
Available online at www.sciencedirect.com
ScienceDirect

Ann. I. H. Poincaré – AN 35 (2018) 781–801
www.elsevier.com/locate/anihpc

A classification result for the quasi-linear Liouville equation ✩

Pierpaolo Esposito

Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre’, Largo S. Leonardo Murialdo 1, 00146 Roma, Italy

Received 23 March 2017; received in revised form 20 July 2017; accepted 29 August 2017
Available online 5 September 2017

Abstract

Entire solutions of the n-Laplace Liouville equation in Rn with finite mass are completely classified.
© 2017 
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1. Introduction

We are concerned with the following Liouville equation{−�nU = eU in Rn∫
Rn eU < +∞ (1.1)

involving the n-Laplace operator �n(·) = div(|∇(·)|n−2∇(·)), n ≥ 2. Here, a solution U of (1.1) stands for a function 
U ∈ C1,α(Rn) which satisfies∫

Rn

|∇U |n−2〈∇U,∇�〉 =
∫
Rn

eU� ∀ � ∈ H = {� ∈ W
1,n
0 (�) : � ⊂R

n bounded}. (1.2)

As we will see, the regularity assumption on U is not restrictive since a solution in W 1,n

loc(Rn) is automatically in 

C1,α(Rn), for some α ∈ (0, 1).
Problem (1.1) has the explicit solution

U(x) = log
cn

(1 + |x| n
n−1 )n

, x ∈R
n,

where cn = n( n2

n−1 )n−1. Due to scaling and translation invariance, a (n + 1)-dimensional family of explicit solutions 
Uλ,p to (1.1) is built as
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Uλ,p(x) = U(λ(x − p)) + n logλ = log
cnλ

n

(1 + λ
n

n−1 |x − p| n
n−1 )n

(1.3)

for all λ > 0 and p ∈ R
n. Notice that∫

Rn

eUλ,p =
∫
Rn

eU = cnωn (1.4)

where ωn = |B1(0)|. Our aim is the following classification result:

Theorem 1.1. Let U be a solution of (1.1). Then

U(x) = log
cnλ

n

(1 + λ
n

n−1 |x − p| n
n−1 )n

, x ∈ R
n (1.5)

for some λ > 0 and p ∈R
n.

In a radial setting Theorem 1.1 has been already proved, among other things, in [19]. For the semilinear case n = 2
such a classification result is known since a long ago. The first proof goes back to J. Liouville [29] who found a 
formula – the so-called Liouville formula – to represent a solution U on a simply-connected domain in terms of a 
suitable meromorphic function. On the whole R2 the finite-mass condition 

∫
R2 eU < +∞ completely determines such 

meromorphic function.
A PDE proof has been found several years later by W. Chen and C. Li [9]. The fundamental point is to represent 

a solution U of (1.1) in an integral form in terms of the fundamental solution and then deduce the precise asymptotic 
behavior of U at infinity to start the moving plane technique. Such idea has revealed very powerful and has been 
also applied [7,27,30,40,41] to the higher-order version of (1.1) involving the operator (−�)

n
2 . Overall, the integral 

equation satisfied by U can be used to derive asymptotic properties of U at infinity or can be directly studied through 
the method of moving planes/spheres. Since these methods are very well suited for integral equations, a research line 
has flourished about qualitative properties of integral equations, see [10,18,24,42,43] to quote a few.

The quasi-linear case n > 2 is more difficult. Very recently, the classification of positive D1,n(RN)-solutions to 

−�nU = U
nN

N−n
−1, a PDE with critical Sobolev polynomial nonlinearity, has been achieved [13,34,39] for n < N , see 

also some previous somehow related results [14,15,37]. The strategy is always based on the moving plane method and 
the analytical difficulty comes from the lack of comparison/maximum principles on thin strips. Moreover for n < N

it is not available any Kelvin type transform, a useful tool to “gain” decay properties on a solution.
When n = N the classical approach [7,9,27,30,40,41] breaks down since an integral representation formula for a 

solution U of (1.1) is not available, due to the quasi-linear nature of �n. It becomes a delicate issue to determine the 
asymptotic behavior of U at infinity and overall it is not clear how to carry out the method of moving planes/spheres. 
However, when n = N there are some special features we aim to exploit to devise a new approach which does not 
make use of moving planes/spheres, providing in two dimensions an alternative proof of the result in [9]. During the 
completion of this work, we have discovered that such an approach has been already used in [8] for Liouville systems, 
where the maximum principle can possibly fail. See also [20,28] for a related approach to symmetry questions in a 
ball.

The case n = N is usually referred to as the conformal situation, since �n is invariant under Kelvin transform: 
Û(x) = U( x

|x|2 ) formally satisfies

�nÛ = 1

|x|2n
(�nU)(

x

|x|2 ),

so that⎧⎨
⎩−�nÛ = F(x) := eÛ

|x|2n in R
n \ {0}∫

Rn
eÛ

|x|2n < +∞.

The equation has to be interpreted in the weak sense
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∫
Rn

|∇Û |n−2〈∇Û ,∇�〉 =
∫
Rn

eÛ

|x|2n
� ∀ � ∈ Ĥ = {� : �̂ ∈ H }.

Due to the nonlinearity of �n we cannot re-absorb the factor 1
|x|2n and so (1.1) still does not possess any induced 

invariance property of Kelvin type. The behavior near an isolated singularity has been thoroughly discussed by J. Ser-
rin [35,36] for very general quasi-linear equations. The case F ∈ L1(Rn) is very delicate as it represents a limiting 
situation where Serrin’s results do not apply. Using some ideas from [1,4,5], in Section 2 we first show that U is 
bounded from above and satisfies the following weighted Sobolev estimates at infinity:∫

Rn\B1(0)

|∇U |q
|x|2(n−q)

< +∞ for all 1 ≤ q < n. (1.6)

According to Remark 3.2, estimates (1.6) seem crucial to carry out in Section 3 an isoperimetric argument, which has 
been originally developed in [9] thanks to the logarithmic behavior of U at infinity, to show that∫

Rn

eU ≥ cnωn, (1.7)

see also [22]. Moreover, according to [19], the Pohozaev identity leads to show that the equality in (1.7) is valid just 
for solutions U of the form (1.5).

Thanks to (1.7), in Section 4 we can improve the previous estimates and use Serrin’s type results, see [35,36], to 
show that U has a logarithmic behavior at infinity and satisfies

−�nU = eU − γ δ∞ in R
n, γ =

∫
Rn

eU

according to the following sense:∫
Rn

|∇U |n−2〈∇U,∇�〉 =
∫
Rn

eU� − γ lim
x→+∞�(x)

for any � ∈ C1(Rn) with �̂ ∈ C1(Rn). Going back to an idea of Y.-Y. Li and N. Wolanski for n = 2, the Pohozaev 
identity has revealed to be a fundamental tool to derive information on the mass of a singularity when n = N (see for 
example [3,17,31,32]): applied near ∞, it finally gives in Section 5 that γ = ∫

Rn eU = cnωn. Notice that in Sections 2
and 4 we reproduce some estimates by emphasizing the dependence of the constants. As we will explain precisely in 
Remark 2.4, in our argument it is crucial that all the estimates do not really depend on the structural assumption (2.1).

