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Abstract

We consider a model system consisting of two reaction–diffusion equations, where one species diffuses in a volume while 
the other species diffuses on the surface which surrounds the volume. The two equations are coupled via a nonlinear reversible 
Robin-type boundary condition for the volume species and a matching reversible source term for the boundary species. As a 
consequence of the coupling, the total mass of the two species is conserved. The considered system is motivated for instance by 
models for asymmetric stem cell division.

Firstly we prove the existence of a unique weak solution via an iterative method of converging upper and lower solutions to 
overcome the difficulties of the nonlinear boundary terms. Secondly, our main result shows explicit exponential convergence to 
equilibrium via an entropy method after deriving a suitable entropy entropy-dissipation estimate for the considered nonlinear 
volume-surface reaction–diffusion system.
© 2017
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1. Introduction

In this paper, we consider a nonlinear volume-surface reaction–diffusion system, which couples a non-negative 
volume-concentration u(x, t) diffusing on a bounded domain � ⊂ R

N(N ≥ 1) with a non-negative surface-
concentration v(x, t) diffusing on the sufficiently smooth boundary � := ∂� of � (e.g. ∂� ∈ C2+ε for ε > 0).

The interface conditions connecting these two concentrations are a nonlinear Robin-type boundary condition for 
the volume-concentration u(x, t) and a matching reversible reaction source term in the equation for the surface-
concentration v(x, t):
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − δu�u = 0, x ∈ �, t > 0,

δu
∂u
∂ν

= −α(kuu
α − kvv

β), x ∈ �, t > 0,

vt − δv��v = β(kuu
α − kvv

β), x ∈ �, t > 0,

u(0, x) = u0(x) ≥ 0, x ∈ �,

v(0, x) = v0(x) ≥ 0, x ∈ �.

(1.1)

Here, we denote by � the Laplace operator on � with a positive diffusion coefficient δu > 0 and by �� the Laplace–
Beltrami operator on � (see e.g. [1]) with a non-negative diffusion coefficient δv ≥ 0, and ν(x) denotes the unit 
outward normal vector of � at the point x. Moreover, we shall consider nonnegative initial concentrations u0(x) ≥ 0
on � and v0(x) ≥ 0 on �.

The stoichiometric coefficients α, β ∈ [1, ∞) together with the positive, bounded reaction rates ku(t, x), kv(t, x) ∈
L∞+ ([0, ∞) × �) characterise the key feature of the model system (1.1), which is the nonlinear reversible reaction 
between the volume density u(t, x) and the surface density v(t, x) located at the boundary �.

We emphasise that the reversible reaction between volume- and boundary-concentrations in system (1.1) preserves 
the total initial mass M , which shall be assumed positive in the following:

M = β

∫
�

u(t, x) dx + α

∫
�

v(t, x) dS = β

∫
�

u0(x) dx + α

∫
�

v0(x) dS > 0, ∀t ≥ 0. (1.2)

The study of system (1.1) is motivated by models of asymmetric stem cell division. In stem cells undergoing 
asymmetric cell division, particular proteins (so-called cell-fate determinants) are localised in only one of the two 
daughter cells during mitosis. These cell-fate determinants trigger in the following the differentiation of one daughter 
cell into specific tissue while the other daughter cell remains a stem cell.

In Drosophila, SOP stem cells provide a well-studied biological example model of asymmetric stem cell division, 
see e.g. [2–4] and the references therein. The mechanism of asymmetric cell division in SOP stem cells operates 
around a key protein called Lgl (Lethal giant larvae), which exists in two conformational states: a non-phosphorylated 
form which regulates the localisation of the cell-fate-determinants in the membrane of one daughter cell, and a phos-
phorylated form which is inactive.

First mathematical models describing the evolution and localisation of phosphorylated and non-phosphorylated 
Lgl in SOP stem cells were presented in [5,6] under the assumption of linear phosphorylation and de-phosphorylation 
kinetics. However, it is known that Lgl offers three phosphorylation sites [2]. Thus, if more than one site needs to be 
phosphorylated in order to effectively deactivate Lgl, a realistic model should rather consider nonlinear kinetics.

The system (1.1) formulates a nonlinear mathematical core model, which strongly simplifies the biological model 
for SOP stem cells by focusing only on the concentration u(x, t) of the phosphorylated Lgl in the cytoplasm (i.e. 
in the cell volume) and the concentration v(x, t) of non-phosphorylated Lgl at the cortex/membrane of the cell. 
The exchange of phosphorylated Lgl u(x, t) and non-phosphorylated Lgl v(x, t) is described by the above nonlinear 
reaction located at the boundary. The considered evolution process conserves the total mass of Lgl as quantified in the 
conservation law (1.2).

Volume-surface reaction–diffusion systems describing models related to (1.1) have recently gained rapidly in-
creasing attention as they occur naturally in many areas of applied mathematics as cell-biology, ecology and also 
fluid-dynamics, see e.g. [7–17] and references therein.

The first aim of this paper is to prove the global existence of a unique weak solution to the model system (1.1)
under certain technical assumptions on the reaction rates ku(t, x) and kv(t, x) (see Theorem 2.2 below). The main 
difficulties arise from the arbitrary power-law nonlinearities located at the boundary � and shall be overcomed by 
applying an iteration method of converging upper and lower solutions, in the spirit of e.g. [18]. This method is based 
on proving a comparison principle for upper and lower solutions (see e.g. [19]), which so far – up to our knowledge 
– has not been established for volume-surface reaction–diffusion systems. Once the comparison principle is shown, 
the existence of weak solutions to (1.1) follows from an iteration argument, which uses the fact that the involved 
nonlinearities are quasi-monotone non-decreasing. The existence of solutions to related linear models was proven in 
[8,9] by fix-point methods. Our approach has the advantage of providing intrinsic a-priori bounds, which allows us to 
obtain global solutions to the superlinear problem (1.1).
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In the second part of the manuscript, our main result proves an explicit exponential convergence to equilibrium
for the system (1.1) via the so-called entropy method. The basic idea of the entropy method consists of studying the 
large-time asymptotics of a dissipative PDE model by looking for a nonnegative Lyapunov functional E(f ) and its 
nonnegative dissipation

D(f ) = − d

dt
E(f (t))

along the flow of the PDE model. We shall show that the entropy structure of system (1.1) is well-behaved in the 
following sense: firstly, all states with D(f ) = 0, which also satisfy all the involved conservation laws, identify a 
unique entropy-minimising equilibrium f∞, i.e.

D(f ) = 0 and conservation laws ⇐⇒ f = f∞,

and secondly, there exists an entropy entropy-dissipation estimate of the form

D(f ) ≥ �(E(f ) − E(f∞)), �(x) ≥ 0, �(x) = 0 ⇐⇒ x = 0,

for some nonnegative function �. Generally, such an inequality can only hold when all the conserved quantities are 
taken into account. If �′(0) �= 0, one usually gets exponential convergence toward f∞ in relative entropy E(f ) −
E(f∞) with a rate, which can be explicitly estimated.

The entropy method is a fully nonlinear alternative to arguments based on linearisation around the equilibrium and 
has the advantage of being quite robust with respect to variations and generalisations of the model system. This is due 
to the fact that the entropy method relies mainly on functional inequalities which have no direct link with the original 
PDE model. Generalised models typically feature related entropy and entropy-dissipation functionals and previously 
established entropy entropy-dissipation estimates may very usefully be re-applied.

The entropy method has previously been used for scalar equations: nonlinear diffusion equations (such as fast 
diffusions [20,21], Landau equation [22]), integral equations (such as the spatially homogeneous Boltzmann equation 
[23–25]), kinetic equations (see e.g. [26–28]), or coagulation–fragmentation equations (see e.g. [29,30]). For certain 
systems of drift–diffusion–reaction equations in semiconductor physics, an entropy entropy-dissipation estimate has 
been shown indirectly via a compactness-based contradiction argument in [31–33].

A first proof of entropy entropy-dissipation estimates for systems with explicit rates and constants was established 
in [34–36] in the case of reversible reaction–diffusion equations. Recently, a new idea of proving entropy entropy-
dissipation estimates in a general setting based on a convexification argument was presented in [37].

In this paper, we shall prove a new entropy entropy-dissipation estimate for the model system (1.1), which entails 
exponential convergence to equilibrium with explicitly computable constants and rates (see Theorem 3.2 below).

We remark two novelties: i) this is (up to our knowledge) the first entropy entropy-dissipation estimate for a 
mixed volume-surface reaction–diffusion system, and ii) secondly, we introduce a new idea in the proof of entropy 
entropy-dissipation estimates for a system with general, superlinear, power-like nonlinearities, which we hope to turn 
out very useful when proving entropy entropy-dissipation estimates in more general settings. This idea is indeed 
extended to more general systems which contain the system of this paper as a sub-case. Interested readers are referred 
to [38,39] for more details.

Moreover, we remark that, although the existence of weak solutions is obtained for general reaction rates ku and kv , 
which can depend on time and space, we restrict for the sake of clarity the proof of explicit exponential convergence 
to equilibrium to the case of constant rates ku and kv . The case of non-constant (in space and/or e.g. periodic in time) 
reactions rates leads to non-constant equilibria and requires a more involved formalism which can be treated in future 
works.

We emphasise that we distinguish two cases in the equilibration analysis of (1.1): The non-degenerate diffusion 
case δv > 0 and the degenerate diffusion case δv = 0. If δv > 0, then the surface diffusion term −δv��v enables 
us to obtain an entropy entropy-dissipation estimate by only using the natural a-priori estimates derived from mass 
conservation, entropy and entropy-dissipation. In the case of degenerate boundary diffusion δv = 0, we derive an 
entropy entropy-dissipation estimate by using L∞ a-priori bounds of the solution. While such L∞-bounds can be 
shown to hold for the model (1.1), they are often out of reach for more general systems with more concentrations 
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in higher space dimensions, see e.g. [40]. However, we conjecture that in some (yet not all) cases of stoichiometric 
coefficients α, β , the use of L∞-bounds should not be essential for the proof and could be avoided by more careful 
estimates. An example of such an estimate is presented in Proposition 3.7 when α = β = 1.

For future work, we hope that the robustness of the entropy method will enable us to study the large time behaviour 
of more complicated and realistic models of asymmetric cell division by reusing the entropy entropy-dissipation es-
timate derived in Theorem 3.3 for the non-degenerate case δv > 0 and Lemma 3.6 for the degenerate case δv = 0. 
Thus, the considered mathematical core problem (1.1) is also motivated by the goal of deriving core entropy entropy-
dissipation estimates, which encompasses the nonlinear boundary dynamics featured by the system (1.1).

The rest of the paper is organised as follows. In Section 2, we show the global existence of a unique weak solution 
for system (1.1) under suitable assumptions on the reaction rates ku(t, x) and kv(t, x). Parts of the proof of the 
existence theorem shall be detailed in the Appendix 4. Section 3 is devoted to the entropy method, establishing 
entropy entropy-dissipation estimates and proving explicit exponential convergence to equilibrium.

2. Existence of a global solution

In this section, we will prove global existence of a unique weak solution to system (1.1). Though the proof is long 
and technical, the lines follow from a standard approach of upper and lower solutions. That is why we will state the 
main existence result in this section and leave the full proof to the Appendix 4.

