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Abstract

In this paper we present some results on the Fu¢ik spectrum for the Laplace operator, that give new information on its structure.
In particular, these results show that, if £2 is a bounded domain of RN with N > 1, then the Fu¢ik spectrum has infinitely many
curves asymptotic to the lines {11} x R and R x {A1}, where | denotes the first eigenvalue of the operator —A in Hé (£2). Notice
that the situation is quite different in the case N = 1; in fact, in this case the Fucik spectrum may be obtained by direct computation
and one can verify that it includes only two curves asymptotic to these lines.
© 2014 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Nous présentons des résultats qui donnent de nouvelles informations sur la structure du spectre de Fucik pour 1’opérateur de
Laplace. En particulier, ces résultats montrent que, si §2 est un domaine borné de RY avec N > 1, alors le spectre de Fucik
a un nombre infini de courbes qui ont comme asymptotes les droites {A1} x R et R x {A1}, ol A1 est la premiere valeur propre
de I’operateur —A in H(} (£2). La situation est bien différente dans le cas N = 1; en effect, dans ce cas on peut vérifier qu’il y
a seulement deux courbes dans le spectre de Fucik, qui ont ces droites comme asymptotes.
© 2014 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Let £2 be a bounded connected domain of RY with N > 1 and set u™ = max{u, 0}, u~ = max{—u, 0}. The Fucik
spectrum of the Laplace operator —A in H(} (£2) is defined as the set X of all the pairs (a, 8) € R? such that the
Dirichlet problem
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Au—oau” +But =0 ins2, u=0 onds$, (1.1)

has nontrivial solutions (i.e. u € HO1 (82),u #0).
The Fucik spectrum arises, for example, in the study of problems of the type

Au—+gx,u)=0 in £2, u=0 onads2 (1.2)
where g is a Carathéodory function in §£2 x R such that

gx, 1) _ gx, 1)

lim o, lim

f——00 t —400

=B, Vxeg, (1.3)

with « and § in R. These problems may lack of compactness in the sense that the well known Palais—Smale compact-
ness condition fails if the pair (c, 8) belongs to the Fucik spectrum X.

After the pioneering researches in [8,1] and the first papers [12,17], many works have been devoted to study these
problems (see, for example, the references in [27-29]). In [27-29] we obtained new solutions of problems of this type
using a method which does not require to know whether or not (¢, ) € ¥ and, in addition, may be useful to obtain
new information on the structure of X' (a similar method is used also in [9,10]).

Let us denote by A1 < Ap < A3 < ... the eigenvalues of —A in HO1 (£2). Tt is clear that X' contains all the pairs
(Ai, ;) (which are the only pairs («, 8) in X' such that « = 8) and includes the lines {A1} x R and R x {A}; if
o # A, BF# A and (a, B) € X, then o > A1, B > A1 and the eigenfunctions u corresponding to («, 8) are sign
changing functions; moreover, («, ) € X if and only if (8, @) € X because a function u solves (1.1) if and only if
—u solves (1.1) with (8, @) in place of («, B).

Several papers have been devoted to study the structure of X' and its relation with existence and multiplicity of
solutions for equations with asymmetric nonlinearities (see, for example, [2—4,6,7,11-25,33-37] etc.). In [12] it is
shown that the two lines {A1} x R and R x {A;} are isolated in X. Many results concern the curve in X emanating
from each pair (A;, A;) (local existence and multiplicity, variational characterizations, local and global properties,
etc.).

Combining these results, one can infer, in particular, that X' contains a first curve which passes through (A3, 12)
and extends to infinity. In [15] the authors prove directly the existence of such a first curve, show that it is asymptotic
to the lines {A;} x R and R x {A1}, give a variational characterization of it and deduce that all the corresponding
eigenfunctions have exactly two nodal regions (extending the well known nodal domain theorem of Courant).

In the case N = 1, ¥ may be obtained by direct computation. It consists of curves emanating from the pairs (;, A;),
Vi € N; if i is an even positive integer, there exists only one curve while, if i is odd, there exist exactly two curves
emanating from (A;, A;). All these curves are smooth, unbounded and decreasing (i.e., on each curve, o decreases as
B increases); moreover, on each curve, o tends to an eigenvalue of —A in H(} (£2) as B — +o00; conversely, for every
eigenvalue A; there exist exactly three curves asymptotic to the lines {A;} x R and R x {A;}; they pass, respectively,
through the pairs (A2;—1, Aoi—1), (A2i, A2i) and (A2i41, A2i+1). In particular, if N = 1, there are only two nontrivial
curves of X', asymptotic to {1} x R and R x {A1}.

On the contrary, the situation is quite different in the case N > 1. In fact, using the method developed in [27-29],
we can show that, if £2 is a domain of R with N > 1, there exist infinitely many curves of the Fu¢ik spectrum X,
asymptotic to the lines {A1} x R and R x {1;}. In the present paper we consider the case N > 3. The case N =2,
which requires more refined estimates, is considered in [32].

The main result of this paper may be stated as follows (this result has been first announced in [30]).

Theorem 1.1. Let 2 be a bounded domain of RN with N > 3. Then, there exists a nondecreasing sequence (by)y of
positive numbers, having the following properties. For every positive integer k and for all B > by there exists ay g > A
such that the pair (o g, B) belongs to the Fucik spectrum X. Moreover, for every positive integer k, oy g depends
continuously on B in by, +00l, oy g < ax41,p for all B > byi1 and limg_, {00 0t g = A1.

The proof follows directly from Theorem 2.1. It is clear that, if we replace («, 8) and u by (8, @) and —u, from
Theorem 1.1 we obtain infinitely many curves of X' asymptotic to the line R x {A}.

Notice that, even for k = 1, Theorem 1.1 does not give the first curve of the Fucik spectrum (see for instance [15])
since, for all B > by, the pair (g, g, ) does not belong to the first curve (see also Remark 5.8 for more details).
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The method we use for the proof is completely variational. For all 8 > 0, we consider the functional fg defined by
fe(u) = fg[|Du|2 — B(uT)?]dx, constrained on the set S = {u € H(} 2): [, (u™)%dx = 1}. For 8 > 0 large enough,
the eigenfunction u is obtained as a constrained critical point for fg on S, while « arises as the Lagrange multiplier
with respect to the constraint S.

For every positive integer k, the eigenfunction uy g corresponding to the pair (o, g, 8), we obtain in this way,
presents k bumps; for 8 > 0 large enough, the set {x € §£2 : ux g(x) < 0} is a connected open subset of £2 while the
set {x € §2 : uy g(x) > 0} has exactly k connected components. As 8 — +o00, the bumps concentrate near points. We
describe the asymptotic behaviour of the concentration points and, in particular, we show that, if the distance between
two concentration points tends to zero as § — +00, then the approaching rate is less than the concentration rate, so
that the bumps remain quite distinct; moreover, we describe the asymptotic profile of the rescaled bumps.

Finally, let us point out a natural question: where come from the curves given by Theorem 1.1? (they might come
from bifurcations of the first curve of the Fu¢ik spectrum, or from pairs (1;, A;) of higher eigenvalues, or may be they
do not meet the line {(«, 8) € R? : @ = B}, etc.). It is a widely open problem which perhaps might produce interesting
results (see also Remark 5.9 for a more detailed discussion of this question). The paper is organized as follows. In
Section 2 we state the main results which, in particular, imply and specify Theorem 1.1. In Section 3 we describe
the variational framework and introduce a functional fg ., converging to fg as € — 0, which for all £ > 0 presents
more manageable variational properties with respect to fg. In Section 4 we obtain some useful asymptotic estimates
as B — +oo. Finally, in Section 5 we let ¢ — 0, and prove the main results. Also we discuss some generalizations,
forthcoming results on related questions, open problems, etc.

2. Statement of the main results

Let us denote by e the positive eigenfunction related to the first eigenvalue A, normalized in LZ(Q), ie. e €
H(} (£2),e1 >0, Ae; + A1e; =0 1in £ and fQ e%dx =1 (since £2 is a connected domain, e is unique and strictly
positive in §2). For every open subset A of RY, we denote by A1(A) < X2 (A) < A3(A) <... the eigenvalues of —A
in HOl (A); every function in HOl (A) is extended outside A by the value zero. The main results presented in this paper
may be gathered in the following theorem (which contains and specifies Theorem 1.1).

Theorem 2.1. Let 2 be a bounded connected domain of RN with N > 3. Then, there exists a nondecreasing se-
quence (by)y of positive numbers, having the following properties. For every positive integer k and for all B > by,
there exist ay g > A1 and uy g € Hol(.Q), with u,tﬁ #0 and u,;ﬂ # 0, such that (1.1), with o = oy g and u = uy g,
is satisfied for all B > by. Moreover, for every positive integer k, oy g depends continuously on B in by, +o0[,
ag,p < 0s1,8, VB > bry1, ok g — Ay, as B — +oo, while uy g — —ey in HO1 (£2).

In addition, there exist r > 0 and, for all k > 1 and B > by, k points x1 g, ..., X g in §2 such that

(1) dist(xip,02) > =, Vi€ (1. .k}, xip —xjp] > %fori #j;

(2) up,p(x) <0, Vx € £2\ Ule B(x;,g, ﬁ), and u,':ﬁ #0in B(x; g, ﬁ), Vie{l,... k};
(3) limg—, 100 e1(x;,p) =maxg ey, Vi € {1,...,k}, limg_, 1 \/Elxi,ﬂ —xjgl=o00fori# j;
4) if pp >0, VB > by, limg_, 100 pg =0 and limg_, 1o (pg+/B) = 00, then

k
li : k94 B(x; =0
ﬁ;gloosup{|uk,ﬁ<x)+el<x)| xe\|JBig. pp) ;

i=1

(3) if, Vke N, Vi € {1,...,k}, VB > by and Yx € /B(2 — x;p) we set Ui g(x) = Luk,ﬁ(ﬁ + x; ) where

S,‘kaﬁ
Sik,p = sup{ug g(x) : x € B(x;g, ﬁ)}, then the rescaled function U; i g converges as B — +00 to the radial

solution U of the problem

AU+UY=0 inR", U@ =1 2.1)

and the convergence is uniform on the compact subsets of RV .
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The proof will be given in Section 5. Let us point out that Theorem 2.1 holds true also for N = 2, but in this case the
proof requires more refined estimates; moreover, the asymptotic behaviour of uy g, as B — +00, is quite different in
the cases N =2 and N > 2. In fact, if N =2, we have limg_, 4o 5i k., =0, Vk e N, Vi € {1, ..., k}, while, if N > 2,
limg_, oo 8ik,p =c, Yk €N, Vi €{1,..., k}, where c is a positive constant depending only on N and supg, e;. This
different behaviour is strictly related to the fact that, if U is the radial solution of problem (2.1), then infgy U = —00
for N =2, while infgy U > —oo for N > 2. The case N =2 is presented in [32].