Problems with exponential nonlinearity on a bounded domain can exhibit non-compact solution-sequences, whose 
shape near a blow-up point is asymptotically described by (1.1). A concentration-compactness principle has been 
established [6] for n = 2 and [1] for n ≥ 2. In the non-compact situation the nonlinearity concentrates at the blow-up 
points as a sum of Dirac measures, whose masses likely belong to cnωnN thanks to (1.4). Such a quantization for the 
concentration masses has been proved [25] for n = 2 and extended [17] to n ≥ 2 by requiring an additional boundary 
assumption. Very refined asymptotic properties have been later established [2,11,23]. The classification result for (1.1)
is the starting point in all these issues, which might be now investigated also for n ≥ 2 thanks to Theorem 1.1.

2. Some estimates

Let � ⊂R
n be a bounded domain and a : � ×R

n →R
n be a Carathéodory function so that

|a(x,p)| ≤ c(a(x) + |p|n−1) ∀p ∈R
n, a.e. x ∈ � (2.1)

〈a(x,p) − a(x, q),p − q〉 ≥ d|p − q|n ∀p,q ∈ R
n, a.e. x ∈ � (2.2)

for some c, d > 0 and a ∈ L
n

n−1 (�). Given f ∈ L1(�), let u ∈ W 1,n(�) be a weak solution of

−div a(x,∇u) = f in �. (2.3)
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Thanks to (2.1) equation (2.3) is interpreted in the following sense:∫
�

〈a(x,∇u),∇φ〉 =
∫
�

f φ ∀φ ∈ W
1,n
0 (�) ∩ L∞(�). (2.4)

Since u ∈ W 1,n(�) let us consider the weak solution h ∈ W 1,n(�) of{
div a(x,∇h) = 0 in �

h = u on ∂�.
(2.5)

Introduce the truncation operator Tk , k > 0, as

Tk(u) =
{

u if |u| ≤ k

k u
|u| if |u| > k.

(2.6)

According to [1,4,5] we have the following estimates.

Proposition 2.1. Let f ∈ L1(�) and assume (2.1)–(2.2). Let u be a weak solution of (2.3) in the sense (2.4), and set

�q = (
S

n
q
q d

‖f ‖1
)

1
n−1

where Sq is the Sobolev constant for the embedding D1,q(Rn) ↪→ L
nq

n−q (Rn), 1 ≤ q < n. Then, for every 0 < λ < �1
there hold

∫
�

eλ|u−h| ≤ |�|
1 − λ�−1

1

,

∫
�

|∇(u − h)|q ≤ 2Sq

�
q(n−1)

n
q

(
1 + 2

n
q(n−1)

(n − 1)
1

n−1 �q

) q
n

|�| n−q
n . (2.7)

Proof. Fix k ≥ 0, a > 0. Since Tk+a(u − h) − Tk(u − h) ∈ W
1,n
0 (�) ∩ L∞(�), by (2.4)–(2.5) we get that∫

�

〈a(x,∇u) − a(x,∇h),∇ [Tk+a(u − h) − Tk(u − h)]〉 =
∫
�

f [Tk+a(u − h) − Tk(u − h)], (2.8)

yielding to

1

a

∫
{k<|u−h|≤k+a}

|∇(u − h)|n ≤ ‖f ‖1

d
(2.9)

in view of (2.2). By (2.9) and the following Lemma we deduce the validity of (2.7) and the proof of Proposition 2.1 is 
complete. �
Lemma 2.2. Let w be a measurable function with Tk(w) ∈ W

1,n
0 (�) so that for all k ≥ 0, a > 0

1

a

∫
{k<|w|≤k+a}

|∇w|n ≤ C0 (2.10)

for some C0 > 0. Then there hold

∫
�

eλ|w| ≤ |�|
1 − λ�−1

,

∫
�

|∇w|q ≤ 2C
q
n

0

⎛
⎝1 + (

2
n
q C0

(n − 1)S
n
q
q

)
1

n−1

⎞
⎠

q
n

|�| n−q
n (2.11)

for every 0 < λ < � = (
Sn

1
C0

)
1

n−1 and 1 ≤ q < n, where k0 is given in (2.15).
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Proof. Let �(k) = |{x ∈ � : |w(x)| > k}| be the distribution function of |w|. We have that

�(k + a)
n−1
n ≤ 1

a

⎛
⎝∫

�

|Tk+a(w) − Tk(w)| n
n−1

⎞
⎠

n−1
n

≤ 1

aS1

∫
�

|∇Tk+a(w) − ∇Tk(w)|

= 1

aS1

∫
{k<|w|≤k+a}

|∇w|

where S1 is the Sobolev constant of the embedding D1,1(Rn) ↪→ L
n

n−1 (Rn). By the Hölder’s inequality and (2.10) we 
deduce that

�(k + a) ≤ �(k) − �(k + a)

a�

and, as a → 0+,

�(k) ≤ − 1

�
�′(k) (2.12)

for a.e. k > 0. Since � is a monotone decreasing function, an integration of (2.12)

ln
�(k)

�(0)
≤

k∫
0

�′

�
ds ≤ −�k

provides that

�(k) ≤ |�|e−�k

for all k > 0, and then

∫
�

eλ|w| = |�| + λ

∫
�

dx

|w(x)|∫
0

eλkdk = |�| + λ

∞∫
0

eλk�(k)dk

≤ |�| + λ|�|
∞∫

0

e−(�−λ)kdk = |�|
1 − λ�−1

for all 0 < λ < �. Given k0 ∈ N introduce the sets

�k0 = {x ∈ � : |w(x)| ≤ k0}, �k = {x ∈ � : k − 1 < |w(x)| ≤ k} (k > k0),

and by the Hölder’s inequality write for 1 ≤ q < n

∫
�k0

|∇w|q ≤ (C0k0)
q
n |�| n−q

n ,

∫
�k

|∇w|q ≤ C
q
n

0 |�k| n−q
n ≤ C

q
n

0

(k − 1)q

⎛
⎜⎝∫

�k

|w| nq
n−q

⎞
⎟⎠

n−q
n

thanks to (2.10). For N ∈N let us sum up to get by the Hölder’s inequality

∫
�

|∇Tk0+N(w)|q =
k0+N∑
k=k0

∫
�k

|∇w|q ≤ (C0k0)
q
n |�| n−q

n + C
q
n

0

⎛
⎝ k0+N∑

k=k0+1

1

(k − 1)n

⎞
⎠

q
n

⎛
⎜⎝ k0+N∑

k=k0+1

∫
�k

|w| nq
n−q

⎞
⎟⎠

n−q
n

≤ (C0k0)
q
n |�| n−q

n + C
q
n

0

⎛
⎝ k0+N∑

k=k0+1

1

(k − 1)n

⎞
⎠

q
n
⎛
⎝∫ |Tk0+N(w)| nq

n−q

⎞
⎠

n−q
n

. (2.13)
�
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Letting

k0 = 1 + (
2

n
q C0

(n − 1)S
n
q
q

)
1

n−1 , (2.14)

we have that

∑
k≥k0

1

kn
≤

∞∫
k0−1

dt

tn
= (k0 − 1)−(n−1)

n − 1
= 1

C0
(
Sq

2
)

n
q . (2.15)

By using the Sobolev embedding D1,q(Rn) ↪→ L
nq

n−q (Rn) on the L.H.S. of (2.13) and by (2.15) we deduce that

Sq

⎛
⎝∫

�

|Tk0+N(w)| nq
n−q

⎞
⎠

n−q
n

≤ 2(C0k0)
q
n |�| n−q

n ,

which inserted into (2.13) gives in turn∫
�

|∇Tk0+N(w)|q ≤ 2(C0k0)
q
n |�| n−q

n .

