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Abstract

We investigate the existence of non-constant uniformly-bounded minimal solutions of the Allen–Cahn equation on a Gromov-
hyperbolic group. We show that whenever the Laplace term in the Allen–Cahn equation is small enough, there exist minimal 
solutions satisfying a large class of prescribed asymptotic behaviours. For a phase field model on a hyperbolic group, such so-
lutions describe phase transitions that asymptotically converge towards prescribed phases, given by asymptotic directions. In the 
spirit of de Giorgi’s conjecture, we then fix an asymptotic behaviour and let the Laplace term go to zero. In the limit we obtain 
a solution to a corresponding asymptotic Plateau problem by �-convergence.
© 2017 
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1. Introduction

Consider a group G with a fixed finite symmetric set of generators S. The Cayley graph C(G, S) of G with 
respect to S with the word metric is a complete metric space. We assume that G is word hyperbolic, i.e. there exists a 
δ > 0, such that C(G, S) is a δ-hyperbolic metric space in the sense of Gromov. There is a natural way of defining the 
boundary at infinity of G, denoted by ∂G, such that the space G ∪∂G metrized by the so-called visual metric becomes 
a compact metric space. This is explained more precisely in section 2, where we also present some basic properties of 
these objects, together with some references to the relevant literature. We study the Allen–Cahn equation on G.

The Allen–Cahn equation is defined as follows. Let V : R → R be a Morse function with two absolute minima 
c0, c1 ∈R, with value bounded away from all other critical values, and let us denote for every function x : G → R the 
discrete Laplace operator by
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(�x)g :=
∑
s∈S

(xgs − xg) .

The Allen–Cahn equation for any ρ > 0 is then given by

ρ(�x)g − V ′(xg) = 0, for all g ∈ G. (1.1)

The equation (1.1) comes with a variational structure given by the formal action functional

W(x) :=
∑
g∈G

∑
s∈S

(ρ

4
(xgs − xg)

2 + V (xg)
)

, (1.2)

which has a well defined gradient ∇gW(x) = ρ(�x)g − V ′(xg) (see also section 3). In the literature, one often takes 

the potential to be V (y) := 1

4
(1 − y2)2. As is usual in the calculus of variation, we call an entire solution x : G → R

of (1.1) a global minimiser, if it minimises the action (1.2) globally, i.e., if for every finitely supported variation 
v : G → R of x

W(x + v) ≥ W(x)

(this is explained more precisely in Definition 3.1).
The first goal of this paper is to construct a large class of uniformly bounded global minimisers of the Allen–Cahn 

equation (1.1), which have prescribed asymptotic behaviour, tending to either c0 or c1 along infinite geodesic rays 
in G.

For technical reasons, we only consider the equation (1.1) when the constant ρ is sufficiently small. In this case, as 
explained in section 3.2, solutions of (1.1) can be obtained as continuations from the so-called anti-continuum limit 
by an implicit-function-type argument. They are in the supremum norm close to a function x0 : G → R, such that for 
every g ∈ G, x0

g = c for some critical point c of V which may depend on g. It follows from the results in section 3 that 
if ρ is sufficiently small and x is a global minimiser such that xg is contained in the interval [c0, c1], then for every 
g ∈ G the value xg is uniformly close to either c0 or c1. This observation simplifies our analysis of global minimisers.

Our main result, given in Theorem 4.11, is to construct global minimisers of the Allen–Cahn equation (1.1) with 
such small constant ρ, which have prescribed asymptotics. More precisely, we solve the minimal Dirichlet problem at 
infinity, defined as follows.

Definition 1.1. Given a set D0 ⊂ ∂G with D̊0 = D0, let D1 := ∂G\D0. We say that a global minimiser x solves the 
minimal Dirichlet problem at infinity for (1.1) on D0 and D1, if the following holds. For every ξ ∈ D̊j where j ∈ {0, 1}
and for every ε > 0, there exists a neighbourhood Oξ ⊂ G ∪ ∂G of ξ in the topology given by the visual metric, such 
that |xg − cj | < ε for all g ∈ Oξ ∩ G.

The solutions that we obtain by solving the minimal Dirichlet problem at infinity, can be used to solve a version of 
the asymptotic Plateau problem. This is the content of section 5. We show that given two sets D0, D1 ⊂ ∂G, which 
are as in Definition 1.1, there exist corresponding sets D0 ⊂ G and D1 ⊂ G with D0 ∩ D1 = ∅ and D0 ∪ D1 = G, 
which asymptotically converge to D̊0 and D̊1, respectively, and such that they satisfy a particular minimality property. 
More precisely, the number of edges in the Cayley graph C(G, S), which connect D0 to D1 is minimal with respect 
to finite perturbations. See Definition 5.1 and Theorem 5.2 for the exact statement.

1.1. Motivation

The Allen–Cahn equation first appeared in the study of the phase field models on the Euclidean space and gained 
its popularity in geometry due to the work on de Giorgi’s conjecture, which connects it to the study of minimal 
hyperplanes. In both cases one is interested in minimal solutions of (1.1) with small constants ρ.

In general, two obvious global minimisers of the Allen–Cahn equation exist, namely, x ≡ c0 and x ≡ c1. In the 
study of entire solutions, the interesting research questions revolve around describing the set of global minimisers 
that are (due to the ellipticity of the differential operator) trapped between the graphs of c0 and c1 and asymptotically 
connect them. When one considers the Allen–Cahn equation on hyperbolic spaces, one expects to have many more 
such global minimisers than in the Euclidean setting.



B. Mramor / Ann. I. H. Poincaré – AN 35 (2018) 687–711 689
This is specifically motivated by the Laplace equation, the prototypical case of a variational elliptic problem. In 
this case it is well known that all harmonic functions are global minimisers. In the hyperbolic setting, one approach 
to obtain non-constant entire solutions is the extensively studied Dirichlet problem at infinity for harmonic functions. 
Contrary to the Euclidean case, where all entire harmonic functions are constant, the solutions to the Dirichlet problem 
at infinity on hyperbolic metric spaces give us a wealth of harmonic functions with asymptotic behaviour prescribed 
by a function on the boundary at infinity. On manifolds with pinched negative sectional curvature such solutions have 
first been constructed by Choi in [14] and by Anderson in [4], by the method of barriers. They solved the Dirichlet 
problem at infinity given by any continuous function on the boundary at infinity. Further solutions were obtained by 
Sullivan in [36,37] for more general boundary conditions using a probabilistic approach. In the context of hyperbolic 
groups, this problem was first studied by Ancona in [2]. There are numerous generalisations of these results, on 
one hand focusing on more general operators which have all constant functions as solutions, and on the other hand 
focusing on more general underlying spaces. For a recent state of the art result see e.g. [26]. An important observation 
for us is that neither the approach of barriers, which uses the foliation by constants in a crucial way, nor a probabilistic 
approach using random walks, are applicable to solving the Allen–Cahn equation.

The focus on finding minimal solutions and not general solutions is on one hand driven by physical motivation, 
where one searches for energy-minimising states in the phase field models, and on the other hand by the work on 
de Giorgi’s conjecture, relating minimal solutions to minimal hypersurfaces. Another reason to focus on global min-
imisers and not general solutions is the observation, explained in detail in section 3.2, that for small enough constants 
ρ > 0 in the Allen–Cahn equation (1.1) on hyperbolic groups, one can easily find a wealth of solutions via a version 
of the implicit function theorem. Thus the only difficult question is whether non-constant global minimisers exist.

For hyperbolic manifolds with constant sectional curvature similar results to those presented in this paper have been 
obtained by Pisante and Ponsiglione in [35], by Birindelli and Mazzeo in [10], and by Mazzeo and Saez in [32]. In 
their proofs the symmetry of the hyperbolic space plays a crucial role and allows them to reduce the PDE to an ODE. 
Other existence results about minimisers for more general nonlinear variational elliptic operators on quite general 
groups have been discussed in [12,29], but they discuss minimisers on the abelianisation of the group, which are not 
necessarily global minimisers of the group itself. For hyperbolic groups we thus had to develop a new approach, which 
is based on the variational structure of the equation and is in the spirit of de Giorgi’s conjecture.

To solve the minimal Dirichlet problem at infinity we construct global minimisers with prescribed asymptotic 
behaviour as limits of functions xn for n ∈ N, where for every n, xn is a minimal solution of a Dirichlet problem on a 
ball of radius n, with boundary values given by a function with values in c0 and c1. The main problem is then to show 
that the functions xn do not converge to one of the constant solutions c0 or c1. We conjecture that this happens in the 
case that the group G is amenable and the interior of D0 is quite small compared to the interior of D1, with respect to 
the Patterson–Sullivan measure (see section 2.3.2). Note that the choice of a small constant ρ is not necessary for the 
existence of minimisers xn, which in general follows from the coercivity of the equation (1.1), as noted in Lemma 3.5. 
The condition that ρ is small, however, gives us very precise control of the behaviour of minimisers. It might be 
possible to obtain similar results for general constants ρ, but such results are not yet within our reach.

Using the solutions obtained by solving the minimal Dirichlet problem at infinity, we solve a corresponding asymp-
totic Plateau problem using a simple version of �-convergence for vanishing ρ. In the setting of riemannian manifolds, 
the asymptotic Plateau problem poses the question of finding area-minimising submanifolds with prescribed asymp-
totic behaviour. In the Euclidean case, such solutions are fairly restricted, as showed by the work on de Giorgi’s 
conjecture. Indeed, in dimension smaller than nine, all such solutions are affine hyperplanes (see [21] for an overview 
of related results). For hyperbolic manifolds, on the other hand, the class of solutions is vastly greater. The first results 
in this direction were obtained by Anderson for the hyperbolic space Hn in [3]. For Gromov-hyperbolic rieman-
nian manifolds the existence of solutions to the asymptotic Plateau problem was proved by Lang in [30], based on a 
Morse-type lemma for quasi-minimal hypersurfaces given by Bangert and Lang in [9].

In the special case of codimension one, absolutely minimal submanifolds are closely related to globally minimal 
solutions of the Allen–Cahn equation. It was conjectured by de Giorgi that such submanifolds may be obtained as 
level sets of minimal solutions (see [23] for a proof of this statement on Riemannian surfaces). Another approach to 
obtain minimal hypersurfaces from minimal solutions is �-convergence with the parameter ρ → 0, which was first 
developed in the Euclidean setting by Modica in [33] (see also [20]). The same approach was taken for the hyperbolic 
space in [35]. We extend these results to hyperbolic groups, by replacing the concept of minimal hypersurfaces of 
codimension one by an appropriate notion of minimality of the boundaries of sets.
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1.2. Outline

Our paper and proofs are structured as follows. Section 2 is focused on hyperbolic groups. We review some ba-
sics about their boundary and growth, and define geometric objects called cones, which generate a “cone topology” 
equivalent to the visual metric topology, and which is similar to the cone topology used in the study of the Dirichlet 
problem at infinity in [14]. In section 3 we discuss the variational structure of the Allen–Cahn equation, the notion 
of minimality, and the existence of solutions via the so-called anti-continuum limit the proof of which is contained 
in the appendix. In section 4, this allows us to split the group G in two subsets, one where the global minimiser is 
approximately c0, and the other where it is approximately c1. The set of points of G, which are at most distance one to 
both of these sets is called the transition set and is in a particular sense quasi-minimal. We use growth estimates and an 
isoperimetric profile estimate for the hyperbolic group to show that this transition set extends uniformly towards the 
identity. The bounds on the distance from the set to the identity depend in principle only on the hyperbolicity constant 
δ and the largest radius of a ball at infinity which is fully contained in D0 or D1. This allows us to prove the existence 
of minimisers with prescribed asymptotics. Moreover, the fact that the bound is independent of the constant ρ lets us 
take the limit ρ → 0 and use a �-convergence type of argument to solve the asymptotic Plateau problem in section 5.
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2. Hyperbolic groups

In this section we gather some basic facts about hyperbolic groups. The general framework of hyperbolic groups 
was first introduced by Gromov in [24] and further developed in [25]. There exists an extensive literature on the 
subject. For more thorough overviews, we refer the reader to [1,16,19]. Typical examples are fundamental groups of 
manifolds with strictly negative sectional curvature and free groups.

