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Abstract

For a competition-diffusion system involving the fractional Laplacian of the form

−(−�)su = uv2, −(−�)sv = vu2, u, v > 0 in R
N,

with s ∈ (0, 1), we prove that the maximal asymptotic growth rate for its entire solutions is 2s. Moreover, since we are able to 
construct symmetric solutions to the problem, when N = 2 with prescribed growth arbitrarily close to the critical one, we can 
conclude that the asymptotic bound found is optimal. Finally, we prove existence of genuinely higher dimensional solutions, when 
N ≥ 3. Such problems arise, for example, as blow-ups of fractional reaction-diffusion systems when the interspecific competition 
rate tends to infinity.
© 2017 
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1. Introduction and main results

This paper deals with the existence and classification of positive entire solutions to polynomial systems involving 
the (possibly) s-fractional Laplacian of the following form:

−(−�)su = uv2, −(−�)sv = vu2, u, v > 0 in R
N.

Such systems arise, for example, as blow-ups of fractional reaction-diffusion systems when the interspecific competi-
tion rate tends to infinity. In this framework, the existence and classification of entire solutions plays a key role in the 
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asymptotic analysis (see, for instance, [15,17]). The case of standard diffusion (s = 1) has been intensively treated in 
the recent literature, also in connection with a De Giorgi-like conjecture about monotone solutions being one dimen-
sional. In particular, a complete classification of solutions having linear growth (the lowest possible growth rate) has 
been given in [1,2,7–9,16,20]. On the other hand, when s = 1, positive solutions having arbitrarily large polynomial 
growth were discovered in [2] and with exponential growth in [14].

Competition-diffusion nonlinear systems with k-components involving the fractional Laplacian have been the ob-
ject of a recent literature, starting with [18,19], where the authors provided asymptotic estimates for solutions to 
systems of the form{

(−�)sui = fi,β(ui) − βui

∑
j �=i aij u

2
j , i = 1, ..., k,

ui ∈ Hs(RN),
(1.1)

where N ≥ 2, aij = aji > 0, when β > 0 (the competition parameter) goes to +∞. Moreover we consider fi,β as 
continuous functions which are uniformly bounded on bounded sets with respect to β (see [18,19] for details). The 
fractional Laplacian is defined for every s ∈ (0, 1) as

(−�)su(x) = c(N, s) PV
∫
RN

u(x) − u(y)

|x − y|N+2s
dy.

In order to state our results, we adopt the approach of Caffarelli–Silvestre [5], and we see the fractional Laplacian as 
a Dirichlet-to-Neumann operator; that is, we consider the extension problem for (1.1). In other words, we study an 
auxiliary problem in the upper half space in one more dimension1; that is, letting a := 1 − 2s, for any i = 1, ..., k the 
localized version of (1.1),{

Laui = 0, in B+
1 ⊂R

N+1+ ,

∂a
y ui = fi,β(ui) − βui

∑
j �=i aij u

2
j , in ∂0B+

1 ⊂ ∂RN+1+ =R
N × {0},

(1.2)

where the degenerate/singular elliptic operator La is defined as

−Lau := div(ya∇u),

and the linear operator ∂a
y is defined as

−∂a
y u := lim

y→0+ ya ∂u

∂y
.

The new problem (1.2) is equivalent to the original one when we deal with solutions in the energy space associated 
with the two operators. In fact a solution U to the extension problem is the extension of the correspondent solution u
of the original nonlocal problem in the sense that U(x, 0) = u(x). Let us remark that if s = 1

2 , then a = 0 and hence 
L0 = −� and the boundary operator −∂0

y becomes the usual normal derivative ∂y . Moreover we remark that the 
extension problem has a variational nature in some weighted Sobolev spaces related to the Muckenhoupt A2-weights 
(see for instance [10]). Hence, given � ⊂R

N+1+ , we can introduce the Hilbert spaces

H 1;a(�) :=
⎧⎨
⎩u : � →R :

∫
�

ya(|u|2 + |∇u|2) < +∞
⎫⎬
⎭ ,

and

H
1;a
loc

(
R

N+1+
)

:=
{
u : RN+1+ → R : ∀r > 0, u|B+

r
∈ H 1;a(B+

r )
}

,

1 Throughout this paper we assume the following notations: z = (x, y) denotes a point in RN+1+ , with x ∈ ∂RN+1+ :=RN and y ∈ R+ . Moreover, 
B+

r (z0) := Br(z0) ∩ R
N+1+ is the half ball, and its boundary is divided in the hemisphere ∂+B+

r (z0) := ∂B+
r (z0) ∩ R

N+1+ and in the flat part 
∂0B+

r (z0) := ∂B+
r (z0) \ ∂+B+

r (z0). When the center of balls and spheres is omitted, then z0 = 0.
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where the functions u = u(z) are functions of the variables z = (x, y) ∈ R
N+1+ . In the quoted papers [18,19], the 

authors make use of Almgren’s and Alt–Caffarelli–Friedman’s type monotonicity formulæ in order to obtain uniform 
Hölder bounds with small exponent α = α(N, s) for bounded energy solutions of the Gross–Pitaevskii system. Passing 
to the limit as the competition parameter β −→ +∞ and using suitably rescaled dependent and independent variables 
in (1.2), a main step consists in classifying the entire solutions to the limiting system solved by blow-up solutions. 
In particular, we are interested in studying some qualitative properties related to the asymptotic growth for positive 
entire solutions of this elliptic system in case of two components. In our setting, the resulting system is the following⎧⎪⎪⎨
⎪⎪⎩

Lau = Lav = 0, in R
N+1+ ,

u, v > 0, in R
N+1+ ,

−∂a
y u = uv2, −∂a

y v = vu2, in ∂RN+1+ ,

(1.3)

which is equivalent to

−(−�)su = uv2, −(−�)sv = vu2, u, v > 0 in R
N. (1.4)

We focus our attention on positive solutions since this condition follows requiring that the original Gross–Pitaevskii 
solutions do not change sign in RN . Some relevant qualitative properties of positive solutions to system (1.4) have 
been recently investigated by Wang and Wei in [21]. In particular, they proved uniqueness for the one-dimensional 
solutions when s > 1/4, up to translation and scaling. Moreover, they highlighted a universal polynomial bound at 
infinity for positive subsolutions. Their result shows a striking contrast between the cases of the fractional and the 
local diffusion; indeed, in the latter case, there are solutions having arbitrarily large polynomial and even exponential 
growth [2,14]. As the polynomial bound in [21] is restricted to positive solutions and there are sign-changing solutions 
to the equation Lau = 0 having arbitrarily large growth rate, we suggest that the picture may change also considering 
sign-changing solutions to the Gross–Pitaevskii system.

Following [13], we give the following definition.

Definition 1.1. Let (u, v) be a solution to (1.3). We say that (u, v) has algebraic growth if there exist two constants 
c, d > 0 such that

u(x, y) + v(x, y) ≤ c
(

1 + |x|2 + y2
)d/2 ∀(x, y) ∈R

N+1+ . (1.5)

Moreover we say that (u, v) has growth rate d > 0 if

lim
r→+∞

∫
∂+B+

r
ya(u2 + v2)

rN+a+2d ′ =
{+∞ if d ′ < d

0 if d ′ > d.
(1.6)

It can be shown that the threshold exponent d appearing in (1.6) is exactly the extremal one for which (1.5) holds 
(see Proposition 2.1).

The aim of our work is to find the maximal asymptotic growth for positive solutions to (1.4); to this aim, we shall 
construct a family of solutions possessing some natural symmetry, this extending the results of [2] to the case of 
fractional diffusions.

In what follows, we will study an eigenvalue problem for the spherical part of the operator La. We can think to 
such a operator as a Laplace–Beltrami-type operator on the superior hemisphere SN+ of the unit sphere SN ⊂ R

N+1. 
Our aim is to deal with some Gk-equivariant optimal partitions, in the case N = 2, where the symmetry group Gk acts 
cyclically with order k. In particular, we will construct a sequence of optimal partition first-eigenvalues {λs

1(k)}+∞
k=1

and related nonnegative eigenfunctions {uk}+∞
k=1, where k is the order of the symmetry group imposed on the boundary 

condition region.
Hence we will prove the following asymptotic bound.

Theorem 1.2. Let s ∈ (0, 1) and N ≥ 2. Let (u, v) be a positive solution to (1.3). Then, there exists a constant c > 0
such that
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u(x, y) + v(x, y) ≤ c
(

1 + |x|2 + y2
)s

. (1.7)

Hence, we will use the sequence of eigenfunctions previously seen, in order to construct a sequence of positive 
solutions to (1.3) possessing some symmetries and having an asymptotic growth rate arbitrarily close to the critical 
one; that is, we will prove

Theorem 1.3. When N = 2 and s ∈ (0, 1) there exists a sequence of positive solutions (uk, vk) to the system (1.3)
having growth rate d(k) ∈ [s, 2s), where d(k) converges monotonically to 2s.

These prescribed growth solutions for (1.3) in space dimension N = 2 are also solutions with the same properties 
for the same problem in any higher dimension.

Eventually, in the last section, we will show the existence of entire solutions to (1.3) which are truly N -dimensional, 
in the sense that they can not be obtained by adding coordinates in a constant way starting from a 2-dimensional 
solution.

2. Bound on the growth rate of positive solutions

Our first general purpose is to study the asymptotic behavior of entire nonnegative solutions to the cubic system

−(−�)su = uv2, −(−�)sv = vu2, u, v > 0 in R
N.

In particular we prove that solutions can not grow faster than 2s at infinity. Furthermore, as we will are able to 
construct solutions to this problem with prescribed growth rate arbitrarily close to the critical one, we can conclude 
that this asymptotic bound is optimal. As said in the introduction, we will deal with the equivalent Caffarelli–Silvestre 
extension problem defined in (1.3).

First we will introduce the Almgren frequency function and its monotonicity formula which are the main instru-
ments that we need to prove Theorem 1.2 and Theorem 1.3.

