution xα(t) = (xα,1, . . . , xα,N )(t) of (1)α is called homographic if there exist two functions
λ(t) > 0 and A(t) ∈ SO(d) and a fixed configuration s̄α = (s̄α,1, . . . , s̄α,N ) such that

xα(t) = λ(t)
(
A(t)s̄α,1, . . . ,A(t)s̄α,N

)
(t).

It is well known that the configuration s̄α associated to a homographic motion is central, that is s̄α is a critical point
for the potential U constrained to the ellipsoid E . See Definition 2.1 and Remark 2.2.

Let us state and prove the first result of this section.

Theorem 6.5. Let (xα)α∈A, A ⊂ (0,2), be a family of homographic one-collision solutions for (1)α and let s̄α be such
that xα(t) = rα(t)s̄α , for all t ∈ [0,1] and α ∈ A. If there exists δ > 0 such that

(s̄α)α ⊂ Cα \ Δδ (52)
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then there exists ᾱ ∈ (0,2) such that for every α ∈ (0, ᾱ) ∩ A there exists tα = t (xα) such that3

ΔAα(xα,ϕ) := Aα(xα + ϕ) −Aα(xα) > 0 (53)

for every compactly supported variation ϕ on (tα,1).
Furthermore if for every α ∈ A the energy of the homographic motion is positive then there exists ¯̄α ∈ (0,2) such

that for every α ∈ (0, ¯̄α) ∩ A inequality (53) holds for every compactly supported variation ϕ on (0,1).

Proof. We will prove (53) by switching to the new coordinates (ρ, s) and to the scaled time τ defined in (18). Since
ϕ is a compactly supported variation and by virtue of (52), we see that Aα = Aα ◦ Ψ is smooth enough to write the
Taylor expansion (where (ζ, v) = Ψ (ϕ) and suppv ⊂ (0,+∞))

ΔAα(xα,ϕ) = d2Aα(xα)
(
(ζ, v), (ζ, v)

)+ o
(∥∥(ζ, v)

∥∥2
H
)
,

where the first order term disappears because xα is a critical point of Aα . Therefore, it is sufficient to prove that
d2Aα(xα)((ζ, v), (ζ, v)) > 0 whenever α is small enough and the support of v is sufficiently away from 0. Equiva-
lently, we will prove that

∂2Aα

∂ρ2
(ζ, ζ ) + 2

∂2Aα

∂ρ∂s
(ζ, v) + ∂2Aα

∂s2
(v, v) > 0, (54)

where

∂2Aα

∂ρ2
(ρα, s̄α)(ζ, ζ ) =

+∞∫
0

(
4

2 − α

)2

(ζ ′)2 + ζ 2(|s̄′
α|2 + 2Uα(s̄α)

)
dτ, (55)

∂2Aα

∂ρ∂s
(ρα, s̄α)(ζ, v) = 2

+∞∫
0

ραζ
[
s̄′
α · v′ + ∇Uα |E (s̄α) · v]dτ, (56)

∂2Aα

∂s2
(ρα, s̄α)(v, v) =

+∞∫
0

ρ2
α

[|v′|2 + ∇2Uα |E (s̄α)(v, v)
]
dτ. (57)

Since we are dealing with homographic motions, s̄α is a constant function, critical point of Uα constrained to the

ellipsoid E , then ∂2Aα

∂ρ∂s
(ρα, s̄α)(ζ, v) = 0 for every pair (ζ, v).

As in the proof of Theorem 4.3, we introduce the auxiliary variable w = ραv and we wish to prove that

∂2Aα

∂ρ2
(ρα, s̄α)(ζ, ζ ) + ∂2Aα

∂s2
(ρα, s̄α)(v, v)

=
+∞∫
0

{(
4

2 − α

)2

(ζ ′)2 + 2Uα(s̄α)ζ 2 + ρ2
α

[|v′|2 + ∇2Uα |E (s̄α)(v, v)
]}

dτ

=
+∞∫
0

{(
4

2 − α

)2

(ζ ′)2 + 2Uα(s̄α)ζ 2 + |w′|2 + ρ′′
α

ρα

|w|2 + ∇2Uα |E (s̄α)(w,w)

}
dτ > 0,

where in the last step we have integrated by parts. Using the Euler–Lagrange equation (49) divided by ρ we have

∂2Aα

∂ρ2
(ρα, s̄α)(ζ, ζ ) + ∂2Aα

∂s2
(ρα, s̄α)(v, v)

3 With a slight abuse of notation, we write here xα + ϕ. This is justified by the fact that ϕ is a tangent vector at xα to the linear space
H 1([0,1],R

Nd).
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=
+∞∫
0

{(
4

2 − α

)2

(ζ ′)2 + |w′|2 + 2Uα(s̄α)

[
ζ 2 +

(
2 − α

4

)2

|w|2
]}

dτ

+
+∞∫
0

{(
2 − α

4

)2

βhαρβ−2
α |w|2 + ∇2Uα |E (s̄α)(w,w)

}
dτ.

