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Abstract

In this work we show, on a manifold of any dimension, that arbitrarily near any smooth diffeomorphism with a homoclinic
tangency associated to a sectionally dissipative fixed or periodic point (i.e. the product of any pair of eigenvalues has norm less
than 1), there exists a diffeomorphism exhibiting infinitely many Hénon-like strange attractors. In the two-dimensional case this
has been proved in [E. Colli, Infinitely many coexisting strange attractors, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998)
539-579]. We also show that a parametric version of this result is true.
© 2007 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Dans ce travail nous montrons, sur une variété de dimension quelconque, qu’arbitrairement pres de chaque difféomorphisme
possédant une tangence homocline, associée a un point fixe ou périodique sectionnelement dissipatif (le module du produit de deux
valeurs propres quelconques est plus petit que 1) il existe un difféomorphisme qui posséde une infinité d’attracteurs étranges du
type Hénon. Dans le cas bidimensionnel ceci a été prouvé dans [E. Colli, Infinitely many coexisting strange attractors, Ann. Inst.
H. Poincaré Anal. Non Linéaire 15 (1998) 539-579]. Nous démontrons également une version paramétrique de ce résultat.

© 2007 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The two-parameter Hénon family of transformations of the plane
hap(x.y) = (1 = ax® +y, bx)

was studied by Hénon [3] to show, via a numerical approach, how a simple model of an invertible dynamical system
suggests the presence of a nonhyperbolic strange attractor. However, the possibility that the attractor observed by
Hénon was just a periodic orbit with very high period could not be excluded. In a remarkable work Benedicks and
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Carleson [1] showed that this is not the case and they exhibited a positive Lebesgue measure subset of parameters
(a, b) for which the map h, 5, has a nonhyperbolic strange attractor.

An important application of Benedicks—Carleson’s methods [1] was done by Mora and Viana in [4] in the setting
of homoclinic bifurcation on surfaces. More precisely, they showed that generic one-parameter families of surfaces
diffeomorphisms unfolding a homoclinic tangency always include the presence, for a Lebesgue positive measure set
of parameter values, of Hénon-like strange attractors or repellers.

The result in [4] was extended by Viana [15] to homoclinic bifurcations on manifolds of any dimension. Later on,
Colli [2] showed that a diffeomorphism of surfaces having a homoclinic tangency can be approximated by diffeomor-
phisms exhibiting not only a strange attractor, but also by diffeomorphisms displaying infinitely many of such strange
attractors.

Our purpose in the present work is to extend the existence of infinitely many strange attractors in [2] to higher
dimensions sectionally dissipative homoclinic bifurcations. Our main result is as follows

Theorem A. Let ¢ : M +— M be a smooth diffeomorphism on any manifold with a homoclinic tangency associated to
a sectionally dissipative point. Then, there exists an open set U of Diff > (M) containing ¢ in its closure, such that
every ¥ € U can be approximated by a diffeomorphism exhibiting infinitely many nonhyperbolic strange attractors.

In the statement above, smooth means that ¢ : M +— M is C°°, M being a n-dimensional manifold. We also recall
that a homoclinic tangency is just a tangency between the stable and unstable manifolds of a saddle periodic point.
The saddle is called (codimension-one) sectionally or strongly dissipative if it has just one expanding eigenvalue and
the product of any two eigenvalues has norm less than one. As in [15], we define attractor of a transformation ¢ to
be a compact, p-invariant and transitive set A whose basin W*(A) = {z € M: dist(¢"(z), A) — 0 as n — oo} has
nonempty interior. We call the attractor strange if it contains a dense orbit {¢"(z1): n > 0} displaying exponential
growth of the derivative, that is,

|D¢" (z1)| = e foralln >0 and some ¢ > 0.

We also obtain a one-parameter version of Theorem A. More precisely,

Theorem B. For a generic subset of smooth one-parameter families {¢,} of diffeomorphisms, on any manifold, that
unfolds a homoclinic tangency at parameter value = 0 associated to a sectionally dissipative fixed (or periodic)
point, there exist sequences I, — 0 of intervals and dense subsets E,, C I,, such that for all u € E,,, the corresponding
map @, displays infinitely many nonhyperbolic strange attractors.

By smooth one-parameter family of diffeomorphism we mean that @ :R x M +— M, ®(u,x) = (1, ¢ (x)) is a
C®° map and ¢, is a diffeomorphism for all .

It is worth to point out that diffeomorphisms with the homoclinic tangencies are not only approximated by ones
displaying the phenomenon described before but also by ones exhibiting different striking phenomena. For instance,
it has been shown that homoclinic tangencies are approximated by Newhouse’s infinitely many sinks (attracting pe-
riodic orbits) [5,6] and cascades of period doubling bifurcation [16]. Still, it is conjectured that such an important
phenomenon concerning infinitely many attractors might be rare, in parameter terms, for parameterized families of
diffeomorphisms going through bifurcations of homoclinic tangencies: a conjecture in [7] and [8] states that for most
parameter values, the corresponding diffeomorphisms display only finitely many attractors.

It is also worth to point out, that in the direction of proving the existence of infinitely many strange attractors, some
particular results have been found. In 1990 [14], Gambaudo and Tresser constructed an example of a C? diffeomor-
phism in the two-dimensional disk exhibiting infinitely many hyperbolic strange attractors. In 2000 [11], Pumarifio
and Rodriguez exhibited a C> family of vector fields in R3, related to a saddle-focus connection, which, with a
positive Lebesgue measure set in the parameter values, displays infinitely many Hendn-like strange attractors.

Among the difficulties to extend the result in [2] from two to higher dimensions, we have that projections along
the invariant foliations (in our case unstable foliations) of a basic set may not have a much regular metric behavior:
in general, these projections are not Lipschitz but just Holder continuous. We follow some ideas presented in [10]
to bypass these difficulties and also to obtain further estimates necessary to prove Theorems A and B. On the other
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hand, to construct strange attractors we need to display a high dimensional renormalization scheme for heteroclinic
tangencies in 2-cycles and then apply results in [15].

This work is organized as follows. In Section 2, we review the construction used to prove that infinitely many
coexisting attracting periodic orbits for diffeomorphisms in high dimensions as presented in [10]. We take special
care with the expansion and contraction rates of the basic sets involved. This chapter finishes with Theorem 1.1,
which summarizes the facts established in the previous sections. In Section 3, we prove some preliminary machinery
to show the main theorems. In Section 3.1, we describe a higher dimension version of the renormalization scheme
in 2-cycles of periodic points with a heteroclinic tangency considered in [2], following ideas in [9] and [15]. This
renormalization scheme depends on a delicate relation between the contracting and expanding eigenvalue of periodic
points involved. In Section 3.2, we give a brief summary of the main result in [15] and derive several consequences
of its proof. In Section 3.3, we make a special perturbation for one-parameter families of diffeomorphisms to obtain
new families which have linearizing coordinates in a neighborhood of the periodic points, as in Section 3.1. Such a
perturbation is necessary since in the renormalization scheme of Section 3.1, we assume that there exist linearizing
coordinates in a neighborhood of the periodic points. In Section 4, we prove Theorems A and B. The proofs are
consequence of the a main lemma showed in Section 4.4. The proof of Theorem B is more delicate and we have to be
more careful in applying the main lemma.

2. Preliminaries

In this section, we follow ideas and rewrite some results in [10] to create a language which we shall use in the
proof of the main theorems. We start by giving a formal definition of stable thickness for a hyperbolic basic set
whose stable foliation have codimension one. We use a condition given in [10] to obtain a basic hyperbolic set with
“intrinsically” C' unstable foliations. Moreover, the projection along leaves of W* (A1) is intrinsically C'. In the
next section we give a formal definition of unstable thickness for a hyperbolic basic set A; whose unstable foliation
has codimension bigger than one. In this case we assume that A has a periodic point displaying a unique weakest
contracting eigenvalue. Later on, we show that we can obtain such a condition.

2.1. Cantor sets and thickness

A Cantor set in R, is a compact, perfect and totally disconnected set. Let K be a Cantor set and [ its convex hull,
i.e. the minimal (closed) interval of R containing K. A gap of K is a connected component of R \ K. A presentation
of K is an ordering i/ = {U,},>1 of the bounded gaps. An ordered presentation of K is a presentation {{ such that
L(U,) < £(Uy) for all n > m, where £(U,) denotes the length of U,,. The bridge at u € 0U,, U, € U, is the component
of I\ (Uj U---UU,) that contains u. The thickness of K is the number

7(K) =inf{r(K,U, u): ue I(},
where U is any ordered presentation of K,

£(C)
(K, U,u)=———,
(Uyn)
and where C is the bridge at u € dU,,. This definition of thickness does not depend on the ordered presentation &/
(see [9]). Let k € K. The local thickness of K at k is the number

(K, k) = gi_r)lz)(sup{r(l?): K C K N B, (k) a Cantor set}).

Let K1, K> be Cantor sets and I, I their convex hulls. We say that the pair (K, K») is linked if 1 N I, £ @. 1 is
not inside a gap of K, and I, is not inside a gap of K. The link is called stable if the same condition is verified by
the interiors int(Iy), int(l») of Iy, I,.