2.1. Almgren monotonicity formula

Now, we are going to summarize some results proved in [18,19,21], involving the Almgren monotonicity formula 
for solutions to (1.3). First, solutions of (1.3) satisfy a Pohozaev identity; that is, for any x0 ∈ R

N and r > 0,

(N − 1 + a)

∫
B+

r (x0,0)

ya(|∇u|2 + |∇v|2) = r

∫
∂+B+

r (x0,0)

ya(|∇u|2 + |∇v|2) − 2ya(|∂ru|2 + |∂rv|2)

+ r

∫
SN−1

r (x0,0)

u2v2 − N

∫
∂0B+

r (x0,0)

u2v2. (2.1)

Moreover, let us recall the following definitions

E(r, x0;u,v) := 1

rN−1+a

⎛
⎜⎝ ∫

B+
r (x0,0)

ya(|∇u|2 + |∇v|2) +
∫

∂0B+
r (x0,0)

u2v2

⎞
⎟⎠ , (2.2)

and

H(r, x0;u,v) := 1

rN+a

∫
∂+B+

r (x0,0)

ya(u2 + v2). (2.3)

Hence, defining the frequency as N(r, x0; u, v) := E(r,x0;u,v)
H(r,x0;u,v)

, the Almgren monotonicity formula holds; that is, the 
frequency N(r, x0; u, v) is non decreasing in r > 0. Moreover, if (u, v) is a solution to (1.3) and N(R) ≥ d then for 
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r > R it holds that H(r)/r2d is non decreasing in r . Hence, if we consider (u, v) a solution of (1.3) on a bounded half 
ball B+

R and if N(R) ≤ d , then for every 0 < r1 ≤ r2 ≤ R it holds that

H(r2)

H(r1)
≤ e

d
1−a

r2d
2

r2d
1

. (2.4)

2.2. Eigenvalue problem for a Laplace–Beltrami-type operator with mixed boundary conditions

As the authors of [18,19,21] have pointed out, the regularity and the asymptotic growth of solutions to competition 
problems are related to an optimal partition problem on the superior hemisphere SN+ ⊂ R

N+1+ . Likewise the case of 
the Laplacian, we wish to express the extension operator La in spherical coordinates, in order to write it as the sum of 
a radial part and a Laplace–Beltrami-type operator defined on the superior hemisphere (see [11]). Let us consider in 
R

N+1+ the spherical coordinates (r, θ, φ) such that y = r sin θ , with θ ∈ [0, π/2] and φ = (φ1, ..., φN−1) parametrizing 
the position over SN−1 ⊂R

N . Hence,

−Lau = ∇ · ya∇u = (sin θ)a
1

rN
∂r(r

N+a∂ru) + ra−2LSN

a u, (2.5)

where the Laplace–Beltrami-type operator is defined as

LSN

a u := ∇SN · (sin θ)a∇SN u = ∇SN · ya∇SN u, (2.6)

and ∇SN is the tangential gradient on SN+ . For every open ω ⊂ SN−1 := ∂SN+ , we define the first s-eigenvalue associ-
ated to ω as

λs
1(ω) := inf

{∫
SN+ ya|∇SN u|2∫

SN+ yau2
: u ∈ H 1;a(SN+ ) \ {0}, u = 0 in SN−1 \ ω

}
. (2.7)

So, such a minimization problem has a natural variational structure on the weighted Sobolev space H 1;a(SN+ ) :={
u : SN+ →R : ∫

SN+ ya|∇SN u|2 + ∫
SN+ yau2 < +∞

}
; which is an Hilbert space. In fact, defining H 1;a

ω (SN+ ) := {u ∈
H 1;a(SN+ ) : u = 0 in SN−1 \ ω} for every fixed ω ⊂ SN−1, we get in this space the existence of a nontrivial and 
nonnegative minimizer of the Rayleigh quotient

Ra(u) :=
∫
SN+ ya|∇SN u|2∫

SN+ yau2
,

which is also an eigenfunction related to λs
1(ω) since it is a weak solution to the following mixed Dirichlet-to-Neumann 

boundary eigenvalue problem for the spherical part of the La operator⎧⎪⎪⎨
⎪⎪⎩

−LSN

a u = yaλs
1(ω)u in SN+ ,

u = 0 in SN−1 \ ω,

∂a
y u = 0 in ω ⊂ SN−1.

(2.8)

Moreover, for every ω ⊂ SN−1 it holds that

H
1;a
0 (SN+ ) ⊆ H 1;a

ω (SN+ ) ⊆ H 1;a(SN+ ).

Hence by definition, for any ω ⊂ SN−1,

λs
1(S

N−1) ≤ λs
1(ω) ≤ λs

1(∅). (2.9)

Let us now define the characteristic exponent

d(t) :=
√(

N − 2s

2

)2

+ t − N − 2s

2
. (2.10)
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The characteristic exponent is defined in such a way that u is a nonnegative eigenfunction of λs
1(ω) if and only if its 

d(λs
1(ω))-homogeneous extension to RN+1+ is La-harmonic.

Let us define by ωc = SN−1 \ω, with ω ⊂ SN−1 open. Obviously ω∩ωc = ∅ and ω∪ωc = SN−1. From now on, we 
suppose that γ = ω ∩ ωc is a (N − 2)-dimensional smooth submanifold. Analogously with the case of the Laplacian 
in [6], one can consider two nonnegative eigenfunctions u1, u2 of (2.8) with eigenvalues λs

1(ω1) and λs
1(ω2). In our 

setting, if there exists α ∈ (0, 1) such that u1, u2 ∈ C0;α(SN+ ), HN−1(ω1) > HN−1(ω2) and ω2 ⊂ ω1, then it holds 
that

λs
1(ω1) < λs

1(ω2). (2.11)

In fact, integrating by parts with respect to both the eigenfunctions the quantity 
∫
SN+ ya∇SN u1∇SN u2, we find

λs
1(ω1)

∫
SN+

yau1u2 +
∫

ωc
1∩ω2

(∂a
y u1)u2 = λs

1(ω2)

∫
SN+

yau1u2 +
∫

ωc
2∩ω1

(∂a
y u2)u1, (2.12)

and since ω2 ⊂ ω1, then ωc
1 ∩ ω2 = ∅ and ωc

2 ∩ ω1 = ω3 open. Hence, (2.11) holds using the Hopf lemma

(λs
1(ω1) − λs

1(ω2))

∫
SN+

yau1u2 =
∫
ω3

(∂a
y u2)u1 < 0. (2.13)

2.3. Blow-down analysis and the maximal growth rate

Now, after performing a scaling (blow-down) analysis over general positive solutions to (1.3), we will prove the 
upper bound on the growth at infinity; that is, Theorem 1.2. First, we summarize the steps done by Wang and Wei. 
Theorem 2.3 in [21] proves that, taking a positive solution (u, v) to (1.3), then there exist two constants d, c > 0 such 
that

u(x, y) + v(x, y) ≤ c
(

1 + |x|2 + y2
)d/2

. (2.14)

Moreover, in Proposition 3.5, they proved that condition (2.14) is equivalent to the following upper bound over the 
frequency

N(R) ≤ d, ∀R > 0. (2.15)

We can consider d > 0 which is the infimum such that condition (2.14) holds. For such a number, if there exists the 
limit limR→+∞ N(R), then of course it is exactly equal to d . In other words, we have:

Proposition 2.1. The growth rate of a positive solution (u, v) to (1.3) is d if and only if

lim
R→+∞N(R) = d ,

2.3.1. Proof of Theorem 1.2
Let (u, v) be a positive solution to (1.3). Note that (2.15) combined with the Almgren monotonicity formula also 

implies that limR→+∞ N(R) = d . Let us define for R −→ +∞ the blow-down sequence

uR(z) := L(R)−1u(Rz), vR(z) := L(R)−1v(Rz),

with L(R) taken so that H((uR, vR), 1) = 1. So, the sequence satisfies{
LauR = LavR = 0 in R

N+1+ ,

−∂a
y uR = κRuRv2

R, −∂a
y vR = κRvRu2

R in ∂RN+1+ ,

where κR = L(R)2R1−a . By the Liouville theorem (see Proposition 3.9 in [19]), for some α > 0 small there exists a 
constant Cα such that L(R) ≥ CαRα so that κR −→ +∞ as R −→ +∞. Hence, thanks to (2.4) we get the following 
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integral uniform upper bound; that is, H((uR, vR), r) ≤ r2d for every r > 1. Since (uR, vR) satisfy the requirements 
of Lemma A.2 in [21], for every r > 1 we get that

sup
B+

r

(uR + vR) ≤ Crd.

Then, thanks to the uniform Hölder estimates proved in [19], for some small α > 0, the sequence {(uR, vR)} is 

uniformly bounded in C0,α
loc (RN+1+ ). Hence, letting R −→ +∞, up to consider a subsequence, we get weakly conver-

gence in H 1;a
loc (RN+1+ ) and uniform convergence in C0,α

loc (RN+1+ ) of the sequence {(uR, vR)} to a couple of functions 
(u∞, v∞) which are segregated in ∂RN+1 in the sense that u∞v∞ = 0 in ∂RN+1. Proceeding as in [21], using the 
fact that N((u∞, v∞), r) = d for any r > 0, we can conclude that such functions are homogeneous of degree d and 
segregated in ∂RN+1+ ; that is, they solve the following problem⎧⎪⎪⎨
⎪⎪⎩

Lau∞ = Lav∞ = 0 in R
N+1+ ,

u∞∂a
y u∞ = v∞∂a

y v∞ = 0 in ∂RN+1+ ,

u∞v∞ = 0 in ∂RN+1+ .

(2.16)

Moreover, such solutions have the form

u∞(r, θ) = rdg(θ), v∞(r, θ) = rdh(θ),

where g, h are defined on the upper hemisphere SN+ = ∂+B+
1 . Since we have constructed the blow-down sequence so 

that H((uR, vR), 1) = 1, then∫
SN+

ya(g2 + h2) = 1, (2.17)

and hence can not happen that both g and h vanish identically in SN+ , but at most only one component is identically 
zero. In any case, by the homogeneity of the blow-down limit and the fact that (u∞, v∞) are La-harmonic, any 
nontrivial component is an eigenfunction for the spherical part of La in the sense seen in (2.8) on SN+ . Moreover, such 
eigenfunction must own eigenvalue λ which has the following relation with the characteristic exponent d ,

λ = d(d + N − 1 + a). (2.18)

But we have seen with (2.9) that such eigenvalue can not be larger than λs
1(∅), achieved by u(x, y) = y2s which has 

d(λs
1(∅)) = 2s. Moreover, by (2.10), the map t �−→ d(t) is strictly increasing and hence d ≤ d(λs

1(∅)). By (2.14), 
Theorem 1.2 is proved.

3. Prescribed growth solutions

From now on in this section we consider the case N = 2 and we study the optimal boundary condition minimizing 
the first eigenvalue of (2.8) under some requirements over the measure and the symmetries of ω ⊂ S1. Doing this, 
we will be able to construct positive solutions to (1.3) with prescribed growth and depending in some way on the 
2-dimensional eigenvalue problem.

In the next section, we are going to introduce a suitable type of Schwarz symmetrization, that will be the main tool 
that we need to study this optimal boundary condition problem.

3.1. Polarization and foliated Schwarz symmetrization

From now on we follow some ideas contained in [3,12]. We can state the results in this section in any space 
dimension N ≥ 2. Let us define by H the set of all half spaces in RN+1 determined by the set of all the affine 
hyperplanes with orientation, and by H0 the subset of H determined by the Euclidean hyperplanes with orientation. 
Let H ∈H be a half space, we denote by σH the reflection with respect to the hyperplane ∂H .
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Definition 3.1. Let H ∈ H be a half space. The polarization of a measurable nonnegative function u with respect to 
H is the function defined by

uH (z) :=
{

max{u(z),u(σH (z))} if z ∈ H,

min{u(z),u(σH (z))} if z ∈ R
N+1 \ H.

In the same way we can define the polarization AH of a set A ⊂ R
N+1 with respect to H ∈ H in the sense that 

χAH
= (χA)H . It is well known that the polarization mapping A �→ AH is a rearrangement of RN+1 for the Lebesgue 

measure for any H ∈ H; that is, it satisfies both the monotonicity property (A ⊂ B ⇒ AH ⊂ BH ) and the measure 
conservation property (LN+1(AH ) = LN+1(A)) (see [12]).