Letting N → +∞ we finally deduce that

∫
�

|∇w|q ≤ 2(C0k0)
q
n |�| n−q

n = 2C
q
n

0

⎛
⎝1 + (

2
n
q C0

(n − 1)S
n
q
q

)
1

n−1

⎞
⎠

q
n

|�| n−q
n

in view of (2.14) and the proof is complete. �
As a first by-product of Proposition 2.1 we have that

Theorem 2.3. Let U ∈ W
1,n

loc(Rn) be a weak solution of (1.1). Then sup
Rn

U < +∞ and U ∈ C1,α(Rn), α ∈ (0, 1).

Proof. Assume that for 0 < ε ≤ 1∫
Bε(x)

eU ≤ Sn
1 d

3n−1
. (2.16)

Thanks to Proposition 2.1 by (2.16) we deduce that∫
Bε(x)

e2|U−H | ≤ 3ωn, (2.17)

where H is a n-harmonic function in Bε(x) with H = U on ∂Bε(x). Since H ≤ U on Bε(x) by the comparison 
principle, we have that∫

Bε(x)

Hn+ ≤
∫

Bε(x)

Un+ ≤ n!
∫
Rn

eU (2.18)

where u+ denotes the positive part of u. Since Theorem 2 in [35] is easily seen to be valid for H+ too (simply by 
replacing |H | with H+ in the proof), by (2.18) we have that

sup
B ε (x)

H+ ≤ C0(ε) (2.19)
2
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for some C0(ε) > 0 independent on x. By (2.17) and (2.19) we deduce that∫
B ε

2
(x)

e2U =
∫

B ε
2
(x)

e2|U−H |e2H ≤ 3e2C0(ε)ωn. (2.20)

Still thanks to the elliptic estimates in [35] on U+, by (2.18) and (2.20) we have that

sup
B ε

4
(x)

U+ ≤ C1(ε) (2.21)

for some C1(ε) > 0 independent on x. To complete the proof, we argue as follows. Since 
∫
Rn eU < +∞ we can find 

R > 0 so that∫
Rn\BR(0)

eU ≤ Sn
1 d

3n−1
. (2.22)

Given |x| > R + 1, by (2.22) we have the validity of (2.16) with ε = 1. For all |x| ≤ R + 1 we can find εx > 0 small 
so that (2.16) holds. By the compactness of the set {|x| ≤ R + 1} we can find points x1, . . . , xL so that

{|x| ≤ R + 1} ⊂
L⋃

i=1

Bεxi
4

(xi). (2.23)

Therefore, by (2.21) we deduce that

sup
Rn

U ≤ max{C1(1),C1(εx1), . . . ,C1(εxL
)} < +∞

in view of (2.23). Since eU ∈ L∞(Rn) and U ∈ Ln

loc(Rn), we can use the elliptic estimates in [16,35,38] to show that 

U ∈ C1,α(Rn), for some α ∈ (0, 1). �
We aim now to establish some bounds on U at infinity. Let us recall that the Kelvin transform Û(x) = U( x

|x|2 ) of 
U satisfies⎧⎨
⎩−�nÛ = eÛ

|x|2n in R
n \ {0}∫

Rn
eÛ

|x|2n < +∞,
(2.24)

where the equation is meant in the weak sense∫
Rn

|∇Û |n−2〈∇Û ,∇�〉 =
∫
Rn

eÛ

|x|2n
� ∀� ∈ Ĥ = {� : �̂ ∈ H } (2.25)

with H given in (1.2). By Theorem 2.3 we know that Û ∈ C1,α(Rn \ {0}). Here and in the sequel, α ∈ (0, 1) will 
denote an Hölder exponent which can varies from line to line.

In order to understand the behavior of Û at 0, we fix r > 0 small and, for all 0 < ε < r , let Hε ∈ W 1,n(Aε) satisfy{
�nHε = 0 in Aε := Br(0) \ Bε(0)

Hε = Û on ∂Aε.
(2.26)

Regularity issues for quasi-linear PDEs involving �n are well established since the works of DiBenedetto, Evans, 
Lewis, Serrin, Tolksdorf, Uhlenbeck, Uraltseva. For example, local Hölder estimates on Hε can be found in [35] and 
then it follows by [16,38] that Hε ∈ C1,α(Aε). Thanks to [26] such regularity can be pushed up to the boundary to 
deduce that Hε ∈ C1,α(Aε). By (2.26) the function Uε = Û − Hε ∈ C1,α(Aε) satisfies{

�n(Û − Uε) = 0 in Aε

Uε = 0 on ∂Aε.
(2.27)

We aim to derive estimates on Hε and Uε on the whole Aε by using Proposition 2.1 with

a(x,p) = |∇Û(x)|n−2∇Û (x) − |∇Û (x) − p|n−2(∇Û (x) − p). (2.28)
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Remark 2.4. Let us notice that a(x, p) in (2.28) satisfies (2.1) with a = |∇Û |n−1. Since Û is expected to be singular 
at 0, it is likely true that ‖a‖ n

n−1 ,Aε
→ +∞ as ε → 0. In order to get uniform estimates in ε, it is crucial that the 

estimates in Propositions 2.1 do not depend on ‖a‖
L

n
n−1 (�)

. Assumption (2.1) is just necessary to make meaningful 

the notion of W 1,n-weak solution for (2.3). The same remark is in order for Proposition 4.1, when we will use it in 
Section 4 to show the logarithmic behavior of Û at 0.

As a second by-product of Proposition 2.1 we have that

Theorem 2.5. There holds

Û ∈ W
1,q

loc(Rn) (2.29)

for all 1 ≤ q < n.

Proof. Since (2.24) does hold in Aε , (2.27) can be re-written as{
�n(Û − Uε) − �nÛ = eÛ

|x|2n in Aε

Uε = 0 on ∂Aε.
(2.30)

Since

d = inf
v �=w

〈|v|n−2v − |w|n−2w,v − w〉
|v − w|n > 0, (2.31)

we can apply Proposition 2.1 to a(x, p) in (2.28). Since |Aε | ≤ ωnr
n and a(x, 0) = 0, we deduce that∫

Aε

|∇Uε |q +
∫
Aε

epUε ≤ C (2.32)

for all 1 ≤ q < n and all p ≥ 1 if r is sufficiently small, where C is uniform in ε. Notice that∫
Br (0)

eÛ

|x|2n
=
∫

Rn\B 1
r
(0)

eU → 0

as r → 0. By the Sobolev embedding D1, n
2 (Rn) ↪→ Ln(Rn) estimate (2.32) yields that∫

Aε

|Uε |n ≤ C (2.33)

for some C uniform in ε. Since Hε = Û − Uε with Û ∈ C1,α(Rn \ {0}), by (2.33) we deduce that

‖Hε‖Ln(A) ≤ C(A) ∀ A ⊂⊂ Br(0) \ {0}
for all ε sufficiently small. Arguing as before, by [16,26,35,38] it follows that

‖Hε‖C1,α(A) ≤ C(A) ∀ A ⊂⊂ Br(0) \ {0}
for ε small. By the Ascoli–Arzelá’s Theorem and a diagonal process, we can find a sequence ε → 0 so that Hε → H0
in C1

loc(Br(0) \ {0}), where H0 satisfies{
�nH0 = 0 in Br(0) \ {0}
H0 = Û on ∂Br(0).

