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Abstract

In this paper we prove that any smooth surfaces can be locally isometrically embedded into C2 as Lagrangian surfaces. As a 
byproduct we obtain that any smooth surfaces are Hessian surfaces.
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1. Introduction

A Hessian metric g is a Riemannian metric g with the property that locally g can be written as the Hessian of some 
convex potential function ϕ. A Riemannian manifold (M, g) is called Hessian if g is Hessian.

Hessian metrics play an important role in a variety of applications. They arise in the study of affine differential ge-
ometry [11,17] and special Kähler manifolds [13,15], and also in many applied sciences, for example, in optimization 
[19], statistical manifolds [2] and information geometry [3,2].

A duality plays an important role in the study of the Hessian metric. Given any affine connection D on a Rieman-
nian manifold (M, g), we can define a g-dual connection D∗ by

g(DXY,Z) = g(Y,D∗
XZ).

It is clear that the Levi-Civita connection ∇ of g is self-dual. A g-dually flat structure is a pair of g-dual connections 
which are both flat. It is not difficult to check that a metric locally admits a g-dually flat structure if and only if it is 
Hessian.

A natural and fundamental question for the Hessian structure is to ask when a Riemannian manifold is a Hessian 
manifold. This question was raised in [12,2] in the notion of g-dually flat connections. For higher dimension n ≥ 3, 
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this question has a negative answer in general. See the work of Amari and Armstrong [2] and Bryant [4]. In fact, when 
n ≥ 3, the system of partial differential equations that would need to be solved is overdetermined. When n = 2, all 
analytic surfaces are Hessian, which was also proved by Amari and Armstrong [2] and Bryant [4] independently by 
using the Cartan–Kähler theory. In this paper, we will prove the following result.

Theorem 1. All smooth surfaces are Hessian.

By Theorem 1 and the result due to Amari and Armstrong, and Bryant, the Hessian manifolds can also be seen 
as a natural higher dimensional generalization of surfaces, such as locally conformally flat manifolds and Kähler 
manifolds.

Theorem 1 follows from our study of local embedding theorem, which has its own interest.

Theorem 2. All smooth surfaces can be locally embedded in C2 isometrically as Lagrangian surfaces.

An immersed submanifold i : Mn ⊂ Cn is Lagrangian if the complex structure J maps the tangent space Tp at an 
arbitrary point p ∈ M isometrically onto the corresponding normal space NM . Equivalently, it satisfies

i∗(ω) = 0,

where ω is the canonical symplectic form of Cn.
Lagrangian submanifolds are important geometric objects and have been intensively studied in symplectic geom-

etry. See for example [22], [5] and [7]. Moore and Morvan [18] studied whether a Riemannian manifold (Mn, g)

can be embedded isometrically as a Lagrangian submanifold. See also an earlier work in [8]. With a general nega-
tive answer to higher dimensional case, Moore and Morvan used the Cartan–Kähler theory to prove that any analytic 
surfaces can be locally embedded in C2 isometrically as Lagrangian surfaces. This is a Lagrangian version of the 
Cartan–Janet Theorem for local embedding of analytic surfaces into R3. The latter states that any analytic surfaces 
can be locally embedded in R3 isometrically [16]. However, this is not known for smooth surfaces, namely whether 
all smooth surfaces can be locally embedded in R3 isometrically. There have been many interesting results concern-
ing local embedding of surfaces in R3. See [14] and references therein. Nevertheless, Poznyak [20] proved that any 
smooth surfaces can be locally isometrically embedded in R4. Theorem 2 shows that any smooth surfaces can be 
locally embedded in C2 =R

4 isometrically as a Lagrangian surface. Hence it is a refinement of the classical result of 
Poznyak [20].

The paper is arranged as follows. In Section 2, we recall the basic properties of the Hessian metric and the La-
grangian submanifold. In Section 3, we derive a partial differential system for Lagrangian surfaces and reduce the 
proof of Theorems 1 and 2 to Theorem 3. In Section 4, we prove Theorem 3 by solving a strictly hyperbolic system.