3. The variational framework

In order to prove Theorem 2.1, for every positive integer k we construct k-peaks eigenfunctions of the following
type. For every B > 0, letus setrg = % where 7| is the radius of the balls in R" for which the first eigenvalue of the

Laplace operator is equal to 1, i.e.

min / |Dul?dx :u € Hy (B(0,71)), / uldx = 1} =1.
B(0,71) B(0,71)
Let us consider the set
Qup={0x1, ..., x0) € 28 xi —xj| = 2rgif i # j, dist(x;, 32) = rgfori=1,...,k}.
It is clear that §2; g # ¥ for B large enough and that, if (x1,...,xx) € §£2¢ g, the balls B(x1,7g), ..., B(x,rg) are
pairwise disjoint and included in £2.

We say that a function u € Hé (£2) belongs to Efl ,,,,, x (i.e. it is a k-peaks function with respect to the balls
B(x1,7g), ..., B(xg, rp)) if u™ = 35 u where, for all i € {1,...,k}, u € H}(2), uj” #£0, u >0 in 2,
||ui+||;§(m Jox - [uF (0)12dx = x; and u (x) =0, ¥x € 2\ B(x;, rp).

For all 8 > 0 and ¢ > 0, let us consider the functional fg : HO1 (£2) — R defined by

fpe(u) = f |Dul?dx —2 f Gp.o(u)dx, 3.1)

2 ko)

where Gg (1) = fé gg.e(r)dr,Vt eR, with gg (1) =0,Vt <¢,and gg (1) = B(t —¢), Vt > €.
Now, our aim is to find k-peaks functions that are constrained critical points for the functional fg . constrained on
theset S={u € H) (2): [ou™)*dx =1}.

&

.....

Let us consider the set Mfl‘
fhe@lu1=0fori=1,... k.

One can easily verify that for all € > 0, if a function u € E ,’?1 ,,,,, x; 18 a critical point for fg . constrained on S, then

,,,,,

x such that |lu™|l2p) =1 and

u e Mfl’f“,xk and, forevery i € {1,...,k}, féyg(u + tu;r)[u;r] is positive for ¢ € ]—1, O[ and negative for ¢ > 0 (since
% 8p,¢(1) is strictly increasing with respect to 7 in e, +00[); so the function u is the unique maximum point for fg .

on the set {u + tul.+ 1t € [—1, +oo[} (notice that, for ¢ =0, fg0 and Mf]’?.‘,xk do not have the same properties; it is

the reason for which we first introduce the parameter ¢ > 0 and then let ¢ — 0).

Proposition 3.1. Let k be a positive integer, B > 0 large enough so that §2i g # ¥ and consider a point (x1, ..., x;) €

$2k, - Then, for all € > 0, Mfl’f”)xk # () and the minimum of the functional fg . on the set Mfl’g x; IS achieved.

.....

&

Proof. We have Mfl’ ,,,,, x, 7 ¥ because of the choice of the radius rg. In fact, taking into account that ﬂrﬂ >,
one can find k + 1 nonnegative functions vy, ..., vk, v in HO1 (£2) such that v; =0in £ \ B(x;,7p), fg |Dv; |2dx <
B [qvidx, [ox v} (x)dx = x; [, vidx, [oividx =0fori=1,...,kand [, 5°dx = 1. Thus, taking into account
that

t—>—+00

1
lim 5 fp.c(rvi) =/|Dvi|2dx —ﬁfv,?dx <0 (3.2)
2 2
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and that (since & > 0)

1
2
im. t_zfﬁ,f(“)i) = / |Dv;|“dx > 0, (3.3)
Q
we infer that for all ¢ > O there exist k positive numbers ? ¢, ..., # . such that the function u = Zle LigVi — U

&

belongs to Mfl ,,,,, Xp
Notice that inf{fg . () : u € Mx1 ,,,,, x) = A forall B>0,e>0, (x1,...,x¢) € £ p. In fact, if u € Mflf_,,xk,
we have fg.(u) = fg(—u~)+ Zi:l fﬂﬁg(u;“), where fgo(—u") = f_Q |Du~ |2dx > A1 (since ||u~ ||Lz(9) =1)and
18, g(u+) >0fori=1,...,k (because u € M)’?l’5 x; implies fg, 8(u+) = max{fﬂ,s(tu?') :t>0}>0fore>0).
Now, let us consider a minimizing sequence (u,), for fg . on M fl
(since sup{ fg,e(un) : n € N} < +00) we have

x.- The same arguments as above show that

.....

M < l}lrgicgffﬂ’s(—u;) < linnl)solip fﬂ,g(—u;) < 400 (3.4)
and, fori =1,...,k,
0 <liminf fg . ((u;),) <limsup fgc((,}),) < +o0. (3.5)
n—o0 n—00
Notice that fg ¢ (—u; ) = fg |Dun_|2dx, so (3.4) implies that the sequence (u,, ), is bounded in HOl (£2).

Now, let us prove that also the sequences [(u,‘f) i]n are bounded in HO1 (£2),Vi e{l,...,k}. Taking into account that
flé,s(u,,)[(u,f)i] =0,VneN,Vie(l,..., k}, we have

fID Idx—/gﬂs(( 7):)( dx<ﬂ/ (3.6)

Thus, it suffices to prove that the sequences [(uf{)i In are bounded in L2(2) fori =1, ..., k. Arguing by contradiction,
+y.
assume that (up to a subsequence) lim,,_, oo || (&;7); l2(2y = oo for some i € {1,...,k} and set (un); = ﬁ
nillp2(0)

Then, (3.6) implies f_Q |D(12n)i|2dx < B, V¥n € N; so (up to a subsequence) [(i;);], converges weakly in H(} (£2), in
L?(£2) and a.e. in £ to a function i#; € H}(£2). It follows that [, |Di;|*dx < B, [,u?dx =1, ii; > 0 in £ and
u; =0in £ \ B(x;,rg). Moreover, one can verify by direct computation that the properties f/é’ g(un)[(u,j)i] =0,

Vn € N, and lim,_, oo [|(u;}); l22(e) = o0 imply limy,—, oo f_Q |D(it,);|>dx = B. As a consequence,

Timf (1 Ga)i) )i ] =208 — 2 / 8.6 (1) @)dx, Vi >0, (3.7)

2

Then, since fQ ﬁl.zdx =1, we obtain for all ¢ > 0

&g}nﬁnf[tﬂ /gﬂ,s(tﬁi)ﬁidx} = %gnﬁgg/[ﬁtﬁ, — gp.e(tiy)]iidx > 0. (3.8)
2 2
Notice that, if we set t, ; = || (u;})i || 12(2)» We have Jp. @)D (n)i] > 0, V1 €10, 1 (. Since limy o0 1, = +00,
it follows

hmlnff/gg(( ) —hmlnf/ fﬁg t(iy); )[(un) ]

T

> 2f|:tﬁ —/.gﬁ,g(tﬁi)ﬁidx]dt, vt > 0. (3.9)

0 2



1150 R. Molle, D. Passaseo / Ann. I. H. Poincaré — AN 32 (2015) 1145-1171

Then, as T — 400, from (3.8) we obtain lim,,_, fﬂ,s((u:[)i) = 400, in contradiction with (3.5). Thus, we can say

that also the sequences [(uf{),-]n are bounded in HO1 (82) fori =1,..., k. As aconsequence, there exist u™, uf, e u,j
in HO1 (£2) such that (up to a subsequence) u;, converges as n — oo to u~ and (u;"); converges to ufr, fori=1,...,k,
weakly in H] (£2), in L>(£2) and a.e. in £2.

Now, let us prove that ul+ #0, Vi € {1,...,k}. Arguing by contradiction, assume that ul+ = 0 for some i €

{1,...,k}. Then (because of the L2(£2) convergence) from (3.6) we infer that lim,,_, o fg |D(u); |2dx = 0, which
implies lim,_ fﬂ,g((u,‘f) i) = 0. Therefore, we obtain a contradiction if we prove that

inf{ 5.0 (v;) :veMPe }>0, Vexo. (3.10)

Taking into account that fg, g(v;’) = max{ f, 5(tvl.+) 1t > 0}, it is clear that it suffices to prove that there exist two
positive constants pg . and cg ¢ such that fg .(v) > cg¢, YV € S;(pp,¢), Where

Si(op.e) = {v € Hy (B(x;,rp)) : v > 0in B(x;, rp), f |Dv|*dx = p;s}. (3.11)
B(xi,rg)

In order to prove the existence of cg . > 0 and pg . > 0 with these properties, let us consider the positive integer j~
such that

)\;(B(x,', 371)) <l< )‘]+I(B(xi’ 3}71)). 3.12)

Taking into account the choice of rg, it follows that

Ai(B(xi,rﬂ)) <pB <)Ljf+1(B(x,-,rﬁ)). (3.13)

Now, let us denote by Z’é and Z’é the closed subspaces of HO1 (B(x;,rg)) spanned by the eigenfunctions of the
Laplace operator —A in HO1 (B(x;,rg)), corresponding to eigenvalues A ; (B(x;, rg)) with, respectively, 1 < j < j and
Jjzj+1L

For all 8 > 0 and ¢ > 0, there exists vg, > 0 such that, if v € 2/; and fB(x,-,r,g) |Dv|2dx < vé,g, then |v(x)| <&,
Vx € B(x;,rg).

For all v € Hy(B(x;,rp)) such that [ |Dv[*dx <vj ., setv=vip+ vap, with vi g € Tj and v € X,

Then, taking into account that fB(x_ r5) [Dvy g |2dx < vé . and as a consequence vy g < &, we have

Sp,e(W) = fpe(ig+v28) = fpe(ig+v28) — f8:1,8) + fpe(V1,8) (3.14)

where f3.:(v1,5) = fB(xl‘,rﬂ) |Dvy g|*dx and

fp.e(1p+v2p) — fpe(v1p) = f . (v1p)[v2,5]+ / |Dvag|* — B f v3 pdx

B(x;,rp) B(xi,rg)
= / [|Dv2,ﬂ|2—ﬂv§,ﬂ]dx
B(xi.rp)
> o / |Dvy g|*dx (3.15)
Az (B(xi,rg))
! B(xi.rp)

because f4 . (vi,p)[v2,5] =0 and fB(xl_’m) |Dvy gldx = Xz (B(xi, rp)) fB(Xl_’m) v%yﬁdx.
It follows that, for a suitable constant cg . > 0, we have fg .(v) > Cge fB(x,- r5) |Dv|%dx, Vv € H(} (B(x;,7rg)) such

that fB(x,- ) |Dv|2dx < vé,s. Therefore, it follows easily that there exist two constants pg ¢ € |0, vg [ and cg > 0
satisfying all the required properties.
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Thus, we can say that ulJr #0,Vi e{l,...,k}. Moreover, as a further consequence of the Lz(.Q) convergence, we
have
-2 2 .
| 2 /[uj(x)] xdx=x;, Viel{l,... k. (3.16)
Q

From the weak H(}(.Q) convergence, it follows that fé’e(u:r)[u:r] <0,Vi €{l,...,k}. Therefore, foralli € {1, ...,k}

&

there exists #; € 10, 1] (t; depends also on 8 and ¢) such that the function it = —u™ + Zf:l tl-u:r belongs to Mfl’ ,,,,, Xp-

Moreover, since fg . (t; (u;)i) < fg,e((u;)i), Vn € N, we have

. . + . . + . .

lkrglcgffﬂgg(t,- (un )l) < li,fﬂlc,%ffﬂﬂs((”n )l.), Vieli,..., k}. 3.17)
It follows that

k
- .. - A+
Sp.e () Sl}lfggffﬁﬁ( u, +Zfz (1, )1)

i=1
k
. - +\ | —; . ,
< 1}lrg£ffﬁ,g<—un + Z}(un )l.) =inf{fpe) :ueMP® 1} (3.18)
1=

x, 18 achieved and fg (1) = min{fg.(u) : u €

.....