Let K = C(G, S) denote the Cayley graph of a group G, which has a finite symmetric set of generators S. Setting 
the length of the edges to one, the word metric d(·, ·) is defined as follows: for every two points g, g̃ ∈ G, d(g, g̃) is 
the least length of a path in K connecting g and g̃. A curve γg,g̃ from g to g̃ of length l(γg,g̃) = d(g, g̃) is called a 
geodesic and needs not to be unique (the analogous concept is a minimal geodesic in the riemannian case). With the 
word metric, the space (K, d) becomes a complete geodesic metric space, i.e. geodesics between any two points exist. 
We denote for every g ∈ G its word length by |g| := d(id, g).

We assume that G is word-hyperbolic, that is, we assume that (K, d) is a δ-hyperbolic metric space, for some 
constant δ > 0. One way to describe such spaces is to say that every geodesic triangle (i.e. a collection of three points 
g1, g2, g3 ∈ G together with three geodesics γg1,g2 , γg2,g3, γg3,g1 ⊂ K) is δ-slim (i.e. every geodesic “side” is in the 
δ-neighbourhood of the other two geodesic sides). Furthermore, we assume that G is non-elementary, i.e. G is not 
finite and does not contain an infinite cyclic subgroup of finite index.

Hyperbolicity is independent of the generating set, but the topology of K is not. For this paper we thus choose a 
fixed symmetric generating set S, i.e. S = S−1. The distance d on the Cayley graph K restricts to a distance on the 
group G ⊂K, which we also call d(·, ·).

It is well known that non-elementary word-hyperbolic groups exhibit exponential growth and that they are non-
amenable. The precise statements about their behaviour which we need in our proofs, together with some references 
to the relevant literature, are collected below.

2.1. Boundaries of sets and the isoperimetric profile

Let us define for a set B ⊂ G its “outer” and its “inner” set

Bout := {g ∈ K | gs ∈ B for some s ∈ S} and Bin := {g ∈ B | gs ∈ B for all s ∈ S}.
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Furthermore, we define the outer and the inner boundaries of B by ∂outB := Bout\B and ∂ inB := B\Bin and the 
“full” boundary by ∂ fB := ∂outB ∪ ∂ inB. Since d(g, h) = 1 if and only if h = gs for some s ∈ S (then obviously also 
g = hs−1), an equivalent definition for the set Bout is Bout = {g ∈K |d(g, B) ≤ 1}, from which it easily follows that

∂out(B ∩D) = (∂outB ∩Dout) ∪ (Bout ∩ ∂outD) (2.3)

for any two set B, D ⊂ G.
The following almost linear isoperimetric inequality holds. It was first proved by Coulhon in [18], where the author 

investigates the behaviour of random walks on hyperbolic groups.

Lemma 2.1. There exists a constant k0 such that for every finite set B ⊂ G we have

#B
log(#B)

≤ k0 · #(∂outB) ,

where #B denotes the number of points contained in the set B.

2.2. The boundary at infinity

Nice overviews of results on the boundary at infinity can be found in [27] and [11].

2.2.1. Definition of the boundary at infinity
A geodesic ray is given by an isometry γ : [0, ∞) → K, where [0, ∞) is equipped with the standard metric. On 

δ-hyperbolic spaces, one may define an equivalence relation on the set of geodesic rays, by γ1 ∼ γ2, if there exists 
a C ∈ R such that d(γ1(t), γ2(t)) ≤ C for all t ∈ R+. One then defines the boundary at infinity ∂K as the set of 
such equivalence classes of rays. Defining K := K ∪ ∂K, we may for every point ξ ∈ ∂K, extend any ray γ ∈ ξ

to γ : [0, ∞] → K, by defining γ (∞) = ξ . It then holds that for every g ∈ K, ξ ∈ ∂K there exists a geodesic ray 
γg,ξ ⊂ K, such that γg,ξ (0) = g and γg,ξ (∞) = ξ . Moreover, for any two points ξ, μ ∈ ∂K there exists an (infinite) 
geodesic γξ,μ ⊂ K, connecting these two points at infinity, i.e. the ray γξ,μ|[0,−∞) belongs to the equivalence class ξ
and γξ,μ|[0,∞) to μ. With these definitions, geodesic triangles in K are also δ̃ slim for a uniform constant δ̃ (see [27]). 
For G, S as above, we define the boundary ∂G of the group G by ∂G := ∂K.

2.2.2. The visual metric
The so-called visual metric makes K into a compact geodesic metric space. It is defined for every y, ỹ ∈ K by

dε(y, ỹ) := inf
py,ỹ

l(py,ỹ )∫
0

e−ε·d(id,py,ỹ (s))ds ,

where py,ỹ ⊂ K is a path from y to ỹ. Let ξ, μ ∈ ∂K and let y ∈ γ1 where [γ1] = ξ and ỹ ∈ γ2 where [γ2] = μ. 
It follows from δ-hyperbolicity that there exists an ε0 > 0, such that for all 0 < ε < ε0, the limit of dε(y, ỹ) for 
|y|, |ỹ| → ∞ is uniformly bounded and that it depends only on the equivalence classes ξ and μ. This gives us for 
every 0 < ε < ε0 a metric on K, for which there exists a constant λ > 0, such that for all ξ, μ ∈ ∂K and every infinite 
geodesic γξ,μ

λ−1e−εd(id,γξ,μ) ≤ dε(ξ,μ) ≤ λe−εd(id,γξ,μ). (2.4)

Obviously, the restriction of dε to G ∪ ∂G, gives us also a compact metric space. We shall use the following 
notations for balls in G, ∂G, or in G ∪∂G. For every n ∈ N and r ≥ 0, and for every g0 ∈ G, ξ0 ∈ ∂G and y0 ∈ G ∪∂G

define

Bn := {g ∈ G | |g| ≤ n}, Bn(g0) := {g ∈ G | d(g0, g) ≤ n} and Sn := {g ∈ G | |g| = n},
Bε

r (ξ0) := {ξ ∈ ∂G | dε(ξ0, ξ) ≤ r},
Bε

r (y0) := {y ∈ G ∪ ∂G | dε(y0, y) ≤ r}.
(2.5)
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2.3. Growth of the group and the topology of the boundary

The following section describes some results on the growth and the entropy of (G, S). Furthermore, it introduces 
the so called Patterson–Sullivan measure, a doubling measure with respect to the visual metric, which is supported 
on the boundary at infinity, and a concept of dimension of the boundary at infinity. These results are mostly due to 
Coornaert, based on results of Cannon, see e.g. [22] or [11] for nice overviews.

2.3.1. Entropy and Cannon’s theory
Let (G, S) be as above. The entropy of the group G with the generating set S is then defined by

h(G,S) := lim sup
n→∞

1

n
log(#(Bn)).

An estimate for the entropy can be obtained by analysing the formal growth function for (G, S), which is defined 
by s(t) := ∑

n(#Sn)t
n. Cannon’s methods from [13], where the word problem for discrete co-compact hyperbolic 

space groups is solved, show that general hyperbolic groups may be viewed as finite state automata, which implies 
that s(t) is rational. As a consequence, a non-elementary word-hyperbolic group G with the generating set S grows 
uniformly exponentially, i.e. there exists a C > 0, an integer k ≥ 0, and an h > 0, such that

C−1eh·nnk ≤ #(Bn) ≤ Ceh·nnk. (2.6)

In particular we obtain that h(G, S) = h > 0.

2.3.2. The Patterson–Sullivan measure
Using the entropy of the group and the methods that Sullivan and Patterson developed in [36] and [34], Coornaert 

investigated in [15] the topological properties of ∂G. He defined a probability measure ν, supported on ∂G, as follows. 
Define for every s > h = h(G, S) a probability measure νs supported on G, as a sum of Dirac measures at every g ∈ G

with weights

e−s|g|∑
g∈G e−s|g| .

Using the uniform estimate (2.6) for the growth rate of the size of Bn and by compactness of the space of probability 
measures on G ∪ ∂G, he argued that there exists a limit measure ν for s → h, which is supported on ∂G. This is re-
ferred to as the Patterson–Sullivan measure. The boundary at infinity with the visual metric and the Patterson–Sullivan 
measure is a metric measure space. Coornaert showed furthermore that for all g ∈ G the pullback g∗ν is absolutely 
continuous with respect to ν and that the Radon–Nikodym derivative d(g∗ν)/dν is uniformly bounded. For this, he 
developed in [17] a theory about horospheres in hyperbolic groups and their correspondence to the boundary at infin-
ity. Roughly put, the bound behaves like e−h·d(g,H), where H is a horosphere corresponding to the appropriate point 
at infinity. This uniform bound can be used to analyse the correspondence between the measure and the metric.

2.3.3. Metric properties of the Patterson–Sullivan measure
Still following Coornaert in [15], the behaviour of the measure ν with respect to the ε-metric on ∂G can be further 

analysed via the concept of a shadow, originally due to Sullivan.

Definition 2.2. For every R > 0 and g ∈ G we define the R-shadow of g from id by

S(g,R) := {ξ ∈ ∂G | ∀γ ∈ ξ with γ (0) = id, d(γ, g) ≤ R} ⊂ ∂G.

In the next section, we shall use shadows to define cones, which one may view as generalisations of the cones in the 
definition of the topology for the Dirichlet problem at infinity in riemannian manifolds (see [4,5,14]). The following 
proposition explains that shadows with a large enough R turn out to be “almost-round” and can be used to show that 
∂G with the measure ν and the visual metric is a doubling metric measure space. In fact, even more is true, ν is a 
so-called D-measure, with D = h/ε.
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Let us define for every ξ ∈ ∂G the set ξid ⊂ G as the union of all the points g ∈ γ , where γ ⊂ K is any ray such 
that γ (0) = id and γ (∞) = ξ . That is,

ξid :=
⋃

γ=γid,ξ

(γ ∩ G). (2.7)

Recall the definition of the hyperbolicity constant δ̃ for the space K.

Proposition 2.3. There exists an integer R ≥ 2δ̃, which we now fix for the rest of this text, such that the following 
assertions are true:

(1) There exists a constant C1 > 0 such that for all g ∈ G the measure of the shadow S(g, R) is bounded by

C−1
1 e−h|g| ≤ ν(S(g,R)) ≤ C1e

−h|g|.

(2) For every ξ ∈ ∂G, r > 0 and g1, g2 ∈ ξid ⊂ G there exists a constant C2 > 0 such that

Bε
r (ξ) ⊂ S(g1,R) if C2e

−ε|g1| ≥ r and

S(g2,R) ⊂ Bε
r (ξ) if C−1

2 e−ε|g2| ≤ r.