Since Hε ≤ Û in Aε by the comparison principle, we have that Uε → U0 := Û − H0 in C1
loc(Br(0) \ {0}), where U0

satisfies

U0 ≥ 0 in Br(0) \ {0}, ∂νU0 ≤ 0 on ∂Br(0).
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Moreover, by (2.32) we get that

U0 ∈ W
1,q

0 (Br(0)), eU0 ∈ Lp(Br(0)) (2.34)

for all 1 ≤ q < n and all p ≥ 1 if r is sufficiently small.
Since H0 is a continuous n-harmonic function in Br(0) \ {0} with

H0 ≤ sup
Rn\{0}

Û = sup
Rn

U < ∞

in view of Theorem 2.3, we can apply the result in [35] about isolated singularities: either H0 has a removable 
singularity at 0 or

1

C
≤ H0(x)

ln |x| ≤ C

near 0 for some C > 1. According to [36], in both situations we have that

H0 ∈ W 1,q (Br(0)) (2.35)

for all 1 ≤ q < n. The combination of (2.34) and (2.35) establishes the validity of (2.29) for Û = U0 + H0. �
In terms of U , Theorem 2.5 simply gives that

Corollary 2.6. There holds∫
Rn\B1(0)

|∇U |q
|x|2(n−q)

< +∞ (2.36)

for all 1 ≤ q < n.

Proof. Since∣∣∣det D
x

|x|2
∣∣∣= 1

|x|2n

and

|∇Û |(x) = 1

|x|2 |∇U |( x

|x|2 ),

we have that∫
Br (0)

|∇Û |q =
∫

Rn\B 1
r
(0)

|∇U |q
|x|2(n−q)

.

By Theorems 2.3 and 2.5 we then deduce that∫
Rn\B1(0)

|∇U |q
|x|2(n−q)

< +∞

for all 1 ≤ q < n, as desired. �
3. An isoperimetric argument

The aim is to classify all the solutions U of (1.1) with small “mass”. The following isoperimetric approach leads 
to:

Theorem 3.1. Let U be a solution of (1.1) with 
∫
Rn eU ≤ cnωn. Then U is given by (1.3).
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Proof. Since U ∈ C1,α(Rn), we can use Theorem 3.1 in [33] to get that Zk = {x ∈ Bk(0) : ∇U(x) = 0} is a null set 
for all k ∈N. By the Lipschitz continuity of U on Bk(0), we deduce that

{t ∈R : ∃ x ∈ R
n s.t. U(x) = t, ∇U(x) = 0} =

⋃
k∈N

U(Zk)

is a null set in R. Therefore �t = {U > t} is a smooth set for a.e. t ≤ t0, t0 = sup
Rn

U , and has bounded Lebesgue 

measure in view of 
∫
Rn

eU < +∞.

Let t ≤ t0 and r > 0. Given δ, η > 0, let us define the following functions:

χδ(s) =
⎧⎨
⎩

0 if s ≤ t
s−t
δ

if t ≤ s ≤ t + δ

1 if s ≥ t + δ

and

χη(x) =
⎧⎨
⎩

1 if x ∈ Br(0)
r+η−|x|

η
if x ∈ Br+η(0) \ Br(0)

0 if x /∈ Br+η.

We can use χδ(U)χη(x) as a test function in (1.2) to get∫
Rn

eUχδ(U)χη(x) = 1

δ

∫
�t\�t+δ

χη|∇U |n − 1

η

∫
Br+η(0)\Br(0)

χδ(U)|∇U |n−2〈∇U,
x

|x| 〉. (3.1)

By the Lebesgue’s monotone convergence theorem for the first term in the R.H.S. of (3.1) we have that

1

δ

∫
�t\�t+δ

χη|∇U |n → 1

δ

∫
(�t\�t+δ)∩Br(0)

|∇U |n

as η → 0. Since by the co-area formula we can write

∫
(�t\�t+δ)∩Br (0)

|∇U |n =
t+δ∫
t

ds

∫
∂�s∩Br(0)

|∇U |n−1dσ,

it results that the function t → ∫
∂�t∩Br(0)

|∇U |n−1dσ is in L1
loc(R), and as δ → 0 by the Lebesgue’s differentiation 

Theorem we conclude that for a.e. t ≤ t0

1

δ

∫
�t\�t+δ

χη|∇U |n →
∫

∂�t∩Br(0)

|∇U |n−1dσ (3.2)

as η → 0 and δ → 0. The second term in the R.H.S. of (3.1) writes in radial coordinates as

1

η

∫
Br+η(0)\Br(0)

χδ(U)|∇U |n−2〈∇U,
x

|x| 〉 = 1

η

r+η∫
r

ds

∫
∂Bs(0)

χδ(U)|∇U |n−2〈∇U,
x

|x| 〉dσ,

and by the fundamental Theorem of calculus we get that for all r > 0

1

η

∫
Br+η(0)\Br(0)

χδ(U)|∇U |n−2〈∇U,
x

|x| 〉 →
∫

∂Br (0)

χδ(U)|∇U |n−2〈∇U,
x

|x| 〉dσ

as η → 0. By the Lebesgue’s monotone convergence theorem we deduce that for all r > 0
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1

η

∫
Br+η(0)\Br(0)

χδ(U)|∇U |n−2〈∇U,
x

|x| 〉 →
∫

�t∩∂Br (0)

|∇U |n−2〈∇U,
x

|x| 〉dσ (3.3)

as η → 0 and δ → 0. Letting η → 0 and δ → 0 in (3.1), by (3.2)–(3.3) we finally get that∫
�t∩Br (0)

eU =
∫

∂�t∩Br (0)

|∇U |n−1dσ −
∫

�t∩∂Br (0)

|∇U |n−2〈∇U,
x

|x| 〉dσ (3.4)

for all r > 0 and a.e. t ≤ t0 (possibly depending on r) in view of the Lebesgue’s monotone convergence theorem.

Remark 3.2. We aim to let r → +∞ in (3.4). In [9] no special care is required since for n = 2 U has a logarithmic 
behavior at infinity and then �t is a bounded set. When n > 2 we still don’t know that U behaves logarithmically at 
infinity and the validity of Theorem 3.1 is crucial in the next Section to establish such a property. Our argument relies 
instead on (2.36) and on the finite measure property of �t , compare with [22].

In radial coordinates we can write

|�t | =
∞∫

0

dr

∫
�t∩∂Br (0)

dσ < +∞,

∫
Rn\B1(0)

|∇U |q
|x|2(n−q)

=
∞∫

1

dr

r2(n−q)

∫
∂Br (0)

|∇U |qdσ < +∞ (3.5)

in view of (2.36). We claim that for all M ≥ 1 there exists r ≥ M so that∫
�t∩∂Br (0)

dσ ≤ 1

r
and

1

r2(n−q)

∫
∂Br (0)

|∇U |qdσ ≤ 1

r
.