Proposition 3.1 allows us to introduce the function ¢ g . : £2x,5 — R defined by
Ok pe(X1, ..., Xk) = glin fper Y(x1,...,x1) € Q24 p, (3.19)
M- ,€
fork €N, B >0, ¢ >0, with B large enough so that £2; g # ¢.

Proposition 3.2. For every positive integer k, for all B > 0 and & > 0 (with B large enough so that 2 g # ), there

exists (x]’ﬂ,g, ceey xk”B’g) € .Qk,ﬂ such that (pk’ﬁ‘g(x]’ﬂ,g, ceey xk,ﬁ’,;) = maxg, ; Pk,p,e-
Proof. Let us consider a sequence (X1, ..., Xk ) in £2; g such that
lim (pk,ﬂ,s(xl,n,...,xk,,,) = Sup (pk,ﬂ,s. (3.20)
n—>oo Qkﬂ
Then, there exists (X1 g, ..., Xk g,e) € §2k, g such that, up to a subsequence, (X1, ..., Xkn) —> (X1,8,6, - - -+ Xk, B,e) AS
n — Q0.
By Proposition 3.1, there exists ug g € Mffjs,e,....xk,,s,a such that fg ¢ (ux ge) =min{fg (1) :u € Mff,;e,nw,ﬁ,e}-

For every n € N, let us consider the function #,, € Mf]’j,_i_,xk’n such that (&,)); (x) = (u,jﬁ )i(x +xige — xi,) and
it,, is the minimizing function for the minimum

min{/|Dv|2dx:veH01(.Q), v>0in £2, /vzdle, /v(ﬁ;)idx:omri:1,...,k}. (3.21)
2 2

One can verify by standard arguments that iz, — ug g ¢ in H& ($2) and fg ¢ (lin) — fB,(ur p,c) as n — 0o. Moreover,

we have min{ fg . (u) 1 u € Mfl’_iw,xk'n} < fp.e(@t,) because i, € Mff,i,...,x;(,ns Vn € N. Thus, we obtain

:SzUp Ok, pe = nlirgo Ok B.e(X1ny-es Xin)
kB

< nlggo fp.e(ln) = fpe(Urpe) = Phpe(X1,Ber -+ s Xk Bre)s (3.22)

which implies gk g e (X1,8,6, - -, Xk, B,6) = MaAXy 4 Pk, pe- O
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4. Asymptotic estimates

In this section we describe the asymptotic behaviour as 8 — +00 of the mini-max function uy g . obtained in
Section 3. Here we need some notion on the capacity. For every bounded domain A of RY, with N > 3, the capacity
of A is defined by

capA:min{/|Du|2dx:u€Dl’2(RN), u>1lae.in A}. 4.1)
RN

It is well known that there exists a unique minimizing function u 4. Moreover, if Ay, ..., A, with s > 1, are pairwise
disjoint bounded domains of RY, then we have

cap( U A,') < anp(A,'). 4.2)
i=1 i=1

In fact, if we set i1(x) = max{u, (x):i =1,..., s}, we obtain
N S N
cap(UAi) < / |Dit*dx <) / |Du g, Pdx = cap(A). (4.3)
i=1 RN i:lRN i=1

Proposition 4.1. For all positive integer k and for all sequences (B,)n, (en)n of positive numbers, let us con-
sider a sequence (X1,8,c,:--->Xk ppe,) Of points in 2% and a sequence of functions (uypg, e, )n in Hol(.Q)

such that (xl’/gn’gn,...,xk,ﬁmgn) € Qk,ﬂn, Uk, B,.e, € Mfﬁ;;’fewka’ﬁmgn and fﬂn’sn(uk’ﬁn’sn) = mln{flgn,gn(u) tu e
ﬁn"sn
X1, Bn.en s Xk, Bnen
U (3r1) maxg eg
lim|y| 00 U(x)=U(Br1) "

}, Yn € N. Moreover assume that, as n — 0o, B, — 400 and ¢, — ¢ such that 0 < ¢ <

Then, uy g, ¢, — —e1 in HOl (£2) and

N2 2

limsup By 2 [ fy.e0 (i py.en) — A1] < kcap(?l)(a 4 maxe1> , (4.4)
n— 00 2

where, for short, we denote by cap(1) the capacity of the balls of radius 1 in RV .
If we assume in addition that fg, ¢, (Uk,,.e,) = MAXQy 5 Pk p,.c,» VN € N, we can say that

N-2 2
nlingo B2 [ fBusen Uk Borsn) — M1 ] = kcap(fl)(e + max el) , 4.5)
lim ej(x;g,.,) =maxey, Vie({l,... k}, 4.6)
n—oo 0
nlij;ov BulXi B.en — Xjienpal =00 fori#j; 4.7

(e+maxg e)

WU@)’ Vx € RN, Ve > 0, as n — oo we have

moreover, if we set Ug(x) = ¢ —

Uk py e (\/Lﬂ_ +xi,5n,sn> — Us(x), VxeRN Vie{l,... k) 4.8)
n

and the convergence is uniform on the compact subsets of RV.

Proof. In the proof, for short, let us write x; ,, and u,, instead of x; g, ., and uy g, ¢, . Taking into account that rg, — 0,

standard arguments show that u,, — ej in H(} (£2).

U (3r1) maxg eg
limy| 00 U(x)—U@3ry)°
putation. Then, in order to prove (4.4), we can consider the sequence (i,), in M}f{f;‘?’_‘_ﬂxk‘n defined as follows. For
i=1,...,k,

(@),(0) = U, (VBa(x —xi)], ¥rxe B<xl~,n, %) 4.9)

Notice that sup{U.(x) : |x| > 371} < 0 if and only if ¢ <

as one can verify by direct com-
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where pg, is the radius of supp(U; +) (which, for large n, is a ball strictly contained in B(0, 371) because of the
assumptions on ¢) and i, is the function in H (£2) such that

/(ﬂ;)zdle, i, (x) =0, V)CEU <x51) (4.10)
Q VL

/|Dzz;|2dx=min{/|1)u|2dx:ueH(}(Q), /uzdxz 1, u>0in 2,

u-Oan <x,,,, 5 )} 4.11)

It is clear that i, € Mfl’ffffkaﬂ (since flénvgn (@n)@@)i1=0fori =1,...,k, as one can easily verify taking into
account the properties of U). It follows that

f/ansl‘l (un) = mln{fﬂn »€n (I/l) ‘ue Mflfln‘gn Xk, y,}

< fﬁn &En (un) - fﬁn 5/1 + Z flgn gn (412)
A direct computation shows that
Jim B S ((),) = / |DU,Pdx, fori=1,....k. (4.13)
B(0,p:)\B(0,r1)
Moreover, i, — ej in HO1 (£2) and fg, ¢, (=1, ) = fQ |D12;|2dx — A1. If we set v, = —ii,, + e1, we obtain
Tpuen (=l ) =21+ / |DT, > — 2 / e10dx (4.14)
2
and, after rescaling,
N-2 - 201 X -
Bu® [fppen (—iiy) =] = / DV, dx - / q(—)v (x)dx, (4.15)
[ Bu.€ ( n) ] n ﬂn m n
VBn$2 VBi$2
where V,,(x) = On (), Vx € VBa 2.
Clearly, there exist xq,...,x; in £2 such that, up to a subsequence, x;, = x;, as n — oo, fori =1,...,k.
Moreover, arguing as in [27-29], one can find & (h < k) pairwise disjoint subsets Si,...,S; of {1,...,k} such

that Ul}zl S;={l,...,k} and /Bulxin — xj |l — oo if i and j belong to different subsets while it remains
bounded if i and j both belong to the same subset (it is clear that in this case x; = x;). In addition, if S; (for

Jj=1,..., h)consists of k; elements, these arguments allow us to say that there exist k; pairwise disjoint balls in RV,
B(yl Ps) B(yk; Pe), such that
lim |DV (x)| )L V,(x) |dx = Zm cap UB y ,0 (4.16)
n—>o0 “5.¢ «/ﬂ_n ’ b
VB2

where m; = e1(x;) for i € §; (it is clear that different choices of i in §; give the same constant m ;). Thus, from
(4.12), (4.13) and (4.16) we obtain

N-2
limsup ,,

n—oo

h kj _
[£50.00n) —21] =k / |DUS|2dx+Zm?cap(UB(yij,pg)) 4.17)

B(0,p:)\B(0,r1) j=1 i=1
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Since m j; <maxg ey for j=1,...,h and
kj kj
cap(U B(y/, p£)> <> capB(y/, pe) =k; cap(B(0, po)), (4.18)
i=1 i=1
it follows
h
hmsupﬂn [f,Bn en(Un) — kl] <k / |DU8|2dx + (m(ezlxm)zcap B(O De) Zk]
A B(0.0)\B(O,71) =l
—k / |DU6|2dx=kcap(f1)(e+m§xe])2, (4.19)
RN\ B(0,71)

that is (4.4). Let us point out that in (4.4) we have the strict inequality if m; < maxg ey or k; > 1 for some j €
{1,..., h} (because of (4.2)).

Now, let us prove that, if we assume in addition that fg, ¢, (un) = maxe, , @k p,.e,» Y1 € N, then we have (4.5). In
fact, in this case we can show that

N 2 2
timinf By 7 [ £, 6, (ta) = 21] 2 kcap(ﬁ)(s + mgxel) . (4.20)
n—
In order to prove (4.20), let us choose x € §2 such that e; (x) = maxg e; and a sequence (X1, ..., Xkn)n i 2% such

that (x1,,, ..., Xk,n) € $2¢,8,, V1 €N,

lim |x;, —x|=0, Vie{l,...,k}, “4.21)
n—>oo
and
Tim /Bl%i — Fjul =00, ifi ). (4.22)
Taking into account Proposition 3.1, for every n € N there exists u, € Mfl”ng" T such that fg, ¢, () =

Ok, B,en X1,ns - - > Xk,n). Notice that

fﬂn’sn (ﬁn) fﬂn Sn + Z flgn Sn (423)
where fg, ¢, ((12:[),') >0,VneN,Vie{l,..., k}. Moreover, since lim,,, o g, = 0, we have i,, — e in HO1 (£2) and
SBa,en (=l ) — Ay as n — oo. If we set w, = —u,, + ey, we obtain

Tpuen (=it ) =21+ f (IDWy | — 211 €1,, ) dx. (4.24)

Q

Hence, taking into account (4.4), it follows that

limsup,B,,N% /(lDwn|2 — 2h1e1iy)dx < 400, (4.25)
n—oo Q
namely
lim sup / [|Dvifn(x)\2 - 3/\1e1( )Wn(x)]dx < +o0, (4.26)
n—oo /3n v ,Bn
VB2

where W, (x) = liln(ﬁ,—)
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As a consequence, arguing as in [27-29], one can verify that, fori =1, ..., k, there exists Wi e DL2(RYN) such
that (up to a subsequence) W, (x + +/BnXin) = Wi (x); moreover, the convergence is uniform on the compact subsets
of RV and

k
Z/|Dwi|2dx§nminf / [|Dwn(x)|2——,\1e1< )W (x)i|dx (4.27)
i n—>00 Bn Bn
RN Bn 2
Now, we examine the asymptotic behaviour of the functions (12+), for i = 1,...,k. Let us set ‘7,n(x) =

