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Abstract

In this work we show, on a manifold of any dimension, that arbitrarily near any smooth diffeomorphism with a homoclinic
tangency associated to a sectionally dissipative fixed or periodic point (i.e. the product of any pair of eigenvalues has norm less
than 1), there exists a diffeomorphism exhibiting infinitely many Hénon-like strange attractors. In the two-dimensional case this
has been proved in [E. Colli, Infinitely many coexisting strange attractors, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998)
539–579]. We also show that a parametric version of this result is true.

Résumé

Dans ce travail nous montrons, sur une variété de dimension quelconque, qu’arbitrairement près de chaque difféomorphisme
possédant une tangence homocline, associée à un point fixe ou périodique sectionnelement dissipatif (le module du produit de deux
valeurs propres quelconques est plus petit que 1) il existe un difféomorphisme qui possède une infinité d’attracteurs étranges du
type Hénon. Dans le cas bidimensionnel ceci a été prouvé dans [E. Colli, Infinitely many coexisting strange attractors, Ann. Inst.
H. Poincaré Anal. Non Linéaire 15 (1998) 539–579]. Nous démontrons également une version paramétrique de ce résultat.
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1. Introduction

The two-parameter Hénon family of transformations of the plane

ha,b(x, y)= (1 − ax2 + y, bx)

was studied by Hénon [3] to show, via a numerical approach, how a simple model of an invertible dynamical system
suggests the presence of a nonhyperbolic strange attractor. However, the possibility that the attractor observed by
Hénon was just a periodic orbit with very high period could not be excluded. In a remarkable work Benedicks and
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Carleson [1] showed that this is not the case and they exhibited a positive Lebesgue measure subset of parameters
(a, b) for which the map ha,b has a nonhyperbolic strange attractor.

An important application of Benedicks–Carleson’s methods [1] was done by Mora and Viana in [4] in the setting
of homoclinic bifurcation on surfaces. More precisely, they showed that generic one-parameter families of surfaces
diffeomorphisms unfolding a homoclinic tangency always include the presence, for a Lebesgue positive measure set
of parameter values, of Hénon-like strange attractors or repellers.

The result in [4] was extended by Viana [15] to homoclinic bifurcations on manifolds of any dimension. Later on,
Colli [2] showed that a diffeomorphism of surfaces having a homoclinic tangency can be approximated by diffeomor-
phisms exhibiting not only a strange attractor, but also by diffeomorphisms displaying infinitely many of such strange
attractors.

Our purpose in the present work is to extend the existence of infinitely many strange attractors in [2] to higher
dimensions sectionally dissipative homoclinic bifurcations. Our main result is as follows

Theorem A. Let ϕ :M �→M be a smooth diffeomorphism on any manifold with a homoclinic tangency associated to
a sectionally dissipative point. Then, there exists an open set U of Diff∞(M) containing ϕ in its closure, such that
every ψ ∈ U can be approximated by a diffeomorphism exhibiting infinitely many nonhyperbolic strange attractors.

In the statement above, smooth means that ϕ :M �→M is C∞, M being a n-dimensional manifold. We also recall
that a homoclinic tangency is just a tangency between the stable and unstable manifolds of a saddle periodic point.
The saddle is called (codimension-one) sectionally or strongly dissipative if it has just one expanding eigenvalue and
the product of any two eigenvalues has norm less than one. As in [15], we define attractor of a transformation ϕ to
be a compact, ϕ-invariant and transitive set Λ whose basin Ws(Λ) = {z ∈M: dist(ϕn(z),Λ)→ 0 as n→ ∞} has
nonempty interior. We call the attractor strange if it contains a dense orbit {ϕn(z1): n � 0} displaying exponential
growth of the derivative, that is,∥∥Dϕn(z1)

∥∥ � ecn for all n� 0 and some c > 0.

We also obtain a one-parameter version of Theorem A. More precisely,

Theorem B. For a generic subset of smooth one-parameter families {ϕμ} of diffeomorphisms, on any manifold, that
unfolds a homoclinic tangency at parameter value μ = 0 associated to a sectionally dissipative fixed (or periodic)
point, there exist sequences In → 0 of intervals and dense subsets En ⊂ In such that for all μ ∈En, the corresponding
map ϕμ displays infinitely many nonhyperbolic strange attractors.

By smooth one-parameter family of diffeomorphism we mean that Φ : R ×M �→M , Φ(μ,x) = (μ,ϕμ(x)) is a
C∞ map and ϕμ is a diffeomorphism for all μ.

It is worth to point out that diffeomorphisms with the homoclinic tangencies are not only approximated by ones
displaying the phenomenon described before but also by ones exhibiting different striking phenomena. For instance,
it has been shown that homoclinic tangencies are approximated by Newhouse’s infinitely many sinks (attracting pe-
riodic orbits) [5,6] and cascades of period doubling bifurcation [16]. Still, it is conjectured that such an important
phenomenon concerning infinitely many attractors might be rare, in parameter terms, for parameterized families of
diffeomorphisms going through bifurcations of homoclinic tangencies: a conjecture in [7] and [8] states that for most
parameter values, the corresponding diffeomorphisms display only finitely many attractors.

It is also worth to point out, that in the direction of proving the existence of infinitely many strange attractors, some
particular results have been found. In 1990 [14], Gambaudo and Tresser constructed an example of a C2 diffeomor-
phism in the two-dimensional disk exhibiting infinitely many hyperbolic strange attractors. In 2000 [11], Pumariño
and Rodriguez exhibited a C∞ family of vector fields in R3, related to a saddle-focus connection, which, with a
positive Lebesgue measure set in the parameter values, displays infinitely many Henón-like strange attractors.

Among the difficulties to extend the result in [2] from two to higher dimensions, we have that projections along
the invariant foliations (in our case unstable foliations) of a basic set may not have a much regular metric behavior:
in general, these projections are not Lipschitz but just Hölder continuous. We follow some ideas presented in [10]
to bypass these difficulties and also to obtain further estimates necessary to prove Theorems A and B. On the other
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hand, to construct strange attractors we need to display a high dimensional renormalization scheme for heteroclinic
tangencies in 2-cycles and then apply results in [15].

This work is organized as follows. In Section 2, we review the construction used to prove that infinitely many
coexisting attracting periodic orbits for diffeomorphisms in high dimensions as presented in [10]. We take special
care with the expansion and contraction rates of the basic sets involved. This chapter finishes with Theorem 1.1,
which summarizes the facts established in the previous sections. In Section 3, we prove some preliminary machinery
to show the main theorems. In Section 3.1, we describe a higher dimension version of the renormalization scheme
in 2-cycles of periodic points with a heteroclinic tangency considered in [2], following ideas in [9] and [15]. This
renormalization scheme depends on a delicate relation between the contracting and expanding eigenvalue of periodic
points involved. In Section 3.2, we give a brief summary of the main result in [15] and derive several consequences
of its proof. In Section 3.3, we make a special perturbation for one-parameter families of diffeomorphisms to obtain
new families which have linearizing coordinates in a neighborhood of the periodic points, as in Section 3.1. Such a
perturbation is necessary since in the renormalization scheme of Section 3.1, we assume that there exist linearizing
coordinates in a neighborhood of the periodic points. In Section 4, we prove Theorems A and B. The proofs are
consequence of the a main lemma showed in Section 4.4. The proof of Theorem B is more delicate and we have to be
more careful in applying the main lemma.

2. Preliminaries

In this section, we follow ideas and rewrite some results in [10] to create a language which we shall use in the
proof of the main theorems. We start by giving a formal definition of stable thickness for a hyperbolic basic set
whose stable foliation have codimension one. We use a condition given in [10] to obtain a basic hyperbolic set with
“intrinsically” C1 unstable foliations. Moreover, the projection along leaves of Wu(Λ1) is intrinsically C1. In the
next section we give a formal definition of unstable thickness for a hyperbolic basic set Λ1 whose unstable foliation
has codimension bigger than one. In this case we assume that Λ1 has a periodic point displaying a unique weakest
contracting eigenvalue. Later on, we show that we can obtain such a condition.

2.1. Cantor sets and thickness

A Cantor set in R, is a compact, perfect and totally disconnected set. Let K be a Cantor set and I its convex hull,
i.e. the minimal (closed) interval of R containing K . A gap of K is a connected component of R \K . A presentation
of K is an ordering U = {Un}n�1 of the bounded gaps. An ordered presentation of K is a presentation U such that
�(Un)� �(Um) for all n >m, where �(Un) denotes the length of Un. The bridge at u ∈ ∂Un, Un ∈ U , is the component
of I \ (U1 ∪ · · · ∪Un) that contains u. The thickness of K is the number

τ(K)= inf
{
τ(K,U, u): u ∈K}

,

where U is any ordered presentation of K ,

τ(K,U, u)= �(C)

�(Un)
,

and where C is the bridge at u ∈ ∂Un. This definition of thickness does not depend on the ordered presentation U
(see [9]). Let k ∈K . The local thickness of K at k is the number

τ(K,k)= lim
ε→0

(
sup

{
τ(K̃): K̃ ⊂K ∩Bε(k) a Cantor set

})
.

Let K1, K2 be Cantor sets and I1, I2 their convex hulls. We say that the pair 〈K1,K2〉 is linked if I1 ∩ I2 �= ∅. I1 is
not inside a gap of K2 and I2 is not inside a gap of K1. The link is called stable if the same condition is verified by
the interiors int(I1), int(I2) of I1, I2.

LetΛ be a nontrivial basic set of a C2 diffeomorphism ϕ: 5xM �→M , whose stable foliation is of codimension one,
i.e., such that dimWs(x)= n− 1, n= dimM , for all x ∈Λ. Let z ∈Ws(Λ) and φ : [−a, a] �→M be a C1 embedding
transverse to Ws(Λ) at z = φ(0). The local stable thickness of Λ at z is τ s(Λ, z) = τ(φ−1(Ws(Λ)),0). This is
independent of the choice of φ, as a consequence of the fact that (under codimension-one assumption) the holonomy
maps (i.e., the projections along the leaves) of the stable foliation of Λ can be extended to C1 maps. Actually, this
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smoothness of the holonomy of Ws(Λ), together with the transitivity of ϕ|Λ, also implies that τ s(Λ, z) has the same
value at every z ∈Ws(Λ). We denote by τ s(Λ) this constant value and call it the local stable thickness of Λ. This is a
strictly positive (finite) number and depends continuously on the diffeomorphism, in the sense that if Λψ denotes the
smooth continuation of Λ for a diffeomorphism ψ which is C2-close to ϕ, then τ s(Λψ) is close to τ s(Λ). The Local
unstable thickness τu(Λ, z) and τu(Λ) are defined in a similar way, whenWu(Λ) has codimension one. In particular,
both the stable thickness and unstable thickness are well-defined ifM is a surface.

