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Abstract

We prove the partial Hölder continuity for solutions to elliptic systems and for minimizers of quasi-convex integrals, under the
assumption of continuous coefficients. The proof relies upon an iteration scheme of a decay estimate for a new type of excess
functional measuring the oscillations in the solution and its gradient. To establish the decay estimate, we use the technique of
A-harmonic approximation, based on Duzaar and Steffen’s A-harmonic approximation lemma [F. Duzaar, K. Steffen, Optimal
interior and boundary regularity for almost minimizers to elliptic variational integrals, J. Reine Angew. Math. (Crelles J.) 546
(2002) 73–138].

Résumé

Nous prouvons la continuité Hölderienne partielle pour des solutions de systèmes elliptiques ou pour des minimiseurs d’inté-
grales quasi-convexes, sous réserve que les coefficients soient continus. La preuve consiste en un schéma itératif d’estimations de
décroissance pour un nouveau type de fonctionnelles d’excès servant à mesurer les oscillations de la solution et de son gradient.
Afin d’établir les estimations de décroissance, nous utilisons la technique de l’approximation A-harmonique, basée sur le lemme
d’approximation A-harmonique de Duzaar et Steffen [F. Duzaar, K. Steffen, Optimal interior and boundary regularity for almost
minimizers to elliptic variational integrals, J. Reine Angew. Math. (Crelles J.) 546 (2002) 73–138].
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1. Introduction and results

The purpose of this paper is to settle a rather longstanding issue in the regularity theory of vectorial elliptic and
variational problems. Let us first consider the following non-linear elliptic system in divergence form:

diva
(
x,u(x),Du(x)

) = 0 in Ω, (1.1)

where Ω ⊂ R
n is a bounded domain, and a :Ω × R

N × R
N×n → R

N×n is a continuous vector field such that z �→
a(· , ·, z) is of class C1, and satisfying the following standard ellipticity, growth and continuity assumptions⎧⎪⎨

⎪⎩
ν(1 + |z|)p−2|λ|2 � 〈az(x,u, z)λ,λ〉 � L(1 + |z|)p−2|λ|2,
|a(x,u, z) − a(x0, v, z)| � Lω(|x − x0|2 + |u − v|2)(1 + |z|)p−1,

|az(x,u, z2) − az(x,u, z1)| � Lμ(
|z2−z1|

1+|z1|+|z2| )(1 + |z1| + |z2|)p−2,

(1.2)

for all x, x0 ∈ Ω , u,v ∈ R
N and z, z1, z2, λ ∈ R

N×n. Here n,N � 2, p � 2, 0 < ν � L, and μ,ω : R+ → R
+ are two

moduli of continuity i.e. two bounded, concave, and non-decreasing functions such that μ(0) = ω(0) = 0. By az we
are denoting the partial derivatives of a with respect to the z-variable.

The emphasis in this paper is on the role played by the function ω(·), which describes the degree of continuity of the
partial map (x,u) �→ (1 + |z|)1−pa(x,u, z); that is, roughly speaking, the continuity of a with respect to the “coeffi-
cients” (x,u). For the moment, let us concentrate on the scalar case N = 1, when the solution u is a scalar valued func-
tion, and assume that ω(�) � �β/2, for some β ∈ (0,1). This means that (x,u) �→ (1 + |z|)1−pa(x,u, z) is a Hölder
continuous function with exponent β . Under this additional assumption it turns out that Du ∈ C

0,β

loc (Ω,R
n), whenever

u ∈ W 1,p(Ω) is a weak solution to the equation (1.1). If instead we only assume continuity with respect to (x,u); i.e.

lim
�↘0

ω(�) = 0; (1.3)

then we can no longer expect Du to be continuous, but we still find that u ∈ C
0,α
loc (Ω) for every α ∈ (0,1). See for in-

stance [8,25–27] with the references therein. Turning to the vectorial case N > 1, such full interior Hölder continuity
results for Du and u generally do not hold anymore. Indeed, it is known that singularities may appear (see for instance
the recent examples in [31], or [27] for a discussion of these examples). Although everywhere Hölder continuity no
longer expected in the vectorial case, it is often possible to obtain partial Hölder continuity: regularity of solutions
outside a negligible closed subset of Ω , referred to as the singular set. In fact, if we assume ω(�) � �β/2, then it is
known that Du is locally Hölder continuous with exponent β in an open subset Ωu ⊆ Ω , with |Ω \ Ωu| = 0 (see
for instance [11] and the related references). The point of this paper is to examine what happens in the vectorial case
N > 1 while just assuming the continuity (1.3) of a with respect to its coefficients.

In view of the established results in the scalar case N = 1, the natural expectation is that u is Hölder continuous
– with every exponent – in an open subset Ωu ⊆ Ω satisfying |Ω \ Ωu| = 0. A proof of such a regularity result
was claimed by Campanato [4,6,7], but this work contained an irreparable flaw, which has unfortunately propagated
into the literature. Therefore the problem of relaxing the assumption ω(�) � �β/2 to the assumption (1.3); that is
establishing a low-order partial regularity theory for vectorial elliptic problems; has remained a mostly unresolved
issue. Campanato [5,7] provided a positive answer in the low dimensional case, where n � p + 2 (see also [23] for
the variational case). A partial positive resolution has also been provided by Foss [17], who established full Hölder
continuity for solutions under additional structural assumptions. The closest successful attempt to producing a general
low-order partial regularity theory is due to Duzaar and Gastel [9], who considered Dini continuous coefficients; that
is they assumed the convergence condition

∫
0

√
ω(�)/� dρ < ∞ (see also [10,12] for variational integrals, and [32]).

This assumption is, in some sense, the weakest continuity assumption that still allows one to successfully carry out a
certain dyadic type of iteration, which is critical for the usual partial regularity proofs. Our objective is to provide a
low-order partial regularity theory in full generality. Indeed we have

Theorem 1.1. Let u ∈ W 1,p(Ω) be a weak solution to the system (1.1) under the assumptions (1.2) and (1.3). Then
there exists an open subset Ωu ⊆ Ω such that |Ω \ Ωu| = 0 and u ∈ C

0,α
loc (Ωu,R

N) for every α ∈ (0,1), and

Ω \ Ωu ⊆
{
x0 ∈ Ω: lim inf

�↘0
−
∫

B (x )

∣∣Du − (Du)x0,�

∣∣p dx > 0 or lim inf
�↘0

�β −
∫

B (x )

|Du|2 dx > 0

}
,

� 0 � 0
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for every β ∈ (0,2). Moreover, for every α ∈ (0,1) there exists an open subset Ωα
u ⊂ Ω such that |Ω \ Ωα

u | = 0,
u ∈ C

0,α
loc (Ωu,R

N) and such that for every β ∈ (0,2) the following inclusion holds:

Ω \ Ωα
u ⊆

{
x0 ∈ Ω: lim inf

�↘0
−
∫

B�(x0)

∣∣Du − (Du)x0,�

∣∣p dx � s or lim inf
�↘0

�β −
∫

B�(x0)

|Du|2 dx � s

}
,

where s > 0 depends only upon n,N,p, ν,L,α,β,ω(·),μ(·). In particular s is otherwise independent of the solution
u and of the vector field a.

The inclusion for the singular set Ωα
u described in the previous theorem tells us that a sort of “quantization of

singularities” property holds for problems such as (1.1): the “energy” represented by the integrals −
∫

B�(x0)
|Du −

(Du)x0,�|p dx and �β −
∫

B�(x0)
|Du|2 dx must exceed at every scale a certain quantity s to allow for a singularity. The

number s is “universal” in the sense that it depends neither on the system considered nor on the solution u but just
essentially on the ellipticity data ν,L, and on the rate of Hölder continuity chosen α ∈ (0,1). Similar quantization
phenomena typically occur when considering harmonic maps, or harmonic and p-harmonic flows. As for different
type of inclusions for the singular set Ω \ Ωu see also Remarks 3.2–3.3 below.

Having established partial Hölder regularity results for systems, the remaining task is to deal with variational
integrals

F[u] :=
∫
Ω

F(x,u,Du)dx, (1.4)

where we shall always consider a continuous integrand F :Ω × R
N × R

N×n → R. In the vectorial case N > 1 a
central assumption for the integrand F is quasiconvexity; that is∫

(0,1)n

[
F

(
x,u, z + Dϕ(y)

) − F(x,u, z)
]
dy � 0, for every ϕ ∈ C∞

c

(
(0,1)n,R

N
)
, (1.5)

whenever x ∈ Ω , u ∈ R
N , and z ∈ R

N×n. This is a far-reaching extension of the notion of convexity that turns out to be
essentially equivalent to the lower semicontinuity of variational integrals as originally noted by Morrey [28], and later
extended to the optimal assumptions by Acerbi and Fusco [1], and plays an important role in modern mathematical
materials science [3,29]. The assumptions that we are going to impose on F are that the partial map z �→ F(· , ·, z) is
of class C2 and that F satisfies⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ν|z|p � F(x, v, z) � L(1 + |z|)p,

ν
∫
(0,1)n

[(1 + |z| + |Dϕ(y)|)p−2|Dϕ(y)|2]dy �
∫
(0,1)n

[F(x,u, z + Dϕ(y)) − F(x,u, z)]dy,

|F(x,u, z) − F(x0, v, z)| � Lω(|x − x0|p + |u − v|p)(1 + |z|)p,

|Fzz(x,u, z2) − Fzz(x,u, z1)| � Lμ(
|z2−z1|

1+|z1|+|z2| )(1 + |z1| + |z2|)p−2,

(1.6)

for all x, x0 ∈ Ω , u,v ∈ R
N and z, z1, z2, λ ∈ R

N×n. The functions ω(·) and μ(·) are as those in (1.2). The second
inequality (1.6)2 is required to hold whenever ϕ ∈ C∞

c ((0,1)n,R
N), and is the so called uniform, strict quasiconvexity,

a suitable reinforcement of (1.5) which facilitates proving the partial Hölder continuity of the gradient [15,2,10]. This
assumption, in many respects, emulates the role of a non-degenerate convexity. Indeed when z �→ F(· , · , z) is convex
it can be verified (see for example [16]) that (1.6)2 implies

ν2
(
1 + |z|)p−2|λ|2 �

〈
Fzz(x, v, z)λ,λ

〉
� L2

(
1 + |z|)p−2|λ|2

for suitable constants ν2 ≡ (n,p, ν) and L2 ≡ L2(n,p,L), which is the analog of (1.2)2.
Let us momentarily turn our attention once again to the scalar case N = 1. In this setting, the quasiconvexity

hypothesis reduces to the ordinary notion of convexity, and under the additional assumptions in (1.6) the following
is known: if the dependence upon the “coefficients” (x,u) of F is Hölder continuous; i.e. ω(�) � �β/p; then for any
local minimizer of the functional F[·] in (1.4), we find that Du ∈ C

0,β/2
loc (Ω) (see [20], Chapter 8). Assuming only

continuity with respect to (x,u), that is (1.3), it has been established that u ∈ C
0,α
loc (Ω) for every α ∈ (0,1), exactly as

in the case of equations. See [25–27] and related references, and especially [8] for the last result.
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Returning to the vectorial setting, it is known that the gradient of a local minimizer is partially regular; that is Du

is locally Hölder continuous outside a negligible closed, singular set; provided that ω(�) � �β/p for some β ∈ (0,1).
One may again check [10,12] for the case of Dini-continuous coefficients, and [17] for a case with a particular struc-
ture. On the other hand nothing is known when assuming just continuity of coefficients, that is (1.3). We establish the
expected result:

Theorem 1.2. Let u ∈ W 1,p(Ω) be a local minimizer of the functional F[·] in (1.4) under the assumptions (1.6)
and (1.3). Then there exists an open subset Ωu ⊆ Ω such that |Ω \Ωu| = 0 and u ∈ C

0,α
loc (Ωu,R

N) for every α ∈ (0,1),
and

Ω \ Ωu ⊆
{
x0 ∈ Ω: lim inf

�↘0
−
∫

B�(x0)

∣∣Du − (Du)x0,�

∣∣p dx > 0 or lim inf
�↘0

�β −
∫

B�(x0)

|Du|p dx > 0

}
,

for every β ∈ (0,p). Moreover, for every α ∈ (0,1) there exists an open subset Ωα
u ⊂ Ω such that |Ω \ Ωα

u | = 0,
u ∈ C

0,α
loc (Ωu,R

N) and such that for every β ∈ (0,p) the following inclusion holds:

Ω \ Ωα
u ⊆

{
x0 ∈ Ω: lim inf

�↘0
−
∫

B�(x0)

∣∣Du − (Du)x0,�

∣∣p dx � s or lim inf
�↘0

�β −
∫

B�(x0)

|Du|p dx � s

}
,

where s > 0 depends only upon n,N,p, ν,L,α,β,ω(·),μ(·). In particular s is otherwise independent of the mini-
mizer u considered and of the integrand F .

Note that the previous result is new already in the case of vectorial functionals which are convex in the gradient
variable.

