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Abstract

Consider a three-dimensional fluid in a rectangular tank, bounded by a flat bottom, vertical walls and a free surface evolving 
under the influence of gravity. We prove that one can estimate its energy by looking only at the motion of the points of contact 
between the free surface and the vertical walls. The proof relies on the multiplier technique, the Craig–Sulem–Zakharov formulation 
of the water-wave problem, a Pohozaev identity for the Dirichlet to Neumann operator, previous results about the Cauchy problem 
and computations inspired by the analysis done by Benjamin and Olver of the conservation laws for water waves.
© 2017 
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1. Introduction

Consider surface waves over an incompressible liquid, evolving under the influence of gravity, in the case where 
the fluid is located inside a fixed rectangular tank R of the form R = Q × [−h, +∞) where Q = [0, L1] × [0, L2]
and h is a positive constant. At time t , the fluid domain �(t) is given by

�(t) = { (x, y) : x ∈ Q, − h ≤ y ≤ η(t, x) } , (1)

where x = (x1, x2) (resp. y) is the horizontal (resp. vertical) space variable. The equations which dictate the motion are 
the incompressible Euler equations with free surface. This is a system of two nonlinear equations: the incompressible 
Euler equation for the velocity potential φ : �(t) → R (so that the velocity is v = ∇x,yφ) and a kinematic equation 
for η which states that the free surface moves with the fluid. The energy, which is the sum of the potential energy and 
the kinetic energy, is conserved:

dH
dt

= 0 with H = g

2

ˆ

Q

η2(t, x) dx + 1

2

¨

�(t)

∣∣∇x,yφ(t, x, y)
∣∣2 dxdy, (2)
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where g is the acceleration of gravity. This paper is devoted to the analysis of the following question: is it possible to 
estimate the energy H of gravity water waves by looking only at the motion of some of the curves of contact between 
the free surface and the vertical walls? From the point of view of control theory, this is the question of boundary 
observability of gravity water waves.

1.1. The water-wave equations

Hereafter we use the notations ∇ = (∂x1 , ∂x2), ∇x,y = (∇x, ∂y) and �x,y = �x + ∂2
y . As already mentioned, the 

velocity field v : �(t) → R
3 is given by v = ∇x,yφ for some velocity potential φ : � → R satisfying

�x,yφ = 0, ∂tφ + 1

2

∣∣∇x,yφ
∣∣2 + P + gy = 0, (3)

where P is the pressure term. The water-wave equations are then given by several boundary conditions. Firstly, the 
velocity satisfies the solid wall boundary condition, so that ∂nφ = 0 on the boundary of the tank ∂R ∩ ∂�; where ∂n

denotes the outward normal derivative. This implies that

∂x1φ = 0 for x1 = 0 or x1 = L1, (4)

∂x2φ = 0 for x2 = 0 or x2 = L2, (5)

∂yφ = 0 for y = −h. (6)

The problem is then given by two boundary conditions on the free surface {y = η}:
∂tη =

√
1 + |∇η|2 ∂nφ|y=η = ∂yφ(t, x, η) − ∇η(t, x) · ∇φ(t, x, η), (7)

P |y=η = 0. (8)

The equation (7) implies that the free surface moves with the fluid. The condition P(t, x, η) = 0 is a dynamic condition 
that expresses a balance of forces across the free surface.

We also assume that the free surface must intersect the vertical walls orthogonally:

∂x1η = 0 for x1 = 0 or x1 = L1,

∂x2η = 0 for x2 = 0 or x2 = L2.
(9)

It is proved in [2] that (9) always holds for smooth enough solutions (we elaborate on that fact in Section 2.4). 
Eventually we assume that

η ≥ −h

2
,

ˆ

Q

ηdx = 0. (10)

One can always assume that the mean value vanishes since it is a conserved quantity.

1.2. Boundary observability of water waves

There are very few articles about the possible applications of control theory to the study of the incompressible 
Euler equation with free surface. The first results are due to Reid and Russell [20] and Reid [18,19] who studied 
the linearized equations at the origin. Alazard, Baldi and Han-Kwan initiated in [1] the study of the control of the 
nonlinear equations. The analysis in [1] and the one in this paper rely on completely different tools. This is because 
of the following differences: the article [1] addresses the internal control problem for the two-dimensional equations 
with surface tension, while here we consider the boundary observability for the 2D and 3D problems without surface 
tension. In [1], the analysis used in an essential way the infinite speed of propagation of gravity-capillary waves, 
which is the property that a harmonic with frequency |ξ | travels at a speed proportional to 

√|ξ |. By contrast, for grav-
ity waves, a harmonic with frequency |ξ | travels at a speed proportional to 1/

√|ξ |. Loosely speaking, in this paper 
we study the observability problem for low and medium frequency gravity waves, while in [1] the controllability of 
gravity-capillary waves is deduced from an observation of high frequencies. With regards to the proofs, the paper [1]
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relies on microlocal analysis while here the proof will rely on the study of global quantities. More precisely, in [1] the 
analysis combines Ingham type inequalities, paradifferential calculus and other techniques used to study quasi-linear 
problems. By contrast, in this paper, the analysis will be based on the multiplier method and on various exact identities 
which are studied as conservations laws. In this direction, let us mention the recent article by Biccari [8] which intro-
duced the use of the multiplier method to analyze the interior controllability problem for the fractional Schrödinger 
equation i∂tu + (−�)su = 0 with s ≥ 1/2 in a C1,1 bounded domain Q with Dirichlet boundary condition.1

We do not assume that the reader is familiar with control theory and begin by recalling what is the multiplier 
method in the simplest case. Consider the one dimensional linear wave equation with Dirichlet boundary condition:

∂2
t u − ∂2

xu = 0, u(t,0) = u(t,1) = 0. (11)

Multiply the equation by x∂xu and integrate by parts, to obtain

1

2

T̂

0

(∂xu(t,1))2 dt =
1ˆ

0

(∂tu)(x∂xu)dx

∣∣∣T
0

+ 1

2

¨

S

[
(∂tu)2 + (∂xu)2]dxdt (12)

where S = (0, T ) × (0, 1). Since∣∣∣∣∣∣
1ˆ

0

(∂tu)(x∂xu)dx

∣∣∣∣∣∣≤ E := 1

2

1ˆ

0

[
(∂tu)2 + (∂xu)2]dx, (13)

by using the conservation of energy (dE/dt = 0), we deduce

T̂

0

(∂xu(t,1))2 dt ≥ (T − 2)

1ˆ

0

[
(∂tu)2 + (∂xu)2](0, x) dx. (14)

This inequality implies that, for T > 2, one can bound the energy by means of an observation at the boundary.
There are inequalities analogous to (14) which hold in multi-dimensional domains. In this direction, let us also 

mention the celebrated result by Bardos–Lebeau–Rauch [6] which is devoted to the boundary observability of solu-
tions of second-order hyperbolic equations in the general case when the region of observability meets every ray of 
geometric optics.

The inequality (14) is a central result in the study of the control of the wave equation—extensions and applications 
of (14) are discussed in the first part of the SIAM Review article by Lions [16]; see also [11,23,17,22]. In particular, 
(an extension of) (14) allows to prove that in multi-dimensional domains, one can drive a solution of the wave equation 
from the rest position to a desired state, in finite time, by acting only on part of the boundary. Our intention in this 
paper is to start the study the analogous problem for the water-wave equations. This is a very natural question since it 
corresponds to the wavemaker problem: the aim is to determine which waves can be produced by, say, the motion of 
a plate immersed in a fluid.

In this paper, our goal is to obtain a boundary observability result similar to (14) for gravity waves. By contrast 
with the wave equation, the water-wave equations are fully nonlinear and contain nonlocal terms. However, we will 
prove that a similar observability inequality holds.

Definition 1.1. Introduce ψ(t, x) = φ(t, x, η(t, x)) (evaluation of the potential at the free surface) and

	 := −η∂tψ − g

2
η2.

1 One cannot apply this result to study the observability of gravity water waves. Indeed, i) we are concerned with a nonlinear problem and ii)
even the linearized problem involves a different setting since it can be written under the form i∂t u + (−�)su = 0 with s = 1/4 (and hence the 
assumption s ≥ 1/2 does not hold). The key point is that, if s < 1/2, then high frequency waves propagate at a speed which goes to 0 when |ξ |
goes to +∞.
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Set

B(T ) = L1L2

T̂

0

⎛⎝ 1

L2

L2ˆ

0

	(t,L1, x2) dx2 + 1

L1

L1ˆ

0

	(t, x1,L2) dx1

⎞⎠ dt.

(It is convenient to use the factor L1L2 to derive some identities.)

Notice that B(T ) depends only on the boundary values of the unknowns. Our main result asserts that B(T ) is 
larger than the energy H (cf. (2)) when T is large enough.

Theorem 1.2. Let β > 1/2 and χ be either a C∞
0 (Q) function or χ ≡ 1. There exist three positive constants K0, κ , c

such that, for any N in N, the following result holds. Assume that the initial data η0 and ψ0 are of the form

χ(x)
∑

|n|+|m|≤N

anm cos

(
π

nx1

L1

)
cos

(
π

mx2

L2

)
with |anm| ≤ cN−κ , (15)

and such that η0 satisfies (10). Then there exists a unique smooth solution (η, φ) of the water-wave equations (3)–(10)
such that η(0, x) = η0(x) and ψ(0, x) = ψ0(x). This solution exists on the time interval [0, TN ] with TN = K0 +
K0N

β and satisfies

B(TN) ≥H.

If, in addition, η and φ are independent of x2 (this means that we consider a two-dimensional wave), then one has the 
stronger conclusion

L1

TNˆ

0

	(t,L1,0) dt ≥ H.

We refer to Section 2 for an explanation of what we call a smooth solution of the water-wave equations. Several 
other remarks are in order.

(i) One can consider more general initial data, see Remark 5.3.
(ii) The second point to be made is a clarification of how one passes from a true observation at the boundary 

to a control of B(T ) or 
´ TN

0 	(t, L1, 0) dt . Let us explain why these two quantities can be expressed as quantities 
depending only the restrictions to ∂Q of η and ∂tη (notice that η, ∂tη are quantities which can be measured by a camera 
by contrast with ψ ). To see this, consider firstly the case of a two-dimensional wave and set m(t) = η(t, L1, 0). Then 
one has

	(t,L1,0) = 1

2

[
gm(t)2 − m(t)m′(t)2],

as can be verified by a simple calculation (see Remark 4.6). For a three-dimensional wave, this is not so simple. 
However, one can determine ψ from (η, ∂tη) by using the equation (7) and considering the Neumann to Dirichlet 
operator (as in Appendix A.3 in Lannes’ book [15]).