In the proof of the main theorems we will use the following two important results involving thick Cantor sets,

Proposition 2.1 (Newhouse’s Gap Lemma). LetK1,K2 be Cantor sets in R such that τ(K1) · τ(K2) > 1 and 〈K1,K2〉
is linked. Then, K1 ∩K2 �= ∅.

The next result is used by Colli [2] to show the existence of infinitely many Hénon-like strange attractors for
diffeomorphisms on a manifold of dimension two.

Proposition 2.2 (Linking Lemma). Let K1, K2 be Cantor sets in R, with τ(K1) · τ(K2) > 1, and I1, I2 the convex hull
of K1, K2, respectively. Let ϑβ : I1 �→ R and ϑ̃β : I2 �→ R be such that

(a) ϑβ and ϑ̃β are topological embeddings, for all β ∈ R;
(b) ϑβ(x) and ϑ̃β(y) are differentiable with respect to β , for all x ∈K1 and y ∈K2;
(c) ∂β [υβ(x)− υ̃β(y)] � c > 0, for all x ∈K1 and y ∈K2;
(d) if K̃1 ⊂K1 and K̃2 ⊂K2 are Cantor subsets and let β0 ∈ R be such that the pair 〈ϑβ0(K̃1), ϑ̃β0(K̃2)〉 is linked.

Then, for any ε > 0, there is β such that
(i) |β − β0|< ε;

(ii) the pair 〈ϑβ(K̃1), ϑ̃β(K̃2)〉 has two stable sublinks.

2.2. Intrinsically smooth foliations of hyperbolic sets

Let X ⊂ Rm be a compact set and ϕ :X �→ Rn be continuous. We say that ϕ is intrinsically C1 on X if there exists
a continuous map �ϕ :X×X �→L(Rm,Rn) such that

ϕ(x)− ϕ(z)=�ϕ(x, z) · (x − z) for all x, z ∈X.
Such a �ϕ (which is, in general, far from unique) is called an intrinsic derivative of ϕ. We say that ϕ is intrinsically
C1+γ on X if it admits some γ -Hölder continuous intrinsic derivative.

Remark 1. Let ϕ :X �→ Rn be Lipschitz continuous and U ⊂X ×X be such that {‖x − z‖: (x, z) ∈ U} is bounded
away from zero. Then, there is a Lipschitz continuous map � :U �→ L(Rm,Rn) such that ϕ(x)− ϕ(z) = �(x, z) ·
(x − z) for every (x, z) ∈U .

Let q0 be a transverse homoclinic point associated to some hyperbolic fixed (or periodic) saddle point p of a C2

diffeomorphism ϕ :M �→M . We assume q0 /∈Wss(p) and another mild (open and dense) transversally condition to
be stated in (1) below. Then, our goal, in this section, is to prove that there exists a hyperbolic basic set Λ1 containing
p and q0 and whose unstable foliation is intrinsically C1. We assume that ϕ is C2 linearizable on a neighborhood U
of p.

Let us denote by σ1, . . . , σu, λ1, . . . , λs , u+ s =m, the eigenvalues of Dϕ(p), with |σu| � · · · � |σ1|> 1> |λ1| �
· · · � |λs |. We define 1 � w � s by |λ1| = · · · = |λw| and let Es = Ew ⊕ Ess be the invariant splitting such that
Dϕ(p)|Ew has eigenvalues λ1, . . . , λw and Dϕ(p)|Ess has eigenvalues λw+1, . . . , λs . We choose C2 linearizing coor-
dinates (ξ1, . . . , ξu, ζ1, . . . , ζs) in a neighborhood U of p and, furthermore, we may assume that

(C1) Wu(p)⊂ {ζ1 = · · · = ζs = 0} and Ws(p)⊂ {ξ1 = · · · = ξu = 0};
(C2) Ew = {0u} × Rw × {0s−w} and the strong manifold (tangent to Ess at p) satisfies Wssloc(p)⊂ {ξ1 = · · · = ξu =

ζ1 = · · · = ζw = 0}.
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Up to a convenient choice of Riemannian metric we have, for σ = |σ1|, λ= λ1| = |λw| and θ = |λw+1|,

(C3) (σ − ε)‖v‖ � ‖Dϕ(p)v‖, for all v ∈Eu;
(C4) (λ− ε)‖v‖ � ‖Dϕ(p)v‖ � (λ+ ε)‖v‖, for all v ∈Ew;
(C5) ‖Dϕ(p)v‖ � (θ + ε)‖v‖, for all v ∈Ess ,

where ε > 0 is fixed small enough so that θ+2ε < λ−2ε < λ+2ε < σ −2ε. (In the case w = s, i.e., if all contracting
eigenvalues have the same norm, Ess = {0},Wss(p)= {p} and we leave θ undefined.)

Now, we will construct a hyperbolic set whose unstable foliation is intrinsicallyC1 using the transversality between
Ws(p) andWu(p) at q0. Fix q, r ∈U in the orbit of q0 in such a way that q ∈Ws(p)loc and r = ϕ−N(q) ∈Wu(p)loc.
Take

V = Vδ = {∥∥(ξ1, . . . , ξu)∥∥ � δ
} × {∥∥(ζ1, . . . , ζs)∥∥ � ρ

}
,

where δ > 0 is small and ρ > 0 is fixed in such a way that {q, r} ⊂ int(V )⊂ V ⊂ U . Let n= n(δ) be minimum such
that r ∈ int(ϕn(V )). (We suppose that δ is conveniently adjusted so that ϕN+n(V ) cuts V in two cylinders.

We define

Λ=
⋂
k∈Z

ϕ(N+n)k(V ) and Λ1 =
N+n⋃
i=1

ϕi(V ).

It is well know that Λ1 is a nontrivial hyperbolic basic set, see [12]. We assume the following generic (open and
dense) condition

Duwφuw(r) is an isomorphism. (1)

Here D denotes the usual derivative and (1) means that unstable/weak-stable directions are not sent to strong-stable
directions by φ = ϕN . With this condition it is shown in [10] that for every point x ∈Λ1, the intrinsic tangent space
to Λ1

ITx Λ1 = span

{
v: there is (xn)n ∈ΛN

1 so that xn → x and
xn − x

‖xn − x‖ → v

}

(for simplicity we consider here M = Rn) is contained in an (u + w)-dimensional space. Moreover the intrinsic
tangent space to Wuloc(Λ1) at every point x ∈ Wuloc(Λ1) is contained in (u + w)-dimensional space. In particular,
ITp Wu(Λ1)⊂Eu ⊕Ew . The fact that we have a good property for the unstable foliation is showed in the following
result.

Proposition 2.3.

(1) Suppose that ϕN satisfies condition (1) above and consider Λ1 also as above. Then, the map F :Wu(Λ1) � x �→
TxW

u(x) is intrinsically C1 on compact parts of Wu(Λ1).
(2) Let Σ0, Σ1 be (small) C1 sections transverse to Wu(x) for some x ∈ Wu(Λ1) and let π :Σ0 ∩ Wu(Λ1)→

Σ ∩Wu(Λ1) denote the projection along the leaves of Wu(Λ1). Then, π is intrinsically C1.

2.3. Thickness in higher dimension

In this subsection we want to define the local unstable thickness of a basic set with unstable foliation of codimension
greater than one.

Consider Λ1 as it was constructed in the previous section. We suppose that for a periodic point p, Dϕ(p) has a
unique (necessarily real) weakest contracting eigenvalue λ= λ1, and ϕ is C2 linearizable near p. Then, we consider
π :Λ1 ∩Wsloc(p) �→ R to be an arbitrary intrinsically C1 map such that ker�(π(p,p)) does not contain IT(Λ1 ∩
Wsloc(p))=Ew (i.e., �π(p,p)|Ew is bijective). Define

τu(Λ1,p)= τ
(
π

(
Λ1 ∩Wsloc(p)

)
,π(p)

)
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as the local unstable thickness of Λ1 at p. It is shown in [10] that the definition does not depends on π as taken
above, also it is strictly positive and varies continuously with the diffeomorphism: if ψ is a C2-small perturbation of
ϕ, τu(Λ1(ψ),p) is a small variation of τu(Λ1,p).

Let πw :Λ1 ∩Wsloc(p)→ R be the restriction toΛ1 ∩Wsloc(p)⊂ {0u}×Rs of the projection (ξ1, . . . , ξu, ζ1, . . . , ζs)
�→ ζ1. πw is a homeomorphism onto its image Kw and moreover π−1

w is intrinsically C1+γ on Kw , see [10]. The fact
that π ◦ π−1

w is an intrinsically C1 map with

�
(
π ◦ π−1

w

)
(0,0)=�π(p,p) ·�π−1

w (0,0) �= 0.

Then, τ(π(Λ1 ∩Wsloc(p)),π(p)) = τ(Kw,0) as a consequence of π(Λ1 ∩Wsloc(p)) = (π ◦ π−1
w )(K

w) and the fol-
lowing result (see [10]):

Lemma 2.1. Let K ⊂ R be a Cantor set, y ∈K and g :K → R be an intrinsically C1 map with �g(y, y) �= 0. Then,
τ(g(K),g(y))= τ(K,y).

It is also shown that Kw is a dynamically defined Cantor set, in the same sense as in ([9], Chapter IV), i.e.,
τ(Kw) > 0. Moreover, if ψ is a diffeomorphism C2-close to ϕ, τ(Kw(ψ),0) is close to τ(Kw,0).

The following result shows that the definition of unstable thickness does not depend on transverse sections to
Wu(Λ1). We will use such fact in Section 4.

Proposition 2.4.

(a) Let q ∈Wu(p), Σ be a C1 section transverse to Wu(p) at the point q and π :Wu(Λ1)∩Σ → R be an intrinsi-
cally C1 map such that ITq(Wu(Λ1)∩Σ) is not contained in ker(�π(q, q)). Then, τ(π(Wu(Λ1)∩Σ),π(q))=
τu(Λ1,p).

(b) More generality, given z ∈Wu(Λ1),Σ a transverse section toWu(Λ1) at z and π :Wu(Λ1)Σ → R a submersion
with ITz(Wu(Λ1)∩Σ)� ker(�π(z, z)). Then, τ(π(Wu(Λ1)∩),π(z))= τu(Λ1,p).

2.4. Unique least contracting eigenvalue

Let {ϕμ} be a C∞ one-parameter family of diffeomorphisms generically unfolding at μ = 0 a quadratic homo-
clinic tangency associated to saddle fixed (or periodic) point p of ϕ0. We also assume once more that there are C2

μ-dependent coordinates (ξ1, . . . , ξu, ζ1, . . . , ζs) linearizing the ϕμ, for μ near zero, on a neighborhood U of the ana-
lytic continuation pμ of p. Moreover, these coordinates can be taken to satisfy conditions (C1)–(C5) of Section 2.2.