Let A be a nontrivial basic set of a C2 diffeomorphism ¢: 5x M — M, whose stable foliation is of codimension one,
i.e., such that dimW*(x) =n — 1, n =dim M, forall x € A. Let z € W*(A) and ¢ :[—a, a] — M be a C! embedding
transverse to W*(A) at z = ¢(0). The local stable thickness of A at z is T°(A,z) = (¢~ L(W*(A)), 0). This is
independent of the choice of ¢, as a consequence of the fact that (under codimension-one assumption) the holonomy
maps (i.e., the projections along the leaves) of the stable foliation of A can be extended to C! maps. Actually, this
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smoothness of the holonomy of W¥(A), together with the transitivity of ¢| 4, also implies that t°(A, z) has the same
value at every z € W*(A). We denote by 7°(A) this constant value and call it the local stable thickness of A. This is a
strictly positive (finite) number and depends continuously on the diffeomorphism, in the sense that if Ay denotes the
smooth continuation of A for a diffeomorphism i which is C2-close to @, then 7¥(Ay ) is close to 7°(A). The Local
unstable thickness T (A, z) and " (A) are defined in a similar way, when W*(A) has codimension one. In particular,
both the stable thickness and unstable thickness are well-defined if M is a surface.

In the proof of the main theorems we will use the following two important results involving thick Cantor sets,

Proposition 2.1 (Newhouse’s Gap Lemma). Let K|, K> be Cantor sets in R such that t(K1) - t(K3) > 1 and (K1, K>)
is linked. Then, K1 N Ky # .

The next result is used by Colli [2] to show the existence of infinitely many Hénon-like strange attractors for
diffeomorphisms on a manifold of dimension two.

Proposition 2.2 (Linking Lemma). Let K1, K> be Cantor sets in R, with t(Ky) - t(K3) > 1, and I, I the convex hull
of K1, K3, respectively. Let ¥g: I = R and ¥ : I — R be such that

(a) vg and 5,5 are topological embeddings, for all § € R,

(b) ¥g(x) and 5,3 (y) are differentiable with respect to B, for all x € Ky and y € K3;

(c) 9glvg(x) —Ug(¥)] = c >0, forall x € Ky and y € K»;

(d) sz€1 C Ky and 132 C K are Cantor subsets and let By € R be such that the pair (9g, (I%l), 1950 (I%z)) is linked.
Then, for any ¢ > 0, there is B such that
QD 1B—pol<es
(i) the pair (9g(K1), 0g(K2)) has two stable sublinks.

2.2. Intrinsically smooth foliations of hyperbolic sets

Let X C R™ be a compact set and ¢ : X — R” be continuous. We say that ¢ is intrinsically C' on X if there exists
a continuous map A¢: X x X — L(R™, R") such that

e(x) — (i) =Ap(x,z) - (x —z) forall x,z € X.

Such a A (which is, in general, far from unique) is called an intrinsic derivative of ¢. We say that ¢ is intrinsically
C'*7 on X if it admits some y-Holder continuous intrinsic derivative.

Remark 1. Let ¢ : X — R" be Lipschitz continuous and U C X x X be such that {||x — z||: (x,z) € U} is bounded
away from zero. Then, there is a Lipschitz continuous map A:U +— L(R™, R") such that ¢(x) — ¢(z) = A(x,2) -
(x —z) forevery (x,z) e U.

Let go be a transverse homoclinic point associated to some hyperbolic fixed (or periodic) saddle point p of a C>
diffeomorphism ¢ : M — M. We assume go ¢ W**(p) and another mild (open and dense) transversally condition to
be stated in (1) below. Then, our goal, in this section, is to prove that there exists a hyperbolic basic set A; containing
p and g and whose unstable foliation is intrinsically C'. We assume that ¢ is C? linearizable on a neighborhood U

of p.

Let us denote by o1, ..., 04, A1, ..., As, u + 5 = m, the eigenvalues of Do(p), with |oy,| = --- = |o1| > 1> |A1| 2
<o 2 |Ag]l. We define 1 < w < s by [A|=---= | y| and let E* = E" & E*° be the invariant splitting such that
Do (p)|gw has eigenvalues Aq, ..., Ay and Do(p)|gss has eigenvalues Ay 1, ..., Ag. We choose C? linearizing coor-
dinates (&1, ..., &4, ¢1, ..., {s) in aneighborhood U of p and, furthermore, we may assume that
(C1) W'(p)Cf{si=---=¢=0band W (p) C{&1=---=& =0}

(C2) E¥ ={0"} x R” x {0°"} and the strong manifold (tangent to E** at p) satisfies Wi> (p) C {1 =--- =&, =

fy=-=Cw=0}
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Up to a convenient choice of Riemannian metric we have, for 0 = |o1|, A = A1| = |Ay| and 8 = [Ay 411,

(C3) (0 —&)lvll < IIDe(p)vll, forall v e E*;
(C4) (r—o)vl <IIDe(p)vll < (A +&)v], forall v e EY;
(C5) IDe(p)vl < (@ +&)vll, forall v € E,

where ¢ > 0 is fixed small enough so that 0 42 < A —2¢ < A +2¢ < o —2¢. (In the case w = s, i.e., if all contracting
eigenvalues have the same norm, E** = {0}, W*S(p) = {p} and we leave 8 undefined.)

Now, we will construct a hyperbolic set whose unstable foliation is intrinsically C! using the transversality between
W*(p) and W¥(p) at qo. Fix ¢, r € U in the orbit of gg in such a way that g € W*(p)ioc and r = ¢~V (g) € W*(p)ioc.
Take

V=Vs={|G.....&0 | <8} x {|@1.....¢)| <0}

where 6 > 0 is small and p > 0 is fixed in such a way that {g,r} Cint(V) C V C U. Let n = n(§) be minimum such
that r € int(¢" (V)). (We suppose that § is conveniently adjusted so that ¥+ (V) cuts V in two cylinders.
We define

N+n

A=(eMkW) and A= [ o (V).
keZ i=1

It is well know that A is a nontrivial hyperbolic basic set, see [12]. We assume the following generic (open and
dense) condition

Dyw®uw(r)  is an isomorphism. (D

Here D denotes the usual derivative and (1) means that unstable/weak-stable directions are not sent to strong-stable
directions by ¢ = ¢V. With this condition it is shown in [10] that for every point x € Ay, the intrinsic tangent space
to Aq

Xp—X
IT, A; = span{v: there is (x,), € ATI so that x,, — x and ”’17” — v}
Xp— X
(for simplicity we consider here M = R") is contained in an (u + w)-dimensional space. Moreover the intrinsic
tangent space to Wi (Ap) at every point x € W (A1) is contained in (# + w)-dimensional space. In particular,
IT, W"(A1) C E* ® E™. The fact that we have a good property for the unstable foliation is showed in the following
result.

Proposition 2.3.

(1) Suppose that o satisfies condition (1) above and consider Ay also as above. Then, the map F: W"(A1) 3 x >
T W (x) is intrinsically C' on compact parts of W*(Ay).

(2) Let 2o, X\ be (small) C' sections transverse to W"(x) for some x € W*(Ay) and let w: X9 N W*(A1) —
X N W¥(A) denote the projection along the leaves of W*(A). Then, 1 is intrinsically C'.

2.3. Thickness in higher dimension

In this subsection we want to define the local unstable thickness of a basic set with unstable foliation of codimension
greater than one.

Consider A as it was constructed in the previous section. We suppose that for a periodic point p, D¢ (p) has a
unique (necessarily real) weakest contracting eigenvalue A = A1, and ¢ is C? linearizable near p. Then, we consider
T:A N Wf(')c(p) — R to be an arbitrary intrinsically C 1 map such that ker A(zw(p, p)) does not contain IT(A; N
Wi .(p)) =EY (i.e., An(p, p)|E" is bijective). Define

t(Ay, p)=t(r (AN WE(p)). T (p))
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as the local unstable thickness of Ay at p. It is shown in [10] that the definition does not depends on m as taken
above, also it is strictly positive and varies continuously with the diffeomorphism: if v is a C2-small perturbation of
@, T“(A1(¥), p) is a small variation of t#(Ay, p).

Let mry, : Ay N W (p) — R be the restriction to A; N Wy (p) C {0“} x R® of the projection (&1, ..., &, ¢1, ..., &)
> {1. my, is a homeomorphism onto its image K" and moreover 7, !is intrinsically C'*7 on K%, see [10]. The fact

that 7 o 7r,; ! is an intrinsically C ! map with

A(m oy, ')(0,0) = A (p, p) - Am,, ' (0,0) #0.

Then, 7 (7w (A1 N W .(p)), m(p)) =T(K™,0) as a consequence of (A1 N W} (p)) = (7 o n,;l)(K“’) and the fol-
lowing result (see [10]):

Lemma 2.1. Let K C R be a Cantor set, y € K and g: K — R be an intrinsically C' map with Ag(y, y) # 0. Then,
T(g(K), g(y)) =1(K, ).