(iii) Theorem 1.2 will be deduced from an observability estimate which holds without smallness assumptions. 
Namely, we will prove that for all smooth enough solution defined on the time interval [0, T ], one has (cf. (51))

B(T ) ≥
(

T

2
− 5 + 2d

4
BT

)
H−

(
d + 3

2

)
max{L1,L2}

√
2H√
g

A

where

B := sup
t∈[0,T ]

‖∇η(t)‖L∞ , A := sup
t∈[0,T ]

‖∇ψ(t)‖L2 ,

and where d is the space dimension. The assumption (15) will be used only to prove that one can bound A in terms 
of 

√
H on large time intervals. Then, when T is large enough, the right-hand side of the above inequality is larger 

than H.



T. Alazard / Ann. I. H. Poincaré – AN 35 (2018) 751–779 755
Fig. 1. Three-dimensional and two-dimensional waves in a rectangular tank.

(iv) Theorem 1.2 gives an observability inequality in time Nβ for β > 1/2. The important think to note is that, 
except for the fact that we preclude β = 1/2, this result is sharp. Indeed, a harmonic with frequency N travels at a 
speed proportional to 1/

√
N (the dispersion relationship for the linearized equations is ω(k)2 = g|k|). So it might 

take a time 
√

N to reach the boundary and hence for the observation to be possible. Now we can explain why we need 
a smallness assumption on the initial data, namely the assumption |anm| ≤ cN−κ . This is because one needs such a 
smallness assumption to guarantee that the solutions exist on large time intervals of size Nβ (the link between κ and 
β will be made through an interpolation argument in the proof).

(v) Another point should be added: as indicated on Fig. 1, we are making an observation on part of the boundary 
only (satisfying the so-called geometric control condition). Indeed, to determine 

´ TN

0 	(t, L1, 0) dt it is sufficient to 
look at the motion of the point of contact P(t) = (L1, 0, η(t, L1, 0)) between the free surface and only one wall, 
namely {x1 = L1}. Similarly, for a three-dimensional wave, to determine B(T ), it is sufficient to observe the motion 
of the curves of contact between the free surface and the walls {x1 = L1} and {x2 = L2}:

C1(t) = {(L1, x2, y) : x2 ∈ [0,L2], y = η(t,L1, x2)},
C2(t) = {(x1,L2, y) : x1 ∈ [0,L1], y = η(t, x1,L2)}.

1.3. Strategy of the proof and main identity

In the rest of this introduction, for the sake of simplicity, we consider two-dimensional waves (these are solutions 
independent of x2, and we write simply η(t, x1) and φ(t, x1, y)). We refer to the next sections for the corresponding 
statements for three-dimensional waves.

Theorem 1.2 will be deduced from an exact identity, similar to (12), where, quite surprisingly, the terms coming 
from the nonlinear part of the equations have a very simple and compact form.

Theorem 1.3. Consider a smooth enough solution of the water waves equations (3)–(10) defined on the time interval 
[0, T ] and independent of x2. Introduce

m(t) = η(t,L1).

Then 	(t, L1) = 1
2

[
gm(t)2 − m(t)m′(t)2

]
and

L1

T̂

0

	(t,L1) dt = T

2
H

+ L1

2

T̂

0

m(t)ˆ

−h

(∂yφ)2(t,L1, y) dydt

+ 1

2

T̂ L1ˆ (
h + 7

4
η

)
(∂xφ)2(t, x,−h)dxdt (16)
0 0



756 T. Alazard / Ann. I. H. Poincaré – AN 35 (2018) 751–779
− 1

4

L1ˆ

0

ηψ dx

∣∣∣t=T

t=0
−

L1ˆ

0

xη∂xψ dx

∣∣∣t=T

t=0

− 7

4

T̂

0

¨

�(t)

(∂xη)(∂xφ)(∂yφ)dxdydt,

where H is given by (2) and 
´

f dx|t=T
t=0 stands for 

´
f (T , x) dx − ´

f (0, x) dx.

Theorem 1.3 is proved in Section 4. The proof uses Zakharov’s formulation of the water-wave problem as a Hamil-
tonian system (see [24]) and the observation by Craig and Sulem [12] that the equations and the Hamiltonian are 
most naturally expressed in terms of the Dirichlet to Neumann operator G(η). The main ingredients of the proof 
of Theorem 1.3 are then: i) a Pohozaev identity for the Dirichlet to Neumann operator (that is a computation of ´

(G(η)ψ)x∂xψ dx) which shows that the contributions due to the boundary conditions are positive and ii) some 
computations inspired by the analysis of Benjamin and Olver [7] of the conservation laws for water waves. Let us 
mention that, in the appendix, we give another proof of (16) which exploits the Hamiltonian structure of the water-
wave equations. The idea is to compute

A :=
¨

[0,T ]×[0,L1]

[
(∂tη)(x∂xψ) − (∂tψ)(x∂xη)

]
dxdt.

We compute A in two different ways, and the wanted identity (16) is obtained by comparing the two results. The 
first computation is simply an integration by parts. The second computation relies on the fact that the equation is 
Hamiltonian (see Zakharov [24], Craig–Sulem [12]), which means that

∂tη = δH
δψ

, ∂tψ = −δH
δη

.

Therefore

A =
T̂

0

a(t) dt with a :=
L1ˆ

0

[
x(∂xψ)

δH
δψ

+ x(∂xη)
δH
δη

]
dx.

Then we compute a by writing

a = lim
ε→0

1

ε

[
H(η,ψ + εx(∂xψ)) −H(η,ψ)

]+ lim
ε→0

1

ε

[
H(η + εx(∂xη),ψ) −H(η,ψ)

]
,

and using a shape derivative formula due to Lannes [14]. This allows to avoid the use of the Pohozaev identity. 
However, the proof still requires to prove some identities for quantities which are analyzed as conservation laws.

We now indicate how to infer from Theorem 1.3 a boundary observability result. This will require to make an 
additional assumption. Indeed, in sharp contrast with the example of the wave equation (11) discussed above, even 
for the linearized water-wave equations at the origin, there is no observability inequality in finite time which applies 
to all initial data (see Reid and Russell [20] or Biccari [8] for related results). However, we will prove a boundary 
observability result, for the full nonlinear problem, for initial data whose Fourier transforms are compactly supported. 
To do so, we begin with the following corollary of Theorem 1.3.

Corollary 1.4. Consider a smooth enough solution of the water waves equations (3)–(10) defined on the time interval 
[0, T ]. Assume that there exist two positive constants A, B such that

B <
2

7
, T ≥ 4

2 − 7B

(
1 + 5L1√

g
A

)
, (17)

and

sup ‖∂xη(t)‖L∞(0,L1)
≤ B, sup ‖∂xψ(t)‖L2(0,L1)

≤ A
√

2H. (18)

t∈[0,T ] t∈[0,T ]
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Then

L1

T̂

0

	(t,L1) dt ≥H

+ L1

2

T̂

0

m(t)ˆ

−h

(∂yφ)2(t,L1, y) dydt

+ h

16

T̂

0

L1ˆ

0

(∂xφ)2(t, x,−h)dxdt.

(19)

Proof. The proof is straightforward: directly from (18), the definition of H, the Cauchy–Schwarz inequality and the 
assumption 

´ L1
0 η dx = 0, we get∣∣∣∣∣∣

L1ˆ

0

ηψ dx

∣∣∣∣∣∣=
∣∣∣∣∣∣

L1ˆ

0

η

⎛⎝ψ −
L1ˆ

0

ψ dx

⎞⎠ dx

∣∣∣∣∣∣≤ L1 ‖η‖L2
x
‖∂xψ‖L2

x
≤ (2L1/

√
g)AH,

∣∣∣∣∣∣∣
7

4

T̂

0

¨

�(t)

(∂xη)(∂xφ)(∂yφ)dxdydt

∣∣∣∣∣∣∣≤
7B

4
TH,

∣∣∣∣∣∣
L1ˆ

0

xη∂xψ dx

∣∣∣∣∣∣≤ L1 ‖η‖L2
x
‖∂xψ‖L2

x
≤ (2L1/

√
g)AH,

where we used the Poincaré inequality in the first line. Now, since η ≥ −h/2 by assumption, using the identity (16)
we see that the left hand side of (19) is larger than the sum of the last two terms in the right hand side of (19) and of(

1

2
T − 5L1√

g
A − 7B

4
T

)
H,

which, by assumption (17), is larger than H. �
Remark 1.5. i) One controls not only the energy H but also the traces of the velocities on the wall {x = L1} and on 
the bottom.

ii) (Unique continuation) If m = 0 then (19) implies that H = 0 and hence η = 0 and ∇x,yφ = 0.
iii) The assumption |∂xη(t, x)| ≤ 2/7 is physically realistic. Indeed, one expects a steepness-induced blow-up in 

finite time when the wave height is large compared to the wavelength (there are no mathematical proofs of this claim 
but it is known that blow-up occurs in finite time for some large enough initial data, see [10]). Moreover, the threshold 
2/7 is in good agreement with the sharp experimental studies of steep irregular wave events reported in [13].

To conclude this introduction, we explain how we deduce Theorem 1.2 from Corollary 1.4. The reason why we need 
the assumption for ψ in (18) is the following: we do not have an estimate analogous to (13) for the term 

´ 1
0 xη∂xψ dx

which appears in the right-hand side of (16). Indeed, the fact that 
√

2H is larger than the L2(�(t))-norm of ∇x,yφ(t)

gives only a bound of the Ḣ 1/2
x -norm of the trace ψ . Hence 

√
H does not control the L2-norm of ∂xψ and this why 

we need the assumption for ψ in (18). Now, notice that this assumption for ∂xψ holds at t = 0 with A = K
√

N if the 
Fourier transform of ψ(0) is supported in [−N, N ] (as in (15)). Since the equations are nonlinear, we cannot assume 
that the Fourier transform of the solution will be supported in [−N, N ] for all time. However, we shall see that, for 
small data, one can propagate the estimate ‖∂xψ(0)‖L2 � K

√
N ‖ψ(0)‖Ḣ 1/2 on large time intervals and hence deduce 

and observability result. To do so, we shall combine an interpolation argument and the fact that the Cauchy problem 
is well-posed on Hs (with s large enough) on large time intervals for small initial data.
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Organization of the paper. In Section 2 we recall various results about the well-posedness of the Cauchy problem. 
This will allow us to clarify what we call a smooth enough solution. In Section 3, we prove a Pohozaev identity 
for the Dirichlet to Neumann operator and we use this identity in Section 4 to prove Theorem 1.3. Then we prove 
Theorem 1.2 in Section 5. In the appendix we give a proof of Theorem 1.3 which exploits the Hamiltonian structure 
of the equations.
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2. About the Cauchy problem in a rectangular tank

We recall here various results about the well-posedness of the Cauchy problem.