Since Uα is positive, by the uniform assumption (52) and Lemma 6.2 there exist two positive constants C,m such that

∂2Aα

∂ρ2
(ρα, s̄α)(ζ, ζ ) + ∂2Aα

∂s2
(ρα, s̄α)(v, v) � C

+∞∫
0

[
(ζ ′)2 + ζ 2 + |w′|2]dτ − αm

+∞∫
0

|w|2 dτ

+
(

2 − α

4

)2 +∞∫
0

βhαρβ−2
α |w|2 dτ.

If we suppose hα > 0, for every α ∈ A, we have that there exists C1 > 0 such that, whenever α is sufficiently small

∂2Aα

∂ρ2
(ρα, s̄α)(ζ, ζ ) + ∂2Aα

∂s2
(ρα, s̄α)(v, v) �

+∞∫
0

[
(ζ ′)2 + ζ 2 + |w′|2]dτ − αM

+∞∫
0

|w|2 dτ

� C1
∥∥(ζ,w)

∥∥2
H

independently on the support of the function w. Otherwise, when we do not impose any assumption on the energy hα ,
since, for every α, the function ρα tends to 0 decreasing, we can find τα sufficiently large, such that

∂2Aα

∂ρ2
(ρα, s̄α)(ζ, ζ ) + ∂2Aα

∂s2
(ρα, s̄α)(v, v) � C2

∥∥(ζ,w)
∥∥2
H (58)

for some positive constant C2, whenever the support of w is contained in (τα,+∞). �
The asymptotic behavior of a collision solution, recalled in Proposition 3.7, suggests an extension of Theorem 6.5

to suitable families of collision motions. Also in this case a uniform condition on the asymptotic sets of central
configuration will be assumed. With this aim we give the following definition.

Definition 6.6. We say that the set of central configurations Kα ⊂ Cα has the property of the asymptotic minimality
if for every xα solution (1)α asymptotic to the set Kα there exists tα = t (xα) such that (53) holds for every ϕ with
compact support in (tα,1).

Remark 6.7. Let xα be as in Definition 6.6. This implies that every variation ϕ that makes ΔAα(xα,ϕ) � 0 is sup-
ported in [0, tα]. This fact in particular implies that the collision Morse index (Definition 4.2) of xα|[tα,1] is 0.

The next result is a generalization of Theorem 6.5 to a larger class of total collision motions.

Theorem 6.8. Let (Kα)α∈A, A ⊂ (0,2), be a family of sets of central configurations. If there exists δ > 0 such that (51)
holds then there exists ᾱ ∈ (0,2) such that Kα has the property of the asymptotic minimality for every α ∈ (0, ᾱ) ∩ A.

Proof. Let xα , for some α ∈ A be a solution of (1)α asymptotic to the set Kα .We argue as in the proof of Theorem 6.5
and in this setting, replacing w = ρv and using (29), we integrate by parts and obtain

∂2Aα

∂ρ2
(ρα, sα)(ζ, ζ ) + ∂2Aα

∂s2
(ρα, sα)(v, v)

=
+∞∫ {(

4

2 − α

)2

(ζ ′)2 + ζ 2[|s′
α|2 + 2Uα(sα)

]+ ρ2
α

[|v′|2 + ∇2Uα |E (sα)(v, v)
]}

dτ
0
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=
+∞∫
0

{(
4

2 − α

)2

(ζ ′)2 + ζ 2[|s′
α|2 + 2Uα(sα)

]+ |w′|2 + ρ′′
α

ρα

|w|2 + ∇2Uα |E (sα)(w,w)

}
dτ

=
+∞∫
0

{(
4

2 − α

)2

(ζ ′)2 + |w′|2 +
[
ζ 2 +

(
2 − α

4

)2

|w|2
][|s′

α|2 + 2Uα(sα)
]}

dτ

+
+∞∫
0

{(
2 − α

4

)2

βhαρβ−2
α |w|2 + ∇2Uα |E (sα)(w,w)

}
dτ.