This implies that there exists a constant C3 such that for every ξ ∈ ∂G and for every r > 0 the measure of the ball 
Bε

r (ξ) is bounded by

C−1
3 rD ≤ ν(Bε

r (ξ)) ≤ C3r
D,

where D := h/ε. (In particular, ν is a doubling measure.)
(3) For every g ∈ G and ξ ∈ S(g, R) there exists a constant C4 > 0 such that

S(g,R) ⊂ Bε
r (ξ) if r ≥ C4e

−ε|g|.

Proof. We present only proofs of (2) and (3), as they are slightly more precisely phrased than in the references. For a 
proof of (1) we refer the reader to [11].

(2) Let now ξ, η ∈ ∂G, r > 0 and let dε(ξ, η) < r . Denote by γξ,η a geodesic that connects ξ to η in K. Then by (2.4)

λ−1e−εd(γξ,η,id) ≤ dε(ξ, η) ≤ r.

Let g1 ∈ ξid with λ−1e−ε(|g1|+δ̃) ≥ r . Since geodesic triangles in K are δ̃-slim it follows that d(g1, ηid) ≤ δ̃. 
Because R0 ≥ 2δ̃, it follows that η ∈ S(g1, R) for all R ≥ R0 so the first inclusion follows.
The proof of the second inclusion is very similar and we only sketch the idea. If g2 ∈ ξid with |g2| small, then 
d(γξ,η, id) ≥ |g2| + δ̃ as soon as dε(ξ, η) < r .
To prove the estimate for the measure of metric balls, let ξ, r, g1, g2 be as above and assume that g1 ∈ ξid is such 
that |g1| is the largest integer satisfying the inequality r ≤ C2e

−ε(|g1|). Let N ∈N be such that eεN ≥ C−2
2 . Then

r ≥ C2e
−ε(|g1|+1) ≥ C−1

2 e−εNe−ε(|g1|+1) ≥ C−1
2 e−ε(|g1|+1+N).

Choosing g2 ∈ ξid such that |g2| = |g1| + 1 + N , we get ν(S(g2, R)) ≤ ν(Bε
r (ξ)) ≤ ν(S(g1, R)) by inclusion. 

Together with (1) this implies that

C−1
1 C−D

2 e−h(N+1)rD ≤ C−1
1 e−h|g2| ≤ ν(Bε

r (ξ)) ≤ C1e
−h|g1| ≤ C1e

hCD
2 rD.

(3) Let ξ, η ∈ S(g, R) and choose points gξ ∈ BR(g) ∩ ξid and gη ∈ BR(g) ∩ ηid. By the triangle inequality

dε(ξ, η) ≤ dε(ξ, gξ ) + dε(gξ , gη) + dε(gη, η).

Since d(gξ , gη) ≤ 2R and gξ , gη ∈ BR(g), it follows that d(id, γgξ ,gη ) ≤ |g| − 2R and by (2.4) that

dε(ξ, η) ≤ λe−ε|gξ | + λe−ε(|g|−2R) + λe−ε|gη| ≤ 3λe2Re−ε|g|. �
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Remark 2.4. As a corollary of statement (1) in the proposition it is not difficult to obtain a better estimate than (2.6)
for the size of n-balls in G, namely, there exists a uniform constant C̃ > 0, such that

C̃−1eh·n ≤ #(Bn) ≤ C̃eh·n. (2.8)

Moreover, by taking coverings of sets, it is possible to extend the measure estimate for the balls to general measurable 
sets. Indeed, there exists a constant C0, such that for all ν-measurable sets A ∈ ∂G,

C−1
0 HD(A) ≤ ν(A) ≤ C0H

D(A),

where HD denotes the D-dimensional Hausdorff measure. For proofs see [11].
Note also that by Proposition 2.3, there are no isolated points in ∂G. Moreover, because the action of G on ∂G is 

quasi-conformal it follows that ∂G is either a sphere or a Cantor set (see [11] for details).

2.4. Cones in Cayley graphs

This section is devoted to the definition and analysis of cones. These are specific subsets of the group, useful for 
constructing a topology equivalent to the visual metric in analogy to the cone topology used on riemannian man-
ifolds of negative sectional curvature, such as in [14]. We define them using the boundary at infinity and develop 
estimates about their growth and their boundaries. The main lemma of this section shows that cones grow uniformly 
exponentially.

Definition 2.5. Let U ⊂ ∂G be a set and let R be as in Proposition 2.3. Define the U -cone by

CU := {g ∈ G | S(g,R) ⊂ U}.

Note that by Proposition 2.3, CU =∅ when Ů =∅. The cone CU for a set U ⊂ ∂G is a natural choice of a geometric 
object, because we can analyse its growth properties by the known properties of a shadow obtained in Proposition 2.3.

For the remainder of this section, we shall focus on U -cones, where U is a metric ball at infinity.

2.4.1. Truncated cones and the visual metric
With the minimal Dirichlet problem in mind, we are interested in the behaviour of functions x : G → R close to 

∂G. Let xn : G → R be a sequence of functions, for which we would like to analyse convergence near U ⊂ ∂G. The 
following lemma shows that uniform convergence on truncated cones CBε

r (ξ0)\Bn corresponds to uniform convergence 
with respect to (half-)balls Bε

r̃
(ξ0) ⊂ G.

Lemma 2.6. For all r > 0 small enough, there exists a constant c > 0, such that for every metric ball at infinity 
Bε

r (ξ0) ⊂ ∂G, there is an n ∈N with

(Bε
c−1r

(ξ0) ∩ G) ⊂ (CBε
r (ξ0)\Bn) ⊂ (Bε

cr (ξ0) ∩ G).

In addition, n → ∞ with r → 0.

Proof. First we show the second inclusion. Let g ∈ CBε
r (ξ0) and observe that it follows by statement (2) of Proposi-

tion 2.3 and the definition of a cone that CBε
r (ξ0) ∩Bn =∅ whenever C2e

−εn ≥ r , and hence CBε
r (ξ0)\Bn = CBε

r (ξ0). Let 
n be the largest integer that satisfies this inequality. For small enough r we may obviously assume that C2e

−εn ≤ 2r

and it follows by the definition of the visual metric for every g ∈ CBε
r (ξ0) that

dε(g, ξ0) ≤ dε(g,Bε
r (ξ0)) + r ≤ ε−1e−εn0 + r ≤ (2C−1

2 ε−1 + 1)r.

For the first inclusion, let g ∈ Bε
r̃
(ξ0) ∩ G. Then ε−1e−ε|g| ≤ r̃ , so it makes sense to define n to be the small-

est integer, such that ε−1e−εn ≤ r̃ . Let r̄ := (1 + C−1
4 ε)r̃ . Then it follows by statement (3) of Proposition 2.3 that 

S(g, R) ⊂ Bε

C−1
4 εr̃

(ξ) ⊂ Bε
r̄ (ξ0) for every g ∈ Bε

r̃
(ξ0) ∩ G and any ξ ∈ S(g, R). This implies that g ∈ CBε

r̄ (ξ0)\Bn. �
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2.4.2. Growth of cones
In this section we prove that cones grow exponentially, which can be seen as a refinement of (2.8). In fact, apart 

from the proof of Corollary 4.7, we do not use the results from this section in the rest of this paper. Nevertheless, 
we find them informative and important for the intuition. Furthermore, with Proposition 2.3 it is not difficult to see 
that exponential growth of cones implies exponential growth of shadows, which was first proved by Arzhantseva and 
Lysenok in [6] by a different approach.

In Definition 2.5 we associate to every g ∈ CBε
r (ξ0) the set of points S(g, R) ⊂ Bε

r (ξ0). On the other hand, we shall 
find it useful to associate to every ξ ∈ Bε

r (ξ0) the set

Uξ := {g ∈ G | d(g, ξid) ≤ R},
i.e. the set of such points g ∈ G that are close to ξid.

Lemma 2.7. Let C4 be as in statement (3) of Proposition 2.3. If g ∈ Uξ for some ξ ∈ Bε
r (ξ0) with dε(ξ, ξ0) < r −

C4e
−ε|g|, then g ∈ CBε

r (ξ0).

Proof. By statement (3) in Proposition 2.3 S(g, R) ⊂ Bε
C4e

−ε|g|(ξ) for every ξ ∈ S(g, R). So if g ∈ Uξ for a ξ with 

dε(ξ, ξ0) < r − C4e
−ε|g|, then

S(g,R) ⊂ Bε
C4e

−ε|g|(ξ) ⊂ Bε
r (ξ0)

and so g ∈ CBε
r (ξ0). �

The next simple fact about coverings will turn out to be helpful when discussing the growth rates of cones. In the 
following discussion we denote by I a finite index set.

Lemma 2.8. Let B ⊂ ∂G be a set and r > 0. Let {ξ i}i∈I ⊂ B denote a maximal set of points, such that dε(ξ
i, ξj ) ≥ 2r

for all i �= j . Then B ⊂ ⋃
i∈I Bε

2r (ξ
i).

Proof. If not, there exists an η ∈ B such that dε(η, ξ i) ≥ 2r for all i ∈ I , which contradicts the maximality 
of {ξ i}i∈I . �

The following proposition shows that cones grow exponentially.

Proposition 2.9 (Growth of cones). There exists a constant C5, such that for every ξ0 ∈ ∂G, r > 0 and n ∈N satisfying 
eεn ≥ C4/r the following estimate holds

C−1
5 rDeεnD ≤ #(CBε

r (ξ0) ∩ Sn) ≤ C5r
DeεnD.

Proof. Let sn := C4e
−εn and N0 ∈ N be such that 4sN0 ≤ r . For all n ≥ N0, let {ξi}i∈I ⊂ Bε

(r−2sn)(ξ0) be a maximal 
collection of points such that dε(ξi, ξj ) ≥ 2sn for every i �= j . By Lemma 2.8,

�
i∈I

Bε
sn

(ξi) ⊂ Bε
(r−sn)(ξ0) and Bε

(r−2sn)(ξ0) ⊂
⋃
i∈I

Bε
2sn

(ξi).

It then easily follows from statement (2) of Proposition 2.3 that

C−2
3

( r

4

)D

s−D
n ≤ #I ≤ C2

3rDs−D
n . (2.9)

On one hand, #I is the number of sn-balls that fit into Bε
(r−sn) without intersecting and can be used to estimate 

#(CBε
r (ξ0) ∩ Sn) from below. Indeed, for ξ, ξ̃ ∈ Bε

(r−2sn)(ξ0) with dε(ξ, ξ̃ ) ≥ 2sn, there are points g ∈ ξid and g̃ ∈ ξ̃id

with g, g̃ ∈ (CBε
r (ξ0) ∩Sn), which define shadows such that ξ ∈ S(g, R) and ξ̃ ∈ S(g̃, R). By Lemma 2.7, these shadows 

are contained in Bε (ξ0) and by Proposition 2.3 S(g, R) ∩S(g̃, R) = ∅. In particular, g �= g̃. Hence, for all ξ i with 
(r−sn)
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i ∈ I there exists a gi ∈ ξ i
id ∩ Sn such that gi �= gj for i �= j , so

C−2
3

( r

4

)D

s−D
n ≤ #I ≤ #(CBε

r (ξ0) ∩ Sn).