We assume in this section that Dϕ0(p) has exactly two weakest contracting eigenvalues and these are complex
conjugate numbers, which means that w = 2, λ1 = λe−iγ , λ2 = λeiγ with λ > |λ3| and γ ∈ R \ {kπ : k ∈ Z}. Here
we may even assume that Dϕμ(pμ)|Ew is conformal with respect to the Euclidean metric introduced by coordinates
ζ1, ζ2. On the other hand, we may take, say for μ � 0, points qμWsloc(pμ), rμ ∈Wuloc(pμ) depending continuously
on μ, such that ϕNμ (rμ) = qμ for some fixed N � 1, r0, q0 belong to the orbit of tangency and rμ, qμ are points of
the transverse intersection of Wu(pμ) and Ws(pμ) for every μ > 0. Moreover, recall that there exists a sequence of
parameter value μj → 0 such that Wu(pμ) and Ws(pμ) also have a point of tangential intersection.

For each fixed μ= μj and every sufficiently large n� 1, there is a neighborhood of V = V (j,n) of {pμ,qμ}, as
in Section 2.2, such that

Λ(j,n)=
⋂
k∈Z

ϕ(n+N)kμ (V )

is a ϕN+n
μ -invariant hyperbolic set and ϕN+n

μ |Λ(j,n) is conjugate to the 2-shift. Moreover, given any periodic point
p̃ ∈Λ(j,n), there are parameter values μ̃ arbitrarily close to μj for which ϕμ̃ has homoclinic tangencies associated
to (the analytic continuation of) p̃. We consider p̃ = p̃(j, n) to be the unique ϕn+Nμ -fixed point in Λ(j,n) \ {pμ}.
Clearly, the orbit of p̃ passes arbitrarily close to pμ if j and n are sufficiently large. The following result displays our
goal in this subsection,

Proposition 2.5. Suppose that ϕ0 satisfies the condition (2) below. Given j sufficiently large, there exist values of
n= n(j) arbitrarily large such that DϕN+n

μ (p̃) has a unique weakest contracting eigenvalue.
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Consider

DϕNμ =
(
Auu Auw Aus
Awu Aww Aws
Asu Asw Ass

)
, �μ =

(
Auu Auw
Awu Aww

)

as the expression of DϕNμ with respect to the splitting Eu ×Ew ×Es = Ru × R2 × Rs−2. We also denote

Dϕ−N
μ =

(
A−
uu A−

uw A−
us

A−
wu A−

ww A−
ws

A−
su A−

sw A−
ss

)
.

The generic assumption in proposition above is (cf. (1))

�μ=0(r0), and so also A−
ss(μ= 0, q0) is an isomorphism. (2)

From the proof of the Proposition 2.5 above, we can obtain that dimWu(p̃) = dimWu(p), dimWs(p̃) =
dimWs(p) and that Dϕn+Nμ (p̃) is sectionally dissipative if Dϕ0(p) is.

We conclude that there exist a sequence of parameter values μ̃j → 0 such that ϕμ̃j exhibits homoclinic tangencies

associated to p̃j → p and Dϕ
kj

μ̃j
(p̃j ), where kj is the period of p̃j , has a unique weakest contracting eigenvalue.

2.5. Thick invariant Cantor sets

Let ϕ be a C∞ diffeomorphism with a quadratic homoclinic tangency at q0 associated to a fixed (or periodic)
point p. We suppose that dimWu(p)= 1 and Dϕ(p) is sectionally dissipative.

Let {ϕμ} be a C∞ one-parameter family of diffeomorphisms with ϕ0 = ϕ, that generically unfolds the homoclinic
tangency. We suppose once more that the ϕμ, μ near zero, admits C2 μ-dependent linearizing coordinates (ξ,Z) ∈
R×Rn−1 in a neighborhood U of p. We fix these coordinates in such a way thatWuloc(pμ)⊂ {Z = 0} andWsloc(pμ)⊂{ξ = 0}. The assumption on the eigenvalues of Dϕ0(p) means that we may choose a norm in Rn such that

|σμ| · ‖Sμ‖< 1 for every μ near zero,

where σμ is the expanding eigenvalue of Dϕμ(pμ) and Sμ =Dϕμ|Es(pμ).
It is shown in [10] that, there are a constantN (positive integer) and, for each positive integer n, a reparametrization

μ=Mn(ν) of the variable μ and (μ,n)-dependent coordinates transformation

(ν, x,Y ) �→ (
Mn(ν),Θn,ν(x,Y )

)
such that the map

(ν, x,Y ) �→ (
ν,Θ−1

n,ν ◦ ϕn+NMn(ν)
◦Θn,ν(x,Y )

)
,

converge, in C2-topology, to the map (ν, x,Y ) �→ (ν, x2 + ν,Ax), where A ∈ L(Rn−1).
The existence of a hyperbolic basic set Λ2 with arbitrarily large thickness follows from the fact that for the map

x �→ x2 + ν, and also for ψ−2 : (x,Y ) �→ (x2 − 2,Ax), there exist invariant expanding Cantor sets Kj with thickness
τ(Kj )→ +∞ as j → +∞. Moreover, these Kj are transitive and have a dense subset of periodic orbits. It follows
that eachKj has, for n large, μ=Mn(ν) and ν close to −2, an analytic continuation as a hyperbolic basic setKj(n,μ)
of (

Θ−1
n,ν ◦ ϕn+NMn(ν)

◦Θn,ν(x,Y )
)
.

In particular, the setKj(n,μ) has codimension-1 stable foliation and stable thickness τ(Kj (n,μ)) close toτ(Kj )� 1.
Then, we just take Λ2 =Λ2(μ)=Θn,ν(Kj (n,μ)) with j and n large and μ=Mn(μ), ν close to −2. It is also shown
that parameter values νn → −2 can be taken in such a way that

f (n)νn =Θ−1
n,νn

◦ ϕn+NMn(νn)
◦Θn,νn

have periodic points P(n, νn) andQ(n,νn) ∈Kj(n,μ),μ=Mn(νn), which are heteroclinic related andWu(Q(n, νn))
also has nontransverse intersections withWs(P (n, νn)).

Now, for f = f (n)νn , there are 0< λ= λ(n) < λ̄= λ̄(n) < 1, 1< σ < σ̄ and c= c(n) > 0 such that
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(1) c−1σ i‖u‖ � ‖Df i(x) · u‖ � cσ̄ i‖u‖;
(2) c−1λi‖v‖ � ‖Df i(x) · v‖ � cλ̄i‖v‖,

for all x ∈ Kj(n,μ), u ∈ Eux , v ∈ Esx and i � 0. If Λ2 = Λ(n,μ) = Θn,νn(Kj (n,μ)) is a hyperbolic basic set for
ϕn+Nμ , where μ=Mn(νn) and z ∈Λ2 is a periodic point of ϕn+Nμ of period k = (n+N)j , then, z=Θn,νn(x), where
x is a periodic point of f of period j . We conclude that if σ2 is the expanding eigenvalue of Dϕkμ(z), then,

σk2 = σ (n+N)j2 � σ̄ j �
( n+N√

σ̄
)j
,

and, therefore, σ2 � n+N√
σ̄ → 1, as n→ +∞. For μ near zero and y near ϕ−N

μ (q0) in U , we have ‖DϕNμ (z)‖ � k̄,
for a large constant k̄, and if Sk2μ =Dϕkμ(z)|Esz , we have∥∥Sk2μ∥∥ = ∥∥Dϕkμ|Es(z)∥∥ �

∥∥DϕNjμ |Es(ϕnjμ (z)) ◦Dϕnjμ |Es(z)∥∥
� (k̄)j‖Sμ‖nj < 1,

for n sufficiently large, which means that, ‖S2μ‖< λ0 < 1 for n large, where λ0 does not depend on n.
From the discussion above, together with Sections 2.2–2.4 we can conclude this section with the following result

which is a summary of this section.

Theorem 2.1. Let ϕ0 be a smooth diffeomorphism having a homoclinic tangency associated to a sectionally dissipative
saddle fixed (or periodic) point. Then, there exists a smooth diffeomorphism ϕ arbitrarily near ϕ0 such that

(a) ϕ has hyperbolic basic sets Λ1 and Λ2 with τ sloc(Λ2) · τuloc(Λ1) > 1;
(b) there are periodic points p1 ∈Λ1 and p2 ∈Λ2 such thatWu(p2) has a transversal intersection withWs(p1) and

Wu(p1) has a quadratic tangency with Ws(p2) at a point q;
(c) the hyperbolic basic set Λ1 has intrinsically C1 unstable foliation and p1 ∈ Λ1 has a unique least contracting

eigenvalue;
(d) there exists c > 0 such that ifQ1 ∈Λ1 andQ2 ∈Λ2 are periodic points of period k1 and k2, respectively. Denote

λi = ‖Si =Dϕ|EsQi ‖ and σkii the unstable eigenvalue of Dϕki , i = 1,2. Then,

(d1) |λ2 · σ2|< 1;
(d2) |σ 2c

1 · λ2|< 1;
(d3) σ2 is so small that |σ2 · (λ1σ1)

c/2|< 1.

3. Renormalization scheme and quadratic-like families

In this section we describe a higher-dimensional version of the renormalization scheme in 2-cycles of periodic
points with a heteroclinic tangency. We follow ideas from [15] and [9]. We also state and comment about quadratic-
like families as considered in [15]. Finally, we make a delicate discussion on how to perturb a one-parameter families
of diffeomorphisms to obtain linearizability.

3.1. Renormalization scheme in 2-cycles

Let ϕ be a C∞ diffeomorphism having basic sets Λ1, Λ2 and fixed (or periodic) points p1 ∈Λ1 and p2 ∈Λ2, such
that dimWu(p1)=Ws(p2)= 1; Ws(p1) and Wu(p2) have a transverse intersection in a point r0 and Wu(p1) have
a nontransverse contact (i.e. tangency) with Ws(p2) in a point q , see Fig. 1. We suppose that Dϕ(p1) is sectionally
dissipative, (i.e. the product of any two of its eigenvalues has norm less than one). We also suppose that the tangency
is quadratic.

Let {ϕμ} be a C∞ one-parameter family of diffeomorphisms with ϕ0 = ϕ and generically unfolding the tangency.
We assume that ϕ0 is C4 linearizable near p1 and p2. As Ck-linearizable is an open condition (see [13]), we assume
that the ϕμ, μ close to zero, admit C4 μ-dependent linearizing coordinates in a neighborhood of p1 and p2. That
is, there are neighborhoods U1 of p1 and U2 of p2 such that the expression of ϕμ, μ small, in U1 is (ξ,H) �→
(σ1μξ,S1μH), in U2 is (η, J ) �→ (σ1μ2η,S2μJ ) where σ1μ and σ2μ are the expanding eigenvalue of Dϕμ(p1) and



B. Leal / Ann. I. H. Poincaré – AN 25 (2008) 587–607 595
Fig. 1. Renormalization scheme.

Dϕμ(p2), respectively, and Siμ =Dϕμ|Es(pi), i = 1,2. We may suppose that q = (1,0n−1) ∈U1 and, therefore, there
exists N > 1 such that ϕNμ (q)= (0, J0) ∈ U2, see Fig. 1. We assume that for (μ, ξ,H) close to (0,1,0n−1), we may
write ϕNμ (ξ,H) as(

α(ξ − 1)2 + β ·H + aμ+ r(μ, ξ − 1,H), J0 + γ (ξ − 1)+R(μ, ξ − 1,H)
)
,

where we have α,a ∈ R, β ∈ L(Rn−1,R), γ ∈L(R,Rn−1) and

r,R,Dr,DR,∂ξξ r, ∂μξ r and ∂μμr vanish at
(
0,1,0n−1). (3)

The hypothesis of nondegeneracy of the tangency amounts to having α �= 0 and a �= 0. Moreover, using a
μ-reparametrization and μ-dependent linear changes of the space of coordinates, we may even assume a = 1,
r(μ,0,0)= 0, R(μ,0,0)= 0n−1 and ∂ξ (μ,0,0)= 0.

