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Abstract

We consider the equation

ε2�u = (
u − a(x)

)(
u2 − 1

)
in Ω,

∂u

∂ν
= 0 on ∂Ω, (1)

where Ω is a smooth and bounded domain in R
n, ν the outer unit normal to ∂Ω , and a a smooth function satisfying −1 < a(x) < 1

in Ω . We set K , Ω+ and Ω− to be respectively the zero-level set of a, {a > 0} and {a < 0}. Assuming ∇a �= 0 on K and a �= 0
on ∂Ω , we show that there exists a sequence εj → 0 such that Eq. (1) has a solution uεj which converges uniformly to ±1 on the
compact sets of Ω± as j → +∞. This result settles in general dimension a conjecture posed in [P. Fife, M.W. Greenlee, Interior
transition layers of elliptic boundary value problem with a small parameter, Russian Math. Surveys 29 (4) (1974) 103–131], proved
in [M. del Pino, M. Kowalczyk, J. Wei, Resonance and interior layers in an inhomogeneous phase transition model, SIAM J. Math.
Anal. 38 (5) (2007) 1542–1564] only for n = 2.
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1. Introduction

Given a smooth bounded domain Ω of R
n (n � 2), we consider the following problem{

ε2�u = h(x,u) in Ω,
∂u
∂ν

= 0 on ∂Ω,
(2)

where ε is a small parameter, ν the unit outer normal vector to ∂Ω and h a smooth function such that the equation
h(x, t) = 0 admits two different stable solutions t1 �= t2 for any x ∈ Ω . Using matched asymptotics, Fife and Greenlee
in [19] proved under some hypothesis on h the existence of a solution of (2) which converges uniformly to ti in the
compact subsets of Ωi , i = 1,2, where Ω1 and Ω2 are two subdomains of Ω such that Ω = Ω1 ∪ Ω2.
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In this paper we consider the model heterogeneous case h(x,u) = (u − a(x))(u2 − 1), for a smooth function a

satisfying −1 < a(x) < 1 on Ω and ∇a �= 0 on the set K = {a(x) = 0}, with K ∩ ∂Ω = ∅. We prove the existence of
a new type of solution of (2) for any n � 2 settling in full generality a result previously proved in [15] for the particular
case n = 2.

Let us describe the result in more detail: in the case h(x,u) = (u − a(x))(u2 − 1) problem (2) becomes{
ε2�u = (u − a(x))(u2 − 1) in Ω,
∂u
∂ν

= 0 on ∂Ω.
(3)

In particular, when a ≡ 0, (3) is nothing but the Allen–Cahn equation in material sciences (see [6]){
ε2�u + u − u3 = 0 in Ω,
∂u
∂ν

= 0 on ∂Ω.
(4)

Here the function u(x) represents a continuous realization of the phase present in a material confined to the region
Ω at the point x. Of particular interest are the solutions which, except for a narrow region, take values close to +1
or −1. Such solutions are called transition layers, and have been studied by many authors, see for instance [4,8,20,
23,24,30–32,34,35,37–40,43], and the references therein for these and related issues.

In this paper, we are interested in transition layers for the heterogeneous equation (3). Define

K = {
x ∈ Ω: a(x) = 0

}
.

We assume that K is a smooth closed hypersurface of Ω which separates the domain into two disjoint components

Ω = Ω− ∪ K ∪ Ω+, (5)

with

a(x) < 0 in Ω−, a(x) > 0 in Ω+, ∇a �= 0 on K. (6)

We then define the Euler functional Jε(u) associated to (3) in Ω as

Jε(u) = ε2

2

∫
Ω

|∇u|2 +
∫
Ω

F(x,u)dx, (7)

where

F(x,u) :=
u∫

−1

(
s − a(x)

)(
s2 − 1

)
ds.

The solution constructed by Fife and Greenlee in [19] (adapted to our choice of the function h) consists in adding an
interior transition layer correction to expressions of the form ti + εt1

i + ε2t2
i , which approximate the solution u in the

regions Ωi (notice that with our choice of the function h, we have Ω1 = Ω+, Ω2 = Ω−, t1 ≡ −1 and t2 ≡ 1). This
allowed Fife and Greenlee to construct an approximation Uε which yields an exact solution to (11) using a classical
implicit function argument. No restrictions on ε are required, and the solution satisfies

uε → −1 in Ω+ and uε → 1 in Ω− as ε → 0. (8)

Super-subsolutions were later used by Angenent, Mallet-Paret and Peletier in the one-dimensional case (see [7]) for
construction and classification of stable solutions. Radial solutions were found variationally by Alikakos and Simpson
in [5]. These results were extended by del Pino in [12] for general (even non-smooth) interfaces in any dimension,
and further constructions have been done recently by Dancer and Yan [11] and Do Nascimento [16]. In particular, it
was proved in [11] that solutions with the asymptotic behavior like (8) are typically minimizer of Jε . Related results
can be found in [1,2].

On the other hand, a solution exhibiting a transition layer in the opposite direction, namely

uε → +1 in Ω+, uε → −1 on Ω− as ε → 0 (9)

has been believed to exist for many years. Hale and Sakamoto [21] established the existence of this type of solution in
the one-dimensional case, while this was done for the radial case in [13], see also [10]. The layer with the asymptotics
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in (9) in this scalar problem is meaningful in describing pattern-formation for reaction–diffusion systems such as
Gierer–Meinhardt with saturation, see [13,18,36,41,42] and the references therein.

For one-dimensional or radial problems it is possible to use finite-dimensional reductions, which basically consist
in determining the location of the transition layer. In this kind of approach, the same technique works for both the
asymptotic behaviors in (8) and (9): the only difference is the sign of the small eigenvalue (of order ε) arising from
the approximate degeneracy of the equation (when we tilt the solutions perpendicularly to the interface). This makes
the former solution stable and the latter unstable.

On the other hand, one faces a dramatically different situation in higher-dimensional, non-symmetric cases. This is
clearly seen already linearizing around a spherically symmetric solution of (1) (with profile as in (9)), as bifurcations
of non-radial solutions along certain infinite discrete set of values for ε → 0 take place, as established by Sakamoto
in [42]. This reveals that the radial solution has Morse index which changes with ε (precisely diverges as ε → 0, as
shown in [17]). This poses a serious difficulty for a general construction. A phenomenon of this type was previously
observed in the one-dimensional case by Alikakos, Bates and Fusco [3] in finding solutions with any prescribed Morse
index.

In [15], del Pino, Kowalczyk and the third author considered the two-dimensional case, constructing transition layer
solutions with asymptotics as in (9), while in this paper we extend that result to any dimension. Our main theorem is
the following.

Theorem 1.1. Let Ω be a smooth bounded domain of R
n (n � 2) and assume that a :Ω → (−1,1) is a smooth

function. Define K , Ω+ and Ω− to be respectively the zero-set, the positive set and the negative set of a. Assume that
∇a �= 0 on K and that K ∩ ∂Ω = ∅. Then there exists a sequence εj → 0 such that problem (3) has a solution uεj

which approach 1 in Ω+ and −1 in Ω−. Precisely, parameterizing a point x near K by x = (ȳ, ζ̄ ), with ȳ ∈ K and
ζ̄ = d(x,K) (with sign, positive in Ω+), uεj

admits the following behavior

uεj
(ȳ, ζ̄ ) = H

(
ζ̄

εj

+ Φ(ȳ)

)
+ O(εj ) as j → +∞.

Here Φ is a smooth function defined on K and H(ζ) is the unique hetheroclinic solution of

H ′′ + H − H 3 = 0, H(0) = 0, H(±∞) = ±1. (10)

As in [14,15,26–28,31] and other results for singularly perturbed (or geometric) problems, the existence is proved
only along a sequence εj → 0 (actually it can be obtained for ε in a sequence of intervals (aj , bj ) approaching zero,
but not for any small ε). This is caused by a resonance phenomenon we are going to discuss below, explaining the
ideas of the proof.

To describe the reasons which cause the main difficulty in proving Theorem 1.1, we first scale problem (3) using
the change of variable x → εx, so Eq. (3) becomes{

�u = (u − a(εx))(u2 − 1) in Ωε,
∂u
∂ν

= 0 on ∂Ωε,
(11)

where Ωε = 1
ε
Ω . Near the hypersurface Kε := 1

ε
K , we can choose scaled coordinates (y, ζ ) in Ωε with y ∈ Kε and

ζ = dist(x,Kε) (with sign), see Subsection 2.2, and we let ũε denote the scaling of uε to Ωε: with these notations
we have that ũε(y, ζ ) = uε(y, εζ ) � H(ζ). The function H(ζ) = H(dist(x,Kε)) for x ∈ Ωε can be then considered
as a first order approximate solution to (11), so it is natural to use local inversion arguments near this function in
order to find true solutions. For this purpose it is necessary to understand the spectrum of the linearization of (11) at
approximate solutions.

Letting Lε be the linearization of (11) at ũε , it turns out that Lε admits a sequence of small positive eigenvalues
of order ε. Using asymptotic expansions (see Section 3, and in particular formula (72)), one can see that this family
behaves qualitatively like ε − ε2λj , where the λj ’s are the eigenvalues of the Laplace–Beltrami operator of K . By

the Weyl’s asymptotic formula, we have that λj � j
2

n−1 as j → +∞, therefore we have an increasing number of
positive eigenvalues, many of which accumulate to zero and sometimes, depending on the value of ε, we even have
the presence of a kernel: this clearly causes difficulties if one wants to apply local inversion arguments. Notice that,
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by the above qualitative formula, the average spectral gap of resonant eigenvalues is of order ε
n+1

2 . For the case n = 2
(considered in [15]) this gap is relatively large, so it was possible to show invertibility using direct estimates on the
eigenvalues. However in higher dimension this is not possible anymore, and one needs to apply different arguments.