We define first our notion of weak solutions:

Definition 2.1. A pair of functions (u, v) is called a weak solution to system (1.1) on (0, T ) if

u ∈ C([0, T ];L2(�)), and u ∈ L∞(0, T ;L∞(�)) ∩ L2(0, T ;H 1(�)), (2.1)

v ∈ C([0, T ];L2(�)), and v ∈ L∞(0, T ;L∞(�)) ∩ L2(0, T ;H 1(�)), (2.2)

and the following weak formulation holds for all test functions ϕ ∈ C1([0, T ]; L2(�)) ∩ L2(0, T ; H 1(�)) and ψ ∈
C1([0, T ]; L2(�)) ∩ L2(0, T ; H 1(�)) with ϕ ≥ 0, ψ ≥ 0 and ϕ(T ) = ψ(T ) = 0:⎧⎨

⎩
∫ T

0

∫
�
[−uϕt + δu∇u∇ϕ]dxdt = ∫

�
u0ϕ(0)dx − α

∫ T

0

∫
�
(kuu

α − kvv
β)ϕdSdt,∫ T

0

∫
�
[−vψt + δv∇�v∇�ψ]dSdt = ∫

�
v0ψ(0)dS + β

∫ T

0

∫
�
(kuu

α − kvv
β)ψdSdt,

(2.3)

in which ∇� is the so called tangential gradient on �, i.e. ∇�v = ∇v − (ν · ∇v)ν see e.g. [1, (16.4) on page 389].

Remark 2.1. With the regularity of u and v as stated in (2.1) and (2.2), all left hand terms in (2.3) are clearly well 
defined. For the nonlinear reaction terms 

∫
�

kuu
αϕdS on the right hand side of (2.3), we proceed as follows: First, if 

u ∈ H 1(�) ∩ L∞(�), we have∫
�

|u|2αdx = ‖uα‖2
L2(�)

≤ C(‖∇(uα)‖2
L2(�)

+ ‖uα‖2
L2(�)

) (by using the Trace Theorem)

≤ C(α2‖u‖2α−2
L∞(�)‖∇u‖2

L2(�)
+ |�|‖u‖2α

L∞(�)).

Hence, uα|� ∈ L2(�). Therefore the weak formulation in Definition 2.1 is well defined.

Definition 2.2. We shall use the following shorthand notation (u1, v1) ≥ (u2, v2) for two pairs of functions (u1, v1)

and (u2, v2) where ui(t, x) : I × � →R and vi(t, x) : I × � → R, i = 1, 2, I ⊂R, which means that

u1(t, x) ≥ u2(t, x) a.e. in I × �, v1(t, x) ≥ v2(t, x) a.e. in I × �.

For the sake of brevity we define the notation

F(t, x,u, v) := −α
(
ku(t, x)uα − kv(t, x)vβ

)
, (t, x) ∈ [0,∞) × �, (2.4)
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and

G(t, x,u, v) := β
(
ku(t, x)uα − kv(t, x)vβ

)
, (t, x) ∈ [0,∞) × �. (2.5)

The upper and lower weak solutions are defined as follows:

Definition 2.3. A pair (u, v) is called an upper solution to the problem (1.1) if (u, v) satisfy the regularity (2.1) and 
(2.2) and that for all test functions ϕ ∈ C1(0, T ; L2(�)) ∩L2(0, T ; H 1(�)), ψ ∈ C1(0, T ; L2(�)) ∩L2(0, T ; H 1(�))

with ϕ, ψ ≥ 0 and ϕ(T ) = ψ(T ) = 0, we have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ T

0

∫
�
[−uϕt + δu∇u∇ϕ]dxdt − ∫ T

0

∫
�

F(t, x, u, v)ϕdSdt ≥ ∫
�

u(0)ϕ(0)dx,∫ T

0

∫
�
[−vψt + δv∇�v∇�ψ]dSdt − ∫ T

0

∫
�

G(t, x, u, v)ψdSdt ≥ ∫
�

v(0)ψ(0)dS,

u(0, x) ≥ u0(x) a.e. x ∈ �,

v(0, x) ≥ v0(x) a.e. x ∈ �.

(2.6)

Lower solutions are defined in a similar way by replacing ≥ with ≤.

In order to apply the method of upper and lower solutions, we need a comparison principle for system (1.1) for 
pairs of upper and lower solutions. The following lemma can be proved using similar arguments as [19]:

Lemma 2.1 (Comparison principle for pairs of upper and lower solutions).
Let 0 < T < ∞. Assume u, u satisfy (2.1) and v, v satisfy (2.2). Moreover, assume that for all testfunctions ϕ ∈
C1(0, T ; L2(�)) ∩ L2(0, T ; H 1(�)), ψ ∈ C1(0, T ; L2(�)) ∩ L2(0, T ; H 1(�)) with ϕ, ψ ≥ 0 and ϕ(T ) = ψ(T ) = 0, 
we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0

∫
�
[−(u − u)ϕt + δu∇(u − u)∇ϕ]dxdt

− ∫ T

0

∫
�
(F (t, x,u, v) − F(t, x, u, v))ϕ dSdt ≤ ∫

�
(u(0) − u(0))ϕ(0)dx,∫ T

0

∫
�
[−(v − v)ψt + δv∇�(v − v)∇�ψ]dSdt

− ∫ T

0

∫
�
(G(t, x,u, v) − G(t, x, u, v))ψ dSdt ≤ ∫

�
(v(0) − v(0))ψ(0)dS,

u(0, x) ≤ u(0, x), x ∈ �,

v(0, x) ≤ v(0, x), x ∈ �.

(2.7)

Then, (u, v) ≤ (u, v) in the sense of Definition 2.2.

Using the comparison for pairs of upper and lower solutions, we now can apply the method of converging sequences 
of solutions (see e.g. [18]) to construct the solution to (1.1) thanks to polynomial nonlinearities.

Theorem 2.2. Let � ⊂ R
n a bounded domain with smooth boundary � = ∂� (e.g. ∂� ∈ C2+ε with ε > 0). Let the 

diffusion coefficients δu > and δv ≥ 0, the stoichiometric coefficients α, β ∈ [1, +∞). Assume that the nonnegative 
reaction rate coefficients ku, kv ∈ L∞([0, T ] × �) satisfy the bound

0 < kmin ≤ ku(t, x), kv(t, x) ≤ kmax for all (t, x) ∈ [0, T ] × �. (2.8)

Moreover, we assume that the function

π(t, x) :=
(

ku(t, x)

kv(t, x)

)1/β

for all t > 0, x ∈ �, (2.9)

is either constant, i.e.

π(t, x) ≡ π > 0 for all t > 0, x ∈ �, (2.10)

or satisfies the inequality

∂tπ − δv��π ≥ 0 for all t > 0, x ∈ �. (2.11)
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Then, for all non-negative initial data (u0, v0) ∈ L∞(�) × L∞(�), there exists a unique non-negative global weak 
solution (u, v) for the system (1.1).

Remark 2.2. The technical assumption (2.11) allows to generalise our proof for the existence of an upper solution 
to cases in which (2.10) does not hold. The question of whether this assumption is removable, is open for future 
investigation. Here, we give two examples where ku and kv satisfy the Assumption (2.11). Note that Assumption 
(2.10) obviously implies Assumption (2.11).

• If π(t, x) ≡ π(x), especially when ku and kv are time independent, then (2.11) holds whenever π is a solution to 
the homogeneous Laplace–Beltrami equation

��π(x) = 0, for x ∈ �.

Since � is a smooth Riemannian manifold without boundary, the existence of such a π is always guaranteed (see 
e.g. [41, Chapter 5]). Some cases when π(x) satisfies the inequality

−��π(x) ≥ 0, for x ∈ �,

could be of biological interest. For instance, by assuming kv constant, the above inequality is always satisfied 
provided −��ku(x) ≥ 0, i.e that ku is proportional to a stationary state profile of a surface-diffusion process with 
non-negative source term. We emphasise, however, that for the Lgl model, we are unaware of such a biological 
mechanism. Note also that the roles of kv and ku can be exchanged by switching the role of A and B in the proof 
of Proposition 4.3.

• If π(t, x) = T (t)X(x) where T ∈ C1([0, +∞)) is a nondecreasing function and X(x) is a nonnegative solution 
to ��X = 0 on �, then (2.11) is fulfilled. Indeed,

∂tπ(t, x) − δv��π(t, x) = X(x)T ′(t) − δvT (t)��X = X(x)T ′(t) ≥ 0

because T is nondecreasing and X is nonnegative.

Proof. Since the proof of Theorem 2.2 is rather lengthy, yet follows in essence the lines of e.g. [18], we postpone it 
to Appendix 4 for the sake of readability. �
3. Convergence to equilibrium

In this section, we assume that the reaction rates ku and kv , and thus the equilibrium state (u∞, v∞) (see (3.3)
below), are constant. Moreover, for the sake of readability of the arguments, we shall assume normalised rates ku =
kv = 1 (w.l.o.g. thanks to a rescaling in the cases α �= β). In any case, the following proofs can be readily generalised 
to arbitrary constants ku > 0, kv > 0.

We shall apply the entropy method to prove that the unique solution to (1.1) converges exponentially fast to the 
equilibrium (u∞, v∞) for any initial data (u0, v0) ∈ L∞(�) ×L∞(�). While the entropy method is certainly expected 
to apply to general reaction rates, the case of non-constant equilibria requires a more complicated formalism (see e.g. 
[42]), which we omit here for the sake of clarity of the argument and leave it for a future work.

In the following, we will first consider the non-degenerate case δv > 0 and later the degenerate case δv = 0. We 
remark that in the first case with non-degenerate surface diffusion, our method relies only on natural a-priori bounds 
which are entailed by well-defined entropy and entropy-dissipation functionals along the flow of the solution. How-
ever, in the case of degenerate diffusion, we require additional L∞-bounds of the solution. Since L∞-bounds of 
solutions for general systems are often unknown, the degenerate surface diffusion case poses more difficulties to be 
generalised than the non-degenerate case, which seems readily generalisable.

The system (1.1) satisfies the mass conservation law (1.2), that is,

M = β

∫
�

u(t, x)dx + α

∫
�

v(t, x)dS = β

∫
�

u0(x)dx + α

∫
�

v0(x)dS > 0,

where we assume that the initial mass is positive (M > 0).
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The equilibrium of non-negative solutions of the system (1.1) are the unique positive constants (u∞, v∞), which 
balance the reaction rates, i.e.

uα∞ = v
β∞, (3.1)

and satisfy the mass conservation law

β|�|u∞ + α|�|v∞ = M. (3.2)

We remark that the uniqueness of the equilibrium follows from the monotonicity of the right hand sides of the equi-
librium conditions

uα∞ =
( 1

α|�| (M − β|�|u∞)
)β

, v
β∞ =

( 1

β|�| (M − α|�|v∞)
)α

(3.3)

on the intervals of equilibrium values, which are admissible for non-negative solutions of systems (1.1), i.e. 0 < u∞ <
M

β|�| and 0 < v∞ < M
α|�| .

As mentioned in the introduction, we prove the convergence to equilibrium by means of the entropy method. The 
method is based on the logarithmic entropy (free energy) functional

E(u,v) =
∫
�

u(logu − 1)dx +
∫
�

v(logv − 1)dS (3.4)

and its non-negative entropy-dissipation

D(u,v) = − d

dt
E(u, v)

= δu

∫
�

|∇u|2
u

dx + δv

∫
�

|∇�v|2
v

dS +
∫
�

(vβ − uα) log
vβ

uα
dS.

(3.5)

Our goal is to show that there exists a constant C0 > 0 such that (see Theorem 3.3 below)

D(u,v) ≥ C0 (E(u, v) − E(u∞, v∞))

for all non-negative (u, v), which satisfy the mass conservation law (1.2). Compared to previous related results on the 
entropy method for reaction–diffusion systems with quadratic nonlinearities (see [34–36]), there are two main diffi-
culties to overcome: the first is the treatment of the surface concentration v and the associated boundary integrals and 
the second is the general nonlinear term (vβ −uα) log vβ

uα for any α, β ≥ 1. It is in particular the general nonlinearities, 
which necessitates a new proof compared to the quadratic nonlinearities considered in [34–36]. We expect this new 
proof to constitute a more general approach. We refer to the preprint [39] for such a general approach.