We still have to consider the transition map among the neighborhoods U2 of p2 and U1 of p1 and their “transverse”
intersection. We may suppose that r0 = (1,0) ∈U2, then there isN1 > 0 such that ϕN1

μ (r0)= (0,R0) ∈U1, forμ small.

Suppose that ϕN1
μ , for (η, J ) near (1,0), has the form

ϕN1
μ (η, J )= (0,R0)+

(
aμ Bμ
cμ Dμ

)(
η− 1
J

)
+ (
θ(μ,η− 1, J ),Θ(μ,η− 1, J )

)
,

where aμ ∈ R, Bμ ∈L(Rn−1,R), cμ ∈L(R,Rn−1), Dμ ∈ L(Rn−1), θ(μ,0,0)= 0, Θ(μ,0,0)= 0 and

Dθ, DΘ vanish at (μ,η− 1, J )= (μ,0,0). (4)

From the transversality betweenWu(p2) and Ws(p1), we have aμ �= 0, for μ small.
Now we fix A0 � 3 a being a real constant. Fix N and N1 as above. We denote Φ : R ×M → R ×M , a C∞ map

such that, Φ(μ,x)= (μ,ϕμ).
Theorem 3.1. Let N , N1 positive integer as above and let 0 < c < 1 be a small constant such that the following
hold |σ 2c

1 · λ2| < 1 and |σ2 · (λ1 · σ1)
c/2| < 1. Choose n = n(m) such that (c/2) · m � n(m) � c · m. Then, there

exists a sequence Θn,m : [1/A0,A0] × [−A0,A0] → R ×M of Ck diffeomorphisms such that the sequence fn,m =
Θ−1
n,m ◦ΦN+n+N1+m ◦Θn,m converges to the map

φ(a, x, y1, . . . , yn−1)=
(
a,1 − ax2,0n−1)

in the Ck topology, as n,m→ ∞.
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Proof. We first describe a construction of Θn,m. We start observing that if one looks at ϕ−N1
μ (Ws(p1)) in U2 coordi-

nates near (1,0), then it is the graph of a function x �→ Γμ(x). Analogously, Wu(p2) near (0,R0) is the graph of a

function x �→�μ(x) in U1 coordinates. For n and m sufficiently large, we also define the functions x �→ Γ
(m)
μ (x) and

y �→�
(n)
μ (y) whose graphs correspond to ϕ−N1

μ ({ξ = σ−n
1μ }) and ϕN1

μ ({J = Sm2μ · J0}), respectively.

Using the notation above, we take η0 = η(n,m)0 (μ) = σ−m
2μ Γ

(m)
μ (Sm2μ · J0), such that, (σ−n

1μ ,�
(n)
μ (σ

−n
1μ )) = ϕ

N1
μ ◦

ϕmμ (η0, J0), i.e.

σ−n
1μ = aμ

(
σm2μη0 − 1

) +BμSm2μJ0 + θ(μ,σm2μη0 − 1, Sm2μJ0
)

and (5)

�(n)μ
(
σ−n

1μ

) =R0 + cμ
(
σm2μη0 − 1

) +DμSm2μJ0 +Θ(
μ,σm2μη0 − 1, Sm2μJ0

)
. (6)

Consider the (n,m)-dependent reparametrization

μ= μn,m(a)= − a
α
σ−2n

1μ σ
−2m
2μ + η0 − σ−2n

1μ σ
−2m
2μ β · Sn1μ�(n)μ

(
σ−n

1μ

)
. (7)

Recall that β ∈ L(Rn−1,R). From (5), we have

a = an,m(μ)= −ασ 2n
1μσ

2m
2μ μ− σ 2n

1μσ
2m
2μ η0 + β · Sn1μ�(n)μ

(
σ−n

1μ

)
. (8)

It is easy to check that for any given constant A0 > 0, for (n,m) sufficiently large an,m(μ)maps a small interval In,
in μ-space, close μ = 0 diffeomorphically onto [−A0,A0]. Then, we introduce (μ,n,m) dependent coordinates
(x,Y ) given by

Θ̂n,m(a, x,Y )=
(
μn,m(a)= μ,−σ−2n

1μ σ
−2m
2μ

a

α
x + η0, σ

−m
2μ αnY + J0

)
with αn = σ−n

1μ · ωn, where 1 < ω < min{σ1μ, (
√
λ1μ · σ1μ)

−1}. Denote (μ,η, J ) = Θn,m(a, x,Y ). Then, the return

map ΦN+n+N1+m in the (μ,η, J )-coordinates is given by

(μ,η, J )−→ (
μ,α(ξ − 1)2 + β ·H +μ+ r(μ, ξ − 1,H), J0 + γ (ξ − 1)+R(μ, ξ − 1,H)

)
,

where

ξ(η, J )= σn1μ
[
aμ

(
σm2μη− 1

) +BμSm2μJ + θ(μ,σm2μη− 1, Sm2μJ
)]

and

H(η,J )= Sn1μ · [R0 + cμ
(
σm2μη− 1

) +DμSm2μJ +Θ(
μ,σm2μη− 1, Sm2μJ

)]
.

Then, the return map in (a, x,Y )-coordinates is given by

(a, x,Y )→ (
a, (−α/a)σ 2n

1μσ
2m
2μ

[
α(ξ − 1)2 + β ·H +μ+ r(μ, ξ − 1,H)− η0

]
,

σm2μ(αn)
−1[γ (ξ − 1)+R(μ, ξ − 1,H)

])
,

where

ξ(x,Y )= σn1μ
{
aμ

[
σm2μ

(−σ−2n
1μ σ

−2m
2μ

a

α
x + η0

) − 1
] +BμSm2μ

(
σ−m

2μ αnY + J0
) + θ(μ,σm2μη− 1, Sm2μJ

)}
and

H(x,Y )= Sn1μ
{
R0 + cμ

[
σm2μ

(−σ−2n
1μ σ

−2m
2μ

a

α
x + η0

) − 1
]

+DμSm2μ
(
σ−m

2μ αnY + J0
) +Θ(

μ,σm2μη− 1, Sm2μJ
)}
.

Using the definition of η0 = ηn,m0 (μ) and μn,m(a), i.e. using (5),(6) and (7), we have

fn,m(a, x,Y )= Θ̂−1
n,m ◦ΦN+n+N1+m ◦ Θ̂n,m(a, x,Y )

= (
a,H1(a, x,Y ),H2(a, x,Y )

)
,

where
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H1(a, x,Y )=
(

−α
2

a

)
σ 2n

1μσ
2m
2μ

[
−aμσ−n

1μ σ
−m
2μ
a

α
x + σn1μBμSm2μσ−m

2μ αnY + σn1μθ̄n,m(a, x,Y )
]2

+ σ 2n
1μσ

2m
2μ

(
−α
a

)[
βSn1μDμS

m
2μσ

−m
2μ αnY − βSn1μcμσ−2n

1μ σ
−m
2μ
a

α
x − a

α
σ−2n

1μ σ
−2m
2μ

+ βSn1μΘ̄n,m(a, x,Y )+ r(μ, ξ − 1,H)

]
and

H2(a, x,Y )= σm1μ(αn)−1
[
γ

(
−aμσ−n

1μ σ
−m
2μ
a

α
x + σn1μBμSm2μσ−m

2μ αnY + σn1μθ̄(a, x,Y )
)

+R(μ, ξ − 1,H)

]
,

where

θ̄n,m(a, x,Y )= θ
(
μ,σm2μ

(
−σ−2n

1μ σ
−2m
2μ

a

α
x + η0

)
− 1, Sm2μ

(
σ−m

2μ αnY + J0
)) − θ(μ,σm1μη0 − 1, Sm2μJ0

)
and

Θ̄n,m(a, x,Y )=Θ
(
μ,σm2μ

(
−σ−2n

1μ σ
−2m
2μ

a

α
x + η0

)
− 1, Sm2μ

(
σ−m

2μ αnY + J0
)) −Θ(

μ,σm1μη0 − 1, Sm2μJ0
)
.

We have to show the following convergence:

(1) σn1μσ
m
2μ

[
−aμσ−n

1μ σ
−m
2μ
a

α
x + σn1μBμSm2μσ−m

2μ αnY + σn1μθ̄n,m(a, x,Y )
]

−→ −a0
a

α
x;

(2)

(
−α
a

)
σ 2n

1μσ
2m
2μ

[
βSn1μDμS

m
2μσ

−m
2μ αnY − βSn1μcμσ−2n

1μ σ
−m
2μ
a

α
x

− a

α
σ−2n

1μ σ
−2m
2μ + βSn1μΘ̄n,m(a, x,Y )+ r(μ, ξ − 1,H)

]
−→ 1;

(3) σm2μ(αn)
−1

[
−aμσ−n

1μ σ
−m
2μ
a

α
x + σn1μBμSm2μσ−m

2μ αnY

]
−→ 0;

(4) σ 2n
1μσ

2m
1μ r

(
μ,ξ(x,Y )− 1,H(x,Y )

) −→ 0;
(5) σm2μ(αn)

−1R
(
μ,ξ(x,Y )− 1,H(x,Y )

) −→ 0.

To obtain the convergence, we choose a compact part of Rn+1, so that ‖(a, x,Y )‖ is bounded by some constant,
where the convergence will take place. Let K be a sufficiently large constant (there will be some slight abuse of
notation when dealing with K).

Observe that the hypothesis implies that, for μ small,

σm2 (λ1 · σ1)
n(m) −→ 0 as m→ +∞, (9)

σ
2n(m)
1 · λm2 −→ 0 as m→ +∞. (10)

In the proof of the convergence of the items (1)–(5), we will make use of (9) and (10) or their weaker versions.
Recall that |σ2μ · λ2μ|< 1.