Finally, we make a few remarks regarding the techniques used. As is often the case for proofs of regularity, our
arguments ultimately rely upon comparisons to solutions of linearized systems to establish the decay of some excess
functional. An important feature in our paper is the use a suitable “hybrid" excess functional E(x0, �) (see (3.3)).
This is an integral functional that describes, in a ball centered at x0, and with radius �, both the oscillations of the
gradient Du via a quantity C(x0, �), and the oscillations of the function map u, via a quantity M(x0, �). The quantity
C(x0, �) differs from the typical excess functional used to capture the oscillatory behavior of the gradient in that it
has been “re-normalized” by the quantity (1 + |(Du)x0,�|). Our reason for this is that we are ultimately unable to
establish any Lipschitz estimates for the gradient of a solution; indeed, such estimates are not even expected when
assuming only (1.3). Thus it is too much to expect a decay estimate for the usual type of excess functional, since such
decay estimates do imply Lipschitz estimates. Yet, some decay in the oscillations of the gradient is necessary in order
to make comparisons to solutions of the linearized problem. Thus, we are led to consider the “re-normalized” excess
functional C(x0, �). The part of the excess functional controlling the oscillations of u, that is M(x0, �), is actually
incorporated into ω(·) to reflect the amount of regularity that we assume for the “coefficients” in our problem. The
partial Hölder continuity of solutions is then achieved by considering those points where the excess functional is
small, and it is at these points where we can employ the typical linearization/comparison argument to show the decay
of the excess functional. The smallness assumption leads to the inclusions of Theorems 1.1 and 1.2. Due to the
particular form of the excess adopted we found it appropriate to utilize the method of A-harmonic approximation,
a brilliant technique introduced by Duzaar and Steffen in the setting of Geometric Measure Theory [14], and later
applied in the non-parametric setting [11,10,9,21]. This method facilitates a rapid and elegant implementation of the
linearization techniques required for partial regularity, and in our case allows us to easily by-pass certain technical
problems arising when dealing with the particular form of the excess E(x0, �) used. The philosophy underlying our
arguments is essentially the same for both systems and functionals: we shall first give the proof for the case of systems
which is easier, and then we pass to the case of quasiconvex functionals, which necessitates considerably more care.
In particular, the form of the excess adopted for the case of functionals is more delicate, and influenced by the fact
that we need to use certain higher integrability results for minimizers (see (4.6)).

2. Notations, technical preliminaries

In this paper, c denotes a positive constant, possibly varying from expression to expression. On occasion, we will
denote a specific occurrence of a constant by c1, c∗ so that it may be later referenced. For convenience, unless other-
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wise stated, all such constants will be assumed to be larger than one. We shall define B�(x0) := {x ∈ R
n: |x−x0| < �};

when no ambiguity will arise, or when the center is unimportant in the context, we shall also denote B�(x0) ≡ B� .
Adopting a similar convention regarding centers, if g ∈ L1(B�(x0)) we shall put:

(g)� ≡ (g)x0,� := −
∫

B�(x0)

g(x) dx.

We recall that a weak solution u to the system (1.1), under the assumptions considered in (1.2), is a W 1,p(Ω,R
N)-

map such that∫
Ω

a(x,u,Du)Dϕ dx = 0, for every ϕ ∈ W
1,p

0

(
Ω,R

N
)
, (2.1)

while a W 1,p(Ω,R
N)-map u is a local minimizer of the functional F[·] in (1.4) provided,

F[u] �F[v], for every v ∈ u + W
1,p

0

(
Ω,R

N
)
.

Remark 2.1. In many papers the assumption u ∈ W 1,p(Ω,R
N) is weakened to u ∈ W

1,p

loc (Ω,R
N). This may also

be done for each of the results we prove. To avoid distracting complications, however, we will simply assume that
u ∈ W 1,p(Ω,R

N) and leave it to the reader to make the necessary adjustments.

Concerning the assumptions (1.2) and (1.6) let us first observe that while (1.2)1,2 are quite standard, the one in
(1.2)3 is a bit less. A typical instance of (1.6)3, usually adopted in the literature for super-quadratic growth problems,
see for instance [13], is∣∣az(x,u, z2) − az(x,u, z1)

∣∣ � L|z2 − z1|α
(
1 + |z1| + |z2|

)p−2−α
,

for α ∈ (0,p −2)∩ (0,1), when p > 2. This means that μ(t) := tα , while on the other hand we are assuming that μ(·)
is bounded in (1.2)3. Of course there is no loss of generality in such an assumption, since in (1.2)3 the argument of
the function μ(·) is always less than or equal than one. The same kind of observations apply when considering (1.6).
Therefore in the following, by enlarging the constant L if required, we shall always assume that

ω(t) � 1, μ(t) � 1, for every t � 0. (2.2)

Moreover, since both ω(·) and μ(·) are concave and hence sub-linear, we shall very often use

ω(t + s) � ω(t) + ω(s), ω(ct) � cω(t), μ(ct) � cμ(t), s, t � 0, c � 1. (2.3)

Let A be a bilinear form on R
N×n with constant coefficients, which is strictly elliptic in the sense of Legendre–

Hadamard, with ellipticity constant ν > 0 and upper bound L; that is

ν|ξ |2|η|2 �A(ξ ⊗ η, ξ ⊗ η) � L|ξ |2|η|2, for every ξ ∈ R
n, η ∈ R

N. (2.4)

We recall that a map h on B� is termed A-harmonic [14] if and only if:

−
∫
B�

A(Dh,Dϕ)dx = 0, for every ϕ ∈ C1
0

(
B�,R

N
)
.

We now state a version of the A-harmonic approximation lemma from Duzaar and Steffen [14] (see also [11,13]).

Lemma 2.1 (A-harmonic approximation). For each ν,L, ε > 0, there exists a positive number δ(n,N, ν,L, ε) � 1
with the following property: If A is a bilinear form on R

N×n satisfying (2.4), � > 0, and w ∈ W 1,2(B�,R
N), with

−
∫

B�
|Dw|2 dx � 1, is approximatively A-harmonic in the sense that∣∣∣∣ −

∫
B

A(Dw,Dϕ)dx

∣∣∣∣ � δ(n,N, ν,L, ε)‖Dϕ‖L∞(B�) for every ϕ ∈ C1
0

(
B�,R

N
)
, (2.5)
�
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then there exists an A-harmonic function h ∈ W 1,2(B�,R
N) such that

−
∫
B�

|Dh|2 dx � 1 and �−2 −
∫
B�

|w − h|2 dx � ε. (2.6)

Given u ∈ L2(B�(x0,R
N), we denote by Px0,� the unique affine function minimizing the functional P �→∫

B�(x0)
|u − P |2 dx amongst all affine functions P : Rn → R

N . Note that

Px0,�(x) = (u)x0,� + Qx0,�(x − x0), (2.7)

where

Qx0,� = (n + 2)�−2 −
∫

B�(x0)

u(x) ⊗ (x − x0) dx (2.8)

is the momentum of u. From [13,24], we recall the following facts:

Lemma 2.2. Let p � 2. There exists a constant c ≡ c(n,p) such that the following assertions hold: for every u ∈
Lp(B�(x0),R

N) we have

|Qx0,� − Qx0,θ�|p � c

(θ�)p
−
∫

Bθ�(x0)

|u − Px0,�|p dx. (2.9)

For every u ∈ W 1,p(B�(x0),R
N) we have∣∣Qx0,� − (Du)x0,�

∣∣p � c −
∫

B�(x0)

∣∣Du − (Du)x0,�

∣∣p dx. (2.10)

The next result is known as Ekeland’s variational principle (see for instance [20], Chapter 5).

Theorem 2.1. Let (X,d) be a complete metric space, and J :X → [0,∞] be a lower semicontinuous functional not
identically ∞. Suppose that u ∈ X satisfies

J (u) < inf
w∈X

J (w) + σ.

Then there exists v ∈ X such that

d(u, v) � 1, and J (v) � J (w) + σd(v,w) for every w ∈ X.

The last lemma concerns a well-known iteration result; see [20], Lemma 7.3 for a proof.

Lemma 2.3. Let ϕ : [0, �] → R be a positive, non-decreasing function satisfying

ϕ
(
θk+1�

)
� θγ ϕ

(
θk�

) + B
(
θk�

)n
, for every k ∈ N,

where θ ∈ (0,1), and γ ∈ (0, n). Then there exists c ≡ c(n, θ, γ ) such that for every t ∈ (0, �) the following holds

ϕ(t) � c

{(
t

�

)γ

ϕ(�) + Btγ
}
.

Finally, we define the Morrey space Lq,γ (Ω,R
N×n) for q � 1, γ ∈ [0, n], as the space of those maps w :Ω → R

N

such that

sup
B��Ω

�−γ

∫
B�

|w|q dx < ∞.

The local variant L
q,γ

loc (Ω,R
N×n) is as usual defined by saying that w ∈ L

q,γ

loc (Ω,R
N×n) if and only if w ∈

Lq,γ (Ω ′,R
N×n), for every open subset Ω ′ � Ω . See [20], Chapter 2, for more information on such spaces.
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3. Systems

3.1. The Caccioppoli inequality

A standard preliminary tool used to obtain partial regularity is the so called Caccioppoli inequality. Here we present
a version which differs slightly from those usually presented in the literature in that it exhibits the exact dependence
on certain gradient averages. We need this exact dependence for the sequel.

Proposition 3.1. Let u ∈ W 1,p(Ω,R
N) be a weak solution to (1.1) under the assumptions (1.2), let B� ≡ B�(x0) � Ω

be a ball, and let P(x) := A(x − x0) + ũ be a polynomial, with A ∈ R
N×n and ũ ∈ R

N . Then there exists a constant
c ≡ c(n,N,p, ν,L) such that

−
∫
B�/2

[(
1 + |A|)p−2|Du − A|2 + |Du − A|p]

dx

� c −
∫
B�

[(
1 + |A|)p−2

∣∣∣∣u − P

�

∣∣∣∣
2

+
∣∣∣∣u − P

�

∣∣∣∣
p]

dx

+ c
(
1 + |A|)p −

∫
B�

[
ω(�2) + ω

(|u − ũ|2) + ω
(
�2|A|2)]dx. (3.1)

Proof. For the sake of completeness we provide some details of the proof rather than just sketching the modifications
to the usual arguments, since this would lead no significant gain in shortness. All the balls are centered at x0. Let us
define v(u) := u(x) − P(x), and take a smooth cut-off function η ∈ C∞

c (B�) such that η ≡ 1 on B�/2 and 0 � η � 1
with |Dη| � 4/�. Testing (2.1) with ηpv yields

−
∫
B�

ηpa(x,u,Du)(Du − A)dx = −p −
∫
B�

ηp−1a(x,u,Du)(v ⊗ Dη)dx.

Before going on let us observe that since η � 1 and p � 2 we have

η2p−2 � ηp. (3.2)

Therefore, using that −
∫

B�
a(x0, ũ,A)Dϕ dx = 0 we obtain

(I ) := −
∫
B�

ηp
[
a(x,u,Du) − a(x,u,A)

]
(Du − A)dx

= −p −
∫
B�

ηp−1[a(x,u,Du) − a(x,u,A)
]
(v ⊗ Dη)dx

− −
∫
B�

[
a(x,u,A) − a

(
x, ũ + A(x − x0),A

)]
Dϕ dx

− −
∫
B�

[
a(x, ũ + A(x − x0),A) − a(x0, ũ,A)

]
Dϕ dx

=: (II) + (III) + (IV).

Now, a standard monotonicity property implied by the left-hand side of (1.2)1 together with the fact that p � 2 implies
that

c−1 −
∫
B

ηp
[(

1 + |A|)p−2|Du − A|2 + |Du − A|p]
dx � (I ),
�



478 M. Foss, G. Mingione / Ann. I. H. Poincaré – AN 25 (2008) 471–503
with c ≡ c(n,N,p, ν) > 0. On the other hand using the inequality on the right-hand side of (1.2)1, and then using
Young’s inequality with σ ∈ (0,1) and taking into account (3.2) gives us

|(II)| � c(L) −
∫
B�

ηp−1(1 + |A| + |Du − A|)p−2|Du − A||v||Dη|dx

� σ −
∫
B�

ηp
[(

1 + |A|)p−2|Du − A|2 + |Du − A|p]
dx

+ c(p,L,σ )

[
−
∫
B�

(1 + |A|)p−2|Dη|2|v|2 dx + −
∫
B�

|Dη|p|v|p dx

]
.

Applying Young’s inequality with conjugate exponents (p,p/(p−1)), and using that ω(·)p/(p−1) � ω(·) as ω(·) � 1,
we have

|(III)| + |(IV)| � c
(
1 + |A|)p−1 −

∫
B�

[
ω(�2) + ω

(|u − ũ|2) + ω
(
�2|A|2)]|Dϕ|dx

� σ −
∫
B�

ηp|Du − A|p dx + −
∫
B�

|Dη|p|v|p dx

+ c(n,N,p,L,σ )
(
1 + |A|)p −

∫
B�

[
ω(�2) + ω

(|u − ũ|2) + ω
(
�2|A|2)]dx.

Of course we have taken into account (1.2)2 and then used (2.3) repeatedly. Collecting the estimates for the terms
(I), . . . , (IV) and choosing σ ≡ σ(n,N,p, ν,L) small enough in order to re-absorb the integrals multiplying σ into
the left-hand side, the assertion follows in a standard way upon recalling that η ≡ 1 on B�/2. �
3.2. Excess functionals

For a map u ∈ W 1,p(Ω,R
N), and a ball B�(x0) � R

n, let us now introduce the excess functional E(u,x0, �). First
we define the “re-normalized” Campanato-type excess

C(x0, �) ≡ C(u,x0, �) := −
∫
B�

[ |Du − (Du)�|2
(1 + |(Du)�|)2

+ |Du − (Du)�|p
(1 + |(Du)�|)p

]
dx,

where of course (Du)� ≡ (Du)x0,� , and then we define the Morrey-type excess

M(x0, �) ≡ M(u,x0, �) := �β −
∫
B�

|Du|2 dx, β ∈ (0,2).

Finally, the “hybrid excess functional” E(x0, �) is defined as

E(x0, �) ≡ E(u,x0, �) := C(x0, �) +
√

ω
(
M(x0, �)

) + √
ω(�). (3.3)

3.3. Excess decay

The main goal in this section is to establish a suitable mixed decay estimate for C(x0, �).