In the sequel, we will frequently use the following notations and inequalities:

Spatial averages and square-root abbreviation

u = 1

|�|
∫
�

udx, U = √
u, U∞ = √

u∞, U = 1

|�|
∫
�

U dx,

v = 1

|�|
∫
�

v dS, V = √
v, V∞ = √

v∞, V = 1

|�|
∫
�

V dS.

Norms ‖ · ‖� and ‖ · ‖� are the norms in L2(�) and L2(�) respectively. For a Banach space X, we denote by ‖ · ‖X

its norm.

Constants A generic constant will be denoted by C(M, �, . . . ) and may depend besides the arguments M, �, . . .
also on α and β without explicitly stating the dependence on α and β . Moreover, the constants Ci(. . . ) and 
Ki(. . . ) for i = 0, 1, 2, . . . are specific constants, for which the same rules of dependency hold.
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Inequalities
• Poincare’s inequality in �

P(�)

∫
�

|∇u|2dx ≥
∫
�

|u − u|2dx,

• Poincare’s inequality on �

P(�)

∫
�

|∇�v|2dS ≥
∫
�

|v − v|2dS,

• Trace Theorem

T (�)

∫
�

|∇u|2dx ≥
∫
�

|u − u|2dS. (3.6)

The mass conservation (1.2) allows to rewrite the relative entropy towards the equilibrium as

E(u,v) − E(u∞, v∞) =
∫
�

u log
u

u
dx +

∫
�

v log
v

v
dS

+
∫
�

(
u log

u

u∞
− (u − u∞)

)
dx +

∫
�

(
v log

v

v∞
− (v − v∞)

)
dS

= I1 + I2, (3.7)

where we define

I1 :=
∫
�

u log
u

u
dx +

∫
�

v log
v

v
dS,

and

I2 :=
∫
�

(
u log

u

u∞
− (u − u∞)

)
dx +

∫
�

(
v log

v

v∞
− (v − v∞)

)
dS.

The following lemma proves, similarly to [34], a Csiszár–Kullback–Pinsker type inequality, which quantifies that 
the relative entropy to equilibrium controls an L1-distance:

Lemma 3.1. For all measurable functions u : � →R+ and v : � →R+ satisfying

M = β

∫
�

udx + α

∫
�

v dS > 0,

we have

E(u,v) − E(u∞, v∞) ≥ CCKP

(
‖u − u∞‖2

L1(�)
+ ‖v − v∞‖2

L1(�)

)
, (3.8)

where CCKP > 0 is the following (non-optimal) constant depending only on the mass M > 0 and α, β ≥ 1:

CCKP = min {α,β}
8M

.

Proof. By (3.7), we have that

E(u,v) − E(u∞, v∞) = I1 + I2.

Considering the term I1 at first, we use the classic Csiszár–Kullback–Pinsker inequality (see e.g. [43]) and the 
mass constraints u ≤ M and v ≤ M to estimate
β|�| α|�|
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∫
�

u log
u

u
dx ≥ 1

2|�|u‖u − u‖2
L1(�)

≥ β

2M
‖u − u‖2

L1(�)
,

and ∫
�

v log
v

v
dS ≥ 1

2|�|v ‖v − v‖2
L1(�)

≥ α

2M
‖v − v‖2

L1(�)
,

and, thus

I1 ≥ β

2M
‖u − u‖2

L1(�)
+ α

2M
‖v − v‖2

L1(�)
. (3.9)

Next, we rewrite I2 in (3.7) by introducing q(x) = x logx − x, i.e.

I2 = |�|(q(u) − q(u∞)) + |�|(q(v) − q(v∞)),

where we have used that the mass conservation law (1.2) implies∫
�

(u − u∞) logu∞ dx +
∫
�

(v − v∞) logv∞ dS = 0

since log u∞
β

= log uα∞
αβ

= log v
β∞

αβ
= log v∞

α
. Then, using again the conservation law (1.2), we denote

Q(u) = |�|q(u) + |�|q
(

M − β|�|u
α|�|

)
︸ ︷︷ ︸

=q(v)

and R(v) = |�|q(v) + |�|q
(

M − α|�|v
β|�|

)
︸ ︷︷ ︸

=q(u)

.

Thus, we have the following two equivalent ways of writing I2:

I2 = Q(u) − Q(u∞) = R(v) − R(v∞). (3.10)

Moreover, direct computations give

Q′(u∞) = |�|q ′(u∞) − β

α
|�|q ′

(
M − β|�|u∞

α|�|
)

= |�| logu∞ − β

α
|�| logv∞ = 0

since uα∞ = v
β∞. Moreover, for any uθ satisfying the mass constraints 0 ≤ uθ ≤ M

β|�|

Q′′(uθ ) = |�|q ′′(uθ ) + β2

α2

|�|2
|�| q ′′

(
M − β|�|uθ

α|�|
)

= |�| 1

uθ

+ β2

α2

|�|2
|�|

α|�|
M − β|�|uθ

≥ β|�|2
M

+ β2

α

|�|2
M

= β

α

|�|2
M

(α + β).

In a similar way, for any 0 ≤ vθ ≤ M
α|�| , we estimate

R′(v∞) = 0 and R′′(vθ ) ≥ α

β

|�|2
M

(α + β).

Thus, altogether, Taylor expansion in (3.10) with uθ = θu + (1 − θ)u∞ and vθ = θv + (1 − θ)v∞ for some θ ∈ (0, 1)

yields

I2 = 1

2
(Q(u) − Q(u∞)) + 1

2
(R(v) − R(v∞))

≥ 1

4

β

α

|�|2
M

(α + β)(u − u∞)2 + 1

4

α

β

|�|2
M

(α + β)(v − v∞)2

= 1

4

α + β

M

(
β

α
‖u − u∞‖2

L1(�)
+ α

β
‖v − v∞‖2

L1(�)

)
. (3.11)
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Combining (3.9) and (3.11) with ‖u − u‖2
L1(�)

+ ‖u − u∞‖2
L1(�)

≥ 1
2‖u − u∞‖2

L1(�)
by Jensen’s inequality, we get

I1 + I2 ≥ β

8M
‖u − u∞‖2

L1(�)
+ α

8M
‖v − v∞‖2

L1(�)
,

thus we obtain (3.8) with CCKP = min{α,β}
8M

. �
We now state our main result of this section, which is the exponential convergence to equilibrium with explicit 

rates and constants via the entropy method. The proof uses an entropy entropy-dissipation estimate, which is proven 
in Theorem 3.3 below.

Theorem 3.2 (Explicit exponential convergence to equilibrium).
Assume that � ⊂ R

n is a bounded domain with smooth boundary � = ∂� (e.g. ∂� ∈ C2+ε for any ε > 0). Then, 
the unique weak solution (u, v) of system (1.1) subject to any nonnegative initial data (u0, v0) ∈ L∞(�) × L∞(�)

satisfies the following exponential convergence to equilibrium

‖u(t) − u∞‖2
L1(�)

+ ‖v(t) − v∞‖2
L1(�)

≤ C−1
CKP e−C0t (E(u0, v0) − E(u∞, v∞)) , (3.12)

where C0 and C−1
CKP are positive constants as defined in Theorem 3.3 below and Lemma 3.1 above and depend only 

on reaction rates α, β ≥ 1, the diffusion rates δu > 0, δv ≥ 0, the domain �, the boundary � and the positive initial 
mass M > 0.

Proof. We have

d

dt
(E(u, v) − E(u∞, v∞)) = d

dt
E(u, v) = −D(u,v). (3.13)

On the other hand, by the Theorem 3.3, there exists C0 > 0 such that

D(u,v) ≥ C0 (E(u, v) − E(u∞, v∞)) . (3.14)

Then, from (3.13), (3.14) and the classical Gronwall inequality, we obtain

E(u(t), v(t)) − E(u∞, v∞) ≤ e−C0t (E(u0, v0) − E(u∞, v∞)) . (3.15)

Finally, the estimate (3.12) follows directly from (3.15) and Lemma 3.1. �
Remark 3.1. The techniques of this paper can be readily used to get the explicit exponential convergence to equilib-
rium for systems of the form:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ut − du�u = −α(uα − vβ), t > 0, x ∈ �,

vt − dv�v = β(uα − vβ), t > 0, x ∈ �,

∂u/∂ν = ∂v/∂ν = 0, t > 0, x ∈ ∂�,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ �,

subject to non-negative initial data u0, v0 ∈ L∞(�) and for all stoichiometric coefficients α, β ≥ 1 and positive dif-
fusion coefficients du, dv . By using Poincare’s inequality P(�)‖∇v‖2

� ≥ ‖v − v‖2
� instead of the Trace inequality 

T (�)‖∇v‖2
� ≥ ‖v − v‖2

� , all the following arguments can be directly reproduced in the same way. Thus, the result of 
this paper, in a certain sense, completely solves the problem of trend to equilibrium for concentrations of the reversible 
chemical reaction of two species U and V :

αU β V .

We shall now prove the key entropy entropy-dissipation estimate.
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Theorem 3.3 (Entropy entropy-dissipation estimate).
Assume that δu > 0 and δv ≥ 0. Consider measurable, non-negative functions u : � →R+ with trace u|� ∈ L2(�)

and v : � → R+, which satisfy the mass conservation law

β

∫
�

udx + α

∫
�

v dS = M. (3.16)

In the case δv = 0, we assume additionally that (u, v) ≤ (A, B) for two positive constants A and B .
Then, there exists a constant C0 > 0 such that

D(u,v) ≥ C0 (E(u, v) − E(u∞, v∞)) ,

where C0 depends only on M , |�|, P(�), T (�), |�|, P(�) as well as δu, δv , α and β , and also on A and B in the 
case δv = 0.

Proof of Theorem 3.3.
We divide the proof into two cases: δv > 0 in Section 3.1 and δv = 0 in Section 3.2.

In the first case, we don’t require any additional a-priori estimates on the solution besides well defined entropy and 
entropy-dissipation functionals in order to obtain the entropy–entropy dissipation estimate.

In the second case, since the diffusion term in v is missing, we shall require a-priori L∞-bounds on the solution. 
However, we strongly believe that one might be able to avoid the use of L∞-bounds in some cases of the exponents α
and β .

3.1. The non-degenerate case: δv > 0

We will show in the sequel that both I1 and I2 as defined in (3.7) are bounded by the entropy dissipation. First, by 
using the Logarithmic-Sobolev inequality

CL(�)

∫
�

|∇u|2
u

dx ≥
∫
�

u log
u

u
dx, and CL(�)

∫
�

|∇�v|2
v

dS ≥
∫
�

v log
v

v
dS,

we immediately get the following

Lemma 3.4. For all t ≥ 0, we have

I1 ≤ C2
D(u,v)

2
, (3.17)

where

C2 = 2 max

{
CL(�)

δu

,
CL(�)

δv

}
.

Remark 3.2. The factor 2 in constant C2 is chosen to still have 1
2D(u, v) left to estimate term I2, which is done in the 

following Lemma 3.5.

Lemma 3.5. There exists C3 > 0 such that, for all t ≥ 0,

I2 ≤ C3
D(u,v)

2
. (3.18)

Proof. In a preliminary step, we observe that the function � :R2 → R defined by

�(x,y) = x log x
y

− (x − y)

(
√

x − √
y)2

= �
(x

y
,1
)

(3.19)
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can be uniquely continuously extended onto (0, ∞)2 by defining �(y, y) := limx→y �(x
y
, 1) = 2 for all y ∈

(0, +∞), see [34]. Moreover, for all y ∈ (0, ∞), the function �(·, y) is strictly increasing on (0, ∞) and satisfies 
lim
x→0

�(x,y) = 1.