Cni (i) (f + Xin), Vx € /B2, where ¢, i = B 3 [[CanY IILQ(Q) Then, Vi, € H} (B(0, 371)), f3(03r)V dx =
1 and fB(Or ) |DV1 nl dx <1,VneN, Vi e{l,...,k} (because fﬂ & (u,,)[(u+),] = 0). Therefore, up to a subse-

quence, V, » converges to a function Vi e H (B(O 371)) in L2, weakly in H1 and a.e. in B(0, 3r1). Thus, we have
fB(o 37 Vl dx =1 and fB(O 3 |IDV;|?dx < 1 fori =1,..., k. As a consequence, we obtain

/|Dviff|2dx zcap(Fl)(mgxel)z, Vie{l,... kb (4.28)
RN
because the balls of radius | have the smallest capacity among the domains whose first eigenvalue is less than or
equal to 1. Moreover, since only these balls have this property, in the case ¢ = lim,— » &, =0, (4.4) and (4.28) allow
us to say that W/ = maxg e([1 + limmgﬁ] and Vi = cU*, Vi € (1,...,k}, where ¢ = |[UT]| 7, ! Furthermore,
the minimality property of u,, implies that ﬁn(ﬁ +xin) = Up(x) =maxg eq [limy|- 00 U (X)|™ 'U (x) uniformly on

the compact subsets of R (as one can verify arguing as in [27-29]). In the case ¢ > 0, arguing as in the proof of

Proposition 3.1, one can verify that there exist k positive numbers 71, ..., i such that
i / |DV;|?dx = / gLV Vidx, Viefl,... k}, (4.29)
B(0,371) B(0,37)
and
i’ f |DV;|?dx —2 f G Vy)dx < hmmf,B,, fﬁn e ((@F),)- (4.30)
B(0,371) B(0,3r1)

Thus, taking into account (4.27), we obtain

N

k
liminf 8, ° [fﬁngn(un)—xl Z (W + Vi), (4.31)

n—

where F, : D"2(RY) — R is the functional defined by

F.(v) = / |Dv|2dx —2 / I (v)dx (4.32)
RN RN

with I, (¢) = fot ye(t)dt, where y.(t) =1 — (¢ + maxg e), VT > € + maxg eq, and y.(t) =0, VT < & + maxg e].
Now, notice that

Fo (Wi +5V) > F£<U8+m§1xe1> =0, Ve>0,Vie{l,... kb (4.33)

because F (U, + maxg, e1) is the mountain pass level for the functional F, while F; (Wi +1;V;) is the maximum of F,
on the continuous path I7 : [0, +oo[ — DLZ(RN) defined by I1(t) = tWiforte[0,1], T(t) =W+ (t — D5 V;,
Vi € [1, +ool, which satisfies IT(0) = 0, lim;— o0 [[IT(?) [ pr2gyy = 00, Fe(I1(0)) = 0 and lim;_, 4 o0 Fe (I1(2)) =
—00, as one can verify by direct computation.

Thus, we finally obtain (4.20) taking into account that fg, ¢, () = maxey , Gk, Bu.en = Pk.Bu.en (X1nseeesXkn) =
SBu,e, (Un) and that Fe(Ug 4+ maxg e1) = (¢ + maxg el)2 cap(ry).
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Let us point out that, indeed, we must have Wi+ 7 V: = Us: + maxg e; otherwise in (4.20) we have the strict
inequality, in contradiction with (4.4). In fact, the radial function U, 4+ maxg e; is the unique mountain pass type
critical point for F, (as one can show by radial symmetrization arguments) while W’ + #; V; is the maximum point
for F, on the continuous path I71. Therefore, taking also into account the minimality properties of i, it follows that
ﬁn(ﬁ + Xin) = Ug(x), Vx € RN,Vi e{l1, ..., k}, and the convergence is uniform on the compact subsets of RN,

Thus, we can say that (4.5) is satisfied and that (4.6), (4.7) hold otherwise in (4.4) we have the strict inequality; as
a consequence, arguing as before for it,,, we can say that also (4.8) must hold otherwise we have the strict inequality
in (4.20), in contradiction with (4.5).

Finally, notice that u;” — 0 in HO1 (£2), which implies u,, - —e; in HO1 (£2); so the proof is complete. O

Proposition 4.2. For all positive integer k, for B > 0 such that 2 g # 9 and for all ¢ € ]0,&] with 0 < & <

U (37) maxg e . . B.e
i oo UCO—U G let us choose (X1,g.¢,..., Xk g,e) in 2 p and uy g ¢ in My

Ok, B,e(X1,B,es -+ Xk,B,e)s

such that fge(urge) =

1,B,e5-++3%Xk,B,e

ﬂETooinf{el(xi’ﬂ’g) riefl,... k), e€]0,8]} = maxel, (4.34)
, lim VBinf{|xige —xjpel e €10,E]} =400 fori#j. (4.35)
— 400

Then, there exists ¥ € 10, 3r ([ and ,B_k > 0 such that

k
sup{uk,,g,g(x) xe2\|J B(x,-,ﬁ,g, %) ecl0,E], B> Bk} <o. (4.36)

i=1

Proof. By the minimality of u; g ., we have only to check near the spheres d B(x; g.¢, rg). Arguing as in the proof of
Proposition 4.1, one can verify that

uk,ﬁ,g(i +x,~,,3,8) —U.(0)|:x €K, ee]O,E]}:O, Vie(l,... k), 4.37)

VB

for every compact subset K of RV .
Therefore, in order to complete the proof, it suffices to notice that there exists 7 € ]0, 371 [ such that

.
i o]

sup{Ue(x) : x| > 7, £ €10,]} <0, (4.38)

as one can easily verify taking into account the choice of &. O

Remark 4.3. Let us point out that the strict inequality (4.36) given by Proposition 4.2 is important because the
condition # <0 in £ \ Uf-‘zl B(x;j g.¢,rg) is an unilateral constraint that would give rise to a variational inequality if

u = 0 somewhere in £2 \ Ule B(x; g, rg). On the contrary, since (4.36) holds, u satisfies the equation Au +au =0
in £\ Ule B(x;j ¢, rg) for a suitable Lagrange multiplier & > 0, as we show in next lemma.

Lemma 4.4. Let us consider k, B,€,8,X1,g¢, ..., Xk,p,e and uk,pg ¢ satisfying the same assumptions as in Proposi-
tion 4.2. Let By be the positive number given by Proposition 4.2. Then, for all B > By and ¢ € 10, €], there exist
Lagrange multipliers oy g . € R and ;g ¢ € RN, fori =1, ..., k, such that

k
1, _
Efﬁ,g(uk,ﬂ,e)[w] = /{_ak,ﬁ,suk,ﬂ7€ + Z(ulj,ﬂ,s)i[“isﬁvg (X — xi,ﬂ,e)] }de, AAVNS H(} (£2). (4.39)

o i=1

Moreover, ay g = fg |Duk_,ﬂ’£|2dx, limg_, ;oo 0tk g.e = A1, Yk €N, Ve €10, €], and

lim B 2pipe=0, Vie{l,... .k}, Veel0,zl. (4.40)
B—>—+o0
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Proof. Unlike the case of the smooth constraints [, (u™)*dx =1 and [, [u; (x)]*xdx = x; [ (u;")*dx, for which
the Lagrange multipliers theorem applies, the constraints fé’ E(u)[u;"] =0, fori =1,...,k, do not satisfy suitable
regularity conditions. However, they are “natural constraints”, in the sense that they do not give rise to Lagrange
multipliers (while the multipliers o g . and u; g . come from the other constraints).

Notice that uy g ¢ is the unique maximum point for fg . on the set {uy g + Zle ti (u,:fﬁ’g),- it >—1fori =
1,..., k}; moreover, ffggg(ukﬂ,e + Zf'(:l t; (u,iﬁyg)i)[(u,:fﬁyg)i] is positive for #; € [—1, O[ and negative for ¢; > 0.

In order to prove (4.39), arguing by contradiction, we assume that (4.39) is not satisfied for any choice of the
multipliers o g . in R and w1 ge, ..., i, p.e in RV, Then, it follows by standard methods that there exists a continu-
ous map 1 : 1—1, +001" — H}(£2), such that n(t1, ... %) = uk.p.e + Y iy i 5 )i if (11, ... 1) ¢ [=1/2,1/21F,
) N2y =1 1) € B oy Y0 € [=1,400[%, f5..(1(0)) < fp.e (r,p.e), Vi € [~1, +-00[*.

Therefore, applying Brouwer Theorem (see [5] and also [26]), we infer that there exists 7 € [—1/2, 1/2] such that

n(t) € Mff.fs,aw-,Xk.ﬂ,s’ which gives a contradiction because fg¢(17(¢)) < fg,e (U, g,e) and

Fpelrpe) = Qe pe o Xpe) =min{ fo o) iueME® ] (4.41)

Thus, we can conclude that there exist the multipliers o g, in R and w; g . in RN satisfying (4.39).

Now, if in (4.39) we set ¢ = u,;ﬁyg, we obtain ag g, = fg |Du,;ﬂ’8|2dx; then, since rg — 0, it follows that
limg_, oo 0tk ge = A1, Yk €N, Ve €10, £].