Since |s′
α|2 +2Uα(sα) > 0, the uniform assumption (51) and Lemma 6.2 still imply the existence of a positive constant

C2 such that inequality (58) holds. On the other hand, integrating by parts the mixed term ∂2Aα

∂ρ∂s
(ρ, s)(ζ, v) and

recalling that v has compact support we obtain

1

2

∂2Aα

∂ρ∂s
(ρα, sα)(ζ, v) =

+∞∫
0

ραζ
(
s′
α · v′ + ∇Uα |E (sα) · v)dτ

=
+∞∫
0

ζ s′
α ·
(

w′ − ρ′
α

ρα

w

)
+ ζ∇Uα |E (sα) · w dτ

=
+∞∫
0

(
−ζ ′s′

α − ζ s′′
α − ζ

ρ′
α

ρα

s′
α + ζ∇Uα |E (sα)

)
· w dτ. (59)

Replacing the second Euler–Lagrange equation (50) divided by ρ2, that is

−2
ρ′

α

ρα

s′
α − s′′

α + ∇Uα |E (sα) = |s′
α|2sα,

into (59) we obtain

1

2

∂2Aα

∂ρ∂s
(ρα, sα)(ζ, v) =

+∞∫
0

(
−ζ ′s′

α + ζ
ρ′

α

ρα

s′
α + ζ |s′

α|2sα
)

· w dτ.

The Hölder inequality gives immediately∣∣∣∣∣
+∞∫
0

ζ ′s′
α · w dτ

∣∣∣∣∣�
( +∞∫

0

|s′
α|2 dτ

)1/2( +∞∫
0

(ζ ′)2|w|2 dτ

)1/2

� ‖w‖∞

( +∞∫
0

|s′
α|2 dτ

)1/2( +∞∫
0

(ζ ′)2 dτ

)1/2

,

∣∣∣∣∣
+∞∫
0

ζ
ρ′

α

ρα

s′
α · w dτ

∣∣∣∣∣�
( +∞∫

0

|s′
α|2 dτ

)1/2( +∞∫
0

(ζ )2
(

ρ′
α

ρα

)2

|w|2 dτ

)1/2

� ‖w‖∞

( +∞∫
|s′

α|2 dτ

)1/2( +∞∫
(ζ )2

(
ρ′

α

ρα

)2

dτ

)1/2

,

0 0
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∣∣∣∣∣
+∞∫
0

ζ |s′
α|2sα · w dτ

∣∣∣∣∣� ‖ζ‖∞‖w‖∞
+∞∫
0

|s′
α|2 dτ

and then

1

2

∣∣∣∣∂2Aα

∂ρ∂s
(ρα, sα)(ζ, v)

∣∣∣∣
� ‖w‖∞

[( +∞∫
0

(ζ ′)2 dτ

)1/2

+
( +∞∫

0

ζ 2
(

ρ′
α

ρα

)2

dτ

)1/2]( +∞∫
0

|s′
α|2 dτ

)1/2

+ ‖ζ‖∞
+∞∫
0

|s′
α|2 dτ.

Recall that α is fixed (and so small that (58) holds). Pick now ε > 0. Since ρ′
α/ρα converges to a finite limit as

τ → +∞, and
∫ +∞

0 |s′
α|2 < +∞ (Proposition 3.7), there exists τα depending on xα such that

+∞∫
0

|s′
α|2 dτ =

∫
suppw

|s′
α|2 dτ < ε

whenever suppw ⊂ (τα,+∞). Hence, for all such w’s,∣∣∣∣∂2Aα

∂ρ∂s
(ρα, sα)(ζ, v)

∣∣∣∣� C3
√

ε ‖w‖∞ ‖ζ‖H 1 � C4
√

ε ‖(ζ,w)‖2
H (60)

for some positive constants C3,C4. From (58) and (60) we obtain

d2Aα(xα)
(
(ζ, v), (ζ, v)

)
� (C2 − 2C4

√
ε )‖(ζ,w)‖2

H > 0. �
In Theorem 6.8, we cannot exclude that, as α → 0, the support of the variation ϕ moves off to the collision time

t = 1. It is natural to investigate under what circumstances it is possible to single out a time t∗, independent of α, such
that the second differential d2Aα(xα)(ϕ,ϕ) > 0 is positive for any variation ϕ supported in (t∗,1). It will turn out that
the following uniform condition on the behavior of ρα plays a crucial rôle.