It is also shown that K¥ is a dynamically defined Cantor set, in the same sense as in ([9], Chapter IV), i.e.,
T(K") > 0. Moreover, if ¥ is a diffeomorphism C?-close to ¢, T(K™ (1), 0) is close to T(K™, 0).

The following result shows that the definition of unstable thickness does not depend on transverse sections to
W¥(A1). We will use such fact in Section 4.

Proposition 2.4.

(a) Letq € W*(p), X bea C! section transverse to WH (p) at the point g and w : W"* (A1) N X — R be an intrinsi-
cally C' map such that IT,(W* (A1) N X) is not contained in ker(Amn (g, q)). Then, t(m(W" (A1) N X), w(q)) =
t(Ay, p).

(b) More generality, given z € W" (A1), X atransverse sectionto W*(Ay) atzand w: W* (A1) X — R a submersion
with IT,(W" (A1) N X) € ker(An(z, 2)). Then, t(m(W*(A1)N), 7(z)) = t“(A1, p).

2.4. Unique least contracting eigenvalue

Let {¢,} be a C* one-parameter family of diffeomorphisms generically unfolding at x = 0 a quadratic homo-
clinic tangency associated to saddle fixed (or periodic) point p of ¢y. We also assume once more that there are C>
p-dependent coordinates (§1, ..., &, ¢1, ..., {) linearizing the ¢,,, for u near zero, on a neighborhood U of the ana-
lytic continuation p, of p. Moreover, these coordinates can be taken to satisfy conditions (C1)—(C5) of Section 2.2.

We assume in this section that Dgo(p) has exactly two weakest contracting eigenvalues and these are complex
conjugate numbers, which means that w =2, A1 = re IV, Ay = el with A > |A3] and y € R\ {kn: k € Z}. Here
we may even assume that Dg,(p,)|gv is conformal with respect to the Euclidean metric introduced by coordinates
¢1, 2. On the other hand, we may take, say for u > 0, points g, W} .(pp), ru € Wi .(py) depending continuously
on w, such that galll/ (ru) = q, for some fixed N > 1, ry, go belong to the orbit of tangency and r,,, ¢, are points of
the transverse intersection of W*(p,) and W*(p,,) for every u > 0. Moreover, recall that there exists a sequence of
parameter value ; — 0 such that W*(p,,) and W*(p,,) also have a point of tangential intersection.

For each fixed u = . ; and every sufficiently large n > 1, there is a neighborhood of V = V (j,n) of {p,, q.}, as
in Section 2.2, such that

AG,my =[N el kW)
keZ

isa <p2’ +_invariant hyperbolic set and q)ﬁ/ | A(j, n) is conjugate to the 2-shift. Moreover, given any periodic point

D € A(j,n), there are parameter values [ arbitrarily close to 1 ; for which ¢; has homoclinic tangencies associated
to (the analytic continuation of) p. We consider p = p(j, n) to be the unique ¢Z+N -fixed point in A(j,n) \ {pu}.
Clearly, the orbit of p passes arbitrarily close to p,, if j and n are sufficiently large. The following result displays our
goal in this subsection,

Proposition 2.5. Suppose that o satisfies the condition (2) below. Given j sufficiently large, there exist values of
n =n(j) arbitrarily large such that D(pﬁ’ T (p) has a unique weakest contracting eigenvalue.
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Consider
AMM Auw AMS
A A
D(/):;,] = (Awu Apw Aws) , Ap, = (Auu Auw )
Asu ASU} ASS wit ww
as the expression of Dq)ﬁ/ with respect to the splitting E* x E¥ x ES =R* x R? x R*~2. We also denote
(M A An
Dy, " = A“i” Au_)w Au_}s .
ASM Asw A

The generic assumption in proposition above is (cf. (1))

ss

Au—o(ro), andsoalso Ay, (=0, qo) is an isomorphism. (2)

From the proof of the Proposition 2.5 above, we can obtain that dim W*(p) = dim W*(p), dim W*(p) =
dim W*(p) and that Dgoﬁ*N (p) is sectionally dissipative if Dgg(p) is.
We conclude that there exist a sequence of parameter values (i ; — 0 such that @ji; exhibits homoclinic tangencies

. ~ ki ~ . . ~ . . .
associated to p; — p and Dg-’ (p;), where k; is the period of p ;, has a unique weakest contracting eigenvalue.
pPj—>Pp P \Pj j p Pj q geig
J

2.5. Thick invariant Cantor sets

Let ¢ be a C* diffeomorphism with a quadratic homoclinic tangency at go associated to a fixed (or periodic)
point p. We suppose that dim W*(p) = 1 and Dg(p) is sectionally dissipative.

Let {¢,} be a C*° one-parameter family of diffeomorphisms with ¢g = ¢, that generically unfolds the homoclinic
tangency. We suppose once more that the ¢, & near zero, admits C? ji-dependent linearizing coordinates (£, Z) €
R x R"~! in a neighborhood U of p. We fix these coordinates in such a way that Wiee(Pu) C{Z =0} and W}; (p,) C
{£€ = 0}. The assumption on the eigenvalues of Dgy(p) means that we may choose a norm in R” such that

oul- < Or every /i near Zero,
ul ISull <1 fi y

where o, is the expanding eigenvalue of D¢, (p,) and S, = Do, |E*(p.).
Itis shown in [10] that, there are a constant N (positive integer) and, for each positive integer n, a reparametrization
= M, (v) of the variable u and (i, n)-dependent coordinates transformation

(U,x, Y) d (Mn(v), @Vl,l)(xv Y))
such that the map
,x,Y)—~ (Va @n_,ll; O(pthf\ll,) 0 Oy (x, Y))a

converge, in Cz—topology, to the map (v, x,Y) — (v, x2+ v, Ax), where A € LR ).

The existence of a hyperbolic basic set A, with arbitrarily large thickness follows from the fact that for the map
x > xZ + v, and also for Y_o:(x,Y)—~ (x2 — 2, Ax), there exist invariant expanding Cantor sets K ; with thickness
7(K;j) — +00 as j — +00. Moreover, these K ; are transitive and have a dense subset of periodic orbits. It follows
that each K ; has, for n large, u = M, (v) and v close to —2, an analytic continuation as a hyperbolic basic set K j (n, 1)
of

(@n_,\l) ° 90;114—:?,])) © @n,v(x7 Y))

In particular, the set K ; (n, 1t) has codimension-1 stable foliation and stable thickness 7 (K ; (n, it)) close tot (K ;) > 1.
Then, we just take Ay = Ax(u) = &y, (K (n, ) with j and n large and i = M, (u), v close to —2. It is also shown
that parameter values v, — —2 can be taken in such a way that

n) _ n-1 n+N 0
an - Onsvn © (pM,,(vn) © On*vn

have periodic points P(n, v,) and Q(n,v,) € K (n, ), u = M, (v,), which are heteroclinic related and W*(Q(n, vy,))
also has nontransverse intersections with W* (P(fz, v,,_)).
Now, for f = fv(:l), thereare 0 < A=A(n) <A=A(n) <1,1 <o <& and ¢ = c(n) > 0 such that
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() e 'a lull SIDF ) - ull <ca'llull;
2) Al S IDFI(x) - vl < eAlffvll,

forall x e Kj(n,u), u € E¥,ve E} andi > 0. If Ay = A(n, n) = 0,,,(K;(n, n)) is a hyperbolic basic set for

X 9
<pﬁ+N, where © = M,,(v,) and z € A5 is a periodic point of goﬁ*N of period k = (n + N)j, then, z = @ ,, (x), where

x is a periodic point of f of period j. We conclude that if o> is the expanding eigenvalue of D(plkL (z), then,

af = 02(n+N)j < 5/ < (H%)],

n+

and, therefore, oy < Vo — 1, as n — 4o00. For u near zero and y near <p;N(q0) in U, we have ||Dgpl]2’ @I < k,

for a large constant &, and if S’;M = D(pl’i (2)|EZ, we have

|85, = | Def ES @) | < | Do/ 1E* (¢ () 0 D@ | EF (2)

<
<® NS <1,

for n sufficiently large, which means that, ||S7, || < Ao < 1 for n large, where 1 does not depend on n.
From the discussion above, together with Sections 2.2-2.4 we can conclude this section with the following result
which is a summary of this section.

Theorem 2.1. Let ¢y be a smooth diffeomorphism having a homoclinic tangency associated to a sectionally dissipative
saddle fixed (or periodic) point. Then, there exists a smooth diffeomorphism ¢ arbitrarily near ¢y such that

(@) ¢ has hyperbolic basic sets Ay and Ay with T}, (A2) - T (A1) > 1;

(b) there are periodic points p1 € Ay and py € Ay such that W"(p2) has a transversal intersection with W*(p1) and
W¥(p1) has a quadratic tangency with W5 (p2) at a point q;

(c) the hyperbolic basic set Ay has intrinsically C' unstable foliation and py € Ay has a unique least contracting
eigenvalue;

(d) there exists ¢ > 0 such that if Q1 € Ay and Q2 € Ay are periodic points of period ki and ky, respectively. Denote
Ai=Si = D¢|Ebi || and al.ki the unstable eigenvalue of Dy, i =1,2. Then,
@l) [rz-o2l <1;
(d2) |03 ral < 1
(d3) o is so small that |03 - (Ajo1)/?| < 1.