In order to prove (4.40), for every i € {1, ..., k} we set ¢ = r; g o(x) = %(u,‘:ﬁ’g),-(x)[ui,ﬂ,s - (x — xi,8,¢)]. Then,
after rescaling, we obtain

LpM fy i pel = B3 (f ) (= +xipe JVipe( o= +xipe ) ipe - x)dx
5 B.e k,B,e i,B,el=— / kB.eli\ /7 i,B,e i,B.e\ — & i,B,e i,B,e "
B(0,371) VB VB
/ |:(u+ ) ( a +x )]2<'ui'ﬁ’€ x)zdx 4.42)
= kB.eli\ 7 i,B.e 3 . .
B(0,3r1) \/E ﬂz

. o . _3 . .
Arguing by contradiction, assume that (up to a subsequence) limg_, 0o B~ 2|; g,¢| > 0. So, taking into account the
properties of the function Uy, from Proposition 4.1 we infer that

. 1, N1 . _
Jlm i pel "B fh ok p ) Wipel =0, Viefl,... .k}, Ve €]0,2], (4.43)
while
lim | pel ™' B2 / (W g0): (== +xi (it 2d 0 (4.44)
plim Iipel P tepedi\ g T ) [\ Ty ) T '
B(0,3r1)

Thus, we get a contradiction and (4.40) is proved. O

Lemma 4.5. Let us consider k, By, &n, (X1,8,,645 - - > Xk, Bp,e0)» Uk, By ,e, SQtiSfYing the same assumptions as in Propo-

sition 4.1. Moreover, for all n € N, let us consider (X1,g,.¢,: - -+ Xk By,en) i1 2k, B> Uk, Bp,en i Mfl";" %44
sPn€n K, PnsEn
assume that fﬁn’sn (ukvﬁnvgn) = Pk.By.en (xlsﬁn,gn’ ceeo -xk,ﬂn,&‘,,) = maX-Qk,ﬂn Pk, Bu.en> fﬂnat’?n (Mksﬁn’sn) = @k.Bu.en ('xl»ﬂn»an ’

. ,fk’ﬂn,gn), Vn eN,

M /B (i e, — Xifre) =0, Vi€ (L. k). (4.45)

Then, we have

and

lim sup |u —u =0. 4.46
N> 00 Qpl k,Bn.€n k’ﬁns&z' ( )
If we assume in addition that (X1,8,.e,.---, Xk By.en) 7 X1 Bprens -+ -+ Xk, Boren)s Y0 € N, then supg |k g, e, —

Uk,B,,e,| > 0 and the rescaled function Z; , defined by
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—1
Z" ('x) = (Sup |I:ik! nscn - ukﬂ ns<n |> (ﬁkv ns<n - uk9 nscn ( + x ns )l>
in p Bn.€ Bn.€ Bn.€ Bn.€ m i,Bn.€

Vx €/ Bu(82 —xig,e,) Vi €{1,... k}, (4.47)

up to a subsequence, converges as n — oo to a function Z; which is a weak solution of the equation
AZ+a(x)Z=0 inRN (4.48)

where a(x) =1 if x € B(0,71) and a(x) = 0 otherwise; moreover, the convergence is uniform on the compact subsets
of RN. Furthermore, there existsi € {1, ..., k} such that Z; # 0.

Proof. For short, in the proof let us write i, iy, Xi n, Xi » instead of ik g, ¢, Uk, .60 Xi. By 6ns Xi, B -
From Proposition 4.1, we obtain

N2
2

limsup B, > [ .5, in) — 1] < kcap(Py) (= + max el>2~ (4.49)

Moreover, the assumptions on X; , and x; , imply
lim \/Bu|%ip —Xjnl =00 fori#j, i,jef{l, ... k}. (4.50)
n—o0

Hence, arguing as in the proof of Proposition 4.1, one can show that ﬁn(ﬁ + Rin) = Us(x), Vx e RV, Vi €

{1, ..., k}, and the convergence is uniform on the compact subsets of RN (in fact, all the conditions we use in Propo-
sition 4.1 to prove the similar property for u,, are also satisfied by ).
It follows that
lim sup iy —uy|=0 fori=1,...,k; 4.51)

"> 00 B(xin,2rp,)

moreover, taking into account the minimality properties of &,, and u,,, standard arguments allow us to say that
lim sup lit, —u,| =0; (4.52)
n— 00 k
2\Uizy BGxin,2rg,)

thus, (4.46) is proved. It is clear that supg, |#, — u,| > 0 if x; ,, # X; , for some i € {1, ..., k}, otherwise we should
have X; , = xin, Vi € {1, ..., k}. Therefore, if (X1 ,...,%kn) # Kin,-.. s Xkn), Yo €N, Z; ,, is well defined and, up
to a subsequence, it converges as n — oo to a function Z; € DL2(RN) such that supgpn |Zi| < 1.

For short, in next formulas we write s, instead of supg, |, — uy|.

From Lemma 4.4, if we denote by & g, ¢, and fi; g, ¢, the Lagrange multipliers corresponding to the function i,,
we obtain

1 1
Ef/é,,,gn @)yl — Ef/én,gn (un)¥1= / D(iiy — uy) - DYrdx — /[gﬁn,en (tin) — 8Bn.en (un)]lﬂdx

2 2

= (k. By, 60 — Ok, Bp,60) / U, ydx —oxp, e, /(fl u, )Ydx

2 2

21

i 1

)[R e - (6 = Zi) |9

k

2

1

k
(Mt Bnsen Hi,ﬁn,en) c(x = )’ei,n)]l[’dx

b\ \

+i

i=1

(i poen - Gin — Rin)[Wdx, Vo € Hy(82). (4.53)

b\
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Taking into account the minimality properties of i, and u,, since o pg,.e, = [o|Du, [*dx and Ok ey =
[ |Dii,; |*dx, it follows that

1
limsup — |6k g, .6, — Ok, .6 ] < F+00. (4.54)
n—oo Sn
Moreover, since £, = [ [, (,)7dx17" [ [@;7)i (0)1Pxdx and x; 5 = [ [ u;)7dx]™" [ [u;5)i (0)12xdx, it follows
by direct computation that

i Bn
imsup

n—oo Sn

| %0 — Xin| < 400. (4.55)

_3 _3
From Lemma 4.4 we have also lim,, o0 B, * i g,,s, = 0 and lim,_, o0 By, * i g,.e, = 0.

Now, we can prove that

_3
lim B 7 i g e, — Hipy.en| =0 (4.56)

Arguing by contradiction, assume that (up to a subsequence) the limit (4.56) is positive for some i € {1, ..., k}. Then,
for n large enough, we can consider the function

3
Zinn = Ba sulfi o en = Biforeal ™ Zin (4.57)
which, as Z; ,, remains uniformly bounded as n — co. Moreover, there exists ,u; e RN, |,u;.| =1, such that, up to a
subsequence, |l g,.e, — Hi,By.en I~ (i, e — Mi,f,en) — M as n — oo. Hence, after rescaling in (4.53) we infer
that (up to a subsequence) Zl-’ n converges as n — oo to a bounded function Z; € D2(RN), such that

f[DZi DY —a(x)Zjy Jdx = / Uy ) (x - p))dx, Yy e DV2(RY). (4.58)
RN B(0,3r1)

Now, set ¥ = (DU - ;). Since this function satisfies the equation A¥ 4 a(x)¥ =0 in RV, we obtain

/[DZ,- DV —a(x)Z;¥]dx =0, (4.59)
RN
while f3(0,3f1) UF ()W (x)(x - u))dx < 0.
Thus, we have a contradiction and we can conclude that (4.56) holds.
Now, after rescaling, we can let n — 00 in (4.53); so, it follows by usual arguments that (up to a subsequence) Z; ,
converges as 7 — 00 to a solution Z; of Eq. (4.48) and that the convergence is uniform on the compact subsets of RY .
In order to prove that Z; # 0 for some i € {1,...,k}, we argue by contradiction and assume that Z; = 0 for
i=1,...,k. Inthis case, Z; , - 0 as n — oo, Vi € {1, ..., k}, uniformly on the compact subsets of RY: moreover,
if we set z, = é(ﬁn — uy), taking into account the minimality properties of i,, and u,, we can say that (up to
a subsequence) (z,), converges uniformly in §2 to a function z. Now we prove that z =0 in £2, so we have a
contradiction because supg, |z,| =1, Vn € N.
In order to prove that z =0 in 2, notice that

k
lim sup{ |zn(x)| 1X € U B(x; 5, 2r,3n)} =0; (4.60)
n—o0 il
moreover, for n large enough so that Ule B(Xin, rg,) C Ufle B(xi,,2rg,), the function z, satisfies in £2 \
Uf:l B (X0, 2rg,) the equation Az, + é(&k,ﬂn,gn iy — otk g, e, un) = 0. Let us consider the function w, € HO1 (£2),
such that w, = z, in ', B(xi... 2rp,) and Aw, =0 in 2\ U*_, B(xin. 2rg,). Since lim,_, o sup{|z,(x)| : x €
Ule t_i’(xi,,,, 2rg,)} =0, it follows that also lim,,_ oo supg |w,| = 0. If we set z,, = z, — w,, we obtain
1 L
AZy + 0k B, 6,2n + Ok By, 6, Wn + ;(&k’ﬁ"’gn — 0k B, 6, n =0 1n 2\ U B(x;n,2rg,). (4.61)

i=1
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Taking into account that lim,,_, oo @k, g,,¢, = liMy— 00 Ak, ,,¢, = A1, that limsup,,_, SL 0tk 60 — Ok, By,en | < +00 and
that u, — —ej in HO1 (£2), it follows that, up to a subsequence, o g,.¢, Wn + é(&k,,gn,en — Q. B,.6,)in — cey for a
suitable constant ¢ € R. Now, let us set Z, | = e fg Znerdx and Z, 2 =Z, — Zp.1. From (4.61) we obtain

akaﬂnsen ~ 2 =
(1 - T) 102l ) = nlEn 2l <O (4.62)

for a suitable sequence (c,), in R such that lim,,_, o ¢, = 0.

Since limy,— 00 k. g, 6, = A1 < A2, it follows that limy,—, o IIZn,2||H01 @2 =0.

Therefore, we can say that (up to a subsequence) (Z,), and (z,), converge to the function z = ce; where ¢ =
lim,— 00 [ Zne1dx.

On the other hand, lim,,—, o0 2, (x; ) =0, Vi € {1, ..., k}. Therefore, we have
0= lim z,(x;,) = lim z(x;,)=c lim e;(x;,) =Ccmaxe, (4.63)
n—o0o n—00 n—oo 2

which implies ¢ = 0 because maxg; e; # 0. It follows that z =0 in £2, which gives a contradiction.
Thus, we can conclude that Z; £ 0 for some i € {1, ..., k} and the proof is complete. O

Lemma 4.6. Let Z1, ..., Z; be the functions obtained in Lemma 4.5. Then, for every i € {1,...,k}, there exists
7 € RN such that Z;(x) = (DU (x) - 1;), Vx € RN. Moreover, there exists i € {1, ..., k} such that t; # 0.

Proof. Notice that the function U is nondegenerate in the sense that, if Z € DL2(RN) is a weak solution of Eq. (4.48),
then there exists ¢ € RV such that Z(x) = (DU (x) - 7), Vx € R" (for the proof, see analogous results proved in
[27-29]). Therefore, since the function Z; satisfies Eq. (4.48) fori =1, ..., k as proved in Lemma 4.5, it follows that
for every i € {1, ..., k} there exists 7; € RN, having the required property. Moreover, t; # 0 for some i € {1, ..., k}
because Z; #£ 0 for some i € {1, ..., k}, as we proved in Lemma 4.5. O

Proposition 4.7. For all positive integer k, for > 0 large enough so that §2; g # {0 and for all & > 0, let us consider

(X1,8,65 -+ Xk,p,e) in 2 p and uy g o in Mff;,g,..v,xm,g such that
Spe(rpe) =k pe(X1pes- s Xk pe) = Max gt pe- (4.64)
k.p
Then, there exists Py > 0 such that, for all B > Py and ¢ € 10, %limhﬁ/f;l U‘(‘;;‘i?[]e}yl) [, uk,g,e is a constrained critical

point for the functional fg . constrained on the set S = {u € HO1 (82) w2y = 1}

Proof. Clearly, it suffices to prove that the Lagrange multipliers j1; g ¢ given by Lemma 4.4 vanish for 8 large enough,

namely that there exists B > 0 such that Wige =0,V > B, Vie{l,... k},Veelo, %lim| lff;%r?fffibﬂ) [.