We start estimating parts (1), (2) and (3). Observe first that σ−n
1μ (αn)

−1 → 0 and ‖σ 2n
1μS

n
1μαnY‖ � K|σ 2n

1μλ
n
1μαn|

�K|(√λ1μσ1μ)
n| → 0 as n→ +∞. It is clear that∥∥σn1μσm2μσn1μBμSm2μσ−m

2μ αnY
∥∥ �K

∣∣σ 2n
1μλ

m
2μαn

∣∣,∥∥σ 2n
1μσ

2m
2μ β · Sn1μcμσ−2n

1μ σ
−m
2μ x

∥∥ �K
∣∣σm2μλn1μ∣∣,∥∥σ 2n

1μσ
2m
2μ β · Sn1μDμSm2μσ−m

2μ αnY
∥∥ �K

∣∣σ 2n
1μσ

m
2μλ

n
1μλ

m
2μαn

∣∣,∥∥σm2μ(αn)−1σ−n
1μ σ

−m
2μ x

∥∥ �K
∣∣(αn)−1σ−n

1μ

∣∣ and∥∥σm1μ(αn)−1σn1μBμS
m
2μσ

−mαnY
∥∥ �K

∣∣σn1μλm2μ∣∣
2μ
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converges to zero as n,m→ +∞.
It remains to estimate convergence of θ̄n,m and Θ̄n,m to complete (1) and (2). We have∣∣θ̄n,m(a, x,Y )∣∣ �K

∣∣∂xθ(a, x̃, Ỹ )∣∣∣∣σ−2n
1μ σ

−m
2μ

∣∣ +K∥∥∂Y θ(a, x̃, Ỹ )∥∥∣∣σ−m
2μ λ

m
2μαn

∣∣∥∥Θ̄n,m(a, x,Y )∥∥ �K
∣∣∂xΘ(a, x̃, Ỹ )∣∣∣∣σ−2n

1μ σ
−m
2μ

∣∣ +K∥∥∂YΘ(a, x̃, Ỹ )∥∥∣∣σ−m
2μ λ

m
2μαn

∣∣
for some (a, x̃, Ỹ ) between the points (a,−σ−2n

1μ σ
−m
2μ

a
α
x + σm2μη0 − 1, Sm2μ(σ

−m
2μ α + J0)) and (σm2μη0 − 1, Sm2μJ0).

From the inequalities above and using (4) we have that |σ 2n
1μσ

m
2μθ̄n,m(a, x, y)|, ‖σ 2n

1μσ
2m
2μ S

n
1μΘ̄n,m(a, x, y)‖ �

‖σ 2n
1μσ

2m
2μ λ

n
1μΘ̄n,m(a, x, y)‖ and |σn1μσm2μ(αn)−1θ̄ (a, x,Y )| converges to zero as n,m→ +∞.

On the other hand, it is not difficult to see that∣∣ξ(a, x,Y )∣∣ �K
∣∣σ−n

1μ σ
−m
2μ

∣∣, ∣∣H(a,x,Y )∣∣ �K
∣∣λn1μ∣∣ and |μ| �K∣∣σ−m

2μ

∣∣.
Finally, we want to see that∣∣σ 2n

1μσ
2m
2μ r

(
μ,ξ(a, x,Y )− 1,H(a, x,Y )

)∣∣ and
∥∥σm2μ(αn)−1R

(
μ,ξ(a, x,Y ),H(a, x,Y )

)∥∥
converges to zero as n,m→ +∞. For that, we write Taylor expansion of r , up to order 4 near (μ,0.0). We recall that,
∂ξ r and ∂H r are zero at (μ,0,0),

r(μ, ξ − 1,H)=
4∑
j=1

∑
β1+β2=j

∂j

∂
β1
ξ ∂

β2
H

r(μ, ξ − 1,H)(ξ − 1)β1Hβ2 +R4(μ, ξ̂ , Ĥ ),

where

R4(μ, ξ̂ , Ĥ )

‖(μ, ξ̂ , Ĥ )‖ → 0 and
∥∥(μ, ξ̂ , Ĥ )∥∥ → 0,

Hβ2 is a homogeneous polinomial of degree β2 in the coordinates of H = (h1, . . . , hn−1). Then,∣∣σ 2n
1μσ

2m
2μ r

(
μ,ξ(a, x,Y )− 1,H(a, x,Y )

)∣∣ → 0

as n,m→ ∞ as a consequence of the estimative of ξ(a, x,Y ), H(a,x,Y ), |μ| and (3), (9) and (10).
We also write the Taylor expansion of R near (μ,0,0) up to order 2 and we use essentially the same argument as

above applied to R. We have that∥∥σm2μ(αn)−1R
(
μ,ξ(a, x,Y ),H(a, x,Y )

)∥∥ −→ 0 as n,m→ ∞.
Then, this proves that

fn,m(a, x,Y )−→ φ̃(a, x,Y )= (
a,1 − aa2

0x
2,0n−1)

as n,m→ +∞ (uniformly on [−A0,A0]×[−A0,A0]n). Moreover, the same kind of estimates apply to all derivatives
up to order k, k � 3, proving that this convergence (items (1)–(5)) holds in the Ck topology.

Since, φ̃ as above is conjugated to φ(a, x,Y ) = (a,1 − ax2,0n−1) by h(a, x,Y ) = (a, 1
a0
x,Y ), taking Θn,m =

Θ̂n,m ◦ h, we have that Θ−1
n,m ◦ΦN+n+N1+m ◦Θn,m converge to the map

φ(a, x, y1, . . . , yn−1)= (a,1 − ax2,0n−1)

in the Ck topology, as n,m→ ∞. �
3.2. Quadratic-like families

Being motived by Theorem 3.1 above we will consider quadratic (or Hénon)-like families as in [15].
We say that Ψ = {ψa} is a quadratic (or Hénon)-like family if {ψa} is a Cr one-parameter family of diffeo-

morphisms, r � 3, and {ψa} is sufficiently close to {φa} = Φ , where φ(a, x,Y ) = (a,φa(x,Y )) and φa(x,Y ) =
(1 − ax2,0n−1), for all a.
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Theorem 3.2. (See Viana [15].) Let 0< c < log(2) and Ψ = {ψa} be a quadratic (or Hénon)-like family. Then, there
exists a set E = E(c,Ψ ) ⊂ (1,2), with m(E) > 0 such that for every a ∈ E, there is a compact, ψa-invariant set
Λ=Λa satisfying that Ws(Λ) has nonempty interior and there is Z1 ∈Λ such that {ψn(Z1): n� 0} is dense in Λ
and ‖Dψna (Z1)‖ � ecn, for all n� 0 and some c > 0.

In the theorem m denotes the Lebesgue measure and the set Λ above is called a strange attractor. In the proof of
the Theorem 3.2 the point Z1 is taken to be critical, in the sense that there exists a direction in the tangent space toM
at Z1 which is exponentially contracted by both positive and negative iterates of Dψa . Clearly, the presence of such
point is an obstruction to (uniform) hyperbolicity of the attractor.

From the proof of the Theorem 3.2 above, it can be derived another properties of the set E = E(c,Ψ ): E is
constructed from exclusions of parameters of a host interval (compact interval) Ω0 ⊂ (1,2), which depends only on
the quadratic family {φa}. In fact the interval Ω0 can be chosen near 2, such that if {ψa} is sufficiently close to {φa},
m(E)� (1−δ)|Ω0| for chosen δ > 0. However, if we consider only a finite number of exclusions of parameters ofΩ0,
we can see from the proof that they vary continuously with Φ = {φa}. Considering this comment about properties of
the set E we conclude the following

Lemma 3.1. Let E(Ψ )⊂Ω0 be the set obtained in Theorem 2.2. Let I ⊂Ω0 be an interval such thatm(E∩ I )� c|I |,
for c > 0. Then, given ε > 0, for all Ψ̃ = {ψ̃a} sufficiently close to {ψa}, there exists a set Ẽ = Ẽ(Ψ̃ ) such that
m(Ẽ ∩ I )� (c− ε)|I | and for a ∈ Ẽ, ψ̃a has a nonhyperbolic strange attractor.

Let {ϕμ} be a C∞ one-parameter family of diffeomorphisms unfolding a heteroclinic tangency at μ= 0 in 2-cycles
involving periodic points p1 and p2, as considered in the first part of this section. Then, by Theorem 3.1 there exists a
sequence of host intervals Ωn,m in the μ-space, going to zero as n,m go to infinity, each one corresponding to Ω0 by
(μ,n,m)-reparametrization. Moreover, if we embed the family {ϕμ} in a C∞ two-parameter family ϕμ,α}, we have
that for each α sufficiently small, there is a sequence Ωn,m(α) of host intervals going to μT (α), where μT (α) is the
value of the tangency betweenWs(p2(α)) andWu(p1(α)). In addition, by the form of the (μ,n,m)-reparametrization,
given in Theorem 3.1. It is easy to see that Ωn,m(α) depends continuously on α. And also, the convergence of the
families in Theorem 3.1 is uniform in α. So, for each α small there is a set En,m(α)⊂Ωn,m(α) with m(En,m(α) > 0
and for all μ ∈ En,m(α), ϕμ,α has a strange attractor, by application of Theorem 3.2. These assumptions imply the
following

Remark 2. Fix α0 > 0 small. Then, given ε > 0, there are n0 = n0(α0), m0 =m0(α0) such that for all Ωn,m(α) with
0< α < α0, n > n0 and m>m0 we have

(2.1) sup{|μ−μT (α)|: μ ∈Ωn,m(α)}< ε;
(2.2) m(En,m(α)∩Ωn,m(α))� 3

4 |Ωn,m(α)|;
(2.3) Ωn,m(α) varies continuously with respect to α.

3.3. Special perturbation

Let {ϕμ} be C∞ a one-parameter family of diffeomorphisms. We want to show that if a saddle fixed (or periodic)
point p0 of ϕ0, which is sectionally dissipative, is not C4-linearizable, that is, the eigenvalues ofDϕ0(p0) are resonant,
see [13]. Then there exists an appropriate arbitrarily small perturbation of the family {ϕμ} such that it is possible to
destroy the resonance and turn pμ, the continuation of the point p0, into a C4-linearizable one for almost every μ
near zero. To be more specific:

Lemma 3.2. Let {ϕμ}μ∈I be a one-parameter family of diffeomorphisms having a saddle periodic point p0 of ϕ0,
which is not Ck-linearizable, where I is an small interval around zero. Then, there exist a one-parameter family of
diffeomorphisms {ψμ}μ∈I arbitrarily close to {ϕμ} and a subinterval I ′ ⊂ I around zero such that for almost every
value μ ∈ I ′, ψμ is Ck-linearizable near p(ψμ), k � 2, where p(ψμ) is the continuation of p0.

Remark 3. The family {ψμ} in the theorem, which is arbitrarily near to {ϕμ}μ∈I , does not depend on the interval I .
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Proof. Denote by λ1, . . . , λn the eigenvalues of Dϕ0(p0). Suppose that p0 is not Ck linearizable, k � 2. Then the
eigenvalues satisfy the resonant conditions of Sternberg, see [13], i.e. there exists j with 1 � j � n such that

λj = λk1
1 · λk2

2 · · ·λknn for 2 �
k∑
i=1

ki � k, with ki � 0, 1 � i � n.