In a first step, we use now the mass conservation β|�|u + α|�|v = M to obtain the following bounds for I2:∫
�

(
u log

u

u∞
− (u − u∞)

)
dx ≤ |�|�

(
M

β|�| , u∞
)(√

u − √
u∞
)2

(3.20)

and ∫
�

(
v log

v

v∞
− (v − v∞)

)
dS ≤ |�|�

(
M

α|�| , v∞
)(√

v − √
v∞
)2

. (3.21)

Therefore, we have from (3.20) and (3.21) that

I2 ≤ K0

[(√
v − √

v∞
)2 +

(√
u − √

u∞
)2
]

, (3.22)

where

K0 := max

{
|�|�

(
M

β|�| , u∞
)

, |�|�
(

M

α|�| , v∞
)}

.

Next, considering the entropy dissipation D(u, v), we observe first that

δu

∫
�

|∇u|2
u

dx = 4δu

∫
�

|∇√
u|2dx = 4δu‖∇U‖2

�, (3.23)

and

δv

∫
�

|∇�v|2
v

dS = 4δv‖∇�v‖2
� ≥ 4δv P −1(�)‖V − V ‖2

�. (3.24)

Moreover, the elementary inequality (a − b) log a
b

≥ 4(
√

a − √
b)2 yields∫

�

(vβ − uα) log
vβ

uα
dS ≥ 4‖V β − Uα‖2

�. (3.25)

Hence,

D(u,v)

2
≥ 2δu‖∇U‖2

� + 2δvP
−1(�)‖V − V ‖2

� + 2‖V β − Uα‖2
�. (3.26)

Combining (3.22) and (3.26), we see that in order to prove (3.18) it is sufficient to find positive constants K1 ≤ 2 and 
K2 such that

2δu‖∇U‖2
� +2δvP

−1(�)‖V −V ‖2
� +K1‖V β −Uα‖2

� ≥ K2K0

[(√
U2 − U∞

)2 +
(√

V 2 − V∞
)2
]

, (3.27)

where we denote U2 = 1
|�|
∫
�

U2 dx and V 2 = 1
|�|
∫
�

V 2 dS.

In the following, we divide the proof of the key estimate (3.27) into several steps. As a preliminary remark, we 
recall that the estimate (3.27) can only hold because of the constraint imposed by the conservation law (3.16) on U
and V , i.e.

β|�|U2 + α|�|V 2 = M, (3.28)
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since without (3.28), the left hand side of (3.27) vanishes for all constant states U , V satisfying V β = Uα , while the 
right hand side of (3.27) vanishes only at the equilibrium U∞, V∞. Thus, the following steps are designed as a chain 
of estimates, which allows for the conservation law (3.16) rewritten as (3.28) to enter into the proof of estimate (3.27).

Step 1: The goal of this step is to show that there exists a constant K3 > 0 such that

‖V β − Uα‖2
� ≥ 1

2
‖V β − U

α‖2
� − K3(‖U − U‖2

� + ‖V − V ‖2
�). (3.29)

This inequality establishes a lower bound of the reaction entropy-dissipation term in terms of a reaction entropy-
dissipation term for the space averaged concentrations U and V at the cost of two terms, which can ultimately be 
controlled by the diffusion entropy-dissipation.

At first, we remark that the averaged concentrations U and V are bounded by Jensen’s inequality and the conser-
vation law (3.28)

U
2 ≤ |�|U2 ≤ M

β
≤ max

{
1,

M

β

}
=: M�, (3.30)

V
2 ≤ |�|V 2 ≤ M

α
≤ max

{
1,

M

α

}
=: M�. (3.31)

Next, we consider the following deviations around the spatially averaged concentrations:

δ1(x) := U − U, ∀x ∈ �,

and

δ2(x) := V − V , ∀x ∈ �

and divide the boundary � into two disjoint sets:

� = S ∪ S⊥,

where

S := {x ∈ � : −U ≤ δ1(x) ≤√M�, −V ≤ δ2(x) ≤√M�}.
Note that δ1 ∈ L2(�) is well-defined by (3.23) and the Trace Theorem (3.6).

Due to the boundedness of δ1 and δ2 in S, we readily estimate by using Taylor expansion and Young’s inequality

‖V β − Uα‖2
L2(S)

= ‖(V + δ2)
β − (U + δ1)

α‖2
L2(S)

≥ 1

2
‖V β − U

α‖2
L2(S)

− ‖β(V + θ2)
β−1δ2 − α(U + θ1)

α−1δ1‖2
L2(S)

≥ 1

2
‖V β − U

α‖2
L2(S)

− C3
(
Mα−1

� ,M
β−1
�

)(‖δ1‖2
� + ‖δ2‖2

�

)
, (3.32)

where we have used that |θ1(x)| ≤ |δ1(x)| ≤ √
M� and |θ2(x)| ≤ |δ2(x)| ≤ √

M� are bounded. This proves (3.29) on 
the set S.

It remains to consider the set

S⊥ = {x ∈ � : δ1(x) >
√

M� or δ2(x) >
√

M�}.
By using Chebyshev’s inequality and by observing that for δ1 >

√
M� ≥ U , the set {x ∈ � : δ2

1 > M�} coincides with 
the set {x ∈ � : δ1 >

√
M�} and analog for δ2 >

√
M� ≥ V , we get

|{x ∈ � : δ1 >
√

M�}| = |{x ∈ � : δ2
1 ≥ M�}| ≤ ‖δ1‖2

�

M�

,

and

|{x ∈ � : δ2 >
√

M�}| = |{x ∈ � : δ2
2 ≥ M�}| ≤ ‖δ2‖2

� .

M�
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Thus, it follows that

|S⊥| ≤ ‖δ1‖2
�

M�

+ ‖δ2‖2
�

M�

.

By the bounds (3.30), (3.31), we have moreover that |V β − U
α| ≤ C(M

α
2
� , M

β
2
� ). Hence, since M� ≥ 1 and M� ≥ 1

‖V β − U
α‖2

L2(S⊥)
≤ C(Mα

�,M
β
�)|S⊥| ≤ C(Mα

�,M
β
�)
(
‖δ1‖2

� + ‖δ2‖2
�

)
and, thus,

‖V β − Uα‖2
L2(S⊥)

≥ 0 ≥ 1

2
‖V β − U

α‖2
L2(S⊥)

− C4(M
α
�,M

β
�)(‖δ1‖2

� + ‖δ2‖2
�). (3.33)

Finally, the estimate (3.29) is obtained from (3.32) and (3.33) for a constant K3(M
α
�, Mβ

�) = C3 + C4.

With estimate (3.29), we proceed in estimating the left hand side of (3.27) in the following way: We shall look for 
a positive constant K1 ≤ 2 small enough, such that the following two conditions hold:{

δu T −1(�) − K1K3 ≥ 0,

δvP
−1(�) − K1K3 ≥ 0,

⇒ K1 ≤ min

{
δu

K3T (�)
,

δv

K3P(�)
,2

}
.

Here, T (�) denotes the constant of the Trace inequality T (�)‖∇U‖2
� ≥ ‖U − U‖2

� . We can then estimate the left 
hand side of (3.27) by using (3.29)

2δu‖∇U‖2
� + 2δvP

−1(�)‖V − V ‖2
� + K1‖V β − Uα‖2

�

≥ δu‖∇U‖2
� + δvP

−1(�)‖V − V ‖2
� + K1

2
‖V β − U

α‖2
�

+ (δu T −1(�) − K1K3)‖U − U‖2
� + (δvP

−1(�) − K1K3)‖V − V ‖2
�

≥ δu‖∇U‖2
� + δvP

−1(�)‖V − V ‖2
� + K1

2
‖V β − U

α‖2
�.

Therefore, in order to show (3.27) it is sufficient to find suitable constants K4 = min{ 2δu

K1
, 2δv

K1P(�)
} and K5 = 2K2K0

K1
in the following Step 2 such that:

‖V β − U
α‖2

� + K4(‖∇U‖2
� + ‖V − V ‖2

�) ≥ K5

[
(

√
U2 − U∞)2 + (

√
V 2 − V∞)2

]
. (3.34)

Step 2: To prove (3.34), we use the following change of variables with respect to the equilibrium

U2 = U2∞(1 + μ1)
2 and V 2 = V 2∞(1 + μ2)

2, (3.35)

which is well-adapted to the mass conservation law (3.28) in the sense that

β|�|U2∞(1 + μ1)
2 + α|�|V 2∞(1 + μ2)

2 = β|�|U2∞ + α|�|V 2∞. (3.36)

From (3.36), it follows that the new variables μ1 and μ2 vary only in a bounded range of admissible values, i.e. 

μ1 ∈ [−1, +μ1,m) and μ2 ∈ [−1, +μ2,m), where a straightforward estimate shows 0 < μ1,m <
α|�|V 2∞
β|�|U2∞

and 0 <

μ2,m <
β|�|U2∞
α|�|V 2∞

.

Moreover, equation (3.36) implies that μ1 can be expressed as a continuous, bounded function of μ2 (or the other 
way round), i.e.

μ1(μ2) = −1 +
√

1 − α|�|V 2∞
β|�|U2∞

(2μ2 + μ2
2) = −R(μ2)μ2, (3.37)

where
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R(μ2) :=
α|�|V 2∞
β|�|U2∞

(μ2 + 2)

1 +
√

1 − αV 2∞|�|
βU2∞|�| (2μ2 + μ2

2)

.

We obviously have that μ1(μ2 = 0) = 0, which represents the case U2 = U2∞ and V 2 = V 2∞. Moreover, R(μ2) is a 
positive, monotone increasing function with

0 < R(−1) =
α|�|V 2∞
β|�|U2∞

1 +
√

1 + α|�|V 2∞
β|�|U2∞

≤ R(μ2) ≤ R(μ2,m) < 2
α|�|V 2∞
β|�|U2∞

+ 1.

Hence R(μ2) for μ2 ∈ [−1, +μ2,m) is uniformly bounded below and above by positive constants.

Next, we notice that

‖δ1‖2
� = ‖U − U‖2

� = |�|(U2 − U
2
),

and thus

U =
√

U2 − 1

|�|(
√

U2 + U)
‖δ1‖2

� = U∞(1 + μ1) − 1

|�|(
√

U2 + U)
‖δ1‖2

�. (3.38)

Similarly,

V =
√

V 2 − 1

|�|(
√

V 2 + V )
‖δ2‖2

� = V∞(1 + μ2) − 1

|�|(
√

V 2 + V )
‖δ2‖2

�. (3.39)

We denote

R1(U) := 1

|�|(
√

U2 + U)
and R1(V ) := 1

|�|(
√

V 2 + V )

and remark that due to the lack of lower bounds for U2 ≥ U
2 ≥ 0 or V 2 ≥ V

2 ≥ 0, we have no a-priori bounds to 
prevent R1(U) or R1(V ) from being arbitrary large. Thus, we have to distinguish two cases, where the first assumes 
a lower bound ε > 0:

Case 1) U2 ≥ ε2,V 2 ≥ ε2 :
By (3.38) and (3.39), the left hand side of (3.34) is estimated as follows

‖V β − U
α‖2

� + K4(‖∇U‖2
� + ‖V − V ‖2

�)

=
∥∥∥(V∞(1 + μ2) − R1(V )‖δ2‖2

�)β − (U∞(1 + μ1) − R1(U)‖δ1‖2
�)α
∥∥∥2

�

+ K4(‖∇U‖2
� + ‖δ2‖2

�)

≥ |�|
(
V

β∞(1 + μ2)
β − Uα∞(1 + μ1)

α
)2 − C(ε2,M)(‖δ2‖2

� + 1

P(�)
‖δ1‖2

�)

+ K4(‖∇U‖2
� + ‖δ2‖2

�)

≥ |�|
(
V

β∞(1 + μ2)
β − Uα∞(1 + μ1)

α
)2 − C(ε2,M,�)(‖δ2‖2

� + ‖∇U‖2
�)

+ K4(‖∇U‖2
� + ‖δ2‖2

�) (3.40)

by using the boundedness of U∞, V∞, ‖δ1‖�, ‖δ2‖� , μ1, μ2, R1(U) and R1(V ), the elementary inequality (a −
b)2 ≥ a2/2 − b2, and by using Poincare’s inequality. Choosing K4 ≥ C(ε2, M) in (3.40) (by recalling that K4 =
min{ 2δu

K1
, 2δv

K1P(�)
}, this implies an additional constraint to choose K1 small enough), we have

‖V β − U
α‖2

� + K4(‖∇U‖2
� + ‖V − V ‖2

�) ≥ |�|(V β∞(1 + μ2)
β − Uα∞(1 + μ1)

α)2. (3.41)
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Therefore, in order to prove (3.34), it’s enough to find K5 such that

|�|(V β∞(1 + μ2)
β − Uα∞(1 + μ1)

α)2 ≥ K5

(
U2∞μ2

1 + V∞μ2
2

)
or equivalently,

U2∞μ2
1 + V 2∞μ2

2

V
2β∞
(
(1 + μ2)β − (1 + μ1)α

)2 ≤ |�|
K5

. (3.42)

In order to estimate the denominator of (3.42), we consider the following two cases:
In the first case, we assume that −1 ≤ μ2 < 0, from (3.37) we have μ1 > 0. Then

(1 + μ2)
β ≤ 1 + μ2 < 1 and (1 + μ1)

α ≥ 1 + μ1 > 1.