To overcome this problem, we use an approach introduced in [28,29] (see also [25–27]) to handle similar resonance
phenomena for another class of singularly perturbed equations. The main idea consists in looking at the eigenvalues
(of the linearized problem) as functions of the parameter ε, and estimate their derivatives with respect to ε. This
can be rigorously done employing a classical theorem due to T. Kato, see Proposition 3.3, and by characterizing
the eigenfunctions corresponding to resonant modes. Using this result we get invertibility along a suitable sequence

εj → 0, and the norm of the inverse operator along this sequence has an upper bound of order ε
− n+1

2
j (consistently

with the above heuristic evaluation of the spectral gaps). This loss of uniform bounds as j → +∞ should be expected,
since more and more eigenvalues are accumulating near zero. However, we are able to deal with this further difficulty
by choosing approximate solutions with a sufficiently high accuracy.

Fixing an integer k � 1 and using the coordinates introduced after (11), from the fact that a vanishes on K , one
can consider the Taylor expansion

a(εy, εζ ) = εζb(εy) +
k∑

l=2

(εζ )lbl(εy) + b̃(y, ζ ) with
∣∣b̃(y, ζ )

∣∣ � Ck|εζ |k+1,

and look at an approximate solution of the form

uk,ε(y, ζ ) = H
(
ζ − Φ(εy)

) +
k∑

i=1

εihi

(
εy, ζ − Φ(εy)

)
,

for a smooth function Φ(εy) = Φ0(εy) + ∑k−1
i=1 εiΦi(εy) defined on K and some corrections hi defined on K × R+.

Using similar Taylor expansions of the Laplace–Beltrami operator in the above coordinates, see Section 2.2, the couple
(hj ,Φj−1) for j � 1 can be determined via equations of the form{

L0h1 = −κ(εy)H ′(s) + (s + Φ0)b(εy)(1 − H 2(s)),

L0hj = Φj−1b(εy)(1 − H 2(s)) + Fk(s,Φ0, . . . ,Φj−2, h1, . . . , hj−1, b1, . . . , bj ), for j � 2,
(12)

where L0u = u′′ + (1 − 3H 2)u, Fk is a smooth function of its arguments, and s = ζ − Φ(εy). (12) is always solvable
in hj by the Fredholm alternative if we choose properly the functions Φl .

Such an accurate approximate solution allows us, using the above characterization of the spectrum of the linearized
operator and the bound on its inverse, to apply the contraction mapping theorem and find true solutions. Specifically
for the homogeneous Allen–Cahn equation, a related method was used in [31] to study the effect of ∂Ω on the structure
of solutions to (4). Some common arguments are here simplified, and we believe our approach could also be used to
handle general non-linearities as in [19].

The paper is organized in the following way: in Section 2 we collect some preliminary results concerning the
profile H , we expand the Euclidean metric and the Laplace–Beltrami operator in suitable coordinates near Kε , and
recall some well-known spectral results. In Section 3 we first construct approximate solutions, and then derive some
spectral properties of the linearized operator characterizing the resonant eigenfunctions: this is a crucial step to apply
Kato’s theorem. Finally, Section 4 is devoted to the proof of our main result.

2. Notation and preliminaries

In this section we first collect some notation and conventions. Then, we list some properties of the hetheroclinic
solution H , and we expand the metric and the Laplace–Beltrami operator in a local normal coordinates. Finally we
recall some results in spectral theory like the Weyl asymptotic formula.

Notation and convention We shall always use the convention that capital letters like A,B, . . . will vary between
1 and n, while indices like i, j, . . . will run between 1 and n − 1. We adopt the standard geometric convention of
summing over repeated indices.

(y1, . . . , yn−1) will denote coordinates in R
n−1, and they will also be written as y = (y1, . . . , yn−1), while coordi-

nates in R
n will be written x = (y, ζ ) ∈ R

n−1 × R.
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The hypersurface K will be parameterized with local coordinates ȳ = (ȳ1, . . . , yn−1). It will be convenient to
define its dilation Kε := 1

ε
K which will be parameterized by coordinates (y1, . . . , yn−1) related to the ȳ’s simply by

ȳ = εy.
Derivatives with respect to the variables ȳ, y or ζ will be denoted by ∂ȳ , ∂y , ∂ζ and for brevity we shall sometimes

use the notations ∂i for ∂yi
. When dealing with functions depending just on the variable ζ we will write H ′, h′, . . .

instead of ∂ζ H, ∂ζ h, . . . .
In a local system of coordinates, ḡij are the components of the metric on K naturally induced by R

n−1. Similarly,

ḡAB are the entries of the metric on Ω in a neighborhood of the hypersurface K . κ
j
i will denote the components of

the mean curvature operator of K into R
n−1.

For a real positive variable r and an integer m, O(rm) (resp. o(rm)) will denote a function for which |O(rm)
rm | remains

bounded (resp. | o(rm)
rm | tends to zero) when r tends to zero. For brevity, we might also write O(1) (resp. o(1)) for a

quantity which stays bounded (resp. tends to zero) as ε tends to zero.

2.1. Some analytic properties of the hetheroclinic solution H

In this subsection we collect some useful properties of the hetheroclinic solution H to (10). Note first that H can
be explicitly determined by

H(ζ) = tanh

(√
2

2
ζ

)
, (13)

and moreover the following estimates hold⎧⎪⎨
⎪⎩

H(ζ) − 1 = −A0e
−√

2|ζ | + O(e−(2
√

2 )|ζ |) for ζ → +∞;
H(ζ) + 1 = A0e

−√
2|ζ | + O(e−(2

√
2 )|ζ |) for ζ → −∞;

H ′(ζ ) = √
2A0e

−√
2|ζ | + O(e−(2

√
2 )|ζ |) for |ζ | → +∞,

(14)

where A0 > 0 is a fixed constant. We have the following well-known result (we refer to Lemma 4.1 in [33] for the
proof).

Lemma 2.1. Consider the following eigenvalue problem

φ′′ + (
1 − 3H 2)φ = Λφ, φ ∈ H 1(R). (15)

Then, letting Λj be the eigenvalues arranged in non-increasing order (counted with multiplicity) and φj be the
corresponding eigenfunctions, one has that

Λ1 = 0, φ1 = cH ′; Λ2 < 0. (16)

As a consequence (by Fredholm’s alternative), given any function ψ ∈ L2(R) satisfying
∫

R
ψH ′ = 0, the following

problem has a unique solution φ

φ′′ + (
1 − 3H 2)φ = ψ in R,

∫
R

H ′φ = 0. (17)

Furthermore, there exists a positive constant C such that ‖φ‖H 1(R) � C‖ψ‖L2(R).

We collect next some useful formulas: first of all we notice that

H ′ = 1√
2

(
1 − H 2) and H ′′ = −√

2HH ′. (18)

Moreover, setting

L0u = u′′ + (
1 − 3H 2)u, (19)

we have that

L0(HH ′) = −3
√

2H(H ′)2. (20)



614 F. Mahmoudi et al. / Ann. I. H. Poincaré – AN 25 (2008) 609–631
2.2. Geometric background

In this subsection we expand the coefficients of the metric in local normal coordinates. We then derive as a conse-
quence an expansion for the Laplace–Beltrami operator. First of all, it is convenient to scale by 1

ε
the coordinates in

Eq. (3) to obtain{
�u = (u − a(εx))(u2 − 1) in Ωε,
∂u
∂ν

= 0 on ∂Ωε,
(21)

where we have set Ωε = 1
ε
Ω . Following the same notation we also set Kε = 1

ε
K , and for γ ∈ (0,1) we define

Sε = {
x ∈ Ωε: dist(x,Kε) < ε−γ

}; Iε = [−ε−γ , ε−γ
]
.

We parameterize elements x ∈ Sε using their closest point y in Kε and their distance ζ (with sign, positive in the
dilation of Ω+). Precisely, we choose a system of coordinates ȳ on K , and denote by n(ȳ) the (unique) unit normal
vector to K (at the point with coordinates ȳ) pointing towards Ω−. Choosing also coordinates y on Kε such that
ȳ = εy, we define the diffeomorphism Γε : Kε × Iε → Sε by

Γε(y, ζ ) = y + ζn(εy). (22)

We let the upper-case indices A,B,C, . . . run from 1 to n, and the lower-case indices i, j, l, . . . run from 1 to n − 1.
Using some local coordinates (yi)i=1,...,n−1 on Kε , and letting ϕε be the corresponding immersion into R

n, we have⎧⎨
⎩

∂Γε

∂yi
(y, ζ ) = ∂ϕε

∂yi
(y) + εζ ∂n

∂yi
(εy) = ∂ϕε

∂yi
(y) + εζκ

j
i (εy)

∂ϕε

∂yj
(y), for i = 1, . . . , n − 1;

∂Γε

∂ζ
(y, ζ ) = n(εy),

where (κ
j
i ) are the coefficients of the mean-curvature operator on K . Let also ḡij be the coefficients of the metric on

Kε in the above coordinates y. Then, letting g = gε denote the metric on Ωε induced by R
n, we have

gAB =
(

∂Γε

∂xA

,
∂Γε

∂xB

)
=

(
(gij ) 0

0 1

)
, (23)

where

gij =
(

∂ϕε

∂yi

(y) + εζκk
i (εy)

∂ϕε

∂xk

(y),
∂ϕε

∂yj

(y) + εζκl
j (εy)

∂ϕε

∂xl

(y)

)
= ḡij + εζ

(
κk
i ḡkj + κl

j ḡil

) + ε2ζ 2κk
i κl

j ḡkl .