Proposition 3.2. For each β ∈ (0,2) and θ ∈ (0,1/4), there exist two positive numbers

ε0 = ε0
(
n,N,p, ν,L,β, θ,μ(·)) > 0, and ε1 ≡ ε1(n,p,β, θ) > 0, (3.4)
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such that the following is true: If u ∈ W 1,p(Ω,R
N) is weak solution to (1.1), under the assumptions (1.2) and (1.3),

and B�(x0) � Ω is a ball where the smallness conditions

E(x0, �) < ε0 and � < ε1 (3.5)

are satisfied, then

C(x0, θ�) � c∗θ2E(x0, �). (3.6)

The constant c∗ depends only upon n,N,p and ν,L.

Proof. Step 1: Approximate A-harmonicity. Let us take x0 ∈ Ω and � > 0 as in the statement; from now on all the
averages will be referred to balls centered at x0: therefore (u)x0,� ≡ (u)� , (Du)x0,� ≡ (Du)� . In the same way all the
balls in the following will be centered at x0. We will argue under the initial smallness assumption

� � 1. (3.7)

Take a map ϕ ∈ C1
0(B�,R

N); without loss of generality, up to considering ϕ/‖Dϕ‖L∞(B�) and then scaling back, we
shall assume that ‖Dϕ‖L∞(B�) � 1. Using that u weakly solves (1.1) we have

(I ) := −
∫
B�

[
a
(
x0, (u)�,Du

) − a
(
x,u(x),Du

)]
Dϕ dx = −

∫
B�

a
(
x0, (u)�,Du

)
Dϕ dx. (3.8)

Noting that
∫
B�

a(x0, (u)�, (Du)�)Dϕ dx = 0, we continue with

∣∣∣∣ −
∫
B�

a
(
x0, (u)�,Du

)
Dϕ dx

∣∣∣∣ =
∣∣∣∣ −
∫
B�

[
a
(
x0, (u)�,Du

) − a
(
x0, (u)�, (Du)�

)]
Dϕ dx

∣∣∣∣

=
∣∣∣∣ −
∫
B�

1∫
0

az

(
x0, (u)�, (Du)� + t

(
Du − (Du)�

))
(Du − (Du)�,Dϕ)dt dx

∣∣∣∣ =: |(II)|,

and therefore the previous equality implies∣∣∣∣ −
∫
B�

az

(
x0, (u)�, (Du)�

)(
Du − (Du)�,Dϕ

)
dx

∣∣∣∣

�
∣∣∣∣ −
∫
B�

1∫
0

[
az

(
x0, (u)�, (Du)�

) − az

(
x0, (u)�, (Du)� + t

(
Du − (Du)�

))]

× (
Du − (Du)�,Dϕ

)
dt dx

∣∣∣∣ + |(II)| =: |(III)| + |(I )|. (3.9)

Note that the last equality actually defines the quantity |(III)|. With c ≡ c(n,p,L) we may now estimate

|(I )| (1.2)2
� c −

∫
B�

ω
(
�2 + ∣∣u − (u)�

∣∣2)(1 + |Du|)p−1
dx

� c −
∫
B�

ω
(
�2 + ∣∣u − (u)�

∣∣2)∣∣Du − (Du)�
∣∣p−1

dx + c
(
1 + ∣∣(Du)�

∣∣)p−1 −
∫
B�

ω
(
�2 + ∣∣u − (u)�

∣∣2)
dx

=: (IV) + (V ).

Using in a standard way the concavity of ω(·) and Jensen’s and Poincaré’s inequalities together with (2.2) and (2.3),
we have
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(V ) � c
(
1 + ∣∣(Du)�

∣∣)p−1
ω

(
�2) + c

(
1 + ∣∣(Du)�

∣∣)p−1 −
∫
B�

ω
(∣∣u − (u)�

∣∣2)
dx

� c
(
1 + ∣∣(Du)�

∣∣)p−1
ω

(
�2) + c

(
1 + ∣∣(Du)�

∣∣)p−1
ω

(
−
∫
B�

∣∣u − (u)�
∣∣2

dx

)

� c
(
1 + ∣∣(Du)�

∣∣)p−1
[
ω

(
�2) + ω

(
c(n)�2 −

∫
B�

|Du|2 dx

)]

(3.7)
� c

(
1 + ∣∣(Du)�

∣∣)p−1
E(x0, �),

where c ≡ c(n,p,L). Upon using Young’s inequality, we may estimate (IV) in the same way we estimated (V):

(IV) = c
(
1 + ∣∣(Du)�

∣∣)p−1 −
∫
B�

ω
(
�2 + ∣∣u − (u)�

∣∣2) |Du − (Du)�|p−1

(1 + |(Du)�|)p−1
dx

� c
(
1 + ∣∣(Du)�

∣∣)p−1 −
∫
B�

ω
(
�2 + ∣∣u − (u)�

∣∣2)
dx + c

(
1 + ∣∣(Du)�

∣∣)p−1 −
∫
B�

|Du − (Du)�|p
(1 + |(Du)�|)p dx

� c
(
1 + ∣∣(Du)�

∣∣)p−1
E(x0, �),

and again c ≡ c(n,p,L). To estimate (III) we use assumption (1.2)3 and Hölder’s inequality to write

|(III)| (1.2)3
� c −

∫
B�

∣∣Du − (Du)�
∣∣(1 + ∣∣(Du)�

∣∣ + ∣∣Du − (Du)�
∣∣)p−2

μ

( |Du − (Du)�|
1 + |(Du)�|

)
dx

� c
(
1 + ∣∣(Du)�

∣∣)p−1 −
∫
B�

|Du − (Du)�|p−1

(1 + |(Du)�|)p−1
· μ

( |Du − (Du)�|
1 + |(Du)�|

)
dx

+ c
(
1 + ∣∣(Du)�

∣∣)p−1 −
∫
B�

|Du − (Du)�|
(1 + |(Du)�|) · μ

( |Du − (Du)�|
1 + |(Du)�|

)
dx

� c
(
1 + ∣∣(Du)�

∣∣)p−1
(

−
∫
B�

|Du − (Du)�|p
(1 + |(Du)�|)p dx

) p−1
p

(
−
∫
B�

μp

( |Du − (Du)�|
1 + |(Du)�|

)
dx

) 1
p

+ c
(
1 + ∣∣(Du)�

∣∣)p−1
(

−
∫
B�

|Du − (Du)�|2
(1 + |(Du)�|)2

dx

) 1
2
(

−
∫
B�

μ2
( |Du − (Du)�|

1 + |(Du)�|
)

dx

) 1
2

� c
(
1 + ∣∣(Du)�

∣∣)p−1
μ

(
−
∫
B�

|Du − (Du)�|
1 + |(Du)�| dx

) 1
p [

E(x0,R)
] p−1

p

+ c
(
1 + ∣∣(Du)�

∣∣)p−1
μ

(
−
∫
B�

|Du − (Du)�|
1 + |(Du)�| dx

) 1
2 [

E(x0,R)
] 1

2

� c
(
1 + ∣∣(Du)�

∣∣)p−1[
μ

(√
E(x0, �)

)1/2 + μ
(√

E(x0, �)
)1/p][

E(x0, �)1/2 + E(x0, �)1−1/p
]
. (3.10)
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Observe that we have used Jensen’s inequality, the concavity of μ(·), and that μ(·) � 1 to estimate μ(·)2 � μ(·) and
μ(·)p � μ(·). For each of our estimates so far the constant c depends on n,p,L. Now, taking into account (3.9) and
the estimates for the terms (II), . . . , (V ) we have finally proved∣∣∣∣ −

∫
B�

A(Dw,Dϕ)dx

∣∣∣∣ � c1H
(
E(x0, �)

)‖Dϕ‖L∞(B�), for every ϕ ∈ C1
0

(
B�,R

N
)
,

where c1 depends on n,p, and L, while

H
(
E(x0, �)

) := [
μ

(√
E(x0, �)

)1/2 + μ
(√

E(x0, �)
)1/p + √

E(x0, �)
][

1 + E(x0, �)1/2−1/p
]
, (3.11)

and

w := u − (Du)�(x − x0)√
E(x0, �)(1 + |(Du)�|) , A := az(x0, (u)�, (Du)�)

(1 + |(Du)�|)p−2
. (3.12)

We note that by (1.6)1 the tensor A satisfies (2.4), which is an assumption required by Lemma 2.1. Taking ε > 0 to be
fixed later, we determine δ ≡ δ(n,N, ν,L, ε) > 0 according to Lemma 2.1. Now assume the smallness condition

H
(
E(x0, �)

)
� δ/c1. (3.13)

By its very definition the map w satisfies −
∫

B�
|Dw|2 dx � 1. With (3.13) in force inequality (2.5) is satisfied, so we

may apply Lemma 2.1 to get the existence of an A-harmonic map h ∈ C∞(B�,R
N) such that

−
∫
B�

|Dh|2 dx � 1 and �−2 −
∫
B�

|w − h|2 dx � ε. (3.14)

Step 2: Intermediate decay estimate. Being an A-harmonic map, h also satisfies

�−2 sup
B�/2

|Dh|2 + sup
B�/2

∣∣D2h
∣∣2 � c

�2
−
∫
B�

|Dh|2 dx
(3.14)
� c

�2
, (3.15)

with c = c(n,N,ν,L) (see for instance [20], Chapter 10). With θ ∈ (0,1/4) to be specified later, we can apply Taylor’s
theorem to h at x0 to deduce

sup
x∈B2θ�

∣∣h(x) − h(x0) − Dh(x0)(x − x0)
∣∣2 � c�−2(2θ�)4 = cθ4�2. (3.16)

We now choose

ε = θn+4. (3.17)

Thus we have, by the triangle inequality together with (3.14) and (3.16), that

(2θ�)−2 −
∫

B2θ�

∣∣w(x) − h(x0) − Dh(x0)(x − x0)
∣∣2

dx � 2(2θ�)−2[(2θ)−n�2ε + cθ4�2]

= 2−n−1θ−n−2ε + cθ2
(3.17)
� cθ2. (3.18)

Recalling the definition of w in (3.12) we obtain

(2θ�)−2 −
∫

B2θ�

∣∣u(x) − (Du)�(x − x0) − √
E(x0, �)

(
1 + ∣∣(Du)�

∣∣)[h(x0) + Dh(x0)(x − x0)
]∣∣2

dx

� cθ2(1 + ∣∣(Du)�
∣∣)2

E(x0, �) (3.19)

where the constant c depends only upon n,N,p and ν,L. Denoting by P2θ� the affine function minimizing Q �→∫
B2θ�

|u − Q|2 dx amongst all the affine functions Q (see Lemma 2.2 in Section 2), we easily deduce from (3.19) that

(2θ�)−2 −
∫

B

|u − P2θ�|2 dx � cθ2(1 + ∣∣(Du)�
∣∣)2

E(x0, �) (3.20)
2θ�
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with c = c(n,N,p, ν,L). We next derive an estimate for the term (2θ�)−p −
∫

B2θ�
|u − P2θ�|p dx which is needed for

an application of Caccioppoli’s inequality; of course we are going to do this only when p > 2, otherwise (3.20) will
suffice. To this end, we let p∗ be the usual Sobolev conjugate (that is p∗ := np

n−p
if p < n and p∗ := “any exponent

> p” if p � n). Select t ∈ (0,1) such that

1

p
= 1 − t

2
+ t

p∗ . (3.21)

With this choice of t , we use in turn the Lp-interpolation inequality, the definition of P2θ� , the estimate found in
(3.20) and Sobolev’s–Poincaré inequality, to argue

−
∫

B2θ�

|u − P2θ�|p dx �
(

−
∫

B2θ�

|u − P2θ�|2 dx

)(1−t)
p
2
(

−
∫

B2θ�

|u − P2θ�|p∗
dx

)t
p

p∗

� c�pθ(2−t)p
(
1 + ∣∣(Du)�

∣∣)(1−t)p
E(x0, �)

(1−t)p
2

(
−
∫

B2θ�

∣∣D(u−P2θ�)
∣∣p dx

)t

, (3.22)

where the constant c depends on n, N , p, and ν,L. In order to estimate the last integral appearing in the previ-
ous estimate, let us denote by P� the unique affine function which minimizes P �→ ∫

B�
|u − P |2 dx. Using in turn

Minkowski’s inequality, (2.9), Poincaré’s inequality and (2.10) yields( ∫
B2θ�

∣∣D(u − P2θ�)
∣∣p dx

) 1
p

�
( ∫

B2θ�

∣∣D(u − P�)
∣∣p dx

) 1
p + |B2θ�| 1

p |DP2θ� − DP�|

� c|B�| 1
p

(
−
∫
B�

|D(u − P�)|p dx

) 1
p

+ cθ
−1− n

p |B2θ�| 1
p

(
�−p −

∫
B�

|u − P�|p dx

) 1
p

� cθ−1|B�| 1
p

(
−
∫
B�

∣∣D(u − P�)
∣∣p dx

) 1
p

� cθ−1|B�| 1
p

(
−
∫
B�

∣∣Du − (Du)�
∣∣p dx

) 1
p

� cθ−1|B�| 1
p
(
1 + ∣∣(Du)�

∣∣)E(x0, �)
1
p ,

with c = c(n,p). Inserting this in (3.22), we find that

(2θ�)−p −
∫

B2θ�

|u − P2θ�|p dx � cθ(1−2t)p−tnE(x0, �)
p−2

2 (1−t)
(
1 + ∣∣(Du)�

∣∣)p
E(x0, �). (3.23)