(UC) As τ → +∞, ρα(τ) → 0 uniformly with respect to α ∈ (0,2). More precisely, for all σ > 0 there exists τσ > 0
such that for all α ∈ (0,1) and all τ � τσ there results ρα(τ) < σ .

Since it is clear that it would be useless to take the limit as α → 0 inside (1), we need to single out a non-trivial
limiting problem that describes the asymptotic properties of one-collision solutions. Therefore we introduce the scaled
potential

Ũα(x) = 1

α

∑
i<j

mimj

|xi − xj |α = 1

α
Uα(x). (61)

The corresponding action reads

Ãα(x) = 1

2

1∫
0

|ẋ|2 dt + 1

α

1∫
0

Uα(x)dt. (62)

When we replace Ũα to Uα in (1)α , the solutions of the new dynamical system are strictly linked to the solutions of
the old one as the next lemma asserts. Its very simple proof is omitted.

Lemma 6.9. If x̃ = α−1/α+2x, then Ãα(x̃) = α−2/α+2Aα(x). In particular, if xα is a solution of (1)α , then x̃α =
α−1/α+2xα solves

¨̃xα = ∇Ũα(x̃α). (63)
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Remark 6.10. It is evident that a solution of ẍ = ∇Ũα(x) is also a solution of ẍ = ∇Ûα(x), where

Ûα(x) = 1

α

∑
i<j

mimj

(
1

|xi − xj |α − 1

)
. (64)

For each x = (x1, . . . , xn) ∈ R
Nd , there results

lim
α→0

Ûα(x) = −
∑
i<j

mimj log |xi − xj | =: Ulog(x). (65)

However, the potential Ûα is lacking the homogeneity property which seems to be essential in the definition of the
new variables (ρ, s), see Section 3.

We consider a family (x̃α)α , α ∈ (0,2), such that, fixed α, x̃α solves⎧⎪⎨⎪⎩
¨̃xα = ∇Ũα(x̃α),

x̃α(0) = x0
α ∈ R

Nd,

˙̃xα(0) = v0
α ∈ R

Nd.

(66)

We express x̃α in terms of the generalized polar coordinates (ρ̃α, s̃α) and the new time τ . Hence ρ̃α and s̃α satisfy
the Euler–Lagrange equations (49) and (50) with Ũα instead of Uα . We make the following assumptions on the initial
condition:

(IC1) ρ̃α(0) = 1 and ρ̃′
α(τ ) < 0 for all α and for all τ � 0.

(IC2) s̃α(0) → s0 and s̃′
α(0) → v0 as α → 0.

Define

Γα(τ) = 1

2

∣∣s̃′
α(τ )

∣∣2 − Ûα

(
s̃α(τ )

)
(67)

where Ûα has been introduced in (64). In this setting we prove the next four lemmas.

Lemma 6.11. There exists a constant C > 0, independent of α, such that

+∞∫
0

− ρ̃′
α

ρ̃α

|s̃′
α|2 dτ � C. (68)

Proof. By differentiating Γα (with respect to τ ) and making use of (50) with Uα replaced by Ũα , we compute

dΓα

dτ
= −2

ρ̃′
α

ρ̃α

|s̃′
α|2. (69)

Therefore
+∞∫
0

− ρ̃′
α

ρ̃α

|s̃′
α|2 dτ = lim

τ→+∞Γα

(
s̃α(τ )

)− Γα

(
s̃α(0)

)
(70)

We will complete the proof by showing that the right-hand side of (70) has a finite limit as α → 0. Since Γα(0) =
1
2 |s̃′

α(0)|2 − Ûα(s̃α(0)), by virtue of assumption (IC2), we have that Γα(0) has a limit as α → 0.
As regards the behavior of Γα(+∞) := limτ→+∞ Γα(s̃α(τ )), we deduce from the asymptotic estimates (see Propo-

sition 3.7(c)) that limτ→+∞ Ûα(s̃α(τ )) = b̂α exists and is finite. We choose s̄α ∈ E such that b̂α = Ûα(s̄α). Since E
is a compact set, we may assume that s̄αk

→ s̄0 for a suitable subsequence αk → 0. Moreover, it is known that
limτ→+∞ |s̃′

αk
(τ )| = 0 (see Proposition 3.7(f)). We conclude as before that Γαk

(+∞) has a finite limit as αk → 0. �
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Lemma 6.12. For any ε > 0 there exist τε > 0 and αε ∈ (0,2) such that

2 − α

4α

(
1 − ρ̃α(τ )4α/(2−α)

)
� 1

ε
(71)

for all α ∈ (0, αε) and τ � τε .