2.1. The Craig–Sulem–Zakharov system

To study the Cauchy problem for the water-wave equations, there are at least two difficulties. Firstly, one has to 
reduce the analysis to a time independent domain. In the case where the space variable x belongs to the torus instead 
of Q, several approaches have been used. In this paper, we use the Eulerian approach, following Zakharov [24], 
Craig–Sulem [12], Lannes [14,15] and Alazard–Burq–Zuily [4,2]. In this approach, one works with the trace of the 
potential φ at the free surface and the Dirichlet to Neumann operator G(η).

Hereafter we consider either the 2D problem or the 3D problem (see Fig. 1) and denote by d ∈ {1, 2} the dimension 
of the free surface. For a three-dimensional fluid one has d = 2 and we use the notation ∇ = (∂x1 , ∂x2) (and we also 
use the notation ∇ = ∂x when d = 1).

We set

ψ(t, x) = φ(t, x, η(t, x)),

and introduce the Dirichlet to Neumann operator G(η) defined by

G(η)ψ =
√

1 + |∇η|2 ∂nφ|y=η = (∂yφ − ∇η · ∇φ)|y=η

(see the next paragraph for a precise definition of G(η)). Then the Craig–Sulem–Zakharov formulation of the water-
wave equations reads⎧⎨⎩

∂tη = G(η)ψ,

∂tψ + gη + 1

2
|∇ψ |2 − 1

2(1 + |∇η|2)
(
G(η)ψ + ∇η · ∇ψ

)2 = 0.
(20)

Moreover, the energy H satisfies

H = g

2

ˆ
η2 dx + 1

2

¨ ∣∣∇x,yφ
∣∣2 dydx = 1

2

ˆ [
gη2 + ψG(η)ψ

]
dx.

We refer the reader to the original article by Craig–Sulem [12] for the derivation of this system from the water-wave 
equations (3)–(8) as well as to [3] for the proof that, conversely, given a solution of (20), one can define a solution of 
(3)–(8).

2.2. Definition of the Dirichlet to Neumann operator

We have already written the water waves equations under the form of the Craig–Sulem–Zakharov system (20). 
We give here the precise definition of the Dirichlet to Neumann operator that is used in that system in the context of 
periodic functions.
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For s ∈ [0, +∞), we denote by Hs(Td) the Sobolev space of periodic functions:

Hs(Td) =
{
u =

∑
n∈Zd

anen(x) :
∑
n∈Zd

(1 + |n|2)s |an|2 < +∞
}
,

where en(x) = exp
(
iπ

nx

L1

)
if d = 1, en(x) = exp

(
iπ

(n1x1

L1
+ n2x2

L2

))
when d = 2 (we fix the periods equal to 

2L1, 2L2 for reasons that will be clear below).
Fix h > 0 and consider η ∈ Hs0(Td) with s0 > d/2 + 1 such that η(x) ≥ −h/2. Set

�̃ = {(x, y) ∈ T
d ×R : −h ≤ y ≤ η(x)}. (21)

Since η is Lipschitz, by the usual variational method, one obtains that, for any ψ ∈ H 1/2(Td), the problem

�x,yφ = 0 in �̃, φ|y=η = ψ, ∂yφ|y=−h = 0, (22)

has a unique variational solution. Moreover, even if ∇x,yφ belongs only to L2(�̃), one can prove that

G(η)ψ = (∂yφ − ∇η · ∇φ)|y=η,

is well-defined and belongs to H−1/2(Td). More generally, one has the following result (see [4,15]).

Proposition 2.1. Let s0 > d/2 + 1 and assume that η is in Hs0(Td). Then G(η) is a bounded operator from Hσ (Td)

into Hσ−1(Td) for any σ ∈ [1/2, s0].

Later we shall perform various integrations by parts and apply repeatedly the Green’s identity. The fact that all the 
computations are meaningful relies on the following regularity result.

Proposition 2.2. Let d ≥ 1, s > d/2 + 2 and assume that (η, ψ) ∈ Hs(Td) × Hs(Td). Then

∇x,yφ ∈ C1(�̃).

Proof. We explain how to deduce this result from the results in Lannes’s book [15].
It is convenient to flatten the free surface. To do so, consider a diffeomorphism from Td ×[−h, 0] to �̃, of the form 

(x, z) → (x, ρ(x, z)). The simplest choice would be to set

ρ(x, z) =
(

1 + z

h

)
η(x) + z. (23)

However, since we only assume that s > d/2 + 2 (the analysis is simpler for s > d/2 + 5/2), following Lannes [15, 
§2.2.2], we need to consider a regularized version of (23). Introduce

ζ(x, z) = c
∑
n∈Zd

e−δz2|n|2 η̂nen(x), η̂n =
ˆ

Td

en(y)η(y) dy,

where c and δ are positive constants (with δ small enough), chosen so that

ζ |z=0 = η, |∂zζ(x, z)| ≤ min
{h

4
,

1

20

}
, ζ ∈ Hs+ 1

2 (Td × [−h,0]). (24)

Then set

ρ(x, z) =
(

1 + z

h

)
ζ(x, z) + z. (25)

Notice that ρ(x, 0) = η(x) and ρ(x, −h) = −h. Recall that η ≥ −h/2 by assumption. In view of the bound for ∂zζ in 
(24), we deduce that ζ ≥ −3h/4 and ∂zρ ≥ 1/5, which proves that (x, z) → (x, ρ(x, z)) is a C2-diffeomorphism. The 
problem thus reduces to establishing that the function ϕ(x, z) = φ(x, ρ(x, z)) satisfies ∇x,zϕ ∈ C1(Td × [−h, 0]). To 
obtain this result, we view ϕ as a function of z with values in functional spaces. Since s > d/2 + 2 and since we chose 
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a special change of variables where ρ is given by (25), we are in position to apply Corollary 2.40 in Lannes’ book 
[15] (with s replaced by s − 1/2). We deduce that

∇x,zϕ ∈ L2
z([−h,0];Hs− 1

2 (Td)) ∩ H 1
z ([−h,0];Hs− 3

2 (Td)).

As a result

∇xϕ ∈ L2
z([−h,0];Hs− 1

2 (Td)) and ∂z∇xϕ ∈ L2
z([−h,0];Hs− 3

2 (Td)),

∂zϕ ∈ L2
z([−h,0];Hs− 1

2 (Td)) and ∂z∂zϕ ∈ L2
z([−h,0];Hs− 3

2 (Td)),

and hence

∇x,zϕ ∈ C0
z ([−h,0];Hs−1(Td)). (26)

Then, using the second order equation satisfied by ϕ one can express ∂2
z ϕ in terms of (∂zϕ, ∂z∇xϕ, ∇2

xϕ) and in terms 
of ρ and hence, using the standard nonlinear estimates in Sobolev spaces, one deduces that

∂2
z ϕ ∈ C0

z ([−h,0];Hs−2(Td)). (27)

The wanted result ∇x,zϕ ∈ C1(Td × [−h, 0]) then follows from (26)–(27) and the Sobolev embeddings Hs−1(Td) ⊂
C1(Td) and Hs−2(Td) ⊂ C0(Td). �
2.3. The Cauchy problem for periodic functions

We recall here a well-posedness result for the Cauchy problem for periodic functions. There are now quite a lot of 
papers on this subject and we quote below only two results which are related to our problem. The main difficulty in 
the analysis of System (20) is that writing energy estimates on the function (η, ψ) makes appear an apparent loss of 
half a derivative. A way to circumvent that difficulty is to bound the energy not of (η, ψ) but (η, B, V ) where

B = ∂yφ|y=η = G(η)ψ + ∇η · ∇ψ

1 + |∇η|2 , V = ∇φ|y=η = ∇ψ − B∇η. (28)

If initially η0 and ψ0 belong to Hs0+ 1
2 (Td) for some s0 > (d + 1)/2, then G(η0)ψ0 belongs to Hs0− 1

2 (Td) (cf. 
Proposition 2.1). On the other hand, Hs0− 1

2 (Td) is an algebra for any s0 > (d + 1)/2. It thus follows from usual 
nonlinear estimates in Sobolev spaces that

B0 = G(η0)ψ0 + ∇η0 · ∇ψ0

1 + |∇η0|2 ∈ Hs0− 1
2 (Td), V0 = ∇ψ0 − B0∇η0 ∈ Hs0− 1

2 (Td). (29)

The following result shows that one can propagate the fact that B0 and V0 are in Hs0(Td) for s0 > d/2 + 1 (and this 
is the key point to circumvent the apparent loss of half of derivative in the study of the Cauchy problem).

Theorem 2.3 (from Alazard–Burq–Zuily [4]). Let d ≥ 1, s0 > d/2 + 1 and consider an initial data (η0, ψ0) such that

(η0,ψ0,V0,B0) ∈ Xs0 := Hs0+ 1
2 (Td) × Hs0+ 1

2 (Td) × Hs0(Td) × Hs0(Td). (30)

Then there exists a time T > 0 such that the Cauchy problem for (20) with initial data (η0, ψ0) has a unique solution 
(η, ψ) such that (η, ψ, V, B) ∈ C0([0, T ]; Xs0).

2.4. Extension to periodic functions

We recall here from Alazard–Burq–Zuily [2] how to solve the Cauchy problem for the water-wave equations in 
a rectangular tank. Let d ∈ {1, 2}, Q = [0, L1] if d = 1 and Q = [0, L1] × [0, L2] if d = 2. One denotes by ν the 
outward unit normal to ∂Q (ν = (1, 0) if x1 = L1, ν = (0, −1) if x2 = 0, . . .).

As recalled in the introduction, the key observation is the following: for smooth enough solutions, the angle between 
the free surface and the vertical boundary of the tank is a right angle (see Section 6 in [2]). This means that ∂νη = 0
on ∂Q. Now observe that ∇ψ = (∇φ)|y=η + (∂yφ)|y=η∇η. Since ∂nφ = 0 on the boundary of the tank R = Q ×
[−h, +∞), we conclude that ∂νψ(·, y) = 0 on ∂Q.
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Definition 2.4. Given d ∈ {1, 2} and σ > 3/2, one denotes by Hσ
e (Q) the space

Hσ
e (Q) = {v ∈ Hσ (Q) : ∂νv = 0 on ∂Q}.