On the other hand, we can use the fact that balls Bε
2sn

(ξ i) cover Bε
(r−2sn)(ξ0), which gives an upper bound on the 

number of points in Sn−N1 , for a large enough N1. To prove this, let N1 be such that eεN1 > 2C−1
2 C4 and choose for 

every i ∈ I a point gi ∈ ξ i
id ∩ Sn−N1 . It follows by statement (2) of Proposition 2.3 that

Bε
2sn

(ξ i) ⊂ Bε

C2e
−ε(n−N1) (ξ

i) ⊂ S(gi,R),

which implies that the shadows S(gi, R) also cover Bε
(r−2sn)(ξ0). The set (CBε

r (ξ0) ∩ Sn−N1) is covered by B2R(gi), 
because every point g ∈ (CBε

r (ξ0) ∩ Sn−N1) is at most within distance R of a geodesic ray. So, using (2.9), it follows 
that

#(CBε
(r−sn)

(ξ0) ∩ Sn−N1) ≤ #B2R(id) · #I ≤ #B2R(id) · C−2
3 rDs−D

n .

Since n was chosen large enough so that r ≥ sn and by the definition of N1, it follows that

#(CBε
r (ξ0) ∩ Sn) ≤ #B2R(id) · C−2

3 (2r)DeN1Ds−D
n . �

2.4.3. Boundaries of cones
We prove a somewhat technical statement about estimating the boundaries of cones with annuli at infinity. Let 

r > 0 be small enough, so that ∂G\Bε
r (ξ0) �=∅.

Definition 2.10. For 0 < r ≤ r̄ we call a set A ⊂ G\Bn a separating set for CBε
r (ξ0) and G\CBε

r̄ (ξ0) outside Bn, if the 
following conditions are met. For every point g ∈ A and all s ∈ S it holds that gs /∈ CBε

r (ξ0) ∪ (G\CBε
r̄ (ξ0)). Moreover, 

every path pg,g̃ ⊂K\Bn with g ∈ CBε
r (ξ0) and g̃ ∈ G\CBε

r̄ (ξ0) intersects A.

Separating sets may be constructed from annuli At
r(ξ0) := (Br+t (ξ0)\Br−t (ξ0)) ⊂ ∂G.

Lemma 2.11. Let us define for every n ∈N and tn := min{eεC4, eε(2R+δ̃)C2} · e−εn the set

Ar,tn := {g ∈ Uξ\Bn | ξ ∈ A
tn
r+2tn

(ξ0)}.
Then Ar,tn is a separating set for CBε

r (ξ0) and G\CBε
r+4tn

(ξ0) outside Bn.

Proof. Note that if ξ /∈ Bε
r (ξ0) and g ∈ Uξ , then S(g, R) � Bε

r (ξ0), so g /∈ CBε
r (ξ0) and similarly for G\CBε

r+4tn
(ξ0). 

Moreover, if ξ ∈ A
tn
r+2tn

(ξ0) it follows by the choice of the constant tn and by statement (3) of Proposition 2.3 that 
gs /∈ CBε

r (ξ0) ∪ (G\CBε
r̄ (ξ0)) for any s ∈ S.

Next, we need to show that the set Ar,tn separates path-connected sets. Since for every g ∈ G with |g| > n and 
s ∈ S the shadows S(g, R) and S(gs, R) are nonempty, there exist rays ξ, η ∈ ∂G with g ∈ Uξ and gs ∈ Uη. Because 
d(g, gs) = 1, it follows by hyperbolicity that d(ξ ∩ Sn, η ∩ Sn) ≤ 2R + δ̃ and, furthermore, that d(ξ ∩ Sn−2R−δ̃ ,

η ∩ Sn−2R−δ̃ ) ≤ δ̃, so there exists a ḡ ∈ G with |ḡ| ≥ n − 2R − δ̃ and ξ, η ∈ S(ḡ, R). It follows from statement (2) of 

Proposition 2.3 that dε(ξ, η) ≤ eε(2R+δ̃)C2e
−εn.

Now since Atn
r+2tn

(ξ0) separates ∂G into disjoint sets Bε
r (ξ0) and ∂G\Bε

r+4tn
(ξ0) and because eε(2R+δ̃)C2e

−εn <2tn, 
all paths pg,g̃ ⊂K\Bn from g ∈ CBε

r (ξ0) to g̃ ∈ G\CBε
r̄ (ξ0), have to intersect Ar,tn . �

This completes the assembly of tools from geometric group theory that we need.

3. The variational problem

As explained in the introduction, we are interested in solutions x : G → R of the discrete Allen–Cahn equation

ρ(�x)g − V ′(xg) = 0, for all g ∈ G,



B. Mramor / Ann. I. H. Poincaré – AN 35 (2018) 687–711 697
where V : R → R is a double-well potential and ρ ≥ 0 is a small constant. More precisely, we assume that V is a 
Morse function with two absolute minima c0 and c1, i.e. V (c0) = V (c1) ≤ V (s) for all s ∈ R. Moreover, we assume 
that c0 and c1 are the only absolute minima of V in the interval [c0, c1].

The equation (1.1) comes with a variational structure, which we explain below. It follows from Theorem 3.6 that 
the equation (1.1) has many solutions, but we are interested only in solutions that minimise the action globally.

3.1. Minimal solutions

The variational structure that the problem (1.1) carries is the following. For any compact (i.e. finite) set B ⊂ G and 
function x : G → R, we define the “action functional”

W
ρ

B(x) :=
∑
g∈B

∑
s∈S

(ρ

4
(xgs − xg)

2 + V (xg)
)

. (3.10)

It is easy to see that for every ρ > 0 the function Wρ

B(x) is a function of variables xg where g ∈ Bout and that x is a 
solution of (1.1), if for every compact B ⊂ G and every perturbation v supported on Bin,

d

ds

∣∣∣∣
s=0

W
ρ
B(x + sv) = 0.

This motivates the following definition.

Definition 3.1. For any set B ⊂ G, a function x : G → R is called a minimiser on B, if

W
ρ

B(x + v) − W
ρ

B(x) ≥ 0

for all v : G → R with compact support in Bin.
This definition makes sense also for infinite sets B, because the support of v is compact, and one may evaluate the 

difference above by truncating the actions to a bounded set containing the support of v in its interior. The function x
is called a global minimiser, if x is a minimiser on G.

Observe that with this definition, a minimiser x on a compact set B is a solution to the Dirichlet problem given 
by (1.1) on Bin, with given boundary values x|∂ fB on ∂ fB = ∂outB ∪ ∂ inB = Bout\Bin.

Remark 3.2. It is easy to see that the constant function xc0 ≡ c0 and xc1 ≡ c1 are global minimisers of (3.10).

Obviously, all global minimisers are solutions and it is clear that one may construct global minimisers as limits of 
minimisers on compact domains that exhaust G. More precisely, if Bn is a sequence of compact subsets exhausting G
and xn a sequence of minimisers on Bn which converges to a function x∞, then x∞ is a global minimiser.

The following statements are standard for elliptic difference operators and we provide them for the sake of com-
pleteness (see also [12] or [29]).

Lemma 3.3. For functions x, y, their point-wise minimum and maximum m := min{x, y} and M := max{x, y}, and 
for any compact domain B ⊂ G it holds that

W
ρ

B(x) + W
ρ

B(y) ≥ W
ρ

B(M) + W
ρ

B(m).

Proof. Write α := M − x and β := m − x and observe that α ≥ 0, β ≤ 0, while supp(α) ∩ supp(β) = ∅ and y =
M + m − x = α + m = α + β + x. Rewriting the inequality above as

W
ρ

B(x + α + β) − W
ρ

B(x + α) − W
ρ

B(x + β) + W
ρ

B(x) ≥ 0,

we can write its left-hand side in an integral form

1∫ 1∫
∂2

∂t∂s
W

ρ

B(x + αt + βt̃) dt̃ dt =
1∫ 1∫ ∑

g,g̃∈G

∂2

∂g∂g̃

W
ρ

B(x + αt + βt̃)αgβg̃ dt̃ dt .
0 0 0 0
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Since supp(α) ∩ supp(β) = ∅, we have that αgβg = 0 for all g, and hence only mixed derivatives with g̃ = gs remain. 
Since

∂2

∂g∂gs

W
ρ

B(x) ≤ −ρ

2

for all g ∈ Bin and αgβgs ≤ 0, the claim follows. �
Lemma 3.4. Let x, y be two minimisers on B with xg ≤ yg for all g ∈ ∂ fB. Then either xg < yg for all g ∈ Bin, or 
x|B ≡ y|B .

In particular, any two global minimisers x, y with xg ≤ yg for all g ∈ G and such that x �= y, are totally ordered: 
xg < yg for all g ∈ G.

Proof. Define the minimum m and maximum M of x and y and note that x|∂ fB = m|∂ fB and that y|∂ fB = M|∂ fB . 
It follows by definition of a minimiser and by Lemma 3.3 that m and M are also minimisers on B. Assume that 
g ∈ Bin such that xg = yg . Then �g(M) = �g(m) and by the maximum principle Mgs − mgs = 0 for all s ∈ S. 
Inductively it then follows that x|B ≡ y|B . �

Existence of minimisers for compact domains is a well known fact that follows from coercivity of the action (3.10). 
However, we shall construct global minimisers as solutions from the so-called anti-integrable limit in the next section, 
so we leave out the proof of the following informative lemma.

Lemma 3.5. Let B ⊂ G be a compact set and let f : ∂ fB → R be given. Then there exists a minimiser x of (3.10)
on B, with boundary values given by f , that is x|∂ fB = f .

3.2. The anti-continuum limit

In this section we explain that for small enough constants ρ in the equation (1.1), a wealth of solutions may 
be obtained by a version of the implicit function theorem. This very useful method has been used extensively in 
Aubry–Mather theory, see e.g. [7,8,28,31].

In the case that ρ = 0, the equation (1.1) reads

V ′(xg) = 0, for all g ∈ G, (3.11)

which is solved by requiring that for every g ∈ G, xg is a critical point of V . A proof based on Newton iteration 
shows that it is possible to find solutions of (1.1) for small constants ρ, as continuations of the known solutions of the 
problem (3.11). This is the content of the following theorem, the proof of which is very similar to those in [28,31]. 
We provide a proof for the reader’s convenience in the appendix.

Theorem 3.6. For every solution x of the anti-continuum limit problem (3.11) with xg ∈ [c0, c1] for all g ∈ G, there 
exist constants σ0 > 0 and ρ0 > 0, independent of x, such that for every ρ with 0 ≤ ρ ≤ ρ0 and every set B ⊂ G, there 
exists a unique function xρ : G → R with ‖xρ − x‖∞ ≤ σ0 which solves (1.1) on Bin and coincides with x on G\Bin. 
Moreover, ‖xρ − x‖∞ → 0 as ρ → 0, so that we may write x = x0.

Next, we show that for small enough ρ all uniformly bounded solutions with values in [c0 − σ0, c1 + σ0] can be 
found as continuations from the anti-continuum limit and that minimisers are continuations of solutions which have 
values in absolute minima of V .

Theorem 3.7. Let ρ0 and σ0 be as obtained in Theorem 3.6. Then there exists a ρ1 with 0 < ρ1 ≤ ρ0, such that for 
all 0 < ρ ≤ ρ1 the following holds. For any function x̃ : G → R that solves (1.1) with such a ρ on some set Bin ⊂ G

and satisfies x̃g ∈ {c0, c1} for all g ∈ G\Bin, there exists a solution x of the anti-continuum problem (3.11), such that 
‖x − x̃‖∞ ≤ σ0. In other words, with the notation from Theorem 3.6 we may write x̃ = xρ for a solutions x = x0 of 
the anti-continuum limit (3.11).