3. Renormalization scheme and quadratic-like families

In this section we describe a higher-dimensional version of the renormalization scheme in 2-cycles of periodic
points with a heteroclinic tangency. We follow ideas from [15] and [9]. We also state and comment about quadratic-
like families as considered in [15]. Finally, we make a delicate discussion on how to perturb a one-parameter families
of diffeomorphisms to obtain linearizability.

3.1. Renormalization scheme in 2-cycles

Let ¢ be a C*° diffeomorphism having basic sets A, A; and fixed (or periodic) points p; € A1 and py € Ay, such
that dim W*(p1) = W*(p2) = 1; W¥(p1) and W*(p,) have a transverse intersection in a point ro and W*(p1) have
a nontransverse contact (i.e. tangency) with W*(p2) in a point ¢, see Fig. 1. We suppose that D (p1) is sectionally
dissipative, (i.e. the product of any two of its eigenvalues has norm less than one). We also suppose that the tangency
is quadratic.

Let {¢,} be a C*° one-parameter family of diffeomorphisms with ¢g = ¢ and generically unfolding the tangency.
We assume that ¢ is C* linearizable near p; and p,. As C*-linearizable is an open condition (see [13]), we assume
that the ¢, u close to zero, admit C 4 j1-dependent linearizing coordinates in a neighborhood of p; and p,. That
is, there are neighborhoods Uy of p; and U, of p; such that the expression of ¢, @ small, in U; is (§, H) —
(0148, S1uH), in Uz is (n, J) = (o142, S2uJ) where o1, and o7, are the expanding eigenvalue of D¢, (p1) and
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W*(p2)
W (p2) ~ (1,0)
——— ~---n — t —
- e (o, Jo) - /)
: T — R()
. ' . T
e |
- (no, Jo) Lo
_— -
(N Vo W)
> RO
<~~‘~_ . - T 3 ,/’/
—_— P
— ¥ =
q=(1,0) W (p1)

Fig. 1. Renormalization scheme.

Dy, (p2), respectively, and S;, = Doy |gs(p;), i = 1, 2. We may suppose that g = (1, 0"~1) € U; and, therefore, there
exists N > 1 such that (pﬁ,(q) = (0, Jo) € U, see Fig. 1. We assume that for (i, &, H) close to (0, 1,0~ 1), we may
write @Y (€, H) as

(@E—D*+B-H+ap+r(u, & —1,H), Jo+yE—D+R(u, & —1,H)),
where we have a,a € R, 8 € LR R), y € L(R, R"—1) and
r,R,Dr, DR, dsr,der and  dupur vanishat (0,1,0"71). 3)
The hypothesis of nondegeneracy of the tangency amounts to having o # 0 and a # 0. Moreover, using a
p-reparametrization and p-dependent linear changes of the space of coordinates, we may even assume a = 1,
r(1£,0,0) =0, R(12,0,0) = 0""" and 9 (1, 0,0) =0.
We still have to consider the transition map among the neighborhoods U, of p; and Uj of p; and their “transverse”
intersection. We may suppose that ro = (1, 0) € U,, then there is N1 > 0 such that (pﬁ" (ro) = (0, Ro) € Uy, for u small.
Suppose that <p3" , for (n, J) near (1, 0), has the form

on'(n.J) = (0, Ro) + (‘Cl“ g“> (”;1> + (O, n—1,0),0w,n—1,1)),
2 I
where a, € R, B, € LR, R), ¢, € LR,R""), D, € LR""), 0(1,0,0) =0, O(u,0,0) =0 and
DO, D® vanish at (u,n—1,J) = (u,0,0). (@)
From the transversality between W*(p>) and W¥(p1), we have a,, # 0, for u small.

Now we fix Ay < 3 a being a real constant. Fix N and N; as above. We denote @ :R x M — R x M, a C* map
such that, @ (u, x) = (i, ).

Theorem 3.1. Let N, N positive integer as above and let 0 < ¢ < 1 be a small constant such that the following
hold |0.12c‘ ‘M| < 1 and |05 - (A1 - 01)/?| < 1. Choose n = n(m) such that (¢/2) - m < n(m) < ¢ - m. Then, there
exists a sequence O, ,, :[1/Ag, Aol X [—Ao, Aol = R x M of ck diffeomorphisms such that the sequence fu m =
O, ) o @NttNitm o @, . converges to the map

$(a,x,y1,..., ya1) = (a, 1 —ax?,0""")

in the C¥ topology, as n, m — oo.
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Proof. We first describe a construction of &, ,,. We start observing that if one looks at ¢, M (W#(py1)) in Uy coordi-
nates near (1, 0), then it is the graph of a function x — I, (x). Analogously, W*(p>) near (0, Ro) is the graph of a
function x = A, (x) in U coordinates. For n and m sufficiently large we also define the functions x +— F,Em) (x) and
V> A(")(y) whose graphs correspond to go,IN‘ (&= Ulu "1) and go ' =5 Jo}) respectively.

Using the notation above, we take no = r] )(u) = 62# F,Em)(SZM J()) such that, (al_" A,(f)(o ") = (p

@y (1m0, Jo), i.e.

o =au(03,n0 — 1) + BuS5, Jo +6(i, 05,0 — 1,85, Jo) and (5)

AL") (Ufﬂn) =Ry + cu(%"lﬂno - 1) + DMSE"MJ() + @(u, 02’;:770 -1, S;”ulo). (6)
Consider the (n, m)-dependent reparametrization

M=y m(a) = __G]MZn +770_O'1M O'2Iu ,3 Slu ELn)(O-l_/Ln) 7

Recall that 8 € L(R"~!, R). From (5), we have
a=apm(un) = —ozaﬁ’jazzl’:’u — 012302221770 + 8- S?MAL”)(GIL"). (8)
It is easy to check that for any given constant Ay > 0, for (n, m) sufficiently large a, », (1) maps a small interval I,

in pu-space, close u = 0 diffeomorphically onto [—Ag, Ag]. Then, we introduce (u,n, m) dependent coordinates
(x,Y) given by

Onm(@,x,Y) = (ttnm(@) = p, =0, MZ’” —x +n0, 05, anY + Jo)

with o, = ‘71 0", where 1 < w < min{oy,, (/A1 -01,)7~ } Denote (., 1, J) = @y n(a, x,Y). Then, the return
map @N““\'l +7 in the (u, , J)-coordinates is given by

where
Em, J) =07, [au(og,n—1) + BuS5,J +6(u,05,n—1,85,J)]
and
H(n,J)=58], - [Ro+cu(og,n—1)+ DuS5,J + O(w, 05,1 — 1,83, J)].
Then, the return map in (a, x, Y))-coordinates is given by
(a,x,Y) = (a,(—a/a)oinogn e — 1>+ B H+p+r(u. & — 1, H) —no],
oyt () [y (E = D+ R(u. & — 1, H)]),
where
n_—2
E(x,Y) =Glnu{aﬂ[02u( ow” mm—x + TIO) — 1] +B SZM(UZM a,Y + Jo) +9(u oy, =1 S )}
and
o —om @
Hx,Y)= ?M{RO +CM[O2Y’:L(_01# "o‘zum—x + )70) — 1]
+ DSy, (0" anY + Jo) + O (w, 05,n — 1,83, J)}.
Using the definition of ng = 770’ " () and Un.m(a), 1.e. using (5),(6) and (7), we have
fam(@,x,¥) =6, ) o @NTNITM o G, L (a,x,Y)
=(a,Hi(a.x,Y), Hy(a, x,Y)),

where
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2 2
o a —
2n 2, —n_—m —m
Hi(a,x,Y)= < p )0];’02[7[ auoy, 0y, ax +(71’1MBMS£'1MO’2M oY + al”uen,m(a,x, Y)]
+O,2n02m ﬂsn D, S" g My Y—ﬂS” ¢ O_—Zno_—mgx_ ga—2no,—2m
12 In™=u22u"2u “n In"~¥%1un “2un o o 1w 2n

+ﬂS?M@n,m(a7xy Y)+r(u, & — l,H)]

and
1 n _—m@ — =
Hy(a,x,Y)= aﬁ(a,l) |:7/ (—auom"azﬂm X + anBMSg’MGZMma,,Y + ofMQ(a, X, Y)) + R(u, & —1, H)],
where
Opm(a,x,Y) = 6<u, 02”;( 01M2n02u2’n —x + 770) -15, (oz_umanY + JO)> —0(u, ofuno — 1, SE"MJO)
and

= -2 _—2m 4 -
Ouma,x,Y)=06 <,u, 0'2"[1 (_Glﬂ "o—2u max + 7]0) —1, SZ;L (azumoan + J())> O(,u, Glnllln() -1, S’ZTLJ()).
We have to show the following convergence:
1 —n_-m9 nBSm —m Y ne_ Y a .
( )GIH«UZM —au0y, 0,5, &x + 01, By 2192, %n +oy, hom(@,x,Y)| — —a();x,
_ T |
) ( ) oihop [,BS L DyuS505 " Y — BT cuo lf"oz#m;x

— 201205, 4+ BS}, O @, X, Y) + 1§~ 1, H)} — 1

a
3) GZ‘L((X,,)*] I:_aﬂal_un%_um X + UFMBMSE’LGZ_M'"% Yi| —0;
@ oiiotnr(n.&(x,Y) =1, H(x,Y)) — 0;
(5) o3, (en) "' R(1, £(x, Y) = 1, H(x, Y)) — 0.