Arguing by contradiction, assume that there exist a sequence (), of positive numbers and a sequence (&), in

10, 3 i }f{fg{;?;;‘f;bm[ such that lim,— 00 By = 400 and (i1 4,6, - - - » Kk fr.cn) 7 O, Y1 € N. Without any loss of

generality, we can assume that

|41 g ] = max{| i grenl 1i=1,...,k}, VneN, (4.65)

Up to a subsequence, &, — & and mﬁ — [1, as n — 00, for suitable & € [0, %1im‘f‘/i3;1§f?f§‘fﬁsﬁ>] and 1 € RV,
such that || = 1.

N Y : ~ : Bn.en ~ _
Now, let us choose (X1,8,,6,s -+ -» Xk,B,.e,) 1IN $2¢ g, and U g, ¢, In Mﬁl,ﬂn@n’“dk’ﬁwn such that fg, ¢, (k. g,.6,) =
~ A ~ . qA 8, ~ -
k., By, en (x]’ﬂn’gn, ... ,xk’ﬂn’gn) and Xi\Ben = Xi,Bp.en fori =2,...,k while X1,Bp.en = X1,Bp,en T —\/ﬁ,u with §, > 0,
Vn €N, lim,,_, » 8, = 0 and, in addition,

N+3

Hm 8,8, |11, =0. (4.66)
n— oo
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Notice that this choice of (X1,,,6,, -5 Xk g,,5,) N $2k,p, is indeed possible because limy_, o0 v/BulXi g,,e, —
X1,B,,6,] = 00 for i 1, as proved in Proposition 4.1. Moreover, we have supg, i g,.e, — Uk By, > 0, Yn € N,
because i g, s, F Uk,B,,s, Sice 8, > 0.

For short, let us write s, instead of supg, |ik g, s, — Uk, By, -

One can verify by direct computation that

Tbuen ko) = Fpoen W pren) + F5, e, Uk e Bk By — Uk fyen] + Rn (4.67)
where
R, > -8, /(ﬁk,ﬁ,l,an - Mk,ﬁ,,,sn)zdx > —,3,,|.Q|SZ. (4.68)
Q
From Lemmas 4.5 and 4.6, we infer that there exist 71, ..., 7 in RY such that (up to a subsequence) the rescaled
function é(ﬁk,ﬂn,sn — uk,ﬁmgn)(ﬁ + Xi,g,,e,) converges as n — oo to (DU (x) - t;), fori =1, ..., k, uniformly on

the compact subsets of RV .
We say that 71 #20 and t; =0 for i # 1. In fact, fori =1, ..., k, we have

X 2
[ [t (G

B(0,37)
2
= ut L + Xi g,.e xdx
k,ﬁn,gn \/,B_n sPns€n
B(0,37)
2 R i+ - L d 4.69
+ Uk Buoen B + Xi By (uk,ﬂn,a,, - uk,ﬁn,sn) VB +Xi g6, |Xdx +0(sn). (4.69)
B(0,37)
Taking into account the choice of (X1,g, ¢, - - - » Xk, B,.e,)5 if i 7 1, for n large enough we obtain
2 2
i = 4y = y = 4 x; = 4.70
Uy g e ﬁ + Xi e, || Xdx = UL B en ﬁ + Xi e, | | Xdx =0. (4.70)
B(0,37) B(0,37)

Therefore, as n — 0o, we get

UF (x)[DU;(x) - ti]xdx =0 fori=2,...,k. 4.71)
B(0,3r1)
It follows that

1 Ti
F)[DU:(x) - 7 ]xdx = 5 f [DUZ(x) - ti]xdx = —3‘ / UZ(x)dx =0, (4.72)
B(0,3r1) B(0,pz) B(0,pz)
where pz denotes the radius of supp U; (which is a ball). Therefore, we have ; =0 fori =2,..., k.

On the contrary, if i = 1, for n large enough we have

12

[ X
ulj,ﬁn,en (\/ﬂ_n +xi,ﬁn,sn) xdx =0 4.73)
B(0,37)) -
while
_ - 5
iy, o Buen | | XdX =8nfd i 4 Buen ) | dx. (4.74)
k. Bnsen \/ﬂ_n Pnasn k,Bn.en m +PnEn
B(0.371) ) B(0,37)

So, as n — 00, we obtain
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O 2 2
lim —px fdx =2 Ug(x)[DUg(x) . rl]xdx =-1 Fdx
n—00 §,

(4.75)
B(0.pz) B(0.pz)

B(0,pz)

where, taking into account Lemma 4.6, t1 # 0 because t; = 0 for i £ 1. As a consequence, lim;,—, o o — |71 > 0 and
71 = —|71|@.

From (4.67), (4.68) and Lemma 4.4, we obtain

fﬂmsn (ﬁk,ﬂn,é‘n) - fﬁnssn (uk,ﬁ,,,é‘n)

k
= 2/ { _ak’ﬂ"’e"uk_,ﬁnﬁn + Z(u/tﬁn,sn)i [Hi,ﬂ,,,s,, = xi,ﬁ,,,s,,)] } (ﬁkﬂmsn — Uk e, )X

o i=1
— Balf2|s2. (4.76)
Notice that, since [, ('21:;3,, gn)zdx =1land [, Uy g e )2dx = 1, we have
2 [ ug, . (i s )dx=— [ (af T )Vdx, VneN; 4
e proon i ey = Wi )AX == | (i, o, = Ui p, o) dx, YneN; @.77)
2 2
MOIeover, ﬁlj,ﬂn.,sn < [uk,,.e, + 521" and supg (g g, e, [k Bren + sp]T) < s2; thus, we get
— A — /\_l'_ + — A— —
/uk7ﬂlls€n (uk’ﬂ"’gn - uk’ﬂ”’an)dx S /uk>ﬁna€n (ukaﬂnsen - uksﬂnsen)dx - / ukaﬁnasn (uksﬂmen - Mks/gnsgn)dx
Q 2 Q
— - A+ d 1 ~— - 2d
= [ g poend® 5 [ g, e =t g,0,) dx
Q 2
3 2
§§|.Q|sn, Vn € N. 4.78)
Therefore, after rescaling, it follows
+1
L [fﬂnsfn (ﬁk,ﬂn,é‘n) - fﬁnssn (ukvﬂn»an)]
|41, 8,2, 150
k X 1 X Mg
+ ~ 1,Pns€n
Z u +x" n-<n _(uk’ n-<n _ukv ns I1)< +x'v ns n)<— 'x>dx
; /_ k,ﬂn,é‘n( /ﬁn lﬁ & >sn ﬁ & ﬂ & /ﬁn lﬂ & |/¢L]’ﬂn’5n|
=1 B(0,3r)
2s,
_ —”ﬁ” 1£2] 4.79)
“’Ll,ﬁn,é'n'
for n large enough. Then, as n — oo, we obtain
N+1
Bn*
liminf — i — u
00 snlﬂl,ﬁmg" | [fﬂnaen( ksﬂnssn) fﬁnssn( k,,Bn»gn)]
> / U 0[DUG) 1]l x) =~ U 0)[DU ) - 3]G - x)dx > 0, (4.80)
B(0,37) B(0,37)
which is a contradiction because
fﬂnaen (ﬁks/gnsgn) = @k,ﬂn »€n (xAls/gnsgn LA ik;ﬁnagn) E glax wkyﬁnasn = fﬂnasn (uk,ﬂ,l,é‘n)~ (481)
k.Bn

Thus, the proof is complete. O
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5. Proof of the main results and final remarks

In this section we study the behaviour as € — 0 of the function uy g . obtained by mini-max methods in Sections 3
and 4. In particular, our aim is to show that for all 8 > Bk (see Proposition 4.7) ag,g.e — Qg g, Uk, g,e — Ur,gase— 0
(up to a subsequence) for suitable o g € R, uy g € H(; (£2) and that uy g is an eigenfunction for the Fucik spectrum,
corresponding to the pair (ax, g, 8), namely uy g solves the problem

Au—ak,ﬁu_+ﬂu+=0 in £2, ueHol(.Q), u=0in £2. 5.1)
Lemma 5.1. For all B > 0 and ¢ > 0, let us consider a point (x1,g.¢,...,Xr,p,e) in 2 g and a function uy g ¢
in Mflig xipe Such that fge(uk pe) = Q. pe(X1,g,e,---, Xk, p,e). Moreover, assume that (up to a subsequence)
(X1,8,65 - - Xk,p,e) converges as € — 0 to a point (x1,8, ..., Xk g).

Then, up to a subsequence, _”l:,ﬁ,s + Zle (u,j’ﬂ’g),- I (u,’:lg’g)i ||221(Q) converges in HO1 (£2), as e — 0, to a function

Up,p € E : moreover,

X1, B+ xk,ﬁ;

/|D(ﬁ,jﬁ)i|2dx =B, Vie{l,... k), (5.2)

/|Duk /3| dx =min{f|Du‘|2dx ‘u € Ef] PR @ = 1,
2
/|Duj|2dx=ﬁ, /(u,.*)zdx=1fori=1,...,k}. (5.3)
2 2
Proof. Notice that, since uy g . € Mf] BerXiper WE have
2 2 .
/|D(u,‘£ﬂ’e)i‘ dx=/gﬁ,€(ukﬁ’5)(u2_’ﬂy8)idx <ﬂ/(u,':ﬂ’g)idx, Ve >0, Vie(l,... k) (5.4)
2 2 2
Let us set (uk B, )i = ||(uk 8, )i ”LZ(Q)(ulj,ﬁ,é‘)i' Then, we have
/|D(ﬁ,':ﬂ’s)i|2dx<,3, Ve>0, Vie(l,... k. (5.5)

It follows that, up to a subsequence, (ﬁ,:r 8 )i converges as ¢ — 0 to a function (ﬁ,‘: ﬁ)i in LZ(Q), weakly in HO1 (£2)
and a.e. in §2. Moreover, since

limsup”uk_)ﬂ’g || H(@) < 400, (5.6)
e—0

also u;ﬂ . converges as ¢ — 0 to a function uk_ﬁ in L?(£2), weakly in HO1 (£2) and a.e. in £2. As a consequence, the

function ik, p = —u; 45 + Zle(ﬁ,':ﬂ)i belongs to E)'?H3 ‘‘‘‘‘ p

(ﬁlj,ﬁ)i’ Vief{l,..., k}, and ukiﬁ’g — u,;ﬁ strongly in H({ (£2) as € — 0. In fact, we have

and ||, 4ll;2(o) = 1. Notice that, indeed, (ﬁ;; g.o)i =

f|D |dx_ B, Vief{l,... k (5.7

and

g%f\Dukﬁ ] dx_/]Dukﬁ] dx. (5.8)
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For the proof, we argue by contradiction and assume that

-2 .. )
/|Duk’ﬂ| dx <11§1ﬁ18f/|Duk,ﬂ,s| dx (5.9)
Q Q
/|D | dx < B forsomeief{l,... k}. (5.10)
In this case, by slight modifications of the supports of ”1:,,3 and (ﬁ,':ﬁ),-, one can construct a function iy, g € Eflﬂ,_ka.ﬂ
such that [l g1l ;2.0 = 1. IG5 )il 2(0) = 1.
- 2 .. )
/’Dukﬂ dx <11§n_>1(r)1f/’Duk’ﬁ78‘ dx 5.11)
/|D ] dx <p forsomeie{l,... k). (5.12)

Without any loss of generality, we can assume that (5.12) is satisfied for i = 1.