Note that also the inverse matrix {gAB} decomposes as

gAB =
(

(gij ) 0
0 1

)
.

From the above decomposition of gAB (and gAB ) and for u defined on Sε , one has

�gu = gABuAB + 1√
detg

∂A

(
gAB

√
detg

)
uB

= uζζ + gijuij + 1√
detg

∂ζ (
√

detg )uζ + 1√
detg

∂i

(
gij

√
detg

)
uj . (24)

We have, formally

detg = det
(
ḡ−1g

)
det ḡ = (det ḡ)

(
1 + εζ tr

(
ḡ−1α

)) + o(ε), (25)

where

αij = κk
i ḡkj + κl

j ḡil .

There holds(
ḡ−1α

) = ḡsj αij = ḡsj
(
κk
i ḡkj + κl

j ḡil

)
,

is
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and hence

tr
(
ḡ−1α

) = ḡij
(
κk
i ḡkj + κl

j ḡil

) = 2ḡij κk
i ḡkj = 2κi

i . (26)

We recall that the quantity κi
i represents the mean curvature of K , and in particular it is independent of the choice of

coordinates.
We note that the metric gAB can be expressed in function of the metric ḡij , the operator κi

j , and the variable εζ .
Hence, fixing an integer k and using a Taylor expansion, we can write

1√
detg

∂ζ

√
detg =

k∑
�=1

ε�ζ �−1G̃�(εy) + G̃(εy, ζ ), (27)

where G̃� : K → R are smooth functions, and G̃ satisfies∥∥G̃(·, ζ )
∥∥′

Cm(K)
� Ck,m|ζ |kεk+1, ζ ∈ Iε, (28)

where Ck,m is a constant depending only on K , k, and m. Again (and in the following), when we write ‖ · ‖′ we keep
the variable ζ fixed. In particular, from the above computations it follows that

G̃1(εy) = κ(εy) := κi
i (εy). (29)

We need now a similar expansion for the operator �g : fixing the variable ζ ∈ Iε , the metric g(y, ζ ) = gε(y, ζ ) induces
a metric ĝε,ζ on K in the following way. Consider the homothety iε :K → Kε . We define ĝε,ζ to be

ĝε,ζ = ε2i∗ε gε(·, ζ ),

where i∗ε denotes the pull-back operator. Basically, we are freezing the variable ζ and letting y vary. Fixing an in-
teger k, for any smooth function v :K → R we have the expansion below, which follows from (24), reasoning as
for (27)

�ĝε,ζ
v =

k∑
�=0

(εζ )�L�v + L̃ε,k+1v = �Kv +
k∑

�=1

(εζ )�L�v + εk+1L̃ε,k+1v. (30)

Here {Li}i , L̃ε,k+1 are linear second-order differential operators acting on y and satisfying

‖Liv‖′
Cm(K) � Cm‖v‖′

Cm+2(K)
; ‖L̃ε,k+1v‖′

Cm(K) � Cm|ζ |k+1‖v‖′
Cm+2(K)

(31)

for all smooth v, where Cm is a constant depending only on K , k, and m.
Consider now a function u :Sε → R of the form

u(y, ζ ) = ũ(εy, ζ ), y ∈ Kε, ζ ∈ Iε. (32)

Then, scaling in the variable y, we have

�gεu(y, ζ ) = ũζ ζ (εy, ζ ) + 1√
detg

∂ζ (
√

detg )ũζ (εy, ζ ) + ε2�ĝε,ζ
ũ(εy, ζ ).

Using the expansions (27), (30) together with (29), the latter equation becomes

�gεu(y, ζ ) = ũζ ζ (εy, ζ ) +
(

εκ +
k∑

�=2

ε�ζ �−1G̃�

)
ũζ (εy, ζ ) + G̃(εy, ζ )ũζ (εy, ζ )

+ ε2�Kũ +
k∑

�=1

ε2+�ζ �L�ũ(εy, ζ ) + εk+3L̃ε,k+1ũ(εy, ζ ). (33)
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2.3. Spectral analysis

We define the scaled Euler functional J ε(u) in Ωε by

J ε(u) = 1

2

∫
Ωε

|∇u|2 +
∫
Ωε

F (εx,u) dx, with F(x,u) :=
u∫

−1

(
s − a(x)

)(
s2 − 1

)
ds. (34)

We set for brevity

b(y) := ∂na(y,0) (35)

and we notice that by our choice of n, we have b > 0 on K . Now, we let ϕj and λj be the eigenfunctions and the
eigenvalues (with weight b) of

−�Kϕj = λjb(ȳ)ϕj .

The λj ’s can be obtained for example using the Rayleigh quotient: precisely if Mj denotes the family of j -dimensional
subspaces of H 1(K), then one has

λj = inf
M∈Mj

sup
ϕ∈M, ϕ �=0

∫
K

|∇Kϕ|2∫
K

b(ȳ)ϕ2
= sup

M∈Mj−1

inf
ϕ⊥M, ϕ �=0

∫
K

|∇Kϕ|2∫
K

b(ȳ)ϕ2
, (36)

where ⊥ denotes the orthogonality with respect to the L2 scalar product with weight b. We can estimate the λj using
a standard Weyl’s asymptotic formula [9], one has

λj � CK,bj
2

n−1 as j → +∞, (37)

for some constant CK,b depending only on K and b.

3. Asymptotic analysis

This section is devoted to the construction of approximate solutions to (21), and of approximate eigenfunctions
(and eigenvalues) in the ζ component (see the coordinates introduced in (22)) of the relative linearized equation. Then
we characterize, via Fourier analysis, the profile of resonant eigenfunctions in both the variables y and ζ .

3.1. Approximate solutions and eigenfunctions

In this section, given any integer k � 1, we construct an approximate solution uk,ε to problem (21), which solves
the equation up to an error of order εk+1. Using the above parametrization (y, ζ ) in Sε , we make the following ansatz

uk,ε(y, ζ ) = H
(
ζ − Φ(εy)

) +
k∑

i=1

εihi

(
εy, ζ − Φ(εy)

)
in Sε, (38)

where H is the hetheroclinic solution of (10) and where Φ(εy) = Φ0(εy)+∑k−1
i=1 εiΦi(εy) for some smooth functions

Φj defined on K . The corrections hi and Φi are to be constructed recursively in the index i, depending on the Taylor
expansion of a and the geometry of K . Since all the hi ’s will turn out to have an exponential decay in ζ , uk,ε can be
easily extended (via some cutoff functions) to an approximate solution in the whole Ωε , see (102) below.

We first determine h1 by solving the equation up to an error of order ε2. To this aim, we expand the function a in
powers of ε as (notice that a(εy,0) ≡ 0)

a(εy, εζ ) = εb(εy)ζ +
k∑

�=2

(εζ )�b�(εy) + b̃(y, z), (39)

where b̃(y, z) is smooth and satisfies∣∣b̃(y, z)
∣∣ � Ck|εz|k+1.
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Using the above expansion of the metric coefficients and the Laplace–Beltrami operator, see in particular (33), setting
s = ζ −Φ , we obtain that the term (formally) of order ε in the equation is identically zero if and only if the correction
h1 satisfies

L0h1 := (h1)ss + (
1 − 3H(s)2)h1 = −κ(εy)H ′(s) + (s + Φ0)b(εy)

(
1 − H 2(s)

)
. (40)

By the asymptotics in (14), the right-hand side is of class L2 in R and, by Lemma 2.1, (40) is solvable provided the
latter is orthogonal in L2 to the function H ′(s). Since H ′(s) is even in s and since b(εy) > 0, this is possible choosing
Φ0(εy) so that

b(εy)Φ0(εy) = κ(εy)

∫ +∞
−∞ (H ′)2(s) ds∫ +∞

−∞ H ′(s)(1 − H 2(s)) ds
=

√
2

3
κ(εy). (41)

Moreover one can prove, using standard ODE estimates, that h1 has the following (regularity properties and) decay at
infinity∣∣∂l

s∂
m
y h1(εy, s)

∣∣ � Cmεm
(
1 + |s|)e−√

2|s|, l = 0,1,2, m = 0,1,2, . . . , (42)

where Cm depends only on m, a and K .
To obtain the other corrections Φi and hi one can proceed by induction, assuming that N � 2, that Φ0, . . . ,ΦN−2

and h1, . . . , hN−1 have been determined, and that (hi)i�N−1 satisfy∣∣∂l
s∂

m
y hi(εy, s)

∣∣ � Cmεm
(
1 + |s|di

)
e−√

2|s|, i � N − 1, l = 0,1,2, m = 0,1,2, . . . , (43)

where Cm depends only on m, a, K and di only on i. When we expand Eq. (21) for u = uN,ε in power series of ε, the
couple (hN,ΦN−1) can be found reasoning as for (h1,Φ0): indeed, considering the coefficient of εN in this expansion,
one can easily see that hN satisfies an equation on the form

L0hN = ΦN−1b(εy)
(
1 − H 2(s)

) + FN(s,Φ0, . . . ,ΦN−2, h1, . . . , hN−1, b1, . . . , bN), (44)

where FN is a smooth function of its argument. Reasoning as for h1 this equation is solvable provided the right-hand
side is L2-orthogonal to the function H ′(s). This is indeed true choosing ΦN−1 so that

b(εy)ΦN−1(εy) = − ∫ +∞
−∞ H ′(s)FN(s, . . .) ds∫ +∞

−∞ H ′(s)(1 − H 2(s)) ds
.