Indeed, if the claim were not true, we would find M ≥ 1 so that for all r ≥ M there holds either∫
�t∩∂Br (0)

dσ >
1

r
(3.6)

or
1

r2(n−q)

∫
∂Br (0)

|∇U |qdσ >
1

r
. (3.7)

Setting I = {r ≥ M : (3.6) holds} and II = [M, ∞) \ I , we have that

∫
I

dr

r
<

∞∫
M

dr

∫
�t∩∂Br (0)

dσ ≤ |�t | (3.8)

and ∫
II

dr

r
<

∞∫
M

dr

r2(n−q)

∫
∂Br (0)

|∇U |qdσ ≤
∫

Rn\B1(0)

|∇U |q
|x|2(n−q)

(3.9)

since (3.7) does hold for all r ∈ II . Summing up (3.8)–(3.9) we get that

∞ =
∞∫

M

dr

r
≤ |�t | +

∫
Rn\B1(0)

|∇U |q
|x|2(n−q)

in contradiction with (3.5), and the claim is established.
Thanks to the claim we can construct a sequence rk → +∞ so that∫

�t∩∂Br (0)

dσ ≤ 1

rk
,

1

r
2(n−q)
k

∫
∂Br (0)

|∇U |qdσ ≤ 1

rk
. (3.10)
k k



792 P. Esposito / Ann. I. H. Poincaré – AN 35 (2018) 781–801
By (3.10) and the Hölder’s inequality we deduce the crucial estimate

∫
�t∩∂Brk

(0)

|∇U |n−1dσ ≤
⎛
⎜⎝ ∫

�t∩∂Brk
(0)

|∇U |qdσ

⎞
⎟⎠

n−1
q
⎛
⎜⎝ ∫

�t∩∂Brk
(0)

dσ

⎞
⎟⎠

q−(n−1)
q

≤ 1

r
1−2 (n−q)(n−1)

q

k

→ 0 (3.11)

by choosing q ∈ (n − 1, n) sufficiently close to n.
Choosing r = rk in (3.4) and letting k → +∞ we get that∫

�t

eU =
∫

∂�t

|∇U |n−1dσ (3.12)

for a.e. t ≤ t0 in view of (3.11). Arguing as previously, by the co-area formula and the Lebesgue’s differentiation 
theorem we have that

|�t | = lim
r→+∞|�t ∩ Br(0)| = lim

r→+∞

∞∫
t

ds

∫
∂�s∩Br(0)

dσ

|∇U | =
∞∫
t

ds

∫
∂�s

dσ

|∇U | ,

and then

− d

dt
|�t | =

∫
∂�t

dσ

|∇U | (3.13)

for a.e. t ≤ t0. Thanks to (3.12)–(3.13), by the Hölder’s and the isoperimetric inequalities we can now compute

− d

dt

⎛
⎜⎝∫

�t

eUdx

⎞
⎟⎠

n
n−1

= − n

n − 1

⎛
⎜⎝∫

�t

eUdx

⎞
⎟⎠

1
n−1

et d

dt
|�t |

= n

n − 1

⎛
⎜⎝∫

∂�t

|∇U |n−1dσ

⎞
⎟⎠

1
n−1

et

∫
∂�t

dσ

|∇U |

≥ n

n − 1
et |∂�t | n

n−1 ≥ (cnωn)
1

n−1 et |�t | (3.14)

for a.e. t ≤ t0. Since t → ∫
�t

eUdx is a monotone decreasing function, we get that

⎛
⎝∫
Rn

eUdx

⎞
⎠

n
n−1

≥
t0∫

−∞
− d

dt

⎛
⎜⎝∫

�t

eUdx

⎞
⎟⎠

n
n−1

dt ≥ (cnωn)
1

n−1

∫
Rn

eUdx. (3.15)

Since by assumption 
∫
Rn eUdx ≤ cnωn, we get that∫

Rn

eUdx = cnωn

and the inequalities in (3.14)–(3.15) are actually equalities. We have that for a.e. t ≤ t0

• �t = BR(t)(x(t)) for some R(t) > 0 and x(t) ∈R
n, since �t in an extremal of the isoperimetric inequality

• |∇U |n−1 is a multiple of 1
|∇U | on ∂�t ,

• the function M(t) = ∫
�t

eUdx is absolutely continuous in (−∞, t0) with

1

n − 1
M

1
n−1 (t)M ′(t) = 1

n

d

dt
M

n
n−1 (t) = −(cnωn)

1
n−1

ωn

n
etRn(t). (3.16)
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The aim now is to derive an equation for M(t) by means of some Pohozaev identity. Let us emphasize that 
U ∈ C1,α(Rn) and the classical Pohozaev identities usually require more regularity. In [12] a self-contained proof 
is provided in the quasilinear case, which reads in our case as

Lemma 3.3. Let � ⊂R
n, n ≥ 2, be a smooth bounded domain and f be a locally Lipschitz continuous function. Then, 

there holds

n

∫
�

F(U) =
∫
∂�

[
F(U)〈x − y, ν〉 + |∇U |n−2〈x − y,∇U〉∂νU − |∇U |n

n
〈x − y, ν〉

]

for all y ∈ R
n and all weak solution U ∈ C1,α(�) of −�nU = f (U) in �, where F(t) =

t∫
0

f (s)ds and ν is the unit 

outward normal vector at ∂�.

Let us re-write (3.12) as

M(t) = nωn|∇U |n−1Rn−1(t) (3.17)

and use Lemma 3.3 on �t = BR(t)(x(t)) with y = x(t) to deduce

M(t) = ωne
tRn(t) + n − 1

n
ωn|∇U |nRn(t) (3.18)

in view of U = t and |∇U | = −∂νU constant on ∂�t . By (3.17)–(3.18) we have that

ωne
tRn(t) = M(t) − (cnωn)

− 1
n−1 M

n
n−1 (t), (3.19)

which, inserted into (3.16), gives rise to

M ′(t) = −n − 1

n
(cnωn)

1
n−1 M

n−2
n−1 (t) + n − 1

n
M(t) (3.20)

for a.e. t ≤ t0. Since M is absolutely continuous in R and

1

n − 1

∫
dM

M − (cnωn)
1

n−1 M
n−2
n−1

= ln |M 1
n−1 − (cnωn)

1
n−1 |,

we can integrate (3.20) to get

M(t) = cnωn

[
1 − e

t−t0
n

]n−1
(3.21)

for all t ≤ t0, in view of M(t0) = 0. Inserting (3.21) into (3.19) we deduce that

Rn(t) = cn

[
1 − e

t−t0
n

]n−1
e− (n−1)t

n
− t0

n (3.22)

for a.e. t ≤ t0. Since R(t) is monotone, notice that (3.22) is valid for all t ≤ t0 and can be re-written as

et = cnλ
n

(1 + λ
n

n−1 R
n

n−1 (t))n
(3.23)

where λ = ( et0

cn
)

1
n . To conclude, we just need to show that x(t) = x0. First notice that a.e. t1, t2 ≤ t0 either x(t1) =

x(t2) or, assuming for example t2 < t1, BR(t1)(x(t1)) ⊂⊂ BR(t2)(x(t2)) and x(t2) − R(t2)
x(t2)−x(t1)|x(t2)−x(t1)| ∈ ∂BR(t2)(x(t2))

implies

R(t2) − |x(t1) − x(t2)| =
∣∣|x(t2) − x(t1)| − R(t2)