To obtain the convergence, we choose a compact part of R"*!, so that | (a, x, Y)|| is bounded by some constant,
where the convergence will take place. Let K be a sufficiently large constant (there will be some slight abuse of
notation when dealing with K).

Observe that the hypothesis implies that, for u small,

a3 (M co)"™ 0 asm — +o0, 9)
o' M — 0 asm — +oo. (10)

In the proof of the convergence of the items (1)—(5), we will make use of (9) and (10) or their weaker versions.

Recall that |03, - Az, | < 1.
We start estimating parts (1), (2) and (3). Observe first that 01;" (o)~ — 0 and ||01”S” o, Y| < K|01”A” oy

< K|(/Apuo1,)"| — 0 as n — +oo. It is clear that

||O—lnll012r7toglnuBMSg1uO‘2_MmanY“ K|O‘2n)»m |

HGIZZUZZL”,B . S’fucual_u2 xH K|02M
||012302le;3 Y WD Szltozu oz,,Y” K‘ofﬁoﬁ?’ik"ﬂkg'ﬂan

||02M(a,,) IO’IM GZu x|| < K|((x,,) IO’IM | and

||01”;L(a,,)710{’MBMS’2"M02_MmanY|| < K|01"M)»5”
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converges to zero as n, m — +00.
It remains to estimate convergence of 6, ,, and ©, ,, to complete (1) and (2). We have

|6nm(a, x, V)| < K|0:6(a, %, V)0, o3| + K |9y 0(a, %, V) || |0, 25, 0|

|Gnmla, x, V)| <K|0:0(a, & V)||o], o5, | + K |0y O(a, £, V)| o5, M5, e
for some (a, %, Y) between the points (a, awz”azu ox + Uz,ﬂo 1, S;”M(az_uma + Jo)) and (02’" no— 1, S;”M Jo).

From the inequalities above and using (4) we have that |0' 02'" Qnm(a x, M, IIGIMazleS" @n,m(a,x,y)ll <

||01M 22,’[‘)»” @n,m(a, x, .y)|| anq |01M02u(a”) '9(a, x, Y)| converges to zero as n, m — +00.
On the other hand, it is not difficult to see that

|§(a,x, Y)| < K|c71;"02;m

. |H@x, V<K, and |ul < Kloy"|.
Finally, we want to see that
lofnostr (. &(@, x,Y) =1, H(a,x,Y))| and |0} (n) ' R(u,&(a, x,Y), H(a, x,Y))|

converges to zero as n, m — —+00. For that, we write Taylor expansion of r, up to order 4 near (i, 0.0). We recall that,
dgr and dyr are zero at (i, 0, 0),

r(p.§ —1,H)= Z > ﬁlaﬂzrws 1 H)(E = DPUH? 4+ Ry(u, €, H),

i=1p1+pa=j % Iy

where
R ) As I:I 2 Y
M —0 and |(u.& H)|—0,
I, &, H)l
HP2isa homogeneous polinomial of degree 8, in the coordinates of H = (h1, ..., h,—1). Then,

|012,7022,T r(u.€(a,x,Y)—1,H(a,x,Y))| = 0

as n, m — oo as a consequence of the estimative of £(a, x,Y), H(a,x,Y), || and (3), (9) and (10).
We also write the Taylor expansion of R near (i, 0, 0) up to order 2 and we use essentially the same argument as
above applied to R. We have that

||02”;L(a,,)_1R(pL, &@a,x,Y),H(a,x, Y)) || —> 0 asn,m— oo.
Then, this proves that
fam(@,x,Y) — ¢a,x,Y) = (a, 1 —aagx®,0""")

asn, m — +oo (uniformly on [—Ag, Ag] X [—Ap, Ag]"). Moreover, the same kind of estimates apply to all derivatives
up to order k, k > 3, proving that this convergence (items (1)— (5)) holds in the C¥ topology.
Since, ¢ as above is con]ugated to ¢(a,x,Y) =(a,1— ax?, o1 by h(a,x,Y) = (a, x Y), taking ©, ,, =

@p.m o h, we have that O © @N+n+Nitm o @, . converge to the map
$(@ x.yi.....yn-1) = (@, 1 —ax*,0""")

in the C topology, as n,m — co. O
3.2. Quadratic-like families

Being motived by Theorem 3.1 above we will consider quadratic (or Hénon)-like families as in [15].

We say that ¥ = {y,} is a quadratic (or Hénon)-like family if {{,} is a C" one-parameter family of diffeo-
morphisms, r > 3, and {y,} is sufficiently close to {¢,} = @, where ¢(a,x,Y) = (a,p,(x,Y)) and ¢,(x,Y) =
(1- ax?, 0"‘1), for all a.
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Theorem 3.2. (See Viana [15].) Let 0 < ¢ < log(2) and ¥ = {y,} be a quadratic (or Hénon)-like family. Then, there
exists a set E = E(c,¥) C (1,2), with m(E) > 0 such that for every a € E, there is a compact, ,-invariant set
A = A, satisfying that W¥ (A) has nonempty interior and there is Z1 € A such that {Y"(Z1): n > 0} is dense in A
and | DY} (Z1)|| = e, for all n > 0 and some ¢ > 0.

In the theorem m denotes the Lebesgue measure and the set A above is called a strange attractor. In the proof of
the Theorem 3.2 the point Z is taken to be critical, in the sense that there exists a direction in the tangent space to M
at Z; which is exponentially contracted by both positive and negative iterates of Dv,. Clearly, the presence of such
point is an obstruction to (uniform) hyperbolicity of the attractor.

From the proof of the Theorem 3.2 above, it can be derived another properties of the set £ = E(c,¥): E is
constructed from exclusions of parameters of a host interval (compact interval) £29 C (1, 2), which depends only on
the quadratic family {¢,}. In fact the interval £29 can be chosen near 2, such that if {v,} is sufficiently close to {¢,},
m(E) = (1 —36)|82¢| for chosen § > 0. However, if we consider only a finite number of exclusions of parameters of £2,
we can see from the proof that they vary continuously with @ = {¢,}. Considering this comment about properties of
the set £ we conclude the following

Lemma 3.1. Let E(W) C $2¢ be the set obtained in Theorem 2.2. Let I C 2 be an interval such that m(E NI >=cl|l],
for ¢ > 0. Then, given ¢ > 0, for all U = {V,) sufficiently close to {yr,}, there exists a set E = E(¥) such that
m(E NI)>(c—e)|l|andfora e E, ‘ﬁa has a nonhyperbolic strange attractor.

Let {¢,} be a C* one-parameter family of diffeomorphisms unfolding a heteroclinic tangency at = 0 in 2-cycles
involving periodic points p; and p», as considered in the first part of this section. Then, by Theorem 3.1 there exists a
sequence of host intervals §2, ,, in the p-space, going to zero as n, m go to infinity, each one corresponding to §2p by
(u, n, m)-reparametrization. Moreover, if we embed the family {¢,} in a C* two-parameter family ¢, o}, we have
that for each « sufficiently small, there is a sequence §2,, (o) of host intervals going to p7 (), where pur (o) is the
value of the tangency between W* (p2(«)) and W*(p;(«)). In addition, by the form of the (u, n, m)-reparametrization,
given in Theorem 3.1. It is easy to see that §2, ,, (o) depends continuously on «. And also, the convergence of the
families in Theorem 3.1 is uniform in «. So, for each o small there is a set E};, ,,, () C §2, () With m(E, () >0
and for all u € E, (@), ¢y« has a strange attractor, by application of Theorem 3.2. These assumptions imply the
following

Remark 2. Fix op > 0 small. Then, given ¢ > 0, there are no = no(co), mo = mo(ap) such that for all £2,, ,, (o) with
0 <o <ay,n>ngand m > mg we have

(2.1) sup{lp — ur(@)]: u € 2y m(@)} <e;
(2.2) Mm(Epm(@) N 2pm (@) = 320 m(@)];
(2.3) £2, () varies continuously with respect to c.