Furthermore, one can show that hN satisfies regularity and decay estimates as in (43). Reasoning as in Section 3
of [29] one can check that the above formal estimates can be made rigorous, and that the exponential decay of the
corrections yields the following result.

Proposition 3.1. Given any integer k � 1 there exist a function uk,ε :Sε → R which solves Eq. (21) up to an error of
order εk+1. Precisely, setting

Sε(u) = �u − (
u − a(εx)

)(
u2 − 1

)
, (45)

there exist a polynomial Pk(ζ ) such that∣∣Sε

(
uk,ε(εy, ζ )

)∣∣ � εk+1Pk(ζ )e−√
2|ζ | in Sε. (46)

Moreover, the following estimate holds∣∣∂l
s∂

m
y uk,ε(εy, ζ )

∣∣ � CmεmPk(ζ )e−√
2|ζ |, l = 0,1,2, m = 0,1,2, . . . , (47)

where Cm is a constant depending only on m, a and K .

We will look at solutions u of (21) as small corrections of uk,ε (suitably extended to Ωε via some cutoffs in ζ , see
(102) below), namely of the form

u = uk,ε + w,
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for w small in a sense to be specified later. The equation Sε(u) = 0 is then equivalent to

Lε(w) + Sε(uk,ε) +Nε(w) = 0,

where Lε is nothing but the linearized operator at the approximate solution uk,ε

Lεw := �gεw + (
1 − 3u2

k,ε

)
w + 2a(εx)uk,εw, (48)

and where Nε is the remainder given by non-linear terms in Sε , namely

Nε(w) := −(
3uk,ε − a(εx)

)
w2 − w3. (49)

It is also convenient to define the following linear operator

Lεw := wζζ + 1√
detg

∂ζ (
√

detg )wζ + (
1 − 3u2

k,ε

)
w + 2a(εy, ζ )uk,εw. (50)

In particular, using the expansion (33), the operators Lε and Lε are related by the following formula: setting w(y, ζ ) =
w̃(εy, ζ ) one has

Lεw = Lεw̃ + ε2�Kw̃ + ε3L̂3,εw̃, (51)

where L̂3,ε consists of the last two terms in (33) (replacing u with w). Precisely, L̂3,ε is a linear differential operator
of second order acting on the variables ȳ, which for every integer m satisfies

‖L̂3,εv‖′
Cm(K) � P̂ (ζ )‖v‖′

Cm+2(K)
. (52)

Here P̂ (ζ ) is a polynomial in ζ with fixed degree, and coefficients depending only on m.
We want next to derive some formal estimates on the following eigenvalue problem

Lεv = μv in Iε, (53)

with zero Dirichlet boundary conditions. It follows from Lemma 2.1 that the eigenvalues either stay bounded away
from zero, or converge to zero as ε → 0: we are interested in the latter case. We argue heuristically expanding (53) at
first order in ε. In the limit ε → 0, we have μ = 0 with corresponding eigenfunction H ′, therefore it is natural to look
for approximate eigenfunctions of the form

Ψ = H ′ + εH1, (54)

and eigenvalues μ = εμ̄ + o(ε). We impose that H1 is orthogonal to H ′ in L2(R). Therefore the approximate eigen-
value equation formally becomes

L0H1 = −2b(εy)(s + Φ0)HH ′ − H ′′κ(εy) + 6HH ′h1 + μ̄H ′ + o(1). (55)

As for (40), solvability is guaranteed provided the right-hand side is orthogonal in L2 to H ′. Using the oddness of H ,
formulas (18), (20), (40) and the self-adjointness of L0 we find that orthogonality is equivalent to

μ̄ = 4b(εy)

∫
R

sH(s)(H ′(s))2 ds∫
R
(H ′(s))2 ds

= √
2b(εy).

With this choice of μ̄, the function H1 is defined as the unique solution of

L0H1 = −2b(εy)(s + Φ0)HH ′ − H ′′κ(εy) + 6HH ′h1 + √
2b(εy)H ′.

From the exponential decay of H ′ and h1 (see (42)) we deduce that H1 satisfies estimates similar to (43).
Using this fact and the rigorous expansions in (27), (39), we then derive the following estimate

Lε(Ψ ) = εμ̄H ′ + ε2Rε(εy, ζ ), (56)

where the error term Rε satisfies∣∣Rε(εy, ζ )
∣∣ � P(ζ )e−√

2|ζ | (57)

for some polynomial P(ζ ). Also, from the regularity and the decay of H1 we have∣∣∂l
s∂

m
y Ψ (εy, s)

∣∣ � P(ζ )εm+1e−√
2|ζ |, l = 0,1,2, m = 0,1,2, . . . . (58)
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3.2. Characterization of resonant eigenfunctions

We characterize next the eigenfunctions of Lε , see (48), corresponding to small eigenvalues. Let us recall first the
definition of ϕj and λj in Section 2.3.

Lemma 3.2. Let λε = O(ε2) be an eigenvalue of the linearized operator Lε in Sε with eigenfunction φ and weight b,
namely

Lεφ = λεbφ in Sε

(and with zero Dirichlet boundary conditions). Let us write the eigenfunction φ as

φ(y, ζ ) = ϕ(εy)Ψ (εy, ζ ) + φ⊥(y, ζ ),

with Ψ defined in (54) and with φ⊥ satisfying the following orthogonality condition (we are freezing the y variables
in the volume element)∫

Iε

Ψ (εy, ζ )φ⊥(y, ζ ) dVgε (ζ ) = 0 for every y ∈ Kε. (59)

Then one has ‖φ⊥‖H 1(Sε)
= o(ε)‖φ‖H 1(Sε)

as ε tends to zero.

Proof. We notice first that, since Ψ = H ′ + o(1) in H 1(R), the operator L0 is negative definite on φ⊥ by Lemma 2.1.
Therefore, using the estimates on the metric gε in Section 2, we find easily that there exist a constant C > 0 such that∫

Sε

φ⊥(y, ζ )Lεφ
⊥(y, ζ ) dVgε (y, ζ ) � − 1

C

∥∥φ⊥∥∥2
H 1(Sε)

. (60)

Let us write the eigenvalue equation Lεφ = λεbφ as

Lεφ
⊥ = −Lε(ϕΨ ) + λεbφ⊥ + λεbϕΨ.

Multiplying by φ⊥, integrating over Sε and using (59) we obtain∫
Sε

φ⊥(y, ζ )Lεφ
⊥(y, ζ ) dVgε = −

∫
Sε

φ⊥(y, ζ )Lε

(
ϕ(εy)Ψ (εy, ζ )

)
dVgε + λε

∫
Sε

b(εy)φ⊥(y, ζ )2 dVgε .

By (60) (and the smallness of λε) it then follows

∥∥φ⊥∥∥2
H 1(Sε)

� C

∣∣∣∣
∫
Sε

φ⊥(y, ζ )Lε

(
ϕ(εy)Ψ (εy, ζ )

)
dVgε

∣∣∣∣. (61)

Now by (51) and (56) we can write Lε(ϕΨ ) as

Lε(ϕΨ ) = Lε(ϕΨ ) + ε2�K(ϕΨ ) + ε3L̂3,ε(ϕΨ )

= ϕ
(
ε
√

2b(εy)H ′ + ε2Rε(εy, ζ )
) + ε2�K(ϕΨ ) + ε3L̂3,ε(ϕΨ ). (62)

Then, again by (59), we have∣∣∣∣
∫
Sε

φ⊥(y, ζ )Lε

(
ϕ(εy)Ψ (εy, ζ )

)∣∣∣∣ � ε2
∣∣∣∣
∫
Sε

φ⊥(y, ζ )�K

(
ϕ(εy)Ψ (εy, ζ )

)∣∣∣∣
+

∣∣∣∣
∫ (

ε2R̃ε(εy, ζ )ϕ(εy) + ε3L̂3,ε

(
ϕ(εy)Ψ (εy, ζ )

))
φ⊥

∣∣∣∣, (63)
Sε
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where R̃ε is as in (57). We first estimate the second term: since L̂3,ε is a second order operator in ȳ satisfying the
bound (52), by an integration by parts we find

ε3
∣∣∣∣
∫
Sε

L̂3,ε

(
ϕ(εy)Ψ (εy, ζ )

)
φ⊥ dVgε (y, ζ )

∣∣∣∣ � Cε2
∫

Kε×Iε

P̂ (ζ )
∣∣∇ȳ

(
ϕ(εy)Ψ (εy, ζ )

)∣∣ ∣∣∇yφ
⊥∣∣dVgε (y, ζ ).