Let us consider �1 = {x1 = 0} as a fixed hyperplane (�1 = ∂H1 with H1 = {x1 > 0}), and denote by σ1 := σ�1

the reflection with respect to �1. Let us now consider the point z1
0 ∈ SN+ which maximizes the distance from the 

hyperplane �1 (actually, there are two points with this property z1
0, z

2
0, we choose the one in H1). This point lies 

on SN−1 = ∂SN+ . Let us define H1 := {H ∈ H0 : z1
0 ∈ H and axis y lies on ∂H }. Since the measure given by dμ :=

yadSN(z) is mapped into itself by the reflection σH for any H ∈ H1, with the same arguments in [12], we can see that 
polarization is also a rearrangement of SN+ for the measure μ for any H ∈ H1. Moreover, we can obtain the invariance 
of the norm in weighted spaces under polarization for H ∈ H1; that is, when u ∈ Lp(SN+ ; dμ) with 1 ≤ p < +∞, we 
have uH ∈ Lp(SN+ ; dμ) with∫

SN+

ya|uH |pdSN =
∫
SN+

ya|u|pdSN, (3.1)

and if u ∈ W
1,p
+ (SN+ ; dμ) with 1 ≤ p < +∞, hence uH ∈ W

1,p
+ (SN+ ; dμ) with∫

SN+

ya|∇SN uH |pdSN =
∫
SN+

ya|∇SN u|pdSN . (3.2)

Now we want to define the foliated Schwarz symmetrization on the hemisphere. Consider for y ∈ [0, 1) the 
(N − 1)-sphere defined by

SN−1
y := SN+ ∩ {y = y}.

Let us define on every (N − 1)-sphere SN−1
y the point z1

y so that it has the same parametrizing angle φ of the point 
z1

0. The symmetrization A∗ of a set A ⊂ SN−1
y with respect to z1

y is defined as the closed geodesic ball centered 
in z1

y such that LN−1(A∗) = LN−1(A). The symmetric decreasing rearrangement f ∗ of a nonnegative measurable 
function f defined on SN−1

y is such that {f > t}∗ = {f ∗ > t} for every t ≥ 0. We remark that this symmetrization is 
a rearrangement of the sphere SN−1

y for the measure LN−1, for every fixed y ∈ [0, 1).

Definition 3.2. Let u ∈ H 1;a(SN+ ) be a nonnegative function. The foliated Schwarz symmetrization u∗ of u is defined 
on the hemisphere SN+ by the symmetric decreasing rearrangement of the restriction of u on every SN−1

y ; that is, 
u∗|

SN−1
y

= (u|
SN−1

y
)∗ for every y ∈ [0, 1).

One can check that also the foliated Schwarz symmetrization is a rearrangement of SN+ for μ, since it satisfies both 
the monotonicity property (A ⊂ B ⇒ A∗ ⊂ B∗) and the measure conservation property (μ(A∗) = μ(A)), where the 
symmetrization A∗ of a set A ⊂ SN+ is defined as the only set in SN+ such that A∗ ∩ SN−1

y = (A ∩ SN−1
y )∗ for every 

y ∈ [0, 1), in the sense of symmetrization of a set in SN−1
y given previously (the idea is that this symmetrization map 

works only on the x-variable and so dμ is mapped into itself). Moreover, it is easy to see that for every nonnegative 
u ∈ H 1;a(SN+ ) and for every H ∈H1 it holds that

(u∗)H = u∗ = (uH )∗. (3.3)
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Hence it holds the following result from [12]. For completeness we adapt to our hemispherical case the proof of Smets 
and Willem.

Lemma 3.3. Let u ∈ C(SN+ ) be a nonnegative function. If u �= u∗, then there exists H ∈H1 such that

||uH − u∗||L2(SN+ ;dμ) < ||u − u∗||L2(SN+ ;dμ). (3.4)

Proof. First of all, we remark that always the non strict inequality in (3.4) holds (rearrangement for a suitable mea-
sure μ is a contraction in Lp(dμ) for any 1 ≤ p < +∞). If u �= u∗, there exists y ∈ [0, 1) and t ≥ 0 such that
{u > t} ∩ SN−1

y �= {u∗ > t} ∩ SN−1
y and since the foliated Schwarz symmetrization is a rearrangement, then

LN−1({u > t} ∩ SN−1
y ) = LN−1({u∗ > t} ∩ SN−1

y ); so, by the continuity of u, there exist w, z ∈ SN−1
y satisfying

u∗(w) > t ≥ u(w) and u(z) > t ≥ u∗(z).

Let H ∈ H0 with w ∈ H and z = σH (w). Since u∗(w) > u∗(z), hence w is closer to z1
y than z; that is, H ∈ H1. For 

all x ∈ H ∩ SN+ , using (3.3), we have

|uH (x) − u∗(x)|2 + |uH (σH (x)) − u∗(σH (x))|2
≤ |u(x) − u∗(x)|2 + |u(σH (x)) − u∗(σH (x))|2,

and hence also

ya|uH (x) − u∗(x)|2 + ya|uH (σH (x)) − u∗(σH (x))|2
≤ ya|u(x) − u∗(x)|2 + ya|u(σH (x)) − u∗(σH (x))|2.

By continuity, the inequality is strict in a neighborhood of w. Integrating over H ∩ SN+ , (3.4) follows. �
For u ∈ C(SN+ ), the mapping H �→ uH is continuous from H1 ∼ SO(N)/Z2 to L2(SN+ ; dμ); that is, the polarization 

depends continuously on its defining half space. A way to see this fact is the following result from [3].

Lemma 3.4. Let u ∈ C(SN+ ) and {Hn} be a sequence of half spaces in H1. If H ∈ H1 and

lim
n→+∞μ

(
(Hn�H) ∩ SN+

)
= 0, (3.5)

then uHn −→ uH in L2(SN+ ; dμ).

Proof. By (3.5) we have limn→+∞ σHn(z) = σH (z) uniformly on compact subsets of SN+ . Hence the result fol-
lows. �

By compactness of SO(N)/Z2, if u ∈ C(SN+ ), the minimization problem

c := inf
H∈H1

||uH − u∗||L2(SN+ ;dμ)

is achieved by some H := H(u).

Lemma 3.5. Let u ∈ C∞(SN+ ) be a nonnegative function. Then the sequence {un} defined by u0 = u, un+1 = (un)Hn

and

||un+1 − u∗||L2(SN+ ;dμ) = min
H∈H1

||(un)H − u∗||L2(SN+ ;dμ)

converges to u∗ in L2(SN+ ; dμ).
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Proof. Since u ∈ C∞(SN+ ) then u ∈ W 1,q(SN+ ; dμ) for every 1 ≤ q < +∞ and so for every n ∈ N it holds that 
||∇SN un||Lq(SN+ ;dμ) = ||∇SN u||Lq(SN+ ;dμ); that is, the sequence {un} is bounded in W 1,q(SN+ ; dμ). Hence, for q > 2, 
by the Rellich theorem (compact embedding in Hölder spaces), we can assume, up to a subsequence, that un −→ v

uniformly. Since (un)
∗ = u∗ and the fact that foliated Schwarz symmetrization is a contraction in Lp(dμ)-spaces, it 

follows that v∗ = u∗. Moreover, for every H ∈ H1 we have

||un+1 − u∗||L2(SN+ ;dμ) ≤ ||(un)H − u∗||L2(SN+ ;dμ) ≤ ||un − u∗||L2(SN+ ;dμ), (3.6)

where the first inequality follows from our hypothesis and the second one always holds since polarization is a con-
traction in Lp(dμ)-spaces. Taking the limit along the subsequence in (3.6), we get

||v − u∗||L2(SN+ ;dμ) ≤ ||vH − u∗||L2(SN+ ;dμ) ≤ ||v − u∗||L2(SN+ ;dμ).

But v∗ = u∗ and H ∈ H1 is arbitrary. So by Lemma 3.3 there are two possibilities: either there exists H ∈ H1 such 
that the second inequality is strict or v = v∗. But the first case can’t happen and hence the result is proved. �

As a consequence, we remark that since for every n ∈ N the sequence of Lemma 3.5 satisfies ||un||L2(SN+ ;dμ) =
||u||L2(SN+ ;dμ), it holds that

||u∗||L2(SN+ ;dμ) = ||u||L2(SN+ ;dμ). (3.7)

Now we can prove the Pólya–Szegö inequality for the foliated Schwarz symmetrization on the hemisphere.

Proposition 3.6. If u ∈ H 1;a(SN+ ) and nonnegative, then u∗ ∈ H 1;a(SN+ ), nonnegative, and∫
SN+

ya|∇SN u∗|2 ≤
∫
SN+

ya|∇SN u|2. (3.8)

Proof. Assume first that u ∈ C∞(SN+ ). The sequence {un} associated to u as in Lemma 3.5 is such that un −→ u∗ in 
L2(SN+ ; dμ) and for every n ∈N

||un||L2(SN+ ;dμ) = ||u||L2(SN+ ;dμ) and ||∇SN un||L2(SN+ ;dμ) = ||∇SN u||L2(SN+ ;dμ).

Hence, u∗ ∈ H 1;a(SN+ ) and by the weak lower semicontinuity of the norm in an Hilbert space, ||∇SN u∗||L2(SN+ ;dμ) ≤
||∇SN u||L2(SN+ ;dμ).

If u ∈ H 1;a(SN+ ), then by density there exists a sequence {um} in C∞(SN+ ) converging to u in H 1;a(SN+ ). Since any 
rearrangement is a contraction in L2(dμ), then u∗

m −→ u∗ in L2(SN+ ; dμ) and hence

||∇SN u∗||L2(SN+ ;dμ) ≤ lim inf
m→+∞||∇SN u∗

m||L2(SN+ ;dμ) ≤ lim inf
m→+∞||∇SN um||L2(SN+ ;dμ) = ||∇SN u||L2(SN+ ;dμ).

This completes the proof. �
3.2. Optimal geometry for boundary conditions imposing one symmetry

Let N = 2 and let us consider �1 previously defined as a plane containing the axis y with relative reflection 
σ1 := σ�1 (we remember that we choose the one containing points with angle φ = 0). Let us now define the following 
class of symmetric regions

A1 = {ω ⊂ S1 : H1(ω) =H1(S1 \ ω) and (x,0) ∈ ω ⇐⇒ σ1(x,0) ∈ S1 \ ω}.
Hence, we wish to study the problem

inf
ω∈A1

λs
1(ω); (3.9)

that is, we see the optimal geometry of the boundary condition region ω ∈ A1 as the one which gives the lowest 
eigenvalue. As we have previously said, for a fixed ω ∈A1, the minimization of the Rayleigh quotient is standard and 
we get the existence of a nontrivial and nonnegative minimizer for the energy
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∫
S2+

ya|∇S2u|2

constrained to Xω =
{
u ∈ H 1;a

ω (S2+) : ∫
S2+ yau2 = 1

}
. Moreover, the constrained minimizer uω found is also a mini-

mizer of the Rayleigh quotient in the whole H 1;a
ω (S2+). By a simple Frechét differentiation of the Rayleigh quotient, 

turns out to be true that such a minimizer is a weak solution of problem (2.8) in the sense that∫
S2+

ya∇S2uω∇S2φ = λs
1(ω)

∫
S2+

yauωφ, ∀φ ∈ C∞
0 (S2+ ∪ ω). (3.10)

Thanks to the results obtained for the foliated Schwarz symmetrization, we are able to show the following result.