Consider the following holomorphic functions

hj (Z)= (1 +Z)λj and H(Z)=
n∏
i=1

[
(1 +Z)λi

]ki , Z ∈ C.

Note that hj (Z) = H(Z) at Z = 0. In addition, h′
j (Z) = λj = hj (0), for all Z ∈ C and H ′(0) �= h′

j (0) since

H ′(0) = ∑n
i=1 k1λi

∏n
j=1 λ

kj−δij
j = ∑n

i=1 kiH(0) = h′
j (0)

∑n
i=1 ki , where δij is 1 if i = j and 0 if i �= j . Then,

hj (Z) �=H(Z), for all Z ∈ Bε(0) and Z �= 0, for some ε > 0, where Bε(0) is the ball in C of radius ε and center 0.
Notice that here ε depends on j and ki , i = 1, . . . , n with 2 �

∑n
i=1 ki � k and 1 � j � n. Then, ε depends on a

finite number of conditions. Therefore, we can take ε sufficiently small such that hj (Z) �= H(Z) for all Z ∈ Bε(0)
and Z �= 0. In fact, for ε small enough h′

j (Z) �=H ′(Z) for all Z ∈ Bε(0).
On the other hand, let ψμ :W → Rn be a C∞ family of local charts defined in a neighborhood W of p0 with

ψμ(p0)= 0, for all μ ∈ I . We take W sufficiently small so that ϕj0 (W) ∩W = ∅ for all 0< j < n0, where n0 is the
period of p0. Let ξ be a C∞ bump function on R satisfying{

ξ(s)= 0, if s � 2,
ξ(s)= 1, if s � 1,
0 � ξ(s)� 1, ∀s ∈ R.

Let γ > 0 be a small constant such that Bγ (0) ⊂ ψμ(W). We define the perturbed families {ϕμ,t } by ϕμ,t =
fμ,t ◦ ϕμ, where{

fμ,t (x)= x, if x ∈M \W,
fμ,t (x)=ψ−1

μ ([1 + t · ξ̃ (‖ψμ(x)‖)] ·ψμ(x)), if x ∈W
and ξ̃ (y)= ξ( 4‖y‖

γ
), for all y ∈W . First observe that the eigenvalues of Dϕn0

μ,t (pμ) are (1 + t)λ1μ, (1 + t)λ2μ, . . . ,

(1 + t)λn, where λiμ and pμ are the continuation of λi and p0, respectively, i = 1, . . . , n. We also have that ϕ0,t is Ck

linearizable near p0 for all 0< |t |< ε, where ε is as above. We define

Γj,k̄(μ,Z)=
n∏
i=1

[
(1 +Z)λiμ

]ki − (1 +Z)λjμ,

where k̄ = (k1, . . . , kn).

Claim. There exist intervals I ′ ⊂ I around μ= 0 and J ⊂ [−ε0, ε0] around t = 0, ε > ε0 > 0, such that if for each
t ∈ J . We define Zt = {μ ∈ I ′: Γj,k̄(μ, t)= 0}, then the set L= {t ∈ J : m(Zt ) > 0} is countable.

By the claim, we conclude that for all t ∈ J \ {countable set}, ϕn0
μ,t is Ck linearizable for almost every μ ∈ I ′. �

Proof of the claim. Recall that ∂ZΓj,k̄(0,Z) �= 0, for all Z ∈ Bε(0) and Γj,k̄(0,Z) �= 0, for all Z ∈ Bε(0) \ {0}.
Then, by the Implicit Function Theorem, there exist 0 < ε0 � ε and I ′ ⊂ I , a subinterval with 0 ∈ I ′ such that if
Γj,k̄(μ

′, t ′)= 0, then Γj,k̄(μ
′, t) �= 0, for all t ∈ [−ε0, ε0] \ {t ′}. Define

Zt =
{
μ ∈ I ′: Γj,k̄(μ, t)= 0

}
and Ln =

{
t ∈ [−ε0, ε0]: m(Zt) > 1

n

}
.

Observe that Zt ∩ Zt ′ = ∅ if t �= t ′ for all t, t ′ ∈ [−ε0, ε0]. So, Ln is a finite set, i.e. L = {t ∈ J : m(Zt) > 0} is a
countable set. �
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Fig. 2. Heteroclinic tangency.

4. Proof of the main result

4.1. Fixing some notation

Let ϕ̃ be a C∞ diffeomorphism that has a homoclinic tangency associated to a sectionally dissipative periodic point
p0. Then, by Theorem 2.1, there exists ϕ, a C∞ diffeomorphism, arbitrarily close to ϕ̃, exhibiting hyperbolic basic
sets Λ1, Λ2 and periodic points p1 ∈Λ1 and p2 ∈Λ2 satisfying items (a) to (d). Let U be a small neighborhood of ϕ
yielding hyperbolic continuations of Λ1 and Λ2, this means that there exists a C∞ function

Φi :U −→ C0(Λi,M), ψ −→Φi(ψ)

such that Λi(ψ) = Φi(ψ)(Λi) is a basic set for ψ ∈ U , where C0(Λi,M) is the space of injective and continuous
functions h :Λi →M . In fact, Φi(ψ) conjugates ϕ|Λi to ψ |Λi(ψ), i = 1,2.

We denote by r0 the point of transversal intersection between Wu(p2) and Ws(p1). Let δ > 0 be a small constant
such that for all ψ ∈ U , x ∈ Bδ(p1) ∩ Λ1 and y ∈ Bδ(p2) ∩ Λ2, Wu(y,ψ) meet transversally with Ws(x,ψ) in a
neighborhood of r0, where Bδ(pi) is the ball of radius δ centered at pi , i = 1,2.

Let U be a sufficiently small neighborhood of q , which is the quadratic tangent point between Wu(p1, ϕ) and
Ws(p2, ϕ). We take C∞ coordinates (V ,u) ∈ [−1,1]n−1 × [−1,1] in U in such a way that

(1) q has coordinates (0n−1,0);
(2) the connected component of Ws(p2)∩U containing q is given by {u= 0};
(3) for ψ ∈ U and y ∈ Bδ(p2) ∩ Λ2 the connected component of Ws(y,ψ) ∩ U is given by {u = A2(y)(V < ψ):

v ∈ [−1,1]n−1};
(4) for ψ ∈ U and x ∈ Bδ(p1) ∩Λ1 the connected component of Wu(x,ψ) ∩U corresponding, in the obvious way,

to the connected component of Wu(p1, ϕ)∩U containing q is given by {(V (x),u(x))(t,ψ): t ∈ [−1,1]};
(5) (V (p1), u(p1))(0, ϕ)= (0n−1,0) and ∂tu(p1)(0, ϕ)= 0.

Furthermore, for each ψ ∈ U , the maps

y −→A2(y)
([−1,1]n−1,ψ

)
and x −→ (

V (x),u(x)
)([−1,1],ψ)

are continuous in the C∞ topology and the maps

A2(y) : [−1,1]n−1 × U −→ [−1,1] and
(
V (x),u(x)

)
: [−1,1] × U −→ [−1,1]n

are C∞, for all y ∈ Bδ(p2)∩Λ2 and for all x ∈ Bδ(p1)∩Λ1.
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4.2. Control of the orbits

As in the case of dimension two, we need, in higher dimension, some control of the orbits of strange attractors.
Suppose that there is ϕ̂ ∈ U with periodic points Q1 ∈ Bδ(p1) ∩ Λ1 and Q2 ∈ Bδ ∩ Λ2 of periods k1 and k2,

respectively, such that Wu(Q1) and Ws(Q2) are tangent (quadratically) inside U . Assume that ϕ̂k1 is linearizable
nearQ1 and ϕ̂k2 linearizable nearQ2. Take a one-parameter family {ϕμ} ⊂ U , with ϕ0 = ϕ̂, generically unfolding the
tangency. By Theorems 3.1 and 3.2, there are a sequence of host intervals Ωn → 0, as n→ +∞, subsets En ⊂Ωn
with m(En) > 0 and integers kn → +∞ as n→ +∞, such that for μ ∈En, ϕ̂knμ has a nonhyperbolic strange attractor
An =An(μ) inside U . Then, as in the two-dimensional case, we can take U , U and δ sufficiently small such that for
some n0 > 0 sufficiently large we have, for all n� n0, that

ϕjμ(An)∩U = ∅, 0< j < kn,

and ϕμ(U)∩U = ∅ and ϕ−1
μ (U)∩U = ∅. This implies that any perturbation done insideU but outside a neighborhood

of the strange attractor An does not affect the remaining part of the orbit.

4.3. Persistence of the tangency

In this subsection we take U , U , and δ as in the previous section. Recall that ϕ has hyperbolic basic sets Λ1 and
Λ2 with periodic points p1 ∈Λ1 and p2 ∈Λ2 satisfying items (a) to (d) of Theorem 2.1. Let U2 be a neighborhood of
Λ2 such thatWs(Λ2) admits an extension to a C1 foliation F s2 =F s2(ψ) defined in U2. By C1 we mean here that the
tangent spaces to the leaves TzF s2(z) vary in C1 fashion with the point z. F s2 depends continuously on ψ ∈ U . Clearly
we can take q , the point of tangency betweenWs(p2) and Wu(p1), to belong to U2 and U ⊂U2.

Now we need the following kind of implicit function result,

Lemma 4.1 (Implicit Function). Let X ⊂ Rn be a compact set and I ⊂ R be a compact interval. Let F :X × I → R
be an intrinsically C1 map and (x0, t0) ∈X× int(I ) be such that

F(x0, t0)= 0 and �Fx(t0, t0) �= 0. (11)

Then, there exist V ⊂ X, a compact neighborhood of x0, and a unique intrinsically C1 map f :V → I such that
f (x0)= t0 and F(x,f (x))= 0, for all x ∈ V .

We apply this lemma in the following way. We define ξs = ξs(ψ) a C1 vector field on U orthogonal to the leaves
of F s2(ψ). By Proposition 2.3, Wu(Λ1) ∩U contains an intrinsically C1 diffeomorphic image Y of X × I , where X
is a small neighborhood of p1 in Wsloc(p1) ∩Λ1 and I is a compact interval. Let ξu = ξu(ψ) be some intrinsically
C1 vector field on Y tangent to the leaves of Wu(Λ1(ψ)) ∩ U and finally we define F(y,ψ) = ξu(y,ψ) · ξs(y,ψ),
which is an intrinsically C1 map. The hypotheses (11) in Lemma 4.1 corresponds to have a quadratic tangency at
q between Wu(p1, ϕ) and Ws(p2, ϕ). Observe that F(q,ϕ) = 0. Then, by the lemma we get that there exist V1 a
compact neighborhood of p1 inWsloc(p1)∩Λ1(ψ) and π1ϕ :V1 →Wu(Λ1(ψ))∩U an intrinsically C1 map such that
each π1ϕ(x), x ∈ V1, is a point of tangency betweenWu(x) and some leaf of F s2(ϕ).