Therefore, using the Hölder inequality, the change of variables ȳ = εy, (58) and the estimate on R̃ε we find∣∣∣∣
∫
Sε

(
ε2R̃ε(εy, ζ )ϕ(εy) + ε3L̂3,ε

(
ϕ(εy)Ψ (εy, ζ )

))
φ⊥ dVgε (y, ζ )

∣∣∣∣ � C
ε2

ε
n−1

2

∥∥φ⊥∥∥
H 1(Sε)

‖ϕ‖H 1(K), (64)

for some positive constant C. It remains to estimate the first term in (63). To this aim we decompose ϕ as (see the
above notation)

ϕ(εy) =
∑
j

αjϕj (εy), (65)

for some real numbers αj . One can write∫
Sε

φ⊥(y, ζ )�K

(
ϕ(εy)Ψ (εy, ζ )

)
dVgε (y, ζ ) =

∫
Sε

φ⊥(y, ζ )Ψ (εy, ζ )�Kϕ(εy)dVgε (y, ζ )

+
∫
Sε

φ⊥(y, ζ )ϕ(εy)�KΨ (εy, ζ ) dVgε (y, ζ )

+ 2
∫
Sε

φ⊥(y, ζ )∇KΨ (εy, ζ ) · ∇Kϕ(εy)dVgε (y, ζ ).

The first term vanishes by (59). Hence, using the Hölder inequality, (58) and reasoning as for (64) we obtain∣∣∣∣
∫
Sε

φ⊥(y, ζ )�K

(
ϕ(εy)Ψ (y, ζ )

)
dVgε (y, ζ )

∣∣∣∣ � C
1

ε
n−1

2

∥∥φ⊥∥∥
H 1(Sε)

‖ϕ‖H 1(K),

which by estimates (63) and (64) implies∣∣∣∣
∫
Sε

φ⊥(y, ζ )Lε

(
ϕ(y)Ψ (y, ζ )

)
dVgε (y, ζ )

∣∣∣∣ � C
ε2

ε
n−1

2

∥∥φ⊥∥∥
H 1(Sε)

‖ϕ‖H 1(K). (66)

Using then (61) and the latter equation together with the Weyl’s asymptotic formula (see Subsection 2.3), we then
obtain

∥∥φ⊥∥∥2
H 1(Sε)

� C

εn−1

(∑
j

α2
j

(
ε4 + ε4j

2
n−1

))
. (67)

Now, we rewrite the eigenvalue equation as

(
ε
√

2b ϕ + ε2�Kϕ
)
Ψ = λεbφ⊥ + λεbϕΨ − ε2ϕ�KΨ − 2ε2∇Kϕ · ∇KΨ − ε2R̃εϕ − ε3L̂3,ε(ϕΨ ) − Lεφ

⊥.

We use again the above decomposition ϕ(εy) = ∑
j αjϕj (εz), we define the integer jε (depending on ε) to be the

first j such that ε2λj > ε
1
2 . We multiply this time the last equation by

∑
j�jε

αjϕjΨ and we integrate over Sε . By

the self-adjointness of Lε , (58), (59) and a similar argument as for (64), incorporating the term involving L̂3,ε into the
left-hand side we obtain that
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(
1 + O(ε)

) 1

εn−1

∑
j�jε

ε2α2
j λj � C

(
ε2 + |λε|

)( 1

εn−1

∑
j�jε

α2
j

) 1
2
(

1

εn−1

∑
j

α2
j

) 1
2

+ Cε

(
1

εn−1

∑
j

α2
j

) 1
2
(

1

εn−1

∑
j�jε

ε2λjα
2
j

) 1
2 +

∣∣∣∣
∫
Sε

φ⊥Lε

( ∑
j�jε

αjϕjΨ

)
dVgε

∣∣∣∣. (68)

The last term can be estimated reasoning as for (67): since λj � 1 for j � jε , we find that∣∣∣∣
∫
Sε

φ⊥Lε

( ∑
j�jε

αjϕjΨ

)
dVgε

∣∣∣∣ � Cε
∥∥φ⊥∥∥

H 1(Sε)

(
1

εn−1

∑
j�jε

ε2λjα
2
j

) 1
2

.

From the above estimates and the fact that λε = O(ε2) we obtain(
1

εn−1

∑
j�jε

ε2λjα
2
j

) 1
2

� Cε

((
1

εn−1

∑
j

α2
j

) 1
2 + ∥∥φ⊥∥∥

L2(Sε)

)
. (69)

Then, writing ϕΨ as

ϕΨ =
∑
j<jε

αjϕjΨ +
∑
j�jε

αjϕjΨ,

using (67) and (69) we find

∥∥φ⊥∥∥
H 1(Sε)

� C
(
ε2 + ε

5
4
)‖ϕΨ ‖L2(Sε)

+ Cε

(
1

εn−1

∑
j�jε

ε2λjα
2
j

) 1
2

� Cε
5
4 ‖ϕΨ ‖L2(Sε)

+ Cε2(‖ϕΨ ‖L2(Sε)
+ ∥∥φ⊥∥∥

H 1(Sε)

)
.

This implies ‖φ⊥‖H 1(Sε)
� Cε

5
4 ‖ϕΨ ‖L2(Sε)

, and noticing that ‖φ‖2
L2(Sε)

= ‖ϕΨ ‖2
L2(Sε)

+ ‖φ⊥‖2
L2(Sε)

, we achieve the
desired estimate. �

Our next task is to estimate the derivatives of small eigenvalues of the linearized operator Lε with respect to the
parameter ε. This will allow us to obtain invertibility of Lε for a suitable family of small ε. The prove of the main
result can be then obtained by a direct application of the contraction mapping theorem. Using a result by T. Kato,
see [22], page 445, which can be applied by the symmetry of Lε and elliptic regularity results (these ensure that the
eigenvalues of Lε are stable and semi-simple, according to the definitions in [22]), we have the following proposition.

Proposition 3.3. For k ∈ N, k � 1, let uk,ε be given by Proposition 3.1, and let Lε be defined in (48). Then the
eigenvalues λε of the problem{

Lεu = λεbu in Sε;
u = 0 on ∂Sε,

(70)

are differentiable with respect to ε, and they satisfy the following estimates

T 1
λε,ε

� ∂λε

∂ε
� T 2

λε,ε
. (71)

Here we have set

T 1
λ,ε = inf

u∈Hλ, u �=0

∫
Sε

(− 2
ε
|∇gεu|2 − 6uk,εvk,εu

2) dVgε∫
Sε

bu2 dVgε

;

T 2
λ,ε = sup

u∈Hλ, u �=0

∫
Sε

(− 2
ε
|∇gεu|2 − 6uk,εvk,εu

2) dVgε∫
Sε

bu2 dVgε

,

with vk,ε = ∂uk,ε , while Hλ stands for the eigenspace for (70) corresponding to the eigenvalue λ.

∂ε
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We next give a further characterization of some eigenfunctions of Lε , in addition to the ones in Lemma 3.2,
concerning in particular the function ϕ.

Lemma 3.4. Suppose the assumptions of Lemma 3.2 hold true. Then, normalizing φ by ‖φ‖H 1(Sε)
= 1, decomposing

ϕ as in (65) and setting

λj,ε = √
2ε − ε2λj , (72)

as ε → 0 we have that
1

εn−1

∑
|λj,ε |�ε

5
4

α2
j = o(1); 1

εn−1

∑
|λj,ε |�ε

5
4

λj,εα
2
j = o(ε).

Proof. We define the sets

A1,ε = {
j ∈ N: λj,ε > ε

5
4
}; A2,ε = {

j ∈ N: λj,ε < −ε
5
4
}
,

and the functions

ϕ̄1(εy) =
∑

j∈A1,ε

αjϕj (εy); ϕ̄2(εy) =
∑

j∈A2,ε

αjϕj (εy);

φ1 = ϕ̄1(εy)Ψ (εy, ζ ); φ2 = ϕ̄2(εy)Ψ (εy, ζ ).

As one can easily see, from the estimates on gε in Subsection 2.2 and from the decay of Ψ , see (58), as ε → 0 there
holds

‖ϕΨ ‖2
H 1(Sε)

= 1 + o(1)

εn−1

(
C0

∫
K

ϕ2 + C1

∫
K

|∇ϕ|2
)

, (73)

where C0 = ∫
R
(H ′)2 + (H ′′)2 and C1 = ∫

R
(H ′)2. Similar formulas hold true for φ1 and φ2, and hence these two

functions stay uniformly bounded in H 1(Sε) as ε tends to zero.
We multiply next the equation in (70) by φl , l = 1,2: from the orthogonality of ϕ̄1 and ϕ̄2 on K (with weight b),

(59), an integration by parts and the above arguments we get

O
(
ε2)‖φl‖2

L2(Sε)
+ O

(
ε3)‖ϕΨ ‖L2(Sε)

‖φl‖L2(Sε)
=

∫
Sε

φlLεφ dVgε =
∫
Sε

(
ϕΨ + φ⊥)

Lεφl.

Using (66) (replacing ϕ by ϕ̄l) we deduce∣∣∣∣
∫
Sε

φ⊥(y, ζ )Lε

(
ϕ̄l(y)Ψ (y, ζ )

)
dVgε (y, ζ )

∣∣∣∣ � C
ε2

ε
n−1

2

∥∥φ⊥∥∥
H 1(Sε)

‖ϕ̄l‖H 1(K), for l = 1,2.