Observe that when p = 2 we get t = 0 in (3.21) and therefore the latter inequality reduces to (3.20). Now when p > 2
we assume the smallness condition

E(x0, �) � θ
2[(2t−1)p+tn+2]

(1−t)(p−2) , p > 2. (3.24)

Therefore (3.23) becomes

(2θ�)−p −
∫

B

|u − P2θ�|p dx � cθ2(1 + ∣∣(Du)�
∣∣)p

E(x0, �), (3.25)
2θ�
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where again c ≡ c(n,N,p, ν,L). Now in both (3.20) and (3.25) we want to replace (Du)� by (Du)θ� . We argue as
follows:

1 + ∣∣(Du)�
∣∣ � 1 + ∣∣(Du)θ� − (Du)�

∣∣ + ∣∣(Du)θ�

∣∣
� −

∫
Bθ�

∣∣Du − (Du)�
∣∣dx + 1 + ∣∣(Du)θ�

∣∣

� (1 + |(Du)�|)
θn

−
∫
B�

|Du − (Du)�|
(1 + |(Du)�|) dx + (

1 + ∣∣(Du)θ�

∣∣)

� θ−n
√

E(x0, �)
(
1 + ∣∣(Du)�

∣∣) + (
1 + ∣∣(Du)θ�

∣∣),
so that imposing the smallness condition√

E(x0, �) � θn/8 (3.26)

we get

1 + ∣∣(Du)�
∣∣ � 2

(
1 + ∣∣(Du)θ�

∣∣). (3.27)

In a completely similar manner we also deduce that

1 + ∣∣(Du)2θ�

∣∣ � 2
(
1 + ∣∣(Du)θ�

∣∣). (3.28)

Indeed first note that

1 + ∣∣(Du)�
∣∣ � 2

(
1 + ∣∣(Du)2θ�

∣∣),
exactly as (3.27). Then, as immediately before (3.26), but also using the last inequality, we get

1 + ∣∣(Du)2θ�

∣∣ � 1 + ∣∣(Du)θ�

∣∣ + ∣∣(Du)2θ� − (Du)�
∣∣ + ∣∣(Du)θ� − (Du)�

∣∣
� 1 + ∣∣(Du)θ�

∣∣ + 2θ−n
(
1 + ∣∣(Du)�

∣∣)√E(x0, �)

� 1 + ∣∣(Du)θ�

∣∣ + 4θ−n
(
1 + ∣∣(Du)2θ�

∣∣)√E(x0, �),

and (3.28) again follows by (3.26). Now, using (3.27) in (3.20) and (3.25) gives us

(2θ�)−2 −
∫

B2θ�

|u − P2θ�|2 dx � cθ2(1 + ∣∣(Du)θ�

∣∣)2
E(x0, �), (3.29)

and

(2θ�)−p −
∫

B2θ�

|u − P2θ�|p dx � cθ2(1 + ∣∣(Du)θ�

∣∣)p
E(x0, �), (3.30)

respectively, where c ≡ c(n,N,p, ν,L).
Step 3: Full decay estimate for the Campanato-type excess. We are now going to apply the Caccioppoli’s inequality

(3.1), taking as a polynomial P ≡ P2θ� . Keeping in mind (2.7), this yields

−
∫
Bθ�

[(
1 + |Q2θ�|)p−2|Du − Q2θ�|2 + |Du − Q2θ�|p]

dx

� c −
∫

B2θ�

[(
1 + |Q2θ�|)p−2

∣∣∣∣u − P2θ�

2θ�

∣∣∣∣
2

+
∣∣∣∣u − P2θ�

2θ�

∣∣∣∣
p]

dx

+ c
(
1 + |Q2θ�|)p −

∫
B

[
ω(�2) + ω

(|u − (u)2θ�|2) + ω
(
�2|Q2θ�|2)]dx, (3.31)
2θ�
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with c ≡ c(n,N,p, ν,L); for the meaning of Qx0,2θ� ≡ Q2θ� see (2.7)–(2.8) in Section 2. Now, first we are going to
estimate the last integral appearing in (3.31). Using Lemma 2.2

|Q2θ�|2 � 2
∣∣Q2θ� − (Du)2θ�

∣∣2 + 2
∣∣(Du)2θ�

∣∣2

� c −
∫

B2θ�

∣∣Du − (Du)2θ�

∣∣2
dx + c −

∫
B2θ�

|Du|2 dx

� c2

θn
−
∫
B�

∣∣Du − (Du)�
∣∣2

dx + c3

θn
−
∫
B�

|Du|2 dx,

with c2, c3 depending only on n,N,p, so that we have

�2|Q2θ�|2 � c2�
2(1 + |(Du)�|)2

θn
−
∫
B�

|Du − (Du)�|2
(1 + |(Du)�|)2

dx + c3�
2

θn
−
∫
B�

|Du|2 dx

� �2 + �2

2
−
∫
B�

|Du|2 dx + �β

2
−
∫
B�

|Du|2 dx

(3.7)
� � + M(x0, �), (3.32)

where the second to last inequality holds provided we assume the smallness conditions

E(x0, �) � θn/(4c2) and � � (θn/2c3)
1/(2−β). (3.33)

We recall again that both c2, c3 ≡ c2, c3(n,p). Using Poincaré’s inequality and (3.33), we have, by possibly increasing
the value of c3 but otherwise keeping the same dependence on the constants, that

−
∫

B2θ�

∣∣u − (u)2θ�

∣∣2
dx � c

θn
−
∫
B�

∣∣u − (u)�
∣∣2

dx � c3�
2

θn
−
∫
B�

|Du|2 dx � M(x0, �), (3.34)

so that the concavity of ω(·) together with Jensen’s inequality implies

−
∫

B2θ�

ω
(∣∣u − (u)2θ�

∣∣2)
dx � ω

(
−
∫

B2θ�

∣∣u − (u)2θ�

∣∣2
dx

)
� ω

(
M(x0, �)

)
. (3.35)

Collecting (3.32), (3.34), (3.35), and using (2.3), we arrive at

−
∫

B2θ�

[
ω(�2) + ω

(∣∣u − (u)2θ�

∣∣2) + ω
(
�2|Q2θ�|2)]dx � 2ω(�) + 2ω

(
M(x0, �)

)
. (3.36)

Our next task is to replace all the momenta Q appearing in (3.31) with suitable averages of Du. Arguing in a way
similar to the one we followed for (3.32), we have, by again using Lemma 2.2 and possibly increasing the value of c3
in (3.33), that

|Q2θ�|p � c
∣∣Q2θ� − (Du)2θ�

∣∣p + c
∣∣(Du)2θ�

∣∣p
� c(1 + |(Du)�|)p

θn
−
∫
B�

|Du − (Du)�|p
(1 + |(Du)�|)p dx + c

∣∣(Du)2θ�

∣∣p
(3.28),(3.33)

� c
(
1 + ∣∣(Du)θ�

∣∣)p
. (3.37)

Now we impose the smallness condition√
ω

(
M(x0, �)

) + √
ω(�) � θ2. (3.38)
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Taking into account (3.36), (3.37), and the latter estimate we have immediately

(
1 + |Q2θ�|)p −

∫
B2θ�

[
ω

(
�2) + ω

(∣∣u − (u)2θ�

∣∣2) + ω
(
�2|Q2θ�|2)]dx

� cθ2(1 + ∣∣(Du)θ�

∣∣)p
E(x0, �), (3.39)

with c ≡ c(n,p). This completes the estimation of the last integral appearing in (3.31). Our next aim is to replace all
the momenta Q2θ� appearing in (3.31) by suitable averages of Du. First we observe that, trivially

−
∫
Bθ�

(
1 + ∣∣Q2θ�

∣∣)p−2∣∣Du − (Du)θ�

∣∣2
dx � −

∫
Bθ�

(
1 + ∣∣Q2θ�

∣∣)p−2∣∣Du − Q2θ�

∣∣2
dx (3.40)

and

−
∫
Bθ�

∣∣Du − (Du)θ�

∣∣p dx � 2p −
∫
Bθ�

∣∣Du − Q2θ�

∣∣p dx. (3.41)

Then, when p > 2, we use Young’s inequality with conjugate exponents (p/2,p/(p − 2)) to write

−
∫
Bθ�

(
1 + ∣∣(Du)θ�

∣∣)p−2∣∣Du − (Du)θ�

∣∣2
dx

� c −
∫
Bθ�

(
1 + ∣∣Q2θ�

∣∣)p−2∣∣Du − (Du)θ�

∣∣2
dx + c

∣∣Qθ� − (Du)θ�

∣∣p + c|Qθ� − Q2θ�|p

+ c −
∫
Bθ�

∣∣Du − (Du)θ�

∣∣p dx

� c −
∫
Bθ�

(
1 + |Q2θ�|)p−2∣∣Du − (Du)θ�

∣∣2
dx + c −

∫
Bθ�

∣∣Du − (Du)θ�

∣∣p dx

+ c(2θ�)−p −
∫

B2θ�

|u − P2θ�|p dx. (3.42)

where in the last inequality we repeatedly used Lemma 2.2. Combining (3.40)–(3.42) with (3.31) and (3.39), and
finally estimating (1 + |Q2θ�|)p−2 � c(1 + |(Du)θ�|)p−2 via (3.37), we have

−
∫
Bθ�

[(
1 + ∣∣(Du)θ�

∣∣)p−2∣∣Du − (Du)θ�

∣∣2 + ∣∣Du − (Du)θ�

∣∣p]
dx

� c −
∫

B2θ�

[(
1 + ∣∣(Du)θ�

∣∣)p−2
∣∣∣∣u − P2θ�

θ�

∣∣∣∣
2

+
∣∣∣∣u − P2θ�

θ�

∣∣∣∣
p]

dx + cθ2(1 + ∣∣(Du)θ�

∣∣)p
E(x0, �), (3.43)

with c ≡ c(n,N,p, ν,L). Now we estimate the second integral in the latter formula via (3.29) and (3.30); an elemen-
tary manipulation yields

−
∫
Bθ�

[(
1 + ∣∣(Du)θ�

∣∣)p−2∣∣Du − (Du)θ�

∣∣2 + ∣∣Du − (Du)θ�

∣∣p]
dx � c∗θ2(1 + ∣∣(Du)θ�

∣∣)p
E(x0, �), (3.44)

with finally c∗ ≡ c∗(n,N,p, ν,L), and (3.6) follows upon dividing everything by (1 + |(Du)θ�|)p . All the previ-
ous computations hold provided the smallness conditions (3.7), (3.13), (3.24), (3.26), (3.33) and (3.38) hold true.
In order to have them satisfied we make use of assumptions (1.3) and (3.5), but we have to verify the precise
dependence, described in the statement, for the constants ε0, ε1 appearing in (3.4). The choice of ε, in order to
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apply the A-harmonic approximation lemma, is made in (3.17); therefore ε ≡ ε(n, θ). This in turn influences the
choice of δ ≡ δ(n,N, ν,L, ε) ≡ δ(n,N, ν,L, θ) in Step 1, keeping in mind (3.13). Indeed since c1 depends only on
n,N,p, ν,L, in order to simultaneously meet (3.7) and (3.13), we have to take E(x0, �) � ε0 where ε0 at this stage
depends on n,N,p, ν,L, μ(·), and ultimately also on θ . The same dependence occurs when imposing (3.24) and
(3.26) as far as E(x0, �) and ε0 are concerned. When imposing the second inequality in (3.33), and also when impos-
ing (3.7), we need to use the second assumption in (3.5). The indicated dependence of ε1 is seen by noting that c3 in
(3.32) only depends on n,N,p, and that θ and β are involved in the second inequality in (3.33). Note that ε0, ε1 ↘ 0
when θ ↘ 0; the same happens when β ↗ 2. �
3.4. Iteration

Here we give the proof of Theorem 1.1 via a suitable iteration procedure.

Proof of Theorem 1.1. Step 1: Choice of the constants. Fix β ∈ (0,2) and α ∈ (0,1) as in the statement of Theo-
rem 1.1; then take γ ≡ γ (α) ∈ (n − 2, n) such that

α = 1 − n − γ

2
. (3.45)

We then choose θ ∈ (0,1/4) such that

θ := min

{(
1

24c∗

) p
2

,

(
1

24

) p
β

,

(
1

8

) p
n−γ

}
(3.46)

where c∗ ≡ c∗(n,N,p, ν,L) � 1 is the constant appearing in (3.6). Therefore this choice fixes θ ≡ θ(n,N,p, ν,L,

α,β). Now fix the new constant

ε2 := min

{
θn

24p
,

ε0

24p

}
, (3.47)

where ε0 appears in (3.4), and θ has been fixed in (3.46). Taking into account the dependence of ε0 in (3.4), this fixes
ε2 ≡ ε2(n,N,p, ν,L,α,β,μ(·)). Once ε2 has been fixed, by (1.3) we determine δ1 > 0 such that

t ∈ [0, δ1] �⇒ √
ω(t) < ε2, (3.48)

and keeping in mind the dependence of ε2 this fixes δ1 ≡ δ1(n,N,p, ν,L,α,β,ω(·),μ(·)). Finally we are going to
choose the radii size. We define the maximal radius

�m := min
{
δ

1
β

1 , δ1, ε1
}

> 0, (3.49)

where ε1 appears in (3.4), with θ fixed in (3.46); note that �m � 1. Taking into account the dependence of ε1 this is
turn fixes �m ≡ �m(n,N,p, ν,L,α,β,ω(·),μ(·)). From now on all radii � considered in the following will be picked
in such a way to satisfy � � �m.