Furthermore, for a small enough constant ρ1, x0
g ∈ {c0, c1} for all g ∈ G, whenever x̃ = xρ is a minimiser on B.
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Proof. Because V is Morse, there exists for any σ > 0 a ρ > 0 such that if |V ′(X)| < ρ then |X − c| < σ for some 
critical point c of V . Now suppose that x̃ is a solution to (1.1) as stated in the theorem. By the proof of Theorem 3.7, 
σ0 ≤ (1/2)(c1 − c0), and so for all g ∈ G and s ∈ S it follows that |x̃g − x̃gs | ≤ 2(c1 − c0). This implies that

|V ′(x̃g)| = |1Bin(ρ�g(x̃))| ≤ 2ρ(c1 − c0)(#S) uniformly for g ∈ G,

where 1B denotes the indicator function on the set B ⊂ G. Thus, there is a 0 < ρ1 ≤ ρ0 so that if 0 ≤ ρ ≤ ρ1, then for 
any g ∈ G there is a critical point c ∈ [c0, c1] of V , such that |x̃g − c| < σ0 for all g. In other words, for all such ρ

there exists a solution x of (3.11), such that ‖x̃ − x‖∞ ≤ σ0. Because xρ is the unique solution to (1.1) on B with 
‖xρ − x‖∞ ≤ σ0, this implies that xρ = x̃.

To prove the second part of the theorem observe that, since c0 and c1 are the only absolute minima of V in the 
interval [c0, c1] and V is Morse, there is a constant d̃ such that V (c) − V (c0) ≥ d̃ for every critical point c ∈ (c0, c1). 
Assume that x0

g0
= c, for some critical point c ∈ (c0, c1) and some g0 ∈ G. Taking ρ1 small enough, it follows from 

the continuity of V that V (x
ρ
g0) ≥ d̃

2 + V (c0) for all ρ ≤ ρ1. Furthermore, by taking ρ1 even smaller if necessary, 
we may assume that (#S)(c1 − c0)

2ρ1 ≤ 2d̃ . Defining a variation x̄ of xρ by x̄g = x
ρ
g for all g �= g0 and x̄g0 = c0, 

it follows that

W{g0}(xρ) =
∑
s∈S

ρ

4
(xg0s − xg0)

2 + V (xg0) ≥ d̃

2
+ V (c0) ≥ (#S)

ρ

4
(c1 − c0)

2 + V (c0) ≥ W{g0}(x̄),

so xρ is not a global minimiser. �
The following corollary is a direct consequence of Theorem 3.7 together with Lemma 3.4, applied to the global 

minimisers of (3.10) that are constant with values either c0 or c1 (see Remark 3.2).

Corollary 3.8. Let ρ ≤ ρ1 and x̃ = xρ be, as in the second part of Theorem 3.7, a minimiser on B ⊂ G. Then, for all 
g ∈ G, xρ

g ∈ [c0, c0 + σ0) ∪ (c1 − σ0, c1].

To analyse the behaviour of a minimiser, we may now analyse the set of points g ∈ G where x0
g − x0

gs �= 0. This 
gives us an estimate on the action of the xρ , because such points give an action contribution of size ρ and the rest of 
the terms have a positive action contribution.

4. Minimal Dirichlet problem at infinity

We wish to construct global minimisers that solve the Dirichlet problem at infinity as given in Definition 1.1. 
In other words, we are looking for global minimisers which are on neighbourhoods near the boundary at infinity 
uniformly close to either c0 or c1. We shall construct them as limits of minimisers on balls with growing radii, using 
the concept of the cone from Definition 2.5.

Proposition 4.1. Let c0 < c1 be the two distinct absolute minima of V and let D0, D1 ⊂ ∂G be as in Definition 1.1. 
Define a solution x̃ of the anti-continuum limit (3.11) by

x̃g :=
{

c0 if g ∈ (CD0)
in,

c1 else.

For every N ∈ N, let xN : G → R be a minimiser on BN , such that xN |((BN)in)c ≡ x̃|((BN)in)c . Then, as N → ∞, 
xN converge along a subsequence to a global minimiser x̄ of (1.1).

Proof. By Lemma 3.4 c0 ≤ xN
g ≤ c1 for all N ∈N and all g ∈ G. By Tychonov’s theorem [c0, c1]G is a compact space 

w.r.t. pointwise convergence, so xN has a convergent subsequence xNk → x̄, which is then a global minimiser. �
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4.1. Transition sets

Let xN be as in Proposition 4.1. By Corollary 3.8 the domain of the function xN in BN+1 can be split in the 
following two sets

Bc0
N := {g ∈ BN+1 | x̃g ∈ [c0, c0 + σ0)} and Bc1

N := {g ∈ BN+1 | x̃g ∈ (c1 − σ0, c1]}.
We define the “transition set”, as

TN(xN) := {g ∈ BN+1 | |xN
g − xN

gs | ≥ 2σ0} = ∂ fBc0
N = ∂ fBc1

N .

We shall show that, as a consequence of minimality, the set TN(xN) in some sense cannot be too large, and so the 
sets Bc0

N and Bc1
N behave somewhat nicely. The first statement in this direction is about connectedness of the sets Bc0

N

and Bc1
N , where a set D ⊂ G is connected if the corresponding set of points together with the edges connecting them 

is connected in the Cayley graph K. The following lemma states that every connected component of the sets Bc0
N and 

Bc1
N needs to touch the boundary of the ball BN .

Lemma 4.2. For every connected component D0 of Bc0
N and D1 of Bc1

N ,

D0 ∩ ∂outBN �=∅ and D1 ∩ ∂outBN �=∅ .

Proof. Assume that there is a connected component D0 ⊂ Bc0
N which does not intersect the boundary ∂outBN . Then 

xN
g ∈ [c1 − σ0, c1] on ∂outD0 = (D0)out\D0 and xN

g ∈ [c0, c0 + σ0] on D0. Let

Sρ
g (x) :=

∑
s∈S

(ρ

4
(xgs − xg)

2 + V (xg)
)

,

and define the variation x̃N of xN supported on D0 by x̃N ≡ c1 on D0 and by x̃N ≡ xN on G\D0. Obviously 
(S

ρ
g (x̃N ) − S

ρ
g (xN)) ≤ 0 for all g ∈ (D0)in and it is easy to see that for all g ∈ ∂ fD0,

Sρ
g (x̃N ) − Sρ

g (xN) ≤ ρ

4
((#S)σ 2

0 − (c1 − c0 − 2σ0)
2).

If necessary, we further reduce ρ1 defined as in section 3.2, so that σ0 < (c1 − c0)/3. By the inequality in theorem 
(3.6) it then follows that

W(D0)out(x̃
N ) − W(D0)out(x

N) ≤
∑

g∈(D0)in

(Sρ
g (x̃N ) − Sρ

g (xN)) +
∑

g∈∂ fD0

(Sρ
g (x̃N ) − Sρ

g (xN))

≤ ρ

4
((#S)σ 2

0 − (c1 − c0 − 2σ0)
2)#(∂ fD0) < 0,

which is a contradiction to the fact that xN is a minimiser. �
The next lemma is about estimating the size of the boundary ∂outBc1

N within a domain D by the size of the boundary 
of D which is within Bc1

N . The estimate we obtain can be seen as a weak quasi-minimality-type condition on the 
transition set TN(xN), in the spirit of the Morse lemma for quasi-geodesics.

Lemma 4.3. For every finite set D ⊂ G and every xN defined as in Proposition 4.1,

#((∂outBc1
N ∩D) ≤ 6(#S)#(∂ inD ∩Bc1

N ).

Proof. Define a variation x̃N of xN with support in Bc1
N ∩ (Din):

x̃N :=
{

c0 for all g ∈ Bc1
N ∩ (Din)

xN else.
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Look at the outer set C := (Bc1
N ∩ (Din))out and the inner set I := (Bc1

N ∩ (Din)in, such that Iout = Cin. We will estimate 
the action functional Wρ

C (x̃N ) − W
ρ

C (xN). In view of that, we first split the set Cout into disjoint subsets by

Cout = I ∪ (Cin\I) ∪ (C\Cin) ∪ (Cout\C) = I ∪ ∂outI ∪ ∂ inC ∪ ∂outC

and note that by the definition of x̃N

W
ρ

I (x̃N ) − W
ρ

I (xN) ≤ 0.

Next, we estimate Wρ

∂ inC(x̃N ) − W
ρ

∂ inC(xN). Obviously x̃N
g = xN

g for every g ∈ ∂ inC and so

W
ρ

∂ inC(x̃N ) − W
ρ

∂ inC(xN) =
∑

g∈∂ inC

∑
s∈S

gs∈Cin

ρ

4

(
(x̃N

gs − xN
g )2 − (xN

gs − xN
g )2

)
. (4.12)

We would like to split the sum in (4.12) into sums over ∂ inC ∩Bc1
N and ∂ inC ∩Bc0

N . We recall from definition of C and 
equation (2.3) that

∂ inC = ∂out(Bc1
N ∩Din) = (∂outBc1

N ∩D) ∪ ((Bc1
N )out ∩ ∂ inD).

It thus follows by disjointness of Bc0
N and Bc1

N that

∂ inC ∩Bc0
N = ∂outBc1

N ∩D and ∂ inC ∩Bc1
N = Bc1

N ∩ ∂ inD.

By Corollary 3.8 (x̃N
gs − xN

g )2 ≤ (c1 − c0)
2 for all g ∈ ∂ inC ∩ Bc1

N . Furthermore, it holds for all g ∈ ∂ inC ∩ Bc0
N that 

(x̃N
gs − xN

g )2 ≤ σ 2
0 and (xN

gs − xN
g )2 ≥ (c1 − c0 − 2σ0)

2 and by the inequality in Theorem 3.6 it follows that

(c1 − c0 − 2σ0) <
c1 − c0

2
and

(c1 − c0)
2

4
− σ 2

0 >
(c1 − c0)

2

6
,

so (x̃N
gs − xN

g )2 − (xN
gs − xN

g )2 ≤ 1

6
(c1 − c0)

2.

Thus we obtain

W
ρ

∂ inC(x̃N ) − W
ρ

∂ inC(xN) ≤ #(Bc1
N ∩ ∂ inD)

ρ(#S)

4
(c0 − c1)

2 − #(∂outBc1
N ∩D)

ρ

24
(c0 − c1)

2.