Also, from the expression of Lε (see (62)), the subsequent estimates and some straightforward computations one finds∫
Sε

ϕΨ Lεφl = −1 + o(1)

εn−1

∑
j∈Al,ε

α2
j λj,ε + O

(
ε2)( 1

εn−1

∑
j∈Al,ε

α2
j

) 1
2 ‖φ‖H 1(Sε)

+ O(ε)

(
1

εn−1

∑
j∈Al,ε

α2
j ε

2λj

) 1
2 ‖φ‖H 1(Sε)

.

Then from the last three formulas, Lemma 3.2 and the normalization on φ we obtain

1

εn−1

∑
j∈Al,ε

α2
j λj,ε = O

(
ε2)( 1

εn−1

∑
j∈Al,ε

α2
j

) 1
2 + O(ε)

(
1

εn−1

∑
j∈Al,ε

α2
j ε

2λj

) 1
2

, (74)

for l = 1,2.
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We next further split the sets Al,ε as Al,ε = Âl,ε ∪ Ãl,ε , where

Âl,ε = {
j ∈ Al,ε:

∣∣ε2λj

∣∣ < ε
3
4
}; Ãl,ε = Al,ε \ Âl,ε,

so from (74) we have clearly

1

εn−1

∑
j∈Al,ε

α2
j λj,ε = O

(
ε2)( 1

εn−1

∑
j∈Al,ε

α2
j

) 1
2 + O(ε)

(
1

εn−1

∑
j∈Âl,ε

α2
j ε

2λj

) 1
2

+ O(ε)

(
1

εn−1

∑
j∈Ãl,ε

α2
j ε

2λj

) 1
2

. (75)

Obviously, since λj,ε = √
2ε − ε2λj , for j ∈ Ãl,ε the ratio ε2λj/λj,ε stays uniformly bounded from above and below

by positive constants. Therefore, using the elementary inequality |xy| � δ|x|2 + 1
δ
|y|2 with δ small and fixed, we can

absorb the last term into the left-hand side of the latter formula, obtaining an error of the form O(ε2/δ). Therefore,
using also the definition of Âl,ε we find

1

εn−1

∑
j∈Al,ε

α2
j λj,ε = O

(
ε

11
8
)( 1

εn−1

∑
j∈Al,ε

α2
j

) 1
2 + O

(
ε2).

By our normalization on φ, see also the comments after (73), the argument inside the last bracket is uniformly bounded
as ε → 0, and hence we obtain the second assertion of the lemma.

To obtain also the first one we notice that |λj,ε| � ε
5
4 for j ∈ Al,ε , so we find

1

εn−1

∑
j∈Al,ε

α2
j = O

(
ε

11
8 − 5

4
) = O

(
ε

1
8
) = o(1)

as ε → 0. This concludes the proof. �
Now, using the above lemma, we can estimate the derivatives of small eigenvalues of Lε with respect to ε. Precisely,

we have the following result.

Lemma 3.5. Let λ be as in Lemma 3.2. Then, for ε sufficiently small λ is differentiable with respect to ε, and there
exists a negative constant cK,b , depending only on K and b, such that its derivative (which is possibly a multi-valued
function) satisfies∣∣∣∣∂λ

∂ε
− cK,b

∣∣∣∣ = o(1) as ε → 0.

Proof. The proof is based on Lemma 3.2, Proposition 3.3 and Lemma 3.4. Since we want to apply formula (71) (in
our previous notation) to the function

u = φ =
( ∑

|λj,ε |�ε
5
4

αjϕj (εz)

)
Ψ + φ⊥ = ϕ(H ′ + εH1) + φ⊥,

we need to estimate the two quantities∫
Sε

(
−2

ε
|∇gεu|2 − 6uk,εvk,εu

2
)

dVgε ;
∫
Sε

bu2 dVgε . (76)

Here the function vk,ε is defined as vk,ε = ∂ũk,ε

∂ε
(ε·), where ũk,ε : εSε → R is the scaling uk,ε(x) = ũk,ε(εx). We claim

that, normalizing u with ‖u‖H 1(S ) = 1 (this condition was required in Lemma 3.4), the following estimates hold

ε
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∫
Sε

(
−2

ε
|∇gεu|2 − 6uk,εvk,εu

2
)

dVgε = c

εn−1

∫
K

b(ȳ)ϕ2 + o(1); (77)

∫
Sε

bu2 dVgε = C1

εn−1

∫
K

b(ȳ)ϕ2 + o(1) (78)

as ε → 0, where c < 0 and where C1 is defined after (73). This together with (71) would conclude the proof of the
lemma. �
Proof of (77) and (78). First of all, recall that by our normalization and by Lemma 3.2 we have that ‖φ⊥‖H 1(Sε)

=
o(ε). Therefore, using the expansions for gε in Subsection 2.2, some integration by parts, (58) and the estimates in
Subsection 3.1 one finds∫

Sε

(
−2

ε
|∇gεu|2 − 6uk,εvk,εu

2
)

dVgε

= 2

ε

∫
Sε

ϕ(H ′ + εH1)
[
ϕ
(
H ′′′ + εH ′′

1

) + εκϕ
(
H ′′ + εH ′

1

) + ε2�Kϕ(H ′ + εH1)
]
(1 + εκζ )

+ 6
∫
Sε

ϕ2(H + εh1)

[
ζ − Φ0

ε
H ′ + (ζ − Φ0)h

′
1

](
H ′2 + 2εH ′H1

)
(1 + εκζ ) + o(1). (79)

Since the arguments of H,H ′, h1 and H1 are all translated by Φ0 in ζ , with the change of variables s = ζ − Φ0 and
some elementary estimates (which use the exponential decay of H ′, h1 and H1) we find∫

Sε

(
−2

ε
|∇gεu|2 − 6uk,εvk,εu

2
)

dVgε = 1

ε

∫
Kε×R

ϕ2(2H ′H ′′′ + 6sHH ′3)

+ 4
∫

Kε×R

ϕ2H1
(
H ′′′ + 3sHH ′2) + 6

∫
Kε×R

ϕ2(sh1(H
′)3 + sh′

1H(H ′)2)

+ 2
∫

Kε×R

εϕ�KϕH ′2 + 2
∫

Kε×R

κ(s + Φ0)H
′H ′′′ϕ2 + 6

∫
Kε×R

s(s + Φ0)κHH ′3ϕ2 + o(1). (80)

In the latter formula all the arguments now are simply in s, with no more translation. Using Eq. (10), the oddness
of H together with some integration by parts, it is easy to see that the term of order 1

ε
in the above expression is

identically equal to zero. Let us consider now the terms of order 0 which involve H1. Using the self-adjointness of the
operator L0 and the following elementary identity

L0

(
− 1√

2
sHH ′

)
= H ′′′ + 3sHH ′2,

we can write that

4
∫

Kε×R

ϕ2H1
(
H ′′′ + 3sHH ′2) = − 4√

2

∫
Kε×R

ϕ2sHH ′L0H1.

Similarly, the terms of order 0 which involve h1 can be written (up to some integration by parts in the variable s) as

6
∫

Kε×R

ϕ2(sh1(H
′)3 + sh′

1H(H ′)2) = −6
∫

Kε×R

ϕ2(2sHH ′H ′′ + H(H ′)2)h1

= −6
∫

ϕ2H(H ′)2h1 + 12
√

2
∫

ϕ2s(HH ′)2h1
Kε×R Kε×R
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= 2√
2

∫
Kε×R

ϕ2HH ′L0(h1) + 24√
2

∫
Kε×R

ϕ2s(HH ′)2h1. (81)

Here again we have used the self-adjointness of the operator L0 and the identities

H ′′ = −√
2HH ′ and L0

(
2√
2
HH ′

)
= −6HH ′2.

Regrouping the above terms, and using the oddness of H one finds∫
Sε

(
−2

ε
|∇gεu|2 − 6uk,εvk,εu

2
)

dVgε

= − 4√
2

∫
Kε×R

ϕ2sHH ′(L0H1 − 6HH ′h1) + 2√
2

∫
Kε×R

ϕ2HH ′L0(h1) + 2
∫

Kε×R

εϕ�KϕH ′2

+ 2
∫

Kε×R

κ(s + Φ0)H
′H ′′′ϕ2 + 6

∫
Kε×R

s(s + Φ0)κHH ′3ϕ2 + o(1)

= − 4√
2

∫
Kε×R

ϕ2sHH ′(L0H1 − 6HH ′h1) + 2√
2

∫
Kε×R

ϕ2HH ′L0(h1)

+ 2
∫

Kε×R

εϕ�KϕH ′2 + 2
∫

Kε×R

κΦ0ϕ
2(3sHH ′3 + H ′H ′′′) + o(1). (82)

Now, using Eqs. (40) and (55) we arrive at∫
Sε

(
−2

ε
|∇gεu|2 − 6uk,εvk,εu

2
)

dVgε = 4√
2

∫
Kε×R

ϕ2sHH ′(2b(εy)(s + Φ0)HH ′ + H ′′κ(εy) − √
2b(εy)H ′)

+ 2√
2

∫
Kε×R

ϕ2HH ′(−κ(εy)H ′ + (s + Φ0)b(εy)
(
1 − H 2))

+ 2
∫

Kε×R

εϕ�KϕH ′2 + 2
∫

Kε×R

κΦ0ϕ
2(3sHH ′3 + H ′H ′′′) + o(1).