Hence,

|(1 + μ2)
β − (1 + μ1)

α| ≥ (1 + μ1) − (1 + μ2) = μ1 − μ2 = (1 + R(μ2))|μ2|. (3.43)

In the second case, we consider μ2 ≥ 0 and thus μ1 ≤ 0 by (3.37). We estimate

(1 + μ2)
β ≥ (1 + μ2) and (1 + μ1)

α ≤ 1 + μ1,

and obtain therefore,

|(1 + μ2)
β − (1 + μ1)

α| ≥ (1 + μ2) − (1 + μ1) = μ2 − μ1 = (1 + R(μ2))|μ2|. (3.44)

Altogether, (3.43) and (3.44) yield

V
2β∞
(
(1 + μ2)

β − (1 + μ1)
α
)2 ≥ V

2β∞ (1 + R(μ2))
2μ2

2. (3.45)

For the numerator of (3.42), we use the expression (3.37) to get

U2∞μ2
1 + V 2∞μ2

2 =
(
V 2∞ + U2∞ R(μ2)

2
)

μ2
2, (3.46)

and combining (3.46) and (3.45) completes the proof of (3.42) with a constant

|�|
K5

≥ V 2∞ + U2∞ R(μ2)
2

(1 + R(μ2))2)V
2β∞

.

Finally, by recalling that K5 = 2K2K0
K1

and that K1 was chosen small enough in the previous step, we conclude the 

first part of the proof of the Lemma by choosing K2 ≤ K1K5
2K0

.

Case 2) U2 ≤ ε2 or V 2 ≤ ε2 :
For the second case, which considers states which are far away from the equilibrium U ≈ U∞, V ≈ V∞ for sufficiently 
small ε, we expect to be able to derive a positive lower bound for the entropy-dissipation in terms of ε. At first, we 
observe that the right hand side of (3.34) is bounded by

K5

[
(

√
U2 − U∞)2 + (

√
V 2 − V∞)

]2

≤ 2K5(u + v + u∞ + v∞) ≤ K5C(M). (3.47)

In the following, we consider two subcases of lower bounds of the entropy-dissipation. The first subcase considers 
the situation where there is a lower bound of the diffusion entropy-dissipation since U and V are not close to their 
spacial averages U and V :
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Subcase 2.1) ‖δ1‖2
� ≥ η or ‖δ2‖2

� ≥ η :
By using Poincare’s inequality P(�)‖∇U‖2

� ≥ ‖δ1‖2
�, we see that the left hand side of (3.34) is bounded below by{

K4P
−1(�)η in the case ‖δ1‖2

� ≥ η,

K4η in the case ‖δ2‖2
� ≥ η.

(3.48)

Thus, from (3.47) and (3.48), we can obtain (3.34) by choosing

K4 ≥ K5 max

{
C(M)

P (�)η
,
C(M)

η

}
.

Subcase 2.2) ‖δ1‖2
� ≤ η and ‖δ2‖2

� ≤ η :
This subcase concerns the situation where U and V are close to their spatial averages U and V . Thus, since U and V
are not close to the equilibrium U∞ and V∞ for sufficiently small ε in Case 2), there has to be a lower bound for the 
reaction entropy-dissipation.

Let us assume first V 2 ≤ ε2, thus V
2 ≤ V 2 ≤ ε2. From

β|�|U2 + α|�|V 2 = M, and U2 = ‖δ1‖2
�

|�| + U
2
,

we estimate

U
2 = 1

β|�| (M − α|�|V 2) − ‖δ1‖2
�

|�| ≥ M

β|�| − α|�|
β|�|ε

2 − η

|�| .

Hence, we can expand the reaction term by using (a − b)2 ≥ a2/2 − b2 as follows

‖Uα − V
β‖2

� ≥ |�|
(

1

2
U

2α − V
2β
)

≥ |�|
(

1

2

(
M

β|�| − α|�|
β|�|ε

2 − η

|�|
)α

− ε2β

)

≥ |�|
2α+2

(
M

β|�|
)α

(3.49)

for small enough ε and η.
The case U2 ≤ ε2 can be treated similarly and yields

‖Uα − V
β‖2

� ≥ |�|
2β+2

(
M

α|�|
)β

. (3.50)

From (3.48), (3.49) and (3.50), we have for both cases U2 ≤ ε2 or V 2 ≤ ε2 that the left hand side of (3.34) is 
estimated below as

‖V β − U
α‖2

� + K4(‖∇U‖2
� + ‖V − V ‖2

�)

≥ K6 = min

{
K4P

−1(�)η,K4η,
|�|

2α+2

(
M

β|�|
)α

,
|�|

2β+2

(
M

α|�|
)β
}

. (3.51)

Then, (3.34) follows from (3.47), (3.51) by choosing K5 ≤ K6
C(M)

, which means to choose K2 ≤ K1K5
2K0

small 
enough. �
Remark 3.3. The Step 2 in the proof of Lemma 3.5 can be significantly shortened if we consider the stoichiometric 
coefficients α ≥ 2 and β ≥ 2, since we can prove (3.41) without case distinction as follows.

By recalling that ‖δ1‖2
� = ‖U − U‖2

� = |�|(U2 − U
2
) and ‖δ2‖2

� = |�|(V 2 − V
2
), we derive the expressions

U =
√

U2 − ‖δ1‖2
�/|�|, V =

√
V 2 − ‖δ2‖2

�/|�|.
Thus, by (3.3), we apply again Taylor expansion to estimate the first term on the left hand side of (3.34) below by
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‖V β − U
α‖2

� =
∥∥∥∥∥
(
V 2 − ‖δ2‖2

�/|�|
) β

2 −
(
U2 − ‖δ1‖2

�/|�|
) α

2

∥∥∥∥∥
2

�

≥
∥∥∥V 2

β
2 − U2

α
2
∥∥∥2

�
− 2

∫
�

(
V 2

β
2 − U2

α
2

)(
β

2

(
V 2 − θ2

|�|
)β

2 −1 ‖δ2‖2
�

|�|

−α

2

(
U2 − θ1

|�|
)α

2 −1 ‖δ1‖2
�

|�|

)
dS (3.52)

for some θ1/|�| ≤ ‖δ1‖2
�/|�| ≤ U2 ≤ M� and θ2/|�| ≤ ‖δ2‖2

�/|�| ≤ V 2 ≤ M� . Note that β2 − 1 ≥ 0 and α2 − 1 ≥ 0, 
then the last integral on the right hand side of (3.52) can be estimated below by

C(Mα
�,M

β
�,�)

(
‖δ1‖2

�

P (�)
+ ‖δ2‖2

�

)
.

Thus, from (3.35) and (3.52), we have

‖V β − U
α‖2

� ≥ |�|
(
V

β∞(1 + μ2)
β − Uα∞(1 + μ1)

α
)2 − C(Mα

�,M
β
�,�)

(
‖δ1‖2

�

P (�)
+ ‖δ2‖2

�

)

≥ |�|
(
V

β∞(1 + μ2)
β − Uα∞(1 + μ1)

α
)2 − C(Mα

�,M
β
�,�)

(
‖∇U‖2

� + ‖δ2‖2
�

)
.

Therefore, by choosing K4 ≥ C(Mα
�, Mβ

�), we have proved (3.41):

‖V β − U
α‖2

� + K4(‖∇U‖2
� + ‖V − V ‖2

�) ≥ |�|
(
V

β∞(1 + μ2)
β − Uα∞(1 + μ1)

α
)2

.

The rest of the proof follows exactly as the end of Case 1) in Lemma 3.5.

3.2. The degenerate case: δv = 0

By Remark 2.2 and Proposition 4.3, there exist two constants A > 0 and B > 0 such that (A, B) is an upper solution 
to (1.1), then by the comparison principle we have that, for all t ≥ 0,

‖u(t)‖L∞(�) ≤ A, and ‖v(t)‖L∞(�) ≤ B.

Hence the pair of constants (A, B) in Theorem 3.3 can be chosen as the above upper solution. By using the same 
function � as (3.19), we have

E(u,v) − E(u∞, v∞) =
∫
�

(
u log

u

u∞
− (u − u∞)

)
dx +

∫
�

(
v log

v

v∞
− (v − v∞)

)
dS

≤ �(A,u∞)

∫
�

(
√

u − √
u∞)2dx + �(B,v∞)

∫
�

(
√

v − √
v∞)2dS

≤ max{�(A,u∞),�(B,v∞)}
(
‖U − U∞‖2

� + ‖V − V∞‖2
�

)
. (3.53)

The following lemma, roughly speaking, shows that the diffusion of u in � and the reversible reaction of u and v on 
� lead to a diffusion-effect of v on �:

Lemma 3.6. There exists C1, C2 > 0 such that

C1‖Uα − V β‖2
� + C2

(
‖∇U‖2

� + ‖U − U‖2
�

)
≥ C3‖V − V ‖2

�. (3.54)
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Proof. Note that, by the Trace Theorem T (�)‖∇U‖2
� ≥ ‖U − U‖2

� , we could neglect the term ‖U − U‖2
� in (3.54). 