Proposition 3.7. For every fixed ω ∈ A1 let us consider the minimizer uω ∈ H 1;a
ω (S2+) of the Rayleigh quotient. Then 

there exists a function u∗
ω ∈ H 1;a

ω1
(S2+) such that

Ra(u∗
ω) ≤ Ra(uω) = λs

1(ω),

where ω1 := S1 ∩ {0 < φ < π} ∈ A1 is half of S1.

Proof. First we recall that we can choose uω nonnegative and it is nontrivial. Then, let us define the function u∗
ω

as in Definition 3.2; that is, the foliated Schwarz symmetrization of uω so that, on any level S1
y , the decreasing 

rearrangement is centered in the points z1
y which has coordinate φ = π/2. Hence, thanks to Proposition 3.6, it holds 

that ∫
S2+

ya|∇S2u
∗
ω|2 ≤
∫
S2+

ya|∇S2uω|2, (3.11)

and we know also that∫
S2+

ya|u∗
ω|2 =
∫
S2+

ya|uω|2; (3.12)

that is, the Rayleigh quotient decreases. Moreover, considering the restriction of u∗
ω to S1, we know that the set 

{u∗
ω|S1 > 0} is the closed geodesic ball centered in z1

0 with measure given by

L1({u∗
ω|S1 > 0}) = L1({uω|S1 > 0}) = L1(ω) = 1

2
L1(S1). �

Proposition 3.7 obviously implies that

inf
ω∈A1

λs
1(ω) = λs

1(ω1) =: λs
1(1), (3.13)

and it is attained by a nontrivial and nonnegative minimizer u1 ∈ H 1;a
ω1

(S2+) which is a weak solution of

⎧⎪⎪⎨
⎪⎪⎩

−LS2

a u = yaλs
1(1)u in S2+,

u = 0 in S1 \ ω1,

∂a
y u = 0 in ω1 ⊂ S1,

in the sense of (3.10).
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3.3. Optimal geometry for boundary conditions imposing more symmetries

In this section we wish to show the optimal geometry of the boundary condition region in case of more symmetries; 
that is, we will consider for an arbitrary k ∈ N, the boundary condition set ω ∈ Ak where

Ak = {ω ⊂ S1 :H1(ω) =H1(S1 \ ω) and (x,0) ∈ ω ⇐⇒ σi(x,0) ∈ S1 \ ω ∀i = 1, ..., k},
with σi := σ�i

reflections with respect to �i planes containing the axis y and hence orthogonal to the plane y = 0, for 
every i = 1, ..., k. Considering Tk = 2π/k as the period, then the plane �i+1 is obtained by rotating �i with respect 
to φ of an angle Tk/2.

We are interested in finding solutions u to (2.8) with ω ∈ Ak and such that

u(z) = u(σi(σj (z))) (3.14)

for every i, j = 1, ..., k, for almost every z ∈ S2+ with respect to the measure given by dμ = yadS(z) and also for 
almost every z ∈ S1 with respect to the 1-dimensional Lebesgue measure. So, we study the following problem

inf
ω∈Ak

λs
1(ω), (3.15)

where

λs
1(ω) := inf

{
Rau : u ∈ H 1;a

ω (S2+) \ {0} and (3.14) holds
}

. (3.16)

We remark that the definition of the first eigenvalue with respect to ω given previously for the case of only one 
symmetry is in accord with this new definition because (3.14) obviously holds in that case.

Let ω ∈ Ak . Then there exists a nontrivial and nonnegative minimizer for the functional 
∫
S2+ ya|∇u|2 constrained 

to Xω = {u ∈ H 1;a
ω (S2+) : ∫

S2+ yau2 = 1 and (3.14) holds}. First of all, we remark that the set of functions Xω is not 

empty. In fact, let us define the fundamental subdomain of S2+
S2+(k) = {z ∈ S2+ : φ ∈ (0, Tk)}. (3.17)

Let us now split this domain in other two subdomains S2+(k, 1) = {z ∈ S2+ : φ ∈ (0, Tk/2)} and S2+(k, 2) = {z ∈ S2+ :
φ ∈ (Tk/2, Tk)}. Since both these domains have positive La-capacity, we can find two nontrivial nonnegative functions 
ui ∈ H

1;a
0 (S2+(k, i)) for i = 1, 2. Then we can merge them in a unique function defined over the fundamental domain 

and then we can extend it to the whole of S2+ in a periodic way. After a normalization in L2(S2+; dμ), we get an 
element of Xω.

The other thing to remark is that property (3.14), satisfied by the generic minimizing sequence {un}+∞
n=1 ⊆ Xω, is 

also satisfied by its weak limit uω ∈ H 1;a
ω (S2+), but this fact is trivial using Sobolev embedding in L2(S2+; dμ), trace 

theory in L2(S1), and pointwise convergence. Hence, we wish to show that this critical point uω founded minimizing 
the energy on Xω is also a critical point of the same functional over Xω = {u ∈ H 1;a

ω (S2+) : ∫
S2+ yau2 = 1}. Let G be 

the group of rotation with respect to φ of a fixed angle Tk . Let us consider the action of this group

G× Xω −→ Xω

[g,u] �−→ u ◦ g. (3.18)

Since for every g ∈ G, g(ω) = ω and 
∫
S2+ ya|∇S2u ◦ g|2 = ∫

S2+ ya|∇S2u|2, then the energy is invariant with respect 
to G and the action in (3.18) is isometric (we remark that the rotation of the group does not change the value in y). 
Hence, by the principle of symmetric criticality of Palais, a critical point of the energy over the set

Fix(G) = {u ∈ Xω : u ◦ g = u ∀g ∈G} = Xω,

is also a critical point of the same functional over Xω. Then, it follows easily that uω is also a critical point of the 
Rayleigh quotient over the whole H 1;a

ω (S2+); that is, it is a solution to (2.8) with ω ∈Ak and such that property (3.14)
holds.

Hence, by the symmetry condition (3.14), if we know uω in S2+(k), then uω is consequently determined in the whole 
hemisphere S2+. To simplify the notation let us call u := uω. Let us define over the whole hemisphere the function
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v(θ,φ) := u(θ,φ/k). (3.19)

Obviously v ∈ H
1;a
ω (S2+) with ω ∈ A1 and it is nonnegative. Following the same steps done before, we wish to 

rearrange the function v, in order to lower the L2(dμ)-norm of its tangential gradient, by the foliated Schwarz hemi-
spherical symmetrization. Actually we will consider a gradient-type operator such that

|∇(k)

S2 v|2 := (∂θv)2 + k2

y2
(∂φv)2. (3.20)

The following Pólya–Szegö type inequality holds.

Proposition 3.8. Let us consider v∗ as the foliated Schwarz symmetrization of the function v ∈ H
1;a
ω (S2+) defined in 

(3.19). Then v∗ ∈ H 1;a(S2+) and∫
S2+

ya|∇(k)

S2 v∗|2 ≤
∫
S2+

ya|∇(k)

S2 v|2.

Proof. Following the same steps seen in Lemma 3.5 for the case k = 1, if v ∈ C∞(S2+), then we construct the sequence 
{vn} of polarized functions such that vn −→ v∗ in L2(S2+; dμ), where v∗ is defined as in the proof of Proposition 3.7. 
In [3] it is proved that for every p ∈ (1, +∞) and for every suitable half space (orthogonal to the y-direction), one 
has

||Div||Lp(S2+) = ||DivH ||Lp(S2+),

for every first order derivative; that is,

||∂θv||L2(S2+) = ||∂θvH ||L2(S2+) and ||∂φv||L2(S2+) = ||∂φvH ||L2(S2+). (3.21)

From (3.21), it follows that also∫
S2+

ya−2(∂φv)2 =
∫
S2+

ya−2(∂φvH )2, (3.22)

since it holds that for every point z ∈ S2+, the point σH (z) has the same coordinate y. Then, by (3.21) and (3.22) it 
follows that∫

S2+

ya|∇(k)

S2 vH |2 =
∫
S2+

ya|∇(k)

S2 v|2.

Moreover, it is easy to see that the quantity 
∫
S2+ ya|∇(k)

S2 v|2 is an equivalent norm on H 1;a
ω (S2+); that is,∫

S2+

ya|∇S2v|2 ≤
∫
S2+

ya|∇(k)

S2 v|2 ≤ k2
∫
S2+

ya|∇S2v|2.

Hence, using the weak lower semicontinuity of the norm on an Hilbert space, we can replicate the proof of Propo-
sition 3.6 using the new gradient-type norm. Working first with v ∈ C∞(S2+) and then in H 1;a

ω (S2+) by a density 
argument, the result is easily proved. �

Since

|∇(k)

S2 v(θ,φ)|2 = (∂θ [u(θ,φ/k)])2 + k2

y2

(
∂φ[u(θ,φ/k)])2

= (uθ (θ,φ/k))2 + k2

y2

(
1

k
uφ(θ,φ/k)

)2

= |∇S2u(θ,φ/k)|2,
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hence it holds that∫
S2+

ya|∇S2u
∗(θ,φ/k)|2 ≤

∫
S2+

ya|∇S2u(θ,φ/k)|2,

and changing variables we get that∫
S2+(k)

kya|∇S2u
∗|2 ≤
∫

S2+(k)

kya|∇S2u|2.

Obviously u∗ defines a unique function, thanks to condition (3.14), over S2+ and it is easy to check that∫
S2+

ya|∇S2u|2 =
∫

S2+(k)

kya|∇S2u|2 and
∫
S2+

ya|∇S2u
∗|2 =
∫

S2+(k)

kya|∇S2u
∗|2.

Moreover, this fact says us that u∗ ∈ H 1;a
ωk

(S2+) where ωk := S1 ∩ {φ ∈⋃k
i=1((i − 1)Tk, (i − 1/2)Tk)} ∈ Ak is the 

particular boundary condition set that is the most connected one, according with the conditions given. Finally it 
follows easily that Ra(u∗) ≤ Ra(uω) = λs

1(ω); that is,

inf
ω∈Ak

λs
1(ω) = λs

1(ωk) =: λs
1(k), (3.23)

in the sense of (3.16). Moreover, the minimization problem in (3.23) admits a nontrivial and nonnegative minimizer 
uk ∈ H 1;a

ωk
(S2+), which is also a weak solution of⎧⎪⎪⎨

⎪⎪⎩
−LS2

a u = yaλs
1(k)u in S2+,

u = 0 in S1 \ ωk,

∂a
y u = 0 in ωk ⊂ S1,

in the sense of (3.10) and such that condition (3.14) is satisfied.

3.4. Ordering eigenvalues with respect to the number of symmetries

The aim of this section is to show that the sequence of eigenvalues {λs
1(k)}+∞

k=1, obtained for every k ∈ N optimizing 
the energy under the best boundary condition, is such that

λs
1(S

1) ≤ λs
1(1) ≤ ... ≤ λs

1(k) ≤ λs
1(k + 1) ≤ ... ≤ λs

1(∅). (3.24)

First, we remark that by (2.9), then for every k ∈N it holds that

λs
1(S

1) ≤ λs
1(k) ≤ λs

1(∅).