Consider the Cauchy problem for initial data η0, ψ0 : Q → R in Hσ
e (Q) for some σ large enough. Following 

Boussinesq (see [9, p. 37]), the idea is that, in a general setting, one can extend these initial data to periodic func-
tions defined for x ∈ R

d , solve the Cauchy problem for these extended initial data and then obtain a solution to the 
water-wave equations in a canal by considering the restrictions of these solutions.

Definition 2.5. Let v : Q → R. If d = 2, we define ̃v : R2 → R as the unique extension of v satisfying

ṽ(x) = v(x) ∀x ∈ Q, (31)

ṽ(−x1, x2) = ṽ(x1, x2) = ṽ(x1,−x2) ∀x ∈R
2, (32)

ṽ(x1 + 2L1, x2) = ṽ(x1, x2) = ṽ(x1, x2 + 2L2) ∀x ∈R
2. (33)

Similarly, when d = 1, ̃v : R →R is defined by

ṽ(x) = v(x) ∀x ∈ Q, (34)

ṽ(−x) = ṽ(x) ∀x ∈R, (35)

ṽ(x + 2L1) = ṽ(x) ∀x ∈ R. (36)

Definition 2.6. Given σ ∈ R, denote by Hσ
e (Td) the Sobolev space of those periodic functions which are even (satis-

fying (32)–(33) when d = 2 and (35)–(36) for d = 1).

Now consider the case d = 1 (to fix notations) and u ∈ Hσ
e (T) with σ > d/2 + 1 = 3/2. Then, ∂xu(x) is C0 and 

odd which implies that ∂xu(0) = 0. Moreover, one has u(L1 + ε) = u(−L1 + ε) = u(L1 − ε) and hence one has also 
∂xu(L1) = 0 (then ∂xu(nL1) = 0 for any n ∈ Z). We have a similar result when d = 2. This proves that

∀σ >
d

2
+ 1, ∀v ∈ Hσ

e (Td), v|Q ∈ Hσ
e (Q). (37)

Conversely, the following result shows that any function v in Hσ
e (Q), with σ ∈ (3/2, 7/2), is the restriction to Q of a 

function belonging to Hσ
e (Td).

Proposition 2.7 (from Prop. 6.5 in [2]). Let d ∈ {1, 2} and 3
2 < σ < 7

2 . Then the map v → ṽ is continuous from 
Hσ

e (Q) = {v ∈ Hσ (Q) : ∂νv = 0 on ∂Q} to Hσ
e (Td).

We are now in position to define G(η)ψ when η and ψ belong to some space Hσ
e (Q). To do so, let η̃, ̃ψ be as 

given by Definition 2.5. If 3/2 < σ < 7/2, it follows from Proposition 2.7 that ̃η, ̃ψ belong to Hσ
e (Td). If one further 

assumes that σ > d/2 + 1, as recalled in §2.2, there exists a unique periodic variational solution to

�x,yφ̃ = 0 in {(x, y) ∈ T
d ×R : −h ≤ y ≤ η̃(x)},

φ̃(x, y)|y=η̃(x) = ψ̃(x), ∂yφ̃|y=−h = 0.
(38)

Definition 2.8. Consider η and ψ in Hσ
e (Q) with d/2 + 1 < σ < 7/2. We define G(η)ψ (resp. φ) by taking the 

restriction to Q (resp. �):

φ = φ̃|�, G(η)ψ = G(̃η)ψ̃ |Q, (39)

where � = {(x, y) ∈ Q ×R : −h ≤ y ≤ η(x)}.

Proposition 2.9. Assume that (η, ψ) ∈ Hσ
e (Q) × Hσ

e (Q) with σ ∈ (d/2 + 2, 7/2) where d = 1, 2. Then

∇x,yφ ∈ C1(�), ∂nφ = 0 on ∂R ∩ ∂�, (40)
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and

G(η)ψ ∈ Hσ−1
e (Q). (41)

Proof. Let us prove (40). The fact that ∇x,yφ ∈ C1(�) follows from Proposition 2.2. It remains only to prove that 
∂nφ = 0 on ∂R ∩ ∂�. By definition of φ, we have to prove that ∂nφ̃(x, y) = 0 for any (x, y) ∈ �̃ with x ∈ ∂Q. To 
simplify notations, assume that d = 1. Then, as already mentioned after the statement of Definition 2.6, notice that 
η̃(x) = η̃(−x) and η̃(L1 − x) = η̃(L1 + x) since η̃ is 2L1-periodic and even. Since σ > 3/2, one has η̃ ∈ Hσ

e (T) ⊂
C1(T) and one deduces that ∂xη̃(0) = 0 = ∂xη̃(L1). Similarly ψ̃(x) = ψ̃(−x), ψ̃(L1 − x) = ψ̃(L1 + x) and, by 
uniqueness of the harmonic extension, φ̃ satisfies the same symmetries in x. Consequently, ∂xφ̃ is odd in x and, since 
∂xφ̃ is continuous, we infer that

∂xφ̃(0, y) = 0 ∀y ∈ [−h,η(0)], ∂xφ̃(L1, y) = 0 ∀y ∈ [−h,η(L1)].
This completes the proof of (40).

It remains to prove (41). It follows from Proposition 2.1 and Proposition 2.7 that G(̃η)ψ̃ ∈ Hσ−1(Td). Therefore, in 
view of (37), it remains only to prove that G(̃η)ψ̃ is even (see Definition 2.6). This in turn follows from the definition 
G(̃η)ψ̃ = ∂yφ̃ − ∇η̃ · ∇φ̃

∣∣
y=η̃

and the symmetries of φ̃ that we already used. �
2.5. The Cauchy problem in a rectangular tank

In this paper we consider only classical solutions of the water-wave equations. More precisely, we consider solu-
tions

(η,ψ) ∈ C0([0, T ];Hs
e (Q) × Hs

e (Q)) with s > d/2 + 2 and d ∈ {1,2}.
Notice that (η, ψ) is a solution of the Craig–Sulem–Zakharov system (20) with initial data (η0, ψ0) if and only if the 
extended functions (̃η, ̃ψ) satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t η̃ = G(̃η)ψ̃,

∂t ψ̃ + gη̃ + 1

2
|∇ψ̃ |2 − 1

2(1 + |∇η̃|2)
(
G(̃η)ψ̃ + ∇η̃ · ∇ψ̃

)2 = 0,

(̃η, ψ̃)|t=0 = (̃η0, ψ̃0).

(42)

We are now in position to state a result about the existence and uniqueness of such solutions.

Proposition 2.10. Let d ∈ {1, 2} and s ∈ (d/2 + 2, 7/2). Consider initial data η0, ψ0 in Hs
e (Q) and denote by ̃η0, ̃ψ0

the extensions as given by Definition 2.5. If

B̃0 = G(̃η0)ψ̃0 + ∇η̃0 · ∇ψ̃0

1 + |∇η̃0|2 ∈ Hs− 1
2 (Td), Ṽ0 = ∇ψ̃0 − B̃0∇η̃0 ∈ Hs− 1

2 (Td), (43)

then there exists T > 0 and a unique solution (̃η, ̃ψ) ∈ C0
([0, T ]; Hs

e (Td) × Hs
e (Td)

)
to the Cauchy problem (42)

such that

(B̃, Ṽ ) ∈ C0([0, T ];Hs− 1
2 (Td) × Hs− 1

2 (Td)
)
,

where

B̃ = G(̃η)ψ̃ + ∇η̃ · ∇ψ̃

1 + |∇η̃|2 , Ṽ = ∇ψ̃ − B̃∇η̃.

Proof. In view of Theorem 2.3 it remains only to prove that η̃ and ψ̃ are even in xk for 1 ≤ k ≤ d (satisfying 
(32)–(33) when d = 2 and (35)–(36) for d = 1). To do so, assume that d = 2 and k = 1. Set η�(t, x) = η̃(t, −x1, x2), 
ψ�(t, x) = ψ̃(t, −x1, x2). Since the equations are invariant by the symmetry x1 → −x1, we get that (η�, ψ�) satisfies 
the same equations. Moreover, one has η�|t=0 = η̃0, ψ�|t=0 = ψ̃0 since ̃η0 and ψ̃0 are even in xk . By uniqueness, we 
deduce that η� = η̃ and ψ� = ψ̃ , which is the desired property. �
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Remark 2.11. Let us give three cases where the assumptions are satisfied. i) η0, ψ0 are finite linear combinations of 
terms of the form (15).

ii) Consider the case where ψ0 = 0. Then ψ̃0 vanishes and hence B̃0 = 0 and Ṽ0 = 0 so Assumption (43) holds 
whenever ̃η0 ∈ Hs(Td) (and hence for any η0 ∈ Hs

e (Q)).
iii) Assume that d = 1 and η0, ψ0 ∈ Hσ

e (Q) for some σ ∈ (3, 7/2). Proposition 2.7 implies that ̃η0 and ψ̃0 belong 
to Hσ

e (Td)2. Since σ > 3, it follows from Proposition 2.1 and the usual nonlinear estimates in Sobolev spaces that B̃0

and Ṽ0 are in Hσ−1(Td). So we may apply the assumptions of Corollary 2.10 with s = σ − 1/2.

3. Pohozaev identity

In this section the time is seen as a parameter and we skip it. As above, we denote by d ∈ {1, 2} the dimension of 
the free surface. For a 3D (resp. 2D) fluid one has d = 2 (resp. d = 1) and we use the notation ∇ = (∂x1 , ∂x2) (resp. 
∇ = ∂x ). Our goal is to prove a Pohozaev type identity for G(η)ψ , that is, we want to computeˆ

Q

(G(η)ψ)(x · ∇ψ)dx.

Recall from the previous section that G(η)ψ is defined by taking the restrictions to Q of a periodic function G(̃η)ψ̃

(see Definition 2.8). Consequently, even if we are working in a bounded domain, we are essentially handling periodic 
functions defined on Rd . Recall also that one has ∂nφ = 0 on ∂R ∩ ∂� (see Proposition 2.9).