Then, for all & > 0, let us consider the function iy g, € Mflﬁg Xkpe such that (ﬁ/—;ﬁ,s)i = (ul—;—,ﬂ,s)i for
i=2,...k, (ﬁ,j’ﬁ’g)l(x) = tg(ﬁ,tﬁ)l(x — X1,8,¢ + Xx1,8), Vx € §2, where ¢, is the positive number such that
f,é,g(ta(ﬂk,ﬁ)l)[(’;;ﬂ)l] =0 and ﬁk_,ﬂ,s is the nonnegative function in Hol(.Q) such that ﬂk_’ﬂ’s(x) =0, Vx €

Uiz SUPP(ﬁZ@S)i, ity g ellL2(2) =1 and

/|Dukﬂs| dx:min{/|Du|2dx:ueH01([2), u>0in £,

k

u(x) =0, ¥x e | Jsupp(ii 5..);» lull 2y =11 (5.13)
i=1

Then, we have

Tpeuipe) = fpelinge) = fpe((ipe))) = foe((@fpe))) + foe(ug pe) = fooe (g g ) (5.14)

where fﬂg((u,jﬁe)l) >0, Ve > 0, 1im€ﬁo.fﬁ,s((ﬁ,j’ﬁ,€)1) =0 and lime—o fpe(up z,) > fo |Dﬁ,;ﬂ|2dx >

limg ¢ fp, e(uk B.e ).

It follows that fp.e(ur pe) > fg,e(lir p,e) for € > 0 small enough, which is a contradiction because iy g ¢
Mflzs Xk e and fg¢(ur,pe) = min{fg(u) :u € Mfl,ﬁ,aw-’xk,ﬁ.s}' Thus, we can conclude that uk,ﬁ,e — uk,ﬁ in
H}(2)ase— 0and [, |D(ﬁ,jﬂ)i|2dx =B,Vie{l,... k).

In a similar way we can prove (5.3). Arguing again by contradiction, assume that there exists i € E )’?1. PR
that [|i~ || ;2(0) = 1. [ | Ditf 12dx = B, ;] |l ;2() =1, Vi €{1,....k},and [, |Dii~ |*dx < [, |Dﬁkjﬁ|2dx.

In this case, by slight modifications of the supports of &~ and u for i = 1,...,k, one can find iix g €
Ef,_ﬁ,_,,xkﬁ such that [, |D(12k’ﬁ)i|2dx < ,Bfg(ﬁkﬁ)izdx, Vie{l,... k), ||uk,ﬁ||Lz(_Q) =1and [, |Dakjﬁ|2dx <

fo |Dﬁ,;ﬂ|2dx.
It follows that there exist k positive numbers 7| ¢, ..., fx . such that fﬂ S(I, (U . B) )[(uk ;3) 1=0,Vie{l,... k},

such

and we can consider the function iy B, In Mfl B Xk e defined in the following way: fori =1, ...k, (12,‘:/3 Qix) =

(uk’ﬁ)z(x — X e+ Xig), Vx € 2, and uk’ﬂ,g is the nonnegative function in HO1 (£2) such that L\ik_’ﬂﬁs(x) =0,Vx e
k v
Ui:l Supp(u]_:ﬂ’g)i, ”uk,ﬁ,g”Lz(Q) =1and
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/|Dukﬁ8’ dx:min{/|Du|2dx:ueH01(Q), u>0in £,
ko)

k
u(x) =0, ¥x e | Jsupp(ii 5..);+ lull 2y =11 (5.15)
i=1

Then, by direct computation, we obtain

fﬁ,e(uk,ﬁ,s)_fﬁ,e(ﬁk,ﬁ,s) =f,3,8(uk7!ﬁ’g) fﬁs ukﬁg +Zfﬂs ukﬁg Zfﬂs Mkﬁg (5.16)

i=1

where fﬁ,g((u,‘:ﬂyg),-) >0,Ve>0,Viefl,..., k}, limeq fp, 8((uk B i) =0,Vie{l,... k}, and
. — - 2 v 2 . v—
3l%fﬁ’5(uk,ﬂ,e):/|Duk,ﬂ| dx >/|Duk”3| dx Zglg%fﬁ,g(uk’ﬁ,g). (5.17)
2 2

It follows that fg o (ux,p,c) > fg.(ix,p,¢) for € > 0 small enough; so we have again a contradiction because iy g, €
MY ot a0 fpoCtipe) = min{fp.e ) su € MY vy ). O

Now, notice that we can consider the function ¢ g : £2x g — R such that, for all (x1,...,xx) € £2¢ g

(pk’lg(xl,...,xk)zmin{/}Du}de:u eBf o ey = 1.

[|Dui+|2dx =B. |u} | 2y =1 fori = 1,...,k}. (5.18)
2

In fact, this minimum exists as we can infer from Proposition 3.1 and Lemma 5.1 (where we choose (x1,gp, ...,
Xk, Be) = (X1,...,xk), VB >0, Ve > 0).

Lemma 5.2. If in Lemma 5.1 we assume in addition that ¢ g ¢(X1 8¢, -.., Xk p.e) = maxg, ; @k, e Ve > 0, then
Ok, p(X1,8, .-y Xk,p) = MAX0y 4 Pk, -

Proof. Arguing by contradiction, assume that there exists (y1,g, ..., Yk,g) € §2k,g such that gr g(x1,8,...,Xk,8) <
i, VLB -5 VE,B)-

Taking into account Lemma 5.1, we have fg |Dﬁ,;ﬂ|2dx = @k, p(x1,8, ..., Xk,p). Then, slight modifications of
the supports of ’Zk_ﬁ and (ﬁ,':ﬂ)i, fori =1,...,k, allow us to construct a function vy g € Efl,ﬁ """" x5 such that

lvg gllz22) =1,

)
f|ka,ﬂ| dx <@ p(Vps -+ Vip) (5.19)
Q
/|D )i dx<,3/ dx, Viefl,... k}, (5.20)
which implies the existence of k positive numbers #1 ¢, ..., tx  such that fégg(ti,g(v,j’ﬁ)i)[(v,iﬁ),-] =0,Vie{l,..., k}

Let us consider the function vg g ¢ in M,C1 perxip,e SUCh that (Ulj:ﬂ,a)i(x) = (v,iﬂ)i(x —Xige+Xip),Vx €82,Vie
{1,...,k},Ve >0, and vk,ﬂ,s is the nonnegatlve function in H(} (£2) such that v,;ﬂ’s(x) =0,Vx e Uf-‘zl supp(v,:fﬂ’g),-,

||Uk_,,3,s”L2(9) =1and
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/|Dv,;ﬁ’€|2dx=min{f|Dv|2dx:veH&(Q), v>0in 2,
ko) 2

k
v(x) =0, Vx € Usupp(v;ﬁﬁ’g)i, Il 2y = 1}. (5.21)
i=1
Moreover, let us consider a function wy g ¢ in Mfffe,m,yk_ﬂ such that fg ¢ (W g,¢) = @k, ,e (V1,85 ---» Yk,8)> V& > 0.
Then, since fg ¢ (ur,p,e) = Ok, p,e(X1,8,65 -+ Xk,p,e) and Vg g ¢ € Mﬁ’;.g,...,xm,s’ we obtain
k
foelpe) < foe@ipe) = fpe(vips) + D foe((Vipe),). Ye>0, (5.22)

i=1

where lime 0 fp.e (v g )i) =0, Vi € {1,....k}, and lime—0 fp,: (v 5.) = [ |DV; g17dx < @ p(y1,55 -+ Vi, p)-
Moreover, we have

k
S.eipe) = fpe(Wipe) + 30 S ((wip);) (5.23)
i=1
where fﬂgs((wlj’ﬁ‘g),-) >0, Ye > 0, and, by Lemma 5.1, lim,—¢ fﬂﬁg(wk_’ﬁyg) = ok, (V1,85 ---» Yk,p)- It follows
that, for ¢ > 0 small enough, @ g (X1 8,¢,---, Xk g,e) < Pk,B,e(V1,8,---,Yk,8) Which is a contradiction because
Ok, B.e(X1,Bes - Xk, B,e) = MAXQy 5 Pk Be. U
Proposition 5.3. Let us consider (X1 8¢, ..., Xk g,¢) in 2k, and uy g ¢ in Mfl’;,e,ka,ﬂyg, satisfying the same assump-
tions as in Proposition 4.7.
Then, up to a subsequence, (X1 g¢, ..., Xk g,e) —> (X1,8,...,Xk,g) as € = 0 and uy g . converges in Hol(.Q) toa

Sunction uy g € E,’?l_ﬁ,__“xk,ﬁ, forall B > Bi (where By is the number obtained in Proposition 4.7). Moreover, for all
B > B, ui, g solves the equation

Au—oagpu” +put =0 inQ, (5.24)
where ay g = [ |Du,;ﬂ|2dx.

1 U (3r1) maxg eg
> 2 Timpy oo U)—UGFH)

Proof. As we proved in Proposition 4.7, for all g > Bk and ¢ € ]0 [, uk,p,e is a weak solution of

the equation

Au—oppeu +gpem)=0 in$2, (5.25)
where ax g = [ |Du,;ﬁ’5|2dx.
Moreover, by Lemma 5.1, —uy 5 . + Zf;] (“Zﬂ,s)i ||(u,tﬂ’£),‘ ||Zzl(9) converges in HO1 (£2), as e — 0, to a function

U,p € Efl,ﬁ ,,,, Xipe Let us prove that
timinf] (a7 5..); [ 20y > 0. VB> Br. Vi (... k). (5.26)

Arguing by contradiction, assume that, up to a subsequence, lim,_.¢ ||(u,t ﬂ’s)i lL2() = O for suitable g > Br and
iefl,... k}.

In this case, we have (u,':ﬂ’s),- — 0in HO1 (£2) as ¢ — 0 (because fé’g(uk,ﬁ,g)[(u,tﬂ,g)i] =0, Ve > 0). Therefore, if
we let ¢ — 0, from (5.25) we obtain

[Dity g - DY — . pity g ]dx =0, V¢ € Hy(B(xip,rp)), (5.27)
B(x; g,rp)

where oy g = fg |Dﬁ,;ﬂ |2dx. Thus, we have a contradiction because Duy g #0on B(x; g,rg) N (supp ﬁk_,ﬂ)'
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Now, let us prove that

lims(l)lp” (3 p.e)ill 2y <00, VB = Br, Vie(l,... k). (5.28)
e—>

Arguing again by contradiction, assume that, up to a subsequence, limg_¢ || (u,j' 8 ¢Jill 22y = oo for suitable g > Bi
andi € {1,...,k}. Then, as ¢ — 0, from (5.25) we obtain

/[D(ﬁ,:fﬂ)i DY — B(if ), ¥]dx =0, V¢ € Hy(B(xip,7p))- (5.29)
2

Thus, we still have a contradiction because Diiy g 7 0 on 8(supp(12,j’ﬁ),-).
Therefore, we can say that for all 8 > ,3~k (up to a subsequence) uy g converges in H(} (£2), as ¢ — 0, to a function

Upp € Ef,,ﬁ,_“,xk’ﬁ. Moreover, if we let ¢ — 0 in (5.25), we infer that, for all g > Ek, ui, g is a weak solution of the
equation

Au—ak,lgu_+ﬂu+=0 in 2 (5.30)

with ax g = [, | Du;_ gl*dx. So the proof is complete. O

Proposition 5.4. For all B > By, let upp € Efl,ﬁwnxk,ﬂ be the function obtained in Proposition 5.3 and set ay g =
Jo |Duy g |2dx.
Then, for every positive integer k, uy,g — —ey in HO1 (£2) as B — +o0,

. N2 _ 2
Jim 875 (@ —h) = keap(y) (maxer ) (531)
ﬁETooel(xLﬁ):mgxel’ Viell,..., k}, (5.32)
and
lim /Blxip—xjpl=o00 fori#j. (5.33)
B—>—+o0
Moreover, Mk,ﬁ(ﬁ +xi.8) = —[limy 500 U(x)] Y(maxg e))U(x), Vx e RN, Vi € {1,...,k}, and the convergence

is uniform on the compact subsets of RN .