Let k ∈ N fixed and ω ∈ Ak . Let us define u = uω the minimizer for the problem (3.16) and v as in (3.19). Then, we 
have proved that∫

S2+

ya|∇(k)

S2 v|2 =
∫
S2+

ya|∇S2u(θ,φ/k)|2 =
∫

S2+(k)

kya|∇S2u|2 =
∫
S2+

ya|∇S2u|2.

Hence, the eigenvalue λs
1(k) can be also expressed as

λs
1(k) = inf

ω∈A1

⎛
⎜⎜⎝inf

⎧⎪⎪⎨
⎪⎪⎩
∫
S2+

ya|∇(k)

S2 u|2 : u ∈ H 1;a
ω (S2+) with

∫
S2+

yau2 = 1

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠ ,

and this quantity is obviously non decreasing in k ∈ N. This implies (3.24).
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From now on, let us consider the sequence {uk}+∞
k=1 ⊆ H 1;a(S2+) of nonnegative first eigenfunctions associated to 

the sequence {λs
1(k)}+∞

k=1 and such that∫
S2+

ya|∇S2uk|2 = λs
1(k) and

∫
S2+

yau2
k = 1/2. (3.25)

3.5. Hölder regularity of eigenfunctions

We remark that the minimization problem under k symmetries seen in (3.23) can be extended in a natural way, in 
the case of two components which are segregated on S1 and satisfy some symmetry and measure conditions. Let us 
define the set of 2-partitions of S1 satisfying a condition over the measure and one over the symmetry

P2
k = {(ω1,ω2) : ωi ⊂ S1 open, ω1 ∩ ω2 = ∅,

ω1 ∪ ω2 = S1, H1(ω1) =H1(ω2), z ∈ ω1 ⇔ σi(z) ∈ ω2 ∀i = 1, ..., k}. (3.26)

Fixing a couple (ω1, ω2) ∈ P2
k , let us also define the set of functions

Bk(ω1,ω2) = {(u1, u2) : ui ∈ H 1;a(S2+),

∫
S2+

yau2
i = 1, ui = 0 in S1 \ ωi, with (ω1,ω2) ∈P2

k ,

ui(z) = ui(σj (σl(z))) and u1(z) = u2(σj (z)) in S2+,

∀i = 1,2, j, l = 1, ..., k}. (3.27)

First of all, we remark that also in this case it is easy to check that, for any fixed couple (ω1, ω2) ∈ P2
k , the set 

Bk(ω1, ω2) is not empty. In fact, proceeding as in section 3.3, we first construct the first component u1 on the funda-
mental domain S2+(k) and then we extend it in a periodic way over S2+ and we normalize it in L2(S2+; dμ). Hence, we 
can define the second component u2 such that u2(z) = u1(σi(z)) for any i = 1, ..., k.

So, as it happened in (3.23) for the case of one component, we consider the minimization problem

inf
(ω1,ω2)∈P2

k

inf
(u1,u2)∈Bk(ω1,ω2)

I (u1, u2), (3.28)

where

I (u1, u2) = 1

2

∫
S2+

ya
(
|∇S2u1|2 + |∇S2u2|2

)
. (3.29)

Hence, the problem in (3.28) is equivalent to

inf
(ω1,ω2)∈P2

k

λs
1(ω1) + λs

1(ω2)

2
. (3.30)

Working with the foliated Schwarz symmetrization on both the components, with respect to both the opposite poles 
z1

0 and z2
0, it happens that the infimum is achieved by the couple (uk, vk) where uk is the minimizer of λs

1(ωk) found 
for the problem (3.23), ωk := S1 ∩ {φ ∈⋃k

i=1((i − 1)Tk, (i − 1/2)Tk)} ∈ Ak , and vk is such that vk(z) = uk(σj (z)) in 
S2+ for every j = 1, ..., k; that is, vk achieves λs

1(ω
c
k). Moreover, the infimum in (3.28) is given by the number

inf
(ω1,ω2)∈P2

k

λs
1(ω1) + λs

1(ω2)

2
= λs

1(ωk) + λs
1(ω

c
k)

2
= λs

1(k). (3.31)

Let us define

X = {(u1, u2) : ui ∈ H 1;a(S2+),

∫
S2+

yau2
i = 1, u1 = 0 in S1 \ ωk,

u2 = 0 in S1 \ ωc
k,with (ωk,ω

c
k) ∈P2

k }, (3.32)
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and also the group G of all the reflections σi , with i = 1, ..., k endowed with the composition between reflections. Let 
us define the action

X ×G −→ X

[(u1, u2), g] �−→ (u2 ◦ g,u1 ◦ g). (3.33)

That is, for g = σi , it holds

[(u1, u2), σi] = (u2 ◦ σi, u1 ◦ σi),

and for g = σi ◦ σj , it holds

[(u1, u2), σi ◦ σj ] = [[(u1, u2), σi], σj ] = [(u2 ◦ σi, u1 ◦ σi), σj ] = (u1 ◦ σi ◦ σj ,u2 ◦ σi ◦ σj ).

It is easy to check that this action is isometric and that the functional I (u1, u2) is invariant with respect to this 
action. Since Bk(ωk, ωc

k) = Fix(G), by the principle of symmetric criticality of Palais, the minimizer (uk, vk) is also 
a nonnegative critical point for I over the whole X and hence a weak solution to the problem⎧⎪⎪⎨
⎪⎪⎩

−LS2

a uk = yaλs
1(k)uk, −LS2

a vk = yaλs
1(k)vk in S2+,

uk∂
a
y uk = 0, vk∂

a
y vk = 0 in S1,

ukvk = 0, in S1.

(3.34)

We wish to prove the C0,α(S2+)-regularity for (uk, vk) via the convergence of solutions of β-problems over S2+ to our 
eigenfunctions. Let us now consider the following set of functions

Ck = {(u1, u2) : ui ∈ H 1;a(S2+),

∫
S2+

yau2
i = 1, ui(z) = ui(σj (σl(z)))

and u1(z) = u2(σj (z)) in S2+, ∀i = 1,2, j, l = 1, ..., k}. (3.35)

This space is trivially not empty since (μ(S2+)−1, μ(S2+)−1) ∈ Ck .
Hence, for any β > 0, we consider the following minimization problem

inf
(u1,u2)∈Ck

Jβ(u1, u2), (3.36)

with

Jβ(u1, u2) = 1

2

∫
S2+

ya
(
|∇S2u1|2 + |∇S2u2|2

)
+ 1

2

∫
S1

βu2
1u

2
2 = I (u1, u2) + 1

2

∫
S1

βu2
1u

2
2. (3.37)

For every β > 0 fix, the functional Jβ is Gateaux derivable in any direction, coercive and weakly lower semicontinuous 
in Ck , and hence there exists a nonnegative minimizer (uβ, vβ) ∈ Ck . Moreover by the previous argument, defining

Y =

⎧⎪⎪⎨
⎪⎪⎩(u1, u2) : ui ∈ H 1;a(S2+),

∫
S2+

yau2
i = 1

⎫⎪⎪⎬
⎪⎪⎭ , (3.38)

since Jβ is invariant with respect to the action Y ×G −→ Y with G as in (3.33), we get that this minimizer is also a 
critical point over Y and hence a weak solution to⎧⎨
⎩

−LS2

a uβ = yaλβuβ, −LS2

a vβ = yaλβvβ in S2+,

−∂a
y uβ = βuβv2

β, −∂a
y vβ = βvβu2

β in S1,
(3.39)

where λβ = ∫
S2+ ya|∇S2uβ |2 + ∫

S1 βu2
βv2

β = ∫
S2+ ya|∇S2vβ |2 + ∫

S1 βu2
βv2

β . Moreover, since the couple (uk, vk) ∈
Bk(ωk, ωc) ⊂ Ck , it holds that for any β > 0, we get the uniform bound
k
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0 ≤ λβ ≤ 2Jβ(uβ, vβ) ≤ 2Jβ(uk, vk) = 2λs
1(k). (3.40)

This uniform bound gives the weak convergence in H 1;a(S2+) of the β-sequence to a function (u∞, v∞). Moreover, 

since solutions to (3.39) are bounded in C0,α(S2+) uniformly in β > 0 for α > 0 small, as it is proved in [19], we 
obtain, up to consider a subsequence as β → +∞, that the convergence is uniform on compact sets and so that the 
limit satisfies the symmetry conditions. Moreover it holds that

0 ≤ λβ = Jβ(uβ, vβ) + 1

2

∫
S1

βu2
βv2

β ≤ λs
1(k) + 1

2

∫
S1

βu2
βv2

β, (3.41)

and since 1
2

∫
S1 βu2

βv2
β → 0 (see Lemma 4.6 in [19] and Lemma 5.6 in [18] for the details in the case s = 1/2), the 

limit should have the two components segregated on S1; that is, (u∞, v∞) ∈ Bk(ωk, ωc
k) (by the symmetries), and 

by the minimality of (uk, vk) and (3.41), we obtain that (u∞, v∞) owns the same norm of (uk, vk) in H 1;a(S2+), and 
hence we can choose as a minimizer (u∞, v∞) which inherits the Hölder regularity up to the boundary.

3.6. The limit for k → +∞

Hence, we have found for any k ∈ N fix, a couple (uk, vk) of nonnegative eigenfunctions related to λs
1(k) with 

the desired symmetry properties. Moreover, for these eigenfunctions we have the regularity C0,α(S2+). Then, we will 
study the convergence of the sequence of normalized eigenfunctions associated to {λs

1(k)}+∞
k=1.

By (3.24) and (3.25), the sequence {uk}+∞
k=1 is uniformly bounded in H 1;a(S2+) and hence we get, up to consider a 

subsequence, weak convergence to a function u in H 1;a(S2+), strong convergence in L2(S2+; dμ) with 
∫
S2+ yau2 = 1/2

(we can always renormalize {uk}+∞
k=1 so that 

∫
S2+ yau2

k = 1/2), and pointwise convergence in S2+ almost everywhere 

with respect to μ. Moreover, by trace theory we have L2(S1)-strong convergence on the boundary S1 and also point-
wise convergence almost everywhere in S1 with respect to the 1-dimensional Lebesgue measure. For every ε > 0 it 
holds that |u(x)| < ε for almost every x ∈ S1 with respect to the 1-dimensional Lebesgue measure; that is, u = 0 in 
S1. In fact, fixed ε > 0 and x ∈ S1, there exists a k ∈N big enough such that

|u(x) − uk(x)| < ε

by the pointwise convergence in S1, and such that

M|x − σi(x)|α < ε, (3.42)

where M > 0 is a constant, α is the Hölder continuity exponent and σi(x) ∈ S1 is the reflection of the point x with 
respect to the closest symmetrizing plane �i . Obviously (3.42) holds because for a k ∈ N big enough we can make 
the distance |x − σi(x)| arbitrarily small. Moreover uk(σi(x)) = 0. Hence,

|u(x)| = |u(x) − uk(x) + uk(x) − uk(σi(x))|
≤ |u(x) − uk(x)| + |uk(x) − uk(σi(x))|
≤ |u(x) − uk(x)| + M|x − σi(x)|α
< 2ε.