Proposition 3.1 (Pohozaev identity). Assume that (η, ψ) belongs to Hσ
e (Q) × Hσ

e (Q) for some σ > d/2 + 2. Denote 
by R the solid part of ∂�:

R := ∂R ∩ ∂�,

(R = Q × [−h, +∞)) and denote by n the unit outward normal to ∂�. Then,ˆ

Q

(G(η)ψ)(x · ∇ψ)dx

= 1

2

ˆ

R

∣∣∇x,yφ
∣∣2 (x

y

)
· ndS − d − 1

2

¨

�

∣∣∇x,yφ
∣∣2 dxdy

+ 1

2

ˆ

Q

(η − x · ∇η)
[ |V |2 + B2 − 2BG(η)ψ

]
dx,

(44)

where φ is given by (39), B = (∂yφ)|y=η(x) and V = (∇xφ)|y=η(x) (Proposition 2.9 implies that ∇x,yφ ∈ C1(�) and 
hence all the terms are well-defined).

Remark 3.2. i) If d = 1 then the second term in the right-hand side of (44) vanishes and, since n · ∇x,yφ = 0 on R, 
the first one simplifies to

1

2

ˆ

R

∣∣∇x,yφ
∣∣2 (x

y

)
· ndS = L1

2

η(L1)ˆ

−h

(∂yφ(L1, y))2 dy + h

2

L1ˆ

0

(∂xφ(x,−h))2 dx.

Consider now the case d = 2. Then one has also (x, y) · n ≥ 0. Indeed,

on {x1 = L1} one has n = (1,0,0) and (x, y) · n = L1,

on {x2 = L2} one has n = (0,1,0) and (x, y) · n = L2,

on {y = −h} one has n = (0,0,−1) and (x, y) · n = h,

and moreover, (x, y) · n ≡ 0 on the two other faces {x1 = 0} and {x2 = 0}.



764 T. Alazard / Ann. I. H. Poincaré – AN 35 (2018) 751–779
ii) Another Pohozaev identity for the fractional Laplacian has been proved by Ros-Oton and Serra [21]. Moreover, 
Biccari [8] deduced from the Pohozaev identity in [21] a Pohozaev identity for solutions to fractional Schrödinger 
equations. Namely, it is proved in [21] that, if Q is any C1,1 domain of Rd , s ∈ (0, 1) and u ∈ Hs(Rd) vanishes in 
R

d \ Q, then

ˆ

Q

(x · ∇u)(−�)sudx = 2s − d

2

ˆ

Q

u(−�)sudx − �(1 + s)2

2

ˆ

∂Q

(
u

dist(x, ∂Q)s

)2

(x · ν)dS. (45)

To compare both results the important think to note is that, in the case without boundary, one has G(0) = (−�)1/2. 
However, (44) and (45) involve functions satisfying different boundary conditions. Another essential difference for 
our purpose is that (44) applies in the variable coefficients case where η �= 0. Also the proofs of (44) and (45) are 
different. The proof of (44) given below is in fact guided by the study of the commutator [x∂x, G(η)] in Alazard–Delort 
[5, Chapter 4]. However, one cannot apply the results of [5] because of the boundary conditions on R (and also because 
we consider the case d ≥ 1 while the analysis in [5] is restricted to d = 1). Compared to [5, Chapter 4], the main new 
result here is the observation that the contribution of these boundary conditions is given by a positive term (namely 
the first term in the right-hand side of (44)).

Proof. The proof of this proposition relies on the divergence theorem applied to a well chosen vector field. Introduce 
the scalar function

θ := x · ∇xφ + y∂yφ

and the vector field

X = θ∇x,yφ.

We are going to compute the integral of divx,y X by two different ways. The wanted identity (44) will be deduced by 
comparing the two results.

Proposition 2.9 implies that ∇x,yφ ∈ C1(�) and ∂nφ = 0 on ∂R ∩ ∂�. This will allow us to justify all the compu-
tations done below.

First computation. We want to exploit the fact that, since ∂nφ = 0 on R, one has X · n = 0 on R. To do so we begin 
by writing

¨

�

divx,y X dxdy =
ˆ

∂�

X · ndS =
ˆ

∂�\R
X · ndS.

Since ∂� \ R = {(x, y) : x ∈ Q, y = η(x)}, by definition of G(η)ψ , the previous identity simplifies to¨

�

divx,y X dxdy =
ˆ

∂�\R
θ∂nφ dS

=
ˆ

Q

θ(x, η)

√
1 + |∇η|2 ∂nφ|y=η dx

=
ˆ

Q

θ(x, η)G(η)ψ dx.

Now, write

∇xψ = ∇x(φ(x, η(x))) = (∇xφ)(x, η(x)) + (∂yφ)(x, η(x))∇xη.

Since B = ∂yφ(x, η), we get that (∇xφ)(x, η(x)) = ∇xψ − B∇xη. By definition of θ , we deduce that

θ(x, η) = x · (∇xψ − B∇xη) + ηB = x · ∇xψ + (η − x · ∇xη)B.
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We thus end up with¨

�

divx,y X dxdy =
ˆ

Q

(G(η)ψ)(x · ∇ψ)dx +
ˆ

Q

(η − x · ∇xη)BG(η)ψ dx. (46)

Second computation. Set

W = ∣∣∇x,yφ
∣∣2 .

As can be verified by a direct computation, one has

divx,y X =W + 1

2
x · ∇xW + 1

2
y∂yW,

and hence

divx,y X = divx

(W
2

x

)
+ ∂y

(W
2

y

)
− d − 1

2
W .

Introduce the vector field

Y = W
2

(
x

y

)
.

Then the previous identity reads divx,y X = divx,y Y − d−1
2 W . Consequently

¨

�

divx,y X dxdy =
ˆ

∂�

Y · ndS − d − 1

2

¨

�

W dxdy.

Now observe that,ˆ

R

Y · ndS = 1

2

ˆ

R

∣∣∇x,yφ
∣∣2 (x

y

)
· ndS,

ˆ

∂�\R
Y · ndS = 1

2

ˆ

Q

W|y=η

(
x

η

)
·
(−∇η

1

)
dx = 1

2

ˆ

Q

(η − x · ∇η)W|y=η dx.

Therefore¨

�

divx,y X dxdy = 1

2

ˆ

R

∣∣∇x,yφ
∣∣2 (x

y

)
· ndS

+ 1

2

ˆ

Q

(η − x · ∇η)W|y=η dx − d − 1

2

¨

�

W dxdy.

By combining this identity with (46) we obtain the wanted result (44). �
4. The main identity

Theorem 4.1. Consider a solution (η, ψ) ∈ C0([0, T ]; Hs
e (Q) × Hs

e (Q)) of the Craig–Sulem–Zakharov system (20)
with T > 0, s > d/2 + 2, d ∈ {1, 2}. Set

	 = −η∂tψ − g

2
η2,

and

B(T ) = L1L2

T̂
⎛⎝ 1

L2

L2ˆ
	(t,L1, x2) dx2 + 1

L1

L1ˆ
	(t, x1,L2) dx1

⎞⎠ dt.
0 0 0
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Then the following identity holds

B(T ) = T

2
H+ P + I1 + I2 + I3, (47)

where H is the energy

H = 1

2

ˆ

Q

[
ψG(η)ψ + gη2]dx,

P is a positive integral (see Remark 3.2) given by

P := 1

2

T̂

0

ˆ

∂R∩∂�

∣∣∇x,yφ
∣∣2 (x

y

)
· ndS dt

and I� are integrals denoting remainder terms:

I1 = 5 + 2d

8

¨

Q×[0,T ]
η|∇xφ|2(t, x,−h)dxdt,

I2 = −5 + 2d

4

T̂

0

¨

�(t)

(∂yφ)(∇xη · ∇xφ)dydxdt,

I3 = −
(

d

2
− 1

4

)ˆ
Q

ηψ dx

∣∣∣t=T

t=0
−
ˆ

Q

η(x · ∇ψ)dx

∣∣∣t=T

t=0
.

Before proving this result, let us deduce the following corollary.

Corollary 4.2. Consider a solution (η, ψ) ∈ C0([0, T ]; Hs
e (Q) × Hs

e (Q)) of the Craig–Sulem–Zakharov system (20)
for some T > 0 and s > d/2 + 2 with d ∈ {1, 2}. Assume that

η ≥ −4h

9
,

ˆ

Q

ηdx = 0, (48)

and that there exist two positive constants A, B such that

B <
2

5 + 2d
, T ≥ 4

2 − (5 + 2d)B

[
1 + (2d + 3)max{L1,L2}√

g
A

]
, (49)

(where max{L1, L2} = L1 if d = 1) and

sup
t∈[0,T ]

‖∇η(t)‖L∞ ≤ B, sup
t∈[0,T ]

‖∇ψ(t)‖L2 ≤ A
√

2H. (50)

Then

B(T ) ≥ H.

Proof. The proof is similar to the proof of Corollary 1.4. Firstly, notice that

P ≥ h

2

¨

Q×[0,T ]
|∇xφ|2(t, x,−h)dxdt.

Therefore P + I1 ≥ 0 provided that h/2 + ((5 + 2d)/8)η ≥ 0, which holds true if η ≥ −4h/9 and d = 1, 2.
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On the other hand,

|I2| ≤ 5 + 2d

4
sup‖∇xη(t, ·)‖L∞

T̂

0

¨

�(t)

∣∣∂yφ
∣∣ |∇xφ| dydxdt ≤ 5 + 2d

4
BTH.

Using the Cauchy–Schwarz and Poincaré inequalities, one has∣∣∣∣∣∣∣
ˆ

Q

ηψ dx

∣∣∣∣∣∣∣≤ max{L1,L2} ‖η‖L2 ‖∇xψ‖L2 ,

∣∣∣∣∣∣∣
ˆ

Q

ηx · ∇ψ dx

∣∣∣∣∣∣∣≤ max{L1,L2} ‖η‖L2 ‖∇xψ‖L2 .

Since ‖η‖L2 ≤ √
2H/g, we deduce from the assumption (50) that

|I3| ≤
(

d + 3

2

)
max{L1,L2} 2√

g
AH.

Therefore it follows from (47) that

B(T ) ≥
(

T

2
− 5 + 2d

4
BT −

(
d + 3

2

)
max{L1,L2} 2√

g
A

)
H, (51)

and hence B(T ) ≥ H by assumption on T . �
Notation. We write simplyˆ

dx,

ˆ
dy,

ˆ
dt

as shorthand notations for, respectively,

ˆ

Q

dx,

η(t,x)ˆ

−h

dy,

T̂

0

dt.

The proof of Theorem 4.1 will be made in three steps. First, we exploit the Pohozaev identity obtained in the 
previous section.

Lemma 4.3. There holds¨
(∂tη)(x · ∇ψ)dxdt = P − d − 1

2

˚ ∣∣∇x,yφ
∣∣2 dydxdt

+
¨

(x · ∇η − η)(∂tψ + gη)dxdt.