Step 2: An almost BMO estimate. Let us consider x0 ∈ Ω and a positive radius � � �m, for which it happens that

C(x0, �) < ε2 and M(x0, �) < δ1. (3.50)

Let us show that this implies that for every k = 0,1,2, . . .

(I)k C(x0, θ
k�) < ε2 and M(x0, θ

k�) < δ1.

We shall of course proceed by induction: we assume (I)k and prove (I)k+1. We have, using ωn to denote the volume
of the n-dimensional unit ball∫

B
θk�

∣∣Du − (Du)θk�

∣∣2
dx = (

1 + ∣∣(Du)θk�

∣∣)2
∫

B
θk�

|Du − (Du)θk�|2
(1 + |(Du)θk�|)2

dx

� ωn

(
1 + ∣∣(Du)θk�

∣∣)2
C

(
x0, θ

k�
)(

θk�
)n
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(I)k
< ωn

(
1 + ∣∣(Du)θk�

∣∣)2
ε2

(
θk�

)n

< 2ε2

∫
B

θk�

|Du|2 dx + 2ωnε2
(
θk�

)n
, (3.51)

and therefore(
θk�

)β −
∫

B
θk�

∣∣Du − (Du)θk�

∣∣2
dx � 2ε2M

(
x0, θ

k�
) + 2ε2

(
θk�

)β
. (3.52)

Using the latter estimate we may now prove the second inequality in (3.50) as follows:

M
(
x0, θ

k+1) � 2
(
θk+1�

)β −
∫

B
θk+1�

∣∣Du − (Du)θk�

∣∣2
dx + 2

(
θk+1�

)β ∣∣(Du)θk�

∣∣2

� 2θβ−n
(
θk�

)β −
∫

B
θk�

∣∣Du − (Du)θk�

∣∣2
dx + 2θβM

(
x0, θ

k�
)

(3.52)
� 4θβ−nε2M

(
x0, θ

k�
) + 4θβ−nε2

(
θk�

)β + 2θβM
(
x0, θ

k�
)

(3.46)–(3.47)
� M(x0, θ

k�)

8
+ �β

8
+ M(x0, θ

k�)

8
(I)k
< δ1. (3.53)

As for C(x0, θ
k+1�), we recall that (I)k and (3.48) imply

√
ω(M(x0, θk�)) < ε2, while � < �m and (3.49) imply√

ω(θk�) �
√

ω(�) � ε2 so that, using the definition in (3.3) we have E(x0, θ
k�) < 3ε2 < ε0. Therefore, taking

also into account (3.49), we may apply Proposition 3.2, using (3.46) we have C(x0, θ
k+1�) � c∗θ2E(x0, θ

k�) �
c∗θ23ε2 < ε2, and the proof of (I)k+1 is complete. Therefore (I)k holds for every k ∈ N.

Step 3: Final iteration and partial regularity. Again we consider a ball B�(x0) � Ω such that (3.50) holds; therefore
(I)k holds too for every k ∈ N. With ωn still denoting the volume of the n-dimensional unit ball, we have∫

B
θk+1�

|Du|2 dx � 2ωn

(
θk+1�

)n∣∣(Du)θk�

∣∣2 + 2
∫

B
θk+1�

∣∣Du − (Du)θk�

∣∣2
dx

� 2θn

∫
B

θk�

|Du|2 dx + 2
∫

B
θk�

∣∣Du − (Du)θk�

∣∣2
dx

(3.51)
� 4

(
θn + ε2

) ∫
B

θk�

|Du|2 dx + 4ωnε2
(
θk�

)n

(3.47)
� 8θn

∫
B

θk�

|Du|2 dx + 4ωnε2
(
θk�

)n

(3.46)
� θγ

∫
B

θk�

|Du|2 dx + 4ωnε2
(
θk�

)n
, (3.54)

where γ is as in (3.45). Letting ϕ(t) := ∫
Bt

|Du|2 dx, and estimating ε2 � 1, we have proved that

ϕ
(
θk+1�

)
� θγ ϕ

(
θk�

) + 4ωn

(
θk�

)n
. (3.55)

Therefore we may apply Lemma 2.3 in order to obtain

ϕ(t) � c4

[(
t
)γ

ϕ(�) + tγ
]
, for every t � �, (3.56)
�
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where the constant c4 depends on n,γ, θ , and therefore ultimately on n,N,p, ν,L,α,β . Exploiting the latter inequal-
ity gives us∫

Bt (x0)

|Du|2 dx � c4

�γ

[ ∫
Ω

|Du|2 dx + 1

]
tγ for every t � �. (3.57)

Observe that (3.57) holds uniformly for all those points x0 ∈ Ω satisfying (3.50) with given radius �. Now we conclude
with partial regularity in an almost standard way; denote by Ωu the set of regular points of u in the sense that

Ωu := {
x0 ∈ Ω: u ∈ C0,t

(
A(x0),R

N
)

for every t ∈ (0,1) and some A(x0)
}
,

where A(x0) denotes an open neighborhood of x0. Accordingly, we fix α ∈ (0,1) and define

Ωα
u := {

x0 ∈ Ω: u ∈ C0,α
(
A(x0),R

N
)

for some A(x0)
}
.

Having (3.50) in mind, let us fix

s := min{ε2, δ1} (3.58)

and, recalling the dependence upon the various constants of the numbers ε2 and δ1, note that s depends on
n,N,p, ν,L,α,β,ω(·),μ(·). Indeed, the number s determined in (3.58) is going to be the one that appears in the
statement of Theorem 1.1 when considering Ωα

u with a fixed choice of α,β . Take a point x0 ∈ Ω such that

lim inf
�↘0

−
∫

B�(x0)

∣∣Du − (Du)�
∣∣p dx < s and lim inf

�↘0
�β −

∫
B�(x0)

|Du|2 dx < s; (3.59)

we are going to show that x0 ∈ Ωα
u . Using (3.59) and the definition (3.58) we can find 0 < � � �m such that the

smallness conditions in (3.50) are satisfied; observe that at this stage the radius � > 0 depends on everything, that
is � ≡ �(n,N,p, ν,L,α,β,ω(·),μ(·), x0, u). In turn, if (3.50) is satisfied for a fixed radius � � �m at the point
x0, then, by the absolute continuity of the integral it is also satisfied in a whole neighborhood of the point x0, say
a ball BT (x0); we can of course assume that T � �, therefore we have that (3.57) holds for every � < T/4 and
with x0 replaced by any y ∈ BT/4(x0). But this means that Du belongs to the Morrey space L2,γ (BT/4(x0),R

N×n),
and therefore, u ∈ C0,α(BT/4(x0),R

N) where α := 1 − (n − γ )/2 exactly as in (3.45), by the well known Morrey–
Campanato embedding theorem. In conclusion, whenever x0 is a point such that (3.59) is valid, we find that u ∈ C0,α

in the neighborhood BT/4(x0) of x0, and this works for every α < 1, provided s is chosen accordingly as a function
depending on α too, and eventually restricting the size of the ball BT/4(x0). From this, and upon observing that (3.59)
is satisfied at almost every point, it follows that Ωu has full measure: |Ω \ Ωu| = 0. Observe that Ωu,Ω

α
u are open

subsets by their very definitions. The inclusion for Ω \ Ωα
u in the statement of Theorem 1.1 clearly follows from the

last argumentation when fixing the values of α and β , and accordingly the value of the number s. As for the inclusion
regarding Ω \ Ωu, trivially, we have that if x0 ∈ Ω is a point such that

lim inf
�↘0

−
∫

B�(x0)

∣∣Du − (Du)�
∣∣p dx = 0 and lim inf

�↘0
�β −

∫
B�(x0)

|Du|2 dx = 0. (3.60)

then (3.59) is satisfied for every choice of s, and ultimately for every choice of the Hölder degree of continuity
α ∈ (0,1) and β ∈ (0,2). As a consequence the first inclusion for Ω \ Ωu in Theorem 1.1 follows too. �

A straightforward by-product of the previous proof is the following:

Theorem 3.1. Let u ∈ W 1,p(Ω,R
N) be a weak solution to the system (1.1) under the assumptions (1.2) and (1.3).

Then Du ∈ L
2,γ

loc (Ωu,R
N×n) for every γ ∈ (0, n), where Ωu ⊆ Ω is an open subset such that |Ω \ Ωu| = 0.

Remark 3.1. While the solution u is found to be in C0,α(Ωu,R
N) for every α ∈ (0,1), the Hölder semi-norm [u]0,α

blows-up as α ↗ 1. This can be checked by carefully tracing the constant dependence, especially when considering a
regular point x0 ∈ Ωu, and observing that the radius of the ball we find BT/4(x0) decreases as α approaches 1.
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Remark 3.2. By carefully checking the proof of Theorem 1.1 one can build slightly better inclusions for the singular
sets Ω \Ωu and Ω \Ωα

u than the ones presented in Theorem 1.1, which are of standard type. Indeed, in order to fulfill
the first inequality in (3.50) we ask for (3.59), while, as p � 2, we could just ask for the weaker inequality

lim inf
�↘0

−
∫

B�(x0)

|Du − (Du)�|p
(1 + |(Du)�|)p dx < s

to be satisfied. In fact, proceeding exactly as in the proof of Theorem 1.1 we would get

Ω \ Ωu ⊆
{
x0 ∈ Ω: lim inf

�↘0
−
∫

B�(x0)

|Du − (Du)�|p
(1 + |(Du)�|)p dx > 0 or lim inf

�↘0
�β −

∫
B�(x0)

|Du|2 dx > 0

}
, (3.61)

which naturally reflects the fact that, since we are proving Hölder continuity estimates and not Lipschitz ones, we do
not mind the fact that Du blows-up in a regular point, a circumstance that even helps fulfilling the first limit condition
in (3.61). A similar argumentation, and a similar inclusion, hold for Ω \ Ωα

u too.

Remark 3.3. Better inclusions for the singular set can be obtained when p � n. Indeed, when p > n Sobolev–Morrey
embedding theorem ensures that u is everywhere Hölder continuous with exponent 1 − n/p. The same conclusion
follows in the borderline case p = n using the higher integrability of the gradient (see [20], Chapter 6) that is Du ∈
L

q1
loc(Ω,R

N×n) for some q1 > n, and then again u is everywhere Hölder continuous with exponent 1 − n/q1. In
such cases the strength of Theorem 1.1 relies in ensuring that u is Hölder continuous with every exponent α < 1, but
unfortunately, only outside a negligible singular set Ω \ Ωu. Nevertheless a better inclusion for Ω \ Ωu is available:

Ω \ Ωu ⊆
{
x0 ∈ Ω: lim inf

�↘0
−
∫

B�(x0)

|Du − (Du)�|p
(1 + |(Du)�|)p dx > 0

}
. (3.62)

Indeed, without going back to Theorem 1.1 using the fact that u is already Hölder continuous directly into the proof,
let us first notice that by Hölder’s inequality we have that

�β −
∫

B�(x0)

|Du|2 dx �
(

�
pβ
2 −

∫
B�(x0)

|Du|p dx

) 2
p

. (3.63)

Then let us recall the standard Caccioppoli’s inequality valid for solutions to systems satisfying conditions (1.2) (see
for instance [20], Chapter 6), that is

−
∫

B�(x0)

|Du|p dx � c −
∫

B2�(x0)

|u − (u�)|p
�p

dx + c,

for c ≡ c(n,N,p, ν,L), and B2�(x0) � Ω . Therefore, by p � n, using that u is locally Hölder continuous with
exponent 1 − n/q1 by Sobolev–Morrey embedding theorem, where q1 > p is such that Du ∈ L

q1
loc(Ω,R

N×n), we
have

�
pβ
2 −

∫
B�(x0)

|Du|p dx � c
[
�

p
2 (β− 2n

q1
) + �

pβ
2

]
,

where c ≡ c(n,N,p, ν,L,‖Du‖Lq1 ). Now choosing β > 2n/q1, that is possible as q1 > p � n and β ∈ (0,2), we
have that the left-hand side converges to zero for � ↘ 0 whenever x0 ∈ Ω ; now (3.62) follows from (3.61), taking into
account (3.63).

We explicitly remark that in the other low-dimensional case n � p + 2 the partial Hölder continuity u, but not with
every exponent, has been correctly proved by Campanato [5,7] in the case of elliptic systems, with a corresponding
estimate for the Hausdorff dimension of the singular set Ω \ Ωu. Notice that Campanato’s arguments are based on
a suitable combination of Freezing and difference quotient techniques, and for this reason do not apply to the case
of quasiconvex functionals, to which, on the contrary, the arguments outlined for the case n � p apply; see also
Remark 4.1 below. Campanato’s arguments can be nevertheless extended to the convex variational case; see [23],
Section 8.
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Remark 3.4. For the sake of simplicity we have confined ourselves to homogeneous systems of the type (1.1); in fact,
the analysis of this case already provides all the main ideas of the new approach proposed here. By combining existing
methods with ours we could also treat non-homogeneous systems of the type

−diva(x,u,Du) = b(x,u,Du), (3.64)

under suitable growth assumptions on the vector field b :Ω × R
N,R

N×n → R
N . For instance, we could allow the so

called controllable growth conditions; that is assume that b(x,u, z) � L(1 + |z|)q , where q < p is suitable growth
exponent as in [4,7]. We could also allow critical growth conditions; that is assume |b(x,u, z)| � L̃(1 +|z|)p . For this
case, the traditional smallness assumption 2L̃‖u‖L∞ < ν must be assumed, see for instance [22] and the approach and
references in [11]. Without such an assumption even partial regularity fails, as is clear by considering the harmonic
maps system in [30].

4. Quasiconvex functionals

4.1. The Caccioppoli inequality, higher integrability

The following Caccioppoli type inequality is taken from [19], Proposition 4.1, re-stated using our notation.