We would like to thank Pengfei Guan for helpful discussions.

2. Hessian structures and Lagrangian submanifolds

In this section, we will review the definition and properties of Hessian metrics and the Lagrangian submanifolds in 
C

n, as well as their basic properties.
A Riemannian metric g on M is called a Hessian metric (or affine Kähler) if around every point p ∈ M there is a 

neighborhood U and a flat connection D over U such that in the corresponding affine coordinates with respects to D
the metric g can be written as the Hessian of some convex potential function ϕ, i.e.,

g = Ddϕ.

In this paper we follow [1] for the definition of Hessian metric. This is slightly different from the definition in [21], 
where a flat connection D is required globally. If one uses the definition of Hessian metrics as in [21], then Theorem 1
imply that any 2-dimensional smooth surfaces is locally Hessian. The Hessian metric is also called affine Kähler 
metric by Cheng and Yau [11], since it is similar to the Kähler metric.

Lemma 1. Let (M, g) be a Riemannian manifold. Then, g is a Hessian metric if and only if for every point p ∈ M

there is a neighborhood U and a 3-tensor T ∈ �(T U ⊗ T U ⊗ T U) satisfying the following conditions:
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(1) T is totally symmetric,
(2) ∇kTij l − ∇lTijk = 0, where ∇ is the Levi-Civita connection with respect to g,
(3) Rijkl = −(TiksT

s
jl − TilsT

s
jk), where R is the Riemann curvature of g and T s

ij = gskTkij .

Proof. This is a known result, which can be found in [21] and [1]. For the convenience of the reader and the com-
pleteness of the paper, we provide a proof.

“⇐” Using T we first define a local linear connection over U by

DXY = ∇XY + T̃ (X,Y ), (2.1)

where T̃ : T U × T U → T U is determined uniquely by

g(T̃ (X,Y ),Z) = T (X,Y,Z),

or locally, T̃ k
ij = gklTlij = T k

ij . With the assumptions given in Lemma 1, we can show that D is a flat connection. In 

fact, the curvature RD can be computed locally by

RD
ijkl = Rijkl + (∇iTjkl − ∇j Tikl) +

∑
s

(TiksT
s
jl − TilsT

s
jk), (2.2)

which vanishes due to (2) and (3). From the flatness of D we can find an affine coordinate system {x1, x2, · · · , xn} on 
a (possible smaller) neighborhood Ũ of p ∈ M satisfying

D ∂

∂xi

∂

∂xj
= 0 for any i, j = 1, · · · , n. (2.3)

From (2.1) and (2.3), we have

∇ ∂

∂xi

∂

∂xj
= T k

ij

∂

∂xk
, (2.4)

which means that T k
ij equals to the Christoffel symbols of the Levi-Civita connection ∇ . Assumptions (1) and (2) 

imply

∂

∂xk
Tij l − ∂

∂xl
Tijk = 0. (2.5)

We may assume that Ũ is simply connected. From (2.5) we can use Poincaré’s Lemma to get a function uij on Ũ
satisfying

Tijk = ∂

∂xk
uij .

Using the symmetry of Tijk in i, j , we can choose uij such that uij = uji . The symmetry of T implies that ∂
∂xk uij =

∂
∂xj uik , which, in turn, implies that there is a function ui on Ũ such that uij = ∂

∂xj ui . Since uij , and then ∂
∂xj ui , are 

symmetric, there is function u on Ũ such that ui = ∂
∂xi u. With T being the Christoffel symbols of ∇ , we can show

∂gij

∂xk
= 2Tijk.

Now it is easy to check

gij = 2
∂2u

∂xi∂xj
.

Hence g is a Hessian metric.
Now it is easy to check

gij = 2
∂2u

∂xi∂xj
.