To estimate Wρ

∂outI(x̃N ) − W
ρ

∂outI(xN), we observe that V (x̃N
g ) ≤ V (xN

g ) for every g ∈ Cin. Moreover, if gs ∈ Cin

then (x̃N
gs − x̃N

g ) = 0 and if gs /∈ Cin, then x̃N
gs = xN

gs . This implies that

W
ρ

∂ inI(x̃N ) − W
ρ

∂ inI(xN) ≤
∑

g∈∂ inI

∑
s∈S

gs /∈Cin

ρ

4

(
(xN

gs − x̃N
g )2 − (xN

gs − xN
g )2

)
. (4.13)

By symmetry the sum in (4.12) is equal to the sum (4.13), so

0 ≤ W
ρ

C (x̃N ) − W
ρ

C (xN) ≤ 2

(
#(Bc1

N ∩ ∂ inD)
ρ(#S)

4
(c0 − c1)

2 − #(∂outBc1
N ∩D)

ρ

24
(c0 − c1)

2
)

,

which finishes the proof. �
4.2. Main lemma

In this section we prove the main technical result about how the transition sets TN(xN) behave when N goes to 
infinity. It roughly shows that if the transition set for some large enough N is locally too big, than it grows much faster 
than Bn. This will be used in section 4.3 to show that uniformly in N the transition sets TN(xN) extend towards the 
identity.
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Definition 4.4. Let us define for r > 0 and ξ0 ∈ ∂G the following objects:

• the sequence ri → r by r0 := 0 and

ri := 6r

π2

i∑
j=1

1

j2
and denote di := ri+1 − ri = 6r

π2(i + 1)2
for all i ≥ 1 , (4.14)

• for a given natural number n1 the increasing sequence of real numbers

ni+1 :=
(

D + 1/2

D + 1/4

)
ni =

(
D + 1/2

D + 1/4

)i−1

n1 , (4.15)

• for ri and ni as above

Vi := (CBε
ri+1

(ξ0)\CBε
ri

(ξ0))\B�ni� (4.16)

where �·� denotes the floor function.

Remark 4.5. Let ri , ni and Vi be as in the definition above. Recall the definition of the constant tn from Lemma 2.11
and rewrite it for every n ∈N as

tn = k−1
1

4
e−εn where k−1

1 := 4 min{eεC4, e
ε(2R+δ̃)C2}. (4.17)

Moreover, recall from section 2.4.3 the notion of a separating set Ar,tn for CBε
r (ξ0) and G\CBε

r (ξ0) outside Bn which 
is, by Lemma 2.11, given by the annulus at infinity Atn

r+2tn
(ξ0). Using definitions (4.16) and (4.17) we may, for every 

i ∈N, write the set Vi as a disjoint union Vi =�j∈Ii
Ãij , where the sets Ãij satisfy Arij ,t�ni � ⊂ Ãij and are thus also 

separating sets. It follows from definitions of ri and tn that

#Ii ≥
⌊

k1di

e−ε�ni�

⌋
− 1 ≥ k1die

−εeεni − 2. (4.18)

The size of Ii measures the number of separating sets outsize a ball of radius �ni� contained in Vi and grows 
exponentially with ni . This is an essential part to the proof of the following lemma, which gives us a powerful estimate 
about the growth of the set CBε

ri
(ξ0) ∩Bc1

N . The idea behind the proof is the following. From Lemma 4.3 we deduce that 

if CBε
ri

(ξ0) ∩ ∂outBc1
N is large, then for all j ∈ Ii , the set ∂ inCBε

rij
(ξ0) ∩ Bc1

N can be at most by a factor smaller. By fitting 

∂ inCBε
rij

(ξ0) into separating sets Ãij and by using the isoperimetric inequality, the size of Ii implies that Vi ∩ Bc1
N is 

exponentially larger than CBε
ri

(ξ0) ∩Bc1
N . In particular, also CBε

ri+1
(ξ0) ∩Bc1

N is exponentially larger and the strategy can 
be repeated by induction.

Lemma 4.6 (Main lemma). Let r > 0 and ξ0 ∈ ∂G be given and define a constant k by

k :=
(

48(#S)k0C̃
)( 4D+1

4D
)

, (4.19)

where the definition of the constants C̃ and k0 comes from (2.8) and from the isoparametric inequality given in 
Lemma 2.1, respectively. We define L0 as the smallest natural number such that (log(L0))

4D+1 < L0 and let k1 be as 
in (4.17).

Let ri , ni and Vi be as in Definition 4.4, whereby n1 is a real number satisfying

n1 ≥ max

{
4

ε(4D + 1)
log

(
L0

k

)
, 4(4D + 1)ε−1 ,

2

ε
log

(
(k + 2C̃)4π2

3rC̃k e−ε

)}
. (4.20)
1
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Then, whenever there exist an ni as in (4.15) satisfying

#(CBε
ri

(ξ0) ∩Bc1
N ) ≥ keε(D+ 1

4 )ni (4.21)

for some i such that ni < N , then it holds for all integers ι ≥ i with nι < N that

#(Vι ∩Bc1
N ) ≥ keε(D+ 1

4 )nι .

Proof. By inclusion and by conditions (4.20) and (4.21),

#(CBε
rij

(ξ0) ∩Bc1
N ) ≥ keε(D+ 1

4 )ni ≥ keε(D+ 1
4 )n1 ≥ L0.

By definition of L0 it follows for every L ≥ L0 that

L

log(L)
> L

(
4D

4D+1

)

and by the isoperimetric inequality (Lemma 2.1), for any set D with #D ≥ L0,

k0#(∂outD) ≥ (#D)

(
4D

4D+1

)
. (4.22)

It follows from the first condition in (4.20) and assumption (4.21) that

k0#(∂out(CBε
rij

(ξ0) ∩Bc1
N )) ≥ k

(
4D

4D+1

)
eεDni ,

for all j ∈ Ii where Ii is as in Remark 4.5 the index set that gives rij and Ãij such that Vi = �j∈Ii
Ãij . Since 

(Bc1
N )out = Bc1

N ∩ ∂outBc1
N , the following estimates hold:

#(∂out(CBε
rij

(ξ0) ∩Bc1
N )) ≤

≤#(∂outCBε
rij

(ξ0) ∩ (Bc1
N )out) + #((CBε

rij
(ξ0))

out ∩ ∂outBc1
N )

≤#(∂outCBε
rij

(ξ0) ∩Bc1
N ) + 2#((CBε

rij
(ξ0))

out ∩ ∂outBc1
N ),

(4.23)

and we may consider two possible cases for any index j ∈ Ii .

Case 1: In the case that

k0#(∂outCBε
rij

(ξ0) ∩Bc1
N ) ≥ 1

2
k

(
4D

4D+1

)
eεDni

holds, we first observe that ∂outCBε
rij

(ξ0) ⊂ Ãij ∪B�ni� by Lemma 2.11 and thus by (2.8)

#(Ãij ∩Bc1
N ) ≥ k

(
4D

4D+1

)

2k0
eεDni − C̃eεDni . (4.24)

Case 2: Otherwise

k0#(∂outCBε
rij

(ξ0) ∩Bc1
N ) <

1

2
k

(
4D

4D+1

)
eεDni ,

so it follows from (4.23) that

k

(
4D

4D+1

)
eεDni ≤ 4k0#((CBε

rij
(ξ0))

out ∩ ∂outBc1
N )

and by Lemma 4.3 that

k

(
4D

4D+1

)
eεDni ≤ (24(#S)k0)#(∂outCBε

ri
(ξ0) ∩Bc1

N ).

j
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Again, since by Lemma 2.11 ∂outCBε
rij

(ξ0) ⊂ Ãij ∪B�ni�, it follows by (2.8) that

#(Ãij ∩Bc1
N ) ≥ k

(
4D

4D+1

)

24(#S)k0
eεDni − C̃eεDni . (4.25)

Since CBε
ri

(ξ0) ⊂ CBε
rij

(ξ0) it follows for all j either from (4.24) or from (4.25) by the definition of constant k that

#(Ãij ∩Bc1
N ) ≥ C̃eεDni

and so because Vi =�j∈Ii
Ãij and by (4.18) it holds that

#(Vi ∩Bc1
N ) ≥ (C̃eεDni )(k1die

−εeεni − 2) =
(

6rC̃k1e
−ε

π2(i + 1)2
eε

ni
2 − 2C̃e−ε

ni
2

)
eε(D+ 1

2 )ni .

By the definition of ni+1 in (4.15) we may write (D + 1/4)ni+1 = (D + 1/2)ni and restate the inequality above as

#(Vi ∩Bc1
N ) ≥

(
6rC̃k1e

−ε

2π2(i + 1)2
e
ε

n1
2

(
D+1/2
D+1/4

)i−1

− 2C̃

)
eε(D+ 1

4 )ni+1 . (4.26)

Let α := (1 + 4D)−1 > 0, so that 
(

D+1/2
D+1/4

)
= 1 + α and estimate

1

(i + 1)2
eε

n1
2 (1+α)i−1 ≥ eε

n1
2

(
eε

n1
2 (i−1)α

(i + 1)2

)
.

By condition (4.20), we chose n1 large enough that

3rC̃k1e
−ε

4π2
eε

n1
2 − 2C̃ ≥ k.

Observe that the function (1 + x)−2eβ(x−1) is monotone increasing for all x ≥ 0, whenever β ≥ 2. In particular, since 
n1 ≥ 4(4D + 1)ε−1, it follows that αεn1 > 4, so for all j ≥ 1

eε
n1
2 (j−1)α

(j + 1)2
≥ 1

4
.

Hence, by (4.26) and by condition (4.20)

#(Vi ∩Bc1
N ) ≥

(
3rπ−2C̃k1e

−εeε
n1
2

(
eε

n1
2 (i−1)α

(i + 1)2

)
− 2C̃

)
eε(D+ 1

4 )ni+1 ≥ keε(D+ 1
4 )ni+1 .

Thus we have proved the lemma for ι = i + 1. Since #(CBε
ri+1

(ξ0) ∩Bc1
N ) ≥ #(Vi ∩Bc1

N ), we obtain the full statement 
of the lemma by induction. �
4.3. The Dirichlet problem at infinity

The main lemma from the previous section has the following corollary. It states that, depending on the radius of 
the largest ball contained in D0, there is a bound on the distance of Bc0

N to the identity independent of N . Note that the 
results from this corollary are in a sense a softer version of Lemma 4.10 and as such not essential for the rest of the 
paper.

Corollary 4.7. Let Bε
r (ξ0) ⊂ D0 be a ball at infinity and let xN denote any sequence of minimisers solving the problem 

defined in Proposition 4.1. Then there exist uniform constants m ∈N and N0 ∈N, such that for all N ≥ N0

Bc0
N ∩Bm �=∅.
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Proof. Let n0 be the smallest natural number satisfying the condition (4.20) from Lemma 4.6 and define m as the 
smallest natural number such that

m ≥
(

D + 1/2

D + 1/4

)(
1 + 1

4D

)
log

(
π2Dk

C5(6r)D

)
n0.

Let N ∈N be such that Bc1
N ∩Bm = Bm, so that by Proposition 2.9

#(CBε
r1

(ξ0) ∩Bc1
N ) ≥ #(CBε

r1
(ξ0) ∩Bm) ≥ #(CBε

r1
(ξ0) ∩ Sm) ≥ C5r

D
1 eεDm.

By the definition of m and because r1 = 6rπ−2, it follows for all such N that

#(CBε
r1

(ξ0) ∩Bc1
N ) ≥

(
D + 1/2

D + 1/4

)
keε(D+ 1

4 )n0 .