We write it here for the sake of readability.
We will prove the inequality (3.54) by distinguishing cases:

Case 1: U ≥ ε. Applying the ansatz

V (x) = U
α
β (1 + δ(x)), δ(x) ∈ [−1,+∞) ∀x ∈ �,

we get

C1‖Uα − V β‖2
� = C1‖Uα − U

α‖2
� − 2C1

∫
�

(Uα − U
α
)U

α[(1 + δ)β − 1]dS + C1U
2α‖(1 + δ)β − 1‖2

�. (3.55)

Since ‖U‖L∞(�) ≤ √
A, we have

‖Uα − U
α‖2

� ≤ C(A)‖U − U‖2
�. (3.56)

From (3.55) and (3.56), we can estimate the left hand side of (3.54) as follows

C1‖Uα − V β‖2
� + C2‖U − U‖2

� ≥
(

C1 + C2

C(A)

)
‖Uα − U

α‖2
�

− 2C1

∫
�

(Uα − U
α
)U

α[(1 + δ)β − 1]dS + C1U
2α‖(1 + δ)β − 1‖2

�

≥ C1C2

C1C(A) + C2
U

2α‖(1 + δ)β − 1‖2
�, (3.57)

where we have used Young’s inequality

2C1

∫
�

(Uα − U
α
)U

α[(1 + δ)β − 1]dS

≤
(

C1 + C2

C(A)

)
‖Uα − U

α‖2
� + C2

1C(A)

C1C(A) + C2
U

2α‖(1 + δ)β − 1‖2
�. (3.58)

Next, we observe that the function R(δ) := (1+δ)β−1
δ

is continuous on δ ∈ [−1, ∞) with R(0) = β ≥ 1 and bounded 
below by R(δ) ≥ R(−1) = 1 for δ ∈ [−1, ∞). Thus,

‖(1 + δ)β − 1‖2
� =

∫
�

R(δ)2δ2 dS ≥
∫
�

δ2 dS. (3.59)

On the other hand, we have

‖V − V ‖2
� = |�|

(
V 2 − V

2
)

= |�|U 2α
β

(
(1 + δ)2 − 1 + δ

2
)

= |�|U 2α
β

(
1 + 2δ + δ2 − (1 + δ)2

)
≤ |�|U 2α

β δ2

≤ U
2α
β

∫
�

δ2 dS. (3.60)

Now, keeping in mind that U ≥ ε, we obtain (3.54) from (3.57), (3.59) and (3.60), by choosing

C3 ≤ C1C2

C1C(M) + C2
min{1; ε2α(1−1/β)}.

Case 2: U ≤ ε. We begin by considering U ≤ ε, for which the contribution of ‖U − U‖2
� in (3.54) can be arbitrary 

small when U is close to U . However, for ε sufficiently small, we shall show that the estimate (3.54) still holds 
because the reaction term ‖Uα − V β‖2

� can only be “small” if the ‖V − V ‖2
� is of the “same order of smallness”.
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We will treat two subcases: a) U2 is “small” and b) U2 is “big”.

Case 2a): U2 ≤ M
2β|�| . A direct consequence of the conservation law (3.28) yields

V 2 = 1

α|�|
(
M − β|�|U2

)
≥ M

2α|�| . (3.61)

Next, we estimate the left hand side of (3.54) similarly to (3.55)–(3.58) as

C1‖Uα − V β‖2
� + C2‖U − U‖2

� ≥ C4‖V β − U
α‖2

�.

where C4 = C1C2
C1C(M)+C2

. Then, since U ≤ ε

C4‖V β − U
α‖2

� ≥ C4

∫
�

V 2βdS − 2C4ε
α

∫
�

V βdS.

On the other hand, the right hand side of (3.54) is bounded by

C3

∫
�

|V − V |2� = C3|�|
(
V 2 − V

2
)

≤ C3|�|V 2. (3.62)

Therefore, in order to obtain (3.54), it is sufficient to prove that

C4

∫
�

V 2βdS − 2C4ε
α

∫
�

V βdS ≥ C3|�|V 2. (3.63)

If β ∈ [1,2], by using Jensen’s inequality (and noting that the function f (x) = x
β
2 is concave), we can estimate the 

left hand side of (3.63) as

C4

∫
�

V 2βdS − 2C4ε
α

∫
�

V βdS ≥ C4|�|1−β

⎛
⎝∫

�

V 2dS

⎞
⎠β

− 2C4ε
α|�|1−β/2

⎛
⎝∫

�

V 2dS

⎞
⎠β/2

≥ C4|�|V 2
β − 2C4ε

α|�|V 2
β/2

. (3.64)

Since V 2 ≥ M
2α|�| , we can choose ε and C3 small enough such that

C4V 2
β−1 ≥ 2C4ε

αV 2
β/2−1 + C3.

After choosing ε ≤ ( 1
4 )

1
α ( M

2α|�| )
β
2α and C3 ≤ C4

2 ( M
2α|�| )

β−1, this gives together with (3.64) the inequality (3.63).

If β ≥ 2, by using Jensen’s inequality, we have

C3|�|V 2 ≤ C3|�|V β
2/β

and C4

∫
�

V 2βdS ≥ C4|�|V β
2
. (3.65)

Making use of (3.65), the relation (3.63) can be proven provided

C4|�|V β
2 − 2C4ε

α|�|V β ≥ C3|�|V β
2/β

or equivalently

C4V β ≥ 2C4ε
α + C3V β

(2−β)/β
.

This can be satisfied if we choose, for instance, ε ≤ 1
41/α

(
M

2α|�|
)β/2α and C3 ≤ 1

2C2
(

M
2α|�|

)β−1 and keeping in mind 

that V 2 ≥ M and β ≥ 2.
2α|�|
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Case 2b): U2 ≥ M
2β|�| . Similarly to (3.61), we deduce from the conservation of mass that V 2 ≤ M/(2α|�|). We esti-

mate

C2‖∇U‖2
� ≥ C2

P(�)
‖U − U‖2

� ≥ C2|�|
P(�)

(
U2 − U

2
)

≥ C2

P(�)

(
M

2β
− ε2

)
≥ C2

P(�)

M

4β
,

if we chose ε2 < M
4β

. Next, recalling (3.62), we estimate

C2

P(�)

M

4β
≥ C2

P(�)

M

4β

V 2

M�

≥ C3‖V − V ‖2
�,

if we choose C3 ≤ C2α|�|
2βP (�)

.
Altogether, the proof of (3.54) is complete by choosing ε and C3 small enough in order to satisfy the various 

constraints from the above cases. �
We are now ready to prove Theorem 3.3 for degenerate case, that is when δv = 0, there exists C0 > 0 such that

D(u,v) ≥ C0(E(u, v) − E(u∞, v∞)).

Proof. We begin by estimating D(u, v) below, that is

D(u,v) = δu

∫
�

|∇u|2
u

dx +
∫
�

(uα − vβ) log
uα

vβ
dS

≥ 4δu‖∇U‖2
� + 4‖Uα − V β‖2

�,

where we have used the elementary inequality (a−b) log(a/b) ≥ 4(
√

a −√
b)2. Then, by applying the Trace inequal-

ity ‖U − U‖2
� ≤ ‖∇U‖2

�T (�) and Lemma 3.6, we get

D(u,v) ≥ 4δu‖∇U‖2
� + 4‖Uα − V β‖2

�

≥ θ
[
C1‖Uα − V β‖2

� + C2(‖∇U‖2
� + ‖U − U‖2

�)
]

+ [4δu − θC2(1 + T (�))]‖∇U‖2
� + (4 − θC1)‖Uα − V β‖2

�

≥ θC3‖V − V ‖2
� + [4δu − θC2(1 + T (�))]‖∇U‖2

� + (4 − θC1)‖Uα − V β‖2
�

≥ C4‖∇U‖2
� + C5‖V − V ‖2

� + C6‖Uα − V β‖2
� (3.66)

where we denote C4 = 4δu − θC2(1 + T (�)), C5 = θC3 and C6 = (4 − θC1), where θ > 0 is chosen such that the 
constants C4 and C6 are positive.

In the following, we estimate the relative entropy E(u, v) − E(u∞, v∞) above by using (3.53)

E(u,v) − E(u∞, v∞) ≤ max{�(A,u∞),�(B,v∞)}(‖U − U∞‖2
� + ‖V − V∞‖2

�)

≤ C8(‖U − U‖2
� + ‖V − V ‖2

� + ‖U − U∞‖2
� + ‖V − V∞‖2

�) (3.67)

with C8 = 2 max{�(A, u∞), �(B, v∞)}. By using (3.67), we continue to estimate (3.66) below and obtain by using 
Poincaré’s inequality, the Trace Theorem and for 0 < ε < 1 to be chosen

D(u,v) ≥ C4

2P(�)
‖U − U‖2

� + C4

2T (�)
‖U − U‖2

� + C5‖V − V ‖2
� + C6‖Uα − V β‖2

�

≥ ε min

{
C4

2P(�)
,C5

}
(‖U − U‖� + ‖V − V ‖2

�)

+ C4

2T (�)
‖U − U‖2

� + C6‖Uα − V β‖2
� + C5(1 − ε)‖V − V ‖2

�

≥ ε min

{
C4

,C5

}(
E(u,v)−E(u∞, v∞) − ‖U − U∞‖2

� − ‖V − V∞‖2
�

)

2P(�) C8
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+ C4

2T (�)
‖U − U‖2

� + C6‖Uα − V β‖2
� + C5(1 − ε)‖V − V ‖2

�

≥ ε

C8
min

{
C4

2P(�)
,C5

}
(E(u, v) − E(u∞, v∞))

+ C4

2T (�)
‖U − U‖2

� + C6‖Uα − V β‖2
� + C5(1 − ε)‖V − V ‖2

�

− ε min

{
C4

2P(�)
,C5

}(
‖U − U∞‖2

� + ‖V − V∞‖2
�

)
. (3.68)

Now, by applying (3.27) with C5(1 − ε) in place of 4δv P −1(�), we can find a positive constant ε > 0 small enough 
such that

C4

2T (�)
‖U − U‖2

� + C6‖Uα − V β‖2
� + C5(1 − ε)‖V − V ‖2

�

≥ ε min

{
C4

2P(�)
,C5

}(
‖U − U∞‖2

� + ‖V − V∞‖2
�

)
(3.69)

holds and we conclude from (3.68) and (3.69) that

D(u,v) ≥ ε

C8
min

{
C4

2P(�)
,C5

}
(E(u, v) − E(u∞, v∞)),

which finishes the proof of the Lemma in the case of degenerate diffusion δv = 0. �
As we can see in the proof the degenerate case, we used L∞-bounds of the solution, which are usually unavailable 

for more general systems. However, we believe that in some cases of stoichiometric coefficients α and β , there will 
be a way to show the exponential convergence to equilibrium without using the L∞ bounds. As example, we show 
that it is possible for the linear case, that is α = β = 1.

Proposition 3.7. Assume that α = β = 1 and δv = 0. The solution to the system (1.1), which rewrites as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − δu�u = 0, x ∈ �,

δu
∂u
∂ν

= −u + v, x ∈ �,

vt = u − v, x ∈ �,

u(0, x) = u0(x), x ∈ �,

v(0, x) = v0(x), x ∈ �,

(3.70)

converges exponentially to equilibrium in L2(�) × L2(�).

Remark 3.4. Due to the lack of surface diffusion δv��v, when establishing an entropy entropy-dissipation estimate, 
we need to prove an inequality analogous to (3.54), that is

C1‖Uα − V β‖2
� + C2

(
‖∇U‖2

� + ‖U − U‖2
�

)
≥ C3‖V − V ‖2

�. (3.71)

The main point of Proposition 3.7 is that, thanks to the linearity of the system, we can use the quadratic structure 
of the entropy to prove the existence of such an estimate without using the L∞-bounds of the solution (see (3.78)
below). For general α and β an estimate like (3.71) seems highly unclear: consider for instance a state V = U

α
β . Then, 

‖Uα −V β‖� = 0 and the two remaining terms ‖∇U‖2
� and ‖U −U‖2

� on the left hand side of (3.71) seem not strong 
enough to ensure the integrability of V for α � β . Such cases remain open problems to be treated in a future work.

Proof. The unique equilibrium (u∞, v∞) satisfies{
u∞ = v∞,

|�|u∞ + |�|v∞ = M
(3.72)
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where

M =
∫
�

u0(x)dx +
∫
�

v0(x)dS

is the initial mass. It follows that

u∞ = v∞ = M

|�| + |�| . (3.73)

For the sake of simplicity, we consider the quadratic entropy (which is only an admissible entropy functional since 
(3.70) is linear)

E(u,v) = ‖u‖2
� + ‖v‖2

�, (3.74)

its entropy-dissipation

D(u,v) = − d

dt
E(u, v) = 2du‖∇u‖2

� + 2‖u − v‖2
�, (3.75)

and the relative entropy

E(u,v) − E(u∞, v∞) = ‖u‖2
� + ‖v‖2

� − ‖u∞‖2
� − ‖v∞‖2

�. (3.76)

Similarly to (3.7), we decompose the relative entropy as follow:

E(u,v) − E(u∞, v∞) = [E(u,v) − E(u,v)] + [E(u,v) − E(u∞, v∞)]
= [‖u − u‖2

� + ‖v − v‖2
�] + [‖u − u∞‖2

� + ‖v − v∞‖2
�].