∣∣= |x(t2) − R(t2)
x(t2) − x(t1) − x(t1)| > R(t1).
|x(t2) − x(t1)|
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In both cases, we have that |x(t2) − x(t1)| ≤ |R(t2) − R(t1)| for a.e. t1, t2 ≤ t0. Since R ∈ C(−∞, t0] ∩ C1(−∞, t0), 
x(t) can be uniquely extended as a map x̃(t) which is continuous in (−∞, t0] and locally Lipschitz in (−∞, t0). 
Given t < t0 we can alway find tn ↓ t so that �tn = BR(tn)(x(tn)), x(tn) = x̃(tn), and then there holds

�t =
⋃
n∈N

�tn =
⋃
n∈N

BR(tn)(x(tn)) = BR(t)(x̃(t))

by the continuity of R(t) and x̃(t). Identifying x and x̃, we can assume that x ∈ C(−∞, t0] ∩ Liploc(−∞, t0) and 
�t = BR(t)(x(t)) for all t ≤ t0. Use now the property t = U(x(t) + R(t)ω), ω ∈ S

n, to deduce

h = U(x(t + h) + R(t + h)ω) − U(x(t) + R(t)ω) = 〈∇U(x(t) + R(t)ω), x(t + h) − x(t)〉
+[R(t + h) − R(t)]〈∇U(x(t) + R(t)ω),ω〉 + o(|x(t + h) − x(t)| + |R(t + h) − R(t)|)

as h → 0, uniformly in ω ∈ S
n. Since |∇U | is a non-zero constant on ∂�t for a.e. t ≤ t0 and �t = BR(t)(x(t)), we 

have that

∇U(x(t) + R(t)ω) = −|∇U |ω,

and then, applied to −ω and ω, it yields that

h = |∇U |〈x(t + h) − x(t),ω〉 − [R(t + h) − R(t)]|∇U | + o(|x(t + h) − x(t)| + |R(t + h) − R(t)|)
h = −|∇U |〈x(t + h) − x(t),ω〉 − [R(t + h) − R(t)]|∇U | + o(|x(t + h) − x(t)| + |R(t + h) − R(t)|).

Since |∇U | �= 0, the difference then gives

〈x(t + h) − x(t),ω〉 = o(|x(t + h) − x(t)| + |R(t + h) − R(t)|)
as h → 0, uniformly in ω ∈ S

n. If x(t + h) �= x(t), the choice ω = x(t+h)−x(t)
|x(t+h)−x(t)| leads to

|x(t + h) − x(t)

h
| ≤ o(|R(t + h) − R(t)

h
|) → 0

as h → 0. So we have shown that x′(t) = lim
h→0

x(t + h) − x(t)

h
= 0 for a.e. t ≤ t0. Since x ∈ Liploc(−∞, t0), by 

integration we deduce that x(t) is constant for all t ≤ t0, say x(t) = x0.
Given x ∈ R

n \ {x0}, by (3.22) we can find a unique t < t0 so that R(t) = |x − x0| and then

eU(x) = cnλ
n

(1 + λ
n

n−1 |x − x0| n
n−1 )n

in view of (3.23) and U = t on ∂BR(t)(x0). The proof is complete since we have shown that U = Uλ,x0 for some λ > 0
and x0 ∈R

n. �
4. Behavior of U at infinity

The estimates in Proposition 2.1 are not sufficient to establish the logarithmic behavior of U at infinity but are 
essentially optimal in the limiting case f ∈ L1(�). According to [35,36], a bit more regularity on f gives L∞-bounds 
as stated in

Proposition 4.1. Let f ∈ Lp(�), p > 1, and assume (2.1)–(2.2). Let u ∈ W
1,n
0 (�) be a weak solution of 

−div a(x, ∇u) = f . Then

‖u‖∞ ≤ C(
‖f ‖p

d
+ 1)α0(|�| + 1)β0‖u‖q̄

npq1
p−1

for some constants C, α0, β0, q̄ > 0 just depending on n, p and q1 ≥ 1.
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Proof. Given q ≥ 1 and k > 0 set

F(s) =
{

sq if 0 ≤ s ≤ k

qkq−1s − (q − 1)kq if s ≥ k

and G(s) = F(s)[F ′(s)]n−1. Notice that G is a piecewise C1-function with a corner just at s = k so that

[F ′(s)]n ≤ G′(s), G(s) ≤ qn−1F
n(q−1)+1

q (s). (4.1)

Since G(|u|) ∈ W
1,n
0 (�) for G is linear at infinity, use sign(u)G(|u|) as a test function in the equation of u to get∫

�

|∇F(|u|)|n ≤ 1

d

∫
�

G′(|u|)〈a(x,∇u),∇u〉 = 1

d

∫
�

f sign(u)G(|u|) (4.2)

in view of (2.2) and (4.1). Setting m = p
p−1 in view of p > 1, by (4.1) and the Hölder’s inequality we deduce that

|
∫
�

f sign(u)G(|u|)| ≤ qn−1
∫
�

|f |F n(q−1)+1
q (|u|) ≤ qn−1|�| n−1

mnq ‖f ‖p

⎛
⎝∫

�

Fmn(|u|)
⎞
⎠

n(q−1)+1
mnq

. (4.3)

The Sobolev embedding Theorem applied on F(|u|) ∈ W
1,n
0 (�) now implies that

⎛
⎝∫

�

F 2mn(|u|)
⎞
⎠

1
2m

≤ C

∫
�

|∇F(|u|)|n ≤ C

d
qn−1|�| n−1

mnq ‖f ‖p

⎛
⎝∫

�

Fmn(|u|)
⎞
⎠

n(q−1)+1
mnq

for some C ≥ 1 in view of (4.2)–(4.3). Since F(s) → sq in a monotone way as k → +∞, we have that

⎛
⎝∫

�

|u|2mnq

⎞
⎠

1
2mq

≤ exp

[
1

q
ln

C‖f ‖p

d
+ (n − 1) ln |�|

mnq2
+ (n − 1)

lnq

q

]⎛⎝∫
�

|u|mnq

⎞
⎠

1
mq

[1− n−1
nq

]
. (4.4)

Assume now that u ∈ Lmnq1(�) for some q1 ≥ 1. Setting qj = 2j−1q1, j ∈ N, by iterating (4.4) we deduce that

⎛
⎝∫

�

|u|mnqj+1

⎞
⎠

1
mqj+1

≤ exp

[
1

qj

ln
C‖f ‖p

d
+ (n − 1) ln |�|

mnq2
j

+ (n − 1)
lnqj

qj

]⎡⎢⎣
⎛
⎝∫

�

|u|mnqj

⎞
⎠

1
mqj

⎤
⎥⎦

1− n−1
nqj

≤ exp

⎡
⎣ln

C‖f ‖p

d

j∑
k=j−1

a
j
k

qk

+ (n − 1) ln |�|
mn

j∑
k=j−1

a
j
k

q2
k

+ (n − 1)

j∑
k=j−1

a
j
k lnqk

qk

⎤
⎦
⎡
⎢⎣
⎛
⎝∫

�

|u|mnqj−1

⎞
⎠

1
mqj−1

⎤
⎥⎦

a
j
j−2

· · · ≤ exp

⎡
⎣ln

C‖f ‖p

d

j∑
k=1

a
j
k

qk

+ (n − 1) ln |�|
mn

j∑
k=1

a
j
k

q2
k

+ (n − 1)

j∑
k=1

a
j
k lnqk

qk

⎤
⎦
⎛
⎝∫

�

|u|mnq1

⎞
⎠

a
j
0

mq1

where

a
j
k =
{

[1 − n−1
nqk+1

] × · · · × [1 − n−1
nqj

] if 0 ≤ k < j

1 if k = j.