Hence g is a Hessian metric.
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“⇒”. If g is Hessian, for any point p there is a neighborhood U and a flat connection D over U such that in the 
corresponding affine coordinates with respect to D the metric g can be written as the Hessian of some convex potential 
function ϕ, i.e.,

g = Ddϕ.

Let u = 1
2ϕ. Define T ∈ �(T U ⊗ T U ⊗ T U) by the difference operator T̃ : �(T U ⊗ T U) → �(T U) between the 

flat connection D and the Levi-Civita connection ∇ of g

T̃ (X,Y ) = DXY − ∇XY.

It is easy to check that

Tijk = 1

2

∂gij

∂xk
= ∂3u

∂xi∂xj ∂xk
,

which is total symmetry. From (2.2) and the flatness of D we have

Rijkl + (∇iTjkl − ∇j Tikl) +
∑

s

(TiksT
s
jl − TilsT

s
jk) = 0. (2.6)

Since the first and the third term in (2.6) are antisymmetric in k and l, the second term should be also antisymmetric 
in k and l. This forces the second term vanishes, for it is symmetric in k and l. Therefore, (2), and then (3) hold. �

A Riemannian manifold (M, g) can be embedded into Cn as a Lagrangian submanifold, if there is an isometric 
embedding i : M → C

n such that the pull-back of the canonical symplectic form ω vanishes, i.e., i∗(ω) = 0. The 
canonical symplectic form ω is

ω =
n∑

i=1

dxi ∧ dyi .

There are several equivalent definitions of Lagrangian submanifolds. See for instance [9]. There are many works 
concerning Lagrangian submanifolds in symplectic topology. Here we are interested in its differential-geometric as-
pect. Using the embedding i we can identifying the tangential space TpM as a subspace of Cn. Let NpM be the 
normal space and J be the canonical complex structure of Cn. The property of being Lagrangian is equivalent to 
JTpM = NpM for all p ∈ M . Let H : T M ⊗ T M → NM be the second fundamental form of the embedding; 
namely,

H(X,Y ) = (∇XY)⊥,

where ⊥ :Cn → NpM is the orthonormal projection. From H , we define a 3-tensor h ∈ �(T M ⊗ T M ⊗ T M) by

h(X,Y,Z) = 〈H(X,Y ), JZ〉. (2.7)

Lagrangian submanifolds have the following crucial properties.

Lemma 2. Let (M, g) be a Riemannian manifold, which is embedded in Cn isometrically as a Lagrangian submani-
fold, and h be the 3-tensor defined by (2.7). Then,

(1) h is total symmetric,
(2) ∇khij l − ∇lhijk = 0, where ∇ is the Levi-Civita connection with respect to g,
(3) Rijkl = hiksh

s
jl − hilsh

s
jk , where R is the Riemann curvature of g.

This result is also well-known. We will provide a proof in Section 3 below, for the convenience of the reader.
It is clear that the conditions (1) and (2) in Lemma 2 are the same as those in Lemma 1, while (3) has a difference 

sign. Hence we can study these two problems, the existence of Hessian metrics and Lagrangian local embedding 
problem, with the same approach. In fact, we will prove the following result in the next two sections.
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Theorem 3. Let (�, g) be a given 2-dimensional surface with a Riemannian metric g. For ε ∈ {−1, 1} and any point 
p ∈ � there exists a neighborhood U and a 3-tensor T ∈ �(T U ⊗ T U ⊗ T U) satisfying the following conditions:

(1) T is total symmetric,
(2) ∇kTij l − ∇lTijk = 0,
(3) Rijkl = ε(TiksT

s
jl − TilsT

s
jk).

With Theorem 3 we are ready to prove the main results in this paper.

Proof of Theorem 1 and Theorem 2. From Theorem 3, we know that locally we have a 3-tensor T satisfying 
conditions (1)–(3) in Lemma 1. Then by Lemma 1 we know that g is Hessian.