In the spirit of Lemma 3.6, we want to have an estimate similar to (3.54):

C1‖∇u‖2
� + C2‖u − v‖2

� ≥ C3‖v − v‖2
�. (3.77)

This can be done by estimating

C1‖∇u‖2
� + C2‖u − v‖2

� ≥ C1

T (�)
‖u − u‖2

� + C2‖u − v‖2
�

≥ C1C2/T (�)

C2 + C1/T (�)
‖u − v‖2

� = C1C2/T (�)

C2 + C1/T (�)
(‖v − v‖2

� + ‖u − v‖2
�), (3.78)

where we have used that 
∫
�
(u − v)(v − v) dS = 0. Now, we can proceed similarly to the degenerate case to get the 

exponential convergence to equilibrium. For completeness, we sketch the entropy method as follows:

D(u,v) = 2du‖∇u‖2
� + 2‖u − v‖2

�

≥ du

P (�)
‖u − u‖2

� + θ
(
C1‖∇u‖2

� + C2‖u − v‖2
�

)
≥ du

P (�)
‖u − u‖2

� + θC3‖v − v‖2
� + θC3‖u − v‖2

�.

(3.79)

By the mass conservation law

|�|u + |�|v = M

and the definition of the constant equilibrium (3.72), we observe first that

|�|(u − u∞) + |�|(v − v∞) = 0. (3.80)

We thus calculate with u∞ = v∞ and (3.80)

‖u − v‖2
� = |�|(u − u∞ + v∞ − v)2

= |�|(u − u∞)2 + |�|(u − u∞)2 + |�|
|�| (v − v∞)2 + |�|(v − v∞)2

= |�| + |�|
|�|

(
‖u − u∞‖2 + ‖v − v∞‖2

)
. (3.81)
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Combining (3.79) and (3.81) yields

D(u,v) ≥ du

P (�)
‖u − u‖2

� + θC3‖v − v‖2
�

+ θC3
|�| + |�|

|�| (‖u − u∞‖2
� + ‖v − v∞‖2

�)

≥ C4(E(u, v) − E(u∞, v∞)).

Hence, the solution satisfies the exponential convergence to equilibrium:

‖u − u∞‖2
� + ‖v − v∞‖2

� ≤ e−C4t (‖u0 − u∞‖2
� + ‖v0 − v∞‖2

�). �
4. Appendix

In this appendix, we will give the full proof of Theorem 2.2 by the technique of upper and lower solutions. The 
following lemma is proved direct computations.

Lemma 4.1. The functions F and G are defined in (2.4) and (2.5) respectively are locally Lipschitz. In particu-
lar, given a pair of non-negative functions (u, v) ≥ (0, 0), there exist two non-negative bounded functions Lu(t, x), 
Lv(t, x) ∈ L∞([0, ∞) × �) such that, for all (u, v) ≥ (u1, v1), (u2, v2) ≥ (0, 0), the followings hold pointwise in 
(t, x) ∈ [0, ∞) × �:

F(t, x,u1, v1) − F(t, x,u2, v2) ≤ αLu(t, x)(u2 − u1)+ + αLv(t, x)(v1 − v2)+, (4.1)

F(t, x,u1, v1) − F(t, x,u2, v2) ≥ −αLu(t, x)(u1 − u2)+ − αLv(t, x)(v2 − v1)+, (4.2)

and

G(t, x,u1, v1) − G(t, x,u2, v2) ≤ βLu(t, x)(u1 − u2)+ + βLv(t, x)(v2 − v1)+, (4.3)

G(t, x,u1, v1) − G(t, x,u2, v2) ≥ −βLu(t, x)(u2 − u1)+ − βLv(t, x)(v1 − v2)+, (4.4)

where (·)+ denotes the positive part, that is (w)+ = w if w ≥ 0 and (w)+ = 0 otherwise.

By subtracting the lower and upper solutions (as they are defined in Definition 2.3), the comparison Lemma 2.1
yields the following:

Lemma 4.2. If (u, v) is an upper solution and (u, v) is a lower solution to (1.1), then we have (u, v) ≥ (u, v) in the 
sense of Definition 2.2.

While (u, v) = (0, 0) is clearly a lower solution to system (1.1), the existence of an upper solution to system (1.1)
is in general a difficult question, which we are only able to answer partially by the following proposition under the 
technical assumption (2.11) on the reaction rates ku(t, x) and kv(t, x).

Proposition 4.3. The pair (u, v) = (0, 0) is a trivial lower solution to system (1.1). Moreover, if the function

π(t, x) :=
(

ku(t, x)

kv(t, x)

)1/β

for t > 0, x ∈ �, (4.5)

satisfies either the assumption (2.10) or the assumption (2.11), then the pair (u, v) = (A, B(t, x)) defined as

A := max

{
‖u0‖L∞(�),

(
kmax

kmin
‖v0‖β

L∞(�)

)1/α
}

(4.6)

and

B(t, x) := π(t, x)Aα/β for t > 0, x ∈ � (4.7)

is an upper solution to system (1.1).
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Proof. Clearly (u, v) = (0, 0) is a lower solution. Assume that (2.11) holds, which is also true provided that (2.10)
holds. To verify that (A, B(t, x)) is an upper solution, we first observe that

A ≥ ‖u0‖L∞(�) and B(0, x) ≥
(

kmin

kmax

)1/β

Aα/β ≥ ‖v0‖L∞(�) ∀x ∈ �,

which means that (A, B(t, x)) satisfies the last two conditions in (2.6). Next, we see that the reaction term vanishes,

kuA
α − kvB

β(t, x) = kuA
α − kv[π(t, x)Aα/β ]β = 0 (4.8)

thanks to (4.5) and (4.7). Hence the constant A satisfies the first equation in (2.6). From (4.7) and the assumption 
(2.11), it follows that

∂tB(t, x) − δv��B(t, x) ≥ 0 for t > 0, x ∈ �.

Thus, by testing this equation with a nonnegative test function ψ satisfying ψ(T ) = 0, we obtain

T∫
0

∫
�

[−Bψt + δv∇�B∇�ψ]dSdt ≥
∫
�

B(0)ψ(0)dS,

which in combination with the vanishing reaction term (4.8) shows that B(t, x) satisfies the second equation 
in (2.6). �

In order to prove our existence result, we introduce the following auxiliary functions, which will be useful for 
proving the monotonicity of the sequences of upper and lower solutions

f (t, x,u, v) = F(t, x,u, v) + αLu(t, x)u,

g(t, x,u, v) = G(t, x,u, v) + βLv(t, x) v, (4.9)

where Lu and Lv are in Lemma 4.1.

Lemma 4.4. The functions f and g inherit the following properties from the functions F and G:

(i) The functions f (t, x, u, ·) and g(t, x, ·, v) are non-decreasing for any t, x ∈R × � and any u, v ∈R.
(ii) For all (u, v) ≥ (u1, v1) ≥ (u2, v2) ≥ (0, 0), there holds:

f (t, x,u1, v) − f (t, x,u2, v) ≥ −αLu(t, x)(u1 − u2)+ + αLu(t, x)(u1 − u2) = 0,

and

g(t, x,u, v1) − g(t, x,u, v2) ≥ −βLv(t, x)(v1 − v2)+ + βLv(t, x)(v1 − v2) = 0.

Thus, the functions f (t, x, ·, v) and g(t, x, u, ·) are monotone non-decreasing for all (u, v) ≥ (u1, v1) ≥
(u2, v2) ≥ (0, 0) contrary to F and G.

Proof. The statements of the above Lemma follow directly from Lemma 4.1, in particular from (4.2) and (4.4). �
With the notation (4.9), system (1.1) rewrites as⎧⎪⎨
⎪⎩

ut − δu�u = 0, x ∈ �, t > 0,

δu
∂u
∂ν

+ αLu(t, x)u = f (t, x,u, v), x ∈ �, t > 0,

vt − δv��v + βLv(t, x) v = g(t, x,u, v), x ∈ �, t > 0.

(4.10)

Hereafter, we write f (u, v) and g(u, v) for f (t, x, u, v) and g(t, x, u, v), respectively, except where it is stated other-
wise.

Starting from the pair of lower and upper solutions (u, v) ≤ (u, v) as constructed in Proposition 2.2, we will 
construct a sequence of lower solutions {(u(k), v(k))}k≥0 as follows:
(u(0), v(0)) = (u, v), (I.0)
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and for all k ≥ 1, u(k) and v(k) are the solutions of the following heat equation with inhomogeneous Robin boundary 
condition:⎧⎪⎨

⎪⎩
∂tu

(k) − δu�u(k) = 0, x ∈ �, t > 0,

δu
∂u(k)

∂ν
+ αLuu

(k) = f (u(k−1), v(k−1)), x ∈ �, t > 0,

u(k)(0, x) = u0(x) ∈ L∞(�), x ∈ �,

(I.1)

and the following linear inhomogeneous equation:{
∂tv

(k) − δv��v(k) + βLvv
(k) = g(u(k−1), v(k−1)), x ∈ �, t > 0,

v(k)(0, x) = v0(x) ∈ L∞(�), x ∈ �.
(I.2)

Similarly, we construct a sequence of upper solutions {(u(k), v(k))}k≥0:

(u(0), v(0)) = (u, v), (II.0)

and for all k ≥ 1, u(k) and v(k) are the solutions of the following heat equation with inhomogeneous Robin boundary 
condition:⎧⎪⎨

⎪⎩
∂tu

(k) − δu�u(k) = 0, x ∈ �, t > 0,

δu
∂u(k)

∂ν
+ αLuu

(k) = f (u(k−1), v(k−1)), x ∈ �, t > 0,

u(k)(0, x) = u0(x), x ∈ �,

(II.1)

and the following linear inhomogeneous equation:{
∂tv

(k) − δv��v(k) + βLvv
(k) = g(u(k−1), v(k−1)), x ∈ �, t > 0,

v(k)(0, x) = v0(x), x ∈ �.
(II.2)

The existence of unique sequences of lower and upper solutions u(k) and v(k) follows from classical arguments in 
an iterative way starting from (I.0) and (II.0). Given for instance (u(k−1), v(k−1)), system (I.1) is a heat equation with 
inhomogeneous Robin boundary condition and bounded coefficients Lu(t, x) ∈ L∞(R+ × �). Thus, the existence of 
a unique weak solution in the sense of Definition 2.1 follows from [44–46], for instance. Moreover, the equation (I.2)
is a linear heat equation on a manifold without boundary and the existence of a unique weak solutions follows from 
[41, Chapter 6], for instance.

Moreover, if u(k−1) and v(k−1) satisfy the regularity (2.1) and (2.2), then by the locally Lipschitz properties of f
and g, we obtain f (u(k−1), v(k−1)), g(u(k−1), v(k−1)) ∈ L∞([0, T ] × �), which implies from (I.1) that u(k) satisfies 
(2.1) and from (I.2) that v(k) satisfies (2.2).

An analogous argument can be applied to the equations (II.1) and (II.2) in order to get the unique existence and the 
regular properties of (u(k), v(k)).

Lemma 4.5. The sequence {(u(k), v(k))}k≥0 is an monotone increasing sequence of lower solutions and
{(u(k), v(k))}k≥0 is a monotone decreasing sequence of upper solutions. More precisely, for all k ≥ 0,

(u(k), v(k)) ≥ (u(k+1), v(k+1)) ≥ (u(k+1), v(k+1)) ≥ (u(k), v(k))

in the sense of Definition 2.2.