Now, we wish to prove that the limit u is a first nonnegative and nontrivial eigenfunction related to λs
1(∅). First, by the 

weak convergence of uk to u in H 1;a(S2+) and the fact that the limit is such that u = 0 in S1, we get that u ∈ H
1;a
0 (S2+). 

Moreover, since C∞
0 (S2+) ⊆ C∞

0 (S2+ ∪ ωk) for every k ∈N and fixing k ∈N it holds that∫
S2+

ya∇S2uk∇S2φ = λs
1(k)

∫
S2+

yaukφ, ∀φ ∈ C∞
0 (S2+ ∪ ωk),

obviously for every k ∈ N we obtain that
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∫
S2+

ya∇S2uk∇S2φ = λs
1(k)

∫
S2+

yaukφ, ∀φ ∈ C∞
0 (S2+). (3.43)

Since the sequence {λs
1(k)}+∞

k=1 is non decreasing and bounded from above by λs
1(∅) > 0, then

lim
k→+∞λs

1(k) = λ̃ ≤ λs
1(∅). (3.44)

The weak convergence in H 1;a(S2+) means that∫
S2+

yaukφ +
∫
S2+

ya∇S2uk∇S2φ −→
∫
S2+

yauφ +
∫
S2+

ya∇S2u∇S2φ ∀φ ∈ H 1;a(S2+). (3.45)

Since, up to a subsequence, uk −→ u in L2(S2+; dμ), then it holds also that uk ⇀ u in L2(S2+; dμ); that is,∫
S2+

yaukφ −→
∫
S2+

yauφ ∀φ ∈ L2(S2+;dμ). (3.46)

Since C∞
0 (S2+) ⊆ H 1;a(S2+) ⊆ L2(S2+; dμ), then obviously (3.45) and (3.46) hold for every φ ∈ C∞

0 (S2+). Finally, 
passing to the limit for k that goes to infinity in (3.43) and putting together (3.44), (3.45) and (3.46), it happens that 
u ∈ H

1;a
0 (S2+) satisfies∫
S2+

ya∇S2u∇S2φ = λ̃

∫
S2+

yauφ, ∀φ ∈ C∞
0 (S2+);

that is, u is an eigenfunction of the problem (2.8) with boundary condition ω = ∅. Hence λ̃ is an eigenvalue of this 
problem with λ̃ ≥ λs

1(∅) since λs
1(∅) is by definition the smallest one with this boundary condition. Then, by (3.44), 

we get that λ̃ = λs
1(∅).

3.7. Existence of solutions on the unit half ball

Our aim is to construct some positive solutions to (1.3) in case N = 2 related with the symmetries imposed for the 
hemispherical problem (2.8). Such solutions will have asymptotic growth rate at infinity which is arbitrarily close to 
the critical one; that is, 2s.

Since we have gained Hölder regularity, by (2.11), we remark that the first and the last inequalities in the chain 
(3.24) are strict. In fact, for any k ∈N it holds ∅ ⊂ ωk ⊂ S1 and H1(S1) > H1(ωk) > H1(∅) = 0, and hence

λs
1(S

1) < λs
1(1) ≤ ... ≤ λs

1(k) ≤ λs
1(k + 1) ≤ ... < λs

1(∅). (3.47)

Let us define for every fixed number of symmetries k ∈ N the characteristic exponent

d(k) := d(λs
1(k)) =

√(
N − 2s

2

)2

+ λs
1(k) − N − 2s

2
, (3.48)

where the sequence of first eigenvalues {λs
1(k)} is defined in section 3.2 and 3.3. Obviously by (3.24) it follows that 

the degree d(k) is non decreasing in k and in [19] it is proved that d(1) = s. Hence,

s = d(1) ≤ ... ≤ d(k) ≤ d(k + 1) ≤ ... < d(λs
1(∅)) = 2s. (3.49)

Therefore, by the previous section, we know that d(k) −→ 2s as k → +∞.
From now on, we will follow some ideas and constructions contained in [2,16] for the local case. Now, for every 

fixed k ∈ N and β > 1, we wish to construct over B+
1 ⊂R

3+ nonnegative solutions to⎧⎪⎪⎨
⎪⎪⎩

Lau = Lav = 0 in B+
1 ,

−∂a
y u = βuv2, −∂a

y v = βvu2 in ∂0B+
1 ,

u = gk, v = hk in ∂+B+,

(3.50)
1
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where (gk, hk) ∈ Bk are nonnegative nontrivial eigenfunctions related to λs
1(k) satisfying (3.34) and hence such that it 

holds

gk(z) = hk(σi(z)) (3.51)

for every i = 1, ..., k. Moreover we choose eigenfunctions as in (3.25) and hence with the property∫
∂+B+

1

ya(g2
k + h2

k) = 1. (3.52)

For simplicity of notations, from now on let us redefine λ = λs
1(k), d = d(k), g = gk , h = hk and as before σi = σ�i

the reflection with respect to plane �i for every i = 1, ..., k.

Lemma 3.9. There exists a pair of nonnegative solutions (uβ, vβ) to problem (3.50) satisfying

1. for every i, j = 1, ..., k⎧⎪⎨
⎪⎩

uβ(z) = uβ(σi(σj (z))),

vβ(z) = vβ(σi(σj (z))),

uβ(z) = vβ(σi(z));
(3.53)

2. letting

I (u, v) := 1

2

∫
B+

1

ya(|∇u|2 + |∇v|2) + 1

2

∫
∂0B+

1

βu2v2, (3.54)

the uniform estimate 2I (uβ, vβ) ≤ d holds.

Proof. First of all, let us consider in B+
1 the functions

(G(z),H(z)) := |z|d
(

g

(
z

|z|
)

, h

(
z

|z|
))

, (3.55)

which are the d-homogeneous extension of (g, h). Since g, h ∈ H 1;a(S2+), then it follows by simple calculations that 
G, H ∈ H 1;a(B+

1 ). A weak solution to (3.50) has to satisfy the following weak formulation⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
B+

1

ya∇u∇φ +
∫

∂0B+
1

βuv2φ = 0,

∫
B+

1

ya∇v∇φ +
∫

∂0B+
1

βvu2φ = 0,

(3.56)

for every φ ∈ H
1;a
∂+B+

1
(B+

1 ) := {u ∈ H 1;a(B+
1 ) : u = 0 in ∂+B+

1 }. Hence, a weak solution to (3.50) is also a critical 

point of the functional defined in (3.54) over the reflexive Banach space

X :=
(

G + H
1;a
∂+B+

1
(B+

1 )

)
×
(

H + H
1;a
∂+B+

1
(B+

1 )

)
. (3.57)

In order to get condition 1, we wish to minimize I over a closed subspace of X; that is, U ⊂ X the set of pairs of 
nonnegative functions (u, v) satisfying condition 1. Proceeding as in section 3.5 it is easy to see that U is not empty. 
Obviously also U is a reflexive Banach space and hence, by the direct method of the Calculus of Variations, we have 
only to show that I is Gâteaux differentiable in any direction φ ∈ H

1;a
∂+B+

1
(B+

1 ) such that (φ +G, φ +H) ∈ U , coercive 

and weakly lower semicontinuous, in order to find a minimizer. The differentiability is a standard calculation that 
gives us the desired condition
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∂I

∂u
(u, v)[φ] =

∫
B+

1

ya∇u∇φ +
∫

∂0B+
1

βuv2φ and
∂I

∂v
(u, v)[φ] =

∫
B+

1

ya∇v∇φ +
∫

∂0B+
1

βvu2φ, (3.58)

for every direction φ ∈ H
1;a
∂+B+

1
(B+

1 ) such that (φ + G, φ + H) ∈ U .

Let us recall that U , as a closed subspace, inherits the topology from X; that is, the convergence of a pair is 
characterized by the convergence of its components. Hence, the weak convergence (un, vn) ⇀ (u, v) in U implies 
the weak convergence of its components in H 1;a(B+

1 ). We know that 
∫
B+

1
ya|∇u|2 is weakly lower semicontinuous 

in H 1;a(B+
1 ) since it is the sum of the norm of the Hilbert space, which is weakly lower semicontinuous and of the 

L2(yadz)-norm, which is weakly continuous by Sobolev compact embeddings. Then, 
∫
∂0B+

1
βu2v2 is weakly lower 

semicontinuous by the Fatou lemma; in fact, up to a subsequence, by the trace theorem, the weak convergence implies 
that un −→ u and vn −→ v in L2(∂B+

1 ; dμ) where dμ = yadS(z) over ∂+B+
1 and dμ = dx over ∂0B+

1 , and hence 
that βu2

n(z)v
2
n(z) −→ βu2(z)v2(z) for almost every z ∈ ∂0B+

1 with respect to the 2-dimensional Lebesgue measure. 
So, we get the weak lower semicontinuity of I as the sum of weakly lower semicontinuous pieces.

To show that I is coercive, we want that

I (u, v) ≥ 1

2

∫
B+

1

ya(|∇u|2 + |∇v|2) −→ +∞, as ||(u, v)|| −→ +∞, (3.59)

where ||(u, v)||2 = ∫
B+

1
ya(|∇u|2 + |∇v|2 + u2 + v2). Recalling that (u, v) = (G + u0, H + v0) ∈ U where (u0, v0) ∈

H
1;a
∂+B+

1
(B+

1 ) ×H
1;a
∂+B+

1
(B+

1 ) and that Poincaré inequality holds for such functions, then (3.59) is a simple computation.

Hence, we have a nontrivial minimizer (u, v) of I over U . Obviously also (|u|, |v|) is a minimizer and hence we 
can assume that such a minimizer is nonnegative. Let us define the group G of all the reflections σi , with i = 1, ..., k
endowed with the composition between reflections. Let us define the action

X ×G −→ X

[(u, v), g] �−→ (v ◦ g,u ◦ g). (3.60)

That is, for g = σi , it holds

[(u, v), σi] = (v ◦ σi, u ◦ σi),

and for g = σi ◦ σj , it holds

[(u, v), σi ◦ σj ] = [[(u, v), σi], σj ] = [(v ◦ σi, u ◦ σi), σj ] = (u ◦ σi ◦ σj , v ◦ σi ◦ σj ).

It is easy to check that this action is isometric and that the functional I is invariant with respect to this action. Since 
U = Fix(G), by the principle of symmetric criticality of Palais, the minimizer (u, v) is also a nonnegative critical 
point for I over the whole X and hence a weak solution to (3.50) with the desired property 1.

Finally, using the fact that (u, v) is a minimizer of I in U and also that (G, H) ∈ U , we get the condition 2; that is,

I (u, v) ≤ I (G,H) = 1

2

∫
B+

1

ya(|∇G|2 + |∇H |2) = d

2
(3.61)

since G and H are segregated in ∂0B+
1 and are homogeneous of degree d . In (3.61) we have used (3.52) and the Euler 

formula for homogeneous functions. �
3.8. Blow-up and uniform bounds on compact sets

Let us consider the sequence of solutions (uβ, vβ) constructed in Lemma 3.9. Thanks to the uniform bound given 
by condition 2, and the fact that the functional I is coercive, we obtain uniform boundedness in H 1;a(B+

1 ) for both 
components of such a sequence. Hence, letting β −→ +∞, there exists a weak limit (U, V ).