3.3. Special perturbation

Let {¢,.} be C* a one-parameter family of diffeomorphisms. We want to show that if a saddle fixed (or periodic)
point pg of ¢, which is sectionally dissipative, is not C*-linearizable, that is, the eigenvalues of D¢y (po) are resonant,
see [13]. Then there exists an appropriate arbitrarily small perturbation of the family {¢,} such that it is possible to
destroy the resonance and turn p,,, the continuation of the point pg, into a C*-linearizable one for almost every
near zero. To be more specific:

Lemma 3.2. Let {¢,}e1 be a one-parameter family of diffeomorphisms having a saddle periodic point po of ¢o,
which is not C*-linearizable, where I is an small interval around zero. Then, there exist a one-parameter family of
diffeomorphisms {{r,,},.er arbitrarily close to {¢,} and a subinterval 1' C I around zero such that for almost every
value € I, is Ck_linearizable near PV, k =2, where p(y,,) is the continuation of po.

Remark 3. The family {v,,} in the theorem, which is arbitrarily near to {¢,} <1, does not depend on the interval /.
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Proof. Denote by Ay, ..., A, the eigenvalues of Dgg(po). Suppose that pg is not C* linearizable, k > 2. Then the
eigenvalues satisfy the resonant conditions of Sternberg, see [13], i.e. there exists j with 1 < j < n such that

>~

b= a8k for2< Yk <k, withk; >0, 1<i <.
i=1

Consider the following holomorphic functions

n
hi(Z)=(+23; ad HEZ)=[[[a+2n]", zeC.

i=1
Note that h;(Z) = H(Z) at Z = 0. In addition, h’j(Z) =X; =h;(0), for all Z € C and H'(0) # h’j(O) since
H'0)=Y"_ ki) n;%zlx’]‘.f‘s"f = i kiH(0) = 1;(0) 3o\ ki, where & is 1if i = j and 0 if i # j. Then,
hj(Z) # H(Z), for all Z € B;(0) and Z # 0, for some & > 0, where B, (0) is the ball in C of radius & and center 0.
Notice that here ¢ depends on j and k;, i = 1,...,n with 2 < Z?:l ki <k and 1 < j < n. Then, ¢ depends on a
finite number of conditions. Therefore, we can take ¢ sufficiently small such that 4 ;(Z) # H(Z) for all Z € B:(0)

and Z # 0. In fact, for & small enough h’j(Z) # H'(Z) for all Z € B.(0).

On the other hand, let v, : W — R” be a C*° family of local charts defined in a neighborhood W of py with
Yu(po) =0, for all u € I. We take W sufficiently small so that gpé W)ynw =@ forall 0 < j < ng, where ng is the
period of pg. Let & be a C* bump function on R satisfying

§(s) =0, ifs > 2,
{g(s)zl, ifs <1,
0<E&(s)<1, VselR.

Let y > 0 be a small constant such that B, (0) C ¥, (W). We define the perturbed families {¢, } by ¢, =
Sfu.r 0 @u, where
S (x) =x, ifxeM\W,
Fud@) =y MO +1-E(Yu@)ID] - Yu(x), ifxeWw

and é(y) = S(%), for all y € W. First observe that the eigenvalues of D(pZ?t(pM) are (1 + Ay, (1+DAoy, ...,

(141)A,, where A;, and p, are the continuation of A; and py, respectively, i =1, ..., n. We also have that ¢ ; is ck
linearizable near pg for all 0 < |t| < ¢, where ¢ is as above. We define

n

F. 2 =10+ 2)20,]" = A+ 2y,

i=1

where k = (k1, ..., k).

Claim. There exist intervals I' C I around u =0 and J C [—&y, &0] around t =0, & > g9 > 0, such that if for each
teJ. Wedefine Z, ={uel” Fj),;(,u, t) =0}, then the set L = {t € J: m(Z;) > 0} is countable.

By the claim, we conclude that for all # € J \ {countable set}, (pﬁ‘f[ is C¥ linearizable for almost everyuel’. O
Proof of the claim. Recall that BZF]-J;(O, Z) # 0, for all Z € B;(0) and Fj’,;(O, Z) #0, for all Z € B.(0) \ {0}.

Then, by the Implicit Function Theorem, there exist 0 < g9 < ¢ and I’ C I, a subinterval with 0 € I’ such that if
Fj’,;(//, t') =0, then Fj’,;(uf, 1) #0,forall t € [—&g, g9] \ {t'}. Define

1
Z,={nel”" T (s 1) =0} and L,= {t € [—eg, g0): m(Z;) > ;}

Observe that Z, N Z, =@ if t # ¢’ for all ¢,¢ € [—ep, &9]. So, Ly, is a finite set, i.e. L ={t € J: m(Z;) > 0} is a
countable set. O
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Fig. 2. Heteroclinic tangency.
4. Proof of the main result

4.1. Fixing some notation

Let ¢ be a C* diffeomorphism that has a homoclinic tangency associated to a sectionally dissipative periodic point
po- Then, by Theorem 2.1, there exists ¢, a C* diffeomorphism, arbitrarily close to @, exhibiting hyperbolic basic
sets A1, A» and periodic points p; € A and p> € A; satisfying items (a) to (d). Let I/ be a small neighborhood of ¢
yielding hyperbolic continuations of A and A, this means that there exists a C* function

@ U — CO(Ai M), —> D ()
such that A; (¥) = @; (¥)(A;) is a basic set for ¢ € U, where CcYA;, M) is the space of injective and continuous
functions h: A; — M. In fact, @; () conjugates @|4; to Y|, y), i =1,2.

We denote by rg the point of transversal intersection between W (p>) and W¥(p1). Let 6 > 0 be a small constant

such that for all ¥ € U, x € Bs(p1) N Ay and y € Bs(p2) N Az, W¥(y, ) meet transversally with W*¥(x, ¢) in a
neighborhood of rg, where B;s(p;) is the ball of radius § centered at p;, i =1, 2.

Let U be a sufficiently small neighborhood of g, which is the quadratic tangent point between W*(p1, ¢) and
W*(pa, ¢). We take C* coordinates (V, u) € [—1,1]"~! x [—1, 1]in U in such a way that

(1) ¢ has coordinates (0"~!, 0);
(2) the connected component of W¥(p;) N U containing ¢ is given by {u# = 0};

(3) for ¢ e U and y € Bs(p2) N A, the connected component of W*(y,¢¥) N U is given by {u = A2(y)(V < ¢¥):
vel[-111" ")

(4) for ¥ e and x € Bs(p1) N A; the connected component of W¥(x, ) N U corresponding, in the obvious way,
to the connected component of W*(p1, ¢) N U containing ¢ is given by {(V (x), u(x))(¢, ¥): t € [—1, 1]};

(5) (V(p1), u(pn)(0, 9) = (0""",0) and d,u(p1)(0, ¢) =0.

Furthermore, for each ¥ € U, the maps

y— AL y) and x— (V),u®) (-1, 11, ¢)
are continuous in the C* topology and the maps

Ars(y):[-1,11" ' xUd — [-1,1] and (V(x),u(x)) (-1, xU — [-1,1]"
are C*, for all y € Bs(p2) N Ay and for all x € Bs(p1) N Aj.
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4.2. Control of the orbits

As in the case of dimension two, we need, in higher dimension, some control of the orbits of strange attractors.

Suppose that there is ¢ € U with periodic points Q1 € Bs(p1) N Ay and Qs € Bs N Ay of periods ki and ky,
respectively, such that W*(Q1) and W¥(Q») are tangent (quadratically) inside U. Assume that gﬁkl is linearizable
near Q1 and ¢*? linearizable near Q5. Take a one-parameter family {o,} CU, with g9 = @, generically unfolding the
tangency. By Theorems 3.1 and 3.2, there are a sequence of host intervals §2,, — 0, as n — +o00, subsets E,, C £2,
with m(E,) > 0 and integers k,, — +00 as n — 400, such that for u € E,,, @,’i” has a nonhyperbolic strange attractor
A, = A,(w) inside U. Then, as in the two-dimensional case, we can take U, U and § sufficiently small such that for
some ng > 0 sufficiently large we have, for all n > ng, that

Pl(A)NU =0, 0<j<ky,

and ¢, (U)NU = and (p;I (U)NU = (@. This implies that any perturbation done inside U but outside a neighborhood
of the strange attractor A, does not affect the remaining part of the orbit.

4.3. Persistence of the tangency

In this subsection we take U/, U, and § as in the previous section. Recall that ¢ has hyperbolic basic sets A; and
Ay with periodic points p; € Aj and p; € A5 satisfying items (a) to (d) of Theorem 2.1. Let U, be a neighborhood of
A5 such that W*(A») admits an extension to a C! foliation F3 =F5 () defined in U. By C ! we mean here that the
tangent spaces to the leaves T, 5 (z) vary in C ! fashion with the point z. 5 depends continuously on v € U. Clearly
we can take ¢, the point of tangency between W*(p,) and W*(p;), to belong to U, and U C U,.

Now we need the following kind of implicit function result,

Lemma 4.1 (Implicit Function). Let X C R" be a compact set and I C R be a compact interval. Let F: X x [ — R
be an intrinsically c! map and (xg, to) € X x int(1) be such that

F(x0,10) =0 and AFy(to, 1) #0. (11)

Then, there exist V C X, a compact neighborhood of xo, and a unique intrinsically C' map f:V — I such that
fxo)=tyand F(x, f(x)) =0, forallx V.