Using again the fact that H is odd, by the vanishing of the last integral (as one can easily check) we obtain∫
Sε

(
−2

ε
|∇gεu|2 − 6uk,εvk,εu

2
)

dVgε = 4√
2

∫
Kε×R

ϕ2sHH ′(2b(εy)sHH ′ − √
2b(εy)H ′)

+ 2√
2

∫
Kε×R

ϕ2HH ′sb(εy)
(
1 − H 2) + 2

∫
Kε×R

εϕ�KϕH ′2 + o(1).

By an explicit computation of the integral we find∫
Sε

(
−2

ε
|∇gεu|2 − 6uk,εvk,εu

2
)

dVgε =
(

8

45
π2 − 2

3

)
1

εn−1

∫
K

bϕ2 + 4

3

ε
√

2

εn−1

∫
K

ϕ�Kϕ + o(1),

so by Lemma 3.4 and some easy estimates, we find∫
Sε

(
−2

ε
|∇gεu|2 − 6uk,εvk,εu

2
)

dVgε =
(

8

45
π2 − 10

3

)
1

εn−1

∫
K

bϕ2 + o(1).

Then we obtain (77) taking c = ( 8
45π2 − 10

3 ) < 0. To prove (78) it is sufficient to use Lemma 3.2, the estimates on gε

in Subsection 2.2 and the decay of H1, see (54). �
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4. Proof of Theorem 1.1

In this section we first prove the invertibility of the linearized operator Lε using Lemma 3.5 and choosing carefully
the parameter ε. Below, H 2

0 (Sε) stands for the functions in H 2(Sε) with null trace on ∂Sε .

Proposition 4.1. Let k � 1, let uk,ε be the approximate solution defined in Proposition 3.1, and let Lε be the linearized
operator at uk,ε , see (48). Then there exist a sequence εj → 0 such that Lεj

:H 2
0 (Sεj

) → L2(Sεj
) is invertible and its

inverse L−1
εj

:L2(Sεj
) → H 2

0 (Sεj
) satisfies

∥∥L−1
εj

∥∥
L(L2(Sεj

);H 2
0 (Sεj

))
� Cε

− n+1
2

j , for all j ∈ N.

Proof. The proof is similar in spirit to the one of Proposition 4.5 in [29]. As we will see, in order to study the spectral
gap of Lε it suffices to find an asymptotic estimate on the number Nε of positive eigenvalues of Lε and to apply then
Lemma 3.5. We denote by λ̃1,ε � λ̃2,ε � · · · � λ̃j,ε � · · · the eigenvalues of Lε , counted with multiplicity. The j -th
eigenvalue λ̃j,ε can be estimated using the classical Courant–Fisher formula

λ̃j,ε = sup
M∈Mj

inf
u∈M, u �=0

∫
Sε

uLεudVgε∫
Sε

bu2 dVgε

; λ̃j,ε = inf
M∈Mj−1

sup
u⊥M, u �=0

∫
Sε

uLεudVgε∫
Sε

bu2 dVgε

. (83)

Here Ml represents the family of l-dimensional subspaces of H 2
0 (Sε), and the symbol ⊥ denotes orthogonality with

respect to the L2 scalar product with weight b. Notice that the inf and sup are reversed compared to (36) since the
principal part of the operator has the opposite sign.

We can find a lower bound of Nε using the first formula in (83). Indeed, given a fixed δ > 0, let jε be the largest
integer j for which λj,ε � δε. From (37) and (72) we find that

jε �
(√

2 − δ

CK,bε

) n−1
2

as ε → 0. (84)

We can take a test function φ like ϕΨ with ϕ = ∑jε

l=1 αlϕl . Actually, since we want to work in the space H 2
0 (Sε) we

need to add a suitable cutoff function in ζ . However, by the exponential decay of Ψ , see (58), these will generate error
terms exponentially small in ε. Therefore, for convenience of the exposition, we will omit these corrections.

By (62) we have that

Lεφ = (
ε
√

2bϕ + ε2�Kϕ
)
Ψ + ε2ϕ�KΨ + 2ε2〈∇Kϕ,∇KΨ 〉 + ε2R̃εϕ + ε3L̂3,ε(ϕΨ ),

where L̂3,ε and R̃ε satisfy respectively the estimates (52) and (57). Reasoning as for (64), (68) we find∫
Sε

φ Lεφ dVgε � 1

εn−1

∑
l

[(
1 + o(1)

)
λl,ε + O

(
ε2)]α2

l ;
∫
Sε

bφ2 dVgε = 1 + o(1)

εn−1

∑
l

α2
l . (85)

Defining M = span{ϕlΨ, l � jε}, by the first formula in (83) and our choice of jε we have that

λ̃jε,ε � inf
u∈M, u �=0

∫
Sε

uLεudVgε∫
Sε

bu2 dVgε

� 0, as ε → 0.

From (84) and the last formula we then find the following lower bound

Nε �
(
1 + o(1)

)(√
2 − δ

CK,bε

) n−1
2

as ε → 0. (86)

A similar upper bound can be obtained using the second formula in (83): again, given a fixed δ > 0, let j̃ε be the
smallest integer j for which λj,ε � −δε. Still from (37) and (72) it follows that

j̃ε �
(√

2 + δ
) n−1

2

as ε → 0. (87)

CK,bε
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Now let φ ∈ H 2
0 (Sε) be an arbitrary function orthogonal to M̃ := span{ϕlΨ, l � j̃ε − 1}, and let us write it in the form

φ = ϕΨ + φ⊥ with φ⊥ as in Lemma 3.2.
We write as before ϕ = ∑

l αlϕl , and split it as sum of the following two functions

ϕ̄1 =
∑

l�j̃ε−1

αlϕl, ϕ̄2 =
∑
l�j̃ε

αlϕl.

Using the second formula in (83) we have that

λ̃j,ε � sup
u⊥M̃, u �=0

∫
Sε

uLεudVgε∫
Sε

bu2 dVgε

. (88)

By the definition of φ⊥, the expansions of the metric gε in Subsection 2.2 and (58) one finds

‖φ‖2
L2(Sε)

= ‖ϕΨ ‖2
L2(Sε)

+ ∥∥φ⊥∥∥2
L2(Sε)

= (
1 + o(1)

)(‖ϕ̄1Ψ ‖2
L2(Sε)

+ ‖ϕ̄2Ψ ‖2
L2(Sε)

) + ∥∥φ⊥∥∥2
L2(Sε)

= (
1 + o(1)

) 1

εn−1

∑
l�j̃ε−1

α2
l + (

1 + o(1)
) 1

εn−1

∑
l�j̃ε

α2
l + ∥∥φ⊥∥∥2

L2(Sε)
as ε → 0. (89)

Using also the estimates in the proof of Lemma 3.4, multiplying φ by b(εy)ϕ̄1Ψ , using the orthogonality to M̃ and
integrating one can easily prove that

‖ϕ̄1Ψ ‖L2(Sε)
� o(1)‖φ‖L2(Sε)

, as ε → 0. (90)

This, together with (62), the fact that |λj,ε| � Cε for j � j̃ε − 1 and some easy computations imply∫
Sε

(ϕ̄1Ψ )Lε(ϕ̄1Ψ )dVgε = o(ε)‖φ‖2
L2(Sε)

. (91)

Now, by the self-adjointness of Lε we can write∫
Sε

φLεφ dVgε =
∫
Sε

(ϕ̄1Ψ )Lε(ϕ̄1Ψ )dVgε +
∫
Sε

(ϕ̄2Ψ )Lε(ϕ̄2Ψ )dVgε +
∫
Sε

φ⊥Lεφ
⊥ dVgε

+ 2
∫
Sε

(ϕ̄1Ψ )Lε(ϕ̄2Ψ )dVgε + 2
∫
Sε

(ϕ̄1Ψ )Lεφ
⊥ dVgε + 2

∫
Sε

(ϕ̄2Ψ )Lεφ
⊥ dVgε . (92)

Let us first estimate the last two terms: from (66) we obtain∫
Sε

(ϕ̄2Ψ )Lεφ
⊥ dVgε � Cε2

ε
n−1

2

∥∥φ⊥∥∥
H 1(Sε)

‖ϕ̄2‖H 1(K) � Cε2

ε
n−1

2

∥∥φ⊥∥∥
H 1(Sε)

( ∑
l�j̃ε

(1 + λl)α
2
l

) 1
2

. (93)

Similarly, using the fact that |λl | � C
ε

for l � j̃ε − 1 we have

‖ϕ̄1‖H 1(K) �
( ∑

l�j̃ε−1

λlα
2
l

) 1
2

� 1

ε
1
2

‖ϕ̄1‖L2(K),

and hence∫
Sε

(ϕ̄1Ψ )Lεφ
⊥ dVgε � Cε2

ε
n−1

2

∥∥φ⊥∥∥
H 1(Sε)

‖ϕ̄1‖H 1(K) � Cε
3
2

ε
n−1

2

∥∥φ⊥∥∥
H 1(Sε)

‖ϕ̄1‖L2(K). (94)

On the other hand, a similar argument as for the first formula in (85) yields∫
(ϕ̄2Ψ )Lε(ϕ̄2Ψ )dVgε = 1

εn−1

∑
l�j̃

[(
1 + o(1)

)
λl,ε + O

(
ε2)]α2

l . (95)
Sε ε



628 F. Mahmoudi et al. / Ann. I. H. Poincaré – AN 25 (2008) 609–631
Moreover by the negative definiteness of Lε on φ⊥, see (60), we have that∫
Sε

φ⊥Lεφ
⊥ dVgε � −C−1

∥∥φ⊥∥∥2
H 1(Sε)