Proof. The proof of this lemma follows [18, Chapter 8] with suitable changes to adapt to the present setting of our 
weak solutions. �

From Lemma 4.5 and with the help of the monotone convergence theorem, we have the following almost every-
where pointwise limits in (0, T ) × � and (0, T ) × � respectively:

lim
k→∞(u(k), v(k)) = (u∗, v∗) and lim

k→∞(u(k), v(k)) = (u∗, v∗). (4.11)

The following a priori estimates are uniform in k pointwise for all times t ∈ (0, T ), and will allow us to pass to the 
limit k → ∞:
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Lemma 4.6. The sequences {u(k)}k≥0 and {v(k)}k≥0 are uniformly bounded in k in L∞(0, T ; L∞(�)) ∩
L2(0, T ; H 1(�)) and L∞(0, T ; L∞(�)) ∩ L2(0, T ; H 1(�)), respectively, for any given T > 0. Moreover, the se-
quence {(u(k))α|�}k≥0 is bounded in L2(0, T ; L2(�)). We also have analogous estimates for {u(k)}k≥0 and {v(k)}k≥0.

Proof. We will prove only for {u(k)}k≥0 and {v(k)}k≥0. The estimate

(u(k), v(k)) ≤ (u, v)

yields that {u(k)}k≥0 is bounded in L∞(0, T ; L∞(�)) and {v(k)}k≥0 is bounded in L∞(0, T ; L∞(�)). More precisely, 
there exists C0 > 0 independent of k such that

‖u(k)‖L∞(0,T ;L∞(�)) ≤ C0 and ‖v(k)‖L∞(0,T ;L∞(�)) ≤ C0 for all k ≥ 0, T > 0.

We now rewrite the equation for u(k) from (II.1){
∂tu

(k) − δu�u(k) = 0,

δu
∂u(k)

∂ν
+ αLuu

(k) = −α[ku(u
(k−1))α − kv(v

(k−1))β ] + αLuu
(k−1).

By taking inner product with u(k) in L2(�), we get

1

2

d

dt
‖u(k)‖2

L2(�)
+ δu‖∇u(k)‖2

L2(�)
=
∫
�

(
−αLuu

(k) − α[ku(u
(k−1))α − kv(v

(k−1))β ] + αLuu
(k−1)

)
u(k)dS

≤ α

∫
�

kv(v
(k−1))βu(k)dS + α

∫
�

Luu
(k−1)u(k)dS (4.12)

thanks to the nonnegativity of u(k), u(k−1), ku(t, x) ≥ 0 and Lu = αkuu
α−1 ≥ 0. In order to estimate the right hand 

side of (4.12), we first have, by using the modified Trace inequality ‖f‖2
� ≤ ε‖∇f ‖2

� + Cε‖f ‖2
�

α

∫
�

kv(v
(k−1))βu(k)dS ≤ 2α‖kv‖∞

⎛
⎝∫

�

|v(k−1)|2βdS +
∫
�

|u(k)|2dS

⎞
⎠

≤ 2α‖kv‖∞|�|‖v(k−1)‖2β

L∞(�) + δu

4
‖∇u(k)‖2

L2(�)
+ C‖u(k)‖2

L∞(�).

(4.13)

Moreover, by using Lu(t, x) = αkuu
α−1(t, x) ≤ α‖ku‖∞‖u‖α−1

L∞(0,T ;L∞(�))
=: C1, we get

α

∫
�

Luu
(k−1)u(k)dS ≤ 2αC1

⎛
⎝∫

�

|u(k−1)|2dS +
∫
�

|u(k)|2dS

⎞
⎠

≤ 2αC1

(
δu

8αC1
‖∇u(k−1)‖2

L2(�)
+ C‖u(k−1)‖2

L2(�)
+ δu

8αC1
‖∇u(k)‖2

L2(�)
+ C‖u(k)‖2

L2(�)

)

≤ δu

4
‖∇u(k−1)‖2

L2(�)
+ δu

4
‖∇u(k)‖2

L2(�)
+ C(‖u(k−1)‖2

L∞(�) + ‖u(k)‖2
L∞(�)),

(4.14)

with a constant C = C(C1, δu, δv, α).
By applying (4.13) and (4.14) to (4.12), we obtain

d

dt
‖u(k)‖2

L2(�)
+ δu

2
‖∇u(k)‖2

L2(�)

≤ δu

4
‖∇u(k−1)‖2

L2(�)
+ C

(
‖u(k)‖2

L∞(�) + ‖u(k−1)‖2
L∞(�) + ‖v(k−1)‖2β

L∞(�)

)
. (4.15)

Integrating (4.15) on (0, T ) yields
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‖∇u(k)‖2
L2(0,T ;L2(�))

≤ 2

δu

‖u(k)(0)‖2
L2(�)

+ 1

2
‖∇u(k−1)‖2

L2(0,T ;L2(�))

+ C
(
‖u(k)‖2

L∞(0,T ;L∞(�)) + ‖u(k−1)‖2
L∞(0,T ;L∞(�)) + ‖v(k−1)‖2β

L∞(0,T ;L∞(�))

)
≤ 1

2
‖∇u(k−1)‖2

L2(0,T ;L2(�))
+ 2

δu

‖u0‖2
L2(�)

+ C(2C2
0 + C

2β

0 )

≤ 1

2
‖∇u(k−1)‖2

L2(0,T ;L2(�))
+ C. (4.16)

Thus, we can have

‖∇u(k)‖2
L2(0,T ;L2(�))

≤ 1

2
‖∇u(k−1)‖2

L2(0,T ;L2(�))
+ C

≤ 1

4
‖∇u(k−2)‖2

L2(0,T ;L2(�))
+ C

(
1 + 1

2

)

≤ . . . ≤ 1

2k
‖∇u‖2

L2(0,T ;L2(�))
+ 2C.

Therefore, we have {|∇u(k)|}k≥0 is bounded in L2(0, T ; L2(�)) uniformly in k. By taking into account that 
{u(k)}k≥0 is bounded in L∞(0, T ; L∞(�)) ↪→ L2(0, T ; L2(�)), we see that {u(k)}k≥0 is uniformly bounded in 
L2(0, T ; H 1(�)).

We next prove that {(u(k))α|�}k≥0 is bounded in L2(0, T ; L2(�)). Indeed, adapting the estimate in Remark 2.1, we 
get

‖(u(k))α‖2
L2(0,T ;L2(�))

=
T∫

0

∫
�

(u(k))2αdSdt

≤ C

T∫
0

(
‖u(k)‖2α−2

L∞(�)‖∇u(k)‖2
L2(�)

+ ‖u(k)‖2α
L∞(�)

)
dt

≤ C‖u(k)‖2α−2
L∞(0,T ;L∞(�))

‖∇u(k)‖2
L2(0,T ;L2(�))

+ C‖u(k)‖2α
L∞(0,T ;L∞(�)).

Thus, the boundedness of {(u(k))α|�}k≥0 in L2(0, T ; L2(�)) follows from the boundedness of {u(k)}k≥0 in 
L∞(0, T ; L∞(�)) and L2(0, T ; H 1(�)).

It remains to prove that {v(k)}k≥0 is bounded in L2(0, T ; H 1(�)). Multiplying the equation for v(k)

∂t v
(k) − δv��v(k) + βLvv

(k) = β[ku(u
(k−1))α − kv(v

(k−1))β ] + βLvv
(k−1)

by v(k) in L2(�), we have

1

2

d

dt
‖v(k)‖2

L2(�)
+ δv‖∇�v(k)‖2

L2(�)
+ β

∫
�

Lv|v(k)|2dS

= β

∫
�

[ku(u
(k−1))α − kv(v

(k−1))β ]v(k)dS + β

∫
�

Lvv
(k−1)v(k)dS

≤ β‖ku‖∞
∫
�

(u(k−1))αv(k)dS + βC2

∫
�

v(k−1)v(k)dS (4.17)

since kv(v
(k−1))βv(k) ≥ 0 and Lv = βkvv

β−1 ≤ β‖kv‖∞‖v‖β−1
L∞(0,T ;L∞(�))

=: C2. By Young’s inequality, we obtain∫
�

(u(k−1))αv(k)dS ≤ 1

2
‖(u(k−1))α‖2

L2(�)
+ 1

2
‖v(k)‖2

L2(�)
,

and
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∫
�

v(k−1)v(k)dS ≤ 1

2
‖v(k−1)‖2

L2(�)
+ 1

2
‖v(k)‖2

L2(�)
.

Therefore, it follows from (4.17) that

d

dt
‖v(k)‖2

L2(�)
+ 2δv‖∇�v(k)‖2

L2(�)
≤ β‖ku‖∞‖(u(k−1))α‖2

L2(�)

+ β(‖ku‖∞ + C2)‖v(k)‖2
L2(�)

+ βC2‖v(k−1)‖2
L2(�)

. (4.18)

By integrating (4.18) over (0, T ), using that {(u(k))α|�}k≥0 is uniformly bounded in L2(0, T ; L2(�)) and {v(k)}k≥0 is 
uniformly bounded in L∞(0, T ; L∞(�)), we conclude that {v(k)}k≥0 is uniformly bounded in L2(0, T ; H 1(�)). This 
completes the proof of the Lemma. �
Proposition 4.7. Both a.e. pointwise limits (u∗, v∗) and (u∗, v∗) of (4.11) are solutions of (1.1).

Proof. This proposition follows from the pointwise convergence, Lemma 4.6 and the Dominated Convergence Theo-
rem. �

We are now ready to obtain the complete proof of Theorem 2.2.

Proof of Theorem 2.2. The existence of a solution is implied from Proposition 4.7. The non-negativity of solutions 
follows from the Comparison Theorem, see Lemma 2.1, since (u, v) = (0, 0) is a lower solution. To prove the unique-
ness, we assume that (u1, v1) and (u2, v2) are two solutions with the same initial data. Thanks to Proposition 4.3, 
(A, B(t, x)) is an upper solution, thus

(u1, v1) ≤ (A,B) and (u2, v2) ≤ (A,B).

Moreover, B ∈ L∞([0, T ] × �) due to (4.7), (4.5) and (2.8). We denote by w = u1 − u2 and z = v1 − v2 and have 
w(0) = 0 and z(0) = 0. Direct computations give

1

2

d

dt
(‖w‖2

� + ‖z‖2
�) + du‖w‖2

� + dv‖z‖2
� = −α

∫
�

w(ku(u
α
1 − uα

2 ) − kv(v
β

1 − v
β

2 ))dS

+ β

∫
�

z(ku(u
α
1 − uα

2 ) − kv(v
β

1 − v
β

2 ))dS.

By using (u1, v1), (u2, v2) ≤ (A, B), the mean value theorem for uα , α ≥ 1 and uβ , β ≥ 1 and Cauchy’s inequality, 
we obtain

1

2

d

dt
(‖w‖2

� + ‖z‖2
�) + du‖w‖2

� + dv‖z‖2
� ≤

∫
�

(α|w| + β|z|)(ku|uα
1 − uα

2 | + kv|vβ

1 − v
β

2 |)dS

≤ C(α,β,‖ku‖L∞,‖kv‖L∞,Aα−1,‖B‖β−1
L∞ )(‖w‖2

� + ‖z‖2
�)

≤ C(‖w‖2
� + ‖z‖2

�) + du

2
‖∇w‖2

�

where the last inequality is obtained through a modified trace inequality ‖f ‖2
� ≤ ε‖∇f ‖2

� + Cε‖f ‖2
�. As a conse-

quence, by employing the classical Gronwall inequality we conclude that w(t) = z(t) = 0 for all t ∈ [0, T ] since 
w(0) = z(0) = 0, and hence the proof of the uniqueness is completed. �
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