From Theorem 3, we know that locally we have a 3-tensor h satisfying conditions (1)–(3) in Lemma 2. With a 
Frenet type theorem for Lagrangian surfaces, Theorem A in [10], we can find an Lagrangian embedding with the 
second fundamental form h = T . �

To end this Section, we remark that for any Hessian manifold (M, g) its tangential bundle T M with a canonical 
metric gT is Kähler and (M, g) can be seen as a Lagrangian submanifold in T M . See Proposition 2.6 in [21]. By 
Weinstein’s tubular neighborhood theorem, any Lagrangian submanifold in a symplectic manifold can be locally seen 
as a Lagrangian submanifold in Cn symplectically.

3. A partial differential system for Lagrangian surfaces

In this Section we first prove Lemma 2 in the case n = 2. Then we rewrite conditions (1)–(3) as a Lagrangian 
Gauss–Codazzi system, which will be solved in the next Section.

Let M2 be a surface. Let p ∈ M2 a point and U a local coordinate system of M around p. The metric of the surface 
M2 is

ds2 = Edu2
1 + 2Fdu1du2 + Gdu2

2, u = (u1, u2) ∈ U

locally. Then, M2 is locally isometrically embedded in C2 = R
4 if around any point p ∈ M there is an isometric 

embedding i = (x, y, z, w) into C2 =R
4 as a Lagrangian satisfying the following Lagrangian property

i∗(ω) = 0, (3.1)

where ω is the standard sympletic form on R4 =C
2, i.e.,

ω = dx ∧ dy + dz ∧ dw.

The equation for i being an isometric embedding is

Edu2
1 + 2Fdu1du2 + Gdu2

2 = dx2 + dy2 + dz2 + dw2. (3.2)

Equation (3.1) can be rewritten as

det

(
xu1 xu2

zu1 zu2

)
+ det

(
yu1 yu2

wu1 wu2

)
= 0. (3.3)

Now let r : U → R4 denote the embedding i and r1 = ∂r
∂u1

and r2 = ∂r
∂u2

. Set

n1 = J r1, n2 = J r2.

If r is a Lagrangian embedding, then n1 and n2 are normal vector fields. The first fundamental form I of r is

I = dr · dr = gij duiduj ,

and the second fundamental form is

II = hijkduidujduk,

where hijk = ni · rjk . Let (gij ) be the inverse of (gij ) and set g = g11g22 − g2 . It is clear that
12
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(
g11 g12

g21 g22

)
= 1

g

(
g22 −g12

−g21 g11

)
.

The Christoffel symbol is

�k
ij = 1

2
gkl(gil,j + glj,i − gij,l),

and the curvature tensor is

Rijkl = glm(�m
ij,k − �m

ik,j + �n
ij�

m
nk − �n

ik�
m
nj ).

Since {r1, r2} is a basis of the tangential bundle and {n1, n2} a basis of the normal bundle, we can express rjk as

rjk = �l
jkrl + hl

jknl . (3.4)

It is trivial to see that �k
ij and hk

ij := gklhlij are symmetric in i, j . It is also easy to check

nij := ∂ni

∂uj

= −hl
ij rk + �k

ij nk,

the Weingarten formula. For Lagrangian r, it is well-known that hijk = hikj . This follows from

nij · rk = −ni · rkj = −ni · rjk

= ri · J rjk = −rik · J rj = rk · nji .

It follows, with the symmetry of hk
ij in i, j , that

hijk = hjik = hikj , (3.5)

i.e., hijk is totally symmetric.
Define a 1-form α = Hidxi , where Hi = gjkhijk . We can show that α is a close form, i.e.,

∇iHj = ∇jHi,

which is obtained from the Codazzi equation

∇ihjkl = ∇j hikl . (3.6)

Here ∇ihjkl is the covariant derivative defined by

∇ihjkl = ∂

∂xi
hjkl − �m

ij hmkl − �m
ikhjml − �m

il hjkm.