(52)

Proof. Since ∂tη = G(η)ψ , it follows from Proposition 3.1 that¨
(∂tη)(x · ∇ψ)dxdt = P − d − 1

2

˚ ∣∣∇x,yφ
∣∣2 dydxdt

+ 1

2

¨
(η − x · ∇η)(|V |2 + B2 − 2BG(η)ψ)dxdt.

To prove (52), it is thus sufficient to prove that

1
(|V |2 + B2 − 2BG(η)ψ) = −∂tψ − gη. (53)
2
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To obtain this identity, we use the fact that

B = G(η)ψ + ∇η · ∇ψ

1 + |∇η|2 , V = ∇ψ − B∇η.

Consequently, G(η)ψ = B − V · ∇η and

1

2
|∇ψ |2 − 1

2

(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2 = 1

2
|V |2 + BV · ∇η − 1

2
B2, (54)

so (53) follows from the second equation of (20). �
Next we integrate by parts and use the equations for (η, ψ) to simplify the expressions.

Notation 4.4. Let f : Q × [0, T ] → R and d = 1, 2. If d = 2 then we set

� = ([0,L1] × {L2}
)∪ ({L1} × [0,L2]

)
,

and use the notation

¨

�×[0,T ]
f dSdt = L1L2

T̂

0

⎡⎣ 1

L1

L1ˆ

0

f (t, x1,L2) dx1 + 1

L2

L2ˆ

0

f (t,L1, x2) dx2

⎤⎦ dt.

Similarly, when d = 1 and f : [0, L1] × [0, T ] → R, we write

¨

�×[0,T ]
f dSdt = L1

T̂

0

f (t,L1) dt.

With this notation, one has

B(T ) =
¨

�×[0,T ]
	dSdt.

Lemma 4.5. There holds¨

�×[0,T ]
	dSdt = P − d − 1

2

˚ ∣∣∇x,yφ
∣∣2 dydxdt

− (1 + d)

¨
η∂tψ dxdt − 2 + d

2

¨
gη2 dxdt

−
ˆ

η(x · ∇ψ)dx

∣∣∣t=T

t=0
.

(55)

Proof. Notice that for any scalar function f , one has¨
divx(f x)dxdt =

¨

�×[0,T ]
f dSdt.

Then, integrating by parts, we find that¨
(x · ∇η − η)(∂tψ + gη)dxdt = 1

2

¨

�×[0,T ]
gη2 dSdt − 2 + d

2

¨
gη2 dxdt

+
¨

η∂tψ dSdt − (1 + d)

¨
η∂tψ dxdt
�×[0,T ]
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+
¨

(∂tη)(x · ∇ψ)dxdt −
ˆ

η(x · ∇ψ)dx

∣∣∣t=T

t=0
.

We obtain the wanted result by combining the previous identity with (52). �
Remark 4.6. Consider the case when d = 1 and set m(t) = η(t, L1). Then, since ∂xη(t, L1) = 0 and ∂xψ(t, L1) = 0, 
it follows from (20) that

∂tψ(t,L1) = −gη(t,L1) + 1

2
(G(η)ψ)(t,L1)

2.

Since G(η)ψ = ∂tη, we conclude that

∂tψ(t,L1) = −gm(t) + 1

2
m′(t)2. (56)

This shows that 	 = 1
2

[
gm(t)2 − m(t)m′(t)2

]
.

The next step consists in computing the right-hand side of (55). The wanted result (47) will be a direct consequence 
of the previous results and the following lemma.

Lemma 4.7. Set

A := (1 + d)

¨
η∂tψ dxdt + 2 + d

2

¨
gη2 dxdt + d − 1

2

˚ ∣∣∇x,yφ
∣∣2 dydxdt.

There holds

A = −T

4

ˆ [
ψG(η)ψ + gη2]dx +

(
d

2
− 1

4

)ˆ
ηψ dx

∣∣∣t=T

t=0

− 5 + 2d

8

¨
η|∇xφ|2(t, x,−h)dxdt

+ 5 + 2d

4

˚
(∂yφ)(∇xη · ∇xφ)dydxdt.

(57)

Proof. Let α be a parameter to be determined. We split A as A = A1 + A2 where

A1 = α

¨
η∂tψ dxdt + d − 1

2

˚ ∣∣∇x,yφ
∣∣2 dydxdt,

A2 = (1 + d − α)

¨
η∂tψ dxdt + 2 + d

2

¨
gη2 dxdt.

Integrate by parts and use the equation ∂tη = G(η)ψ to obtain

α

¨
η∂tψ dxdt = −α

¨
ψG(η)ψ dxdt + α

ˆ
ηψ dx

∣∣∣t=T

t=0
,

and

d − 1

2

˚ ∣∣∇x,yφ
∣∣2 dydxdt = d − 1

2

¨
ψG(η)ψ dxdt,

so that

A1 =
(

d − 1

2
− α

)¨
ψG(η)ψ dxdt + α

ˆ
ηψ dx

∣∣∣t=T

t=0
. (58)

On the other hand, directly from the equation for ψ (see (20)) and the definition of B (see (28)), one has

A2 =
(

α − d
)¨

gη2 dxdt + (1 + d − α)

¨
η

(
−1 |∇ψ |2 + 1

(1 + |∇η|2)B2
)

dxdt. (59)

2 2 2
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In addition, it is easily verified (see (54) and (28)) that

−1

2
|∇ψ |2 + 1

2
(1 + |∇η|2)B2 = 1

2

[
(∂yφ)2 − |∇φ|2 − 2(∂yφ)(∇φ) · ∇η

]∣∣∣
y=η

. (60)

The next calculations rely in a crucial way on the analysis done by Benjamin and Olver ([7]) of the conservation 
laws for water waves. This means that, to compute A2, we will use two elementary identities. Consider a scalar 
function u = u(x, y) and a vector field f = f (x, y) with values in R2 (the time is seen as a parameter and we skip it). 
Firstly, one has

ˆ

Q

u(x,η(x)) dx =
ˆ

Q

η(x)ˆ

−h

∂yu(x, y) dydx +
ˆ

Q

u(x,−h)dx. (61)

Similarly,

ˆ

Q

f (x,η) · ∇η dx +
ˆ

Q

ηˆ

−h

divx f dydx =
ˆ

(∂Q×[−h,+∞))∩∂�

f · ν dS. (62)

Then ˆ
u(x, η(x)) dx +

ˆ
f (x,η) · ∇η dx

=
¨

(∂yu − divx f ) dydx +
ˆ

u(x,−h)dx +
ˆ

(∂Q×[−h,+∞))∩∂�

f · ν dS. (63)

Recall that �x,yφ = 0 and that ∂nφ vanishes on ∂R ∩ ∂� (see Proposition 2.9). Therefore, by applying (63) with

u = y

2
(∂yφ)2 − y

2
|∇φ|2, f = −y(∂yφ)∇φ,

we deduce from (60) thatˆ
η

(
−1

2
|∇ψ |2 + 1

2
(1 + |∇η|2)B2

)
dx = 1

2

¨ [
(∂yφ)2 − |∇φ|2]dydx + h

2

ˆ

Q

|∇φ|2(x,−h)dx.

Then, it follows from (59) and (58) that

A =
(

d − 1

2
− α

)¨
ψG(η)ψ dxdt +

(
α − d

2

)¨
gη2 dxdt

+ α

ˆ
ηψ dx

∣∣∣T
0

+ 1 + d − α

2

˚ [
(∂yφ)2 − |∇φ|2]dydxdt

+ (1 + d − α)h

2

¨
|∇φ|2(t, x,−h)dxdt.

We now choose

α = d

2
− 1

4
.

Then the coefficients in front of 
˜

ψG(η)ψ dxdt and 
˜

gη2 dxdt coincide. On the other hand, notice that, since the 
energy H is conserved (dH/dt = 0), one has

¨ [
ψG(η)ψ + gη2]dxdt = T

ˆ [
ψG(η)ψ + gη2]dx.
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We thus find that

A = −T

4

ˆ [
ψG(η)ψ + gη2]dx

+
(

d

2
− 1

4

)ˆ
ηψ dx

∣∣∣T
0

+ 5 + 2d

8

˚ [
(∂yφ)2 − |∇φ|2]dydxdt

+ (5 + 2d)h

8

¨
|∇φ|2(t, x,−h)dxdt.

(64)

Consequently, to obtain the wanted result (57), we need only to transform further the sum of last two terms in the 
right-hand side of (64). To do so, we use again (61) applied with (for some fixed t )

u(x, y) = −(y − η(t, x))(∂yφ)(t, x, y)2.

Then u(x, η(t, x)) = 0 and u(x, −h) = 0 and hence 
´ η(t,x)

−h
∂yu dy = 0. On the other hand

∂yu = −2(y − η)φyφyy − (φy)
2,

so integrating on y ∈ [−h, η(x)] and then on x ∈ [0, L1] we obtain, remembering that φyy = −�xφ,

0 =
¨

uy dydx = −
¨

φ2
y dydx + 2

¨
(y − η)(∂yφ)(�xφ)dydx.

Since ∇φ · ν = 0 on (∂Q × [−h, +∞)) ∩ ∂�, by integrating by parts we infer that

0 = −
¨

φ2
y dydx − 2

¨
(y − η)(∂y∇xφ) · ∇xφ dydx + 2

¨
φy∇xη · ∇xφ dydx,

so

0 = −
¨

φ2
y −

¨
∂y

(
(y − η)|∇xφ|2)+

¨
|∇xφ|2 + 2

¨
φy∇xη · ∇xφ

=
¨

(|∇xφ|2 − φ2
y) −

ˆ
(h + η)|∇xφ|2(x,−h)dx + 2

¨
φy∇xη · ∇xφ.

This proves that¨
(φ2

y − |∇xφ|2) dydx +
ˆ

h|∇xφ|2(x,−h)dx = −
ˆ

η|∇xφ|2(x,−h)dx + 2
¨

φy∇xη · ∇xφ dydx. (65)

Plugging this identity in (64), we complete the proof of the lemma. �
By combining (55) and (57), we obtain the wanted result (47). This completes the proof of Theorem 4.1.

5. Proof of Theorem 1.2

In this section we prove Theorem 1.2. Let χ ∈ C∞
0 (Q) be even in x1 and in x2. Consider an initial data (η0, ψ0)

such that

η0(x) := χ(x)
∑

|n|+|m|≤N

a1
nm cos

(
π

nx1

L1

)
cos

(
π

mx2

L2

)
,

ψ0(x) := χ(x)
∑

|n|+|m|≤N

a2
nm cos

(
π

nx1

L1

)
cos

(
π

mx2

L2

)
.