Since aj ≤ 1 for all k = 0, . . . , j , we have that
k
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α0 = 1

n
sup
j∈N

j∑
k=1

a
j
k

qk

≤ 1

n
sup
j∈N

j∑
k=1

1

qk

= 2

n

∞∑
k=1

1

q12k
< ∞

β0 = n − 1

mn2
sup
j∈N

j∑
k=1

a
j
k

q2
k

≤ 4(n − 1)

mn2

∞∑
k=1

1

q2
1 4k

< +∞

γ0 = n − 1

n
sup
j∈N

j∑
k=1

a
j
k lnqk

qk

≤ 2
n − 1

n

∞∑
k=1

(k − 1) ln 2 + lnq1

q12k
< +∞,

and then it follows that

⎛
⎝∫

�

|u|mnqj+1

⎞
⎠

1
mnqj+1

≤ exp

[
α0 lnC(

‖f ‖p

d
+ 1) + β0 ln(|�| + 1) + γ0

]⎛⎝∫
�

|u|mnq1

⎞
⎠

a
j
0

mnq1

. (4.5)

Since

q̄ = lim
j→+∞a

j

0 =
∞∏

k=1

(1 − n − 1

nqk

) < ∞,

letting j → +∞ in (4.5) we finally deduce that

‖u‖∞ ≤ eα0 ln C+γ0(
‖f ‖p

d
+ 1)α0(|�| + 1)β0‖u‖q̄

mnq1

and the proof is complete. �
Thanks to Theorem 3.1 we are just concerned with the range∫

Rn

eU ≥ cnωn. (4.6)

By Proposition 4.1 we can improve the estimates in Section 2 to get

Theorem 4.2. Let U be a solution of (1.1) which satisfies (4.6). Then Û(x) = U( x

|x|2 ) satisfies

Û (x) − (
γ0

nωn

)
1

n−1 ln |x| ∈ L∞
loc(Rn) (4.7)

and

sup
|x|=r

|x|∣∣∇ (Û (x) − (
γ0

nωn

)
1

n−1 ln |x|
)∣∣→ 0 (4.8)

for a sequence r → 0, where γ0 = ∫
Rn eU .

Proof. We adopt the same notations as in Theorem 2.5, and we try to push more the analysis thanks to (4.6). Given 
r > 0, recall that Û has been decomposed in Br(0) as Û = U0 + H0, U0, H0 ∈ C1

loc(Br(0) \ {0}), where H0 is a 
n-harmonic function in Br(0) \ {0} with sup

Br(0)\{0}
H0 < +∞ and U0 ≥ 0 satisfies (2.34) with

U0 = 0, ∂νU0 ≤ 0 on ∂Br(0).

The description of the behavior of H0 at 0, as established in [35,36], has been later improved in [21] to show that there 
exists γ ≥ 0 with

H0(x) − (
γ

)
1

n−1 ln |x| ∈ L∞(Br(0)), �nH0 = γ δ0 in D′(Br(0)). (4.9)

nωn
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Since Û ∈ W 1,n−1(Br(0)) according to Theorem 2.5, we can extend (2.24) at 0 as

−�nÛ = eÛ

|x|2n
− γ0δ0 (4.10)

in the sense∫
Rn

|∇Û |n−2〈∇Û ,∇�〉 =
∫
Rn

eÛ

|x|2n
� − γ0�(0) (4.11)

for all � ∈ C1(Rn) so that �̂ ∈ W
1,n

loc(Rn). Indeed, let us consider a smooth function η so that η = 0 for |x| ≤ δ, η = 1

for |x| ≥ 2δ and |∇η| ≤ 2
δ
. Use η[� − �(0)] ∈ Ĥ as a test function in (2.25) to provide∫

Rn

η|∇Û |n−2〈∇Û ,∇�〉 + O(

∫
Rn

|∇Û |n−1|∇η||� − �(0)|) =
∫
Rn

η
eÛ

|x|2n
(� − �(0)). (4.12)

Since ∫
Rn

|∇Û |n−1|∇η||� − �(0)| ≤ C

∫
B2δ(0)

|∇Û |n−1 → 0

as δ → 0, we can let δ → 0 in (4.12) and get the validity of (4.11) in view of γ0 = ∫
Rn

eÛ

|x|2n = ∫
Rn eU .

Since U0 ≥ 0, the singularity of Û = U0 + H0 at 0 should be weaker than that of H0. Via an approximation 
procedure, it is easily seen that equations (4.9)–(4.10) can be re-written as

γ�(0) =
∫

∂Br (0)

|∇H0|n−2∂νH0� −
∫

Br(0)

|∇H0|n−2〈∇H0,∇�〉 (4.13)

γ0�(0) =
∫

Br(0)

eÛ

|x|2n
� +

∫
∂Br (0)

|∇Û |n−2∂νÛ� −
∫

Br(0)

|∇Û |n−2〈∇Û ,∇�〉 (4.14)

for all � ∈ C1(Br(0)). We claim that

|∇H0|n−2∂νH0 ≥ |∇Û |n−2∂νÛ on ∂Br(0) (4.15)

and then, by taking � = 1 in (4.13)–(4.14), we deduce that

γ =
∫

∂Br (0)

|∇H0|n−2∂νH0 ≥
∫

∂Br (0)

|∇Û |n−2∂νÛ = γ0 −
∫

Br(0)

eÛ

|x|2n
. (4.16)

To establish the claim (4.15), we write H0 = Û −U0 and recall that ∇U0 = (∂νU0)ν with ∂νU0 ≤ 0 on ∂Br(0). Since

|∇H0|n−2 =
[
|∇Û |2 + (∂νU0)

2 − 2∂νÛ∂νU0

] n−2
2

,

when ∂νÛ ≥ 0 we have that

|∇H0|n−2 ≥ |∇Û |n−2, ∂νH0 ≥ ∂νÛ ≥ 0

and then (4.15) does hold. When ∂νU0 ≤ ∂νÛ < 0 there holds ∂νH0 ≥ 0 and then

|∇H0|n−2∂νH0 ≥ 0 > |∇Û |n−2∂νÛ .

When ∂νÛ < ∂νU0 we have that

|∇H0|n−2 ≤ |∇Û |n−2, 0 > ∂νH0 ≥ ∂νÛ

and then (4.15) does hold.
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Since ( γ0
nωn

)
1

n−1 ≥ n2

n−1 in view of (4.6), by (4.9) and (4.16) we have that

eH0

|x|2n
∈ Lq(Br(0)) (4.17)

for all 1 ≤ q < n−1
n−2 if r is sufficiently small. By (2.34) and (4.17) it follows that

eÛ

|x|2n
= eU0

eH0

|x|2n
∈ Lq(Br(0)) (4.18)

for all 1 ≤ q < n−1
n−2 if r > 0 is sufficiently small. Thanks to (4.18) we can apply Proposition 4.1 to Uε on Aε (see 

(2.26)–(2.27)) with a(x, p) given by (2.28) to get

‖Uε‖∞,Aε ≤ C

for some uniform C > 0. We have used that

sup
ε

‖Uε‖p,Aε < +∞

for all p ≥ 1 in view of (2.32) and the Sobolev embedding Theorem. Letting ε → 0 we get that ‖U0‖∞,Br (0) < +∞
and then

Û = U0 + H0 = (
γ

nωn

)
1

n−1 ln |x| + H(x), H ∈ L∞
loc(Rn) (4.19)

in view of (4.9). Notice that now γ does not depend on r and then satisfies

γ ≥ cnωn

in view of (4.6) and (4.16). Given r > 0 small, let us define the function

Vr(y) = Û (ry) − (
γ

nωn

)
1

n−1 ln r = (
γ

nωn

)
1

n−1 ln |y| + H(ry).