Another important relation is the Gauss equation

Rijkl = gnmhiknhmjl − gnmhilnhmjk. (3.7)

These two equations can be proved by a computation as follows. Differentiating (3.4), we get

rijk = �l
ij,krl + �l

ij rlk + hl
ij,knl + hl

ij nlk

= (�l
ij,k + �m

ij �l
mk − gmlhn

ij hnkm)rl

+ (�m
ij hl

mk + hl
ij,k + hn

ij�
l
nk)nl .

Since rijk = rikj , we have (3.7) and (3.6). This provides a proof of Lemma 2, in the case n = 2. For the general 
dimension, it is completely the same.

Now we rewrite the Gauss equation and the Codazzi equation. Remember that locally we have a metric

g = Edu2
1 + 2Fdu1du2 + Gdu2

2.

Let K be its Gaussian curvature, which is determined by g, due to Gauss’ Theorema Egregium. Set

L = h111,M = h112,N = h122,O = h222.
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By the symmetry of hijk , other hijk
′s are determined by L, M, N, O . The second fundamental form is given by

II = Ldu3
1 + 3Mdu2

1du2 + 3Ndu1du2
2 + Odu3

2.

Now we write the Codazzi equation (3.6) and the Gauss equation (3.7) in terms of L, M , N and O as follows. A direct 
computation yields

∇2h111 = Ly − 3�l
21hl11

= Ly − 3�1
21L − 3�2

21M,

∇1h211 = Mx − �l
12hl11 − 2�l

11h2l1

= Mx − �1
12L − (�2

12 + 2�1
11)M − 2�2

11N,

∇2h211 = My − �l
22hl11 − 2�l

12h2l1

= My − �1
22L − (�2

22 + 2�1
12)M − 2�2

12N,

∇1h122 = Nx − �l
11hl22 − 2�l

12h1l2

= Nx − 2�2
12M − (�1

11 + 2�2
12)N − �2

11O,

∇2h122 = Ny − �l
21hl22 − 2�l

22h1l2

= Ny − 2�1
22M − (�1

21 + 2�2
22)N − �2

21O,

∇1h222 = Ox − 3�l
12hl22

= Ox − 3�1
12N − 3�2

12O.

From (3.6) we have

Ly − Mx = 2�1
12L + 2(�2

21 − �1
11)M − 2�2

11N,

My − Nx = �1
22L + (�2

22 + 2�1
12 − 2�2

12)M

+ (2�2
12 − �1

11 − 2�2
12)N − �2

11O,

Ny − Ox = 2�1
22M + 2(�2

22 − �1
12)N − 2�2

12O.

(3.8)

The Gauss equation is expressed by

(EG − F 2)K = G(LN − M2) − F(LO − MN) + E(MO − N2). (3.9)

We call equations (3.9) and (3.8) Lagrangian Gauss–Codazzi system. Our aim is to solve this system locally, for a 
given metric g, i.e., E, F and G and the corresponding Gaussian curvature K .

4. A local solution of the Lagrangian Gauss–Codazzi system

In this section, we prove the existence of a local solution of the Lagrangian Gauss–Codazzi system by solving (3.8)
and (3.9).

Theorem 4. Let g be a smooth metric in a neighborhood of the origin in R2. Then, the Lagrangian Gauss–Codazzi 
system (3.8)–(3.9) admits a smooth solution in a neighborhood of the origin.

Proof. We divide the proof into several steps.
Step 1. We note that (3.8) and (3.9) involve three differential equations and one algebraic equation for four unknown 

functions. We will reduce (3.8) and (3.9) to a system of three differential equations for three unknown functions. To 
this end, we eliminate O from (3.8). By (3.9), we have
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O = 1

EM − FL

[
(EG − F 2)K + G(M2 − LN) + EN2 − FMN

]
. (4.1)

A straightforward calculation yields

Ox = 1

EM − FL

[
(FO − GN)Lx + (2GM − FN − EO)Mx + (2EN − FM − LG)Nx

]
+ 1

EM − FL

[
((EG − F 2)K)x + (N2 − OM)Ex + (LO − MN)Fx + (M2 − LN)Gx

]
.