We remark that solutions (uβ, vβ) of (3.50) are strictly positive in the open B+
1 by maximum principles for 

La-subharmonic functions (see [4]), and for the same reason they are strictly positive also in ∂+B+ since it holds a 
1
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maximum principle for (g, h) over S2+. Moreover, they are strictly positive also in ∂0B+
1 . By contradiction uβ(z0) = 0

for a point z0 ∈ ∂0B+
1 that is a minimum for uβ . By the Hopf lemma ∂a

y uβ(z0) < 0 (Proposition 4.11 in [4]) but the 
boundary condition imposed over the flat part of the boundary says that −∂a

yuβ(z0) = uβ(z0)v
2
β(z0) = 0. Hence, they 

are able to assume value zero only on S1 = ∂S2+.
Moreover (uβ, vβ) must attain their supremum in ∂+B+

1 . Let us consider for example the component uβ . Its 
supremum must be attained by a point z0 ∈ ∂B+

1 for the maximum principle but this point can not be on ∂0B+
1 by the 

Hopf lemma. In fact, we would obtain that ∂a
y uβ(z0) > 0 but

∂a
y uβ = −βuβvβ ≤ 0 in ∂0B+

1 , (3.62)

by boundary conditions and since (uβ, vβ) are nonnegative.
So, all the functions uβ are nonnegative, La-harmonic and such that

sup
B+

1

uβ = sup
∂+B+

1

uβ = sup
∂+B+

1

g =: A < +∞. (3.63)

Moreover, thanks to (3.52), A > 0 since

1 =
∫

∂+B+
1

ya(g2 + h2) ≤ 2μ(∂+B+
1 )

⎛
⎝ sup

∂+B+
1

g

⎞
⎠

2

= cA2. (3.64)

The same holds for the functions vβ . Now, by this uniform boundedness obtained in L∞(B+
1 ), we can apply The-

orem 1.1 in [19], obtaining for our sequence of solutions uniform boundedness in C0,α
loc (B+

1 ). This implies that the 
convergence of (uβ, vβ) to (U, V ) is also uniform on every compact set in B+

1 . Moreover, since A > 0, we get that 
the limit functions (U, V ) are not trivial and also nonnegative.

Likewise Soave and Zilio have done in [16] for the local case, we use a blow-up argument. For a radius rβ ∈ (0, 1)

to be determined, we define

(uβ, vβ)(z) := β1/2rs
β(uβ, vβ)(rβz). (3.65)

It is easy to check that such a blow-up sequence satisfies for every fixed β > 1 the problem⎧⎨
⎩

Lau = Lav = 0 in B+
1/rβ

,

−∂a
y u = uv2, −∂a

y v = vu2 in ∂0B+
1/rβ

.
(3.66)

As in [16], the choice of rβ ∈ (0, 1) is suggested by the following result.

Lemma 3.10. For any fixed β > 1 there exists a unique rβ ∈ (0, 1) such that∫
∂+B+

1

ya(u2
β + v2

β) = 1. (3.67)

Moreover rβ −→ 0 as β −→ +∞.

Proof. In order to prove (3.67), we have to find for any fixed β > 1, a radius rβ ∈ (0, 1) such that βr2s
β H((uβ, vβ),

rβ) = 1. The strict increasing monotonicity of r �→ H(r) (see e.g. [18,21]) implies that also the function r �→
βr2sH((uβ, vβ), r) is strictly increasing and regular. Hence, for β > 1 fixed,

lim
r→0

βr2sH((uβ, vβ), r) = lim
r→0

βr2s−2−a

∫
∂+B+

r

ya(u2
β + v2

β) = β(u2
β(0) + v2

β(0)) lim
r→0

r2s = 0. (3.68)

Moreover, by (3.52), βH((uβ, vβ), 1) = β > 1. Obviously, existence and uniqueness of rβ follow. If, seeking a con-
tradiction, it would exist r > 0 such that for any β > 1 it holds rβ ≥ r , then by the monotonicity recalled above and 
using (2.4) and (3.52), we get
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1 = βr2s
β H((uβ, vβ), rβ) ≥ βr2sH((uβ, vβ), r) ≥ cβr2d+2sH((uβ, vβ),1) = cβ. (3.69)

So, we get a contradiction for choices of β > 1/c. �
3.8.1. Proof of Theorem 1.3

In order to prove Theorem 1.3, we want to prove the existence of positive functions (U, V ) which solve (1.3)
and such that (uβ, vβ) −→ (U, V ) uniformly on compact sets of R3+ with N((U, V ), r) ≤ d for any r > 0. Hence, 
according to [21], we would obtain in the case N = 2 a solution of (1.3) which grows asymptotically no more than

U(x, y) + V (x, y) ≤ c
(

1 + |x|2 + y2
)d/2

, (3.70)

with d = d(k) ∈ [s, 2s). Moreover, we will prove that the growth rate of this solution is exactly equal to d .
Thanks to the monotonicity of the frequency and conditions (3.52) and (3.61), we get for any β > 1 and r ∈

(0, 1/rβ),

N((uβ, vβ), r) ≤ N((uβ, vβ),1/rβ) = 2I (uβ, vβ)

H((uβ, vβ),1)
≤ d. (3.71)

Moreover, for any β > 1 large, for any 1 ≤ r ≤ 1
rβ

, using (2.4), we obtain the following upper bound which does not 
depend on β ,

H((uβ, vβ), r) ≤ H((uβ, vβ),1)e
d

1−a r2d = e
d

1−a r2d . (3.72)

Since for every β > 0 the functions (uβ, vβ) have −∂a
y uβ ≥ 0, −∂a

y vβ ≥ 0, then their extensions to B1/rβ (through 
even reflections with respect to {y = 0}) satisfy the requirements of Lemma A.2 in [21]. Then it holds that both the 
components uβ and vβ satisfy

sup
B+

r

u ≤ c

⎛
⎜⎜⎝ 1

r3+a

∫
B+

2r

yau2

⎞
⎟⎟⎠

1/2

. (3.73)

Hence, using (3.71), (3.72) and (3.73), we get the upper bound(
sup
B+

r

(uβ + vβ)

)2

≤ C(r)H((uβ, vβ), r) ≤ C(r); (3.74)

that is both components of the sequence (uβ, vβ) are uniformly bounded in L∞(B+
r ), independently from β large 

enough. This gives us uniform boundedness in C0,α
loc (B+

r ) (see [18]) and so, up to consider a subsequence, this ensures 

the convergence to a nontrivial nonnegative function on compact subsets of B+
r . By the arbitrariness of the choice of 

r ≥ 1 done, we obtain such a convergence on every compact set in R3+. Since for β −→ +∞ we have 1/rβ −→ +∞, 
then the limit (U, V ) is a nonnegative solution to (1.3) with N((U, V ), r) ≤ d for any r > 0 using the uniform 
convergence and (3.71). Hence (3.70) follows.

Now, we have to verify that (U, V ) are strictly positive in R3+. Obviously, by construction they are nonnegative in 

R
3+ and strictly positive in R3+ by maximum principles. Moreover, it is impossible that one component has a zero in 

∂R3+. By contradiction let z0 ∈ ∂R3+ be such that U(z0) = 0. By the Hopf lemma it would be ∂a
y U(z0) < 0 since this 

point is a minimum. But, by the boundary condition we get the contradiction

−∂a
y U(z0) = U(z0)V

2
(z0) = 0. (3.75)

Hence, we want to show that the asymptotic growth rate is exactly equal to d = d(k). Seeking a contradic-
tion, let N((U, V ), r) ≤ d(k) − ε for any r > 0. By the Almgren monotonicity formula, there exists the limit 
limr→+∞ N((U, V ), r) := d ≤ d(k) − ε. We replicate the blow-down construction performed in section 2.3 on the 
solution (U, V ), obtaining the convergence in C0,α

(R3+) of the blow-down sequence to a couple of d-homogeneous 
loc
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functions segregated in ∂R3+. The spherical parts of this functions are eigenfunctions with same eigenvalue λ of the 
Laplace–Beltrami-type operator on S2+ which inherit their symmetries from the functions (uβ, vβ) (see (3.53)). In fact 
such symmetries hold also for the blow-up sequence (uβ, vβ) constructed in (3.65) and hence also for (U, V ), thanks 
to the uniform convergence on compact sets. By the condition d ≤ d(k) − ε over the characteristic exponent, hence 
we have λ < λs

1(k) using (2.18), but by the minimality of λs
1(k) we would have λ ≥ λs

1(k) since its eigenfunction is a 
competitor for the problem defined in (3.15), and hence we get the contradiction.

Eventually, let us say that these prescribed growth solutions for (1.3) in space dimension N = 2 are also solutions 
with the same properties for the same problem in any higher dimension. This concludes the proof of Theorem 1.3.

4. Multidimensional entire solutions

In this section we will show the existence of N -dimensional entire solutions to (1.3) which can not be obtained 
by adding coordinates in a constant way starting from a 2-dimensional solution. Actually, we will establish a more 
general result for system (1.3) in case of k-component; that is, considering solutions u := (u1, ..., uk) to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Laui = 0, in R
N+1+ ,

ui > 0, in R
N+1+ ,

−∂a
y ui = ui

∑
j �=i u

2
j , in ∂RN+1+ ,

(4.1)

for any i = 1, ..., k. In what follows, we adapt the results for the local case in [16] to the fractional setting.
First of all, we remark that also in the case of k-components Theorem 1.2 holds; that is, solutions to (4.1) have a 

universal bound on the growth rate at infinity given by

u1(x, y) + ... + uk(x, y) ≤ c(1 + |x|2 + y2)s . (4.2)

In fact, also in this setting a Pohozaev inequality holds (see [19]); that is, for any x0 ∈ R
N and r > 0,

(N − 1 + a)

∫
B+

r (x0,0)

ya
k∑

i=1

|∇ui |2 = r

∫
∂+B+

r (x0,0)

ya
k∑

i=1

|∇ui |2 − 2ya
k∑

i=1

|∂rui |2

+ r

∫
SN−1

r (x0,0)

∑
i,j<i

u2
i u

2
j − N

∫
∂0B+

r (x0,0)

∑
i,j<i

u2
i u

2
j . (4.3)

Moreover, let us recall the following definitions

E(r, x0;u) := 1

rN−1+a

⎛
⎜⎝ ∫

B+
r (x0,0)

ya
k∑

i=1

|∇ui |2 +
∫

∂0B+
r (x0,0)

∑
i,j<i

u2
i u

2
j

⎞
⎟⎠ , (4.4)

and

H(r, x0;u) := 1

rN+a

∫
∂+B+

r (x0,0)

ya
k∑

i=1

u2
i . (4.5)

Hence, defining the frequency as N(r, x0; u) := E(r,x0;u)
H(r,x0;u)

, the Almgren monotonicity formula holds; that is, the fre-

quency N(r, x0; u) is non decreasing in r > 0 (the proof is as in [21]). Since the bound (2.14) found in [21] also holds 
in the case of solutions to (4.1), one can apply the procedure seen in the proof of Theorem 1.2 obtaining eventually 
(4.2).