On the other hand, we also introduce πsψ :U →Wuloc(p2), the projection along the leaves of F s2(ψ) ontoWuloc(p2),

for all ψ ∈ U . We identify Wuloc(p2) with an interval in R by the following C1 diffeomorphism Xψ :Wuloc(p2)→ R
with Xψ(p2) = 0, for all ψ ∈ U . If it is necessary, we perturb ϕ, so that �π1ϕ(p1,p1) · ITp1(Λ1 ∩ Wsloc(p1)) is
not tangent to the stable leaf F s2(q), see Section 7 in [10]. Then, Xϕ ◦ πsϕ ◦ π1ϕ is an intrinsically C1 map and
�(Xϕ ◦πsϕ ◦π1ϕ)(p1,p1)|Ew is bijective. That means, by Proposition 2.4, that τu(Λ1,p1)= τ(Xϕ ◦πsϕ ◦π1ϕ(V1),0).
We put Kuϕ =Xϕ ◦ πsϕ ◦ π1ϕ(V1), i.e. τ(Kuϕ ,0)= τu(Λ1,p1).

Now, we define Ksψ = Xψ(Wuloc(p2) ∩ Λ2) and Kuψ = Xψ ◦ π2ψ ◦ π1ψ(V1), for ψ ∈ U , which are near Ksϕ and
Kuϕ , respectively, if ψ is near ϕ. By Section 2.3, we have that τu(Λ1(ψ),p1) = τ(Kwψ ,0), for all ψ ∈ U , where
Kwψ = πwψ (V1), taking πwψ as we defined it in Section 2.3 and V1 a sufficiently small compact neighborhood of

Wsloc(p1,ψ) ∩Λ1. The value τ(Kwψ ,0) varies continuously with the diffeomorphism ψ ∈ U in the C2 topology and
the sets Ksψ and Kwψ are dynamically defined Cantor sets, see [10].
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The applications huψ :Kwϕ → Kwψ defined by huψ(x) = πwψ ◦ Φ1(ψ) ◦ (πwϕ )−1(x) and hsψ :Ksϕ → Ksψ defined by

hsψ(x)= Xψ ◦Φ2(ψ) ◦ (Xϕ)−1(x) are the natural equivalence between Kwϕ and Kwψ , and, Ksϕ and Ksψ , respectively.
By Theorem 1.1, we have

τ
(
Kwϕ ,0

) · τ(Ksϕ,0)
� 1 + t0, for some t0 > 0.

By continuity of thickness, the definition of local thickness and considering U small enough, there is δ0 > 0 such that
for each 0 < δ < δ0 we can find Cantor sets K̃wϕ ⊂ Kwϕ ∩ Bδ(0) and K̃sϕ ⊂ Ksϕ ∩ Bδ(0) whose continuations K̃wψ of

K̃wϕ and K̃sψ of K̃sϕ satisfy

τ
(
K̃wψ

) · τ(K̃sψ)
� 1 + t0/2 ∀ψ ∈ U .

Now define the following functions ϑuψ :Kwϕ → R by

ϑuψ(x)=Xψ ◦ πsψ ◦ π1ψ ◦Φ1(ψ) ◦
(
πwϕ

)−1
(x)

and ϑsψ :Ksϕ → R by ϑsψ(x)=Xψ ◦Φ2(ψ) ◦X−1
ϕ (x). Then,

τ
(
ϑuψ

(
K̃wϕ

)) · τ(ϑsψ(
K̃sϕ

))
� 1 + t0

2
, ∀ψ ∈ U .

Let {ϕ̂μ}μ∈[−1,1] ⊂ U be a one-parameter family of diffeomorphisms, with ϕ̂0 = ϕ, generically unfolding the tan-
gency betweenWu(p1, ϕ) andWs(p2, ϕ). Then, for δ0 > 0 sufficiently small and considering that Cantor sets K̃wϕ and

K̃sϕ as we defined above, there exists a parameter value μ0 close to μ= 0 such that the pair 〈ϑu
ϕ̂μ0
(K̃wϕ ),ϑ

s
ϕ̂μ0
(K̃sϕ)〉 is

a stable linked.
Let Z be a small neighborhood of {ϕ̂μ} in the space of one-parameter families of diffeomorphisms and I an interval

such that for each family {ϕμ} ∈Z we have that 〈ϑuϕμ(K̃wϕ ),ϑsϕμ(K̃sϕ)〉 is a linked pair, for all μ ∈ I . We define

W = {
ϕμ ∈ U : {ϕμ} ∈Z and μ ∈ I}

which is an open set by the openness of the linking property. Observe that Z is arbitrarily close to ϕ. W is an open
set of persistence of tangencies.

Lemma 4.2 (Main Lemma). Let I ′ ⊂ I be any subinterval. Then, there exists a residual subset R of Z such that for
each family Ψ = {ψμ} ∈ R, there is a parameter value μ̄ ∈ I ′ such that the corresponding map ψμ̄ exhibits infinitely
many nonhyperbolic strange attractors.

Proof of Theorem A. Let ϕ̃ be a C∞ diffeomorphism with a homoclinic tangency associated to a sectionally dissipa-
tive saddle point. Then, by Theorem 2.1 there exists ϕ arbitrarily near ϕ̃ and, as we see above, there exists an open set
W arbitrarily near ϕ, which, by the Main Lemma, satisfies that every diffeomorphism ψ ∈ W can be approximated
by a diffeomorphism displaying infinitely many nonhyperbolic strange attractors. Taking Uϕ0 the union of this open,
sets we obtain Theorem A. �
Corollary 4.1. There exists a residual subset R of Z such that for each family Ψ = {ψμ} ∈ R the set of parameter
values μ ∈ I , for which ψμ has infinitely many nonhyperbolic strange attractors, is dense in I .

Proof of Theorem B. First, we state the following remark relative to Theorem 2.1

Remark 4. Let Φ = {ϕμ} be a C∞ one-parameter family of diffeomorphisms such that ϕ0 has a homoclinic tangency
associated to sectionally dissipative saddle point. Among the families with this property, there exists a residual sub-
set which satisfies the following conditions: C2 linearizability of the saddle point, quadratic tangency at ϕ0, generic
unfolding as μ varies through 0, and conditions (1), (2) of Section 2. Furthermore, we can see that, in the consider-
ations done above, Theorem 2.1 holds for a generic subset of C∞ families of diffeomorphisms (see [10], Section 7).
This means that, if {ϕμ} belongs in this generic subset, there exists a sequence of parameter values μn → 0 such that
ϕ = ϕμ satisfies items (a)–(d) of Theorem 3.1 and the subfamilies {ψν} with ψν = ϕμ+ν , ν near zero, generically
unfold the heteroclinic tangency of item (b) of Theorem 2.1.
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Then, the proof of Theorem B follows from Corollary 4.1 above and, the fact that, countable intersection of residual
subsets is a residual subset. �
4.4. Proof of the Main Lemma

The proof of the Main Lemma will be done by induction. In this subsection, Br denotes the ball of radius r , Br(x)
denotes the ball of radius r and center x ∈M and m denote the Lebesgue measure in R. We also denote by π2ψμ the
restriction of πsψ to π1ψ(V1). Let U , U as in the previous section and Z ⊃ R1 ⊃R2 ⊃ · · · ⊃ RN ⊃ · · · be a sequence
of sets satisfying

(a) for N � 1 and each family Ψ = {ψμ} ∈RN , there exists a compact set EN =EN(Ψ )⊂ I ′, m(EN) > 0, such that
for μ ∈EN , ψμ has N distinct strange attractors S1 = S1(Ψ ), . . . , SN = SN(Ψ ); furthermore,
(a.1) each attractor Si , i = 1, . . . ,N , is generated as in Section 2, (Theorems 2.1 and 2.2) together with Section 3.2

and the orbit of Si intersects U only once, inside Bri ⊂U , where Bri ∩Brj = ∅, i �= j ;
(a.2) EN+1(Ψ )⊂EN(Ψ );

(b) for each Ψ = {ψμ} ∈RN and μ in a neighborhood of the convex hull of EN(Ψ ), there are bridges Csi , D
s
N of K̃sϕ

and Cui , DuN of K̃wϕ , i = 1, . . . ,N , such that

(b.1) their images ϑsψμ(C
s
i )= Csi (Ψ ;μ) and ϑuψμ(C

u
i ∩ K̃wϕ )= Cui (Ψ ;μ) form a stable linked pair, see Fig. 3;

(b.2) images of their intersections in U satisfy

C̃N (Ψ ;μ)= (π2ψμ)
−1 ◦X−1

ψμ

(
Csi (Ψ ;μ)∩Cui (Ψ ;μ)) ⊂ Bri ;

(b.3) images of DsN , ϑsψμ(C
s
N)= CsN(Ψ ;μ) and DuN , ϑsψμ(D

u
N ∩ K̃wϕ )=DuN(Ψ ;μ) form a stable linked pair;

(b.4) images of their intersections in U , satisfy

D̃N(Ψ ;μ)= (π2ψμ)
−1 ◦X−1

ψμ

(
DsN(Ψ ;μ)∩DuN(Ψ ;μ)) ⊂ BεN ,

where BεN ⊂U and Bri ∩BεN = ∅.

We will show that R1 is open and dense in Z and RN+1 is open and dense in RN , for all N � 1. Then, the proof
of Main Lemma follows by taking R = ⋂

N�1 RN , which is a residual subset of Z and for each Ψ = {ψμ} ∈R, there
exists a sequence I ′ ⊃E1 ⊃E2 ⊃ · · · ⊃EN ⊃ · · · of compact sets as item (a) above. Therefore, for each μ̄ ∈ ⋂

N�1,
ψμ exhibits infinitely many strange attractors.

The openness of RN , is a consequence of the following fact: the linking property corresponds to an open condition
(i.e. item (b), corresponds to an open property) and applying Lemma 3.1 to item (a) (i.e., corresponds to an open
property). Now we will prove that RN+1 is dense in RN , N � 1 (the proof also shows that R1 is dense in Z ; for that,
for Ψ = {ψμ} ∈Z we take E0(Ψ )= I ′, Ds0 the convex hull of Ksϕ , Du0 =Kuϕ and proceed as below with N = 0).

Let Ψ = {ψμ} ∈ RN . We show that after four perturbation of the family {ψμ}, to be described below, we get a
family {ϕμ} ∈ RN+1 C

∞ arbitrarily near to Ψ .

Part 1. Let μN be a total density point of EN , i.e.

m
(
EN ∩ [μN − δ,μN + δ])/(2δ)−→ 1, as δ→ 0.

Let d0 be the distance from⋂
μ∈EN

D̃N(Ψ,μ) to Rn \BεN .