We now substitute Ox in the third equation in (3.8) and rewrite the resulting system for L, M and N . Set

U = (L,M,N)T .

Then, U satisfies

Uy + A(U,x, y)Ux + B(U,x, y) = 0, (4.2)

where

A = −
⎛
⎝ 0 1 0

0 0 1
a1 a2 a3

⎞
⎠ ,

B = (b1, b2, b3)
T ,

with

a1 = FO − GN

EM − FL
, a2 = 2GM − FN − EO

EM − FL
, a3 = 2EN − FM − LG

EM − FL
, (4.3)

and

b1 = −2�1
12L − 2(�2

21 − �1
11)M + 2�2

11N,

b2 = −�1
22L − (�2

22 + 2�1
12 − 2�2

12)M − (2�2
12 − �1

11 − 2�2
12)N + �2

11O,

b3 = 1

EM − FL

[
((EG − F 2)K)x + (N2 − OM)Ex + (LO − MN)Fx + (M2 − LN)Gx

]
− 2�1

22M − 2(�2
22 − �1

12)N + 2�2
12O.

We should note that the explicit expression of B(U) is not important. We also point out that O in A and B is expressed 
by (4.1).

In the following, we will solve (4.2) in a neighborhood of the origin in R2. Set

F(U) = Uy + A(U,x, y)Ux + B(U,x, y). (4.4)

Step 2. Near the origin, we choose a geodesic coordinate system such that

g = Edx2 + dy2, (4.5)

where E(·, 0) = 1. In other words, F ≡ 0 and G ≡ 1. We claim that there exists a smooth function U0 = U0(x, y)

in a neighborhood of the origin such that F(U0) = O(y) and the matrix A(U0(x, y), x, y) has three distinct real 
eigenvalues for any (x, y) close to the origin.

By (4.1) and (4.3), we have

O = 1

EM

[
EK + M2 − LN + EN2],

and

a1 = − N

EM
, a2 = 2M − EO

EM
, a3 = 2EN − L

EM
.

By substituting the expression of O in a2, we get

a2 = M2 − EK

2
+ ELN − E2N2

2 2
.

EM E M
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Set

α = N

EM
, β = L

EM
, k = M2 − EK

EM2
. (4.6)

Then,

a1 = −α, a2 = k + Eαβ − E2α2, a3 = 2Eα − β. (4.7)

To calculate the eigenvalues of A, we note

det(λI − A) = λ3 − a3λ
2 + a2λ − a1.

This polynomial has three distinct real roots if and only of

�(U) ≡ 1

27

(
a2 − a2

3

3

)3 + 1

4

(
a1 − 1

3
a2a3 + 2

27
a3

3

)2
< 0. (4.8)

By substituting (4.7) in (4.8), we get

272� = (3k − 7E2α2 + 7Eαβ − β2)3

+ [ − (
27

2
+ 9kE)α + 9

2
kβ + 17E3α3 − 51

2
E2α2β + 21

2
Eαβ − β3]2

.

We now expand 272� as a polynomial of α. The leading term for α is given by

(−73 + 172)E6α6,

with a negative coefficient. Therefore, � < 0 if α is sufficiently large relative to β and k.
Take a large constant α0. Set

U00 = (0,1, α0)
T ,

and

U0(x, y) = U00 + yU01(x), (4.9)

where U01(x) is a vector-valued function of x to be determined. Recall E = 1 on y = 0. Then,

L = 0, M = 1, N = α0 on y = 0,

and hence, by (4.6),

α = α0, β = 0, k = 1 − K(·,0) on y = 0.