Proposition 4.1. Let u ∈ W 1,p(Ω,R
N) be a local minimizer of the functional F[·], under the assumptions (1.6). Let

B� ≡ B�(x0) � Ω be a ball, and let P(x) := A(x − x0)+ ũ be a polynomial, with A ∈ R
N×n and ũ ∈ R

N . Then there
exists a constant c ≡ c(n,N,p, ν,L) such that

−
∫
B�/2

[(
1 + |A|)p−2|Du − A|2 + |Du − A|p]

dx

� c −
∫
B�

[(
1 + |A|)p−2

∣∣∣∣u − P

�

∣∣∣∣
2

+
∣∣∣∣u − P

�

∣∣∣∣
p]

dx

+ c −
∫
B�

ω
(
�p + |u − ũ|p + |u − P |p)(

1 + |A| + |Du|)p
dx. (4.1)

We shall need the following higher integrability results for minimizers of integral functionals, see for instance
[18,20]. They are basically a consequence of Caccioppoli’s inequality, and the celebrated Gehring’s lemma. In the rest
of the paper a special role will be played by the exponents p < q � q1 introduced in the following twin lemmata.

Proposition 4.2. Let u ∈ W 1,p(Ω,R
N) be a local minimizer of the functional F[·] under the assumption (1.6)1, then

there exists a higher integrability exponent q1 ≡ q1(n,N,p, ν,L) > p and a constant c ≡ c(n,N,p, ν,L) such that
u ∈ W

1,q1
loc (Ω,R

N), and moreover, for any ball B�(x0) � Ω ,

(
−
∫

B�/2(x0)

|Du|q1 dx

) 1
q1 � c

(
−
∫

B�(x0)

(
1 + |Du|)p

dx

) 1
p

. (4.2)

The following is the higher integrability up-to-the-boundary [18]:

Proposition 4.3. Let u ∈ W 1,p(Ω,R
N) be a local minimizer of the functional F[·] under the assumption (1.6)1, and

let v0 ∈ u + W
1,p

0 (B�/2(x0),R
N) be a solution of the following Dirichlet problem:

v0 �→ min
w

−
∫

B (x )

G(Dw)dx, w ∈ u + W
1,p

0

(
B�/2(x0),R

N
)
. (4.3)
�/2 0
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where G : RN×n → R is continuous and satisfies ν|z|p � G(z) � L(1 + |z|)p , and B�(x0) � Ω is a ball. Then there
exists another higher integrability exponent q ≡ q(n,N,p, ν,L) ∈ (p, q1], and a constant c ≡ c(n,N,p, ν,L) such
that (

−
∫

B�/2(x0)

|Dv0|q dx

) 1
q

� c

(
−
∫

B�/2(x0)

|Dv0|p dx

) 1
p + c

(
−
∫

B�/2(x0)

(
1 + |Du|)q1 dx

) 1
q1

. (4.4)

4.2. Excess functionals

In this section we shall give the symbols E(x0, �) and M(x0, �) a different meaning from the one given in Sec-
tion 3.1. More precisely, with u ∈ W 1,p(Ω,R

N) and B�(x0) � Ω , we define as before

C(x0, �) ≡ C(u,x0, �) := −
∫
B�

[
|Du − (Du)�|2
(1 + |(Du)�|)2

+ |Du − (Du)�|p
(1 + |(Du)�|)p

]
dx,

where (Du)� ≡ (Du)x0,� , while we redefine

M(x0, �) ≡ M(u,x0, �) := �β −
∫
B�

|Du|p dx, β ∈ (0,p). (4.5)

Finally we put

E(x0, �) ≡ E(u,x0, �) := C(x0, �) + [
ω

(
M(x0, �)

)] q−p
qp + [

ω(�)
] q−p

qp , (4.6)

where q ≡ q(n,N,p, ν,L) > p is the higher integrability exponent appearing in Proposition 4.3.

4.3. Preliminary comparison

The freezing technique cannot be used directly as in the case of systems, therefore we need a comparison result.

Proposition 4.4. Let u ∈ W 1,p(Ω,R
N) be a local minimizer of the functional F[·] under the assumptions (1.6), and

let B�(x0) � Ω be a ball such that

E(x0, �) + � � 1. (4.7)

Then there exists a map v ∈ u + W
1,p

0 (B�/2(x0),R
N) such that

−
∫

B�/2(x0)

|Dv − Du|p dx � K(x0, �), (4.8)

and

−
∫

B�/2(x0)

G(Dv)dx � −
∫

B�/2(x0)

G(Dv + Dϕ)dx + ce

[
K(x0, �)

]1− 1
p

(
−
∫

B�/2(x0)

|Dϕ|p dx

) 1
p

, (4.9)

for every ϕ ∈ W
1,p

0 (B�/2(x0),R
N). Here ce is a constant depending only on n,N,p, ν,L, the exponent q > p is the

one defined in Proposition 4.3, the integrand G is defined by

G(z) := F
(
x0, (u)x0,�/2, z

)
, (4.10)

and

K(x0, �) := (
1 + ∣∣(Du)x0,�

∣∣)p{[
ω(�p)

] q−p
q + [

ω
(
M(x0, �)

)] q−p
q

}
. (4.11)
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Proof. All the balls in the following will be centered at x0, and as already clear from the statement, the averages of
the maps considered are related to such balls. Let v0 ∈ u + W

1,p

0 (B�/2,R
n) be a solution of the Dirichlet problem

in (4.3); using the minimality of v0 and the growth conditions (1.6)1 yields

−
∫
B�/2

|Dv0|p dx � L/ν −
∫
B�/2

(
1 + |Du|)p

dx. (4.12)

Using the minimality of both u and v0 we have:

−
∫
B�/2

G(Du)dx = −
∫
B�/2

[
F

(
x0, (u)�/2,Du

) − F(x,u,Du)
]
dx (=: (I ))

+ −
∫
B�/2

F(x,u,Du)dx

� (I ) + −
∫
B�/2

F(x, v0,Dv0) dx

� (I ) + (II) + (III) + min
w

−
∫
B�/2

G(Dw)dx, (4.13)

where

(II) := −
∫
B�/2

[
F(x, v0,Dv0) − F(x0, (v0)�/2 Dv0)

]
dx,

and

(III) := −
∫
B�/2

[
F

(
x0, (v0)�/2,Dv0

) − F
(
x0, (u)�/2,Dv0

)]
dx.

In the following we shall repeatedly use the elementary estimation

−
∫
B�

(
1 + |Du|p)

dx � c
(
1 + ∣∣(Du)�

∣∣)p −
∫
B�

|Du − (Du)�|p
(1 + |(Du)�|)p dx + c

(
1 + ∣∣(Du)�

∣∣)p

� c
[
E(x0, �) + 1

](
1 + ∣∣(Du)�

∣∣)p

(4.7)
� c

(
1 + |(Du)�|)p

. (4.14)

Now, using (1.6)3, (2.3) and the previous estimate we find that

|(I )| � c −
∫
B�/2

[
ω

(
�p

) + ω
(∣∣u − (u)�/2

∣∣p)](
1 + |Du|p)

dx

� cω
(
�p

)(
1 + ∣∣(Du)�

∣∣)p + c −
∫
B�/2

ω
(∣∣u − (u)�/2

∣∣p)(
1 + |Du|p)

dx. (4.15)

Using in turn the Hölder and Poincaré inequalities as well as (2.2)–(2.3), we may write

−
∫
B�/2

ω
(∣∣u − (u)�/2

∣∣p)(
1 + |Du|p)

dx

� c

(
−
∫
B

[
ω

(∣∣u − (u)�/2
∣∣p)] q1

q1−p dx

) q1−p

q1
(

−
∫
B

(
1 + |Du|q1

)
dx

) p
q1
�/2 �/2
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(2.2),(4.2)
� c

(
−
∫
B�/2

ω
(∣∣u − (u)�/2

∣∣p)
dx

) q1−p

q1 −
∫
B�

(
1 + |Du|)p

dx

� c

[
ω

(
c(n,p)�p −

∫
B�

|Du|p dx

)] q1−p

q1 −
∫
B�

(
1 + |Du|)p

dx

(4.14)
� c

[
ω

(
M(x0, �)

)] q−p
q

(
1 + ∣∣(Du)�

∣∣)p
. (4.16)

Note that in the last line we used the fact that q � q1 and ω(·) � 1; finally we used the second inequality in (2.3). In
conclusion, merging (4.15)–(4.16) yields

|(I )| � c(n,N,p, ν,L)K(x0, �).

In a similar way, we may use (1.6)3 to get

|(II)| � c −
∫
B�/2

[
ω

(
�p

) + ω
(∣∣v0 − (v0)�/2

∣∣p)](
1 + |Dv0|p

)
dx

� cω
(
�p

) −
∫
B�/2

(
1 + |Dv0|p

)
dx + c −

∫
B�/2

ω
(∣∣v0 − (v0)�/2

∣∣p)(
1 + |Dv0|p

)
dx.

Using (4.12) and then (4.14), we have

ω
(
�p

) −
∫
B�/2

(
1 + |Dv0|p

)
dx � cω

(
�p

)(
1 + ∣∣(Du)�

∣∣)p
. (4.17)

Then, as with (4.16)

−
∫
B�/2

ω
(∣∣v0 − (v0)�/2

∣∣p)(
1 + |Dv0|p

)
dx

� c

[
ω

(
−
∫
B�/2

∣∣v0 − (v0)�/2
∣∣p dx

)] q−p
q

(
−
∫
B�/2

(
1 + |Dv0|q

)
dx

) p
q

(4.4)
� c

[
ω

(
c(n,p)�p −

∫
B�/2

|Dv0|p dx

)] q−p
q ·

[
−
∫
B�/2

(
1 + |Dv0|p

)
dx +

(
−
∫
B�/2

(
1 + |Du|q1

)
dx

) p
q1

]

(4.12)
� c

[
ω

(
c�p −

∫
B�

(
1 + |Du|p)

dx

)] q−p
q

(
−
∫
B�/2

(
1 + |Du|q1

)
dx

) p
q1

(4.7),(4.2)
� c

{[
ω

(
�p

)] q−p
q + [

ω
(
M(x0, �)

)] q−p
q

} −
∫
B�

(1 + |Du|p) dx

(4.14)
� c

{[
ω

(
�p

)] q−p
q + [

ω
(
M(x0, �)

)] q−p
q

}(
1 + ∣∣(Du)�

∣∣)p
. (4.18)

Merging (4.17) and (4.18) yields

|(II)| � c(n,N,p, ν,L)K(x0, �).

Arguing as we did for (4.18), and recalling that u ≡ v0 on ∂B�/2 in order to apply Poincaré inequality, we find that
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|(III)| � c −
∫
B�/2

ω
(∣∣(u)�/2 − (v0)�/2

∣∣p)(
1 + |Dv0|p

)
dx

� c

[
ω

(
−
∫
B�/2

|u − v0|p dx

)] q−p
q

(
−
∫
B�/2

(
1 + |Dv0|q

)
dx

) p
q

� c

[
ω

(
c�p −

∫
B�/2

(|Du|p + |Dv0|p
)
dx

)] q−p
q

(
−
∫
B�/2

(
1 + |Dv0|q

)
dx

) p
q

� c

[
ω

(
c�p −

∫
B�

(
1 + |Du|p)

dx

)] q−p
q

(
−
∫
B�/2

(
1 + |Du|q1

)
dx

) p
q1

� c
{[

ω
(
�p

)] q−p
q + [

ω
(
M(x0, �)

)] q−p
q

} −
∫
B�

(
1 + |Du|p)

dx. (4.19)

Upon taking into account (4.14), we get

|(III)| � c(n,N,p, ν,L)K(x0, �).

Gathering the estimates found for (I ), (II) and (III) and inserting them into (4.13) yields

−
∫
B�/2

G(Du)dx � min
w

−
∫
B�/2

G(Dw)dx + ceK(x0, �), (4.20)

where w ∈ u + W
1,p

0 (B�/2,R
N) =: X, and ce ≡ ce(n,N,p, ν,L). We may now consider the complete metric space

(X,d) where

d(u1, u2) := [
K(x0, �)

]− 1
p

(
−
∫
B�/2

|Du1 − Du2|p dx

) 1
p

, u1, u2 ∈ X.

With such a choice and in view of (4.20), we apply Ekeland’s variational principle, that is Theorem 2.1, with σ :=
ceK(x0, �). This yields the map v ∈ X satisfying (4.8)–(4.9). �
4.4. Excess decay

We shall next prove a decay estimate involving the various excess functionals introduced. The proof will again
be based on the A-harmonic approximation lemma as in Proposition 3.2, but this will ultimately require the use of
Proposition 4.4. We suggest to the reader to read the proof of Proposition 4.5 after the one for Proposition 3.2, since
some of the arguments introduced there will be used again in a suitably modified form.