By Lemma 4.6, it holds for every N > m and for all i with ni < N and n1 such that

n0 ≤ n1 ≤
(

D + 1/2

D + 1/4

)
n0, that #(CBε

ri
(ξ0) ∩Bc1

N ) ≥ keε(D+ 1
4 )ni . (4.27)

Moreover, it is easy to see that for any N > m there exists a real number n1 as in 4.27 such that ni = N −1 for some i, 
so it follows that

#(CBε
ri

(ξ0) ∩Bc1
N ) ≥ keε(D+ 1

4 )(N−1). (4.28)

On the other hand, by Proposition 2.9 or by (2.8), there exists a uniform constant K̃ such that

#(CBε
r (ξ0) ∩BN+1) ≤ K̃eεDN,

which contradicts inequality (4.28) for large N . More precisely, we may choose N0 > m to be the smallest natural 
number satisfying ke

ε
4 N > K̃eε(D+ 1

4 ). �
The next step towards the proof of the minimal Dirichlet problem is to show that there exists a neighbourhood 

O ⊂ (G ∪ ∂G) of the set D̊0 ⊂ ∂G, such that for all N large enough (O ∩ G) ⊂ Bc0
N . Let us thus define the sets that 

shall act as such neighbourhoods.

Definition 4.8. Let Bε
r (ξ0) be a ball at infinity, and let ri and ni be as in Definition 4.4, given n1 ∈ N. Define for every 

i ≥ 1 the set

U i
Bε

r (ξ0)
:= {g ∈ G | d(g, (CBε

ri
(ξ0))

c ∪Bni
) ≥

(
D + 1/2

D + 1/4

)
keε(D+ 1

4 )ni + 1}

and the union UBε
r (ξ0) :=

⋃
i≥1

U i
Bε

r (ξ0)
.

The following lemma states that asymptotically the boundary of UBε
r (ξ0) converges to the boundary of CBε

r (ξ0), so it 
defines a neighbourhood of Bε

r (ξ0) in the visual metric.

Lemma 4.9. Let Bε
r (ξ0) be a ball at infinity, let ri and ni be as in Definition 4.4, with n1 the smallest natural number 

satisfying (4.20), and let U i
Bε

r (ξ0)
be as defined above. Then there exists an i0 ∈ N, such that for all i ≥ i0 there is a 

natural number Mi , with

CBε
ri

(ξ0)\BMi
⊂ U i+1

Bε
r (ξ0)

⊂ UBε
r (ξ0).

Proof. Similarly as at the end of the proof of Lemma 4.6, we may choose i0 so large, that for all i ≥ i0,

eεni+1

(i + 1)2
≥ π2C4

2r
.

For any such fixed i ≥ i0 let m be an integer such that m ≥ ni+1.
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It follows by the definition of cones that if g ∈ CBε
ri

(ξ0)\Bm, then S(g, R) ⊂ Bε
ri
(ξ0). Let ξ̃ ∈ S(g, R) and let g̃ ∈ ξ̃id, 

such that |g̃| = ni+1. Then, by Proposition 2.3, S(g̃, R) ⊂ Bε

ri+C4e
−εni+1

(ξ0). Let now h ∈ (CBε
ri+1

(ξ0))
c ∪ Bni+1 . We 

will show that d(g, h) ≥ m −ni+1. In case that h ∈ Bni+1 , by the triangle inequality d(g, h) ≥ m −ni+1. Assume now 
that h ∈ (CBε

ri+1
(ξ0) ∪ Bni+1)

c . Then |h| ≥ ni+1 and there exists a ξ ∈ S(h, R) such that ξ /∈ Bε
ri+1

(ξ0). Let h̃ ∈ ξid be 

such that |h̃| = ni+1. It holds that dε(ξ, ξ̃ ) ≥ di − C4e
−εni+1 and it follows by assumption on i0 that

1

2
(di − C4e

−εni+1) ≥ C4e
−εni+1

and by Proposition 2.3 that S(g̃, R) ∩S(h̃, R) = ∅. In particular, (Uξ ∩Uξ̃ )\Bni+1 =∅ so d(g̃, h̃) ≥ 2R. Since R ≥ 2δ̃

it easily follows by δ-hyperbolicity that

d(g,h) ≥ m − ni+1.

Defining the number Mi as the smallest integer that satisfies

Mi ≥ ni+1 + k

(
D + 1/2

D + 1/4

)
eε(D+ 1

4 )ni+1 + 1, (4.29)

it follows that d(g, h) ≥ k
(

D+1/2
D+1/4

)
eε(D+ 1

4 )ni+1 + 1, which implies that g ∈ U i+1
Bε

r (ξ0)
. This finishes the proof of the 

lemma.
For later reference we note that it now easily follows from Definition 4.8 that for all m ≥ Mi ,

d(U i
Bε

r (ξ0)
\Bm, (U i+1

Bε
r (ξ0)

)c) ≥ m − Mi. � (4.30)

The next statement, which is also a rather direct consequence of the main lemma from the previous section, implies 
that the values of minimisers xN on UBε

r (ξ0) are uniformly close to the boundary conditions.

Lemma 4.10. Let Bε
r (ξ0) ⊂ D0, where D0 ⊂ ∂G is as in Proposition 4.1. Let ri and ni be as in Definition 4.4, with 

n1 satisfying (4.20). Then there exists an integer N0, such that for all N ≥ N0 and for all i

U i
Bε

r (ξ0)
∩Bc1

N =∅.

Proof. Let n0 be the smallest number satisfying condition (4.20) and let ni be a sequence as in Definition 4.4 where 

n1 = n0. Assume that the lemma is not true, i.e. for some i ≥ 1 and some N > ni +
(

D+1/2
D+1/4

)
keε(D+1/4)ni + 1 there 

exists a g ∈ U i
Bε

r (ξ0)
∩ Bc1

N . By Lemma 4.2, there exists a point g̃ ∈ ∂out(Bc1
N ∩ SN+1) and a path pg,g̃ ⊂ K from g

to g̃, with (pg,g̃ ∩ G) ⊂ Bc1
N . Since ∂out(Bc1

N ∩ SN+1) = ((CD0)
in)c ∩ SN+1 and because Bε

r (ξ0) ⊂ D̊0, the path pg,g̃

intersects ∂ in(CBε
ri

(ξ0)\Bni
). By the definition of UBε

r (ξ0) it then follows that

#(Bc1
N ∩ CBε

ri
(ξ0)) ≥ #(pg,g̃ ∩ CBε

ri
(ξ0)) ≥

(
D + 1/2

D + 1/4

)
keε(D+ 1

4 )ni .

Similarly as in the proof of Corollary 4.7, we may choose a sequence ñι with ni ≤ ñi ≤
(

D+1/2
D+1/4

)
ni such that N =

ñι+1. By Lemma 4.6 it follows for all ι ≥ i with ñι < N that #(CBε
rι

(ξ0)∩Bc1
N ) ≥ keε(D+ 1

4 )ñι , which, as in Corollary 4.7, 
drives us to a contradiction about the size of CBε

ri
(ξ0) ∩ BN when N ≥ N0 and N0 is the smallest natural number with 

ke
ε
4 N > K̃eε(D+ 1

4 ). �
Now we are ready to prove our main theorem. The final step of the proof follows ideas from [28].

Theorem 4.11. Let j ∈ {0, 1} and ξj ∈ D̊j be a point at infinity. Let r > 0 be such that Bε
r (ξj ) ⊂ Dj and let ni

and ri be as in (4.4), such that n1 is the smallest number satisfying (4.20). Let furthermore i0 and N0 be as given 
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in Lemmas 4.9 and 4.10, respectively, and let Mi be given by (4.29). Then for all n ≥ Mi0+1, all N ≥ N0 and all 
g ∈ CBε

ri0
(ξj )\Bn

|xN
g − cj | ≤ σ0 · kn−Mi0+1 .

In particular, the global minimiser x̄ = limk→∞ xNk constructed in Proposition 4.1 solves the minimal Cauchy 
problem at infinity given by D0 and D1 (see Definition 1.1).

Proof. We prove the theorem for j = 0 only, since the other case follows analogously. For any ξ0 ∈ D̊0 and r > 0 as 
in the statement of the theorem let U i

Bε
r (ξ0)

correspond to ni and ri , which are again as stated in the theorem. Since 
i ≥ i0, Lemma 4.9 holds and it follows for all n ≥ Mi+1 that

CBε
ri

(ξ0)\Bn ⊂ U i+1
Bε

r (ξ0)
\Bn ⊂ CBε

ri+1
(ξ0)\BMi+1 ⊂ U i+2

Bε
r (ξ0)

,

and by (4.30) it follows that

d(CBε
ri

(ξ0)\Bn, (U i+2
Bε

r (ξ0)
)c) ≥ n − Mi+1.

Furthermore, |xN
g − c0| ≤ σ0 for any g ∈ U i+2

Bε
r (ξ0)

and any N ≥ N0 by Lemma 4.10.

Recall from Theorem 3.7 that for each N , xN = xρ for some solution x := x0 of the anti-continuum limit (3.11), 
for which xg ∈ {c0, c1} for all g ∈ G. The solution xρ is obtained in Theorem 3.6 as a fixed point of a quasi-Newton 
contraction operator

Kρ,x(X)g = Xg − V ′(Xg) + 1BN
(ρ�g(X))

V ′′(xg)

with contraction constant k < 1 on the σ0-ball around x in the supremum norm so it follows that

‖xρ − Km
ρ,x(x)‖∞ ≤ σ0k

m.

Since �g(x) has range at most one, it follows that Km
ρ,x(x)g = c0 if d(g̃, {xg = c1}) > m. By Lemma 4.10 it holds 

that xg = c0 for all g ∈ UBε
r (ξ0) and by the inequalities above and the discussion in Lemma 4.10 it follows that

|xN
g − c0| ≤ σ0k

n−Mi+1 for all g ∈ CBε
ri

(ξ0)\Bn.

In particular, for every ε > 0 there exists a ñ ∈ N, such that |xN
g − c0| ≤ ε for all N ∈ N and for all g ∈ CBε

ri0
(ξ0)\Bñ, 

so by definition of x̄ the same holds for such a global minimiser.
Finally, it is clear by Lemma 2.6 that convergence with respect to truncated cones CBε

ri0
(ξ0)\Bñ is equivalent to 

uniform convergence with respect to the visual metric, which finishes the proof. �
5. The asymptotic Plateau problem

In this section we prove a version of the asymptotic Plateau problem for the group G. In view of that, let us quantify 
the size of a boundary of a set B ⊂ G by counting all pairs of points g, gs such that g ∈ B and gs /∈ B, restricted to a 
finite subset of G. More precisely, we define for every set B ⊂ G and every finite set � ⊂ G the function

b�(B) := #{(g, gs) ∈ � × � | g ∈ B, gs /∈ B}.
One can view b(B) as the number of edges in the Cayley graph C(G, S) which connect B to its complement.

Definition 5.1. Let D0 ⊂ ∂G and denote D1 := (D0)c . Assume that D̊0 = D0 (so that also D̊1 = D1 and ∂D0 = ∂D1). 
We say that a nonempty set TD0 ⊂ G solves the asymptotic Plateau problem with respect to D0 if there exist sets 
D0 ⊂ G and D1 ⊂ G such that D0 ∩D1 =∅, D0 ∪D1 = G and TD0 = ∂outD0 ∪ ∂outD1 has the following properties.
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• Every path pξ,η ⊂ C(G, S) with ξ ∈ D̊0 and η ∈ D̊1 intersects TD0 .
• For every two finite set � ⊂ G and B̃ ⊂ G with B̃ ∩ (�in)c =D0 ∩ (�in)c,

b�(D0) ≤ b�(B̃) and b�(D1) ≤ b�(B̃).

We use the solutions to the minimal Dirichlet problem for the Allen–Cahn equation to prove the following.