Since

�nVr = − eÛ(ry)

rn|y|2n
= − r

n
n−1 +αeH(ry)

|y| n(n−2)
n−1 −α

in view of (4.19) with α = (
γ

nωn
)

1
n−1 − n2

n−1 ≥ 0, we have that Vr and �nVr are bounded in L∞
loc(Rn \ {0}), uniformly 

in r . By [16,35,38] we deduce that Vr is bounded in C1.α

loc(Rn \ {0}), uniformly in r . By the Ascoli–Arzelá’s Theorem 

and a diagonal process we can find a sequence r → 0 so that Vr → V0 in C1
loc(Rn \ {0}), where V0 is a n-harmonic 

function in Rn \ {0}. Setting Hr(y) = H(ry), we deduce that Hr → H0 in C1
loc(Rn \ {0}), where H0 ∈ L∞(Rn) in 

view of (4.19). Since V0 = (
γ

nωn
)

1
n−1 ln |y| + H0 with H0 ∈ L∞(Rn) ∩ C1(Rn \ {0}), we can apply Lemma 4.3 below 

to show that H0 is a constant function. In particular we get that

sup
|x|=r

|x|
∣∣∣∇ (Û (x) − (

γ

nωn

)
1

n−1 ln |x|
)∣∣∣= sup

|y|=1
|∇Hr(y)| → sup

|y|=1
|∇H0(y)| = 0 (4.20)

along the sequence r → 0. The proof of (4.7)–(4.8) now follows by (4.19)–(4.20) once we show that γ = γ0. Indeed, 
by (4.14) we have that

γ0 =
∫

Br(0)

eÛ

|x|2n
+
∫

∂Br (0)

|∇Û |n−2∂νÛ = o(1) + γ

nωn

∫
∂Br (0)

1

|x|n−1
(1 + o(1)) → γ

where r → 0 is any sequence with property (4.20). The proof is complete. �
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We have used the following simple result:

Lemma 4.3. Let γ ln |x| + H be a n-harmonic function in Rn \ {0} with H ∈ C1(Rn \ {0}). If H ∈ L∞(Rn), then H
is a constant function.

Proof. Let η be a cut-off function with compact support in Rn \ {0}. Since

−�n(γ ln |x| + H) = −�n(γ ln |x| + H) + �n(γ ln |x|) = 0 in R
n \ {0},

we can use ηnH as a test function to get

d

∫
Rn

ηn|∇H |n ≤
∫
Rn

ηn〈|∇(γ ln |x| + H)|n−2∇(γ ln |x| + H) − |∇(γ ln |x|)|n−2∇(γ ln |x|),∇H 〉

= −n

∫
Rn

ηn−1H 〈|∇(γ ln |x| + H)|n−2∇(γ ln |x| + H) − |∇(γ ln |x|)|n−2∇(γ ln |x|),∇η〉

in view of (2.31). Since H ∈ L∞(Rn), by the Young’s inequality we get that

d

∫
Rn

ηn|∇H |n ≤ Cn‖H‖∞
∫
Rn

ηn−1
[
|∇H |n−1 + |∇H |

|x|n−2

]
|∇η| ≤ d

2

∫
Rn

ηn|∇H |n + C

⎡
⎣∫
Rn

|∇η|n +
∫
Rn

|∇η| n
n−1

|x| n(n−2)
n−1

⎤
⎦

in view of η ≤ 1 and

||v + w|n−2(v + w) − |w|n−2w| ≤ C(|v|n−1 + |v||w|n−2).

Hence, we have found that

∫
Rn

ηn|∇H |n ≤ C

⎡
⎣∫
Rn

|∇η|n +
∫
Rn

|∇η| n
n−1

|x| n(n−2)
n−1

⎤
⎦ . (4.21)

Given δ ∈ (0, 1), we make the following choice for η:

η(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if |x| ≤ δ2

− ln |x|−2 ln δ
ln δ

if δ2 ≤ |x| ≤ δ

1 if δ ≤ |x| ≤ 1
δ

ln |x|+2 ln δ
ln δ

if 1
δ

≤ |x| ≤ 1
δ2

0 if |x| ≥ 1
δ2 .

Since ∫
Rn

|∇η|n = 2

| ln δ|n
∫

{δ2≤|x|≤δ}

1

|x|n = 2ωn−1

| ln δ|n−1
→ 0

and ∫
Rn

|∇η| n
n−1

|x| n(n−2)
n−1

= 2

| ln δ| n
n−1

∫
{δ2≤|x|≤δ}

1

|x|n = 2ωn−1

| ln δ| 1
n−1

→ 0

as δ → 0, we deduce that∫
Rn

|∇H |n = 0

by letting δ → 0 in (4.21). Then H is a constant function. �
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5. Pohozaev identity

Thanks to Theorem 4.2, we aim to apply the Pohozaev identity of Lemma 3.3 to show that (4.6) automatically 
implies 

∫
Rn eU = cnωn. Combined with Theorem 3.1, it completes the proof of the classification result in Theorem 1.1.

To this aim, we show the following:

Theorem 5.1. Let U be a solution of (1.1) which satisfies (4.6). Then, there holds∫
Rn

eU = cnωn.

Proof. Since

∂iU(x) =
n∑

k=1

1

|x|2
(

δik − 2
xixk

|x|2
)

(∂kÛ)(
x

|x|2 ),

we have that

|∇U |(x) = 1

|x|2 |∇Û |( x

|x|2 ), 〈x,∇U(x)〉 = −〈 x

|x|2 ,∇Û (
x

|x|2 )〉.

We can apply Theorem 4.2 and deduce by (4.8) that

|∇U |(x) = 1

|x| [(
γ0

nωn

)
1

n−1 + o(1)], 〈x,∇U(x)〉 = −(
γ0

nωn

)
1

n−1 + o(1) (5.1)

uniformly for x ∈ ∂BR(0), for a sequence R = 1
r

→ +∞ and γ0 = ∫
Rn eU . By (5.1) we have that

∫
∂BR(0)

[
|∇U |n−2〈x,∇U〉∂νU − |∇U |n

n
〈x, ν〉
]

→ ωn−1(1 − 1

n
)(

γ0

nωn

)
n

n−1 (5.2)

as R → +∞. Since by (4.7)

|x|( γ0
nωn

)
1

n−1
eU ∈ L∞(Rn \ B1(0))

with ( γ0
nωn

)
1

n−1 ≥ n2

n−1 in view of (4.6), we also get that

∫
∂BR(0)

eU 〈x, ν〉 → 0 (5.3)

as R → +∞. We apply Lemma 3.3 to U on BR(0) with y = 0 and let R → +∞ to get

nγ0 = ωn(n − 1)(
γ0

nωn

)
n

n−1

in view of (5.2)–(5.3). It results that

γ0 =
∫
Rn

eU = cnωn. �
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