Proposition 4.5. For β ∈ (0,p) and θ ∈ (0,1/8), there exist two positive numbers

ε0 = ε0
(
n,N,p, ν,L,β, θ,μ(·)) > 0, and ε1 ≡ ε1(n,p,β, θ) > 0, (4.21)

such that the following is true: If u ∈ W 1,p(Ω,R
N) is a local minimizer of the functional F[·] in (1.4), under the

assumptions (1.6) and (1.3), and B�(x0) � Ω is a ball where the smallness conditions

E(x0, �) < ε0 and � < ε1 (4.22)

are satisfied, then

C(x0, θ�) � c∗θ2E(x0, �). (4.23)

The constant c∗ depends only upon n,N,p and ν,L.
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Proof. Step 1: Approximate A-harmonicity. Again all the balls will be centered at x0. Moreover, in the following we
argue under the smallness condition

E(x0, �) + � � 1. (4.24)

The map v ∈ u + W
1,p

0 (B�/2,R
N) found in Proposition 4.4 is the minimizer of the functional

ξ �→ −
∫
B�/2

G(Dξ)dx + ce

[
K(x0, �)

]1−1/p
(

−
∫
B�/2

|Dξ − Dv|p dx

) 1
p

with ξ ∈ u + W
1,p

0 (B�/2,R
N), G(z) defined in (4.10), K(x0, �) defined in (4.11), and ce ≡ ce(n,N,p, ν,L). It is

then easy to see, applying the procedure usually adopted when deriving the Euler–Lagrange equation for a variational
integral, that the map v satisfies the following Euler–Lagrange variational inequality:∣∣∣∣ −

∫
B�/2

Gz(Dv)Dϕ dx

∣∣∣∣ � ce

[
K(x0, �)

]1−1/p
(

−
∫
B�/2

|Dϕ|p dx

) 1
p

for every ϕ ∈ W
1,p

0 (B�/2,R
N). In what follows, we shall take ϕ ∈ C1

0(B�/2,R
N), and without loss of generality, up

to considering ϕ/‖Dϕ‖L∞(B�/2) and then scaling back, we shall assume that ‖Dϕ‖L∞(B�/2) � 1. Therefore the last
inequality yields∣∣∣∣ −

∫
B�/2

Gz(Dv)Dϕ dx

∣∣∣∣ � ce

[
K(x0, �)

]1−1/p
. (4.25)

Now, using that −
∫

B�/2
Gz((Du)�)Dϕ dx = 0, and taking into account (4.25) we have

(I ) :=
∣∣∣∣ −

∫
B�/2

1∫
0

Gzz

(
(Du)� + t

(
Dv − (Du)�

))(
Dv − (Du)�,Dϕ

)
dt dx

∣∣∣∣
=

∣∣∣∣ −
∫
B�/2

[
Gz(Dv) − Gz

(
(Du)�

)]
Dϕ dx

∣∣∣∣ � ce

[
K(x0, �)

]1−1/p
.

Using the previous relation together with assumption (1.6)4, we have∣∣∣∣ −
∫
B�/2

Gzz

(
(Du)�

)(
Dv − (Du)�,Dϕ

)
dx

∣∣∣∣

�
∣∣∣∣ −

∫
B�/2

1∫
0

[
Gzz

(
(Du)�

) − Gzz

(
(Du)� + t

(
Dv − (Du)�

))](
Dv − (Du)�,Dϕ

)
dt dx

∣∣∣∣ + |(I )|

� c −
∫
B�/2

∣∣Dv − (Du)�
∣∣(1 + ∣∣(Du)�

∣∣ + ∣∣Dv − (Du)�
∣∣)p−2

μ

( |Dv − (Du)�|
1 + |(Du)�|

)
dx

+ ce

[
K(x0, �)

]1−1/p =: (III) + ce

[
K(x0, �)

]1−1/p
. (4.26)

Before going on with the estimation of (III) we derive a few preliminary estimates. Using (4.8) we find that

−
∫
B�/2

∣∣Dv − (Du)�
∣∣p dx � c −

∫
B�/2

|Dv − Du|p dx + c −
∫
B�/2

∣∣Du − (Du)�
∣∣p dx

� cK(x0, �) + c
(
1 + ∣∣(Du)�

∣∣)p
C(x0, �)

� c
(
1 + ∣∣(Du)�

∣∣)p
E(x0, �). (4.27)
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Note that we have estimated K(x0, �) � c(1 + |(Du)�|)pE(x0, �). In the same way, via Hölder’s inequality and
again (4.8)

−
∫
B�/2

∣∣Dv − (Du)�
∣∣2

dx � c

(
−
∫
B�/2

|Dv − Du|p dx

)2/p

+ c −
∫
B�/2

∣∣Du − (Du)�
∣∣2

dx

� c
[
K(x0, �)

]2/p + c
(
1 + ∣∣(Du)�

∣∣)2
C(x0, �)

� c
(
1 + ∣∣(Du)�

∣∣)2
E(x0, �). (4.28)

For the last inequality, we have used the estimate (recall that ω(·) � 1)[
K(x0, �)

]2/p � c
(
1 + ∣∣(Du)�

∣∣)2{[
ω(�p)

] q−p
qp + [

ω
(
M(x0, �)

)] q−p
qp

}
� c

(
1 + ∣∣(Du)�

∣∣)2
E(x0, �).

Connecting (4.27) and (4.28) we deduce that

−
∫
B�/2

[ |Dv − (Du)�|2
(1 + |(Du)�|)2

+ |Dv − (Du)�|p
(1 + |(Du)�|)p

]
dx � ckE(x0, �) (4.29)

where ck ≡ ck(n,N,p, ν,L).
Now we proceed to estimate (III), making use of (4.29). We have, compare also with (3.10),

(III) � c
(
1 + ∣∣(Du)�

∣∣)p−1 −
∫
B�/2

|Dv − (Du)�|p−1

(1 + |(Du)�|)p−1
· μ

( |Dv − (Du)�|
1 + |(Du)�|

)
dx

+ c
(
1 + ∣∣(Du)�

∣∣)p−1 −
∫
B�/2

|Dv − (Du)�|
(1 + |(Du)�|) · μ

( |Dv − (Du)�|
1 + |(Du)�|

)
dx

� c
(
1 + ∣∣(Du)�

∣∣)p−1
(

−
∫
B�/2

|Dv − (Du)�|p
(1 + |(Du)�|)p dx

) p−1
p ·

(
−
∫
B�/2

μp

( |Dv − (Du)�|
1 + |(Du)�|

)
dx

) 1
p

+ c
(
1 + ∣∣(Du)�

∣∣)p−1
(

−
∫
B�/2

|Dv − (Du)�|2
(1 + |(Du)�|)2

dx

) 1
2
(

−
∫
B�/2

μ2
( |Dv − (Du)�|

1 + |(Du)�|
)

dx

) 1
2

� c
(
1 + ∣∣(Du)�

∣∣)p−1
μ

(
−
∫
B�/2

|Dv − (Du)�|
1 + |(Du)�| dx

) 1
p [

E(x0,R)
] p−1

p

+ c
(
1 + ∣∣(Du)�

∣∣)p−1
μ

(
−
∫
B�/2

|Dv − (Du)�|
1 + |(Du)�| dx

) 1
2 [

E(x0,R)
] 1

2

(4.29)
� c

(
1 + ∣∣(Du)�

∣∣)p−1[
μ

(
c
√

E(x0, �)
)1/2 + μ

(
c
√

E(x0, �)
)1/p][

E(x0, �)1/2 + E(x0, �)1−1/p
]
.

Collecting the estimates found for (III) with (4.26), and recalling that (4.11) yields[
K(x0, �)

]1−1/p � c(p)
(
1 + ∣∣(Du)�

∣∣)p−1
E(x0, �)p−1

(4.24)
� c

(
1 + ∣∣(Du)�

∣∣)p−1
E(x0, �)

we may therefore conclude that∣∣∣∣ −
∫
B

A(Dw,Dϕ)dx

∣∣∣∣ � c6H
(
E(x0, �)

)‖Dϕ‖L∞(B�/2), for every ϕ ∈ C1
0

(
B�/2,R

N
)
,

�/2
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where, recalling the definition of G(·) in (4.10), we have set

w := v − (Du)�(x − x0)√
ckE(x0, �)(1 + |(Du)�|) , A := Fzz(x0, (u)�/2, (Du)�)

(1 + |(Du)�|)p−2
, (4.30)

and the functional H(E(x0, �)) has been defined in (3.11), taking of course into account the current definition of
the excess functional E(x0, �) in (4.6). The constant ck appears in (4.29), and depends on n,N,p, ν,L. Therefore,
so does c6. Observe that A satisfies assumption (2.4) by (1.6)2–(1.6)4, and this allows us to apply the A-harmonic
approximation Lemma 2.1. Indeed, with ε > 0 to be fixed later, we determine the corresponding δ(n,N, ν,L, ε) > 0
according to (2.1). Then we use (4.29) to see that −

∫
B�/2

|Dw|2 dx � 1. Finally upon assuming the smallness condition

H
(
E(x0, �)

)
� δ/c6, (4.31)

we infer the existence of an A-harmonic map h ∈ C∞(B�/2,R
N) such that

−
∫
B�/2

|Dh|2 dx � 1 and (�/2)−2 −
∫
B�/2

|w − h|2 dx � ε. (4.32)

Step 2: Intermediate decay estimate. We may now proceed as in Step 2 from the proof of Proposition 3.2: recalling
that θ ∈ (0,1/8), and taking ε = θn+4 as in (3.17), we are led to (3.18), with the current meaning of w in (4.30).
Letting

P̃ := (Du)�(x − x0) + √
ckE(x0, �)

(
1 + ∣∣(Du)�

∣∣)[h(x0) + Dh(x0)(x − x0)
]

we obtain from (3.19)

(2θ�)−2 −
∫

B2θ�

|v − P̃ |2 dx � cθ2(1 + ∣∣(Du)�
∣∣)2

E(x0, �),

so that we also have

(2θ�)−2 −
∫

B2θ�

|u − P̃ |2 dx � c(2θ�)−2 −
∫

B2θ�

|v − u|2 dx + cθ2(1 + ∣∣(Du)�
∣∣)2

E(x0, �). (4.33)

Now let us assume the smallness condition[
ω

(
M(x0, �)

)] q−p
qp + [

ω(�)
] q−p

qp � θn+4. (4.34)

Since u ≡ v on ∂B�/2, Poincaré’s inequality implies that

(2θ�)−2 −
∫

B2θ�

|v − u|2 dx � cθ−n−2�−2 −
∫
B�/2

|v − u|2 dx

� cθ−n−2 −
∫
B�/2

|Dv − Du|2 dx
(4.8)
� cθ−n−2[K(x0, �)

]2/p

(4.34)
� cθ2(1 + ∣∣(Du)�

∣∣)2{[
ω

(
M(x0, �)

)] q−p
qp + [

ω(�)
] q−p

qp
}

(4.24)
� cθ2(1 + ∣∣(Du)�

∣∣)2
E(x0, �). (4.35)

Denoting by P2θ� the affine function minimizing Q �→ ∫
B2θ�

|u − Q|2 dx amongst all the affine functions Q (see
Lemma 2.2 in Section 2), and gathering (4.33)–(4.35) we easily deduce

(2θ�)−2 −
∫

B

|u − P2θ�|2 dx � cθ2(1 + ∣∣(Du)�
∣∣)2

E(x0, �), (4.36)
2θ�
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where c ≡ c(n,N,p, ν,L). This last estimate is analogous to (3.20). Now, in the case p > 2 we shall proceed as in
Proposition 3.2 after inequality (3.20) in Step 2. Assuming the smallness conditions (3.24) and (3.26), that we hereby
reproduce

E(x0, �) � θ
2[(2t−1)p+tn+2]

(1−t)(p−2) , E(x0, �) � θ2n/4, (4.37)

we can interpolate as in (3.23) arriving at (3.25), with the obvious current meaning of u and E(x0, �). Moreover we
also get, as in (3.27)–(3.28), that(

1 + ∣∣(Du)�
∣∣) + (

1 + ∣∣(Du)2θ�

∣∣) � 4
(
1 + ∣∣(Du)θ�

∣∣). (4.38)

Using this inequality, we finally arrive at

(2θ�)−2 −
∫

B2θ�

|u − P2θ�|2 dx � cθ2(1 + ∣∣(Du)θ�

∣∣)2
E(x0, �), (4.39)

and

(2θ�)−p −
∫

B2θ�

|u − P2θ�|p dx � cθ2(1 + ∣∣(Du)θ�

∣∣)p
E(x0, �), (4.40)

where c ≡ c(n,N,p, ν,L).
Step 3: Full decay estimate for the Campanato-type excess. We are now going to apply the Caccioppoli’s inequality

for minimizers (4.1), taking as a polynomial P ≡ P2θ�; this yields

−
∫
Bθ�

[(
1 + |Q2θ�|)p−2|Du − Q2θ�|2 + |Du − Q2θ�|p]

dx

� c −
∫

B2θ�

[(
1 + |Q2θ�|)p−2

∣∣∣∣u − P2θ�

2θ�

∣∣∣∣
2

+
∣∣∣∣u − P2θ�

2θ�

∣∣∣∣
p]

dx

+ c −
∫

B2θ�

[
ω

(
�p + ∣∣u − (u)2θ�

∣∣p + |u − P2θ�|p)](
1 + |Q2θ�| + |Du|)p

dx =: (IV). (4.41)

Here c ≡ c(n,N,p, ν,L); for the meaning of Qx0,2θ� ≡ Q2θ� see (2.7)–(2.8) in Section 2. For the forthcoming
estimates we need to argue under a smallness condition of the type (3.33), namely

E(x0, �) � θn/(4pc2) and � � (θn/2c3)
1/(p−β), (4.42)

where now c2, c3 are two constants that will be increased as needed a finite number of times through the end of
the proof; they will anyway always depend on n,N,p, ν,L. We start by estimating the last integral in (4.41) in the
obvious way

(IV) � c −
∫

B2θ�

ω
(
�p

)(
1 + |Q2θ�| + |Du|)p

dx

+ c −
∫

B2θ�

ω
(∣∣u − (u)2θ�

∣∣p)(
1 + |Q2θ�| + |Du|)p

dx

+ c −
∫

B2θ�

ω
(|u − P2θ�|p)(

1 + |Q2θ�| + |Du|)p
dx =: (V ) + (VI) + (VII). (4.43)