Take 0< γ1 < d0/2 and qN be the center of BεN . Define the following function

ξN(V,u)= ξ
(

3

γ1

[∥∥(V ,u)− qN)∥∥ − (εN − γ1)
])
,

where ξ is a C∞ bump function satisfying{
ξ(s)= 0, if s � 2,
ξ(s)= 1, if s � 1,

0 � ξ(s)� 1, ∀s ∈ R
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Fig. 3. Induction.

for α small, we define the C∞ diffeomorphism

Gα :M −→M,

x −→ x, if x ∈M \U,
(V,u)−→ (

V,u+ αξN(V,u)
)
, if x ∈U.

First, note that Gα ◦ψμ =ψμ. Then, for α = 0 and for all μ. For each α small, denote Gα ◦Ψ the family {Gα ◦ψμ}.
The Cantor sets DsN(Gα ◦ Ψ ;μN), DuN(Gα ◦ Ψ ;μN) have 0 �= α-velocity with respect to each other. By item (b)
of the induction hypothesis DsN(Ψ ;μN), DuN(Ψ ;μN) form a linked pair and, we get that all the hypotheses of the
Proposition 2.2 (Linking Lemma) are satisfied. Then, there is α0 arbitrarily small such that the linked pair above has
two stable sublinks. We also have,

‖Gα0 ◦Ψ −Ψ ‖Cr � Const. |α0|‖ξN‖Cr � Const. |α0|
(

3

γ1

)r
.

Observe that the perturbation above does not affect U \BεN , i.e. does not affect items (b.1) and (b.2) of the induction
hypothesis. Take Ψ 1 = {Gα0 ◦ψμ} = {ψ1

μ} and let〈
CsN+1

(
Ψ 1;μN

)
,CuN+1

(
Ψ 1;μN

)〉
and

〈
DsN+1

(
Ψ 1;μN

)
,DuN+1

(
Ψ 1;μN

)〉
be the sublinks pairs of 〈DsN(Ψ 1;μN),DuN(Ψ 1;μN)〉, where (for β = s, u)

C
β

N+1

(
Ψ 1;μN

) = ϑβ
ψ
(1)
μN

(
C
β

N+1 ∩ K̃sϕ
)

and D
β

N+1

(
Ψ 1;μN

) = ϑβ
ψ
(1)
μN

(
D
β

N+1 ∩ K̃wϕ
)
,

for some bridges CsN+1, CuN+1 of K̃sϕ and DsN+1, DuN+1 of K̃wϕ . Since the sublinks are distinct, there exist rN+1 > 0
and εN+1 > 0 such that

C̃N+1(Ψ
1;μ)= (Xψμ ◦ π2ψμ)

−1(ĈsN+1

(
Ψ 1,μ

) ∩CuN+1

(
Ψ 1;μ)) ⊂ BrN+1 ⊂ BεN

and

D̃N+1(Ψ
1;μ)= (Xψμ ◦ π2ψμ)

−1(D̂sN+1

(
Ψ 1,μ

) ∩DuN+1

(
Ψ 1;μ)) ⊂ BεN+1 ⊂ BεN

and BrN+1 ∩BεN+1 = ∅.
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Part 2. Take γ2 > 0 small and BrN+1−2γ2 ⊂ BrN+1 concentric to the ball BrN+1 . On the other hand, by THE gap lemma,
CsN+1(Ψ

1;μN)∩CuN+1(Ψ
1;μN) �= ∅. For γ2 > 0 sufficiently small, we obtain that the tangency betweenWu(x) and

Ws(y), for some x ∈ Λ1(ψ
(1)
μN ) ∩ Bδ(p1) and y ∈ Λ2(ψ

(1)
μN ) ∩ Bδ(p2), is inside BrN+1−2γ2 . Then, there are periodic

points Q1 ∈Λ1(ψ
(1)
μN ) near x and Q2 ∈Λ2(ψ

(1)
μN ) ∩ Bδ(p2) near y such that Wu(Q1,ψ

(1)
μN ) and Ws(Q2,ψ

(1)
μN ) cross

BrN+1−2γ2 ⊂ BrN+1 and

∣∣A(Q2)
(
V,ψ(1)μN

) −A(x)(V,ψ(1)μN )∣∣< 1

2
δ1;

∥∥(
V (Q1), u(Q1)

)(
t,ψ(1)μN

) − (
V (y),u(y)

)(
t,ψ(1)μN

)∥∥< 1

2
δ1

for every V ∈ [−1,1]n−1, t ∈ [−1,1] and 0< 2δ1 < 1
2γ2. Let n1 and n2 be the periods ofQ1 andQ2, respectively, and

fix β > 0 small. Then, by Lemma 2.2 we obtain a one-parameter family of diffeomorphisms Ψ 2 = {ψ(2)μ } arbitrarily

near Ψ 1, and some β > 0, such that (ψ(2)μ )n1 is Ck linearizable nearQ1 and (ψ(2)μ )n2 is Ck linearizable nearQ2, k � 4,
for almost every point μ ∈ [μN − β,μN + β]. Since Ψ 2 is arbitrarily near to Ψ 1, and by Lemma 2.1 there exists a
compact set EN(Ψ 2) with mEN(Ψ 2) > 0 and EN(Ψ 2)⊂ [μN − β,μN + β] such that EN(Ψ 2) satisfies item (a) of
induction hypothesis. Then, we consider μ′

N ∈EN(Ψ 2) a total density point such that (ψ(2)
μ′
N

)n1 is Ck linearizable near

Q1 and (ψ(2)
μ′
N

)n2 is Ck linearizable near Q2.

The family Ψ 2 can be chosen arbitrarily close to Ψ 1 and μ′
N sufficiently near to μN such that DuN+1(Ψ

2;μ′
N) and

DsN+1(Ψ
2;μ′

N) still form a linked pair,

D̃N+1
(
Ψ 2;μ′

N

) = (Xψ2
μ′
N

◦ π2ψ2
μ′
N

)−1(D̂sN+1

(
Ψ 2,μ′

N

) ∩DuN+1

(
Ψ 2;μ′

N

))
⊂ BεN+1

and Wu(Q1,ψ
(2)
μ′
N

) and Ws(Q2,ψ
(2)
μ′
N

) cross BrN+1−2γ2 . Moreover,

∣∣A(Q2)
(
V,ψ

(2)
μ′
N

) −A(Q2)
(
V,ψ(1)μN

)∣∣< 1

2
δ1;

∥∥(
V (Q1), u(Q1)

)(
t,ψ

(2)
μ′
N

) − (
V (Q1), u(Q1)

)(
t,ψ(1)μN

)∥∥< 1

2
δ1,

where δ1 + β < 1
2γ2.

Part 3. Let q̃N be the center of the ball BrN+1 , and define the following map

ξ̃N (V ,u)= ξ
(

3

γ2

[∥∥(V ,u)− q̃N∥∥ − (rN+1 − γ2)
])
.

Equally to the first perturbation, we define the diffeomorphism G̃α , for α small, by

G̃α :M −→M,

x −→ x, if x ∈M \U,
(V,u)−→ (

V,u+ α · ξ̃N (V ,u)
)
, if x ∈U.

Then, there is α1, with |α1| � const. (2δ1 + β) < 1
2γ2, such that Wu(Q1, G̃α1 ◦ Ψ 2) and Ws(Q2, G̃α1 ◦ Ψ 2) have a

tangency inside BrN+1−γ2 . Take Ψ 3 = G̃α1 ◦Ψ 2 and observe that EN(Ψ 2)=EN(Ψ 3) and (ψ(3)
μ′
N

)n1 is Ck linearizable

near Q1 and (ψ(3)
μ′
N

)n2 is Ck linearizable near Q2. Also,

‖Ψ 2 −Ψ 3‖Cr � Const. |α1|
(

3

γ2

)r
.
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Part 4. Define G̃α ◦Ψ 3 = G̃α+α1 ◦Ψ 2. As the family {G̃α1 ◦ψ(2)μ } generically unfolds the tangency for the parameter

value μ= μ′
N , for each α small, there exists μT (α) such that Wu(Q1, G̃α ◦ ψ(3)μT (α)) and Ws(Q2, G̃α ◦ ψ(3)μT (α)) are

tangent. the family {G̃α ◦ ψ(3)μ } generically unfolds this tangency. Observe that μT (0) = μ′
N and if α is sufficiently

small, (G̃α ◦ψ(3)μ )n1 is Ck linearizable nearQ1 and (G̃α ◦ψ(3)μ )n2 is Ck linearizable nearQ2, for α near to α = 0 and
μ near to μ= μ′

N . As μ′
N ∈EN(Ψ 3) is a total density point, there is t0 > 0 such that

m
(
EN

(
Ψ 3) ∩ [

μ′
N − t,μ′

N + t]) � t, ∀0< t � t0. (12)

LetΩ be a host interval of strange attractors in the μ-space for the family Ψ 3 such that |Ω|< t0 and m(E(Ψ 3)) >
3
4 |Ω|. TakeΩ satisfying the control of the orbits as in Section 4.2. Then, by the discussion in Section 3.2 (summarized
in Remark 2), consider Ω(α) to be the natural continuation of Ω =Ω(0) arbitrarily near μT (α) (i.e. |Ω(α)| � t0)
corresponding to the family {G̃α ◦ψ(3)μ }, such that the relative measure of E(α)⊂Ω(α) of strange attractors satisfies
m(E(α)) � 3

4 |Ω(α)|. We may suppose, without loss of generality, that Ω(α) is on the right of μT (α), for α small,
and μT (α) decreases as α increases. So, we can choose α2 > 0 close to α = 0 and Ω =Ω(0) near μT (0)= μ′

N such
that

μT (α2) < μ<μT (0), ∀μ ∈Ω(α2).

If we denote by μc(α) the center of the host interval Ω(α) then there exists α3 with 0< α3 < α2 such that μc(α3)=
μT (0)= μ′

N . From this and (12) it follows ( even using that μ′
N is a total density point of EN(Ψ 3)=EN(G̃α ◦Ψ 3),

for all α small) that

m
(
EN

(
G̃α3 ◦Ψ 3) ∩E(α3)

)
�

(
3

4
− 1

2

)∣∣Ω(α3)
∣∣> 0.

Finally, we take Φ = {ϕμ} = G̃α3 ◦Ψ 3 and EN+1 =EN(Φ)∩E(α3). Also,

∥∥Φ −Ψ 3
∥∥
Cr

� Const.

(
|α3|

(
3

γ2

)r)
.

We conclude that

‖Φ −Ψ ‖Cr � Const.

(
|α0|

(
3

γ1

)r
+ |α1|

(
3

γ2

)r
+ |α3|

(
3

γ2

)r)
+ ∥∥Ψ 1 −Ψ 2

∥∥
Cr

α0 can be taken arbitrarily small with respect to γ1, α1 and α3 can be taken also arbitrarily small with respect to γ2
and by the Lemma 3.1, ‖Ψ 1 − Ψ 2‖Cr is arbitrarily small for any r . Then, ‖Φ − Ψ ‖Cr is arbitrarily small for any r .
This concludes the proof of the Main Lemma.
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