We furthermore assume that the mean value of η0 is 0, which in turn implies that the mean value of η(t, ·) is 0 for all 
time. As explained below in Remark 5.3, one can consider more general initial data.
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Since these initial data are C∞ and periodic functions defined for x ∈ R
d , we can directly solve the Cauchy problem 

in Rd by means of Theorem 2.3. Let (η, ψ) ∈ C∞([0, T ] ×T
d) be the unique solution of the system (20) with initial 

data (η0, ψ0) (the fact that η, ψ are C∞ follows from the fact that on can propagate the regularity). As explained in 
Section 2, since the initial data are even in x1, x2, one then obtains solutions of the equations in the tank by restricting 
(η, ψ).

In view of Corollary 4.2, to prove Theorem 1.2 it remains only to prove the following result.

Lemma 5.1. For any β > 1/2, there exist positive constants K0, c, κ such that, for any N ∈N
∗, if∣∣∣a1

nm

∣∣∣+ ∣∣∣a2
nm

∣∣∣≤ cN−κ ,

then the following properties hold with

A = K0N
β.

Firstly, the solution exists on [0, T (A)] with

T (A) = 4

[
1 + (2d + 3)max{L1,L2}√

g
A

]
,

and secondly one has η(t, x) ≥ −h/2 for all (t, x) ∈ [0, T (A)] × Q and

sup
t∈[0,T (A)]

‖∇η(t)‖L∞ ≤ 1

5 + 2d
, sup

t∈[0,T (A)]
‖∇ψ(t)‖L2 ≤ A

√
2H.

To prove this lemma, we shall use an interpolation argument and the following result about the Cauchy problem on 
large time intervals.

Theorem 5.2 (from Lannes [15]). Let s1 > 4. For all integer s ≥ s1 there exist three positive constants c∗, δ0, C1, 
depending only on s such that, if

ε0 := ‖(η0,∇ψ0)‖
H

s+ 1
2 (Td )×H

s− 1
2 (Td )

≤ δ0, (66)

then the solution (η, ψ) given by Theorem 2.3 exists on a time interval [0, T ] for some T ≥ c∗/ε0 and

‖(η(t),∇ψ(t))‖Hs(Td )×Hs−1(Td ) ≤ C1ε0.

Proof. Let us explain how to obtain this result from Theorem 4.16 in [15].
Set ε = Mε0 where M is some large enough real number to be determined later. Let (η, ψ) be the solution given 

by Theorem 2.3 and introduce

ηε(t, x) = 1

ε
η(t, x), ψε(t, x) = 1

ε
ψ(t, x). (67)

Then ⎧⎨⎩
∂tη

ε = G(εηε)ψε,

∂tψ
ε + gηε + ε

2
|∇ψε|2 − ε

2(1 + |ε∇ηε|2)
(
G(εηε)ψε + ε∇ηε · ∇ψε

)2 = 0.
(68)

The proof is based on two facts. Firstly, introduce the energy

Eε(t) = ∥∥∇ψε(t)
∥∥2

H 2 +
∑
|α|≤s

(∥∥∂α
x ηε(t)

∥∥2
L2 +

∥∥∥∇(
∂α
x ψε − εBε∂α

x ηε
)
(t)

∥∥∥2

H
− 1

2

)
,

where

Bε = G(εηε)ψε + ε∇ηε · ∇ψε

ε 2
.

1 + |ε∇η |
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Then the first fact we need to know is a consequence of Theorem 4.16 in [15]. This result asserts that, if s ≥ s1 and 
if Eε(0) is small enough, say smaller than δ1, then there is a constant C∗ independent of ε and such that the solution 
exists on a time interval [0, T ε] with T ε ≥ C∗/ε and satisfies

sup
t∈[0,T ε]

Eε(t) ≤ 1.

To introduce the second fact we need to know, we begin by recalling the following technical ingredient: since 3 >
d/2 + 1, one has (see [15, Theorem 3.15])∥∥G(εηε)ψε

∥∥
H 2 ≤ C(

∥∥εηε
∥∥

H 3)
∥∥∇ψε

∥∥
H 2 . (69)

Then, by combining this estimate with the usual nonlinear estimates in Sobolev spaces one obtains that, if∥∥(ηε(t),∇ψε(t))
∥∥

H 3×H 2 ≤ 1, (70)

then ‖Bε(t)‖H 2 is bounded uniformly in ε ∈ (0, 1]. Then, using the triangle inequality and the product rule in Sobolev 
spaces, it is easily seen that

c1
∥∥(ηε(t),∇ψε(t))

∥∥
Hs×Hs−1 ≤ Eε(t) ≤ C2

∥∥(ηε(t),∇ψε(t))
∥∥

H
s+ 1

2 ×H
s− 1

2
, (71)

for some absolute constants c1, C2.
We are now in position to prove the wanted result. Fix M = C2/δ1. Then∥∥(ηε(0),∇ψε(0))

∥∥
H

s+ 1
2 ×H

s− 1
2

≤ ε0

ε
= 1

M
= δ1

C2
.

We can always assume that δ1/C2 ≤ 1, so that the condition (70) is satisfied at time t = 0. This allows us to use (71)
which implies that

Eε(0) ≤ C2
∥∥(ηε(0),∇ψε(0))

∥∥
H

s+ 1
2 ×H

s− 1
2

≤ C2
δ1

C2
= δ1.

As explained above, this implies that the solution exists on a time interval [0, T ε] with T ε ≥ C∗/ε = (C∗δ1/C2)/ε0
and satisfies supt∈[0,T ε] Eε(t) ≤ 1. Now observe that, by definition of Eε(t), if Eε(t) ≤ 1 then the condition (70) is 
satisfied. This allows us to use the bound (71) to deduce that

‖(η(t),∇ψ(t))‖Hs×Hs−1 = ε
∥∥(ηε(t),∇ψε(t))

∥∥
Hs×Hs−1

≤ 1

c1
ε = 1

c1
Mε0 = C2

c1δ1
ε0.

(72)

This gives the desired result where the parameters c∗, δ0, C1 in the statement of Theorem 5.2 are given by c∗ =
C∗δ1/C2, δ0 = δ1/C2 and C1 = C2/(δ1c1). �

We are now in position to prove Lemma 5.1. For some reason that will be clear below, we then fix s such that

s ∈N, s > 4, s ≥ β + 1/2

2β − 1
.

Once s is so fixed, we consider c∗, δ0, C1 as given by the statement of Theorem 5.2. Recall that we consider initial 
data (η0, ψ0) such that

η0(x) := χ(x)
∑

|n|+|m|≤N

a1
nm cos

(
π

nx1

L1

)
cos

(
π

mx2

L2

)
,

ψ0(x) := χ(x)
∑

|n|+|m|≤N

a2
nm cos

(
π

nx1

L1

)
cos

(
π

mx2

L2

)
.

(73)

Directly from the Leibniz’ rule, we see that for any smooth functions u1, u2, there holds ‖u1u2‖Hs � ‖u1‖Ws,∞‖u2‖Hs . 
Then, with

H0 := ‖(η0,∇ψ0)‖L2(Td )×H−1(Td ) ,
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one has

‖(η0,∇ψ0)‖
H

s+ 1
2 (Td )×H

s− 1
2 (Td )

≤ C2N
s+ 1

2 H0,

for some constant C2 depending only on s and on ‖χ‖Ws+1,∞ . Set

ε0 := C2H0N
s+ 1

2 .

Let a ∈ (0, 1] be a small positive number to be determined and assume that

H0 ≤ aδ0

C2N
s+ 1

2 +β
. (74)

Then ε0 ≤ aδ0/N
β . Consequently, ε0 ≤ δ0 and one can apply Theorem 5.2 to infer that the solution (η, ψ) of system 

(20) with initial data (η0, ψ0) exists on a time interval [0, T∗] with

T∗ ≥ c∗
ε0

≥ c∗
aδ0

Nβ, (75)

and

sup
t∈[0,T∗]

‖(η,∇ψ)(t)‖Hs(Td )×Hs−1(Td ) ≤ C1ε0 = C1C2H0N
s+ 1

2 . (76)

Now we use an interpolation inequality in Sobolev spaces: If σ = λσ1 + (1 − λ)σ2 with λ ∈ [0, 1], then

‖u‖Hσ ≤ C(σ1, σ2)‖u‖λ
Hσ1 ‖u‖1−λ

Hσ2 .

This yields

‖∇ψ(t)‖L2 ≤ C(−1/2, s − 1)‖∇ψ(t)‖λ(s)

H
− 1

2
‖∇ψ(t)‖1−λ(s)

Hs−1 with λ(s) = s − 1

s − 1/2
.

Consequently, it follows from (76) that

‖∇ψ(t)‖L2 ≤ C(s)Nβ(s)H
1−λ(s)
0 ‖∇ψ(t)‖λ(s)

H
− 1

2
with β(s) = 1

2

s + 1/2

s − 1/2
, (77)

and C(s) = C(−1/2, s − 1)(C1C2)
1−λ(s).

To conclude the proof if remains to estimate ‖∇ψ‖
H

− 1
2

and H0 in terms of the Hamiltonian H := 1
2

´ [
gη2 +

ψG(η)ψ
]
dx. We claim that there exists an absolute constant K such that

‖∇ψ(t)‖
H

− 1
2

≤ K
√
H, H0 ≤ K

√
H. (78)

Let us assume this claim and conclude the proof. Set

K0 := KC(s)/
√

2, A := K0N
β.

It follows from (77) and (78) that

‖∇ψ(t)‖L2 ≤ KC(s)Nβ(s)
√
H with β(s) = 1

2

s + 1/2

s − 1/2
.

By definition of s, one has β(s) ≤ β . Therefore, by definition of A,

‖∇ψ(t)‖L2 ≤ KC(s)Nβ
√
H = A

√
2H.

Eventually, we chose a so small that the lifespan T∗ (see (75)) satisfies

T∗ ≥ c∗
aδ0

Nβ ≥ 4

[
1 + (2d + 3)max{L1,L2}√

g
A

]
= T (A).