Theorem 5.2. For every set D0 ⊂ ∂G such that D̊0 = D0 there exists a set TD0 ⊂ G solving the asymptotic Plateau 
problem with respect to D0.

Proof. Let ρ ≤ ρ1 as in section 3.2 and let xρ solve the minimal Dirichlet problem at infinity for the sets D0 and D1, 
as obtained in Theorem 4.11. For every ρ ≤ ρ1 define the set

Dρ
0 := {g ∈ G | xρ

g ∈ [c0, c0 + σ0)} and Dρ
1 := {g ∈ G | xρ

g ∈ (c1 − σ0, c1]}
and note for later reference that for every finite set � ⊂ G, b�(Dρ

0 ) = b�(Dρ
1 ) by Theorem 3.7. According to Theo-

rem 3.6, for every ρ ≤ ρ1, a corresponding constant σ ≤ σ0 exists, such that ‖xρ − x‖∞ ≤ σ , and such that σ → 0
with ρ → 0. Hence, we may fix a decreasing sequence ρ1 ≥ ρn → 0 such that the corresponding sequence of positive 
reals σn is decreasing and such that

Ĉehn

Ĉehn + 1
< (1 − 2σn)

2, (5.31)

where Ĉ := (#S) · C̃ and C̃ is as in (2.8). Letting n → ∞ and with that ρn → 0, we obtain a sequence of solutions 
xρn to equations given by (1.1) and constants ρ = ρn. By Tychonoff’s theorem the set [c0, c1]G is a compact set in the 
product topology, so there exists a subsequence of xρn , converging point-wise to a function x̄ : G → [c0, c1]. Since 
σn → 0, it follows for every g ∈ G, that x̄g ∈ {c0, c1}. This allows us to define the sets

D0 := {g ∈ G | x̄g = c0} and D1 := {g ∈ G | x̄g = c1}
such that D0 ∩D1 =∅ and D0 ∪D1 = G. Let TD0 := ∂outD0 ∪ ∂outD1.

In fact, since for any m ∈N the sequence of functions xρn converges uniformly to x̄ on the ball Bm ⊂ G, there exists 
for any m ∈N an integer m̃ ∈N such that the sets Dρn

0 ∩Bm stabilise for n ≥ m̃. More precisely, Dρn

0 |Bm
=D0|Bm

for 
all n ≥ m̃. By taking a subsequence of ρn, we may thus assume that

Dρñ

0 |Bn
=D0|Bn

for all n ∈ N and for all ñ ≥ n. (5.32)

This obviously implies that also Dρñ

1 |Bn
=D1|Bn

for all n and that

TD0 = lim
n→∞(∂outDρn

0 ∪ ∂outDρn

1 ) .

To confirm that TD0 �= ∅ and that it satisfies the first condition in Definition 5.1, we first note that all of the 
constants that appear in section 4.3 are independent of ρ. For any ξ ∈ D̊0 and η ∈ D̊1 we can choose an r > 0 such 
that Bε

r (ξ) ⊂ D0 and Bε
r (η) ⊂ D1. By Theorem 4.11, there exist independently of the constant ρ neighbourhoods 

Uξ , Uη ⊂ G such that xρ
g ∈ [c0, c0 +σ) for all g ∈ Uξ and xρ

g ∈ (c0 −σ, c1] for all g ∈ Uη . For any such set Uξ , Uη ⊂ G

and for all n ∈ N, we have Uξ ⊂ Dρn

0 and Uη ⊂ Dρn

1 . Let pξ,η ⊂ C(G, S) be any path connecting ξ to η. Then there 
exists an n ∈ N such that outside of Uη and Uξ the path pξ,η is contained in the ball of size n, i.e. (pξ,η ∩ G)\
(Uη ∪ Uη)

in ⊂ Bn. By condition 5.32 it then holds that TD0 |Bn
= (∂outDρn

0 ∪ ∂outDρn

1 )|Bn
and so clearly pξ,η ∩ TD0 ∩

Bn �=∅.
To investigate the second condition, let � ⊂Bn ⊂ G be a fixed finite set and observe that for any positive ρ ≤ ρ1,

W
ρ
�(x) ≥

∑
g∈�

ρ2

2

∑
s∈S

(xgs − xg)
2 ≥ ρ2

2
(c1 − c0)

2(1 − 2σ)2b�(Dρ
0 ). (5.33)

Let now B̃ be such that B̃∩ (�in)c =Dρ
0 ∩ (�in)c and define the function ỹ by ỹg := c0 if g ∈ B̃ and ỹg := c1 if g /∈ B̃. 

For every positive ρ ≤ ρ1 it then easily follows
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W
ρ
�(ỹ) = ρ2

2
(c1 − c0)

2b�(B̃).

Since xρ is a minimiser with respect to compact variations, Wρ
�(x) ≤ W

ρ
�(ỹ), and it follows from estimate (5.33) that

(1 − 2σ)2b�(Dρ
0 ) ≤ b�(B̃). (5.34)

Since � ⊂ Bn, #� ≤ C̃ehn by (2.8) and it follows for every set B̃ that b�(B̃) ≤ Ĉehn. Assume now that B̃, B̂ ⊂ G

are sets such that B̃ ∩ (�in)c = B̂ ∩ (�in)c =Dρ
0 ∩ (�in)c and assume that b�(B̃) is minimal among all sets with such 

boundary behaviour with respect to �. In case b�(B̃) < b�(B̂) it follows since n
n+1 is a monotone increasing function 

for n ∈N that

b�(B̃)

b�(B̂)
≤ b�(B̃)

b�(B̃) + 1
≤ Ĉehn

Ĉehn + 1
. (5.35)

Inequality (5.34) and condition (5.31) then imply that

b�(B̃)

b�(Dρn

0 )
≥ (1 − 2σn)

2 ≥ Ĉehn

Ĉehn + 1

and it thus follows by the discussion leading to (5.35) that b�(B̃) ≥ b�(Dρn

0 ). Moreover, since � ⊂ Bn, it follows from 
condition (5.32) that b�(Dρn

0 ) = b�(D0), so also b�(B̃) ≥ b�(D0), which implies that TD0 satisfies also the second 
condition of Definition 5.1 and finishes the proof. �
Remark 5.3. If TD0 ⊂ G solves the asymptotic Plateau problem with respect to D0, then every path pξ,η ⊂ C(G, S)

with ξ ∈ D̊0 and η ∈ D̊1 intersects TD0 and, moreover, this intersection is finite.

Remark 5.4. If TD0 ⊂ G solves the asymptotic Plateau problem with respect to D0, then all connected components 
of D0 and D1 are infinite. If not, there would be a finite connected component contained in a finite ball Bn given by 
the transition set of the minimal solution xρn as in the proof of Theorem 5.2, which contradicts Lemma 4.2.
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Appendix A. Proof of Theorem 3.6

Proof. Observe that a function X : G → R is a solution to (1.1) on Bin with given boundary data if and only if 
F(X, ρ) = 0, where the function F : l∞(G) ×R → l∞(G) is defined by

F(X,ρ)g := V ′(Xg) + 1Bin(ρ�g(X)).

In particular, F(x, 0) = 0 for any x that solves (3.11). One now wants to apply the implicit function theorem to 
conclude the existence of a family xρ near x with F(xρ, ρ) = 0.

Let v ∈ l∞(G) and observe that the Fréchet derivative DXF(x, 0) : l∞ → l∞ at x is given by

(DXF(x,0) · v)g := d

dt

∣∣∣∣
t=0

F(x + tv,0)g = V ′′(xg) · vg .

Because V is a Morse function and xg ∈ [c0, c1], |V ′′(xg)| > ĉ for some constant ĉ > 0 and for all g ∈ G. It follows 
that DXF(x, 0) : l∞ → l∞ has a bounded inverse and we may define the quasi-Newton operator Kρ,x by

Kρ,x(X) := X − DXF(x,0)−1 · F(X,ρ), i.e. Kρ,x(X)g := Xg − V ′(Xg) + 1Bin(ρ�g(X))

V ′′(xg)
.

Obviously, Kρ,x maps l∞ into itself and it is clear that Kρ,x(X) = X if and only if F(X, ρ) = 0. Restricted to an 
appropriately chosen small l∞ ball {X | ‖X − x‖∞ ≤ σ0} around x, the operator Kρ,x moreover acts as a very strong 
contraction that sends this ball into itself.
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This can for example be seen from the following standard argument. Let us choose any desired contraction 
constant 0 < k < 1 and, accordingly, a 0 < σ0 < 1

2 with the property that |V ′′(Xg) − V ′′(xg)| ≤ kĉ
2 uniformly for 

X ∈ {X | ‖X − x‖∞ ≤ σ0}. Such σ0 exists because V ′′ is assumed continuous and because V only has finitely many 
stationary points. For example, when V ′′ is Lipschitz continuous with Lipschitz constant L, then it suffices to choose 
σ0 = kĉ

2L
. For later reference, let us remark that it holds automatically that the intervals

(xg − σ0, xg + σ0) ∩ (xg̃ − σ0, xg̃ + σ0) =∅ if xg �= xg̃ are critical points of V . (A.36)

We now have for g ∈ Bin and X, Y with ‖X − x‖∞ ≤ σ0 and ‖Y − x‖∞ ≤ σ0, that

|Kρ,x(X)g − Kρ,x(Y )g| ≤
∣∣∣∣Xg − Yg − V ′(Xg) − V ′(Yg)

V ′′(xg)

∣∣∣∣ +
∣∣∣∣ρ�g(X) − ρ�g(Y )

V ′′(xg)

∣∣∣∣ . (A.37)

To estimate the first term in (A.37) we write

Xg − Yg − V ′(Xg) − V ′(Yg)

V ′′(xg)
= Xg − Yg

V ′′(xg)

⎛
⎝ 1∫

0

V ′′(xg) − V ′′(tXg + (1 − t)Yg) dt

⎞
⎠ ,

which shows that the first term in (A.37) is bounded from above by k
2 ||X − Y ||∞. To estimate the second part of the 

sum in (A.37), we note that since ‖X − x‖∞ ≤ σ0 and because xg ∈ [c0, c1] for all g, it holds that |Xgs − Xg| ≤
c1 − c0 + 2σ0, and similarly for Y . It then follows by linearity of � that

|�g(X) − �g(Y )| ≤ (c1 − c0 + 2σ0)2(#S)‖X − Y‖∞.

By defining c̃ := (c1 − c0 + 2σ0)2(#S), we found that it holds for X, Y as above that

||Kρ,x(X) − Kρ,x(Y )||∞ ≤
(

k

2
+ ρ · c̃

ĉ

)
||X − Y ||∞ .

To investigate whether Kρ,x maps the σ0-ball around x to itself, let ||X − x||∞ < σ0 and observe that it follows that

|Kρ,x(X)g − xg| ≤ |Kρ,x(X)g − Kρ,x(x)g| + |Kρ,x(x)g − xg| < σ0

(
k

2
+ ρ · c̃

ĉ

)
+

(
ρ · c̃
ĉ

)
,

where the final estimate holds because V ′(xg) = 0 and |�g(x)| ≤ #S(c1 − c0) < c̃.
This proves that Kρ,x is a contraction with constant k which maps the σ0-ball around x to itself if 0 ≤ ρ ≤ ρ0 :=

min
{

kĉ
2c̃

,
(1−k)σ0ĉ

c̃

}
. Clearly then limσ0↘0 ρ0 = 0. �
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