In order to estimate the last three integrals first note that (4.37) implies that
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−
∫

B2θ�

(
1 + |Du|)p

dx � θ−n −
∫
B�

(
1 + |Du|)p

dx

� c(p)θ−n
[
θn + E(x0, �)

](
1 + ∣∣(Du)�

∣∣)p � c
(
1 + ∣∣(Du)�

∣∣)p
. (4.44)

In a similar way, as 4θ � 1, we also estimate

−
∫

B4θ�

(
1 + |Du|)p

dx � c(p)
(
1 + ∣∣(Du)�

∣∣)p
. (4.45)

Observe that under the assumption (4.42) and by using (4.38) we may proceed as in (3.32)–(3.37), with the exponent
2 replaced by p; in particular we have the following analogues of the inequalities (3.32) and (3.37):

�p|Q2θ�|p � � + M(x0, �), |Q2θ�|p � c
(
1 + ∣∣(Du)θ�

∣∣)p
, (4.46)

respectively; moreover, by the cancavity of ω(·) and Jensen’s and Poincaré’s inequalities

−
∫

B2θ�

ω
(∣∣u − (u)2θ�

∣∣p)
dx � ω

(
M(x0, �)

)
. (4.47)

Therefore taking into account that ω(·) � 1 and using inequalities (4.44) and (4.46) we see that

(V ) � cω
(
�p

)(
1 + |Q2θ�| + ∣∣(Du)�

∣∣)p � c
[
ω(�)

] q−p
q

(
1 + ∣∣(Du)θ�

∣∣)p
. (4.48)

Now we work to estimate (VI). Using Hölder’s inequality and taking q1 > p as provided by Proposition 4.2 we find
that

(VI) � c

(
−
∫

B2θ�

[
ω

(∣∣u − (u)2θ�

∣∣p)] q1
q1−p dx

) q1−p

q1
(

−
∫

B2θ�

(
1 + |Q2θ�| + |Du|)q1 dx

) p
q1

(4.2)
� c

(
−
∫

B2θ�

ω
(∣∣u − (u)2θ�

∣∣p)
dx

) q1−p

q1 −
∫

B4θ�

(
1 + |Q2θ�| + |Du|)p

dx

(4.47),(4.45)
� c

[
ω

(
M(x0, �)

)] q−p
q

(
1 + |Q2θ�| + ∣∣(Du)�

∣∣)p

(4.38),(4.46)
� c

[
ω

(
M(x0, �)

)] q−p
q

(
1 + ∣∣(Du)θ�

∣∣)p
, (4.49)

with c ≡ c(n,N,p, ν,L). Finally, using the structure of P2θ� , see (2.7), and (2.3), we have

(VII) � c(VI) + c −
∫

B2θ�

ω
(
�p|Q2θ�|p)(

1 + |Q2θ�| + |Du|)p
dx. (4.50)

First, as already for (VI), we have

−
∫

B2θ�

ω
(
�p|Q2θ�|p)(

1 + |Q2θ�| + |Du|)p
dx

(4.46)1
� c(p)ω

(
� + M(x0, �)

)(|Q2θ�|p + −
∫

B2θ�

(
1 + |Du|)p

dx

)

(4.44),(4.46)2
� cω

(
� + M(x0, �)

)[(
1 + ∣∣(Du)θ�

∣∣)p + (
1 + ∣∣(Du)�

∣∣)p]
(4.38)
� c

[
ω(�) + ω

(
M(x0, �)

)](
1 + ∣∣(Du)θ�

∣∣)p

ω(·)�1
� c

{[
ω

(
M(x0, �)

)] q−p
q + [

ω(�)
] q−p

q
}(

1 + ∣∣(Du)θ�

∣∣)p
.
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Inserting the last inequality into (4.50), using (4.49) we have that

(VII) � c
{[

ω
(
M(x0, �)

)] q−p
q + [

ω(�)
] q−p

q
}(

1 + ∣∣(Du)θ�

∣∣)p
. (4.51)

Inserting (4.48), (4.49) and (4.51) into (4.43), we conclude that

(IV) � c
{[

ω
(
M(x0, �)

)] q−p
q + [

ω(�)
] q−p

q
}(

1 + ∣∣(Du)θ�

∣∣)p
. (4.52)

Now let us impose the new smallness condition

[
ω

(
M(x0, �)

)] (q−p)(p−1)
qp + [

ω(�)
] (q−p)(p−1)

qp � θ2, (4.53)

so that upon taking into account the definition of E(x0, �) in (4.6), inequality (4.52) yields

(IV) � cθ2(1 + ∣∣(Du)θ�

∣∣)p
E(x0, �).

Finally, using the last inequality together with (4.41) we obtain

−
∫
Bθ�

[(
1 + |Q2θ�|)p−2|Du − Q2θ�|2 + |Du − Q2θ�|p]

dx

� c −
∫

B2θ�

[(
1 + |Q2θ�|)p−2

∣∣∣∣u − P2θ�

θ�

∣∣∣∣
2

+
∣∣∣∣u − P2θ�

θ�

∣∣∣∣
p]

dx + cθ2(1 + ∣∣(Du)θ�

∣∣)p
E(x0, �), (4.54)

where c ≡ c(n,N,p, ν,L). This inequality is a sort of analogue of (3.43), therefore we can argue as we did in (3.40)–
(3.43) in order to properly replace Q2θ� by (Du)θ� in the left-hand side. We finally arrive at

−
∫
Bθ�

[(
1 + ∣∣(Du)θ�

∣∣)p−2∣∣Du − (Du)θ�

∣∣2 + ∣∣Du − (Du)θ�

∣∣p]
dx

� c −
∫

B2θ�

[(
1 + ∣∣(Du)θ�

∣∣)p−2
∣∣∣∣u − P2θ�

θ�

∣∣∣∣
2

+
∣∣∣∣u − P2θ�

θ�

∣∣∣∣
p]

dx + cθ2(1 + ∣∣(Du)θ�

∣∣)p
E(x0, �),

with c ≡ c(n,N,p, ν,L). Combining this last inequality with (4.39)–(4.40), and eventually dividing by (1 +
|(Du)θ�|)p yields (4.23) with c∗ depending only on n,N,p, ν,L. This argument is valid provided that the small-
ness conditions (4.24), (4.31), (4.34), (4.37), (4.42), and (4.53) hold. Such conditions can be satisfied using (4.22).
Indeed all the constants involved and the exponent q depend only upon n,N,p, ν,L; the verification of the precise
dependence of the constants is at this point completely similar to the one performed at the end of Proposition 3.2. �
4.5. Iteration

The proof of Theorem 1.2 is achieved via an iteration procedure utilizing Proposition 4.5.

Proof of Theorem 1.2. Here we shall give the necessary modification to the arguments of the Section 3.4.
Step 1: Choice of the constants. Fix α ∈ (0,1) and β ∈ (0,p) as in the statement of Theorem 1.2; then select

γ ≡ γ (α) ∈ (max{0, n − p}, n) such that

α = 1 − n − γ

p
. (4.55)

We then choose θ ∈ (0,1/8) such that (3.46) holds, where this time c∗ is the constant appearing in (4.23); again
θ ≡ θ(n,N,p, ν,L,α,β). Then we fix ε2 ≡ ε2(n,N,p, ν,L,α,β,μ(·)) as in (3.47), where ε0 is this time defined
in (4.21), with θ fixed in (3.46). With ε2 selected, we use (1.3) to fix δ1 such that

t ∈ [0, δ1] �⇒ [
ω(t)

] q−p
qp < ε2, (4.56)
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where the exponent q > p appears in Proposition 4.3. Keeping in mind the dependence of ε2, and the dependence of
the exponent q in Proposition 4.3, this fixes δ1 ≡ δ1(n,N,p, ν,L,α,β,ω(·),μ(·)). Finally we choose the maximal
radius as in (3.49), where ε1 appears in (4.21). Taking into account the dependence of ε1 this in turn fixes the maximal
radius �m ≡ �m(n,N,p, ν,L,α,β,ω(·),μ(·)), and in the following � � �m will always hold whenever considering
a radius �.

Step 2: An almost BMO estimate. Again we consider a ball B�(x0) � Ω with � � �m such that

C(x0, �) < ε2 and M(x0, �) < δ1, (4.57)

where, with β ∈ (0,p) being fixed, M(x0, �) is as in (4.5). Therefore we can find a positive radius � � �m such that
(3.50) holds; once again � > 0 depends on everything, including x0, u. Let us show that (4.57) implies (I)k for every
k = 0,1,2, . . .; as usual, by induction. Assuming (I)k , exactly as for (3.51) we can prove:∫

B
θk�

∣∣Du − (Du)θk�

∣∣p dx � 2p−1ε2

∫
B

θk�

|Du|p dx + 2p−1ωnε2
(
θk�

)n
, (4.58)

and then(
θk�

)β −
∫

B
θk�

∣∣Du − (Du)θk�

∣∣2
dx � 2p−1ε2M

(
x0, θ

k�
) + 2p−1ε2

(
θk�

)β
.

Using the last estimate, the choices of θ and of ε2, and arguing exactly as we did for (3.53), we get M(x0, θ
k+1) <

δ1. As for C(x0, θ
k+1�), we recall that (I)k and (4.56) imply [ω(M(x0, θ

k�))] q−p
qp < ε2, while � < �m and (3.49)

imply [ω(θk�))] q−p
qp � [ω(�))] q−p

qp � ε2 so that, by the definition in (4.6) we conclude that E(x0, θ
k�) < 3ε2 < ε0.

Taking into account (3.49), we may now apply Proposition 4.5, and then using (3.46) we see that C(x0, θ
k+1�) �

c∗θ2E(x0, θ
k�) � c∗θ23ε2 < ε2, and the proof of (I)k+1 is complete. Therefore (I)k holds for every k ∈ N.

Step 3: Final iteration and partial regularity. Proceeding as in (3.54) and considering a ball B�(x0) � Ω where
(4.57) are satisfied, using the bounds imposed on δ1, ε2, and using (4.58) we get∫

B
θk+1�

|Du|p dx � θγ

∫
B

θk�

|Du|p dx + 4pωnε2
(
θk�

)n
.

Putting this time ϕ(t) := ∫
Bt

|Du|p dx, we have proved that (3.55) holds again with 4 replaced by 4p . Then with
γ < n fixed as in (4.55), we may iterate as in Section 3.4 to once again arrive at (3.56), with c4 ultimately depending
on n,N,p, ν,L,α,β, γ . This gives us∫

Bt (x0)

|Du|p dx � c4

�γ

[ ∫
Ω

|Du|p dx + 1

]
tγ for every t � �. (4.59)

From this point on the proof goes on exactly as in the case of systems, taking again s as in (3.58), and just replacing in
the integrals, and in the Morrey spaces used, the exponent 2 by the new one p. In particular, in order to satisfy (4.57)
we shall take a point x0 ∈ Ω such that

lim inf
�↘0

−
∫

B�(x0)

∣∣Du − (Du)�
∣∣p dx < s and lim inf

�↘0
�β −

∫
B�(x0)

|Du|p dx < s. (4.60)

This point is eventually seen to be a regular point, and for almost every point the previous relations are satisfied, from
which the partial regularity follows. See again the end of Section 3.4. �

In analogy with the case for systems, we have as a by-product

Theorem 4.1. Let u ∈ W 1,p(Ω,R
N) be a local minimizer of the functionals F[·] in (1.4) under the assumptions (1.6)

and (1.3). Then Du ∈ L
p,γ

loc (Ωu,R
N×n) for every γ ∈ (0, n), where Ωu ⊆ Ω is an open subset such that |Ω \Ωu| = 0.
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Remark 4.1. The content of Remarks 3.2-3.3 applies to the case of minima of functionals too. Remark 3.3 applies to
the case of quasiconvex functionals as far as the case n � p is concerned.

Remark 4.2. Theorems 1.2 and also 3.1 extend to almost minimizers of integral functionals, sometimes also called
ω-minima. This concept, that originally arose in the setting of Geometric Measure Theory, is aimed at generalizing
the notion of local minimizer by permitting an additional error term when verifying the minimality condition (see
[14,10] for further discussion). Following [10], we shall say that a map u ∈ W 1,p(Ω,R

N) is an almost minimizer of
the functional F[·] in (1.4) provided there exists a bounded, concave and non-decreasing function λ : R+ → R

+ such
that λ(0) = 0 and∫

B�

F (x,u,Du)dx �
∫
B�

F (x,u + ϕ,Du + Dϕ)dx + λ(�)

∫
B�

(
1 + |Du|p + |Dϕ|p)

dx, (4.61)

holds for every B� � Ω , and every ϕ ∈ W
1,p

0 (B�,R
N). For such maps a partial regularity theory for the gradient

of solutions holds, see for instance [10,12] and the references therein, while following the techniques in this paper
a lower order regularity theory can be obtained. See also [12] for a significant particular case. More specifically, let
us first note that, up to passing to the concave envelope of t �→ inf{ω(tp), λ(t)}, we may assume that λ(t) � ω(tp);
then Proposition 4.1 holds for almost minimizers, see for instance [12,20]. The only remaining modification occurs in
Proposition 4.4 where in (4.13) the additional term

(IV) := ω
(
�p

) −
∫
B�/2

(
1 + |Du|p + |Dv0|p

)
dx,

appears on the right-hand side when using the almost minimality of u. The term ω(�p) −
∫

B�/2
(1 + |Du|p) dx can be

treated as (I ), while ω(�p) −
∫

B�/2(1 + |Du|p) dx can be treated using (4.12) and then just as (I ) again. The rest of
the proof remains unchanged.
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