Proof. To save notation, we set γ = γ (α) = 4α/(2 − α). First of all, we remark that if ρ1, ρ2 ∈ (0,1) with ρ1 < ρ2,
then

1 − ρ
γ

1

γ
>

1 − ρ
γ

2

γ
.

We fix ε > 0 and choose η = ηε > 0 such that − logη > 1/ε. From assumption (UC), we can fix τε > 0 such that
ρ̃α(τ ) < η whenever α ∈ (0,2) and τ � τε . Furthermore, since as α → 0 (1−ηγ )/γ → − logη, we can fix αε ∈ (0,2)

such that

1 − ηγ

γ
� − logη − ε.

Finally, if τ � τε and α < αε , we get

1 − ρ̃α(τ )γ

γ
>

1 − ηγ

γ
� − logη − ε � 1

ε
− ε. (72)

Inequality (71) is of course equivalent to (72). �
Before proceeding, we notice that, since hα = 1

2 |ẋα|2 − Uα(xα) and x̃α = α− 1
α+2 xα , there results h̃α = 1

2 | ˙̃xα|2 −
1
α
Ũα(x̃α) = α− 1

α+2 hα . Similarly, from Remark 6.10 we also get ĥα = 1
2 | ˙̃xα|2 − Ûα(x̃α) = h̃α + 1

α

∑
i<j mimj . We

will assume that ĥα = 0, which amounts to

(H) The energy of the solution xα is hα =
∑

i<j mimj

α
α

α+2
.

Lemma 6.13. Assume condition (H). Then there exists a constant C such that

2Ũα

(
s̃α(τ )

)+ βh̃αρ̃α(τ )β−2 � C + 1

ε

for all α ∈ (0, αε) and τ � τε .

Proof. We can write

Ũα(s̃α) + β

2
h̃αρβ−2

α =
∑
i<j

mimj

[
1

α

1

|s̃α,i − s̃α,j |α − 1

α

2 + α

(2 − α)
ρ̃4α/(2−α)

α

]

=
∑
i<j

mimj

[
1

α

(
1

|s̃α,i − s̃α,j |α − 1

)
+ 1

α
− 1

α

2 + α

(2 − α)

(
ρ̃4α/(2−α)

α − 1
)− 1

α

2 + α

2 − α

]

=
∑
i<j

mimj

[
1

α

(
1

|s̃α,i − s̃α,j |α − 1

)
+ 1

α

(
1 − 2 + α

2 − α

)
− 4

2 + α

(2 − α)2

2 − α

4α

(
ρ̃4α/(2−α)

α − 1
)]

.

We now observe that since s̃α ∈ E , then |s̃α,i − s̃α,j | � 2, for all α and i 	= j , and

1

α

(
1

|s̃α,i − s̃α,j |α − 1

)
� 1 − 2α

α2α

where the right-hand side converges to − log 2. The conclusion follows from Lemma 6.12 and easy algebraic inequal-
ities. �
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Remark 6.14. We notice that assumption (H) implies in particular limα→0 hα =∑i<j mimj . More generally, the

same proof adapts to the case in which ĥα = C, a constant independent of α. Indeed, the “old” energy would be

hα = (Cα
2

α+2 − 1

α
α

α+2
)
∑

i<j mimj , and the first term tends to zero as α → 0.

Lemma 6.15. Assume condition (H). Then, for every ε > 0 there exists τε > 0 and αε ∈ (0,2) such that
∞∫

τε

|s̃′
α|2 dτ < ε.

for all α ∈ (0, αε).

Proof. Set φα(τ) = −ρ̃′
α(τ )/ρ̃α(τ ). By direct computation

φ′
α(τ ) = − ρ̃′′

α

ρ̃α

+
(

ρ̃′
α

ρ̃′
α

)2

= − ρ̃′′
α

ρ̃α

+ φα(τ)2

hence using Eq. (49) and Lemma 6.13 we have

φ′
α(τ ) =

(
2 − α

4

)2[−|s̃′
α|2 − 2Ũα(s̃α) − βhαρ̃β−2

α

]+ φα(τ)2

� −
(

C + 1

ε

)
+ φα(τ)2.

Since, by (IC1), ρ̃′
α < 0 we deduce that φα is positive. We claim that

φα(τ)2 � C + 1

ε
for every τ > 0. (73)

If (73) is false, then φα(τ0) <
√

C + 1/ε for some τ0 > 0. Consider a solution ψ of the Cauchy problem{
ψ ′ = ψ2 − (C + 1

ε
),

ψ(τ0) = φα(τ0).