Therefore, �(U0) < 0 on y = 0 and hence for small y. Then, A(U0) has three distinct real eigenvalues for small y.
Last, we substitute (4.9) in (4.4) and expand F(U0) in terms of y. Then, we can find U01 so that the expression 

corresponding to y0 in F(U0) vanishes. In fact,

U01 = −B(U00, ·,0).

With this choice of U01, we have that F(U0) = O(y) and the matrix A(U0(x, y), x, y) has three distinct real eigen-
values for any (x, y) close to the origin, as claimed.

Step 3. We are ready to solve F(U) = 0 near the origin. Without loss of generality, we assume that g is a smooth 
metric defined in R × (−ε0, ε0), for some ε0 > 0, given by (4.5) with E = 1 for |x| ≥ 1. By Step 2, there exists a 
smooth function U0 = U0(x, y) in R × (−ε0, ε0) such that

A(U0(x, y), x, y) has three distinct real eigenvalues for any (x, y) ∈R× (−ε0, ε0),

and

F(U0) = yF0(x, y),

for some smooth function F0 in R × (−ε0, ε0).
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Take ε > 0 sufficiently small and set

x = εs, y = εt,

and

U(x, y) = U0(x, y) + εV (s, t).

Then,

Ux = U0,x + Vs, Uy = U0,y + Vt ,

and

F(U) = Vt + A(U0 + εV )Vs

+F(U0) + [
A(U0 + εV ) − A(U0)

]
U0,x + B(U0 + εV ) − B(U0).

We now write this as

G(V , ε) = Vt + [
C0(s, t) + C1(V , s, t, ε)

]
Vs + D(V, s, t, ε),

where C0 and C1 are 3 × 3 matrices and D is a 3-vector, all smooth in their arguments, such that,

C0(s, t) has three distinct real eigenvalues for any (s, t) ∈ R× (−1,1), (4.10)

and

C1(·, ·, ·,0) = 0, D(·, ·, ·,0) = 0.

In particular, G(V , 0) = 0 is a strictly hyperbolic linear system in R × (−1, 1).
For any integer m ≥ 5 and any 3-vector E ∈ Hm(R × (−1, 1)), consider

Vt + C0(s, t)Vs = E in R× (−1,1),

V (·,0) = 0 on R.
(4.11)

Thanks to (4.10), this is the Cauchy problem for the strictly hyperbolic linear system G(·, 0) = 0. By the standard 
theory, there exists a solution V ∈ Hm(R × (−1, 1)) of (4.11) and

‖V ‖m ≤ c‖E‖m,

where c is a positive constant independent of E and V , and ‖ · ‖m is the Hm-norm in R × (−1, 1).
For ε > 0 small, we consider the following Cauchy problem for V = V (s, t):

G(V , ε) = 0 in R× (−1,1),

V (·,0) = 0 on R.
(4.12)

By a standard iteration or the contraction mapping principle, (4.12) admits a smooth solution in R × (−1, 1) for any 
ε > 0 sufficiently small. Refer to the proof of Theorem 4.2.1 in [14] for details.

In conclusion, for any fixed ε > 0 sufficiently small, F(U) = 0 admits a smooth solution U in Bε ⊂R
2. �

Proof of Theorem 3. The case ε = 1 was proved in Theorem 4. For the case ε = −1, the proof is similar. The only 
difference is that (3.9) has a different sign, which results in minor changes. �
Remark. The local embedding of smooth surfaces into R4 obtained by Poznyak [20] is not Lagrangian. Nevertheless, 
it is an interesting question to ask whether one can modify his proof to give another proof of Theorem 2.

Remark. One can certainly consider the Hessian metric and the Lagrangian embedding problem for metrics g of class 
Ck,α . We leave this problem to the interested reader.

Remark. With a similar method, we can also prove that any smooth surface can be locally embedded isometrically 
into the Heisenberg group H2 as a Legendrian surface. For the Legendrian surfaces, Heisenberg group H2 and related 
analysis, see [6].
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