(96)

for some fixed constant C. It remains to estimate the term
∫
Sε

(ϕ̄1Ψ )Lε(ϕ̄2Ψ )dVgε . Using again (62), (58), the fact

that
∫
K

bϕiϕj = 0 for i � j̃ε − 1, j � j̃ε , and some integration by parts we get

εn−1

C

∫
Sε

(ϕ̄1Ψ )Lε(ϕ̄2Ψ )dVgε � ε3
∫
K

|∇ϕ̄1||∇ϕ̄2| + ε2
∫
K

(|∇ϕ̄1||ϕ̄2| + |ϕ̄1| |∇ϕ̄2| + |ϕ̄1| |ϕ̄2|
)

� ε3
( ∑

l�j̃ε−1

λlα
2
l

) 1
2
( ∑

l�j̃ε

λlα
2
l

) 1
2 + ε2

( ∑
l�j̃ε−1

α2
l

) 1
2
( ∑

l�j̃ε

λlα
2
l

) 1
2

+ ε2
( ∑

l�j̃ε−1

λlα
2
l

) 1
2
( ∑

l�j̃ε

α2
l

) 1
2 + ε2

( ∑
l�j̃ε−1

α2
l

) 1
2
( ∑

l�j̃ε

α2
l

) 1
2

. (97)

We claim next that the terms in the right-hand side of (92) can be combined yielding∫
Sε

φLεφ dVgε � 1

C

(
1

εn−1

∑
l�j̃ε

λl,εα
2
l − ∥∥φ⊥∥∥2

H 1(Sε)

)
+ o(ε)‖φ‖2

L2(Sε)
. (98)

To prove this, we show that the main terms in (92) are the ones given in (95), (96), while all the others, listed in
the left-hand sides of formulas (90), (93), (94) and (97) can be absorbed into the formers by the elementary inequality
|ab| � a2 + b2. For example, for any small constant β (independent of ε) we can write

Cε2

ε
n−1

2

∥∥φ⊥∥∥
H 1(Sε)

( ∑
l�j̃ε

(1 + λl)α
2
l

) 1
2

� Cβ
∥∥φ⊥∥∥2

H 1(Sε)
+ C

β

1

εn−1

∑
l�j̃ε

ε4(1 + λl)α
2
l .

Taking β sufficiently small, and noticing that ε4λl � ε2λl,ε + O(ε3), from (89) we deduce our claim for this term. For
the others, one reasons similarly, taking also (90) and the choice of j̃ε into account. Now (89), (90), (98) and again
the choice of j̃ε imply∫

Sε

φLεφ dVgε � − δε

Cεn−1

∑
l�j̃ε

α2
l − 1

C

∥∥φ⊥∥∥2
H 1(Sε)

� 0.

Therefore, by (87) we find the following upper bound on Nε

Nε �
(
1 + o(1)

)(√
2 + δ

CK,bε

) n−1
2

as ε → 0.

Since δ is arbitrary, the last estimate and (86) imply

Nε ∼ C1,Kε− n−1
2 as ε → 0, (99)

where we have set C1,K = (
√

2/CK,b)
n−1

2 .
Next, for l ∈ N, let εl = 2−l . From (99) we get

Nεl+1 − Nεl
∼ C1,K

(
2(l+1) n−1

2 − 2l n−1
2

) = C1,K

(
2

n−1
2 − 1

)
ε
− n−1

2
l . (100)

On the other hand it follows from Lemma 3.5 that the eigenvalues of Lε which are bounded (in absolute value) by
O(ε2) are decreasing in ε. Equivalently, by the last equation, the number of eigenvalues which become positive, when

ε decreases from εl to εl+1, is of order ε
− n−1

2
l . Now we define

Al = {
ε ∈ (εl+1, εl): kerLε �= ∅}; Bl = (εl+1, εl) \Al .
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By (100) and the monotonicity (in ε) of the small eigenvalues, we deduce that card(Al) < Cε
− n−1

2
l , and hence there

exists an interval (al, bl) such that

(al, bl) ⊆ Bl; |bl − al | � C−1 meas(Bl )

card(Al )
� C−1ε

n+1
2

l . (101)

From Lemma 3.5 we deduce that Lal+bl
2

is invertible and

∥∥L−1
al+bl

2

∥∥
L(L2(Sε);H 2

0 (Sε))
� C

ε
n+1

2
l

.

This concludes the proof taking εj = aj +bj

2 . �
Proposition 4.1 gives us a localized version of the invertibility result we need. To have a global one in the whole

domain Ωε , we define a smooth cutoff function χε by⎧⎪⎨
⎪⎩

χε(t) = 1, for t � 1
2ε−γ ,

χε(t) = 0, for t � 3
4ε−γ ,

|χ ′
ε| � Cεγ and |χ ′′

ε | � Cε2γ .

We next set

ûk,ε(y, ζ ) =
{

1 + χε(ζ )(uk,ε(y, ζ ) − 1), in Ω+,

−1 − χε(ζ )(uk,ε(y, ζ ) + 1), in R
n \ Ω+.

(102)

Now by (14) and (47) we know that |uk,ε| is exponentially close to 1 and its derivative are exponentially small for |ζ |
sufficiently large. This and (46) imply that ‖Sε(ûk,ε)‖L2(Ωε)

� Cεk+1− n−1
2 and ‖Sε(ûk,ε)‖L∞(Ωε) � Cεk+1, see (45),

where C depends only on K , b and k.
Let us denote by L̂ε the linearized operator at ûk,ε in Ωε . Given a smooth positive extension b̂ of b to Ω , we

consider next the eigenvalue problem{
L̂εu = λb̂(ε·)u in Ωε;
∂u
∂ν

= 0 on ∂Ωε,
(103)

and we denote its eigenvalues by λ̂j,ε , counted in decreasing order with their multiplicity.
By (48), asymptotically away from Kε , the eigenfunctions u satisfy

�u − (
2 ± 2a(εx) − λb̂

)
u = 0 in (Ω±)ε,

where (Ω±)ε stands for the 1
ε

dilation of Ω±. Since we are assuming a ∈ (−1,1) in Ω , if λ is bounded from below
by −ε, the coefficient of u in the above equation is negative. Hence, reasoning as in [28], Lemma 5.1, one can prove
that u has an exponential decay away from Kε .

Moreover, an argument based on the Courant–Fisher method, see Proposition 5.6 in [28], shows that there exists a
constant C depending only on Ω , K , a and γ such that

|λ̂j,ε − λ̃j,ε| � Ce− C
ε provided λ̂j,ε � −ε or λ̃j,ε � −ε.

Here λ̃j,ε are the eigenvalues of Lε in Sε , see the proof of Proposition 4.1.
This and Proposition 4.1 allow us to prove the following result which guarantee the invertibility of the linearized

operator for the range of the parameter ε constructed above.

Corollary 4.1. Fix k ∈ N and let ûk,ε , L̂ε be as above. Define H 2
ν (Ωε) to be the subset of H 2(Ωε) consisting of the

functions with zero normal derivative at ∂Ωε . Then for a suitable sequence εj → 0, the operator L̂εj
:H 2

ν (Ωεj
) →

L2(Ωεj
) is invertible and the inverse operator satisfies ‖L̂−1

εj
‖L(L2(Ωεj

);H 2
ν (Ωεj

)) � C

ε
n+1

2
, for all j ∈ N.
j
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Using the above results, we are in position to prove our main result, Theorem 1.1.

Proof of Theorem 1.1. Let εj be as in Corollary 4.1. We look for a solution uε of the equation Sε(u) = 0 of the form

uε = ûk,ε + w, w ∈ H 2
ν (Ωε).

For ε = εj , define the function F̂ε : H 2
ν (Ωε) ∩ L∞(Ωε) → H 2

ν (Ωε) ∩ L∞(Ωε) by

F̂ε(w) := −L̂−1
ε

[
Sε(ûk,ε) − (3ûk,ε − a)w2 − w3]. (104)

We have that

Sε(ûk,ε + w) = 0 ⇐⇒ F̂ε(w) = w. (105)

We want to prove that F̂ε is a contraction in some closed ball of H 2
ν (Ωε) ∩ L∞(Ωε). We first define the norm ||| · ||| as

|||w||| = ‖w‖H 2
ν (Ωε)

+ ‖w‖L∞(Ωε). Then, for r > 0, we introduce the set

Br = {
w ∈ H 2

ν (Ωε) ∩ L∞(Ωε): |||w||| � r
}
.

Applying a standard elliptic regularity theorem and using Corollary 4.1 one can prove that there exists positive con-
stants C (depending on Ω , K and a) and d (depending on the dimension n) such that∣∣∣∣∣∣F̂ε(w)

∣∣∣∣∣∣ � Cε−d
(
εk+1− n−1

2 + |||w|||2);∣∣∣∣∣∣F̂ε(w1) − F̂ε(w2)
∣∣∣∣∣∣ � Cε−d

(|||w1||| + |||w2|||
)(|||w1 − w2|||

)
, (106)

for ε = εj and w,w1,w2 ∈ H 2
ν (Ωε)∩L∞(Ωε). Now setting r = εl , we can choose first k sufficiently large, depending

on d , n and then l depending on d and k so that F̂ε is a contraction in the ball Br for ε = εj sufficiently small.
A solution of (105) can be then found using the contraction mapping theorem and its properties follows from the
construction of uk,ε . This concludes the proof.
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