A basic comparison theorem for ODEs implies that φα(τ) � ψ(τ) for all τ � τ0. But ψ(τ) → −(C + 1/ε) as
τ → +∞, and therefore φα becomes negative for sufficiently large times. This is a contradiction that proves (73). �
Theorem 6.16. Let (xα)α∈A, A ⊂ (0,2), be a family of total one-collision solutions of (1)α , and let (x̃α)α∈A be the
corresponding solutions for the potential Ũα . Retain assumptions (UC), (IC1–2) and (H). If there exists δ > 0 for
which (51) holds, then there exist t∗ and a sequence (αk)k ⊂ A αk → 0 such that

d2Aαk
(xαk

)(ϕ,ϕ) > 0 (74)

for every variation ϕ with support in (t∗,1).

Proof. As already remarked, we can consider the action Ãα instead of Aα . Furthermore, (55), (56) and (57) hold with
Uα replaced by Ũα . When we compute the variation of the action functional we follow the proof of Theorem 6.8 to
obtain

∂2Ãα

∂ρ2
(ρ̃α, s̃α)(ζ, ζ ) + ∂2Ãα

∂s̃2
α

(ρ̃α, s̃α)(v, v)

=
+∞∫
0

{(
4

2 − α

)2

(ζ ′)2 + |w′|2 + (ζ )2[|s̃′
α|2 + 2Ũα(s̃α)

]}
dτ

+
+∞∫

∇2(Ũα)|E (s̃α)(w,w)dτ +
+∞∫ (

2 − α

4

)2

|w|2[|s̃′
α|2 + 2Ũα(s̃α) + βhαρ̃β−2

α

]
dτ.
0 0
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The first integral is positive and tends to +∞ as α → 0; the second one is bounded from below (indeed, following the
same idea of Lemma 6.2, ∇2(Ũα)|E (s)(w,w) � −m|w|2). The third one can be handled with the help of Lemma 6.13,
giving us the estimate

+∞∫
0

(
2 − α

4

)2

|w|2[|s̃′
α|2 + 2Ũα(s̃α) + βh̃αρ̃β−2

α

]
dτ �

(
K + 1

ε

) +∞∫
0

|w|2 dτ,

for some K > 0. In conclusion, there exists a constant C1 > 0 such that

∂2Ãα

∂ρ2
(ρα, s̄α)(ζ, ζ ) + ∂2Ãα

∂s2
(ρα, s̄α)(v, v) � C2

∥∥(ζ,w)
∥∥2
H.

Concerning the mixed derivative, we argue as in the proof of 6.8 to obtain

1

2

∂2Ãα

∂ρ∂s
(ρ̃α, s̃α)(ζ, v) =

∫
suppv

(
−ζ ′s̃′

α + ζ
ρ̃′

α

ρ̃α

s̃′
α + ζ |s̃′

α|2s̃α
)

· w dτ.

We use the Hölder inequality and get

1

2

∣∣∣∣∂2Ãα

∂ρ∂s
(ρ̃α, s̃α)(ζ, v)

∣∣∣∣�
( ∫

suppv

|s̃′
α|2 dτ

)1/2

×
[
‖w‖∞

( ∫
suppv

(ζ ′)2 dτ

)1/2

+ ‖v‖∞‖ζ‖∞

( ∫
suppv

(ρ̃′
α)2 dτ

) 1
2

+ ‖w‖∞‖ζ‖∞

( ∫
suppv

|s̃′
α|2 dτ

)1/2]
. (75)

We have seen in Lemma 6.15 that, for every ε > 0, there exists τε , independent of α, such that∫
suppv

|s̃′
α|2 dτ < ε for all α,

provided that suppv ⊂ (τε,+∞). To conclude, we notice that we are integrating over the compact set suppv which is
disjoint from the collision time. Basic results in the theory of ODEs (see Theorem 8.4 in [1]) imply that x′

α converges
locally uniformly—and locally in L2—to some limit as α → 0. Thus, also ρ′

α converges in L2(suppv) to a limit, and
in particular

sup
α

∫
suppv

(ρ̃′
α)2 dτ < +∞.

This and (75) give that

1

2

∣∣∣∣∂2Ãα

∂ρ∂s
(ρ̃α, s̃α)(ζ, v)

∣∣∣∣� C
√

ε
∥∥(ζ, v)

∥∥2
H. �
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