We apply this lemma in the following way. We define & = &;() a C! vector field on U orthogonal to the leaves
of F5 (). By Proposition 2.3, W*(A;) N U contains an intrinsically C 1 diffeomorphic image Y of X x I, where X
is a small neighborhood of p; in Wi (p1) N Ay and [ is a compact interval. Let &, = &,(3) be some intrinsically
C! vector field on Y tangent to the leaves of W¥*(A(y¥)) N U and finally we define F(y, ¥) =&,(y, ¥) - &y, ¥),
which is an intrinsically C! map. The hypotheses (11) in Lemma 4.1 corresponds to have a quadratic tangency at
q between W"(p1, ¢) and W*(ps, ¢). Observe that F(q, ¢) = 0. Then, by the lemma we get that there exist V| a
compact neighborhood of py in Wi .(p1) N A1 (¥) and 0 Vi — W¥(A1(¥)) NU an intrinsically C! map such that
each 14 (x), x € V1, is a point of tangency between W*(x) and some leaf of 77 (¢).

On the other hand, we also introduce JT U — W (p2), the projection along the leaves of 75 () onto W} (p2),

loc
for all ¢ € U. We identify Wl‘éc( P2) w1th an interval in R by the following c! diffeomorphism X : 10C( ) — R
with Xy (p2) = 0, for all ¥ € U. If it is necessary, we perturb ¢, so that Amy,(p1, p1) - 1Ty, (A1 N Wi (p1)) is
not tangent to the stable leaf F5(g), see Section 7 in [10]. Then, &, o 71(‘; o 1y is an intrinsically C 1 map and
A(X, ongfJ oﬂl(p)(pl, p1)|EY is bijective. That means, by Proposition 2.4, that 7% (A1, p1) = t(X, on; o1, (V1), 0).
We put K“ Xy oyr(p omip(V), ie. t(K(’Z,O) =t (Aq, p1).
Now we deﬁne Kw = Xy (Wi (p2) N Az) and K:;/ = Xy o my o w1y (V1), for ¢ € U, which are near K; and
respectlvely, if ¥ is near ¢. By Section 2.3, we have that t*“ (A (¥), p1) = r(K$, 0), for all ¢ € U, where

K b nw(Vl) taking 71“’ as we defined it in Section 2.3 and V| a sufficiently small compact neighborhood of

Wi (p1,¥) N Ay. The value (K $ 0) varies continuously with the diffeomorphism ¥ € I/ in the C? topology and
the sets K7, s and Ky ¥ are dynamically defined Cantor sets, see [10].
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The applications h’fy : K('; — Kl/lj’ defined by h’f//(x) = yr}//” o®i(Y) o (n(pw)_l(x) and hf// : K; — Kfp defined by
hfp (x) =Xy o Pr(Y) o (X(p)_l (x) are the natural equivalence between K j;’ and K 1’;, and, K ; and K i, respectively.
By Theorem 1.1, we have

‘L’(K:;, 0) . r(K‘f,, 0) >1+41, forsomefy>0.
By continuity of thickness, the definition of local thickness and considering ¢/ small enough, there is 5o > 0 such that
for each 0 < § < 8o we can find Cantor sets K('p” C K};’ N Bs(0) and K; C K; N Bs(0) whose continuations K:;’ of
K, and K&/ of Ky, satisfy
t(Ky)-t(Ky)=1+10/2 Yy el.
Now define the following functions z?f,j 1K, — Rby

P (x) = Xy o) oy 0 BLY) o (1) ()

and 19;;/ : K, — Rby 19{;/()6) =Xy o Dr(Y) o Xw_l(x). Then,
(@4 (RY) w03 (Re)) 21+ 3, vy el

Let {@u}ue[—1,11 C U be a one-parameter family of diffeomorphisms, with $o = ¢, generically unfolding the tan-
gency between W*(p1, @) and W*(p2, ¢). Then, for 8y > 0 sufficiently small and considering that Cantor sets K » and

K (‘; as we defined above, there exists a parameter value pq close to u = 0 such that the pair (0’5 (IZ (’; ), 19% (I% ;)) is
1o 1o

a stable linked.
Let Z be a small neighborhood of {¢,,} in the space of one-parameter families of diffeomorphisms and / an interval
such that for each family {¢,,} € Z we have that (z?gu (K ;}’ ), ﬁ;u (K 5;)) is a linked pair, for all i € I. We define

W={p.€U: {p} € Zand € I}

which is an open set by the openness of the linking property. Observe that Z is arbitrarily close to ¢. WV is an open
set of persistence of tangencies.

Lemma 4.2 (Main Lemma). Let I’ C I be any subinterval. Then, there exists a residual subset R of Z such that for
each family ¥ = {y,,} € R, there is a parameter value [i € I' such that the corresponding map \; exhibits infinitely
many nonhyperbolic strange attractors.

Proof of Theorem A. Let ¢ be a C*° diffeomorphism with a homoclinic tangency associated to a sectionally dissipa-
tive saddle point. Then, by Theorem 2.1 there exists ¢ arbitrarily near ¢ and, as we see above, there exists an open set
W arbitrarily near ¢, which, by the Main Lemma, satisfies that every diffeomorphism i € WV can be approximated
by a diffeomorphism displaying infinitely many nonhyperbolic strange attractors. Taking Uy, the union of this open,
sets we obtain Theorem A. O

Corollary 4.1. There exists a residual subset R of Z such that for each family ¥ = {yr,,} € R the set of parameter
values v € 1, for which \, has infinitely many nonhyperbolic strange attractors, is dense in I.

Proof of Theorem B. First, we state the following remark relative to Theorem 2.1

Remark 4. Let @ = {¢, } be a C*° one-parameter family of diffeomorphisms such that ¢y has a homoclinic tangency
associated to sectionally dissipative saddle point. Among the families with this property, there exists a residual sub-
set which satisfies the following conditions: C? linearizability of the saddle point, quadratic tangency at ¢, generic
unfolding as p varies through 0, and conditions (1), (2) of Section 2. Furthermore, we can see that, in the consider-
ations done above, Theorem 2.1 holds for a generic subset of C*° families of diffeomorphisms (see [10], Section 7).
This means that, if {¢,} belongs in this generic subset, there exists a sequence of parameter values 1, — O such that
¢ = @, satisfies items (a)-(d) of Theorem 3.1 and the subfamilies {v,} with v, = ¢4, v near zero, generically
unfold the heteroclinic tangency of item (b) of Theorem 2.1.
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Then, the proof of Theorem B follows from Corollary 4.1 above and, the fact that, countable intersection of residual
subsets is a residual subset. O

4.4. Proof of the Main Lemma

The proof of the Main Lemma will be done by induction. In this subsection, B, denotes the ball of radius », B, (x)
denotes the ball of radius r and center x € M and m denote the Lebesgue measure in R. We also denote by 7y, the
restriction of nfb to 1y (V1). Let U, U as in the previous sectionand Z DRy DRy D--- DRy D - - - be a sequence
of sets satisfying

(a) for N > 1 and each family ¥ = {y,} € Ry, there exists a compact set Ey = Ex(¥) C I’, m(Ey) > 0, such that
for u € En, ¥, has N distinct strange attractors S = S1(¥), ..., Sy = Sy(¥); furthermore,
(a.1) eachattractor S;,i =1, ..., N,is generated as in Section 2, (Theorems 2.1 and 2.2) together with Section 3.2
and the orbit of S; intersects U only once, inside B, C U, where B, N Br]. =0,i#j;
(@2) Eny1(¥) CEN(Y); 3
(b) foreach ¥ = {y,} € Ry and u in a neighborhood of the convex hull of Ey (¥), there are bridges C7, Dy, of K 5)
and C}', D}, of I?;”, i=1,..., N, such that
(b.1) their images ﬁ@ﬂ(Cf) =C7(¥; ) and 0$;L(C}‘ N I%};) = C/'(¥; ) form a stable linked pair, see Fig. 3;
(b.2) images of their intersections in U satisfy
Cn(Ws 1) = (may,) ™ 0 X, H(CF (W5 W) NG (W3 1)) C Brs

(b.3) images of DY, 19]‘;/“ (Cy) =Cy(¥; ) and Dy, z?;}m (Dy N 12(’;) = D}, (¥; ) form a stable linked pair;
(b.4) images of their intersections in U, satisfy

Dy (¥; 1) = (may,) ™" 0 X, | (DY (¥ ) N DYy (W3 ) C Bey,
where B, C U and B, N B, =1.

We will show that R is open and dense in Z and R4 is open and dense in Ry, for all N > 1. Then, the proof
of Main Lemma follows by taking R = () N>1 R, which is a residual subset of Z and for each ¥ = {1/, } € R, there
exists a sequence I’ D E; D E; D --- D Ey D --- of compact sets as item (a) above. Therefore, for each i € ﬂN>l,
Y, exhibits infinitely many strange attractors.