On the other hand, if the initial data are of the form (73) with 
∣∣a�

nm

∣∣≤ cN−κ , then

H0 ≤ c
√

L1L2(2N + 1)N−κ ,
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so that the condition (74) holds for κ ≥ s + 3
2 + β and c small enough. This completes the proof of Lemma 5.1 and 

hence the proof of Theorem 1.2.
Therefore, to complete the proof of Theorem 1.2, it remains only to prove the claim (78). Notice that, by definition 

of H0 and H, one has

H0 ≤ ‖η0‖L2 + ‖∇ψ0‖H−1/2 , ‖η0‖L2 ≤
√

2H
g

,

so H0 ≤ K
√
H will be a straightforward consequence of the claim ‖∇ψ‖

H
− 1

2
≤ K

√
H at time t = 0 (with a different 

constant K). It is thus sufficient to prove the first inequality in (78). To do so, remember that (see the explanation 
given after Remark 1.5) 

√
2H is larger than the L2(�(t))-norm of ∇x,yφ(t) (by definition (2)). Then, one infers 

a control of the H−1/2
x -norm of the trace ∇ψ(t, ·) (see [15, Prop. 3.12]) where the implicit constant depends on 

‖η(t)‖H 3 . Now notice that one has a uniform control of ‖η(t)‖H 3 , namely one has ‖η(t)‖H 3 ≤ 1 as a consequence of 
(76), the assumption s ≥ 4 and the fact that one can assume without loss of generality that C1ε0 ≤ 1. Therefore the 
Ḣ

1/2
x -norm of the trace ψ is uniformly bounded by K

√
H for some absolute constant K , which implies the desired 

result ‖∇ψ‖
H

− 1
2

≤ K
√
H.

Remark 5.3. Let β > 1/2 and denote by s the smallest integer satisfying

s > 4, s ≥ β + 1/2

2β − 1
.

Given N ∈ N and A, c > 0, we denote by XN(A, c) the set of functions (η0, ψ0) ∈ Hs+1
e (Td) × Hs+1

e (Td) such that

η0 ≥ −h

2
,

ˆ

Q

η0 dx = 0,

and satisfying

‖(η0,∇ψ0)‖
H

s+ 1
2 ×H

s− 1
2

≤ min
{
ANs+ 1

2 ‖(η0,∇ψ0)‖L2×H−1 , cN−β
}
.

Then the previous proof shows that, for any A > 0, there exists c > 0 such that, for any N ∈ N, if (η, ψ0) belongs to 
XN(A, c) then the conclusion of Theorem 1.2 holds.
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Appendix A. Hamiltonian proof

The proof of Theorem 4.1, which was given in the previous sections, relies on several cancellations. To understand 
these cancellations, we will give in this appendix a (formal) proof of (16) which exploits directly the Hamiltonian 
structure of the water-wave equations.2 To simplify notations we consider the case d = 1 and assume that L1 = 1
(then T =R/(2Z) and we denote by Hs(T) the Sobolev space of 2-periodic functions).

Consider a solution (η, ψ) ∈ C0([0, T ]; Hs
e (T) × Hs

e (T)) of the Craig–Sulem–Zakharov system (20) for some 
T > 0 and s > 5/2 (remember that the subscript e indicates that we consider even functions). Set

A :=
T̂

0

1ˆ

0

[
(∂tη)x(∂xψ) − (∂tψ)x(∂xη)

]
dxdt.

2 This proof could seem shorter than the one given in Sections 3–4 but this is not the case: indeed, it uses some computations done in Section 4, 
it is not self-contained (we use a shape derivative formula due to Lannes) and also we do not try to justify rigorously the computations.
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We are going to compute A in two different ways, and the wanted identity (16) will be deduced by comparing the two 
results.

First computation. Here is the main new ingredient. In this step we compute A using the Hamiltonian structure of the 
water waves equation. This computation relies on the works by Zakharov [24], Craig–Sulem [12] and Lannes [14].

Following Zakharov [24] and Craig–Sulem [12], we begin by using the fact that the water-wave system (20) can 
be written as

∂tη = δH
δψ

, ∂tψ = −δH
δη

(79)

where3

H = 1

2

1ˆ

0

[
gη2 + ψG(η)ψ

]
dx.

The key point is the following: we have

A =
T̂

0

a(t) dt with a :=
1ˆ

0

[
xψx

δH
δψ

+ xηx

δH
δη

]
dx,

which means that

a = lim
ε→0

1

ε

[
H(η,ψ + εxψx) −H(η,ψ)

]+ lim
ε→0

1

ε

[
H(η + εxηx,ψ) −H(η,ψ)

]
.

Since G(η) is self-adjoint, one has immediately

lim
ε→0

1

ε

[
H(η,ψ + εxψx) −H(η,ψ)

]=
ˆ

(G(η)ψ)(xψx)dx.

On the other hand

lim
ε→0

1

2ε

ˆ [
(η + εxηx)

2 − η2
]

dx =
ˆ

ηxηx dx

so the only difficulty is to compute

lim
ε→0

1

2ε

ˆ [
ψG(η + εxηx)ψ − ψG(η)ψ

]
dx.

To do so, we use a formula due to Lannes (see [14,15]) which allows us to compute the derivative of G(η)ψ with 
respect to η. This formula gives

G(η + εxηx)ψ = G(η)ψ − εG(η)
(
Bxηx

)− ε∂x(V xηx) + O(ε2),

where, as above, B = ∂yφ|y=η and V = ∂xφ|y=η . Using again the fact that G(η) is self-adjoint, we obtain

lim
ε→0

1

2ε

ˆ [
ψG(η + εxηx)ψ − ψG(η)ψ

]
dx = −1

2

ˆ [
(G(η)ψ)(Bxηx) + ψ∂x(V xηx)

]
dx.

By combining the previous results, we get

a = g

ˆ
ηxηx dx +

ˆ
(G(η)ψ)(xψx)dx − 1

2

ˆ [
(G(η)ψ)(Bxηx) + ψ∂x(V xηx)

]
dx.

3 By assumption, η and ψ are 2-periodic and even in x. This is why it is sufficient to consider integrals over [0, 1]. In particular, the bilinear 
mapping (u, v) → ´ 1

0 u(x)v(x) dx is a scalar product on L2
e(R/(2Z)). In (79), the derivatives of H are understood for this scalar product (instead 

of ́ 1
−1 u(x)v(x) dx), and this is why (79) holds even if H is only one half of the energy.
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Since V (t, x) = 0 for x = 1 (by assumption) one has

−1

2

ˆ
ψ∂x(V xηx) dx = 1

2

ˆ
(xψx)V ηx dx.

Then, gathering the terms in a different way, we find that

a = g

ˆ
ηxηx dx + 1

2

ˆ
(G(η)ψ)x(ψx − Bηx)dx + 1

2

ˆ [
(G(η)ψ + V ηx)(xψx)

]
dx.

Remembering that

ψx − Bηx = V, G(η)ψ + V ηx = B,

we get

a = g

ˆ
ηxηx dx + 1

2

ˆ
(G(η)ψ)xV dx + 1

2

ˆ
Bxψx dx.

Recalling that m(t) = η(t, 1) and computing the first term, we conclude that

A = g

2

ˆ
m(t)2 dt − g

2

¨
η2 dxdt + 1

2

¨ [
(G(η)ψ)xV + Bxψx

]
dxdt. (80)

Second computation. We now compute A using integration by parts and the equations for η and ψ . This second 
computation is not new. However, since it does not appear explicitly in the previous section, for the sake of readability, 
we redo the analysis.

Directly from the definition of A, by integration by parts, one has

A = −
ˆ

η(t,1)∂tψ(t,1) dt +
ˆ

ηxψx dx

∣∣∣t=T

t=0
+
¨

η∂tψ dxdt.

It is convenient to split the last term as
¨

η∂tψ dxdt = 1

4

¨
η∂tψ dxdt + 3

4

¨
η∂tψ dxdt.

To handle the first term in the right-hand side, we integrate by parts in time and replace ∂tη by G(η)ψ . For the second 
term, we use the equation for ψ written under the form (see (54))

∂tψ = −gη − 1

2
V 2 − BV ∂xη + 1

2
B2.

Then one gets¨
η∂tψ dxdt = −1

4

¨
ψG(η)ψ dxdt + 1

4

ˆ
ηψ dx

∣∣∣t=T

t=0

− 3g

4

¨
η2 dxdt − 3

8

¨
η
(
V 2 + 2BV ∂xη − B2

)
dxdt.

Recalling that ∂tψ(t, 1) = −gm(t) + 1
2m′(t)2 (see (56)), we end up with

A =
ˆ [

gm(t)2 − 1

2
m(t)m′(t)2]dt

− 1

4

¨
ψG(η)ψ dxdt − 3g

4

¨
η2 dxdt

+ 1

4

ˆ
ηψ dx

∣∣∣t=T

t=0
+
ˆ

xη∂xψ dx

∣∣∣t=T

t=0

− 3
¨

η
(
V 2 + 2BV ∂xη − B2

)
dxdt.

(81)
8
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Conclusion. By combining (80) and (81) we obtain that

1

2

ˆ [
gm(t)2 − m(t)m′(t)2]dt = 1

4

¨
ψG(η)ψ dxdt + g

4

¨
η2 dxdt

− 1

4

ˆ
ηψ dx

∣∣∣t=T

t=0
−
ˆ

xη∂xψ dx

∣∣∣t=T

t=0

+ R

(82)

with

R :=
¨ [

3

8
η
(
V 2 + 2BV ∂xη − B2

)
+ 1

2
(G(η)ψ)xV + 1

2
B(xψx)

]
dxdt.

Since

B = ∂yφ|y=η, V = ∂xφ|y=η, G(η)ψ = (∂yφ − ηx∂xφ)|y=η,

and since ψx = (∂xφ + ηx∂yφ)|y=η , one can write R as

R =
¨

u(t, x, η(t, x)) dxdt +
¨

f (t, x, η(t, x))ηx(t, x) dxdt

where

u(x, y) = 3

8
y(∂xφ)2 − 3

8
y(∂yφ)2 + x(∂xφ)(∂yφ),

f (x, y) = 3

4
y(∂xφ)(∂yφ) − 1

2
x(∂xφ)2 + 1

2
x(∂yφ)2.

Then one has

∂yu − ∂xf = 7

8

(
(∂xφ)2 − (∂yφ)2).

Consequently, it follows from the boundary conditions and the identities (63) and (65) that

R =
¨ (

h

2
+ 7

8
η

)
(∂xφ)(t, x,−h)2 dxdt − 7

4

˚
(∂xη)(∂xφ)(∂yφ)dydxdt

+ 1

2

¨
(∂yφ)2(t,1, y) dydt.

The wanted identity (16) thus follows from (82).
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