For the proof, it suffices to argue as in the proof of Proposition 4.1, taking into account Lemmas 5.1 and 5.2.
As a direct consequence of Proposition 5.4 (see (5.31)), we can state the following corollary.

Corollary 5.5. For all positive integer k and for B > By, let ay,p be as in Proposition 5.4. Then, there exists a
sequence (by)x such that

bi>Pr.  bi<biy and axp <ogirp, VkeN, VB> by (5.34)

Proposition 5.6. Let by and ay g be as in Corollary 5.5 for every positive integer k and for B > by. Then, oy g depends
continuously on 8 in by, +oo[, Yk € N.

Proof. Taking into account Lemma 5.1, we have oy g = fg |Du,;ﬂ|2dx =@k p(x1,8,..., Xk, 8), Vk eN, VB > by.

Let us prove that limg_, gk g = oy g, VB € 1bi, +o0l. First notice that, by lower semicontinuity arguments with
respect to the weak HO1 (§2) convergence, we have liminf, gk, g = oy 5. Then, arguing by contradiction, assume
that there exists a sequence (8;,), such that lim,_, « 8, = 8 and lim,_, oc o, B, > U B> namely

lim Du,
n—oo ’ k’:ﬁi/l
Q

Ydx > /|Du;/§]2dx. (5.35)
2
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Letus set ity = —u; g +Z @y ﬁ,) Iyl ﬂ/) ||L2(.Q) Since [, | D(it;))i|*dx = B}, Vn € N, ii,, converges to a func-
tionu € Efl FR in L>(£2), weakly in H (£2) and a.e. in £2. It follows that fQ |Du+|2dx < pand ||u 22y =1,

Vi € {1, ..., k}. Therefore, if (5.35) holds, one can find a function & € Efl ey such that fg |Dﬁ?‘|2dx — B,
||’/~l?||L2(g) =1,Vie{l,..., k},and

A f |Dui g,
2

Ydx > / |Di [Pdx. (5.36)
2

Now, let us consider the function i, € Efl”ﬁ, x5 such that @i (x) =i (J BB~ Hx — Xig) +X; 5)s ¥x € 2,

Vie{l,...,k}, Vn e N and u,; is the nonnegative function in HO1 (£2) such that i, (x) =0, Vx € Uf:l supp(it;);,
||ﬁ;||L2(Q) e 1 and

/|Dﬁ;|2dx:min{/|0u|2dx:ueHg(Q), u>0in £,

k

u(x) =0, Vx e | Jsupp(}),. lull2q) = 1}, vn e N. (5.37)
i=1

Notice that lim, . [, | Dil,, [*dx = [, | Dii~|*dx; moreover, since ||(ii;); ”Z%Q)fi? |D(ii});|>dx = B, we have

Q. g, = /|Du;ﬂ, de =(pk"3’/l(xl’/3’/l, .. .,xk,f;’/l) < /|Dﬁ;|2dx, Vn e N, (5.38)
Q
and, as n — 0o,
lim /|Du;ﬁ, 2dx < lim /|D m dx—/|Du_|2dx, (5.39)
n—>oo Fn n—>oo
2

in contradiction with (5.36).
Thus, we can conclude that o g depends continuously on 8 in by, +oo[. O

Proof of Theorem 2.1. For every positive integer k, for 8 > 0 large enough so that £2; g # ¢ and for & > 0,

let us consider a point (x1,g¢, ..., Xk g,e) € 2, and a function uy g . € Mfl Bereen Xk pe such that fg . (ux ge) =
@k.p.e(X1,Bes - Xk, p.e) = MaXgy , ¥k p.e (here we apply Propositions 3.1 and 3.2).
As ¢ — 0 (up to a subsequence) (x1,g.¢, - .., Xk, g,¢) tends to a point (x1,g, ..., Xk,g) € 2 p and uy g . converges in

fl‘ﬁ _____ x5 Which, for g > 0 large enough, satisfies the equation Au — oy gu™ + But =0
in 2 withayg g = fg(ur,g) = fg |Duk_ﬂ|2dx =@k, g(X1,8, ..., Xk, 8) = maxg, ; Pk, > A (here we apply Lemmas 5.1
and 5.2 and Proposition 5.3).

Thus (o, g, B) belongs to the Fucik spectrum X for 8 > 0 large enough. Moreover, from Proposition 5.4 we infer
that, for every positive integer k, o, g — A1 as f — +oo while u; g — —eq in H(} (£2). Corollary 5.5 guarantees the
existence of a nondecreasing sequence (by )i of positive numbers such that ax g < ctxy1,5, VB > br1. Proposition 5.6
shows that ax g depends continuously on S in b, +o0[.

All the other assertions in Theorem 2.1 follow directly from Proposition 5.4 as one can easily verify. O

Hj (£2) toafunction uy g € E

Remark 5.7. Assume that the domain 2 satisfies in addition the following condition: there exists an open subset A
of §2 such that supy4 e < sup, e1. Then, the method used to prove Theorem 2.1 may be easily adapted in order to
construct eigenfunctions uy g as in Theorem 2.1, with k bumps localized near k concentration points x1 g, ..., Xk g,
with rescaled bumps having the same asymptotic profile (still described by the radial solution U of (2.1)), but with
the concentration points that, as 8 — +o00, approach maximum points of e; in A (i.e. x; g — x; as B — 400, with
xi € Aand e (x;) =maxge; fori =1,...,k).
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Remark 5.8. Notice that (as we show in a paper in preparation) one can also obtain infinitely many curves of the
Fucik spectrum X', asymptotic to the lines {A1} x R and R x {A1} and corresponding to eigenfunctions of different
type, with bumps localized near points of the boundary of §2 (while the eigenfunctions uy g given by Theorem 2.1
present k bumps localized near the maximum points of e}).

In fact, under the same assumptions as in Theorem 2.1, there exists a nondecreasing sequence (by) of positive
numbers, having the following properties. For all g > by, there exists ag,pg > A1 and v g € H(} (£2), v,:fﬂ # 0 and
v,;ﬁ # 0, such that (1.1), with o = oy g and u = vy g, is satisfied for all g > l;k. Moreover, for every k € N, ay g de-
pends continuously on B, ok g < Qg+1,8, VB > 15k+1, and o g — A, as B — 400, while vy g — —ej in HOl (£2).
Furthermore, vy g present k bumps that, as B — +00, concentrate near k points approaching the boundary of £2;
the concentration rate is greater than the approaching rate between two distinct concentration points or between the
concentration points and the boundary (so that the k£ bumps remain quite distinct).

The eigenfunctions v g have lower energy and they have a different variational nature compared to the eigenfunc-
tions uy g. In fact, their bumps present a different asymptotic profile which is not described by the function U, as it
happens for the eigenfunctions uy g (see Theorem 2.1). Notice that, since vi, g has lower energy than uy g, we can also
say that, even in the case k = 1, Theorem 2.1 does not give the first curve of the Fucik spectrum (see for instance [15])
because, for all 8 > by, the pair (a1 g, B) does not belong to the first curve; the eigenfunctions corresponding to pairs
(o, B) of the first curve have lower energy and only one bump which, for « or B large enough, is localized near the
boundary of £2 (see [31] and [32]).

Remark 5.9. It is interesting to know from where the curves of the Fucik spectrum we obtain come from. They might
come from bifurcations of the first curve of the Fucik spectrum, which emanates from the pair (1>, A2), or they might
come from pairs (};, A;) of higher eigenvalues, or might be they do not meet the line {(«, 8) € R? : o = B}, etc.
The fact that the corresponding eigenfunctions present several nodal regions (as the Fuc¢ik eigenfunctions related to
pairs («, B) close to pairs (A;, A;) of higher eigenvalues) seems to suggest that they might be curves emanating from
the pairs (A;, A;). However notice that, for the Fucik eigenfunctions we obtained in this paper, only the positive part
presents several nodal regions while the negative part has only one nodal region (on the contrary, it is natural to expect
that for the Fucik eigenfunctions corresponding to pairs (&, ) close to pairs (A;, A;), both positive and negative parts
present several nodal regions); on the other hand, also in the case N > 1, one can find simple examples of curve in the
Fucik spectrum that pass through pairs (A;, A;) of higher eigenvalues and are asymptotic to lines {A} x R and R x {A}
with A > A1. Thus, the problem is widely open and might give rise to interesting results. Most probably, if £2 is a
bounded domain of RY with N > 1, for each pair (4, A;) of eigenvalues, the smallest curve of the Fuc¢ik spectrum
emanating from (A;, A;), corresponding to lower energy eigenfunctions, is asymptotic to {11} x R and R x {A1} while
the other curves passing through (};, A;) are asymptotic to lines {A} x R and R x {1} with A > A;.

Remark 5.10. The difference between the case of dimension N = 1 and the case N > 1 becomes even more evident
if in (1.1) we replace the Dirichlet boundary condition by the Neumann condition g—‘: =0on J52.

In fact, if we denote by A; < A < A3 <...and by X, respectively, the eigenvalues of —A and the Fu¢ik spectrum
with Neumann boundary conditions, we have il =0 and, if N =1, no curve of X is asymptotic to the lines {0} x R
and R x {0}. Indeed, if N =1, a direct computation shows that the Fucik spectrum consists of the lines {0} x R and
R x {0} and of infinitely many curves C», C3, ... having the following properties: for every i > 2, C; is a smooth,
unbounded, decreasing curve, emanating from (Ai, A;) and asymptotic to the lines {%} x R and R x {%} (notice
that % is an eigenvalue of —A in H'(£2) if and only if i is an odd positive integer and, in this case, % = A(i+1)/2)-
Therefore, if N = 1, no curve of X is asymptotic to the lines {0} x R and R x {0} and every nontrivial pair (&, 8) of
¥ satisfies o > % and 8 > %2 (with 23 > A; =0).

On the contrary, the situation is quite different in the case N > 1. In fact (as we show in a paper in preparation)
in this case there exist infinitely many curves contained in X and asymptotic to the lines {0} x R and R x {0}; the
corresponding eigenfunctions have an arbitrarily large number of bumps which may be localized in the interior of £2
or near prescribed connected components of 9£2; both, interior and boundary bumps, present the same asymptotic
profile (still described by the function U).
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