The openness of Ry, is a consequence of the following fact: the linking property corresponds to an open condition
(i.e. item (b), corresponds to an open property) and applying Lemma 3.1 to item (a) (i.e., corresponds to an open
property). Now we will prove that R4 is dense in Ry, N > 1 (the proof also shows that R is dense in Z; for that,
for ¥ = {y,,} € Z we take Eo(¥) =1', D] the convex hull of K;,, Dy = K; and proceed as below with N = 0).

Let ¥ = {y,} € Rny. We show that after four perturbation of the family {v,}, to be described below, we get a
family {¢,} € Ry41 C arbitrarily near to ¥.

Part 1. Let uy be a total density point of Ey, i.e.
m(Ey Nuy — 8, uy +81)/(28) — 1, as§— 0.
Let dy be the distance from
() Dv(¥.1) tOR"\ Bey.
HEEN
Take 0 < y1 < dp/2 and gy be the center of B, . Define the following function

3
En (V) =s(;[||<v, ) = qn)| = (en = m]),
where & is a C* bump function satisfying
&(s)=0, ifs >2,
{S(S)=1, ifs <1,
0<é()<1, VseR
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Fig. 3. Induction.

for o small, we define the C*° diffeomorphism
Gy M — M,
x—x, ifxeM\U,
(V,u)y — (V,u+atn(V,w), ifxel.

First, note that G o ¥, = V. Then, for « = 0 and for all u. For each o small, denote G, o ¥ the family {Gy o ¥, }.
The Cantor sets DfV(GO, oW; un), D“N (Gy o ¥; upn) have 0 # a-velocity with respect to each other. By item (b)
of the induction hypothesis D}, (¥; un), Dy (¥; jun) form a linked pair and, we get that all the hypotheses of the
Proposition 2.2 (Linking Lemma) are satisfied. Then, there is o arbitrarily small such that the linked pair above has
two stable sublinks. We also have,

3 r
Gy oW — Wllcr < Const. aol[|En[lcr < Const. |ao] <y—> :
1

Observe that the perturbation above does not affect U \ B, i.e. does not affect items (b.1) and (b.2) of the induction
hypothesis. Take gl= {Goy o ¥ut = {w;} and let

(Ch1 (W1 iw). Chy (Wi ) and (D (%' ). Diy gy (¥ 1))
be the sublinks pairs of (Df\,(llll; UN), Dj‘\,(llfl; un)), where (for 8 =s, u)
Cf’-‘r] (hinn) = ﬁzwv (C1€/+1 n k;) and foﬂ(‘l’l; uN) = 95/51}3] (D]/?/+1 n I%:;)
for some bridges C§v+1’ C1L</+1 of I%;; and Dj'VH, D}‘VH of I%};. Since the sublinks are distinct, there exist ry4; > 0
and ey 41 > 0 such that
Cn1(Wh )= (Xy, o ”zw)_l(éfm (‘Ijl’ 1) N Chgy (lpl; 1)) C Bryyy C By,
and
Dy (W' ) = (Xy, O”ZW)_I(ﬁf\/H(Wl’ 1) n D7v+1(lp19 1)) C Bey,, C Bey

and By, N Bey, , =.
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Part 2. Take y, > 0 small and B, , -2y, C By, concentric to the ball B, . On the other hand, by THE gap lemma,
Cyni W@l un)n Chi (&' uy) # 9. For y» > 0 sufficiently small, we obtain that the tangency between W (x) and

WS (y), for some x € A; () N Bs(p1) and y € Ay(¥\) N Bs(pa), is inside B,y ,, 2y, Then, there are periodic

points Q1 € Al(wm\)) near x and Q> € AZWMN) N Bs(p>) near y such that W*(Q1, w(l)) and W*(Q3, w ) Cross
Bry.1—2y C Bryy, and

4@V, ¥ )~ A (V. y )] < 351

1(V@D.u@D)(t. ¥ ) = (V. um) (. v < 81

forevery V e [—1, 17" te[—1,1]and 0 < 28; < 57/2. Let n1 and n; be the periods of Q1 and Q», respectively, and
fix 8 > 0 small. Then, by Lemma 2.2 we obtain a one-parameter family of diffeomorphisms ¥?2 = {1#,(3)} arbitrarily

near ¥!, and some B > 0, such that (1#,22))"1 is C* linearizable near Q; and (wl(f))"2 is CF linearizable near Q», k > 4,
for almost every point i € [y — B, n + B1. Since W? is arbitrarily near to ¥!, and by Lemma 2.1 there exists a
compact set En(W?) withmEx(¥?) > 0and Ex(¥?) C [uy — B, un + B] such that Ey(¥?) satisfies item (a) of
induction hypothesis. Then, we consider /JL;\, € Ex(¥?) atotal density point such that (1//122,]3)"1 is C* linearizable near

Q1 and (wp(bz,))”2 is C¥ linearizable near 0>.
N
The family ¥2 can be chosen arbitrarily close to ¥! and 'y sufficiently near to s such that DYy, 41 (w2 ) and
Dy w2 w'y) still form a linked pair,
5N+1(‘1’2§ M?v) =(Xy2, omyy2 )~ (D}Y\/H(‘I/2 ) N DN+1(‘1’2§ M;v))
Wy Wy

CB

EN+1

and W“(Qq, w;z/l\)/) and W*(Q», wz(i,z) cross By, —2y,. Moreover,

1
|[A@)(V.9,))) = A (V. ¥()] < 501

[(V(@n.ut@n) (e w,?) = (V@n.u@o) . v < 81,
where 81 + 8 < %yz.

Part 3. Let gy be the center of the ball B and define the following map

N+1>
- 3
Ev(V.u) =s<;[||<v, W) v | = (e — m]).

Equally to the first perturbation, we define the diffeomorphism G, for o small, by
Ga M — M,
x—x, ifxeM\U,
(Vou) — (V,u+a-En(V,u), ifxel.
Then, there is a1, with |a1| < const. (28; + B) < 2)/2, such that W*(Q1, Gg, o ¥?) and W*(Q2, Go, o ¥?) have a
tangency inside By, ,. Take 3= Gal o W2 and observe that Ey (¥2) = Ey(¥3) and (w/(j))m is C* linearizable
N

near Q| and (1/fl(f/’))”2 is C* linearizable near Q. Also,
N

3 r
|@? — w3 e < Const. |a1|<—> )
V2
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Part 4. Define G, o W3 = Ga+a1 o W2, As the family {Ga1 ) 1//,(3)} generically unfolds the tangency for the parameter

value u = M\,, for each « small, there exists w7 () such that W (Q1, Gy o wa)(a)) and W*(Q»,, Gy o 1/;1(13;@)) are

tangent. the family {G o w,(f)} generically unfolds this tangency. Observe that 117 (0) = u/y and if « is sufficiently

small, (G o 1//,(3))”‘ is C* linearizable near Q| and (Gyo wﬁ3>)"2 is C* linearizable near Q», for « near to @ = 0 and
/L near to = ,u/N. As /L/N € Ex(W3) is a total density point, there is #p > 0 such that

m(Ex (W) N[y —t.uwy +t]) =1, YO <t <t. (12)

Let £2 be a host interval of strange attractors in the y-space for the family ¥3 such that |£2| < 19 and m(E (¥3)) >
% |§2]. Take £2 satisfying the control of the orbits as in Section 4.2. Then, by the discussion in Section 3.2 (summarized
in Remark 2), consider £2(«) to be the natural continuation of £2 = £2(0) arbitrarily near ur(x) (i.e. |§2 ()| < o)
corresponding to the family {Ga o 1//,33)}, such that the relative measure of E (o) C £2(«) of strange attractors satisfies
m(E(x)) > %|.Q(oz)|. We may suppose, without loss of generality, that £2(c) is on the right of pr(«), for o small,

and pr () decreases as « increases. So, we can choose a2 > 0 close to = 0 and £2 = £2(0) near p7(0) = iy, such
that

pur(az) < p<pur), VueR(a).
If we denote by u.(«) the center of the host interval £2(«) then there exists o3 with 0 < o3 < «» such that He (a3) =
ur(0) = ,u/N. From this and (12) it follows ( even using that ,u/N is a total density point of EnN(W3) = En(Gy o W3),
for all @ small) that

m(En(Gay 0 W) N E(a3)) > G —~ %) |2(a3)] > 0.

Finally, we take @ = {¢,} = Ga3 oWw3 and Eny1=EN(D)N E(x3). Also,

3 r
o -3 . <C t.( (—))
& =] ¢ < Const.(josl(

We conclude that

3\ 3\ 3\
||<17—lI/||Cr<C0nSt.<|a0|<—) +|a1|(—) +|a3|<—) )+}|~1/‘—l1/2||c,
Vi 1) Y2

oo can be taken arbitrarily small with respect to 1, o1 and o3 can be taken also arbitrarily small with respect to y»
and by the Lemma 3.1, 1wl — 2| is arbitrarily small for any r. Then, ||@ — ¥ || is arbitrarily small for any r.
This concludes the proof of the Main Lemma.
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