Let us denote by O(N) the orthogonal group of RN and by Gk the symmetric group of permutations of {1, ..., k}. 
We assume the existence of a homomorphism h :G < O(N) → Gk with G a nontrivial subgroup. Hence, let us define 
the equivariant action of G on H 1;a(RN+1+ , Rk) so that



854 S. Terracini, S. Vita / Ann. I. H. Poincaré – AN 35 (2018) 831–858
H 1;a(RN+1+ ,Rk) ×G −→ H 1;a(RN+1+ ,Rk)

[u, g] �−→ (u(h(g))−1(1) ◦ g, ..., u(h(g))−1(k) ◦ g), (4.6)

where ◦ denotes the usual composition of functions. Let us define the space of the (G, h)-equivariant functions as

H(G,h) := Fix(G) = {u ∈ H 1;a(RN+1+ ,Rk) : u ◦ g = u ∀g ∈G}. (4.7)

As in [16], we give the following definition.

Definition 4.1. Let k ∈ N, G < O(N) be a nontrivial subgroup and h : G → G a homomorphism. We say that the 
triplet (k, G, h) is admissible if there exists u ∈ H(G,h) such that

(i) ui ≥ 0 and ui �= 0 in RN+1+ for any i = 1, ..., k,
(ii) uiuj = 0 in RN for any i, j = 1, ..., k with i �= j ,
(iii) there exist g2, ..., gk ∈ G such that ui = u1 ◦ gi for any i = 2, ..., k.

We remark that if the triplet (k, G, h) is admissible, then all the (G, h)-equivariant functions satisfy (iii) of the defi-
nition with the same elements g2, ..., gk . Moreover it holds (h(gi))

−1(i) = 1 for any i = 1, ..., k, and hence equivariant 
functions satisfy

ui = u(h(gi ))
−1(i) ◦ gi = u1 ◦ gi; (4.8)

that is, if the triplet is admissible, then any equivariant function u is determined by its first component u1 and by 
knowing the elements g2, ..., gk .

4.1. Optimal k-partition problem

Let us define the set of k-partitions of SN−1 as

Pk = {(ω1, ...,ωk) : ωi ⊂ SN−1 open, ωi ∩ ωj = ∅,

k⋃
i=1

ωi = SN−1, ωi ∩ ωj is a

(N − 2) − dimensional smooth submanifold, ∀i, j = 1, ..., k, j �= i}. (4.9)

Let (k, G, h) be an admissible triplet. We denote by

�(G,h) = {u ∈ H 1;a(SN+ ,Rk) : u is the restriction to SN+ of a (G, h) − equivariant function

fulfilling (i), (ii), (iii) in Definition 4.1, such that
∫
SN+

yau2
i = 1 ∀i = 1, ..., k}. (4.10)

Obviously, assuming that the triplet is admissible, up to consider a normalization of the components in L2(SN+ ; dμ), 
it follows that �(G,h) is not empty. Moreover, by conditions (i) and (ii) one has that for any element u ∈ �(G,h) there 
exists a k-partition (ω1, ..., ωk) ∈ Pk such that ui = 0 in SN−1 \ ωi for any i = 1, ..., k. Let us consider the following 
minimization problem

inf
u∈�(G,h)

I (u), (4.11)

where

I (u) = 1

2

∫
SN+

ya
k∑

i=1

|∇SN ui |2. (4.12)

One can easily check that problem (4.11) produces a nontrivial nonnegative minimizer u in �(G,h), and since the 
functional I is invariant with respect to the action in (4.6), applying the principle of criticality of Palais, we obtain 
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that such a minimizer is also a solution to an eigenvalue problem; that is, its components satisfy for any i, j = 1, ..., k, 
j �= i ⎧⎪⎪⎨
⎪⎪⎩

−LSN

a ui = yaλui, in SN+ ,

uiuj = 0, in SN−1,

ui∂
a
y ui = 0, in SN−1,

(4.13)

where λ = ∫
SN+ ya|∇SN u1|2 = ... = ∫

SN+ ya|∇SN uk|2, by condition (iii) and the invariance of I with respect to the 

group action. Moreover there exists a k-partition (ω1, ..., ωk) ∈ Pk such that for any i = 1, ..., k it holds ui = 0 in 
SN−1 \ ωi . We want to prove the C0,α(SN+ )-regularity for the components of u via the convergence of solutions of 
β-problems over SN+ to our eigenfunctions. Let us now consider the following set of functions

�(G,h) = {u ∈ H 1;a(SN+ ,Rk) : u is the restriction to SN+ of a (G, h) − equivariant function

fulfilling (i), (iii) in Definition 4.1, such that
∫
SN+

yau2
i = 1 ∀i = 1, ..., k}. (4.14)

This space is trivially not empty since �(G,h) ⊆ �(G,h).
Hence, for any β > 0, we consider the following minimization problem

inf
u∈�(G,h)

Jβ(u), (4.15)

with

Jβ(u) = 1

2

∫
SN+

ya
k∑

i=1

|∇SN ui |2 + 1

2

∫
SN−1

β
∑
i<j

u2
i u

2
j = I (u) + 1

2

∫
SN−1

β
∑
i<j

u2
i u

2
j . (4.16)

It is easy to check that, for every β > 0 fix, there exists a nonnegative minimizer uβ ∈ �(G,h). Moreover, since Jβ is 
invariant with respect to the action in (4.6), we get that this minimizer is also a weak solution to the system⎧⎨
⎩

−LSN

a uβ,i = yaλβ,iuβ,i , in SN+ ,

−∂a
y uβ,i = βuβ,i

∑
j �=i u

2
β,j , in SN−1,

(4.17)

for any i = 1, ..., k, where λβ,i = ∫
SN+ ya|∇SN uβ,i |2 + ∫

SN−1 βu2
β,i

∑
j �=i u

2
β,j . Moreover, since the minimizer u ∈

�(G,h) ⊆ �(G,h), it holds that for any β > 0, we get the uniform bound

0 ≤ 1

2

k∑
i=1

λβ,i ≤ 2Jβ(uβ) ≤ 2Jβ(u) = kλ. (4.18)

This uniform bound gives the weak convergence in H 1;a(SN+ ; Rk) of the β-sequence to a function u∞ (any component 

has the same norm 
∫
SN ya|∇SN u∞,i | = λ∞). Moreover, since solutions to (4.17) are bounded in C0,α(SN+ ) uniformly 

in β > 0 for α > 0 small, as it is proved in [19], we obtain, up to consider a subsequence as β → +∞, that the 
convergence is uniform on compact sets and so that the limit satisfies the symmetry conditions. Moreover it holds that ∫
SN−1 βu2

β,iu
2
β,j → 0 for any i, j = 1, ..., k with j �= i (see Lemma 4.6 in [19] and Lemma 5.6 in [18] for the details 

in the case s = 1/2). So, the limit should have the components segregated on SN−1; that is, u∞ ∈ �(G,h). Moreover, 
we have

0 ≤ 1

2

k∑
i=1

λβ,i = Jβ(uβ) + 1

2

∫
SN−1

β
∑
i<j

u2
i u

2
j ≤ k

2
λ + 1

2

∫
SN−1

β
∑
i<j

u2
i u

2
j , (4.19)

and since for any i = 1, ..., k one has λβ,i → λ∞, by (4.19) it follows that λ∞ ≤ λ. But by the minimality of u in 
�(G,h) we have also λ ≤ λ∞, and hence we obtain that u∞ and u own the same norm in H 1;a(SN+ ; Rk), and hence we 
can choose as a minimizer u∞ which inherits the Hölder regularity up to the boundary.
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4.2. (G, h)-equivariant solutions

In order to construct (G, h)-equivariant entire solutions to (4.1), one can follow the construction given in section 3.7
and 3.8. Let us summarize the main steps: first, we construct (G, h)-equivariant β-solutions uβ on the unit half ball 
B+

1 ; that is, solutions inheriting the symmetries given by the triplet (k, G, h) and so that the boundary value on ∂+B+
1

is the minimizer u previously found (the proof follows from Lemma 3.9). Since any component ui of u has the same 
energy 

∫
SN+ ya|∇SN ui |2 = λ, we can define the d-homogeneous extension of u to RN+1+ , where d = d(λ); that is, 

u = |z|du( z
|z| ). This function gives a bound over the energy of our β-solutions; that is,

2Fβ(uβ) =
∫

B+
1

ya
k∑

i=1

|∇ui,β |2 + β

∫
∂0B+

1

∑
i<j

u2
i,βu2

j,β ≤ d. (4.20)

Hence, after rescaling (the right choice is given by an analogous of Lemma 3.10), by the blow-up argument, we get 
convergence to a positive (G, h)-equivariant entire solution U to (4.1) as β → +∞ on compact subsets of RN+1+ . 
Moreover, for any r > 0, we get a bound over the Almgren frequency given by

N(r;U) ≤ d. (4.21)

4.3. An admissible triplet (2, G, h)

To conclude this section, we want to provide the existence, for simplicity in the case of two components, of 
multidimensional entire solutions to (1.3) in RN+1+ with N ≥ 3 and such that they can not be obtained by adding 
coordinates in a constant way starting from a 2-dimensional solution. Let k = 2 and G < O(N) be the nontriv-
ial subgroup of symmetries generated by the reflections σi with respect to the hyperplanes �i = {xi = 0} for any 
i = 1, ..., N . Let also h : G → G2 be defined on the generators of G by h(σi) = (1 2) for every i = 1, ..., N (the 
expression (1 2) denotes the cycle mapping 1 in 2 and 2 in 1). Let us consider the fundamental domain defined as the 
set D(2, G, h) = SN+ ∩ {z = (x, y) ∈ R

N+1+ : x2 > 0, x3 > 0, ..., xN > 0}. Obviously there exists a couple of nontrivial 
and nonnegative functions (f1, f2) such that f1 ∈ H

1;a
0 (D(2, G, h) ∩{x1 > 0}) and f2 ∈ H

1;a
0 (D(2, G, h) ∩{x1 < 0}). 

Let us merge them in a unique function v1 over the fundamental domain, and extend it to the whole of the hemisphere 
SN+ following the condition v1(z) = v1(σi(σj (z))) for any i, j = 1, ..., N (the values of u1 over the fundamen-
tal domain are enough to define it on the hemisphere). In the same way, we can define the function v2 so that 
v2(z) = v1(σi(z)) for every i = 1, ..., N . Let us normalize the two functions in L2(SN+ ; dμ). Let us also define the 
number ν = ∫

SN+ ya|∇SN v1|2 = ∫
SN+ ya|∇SN v2|2. The d(ν)-homogeneous extension of v = (v1, v2) to RN+1+ (the char-

acteristic exponent is defined in (2.10)) is an element of H(G,h) satisfying conditions (i), (ii) and (iii), and hence, as 
a consequence, the triplet (2, G, h) turns out to be admissible.

Hence, it is possible to apply the construction seen in the first part of this section, in order to construct a 
(G, h)-equivariant solution to (1.3) depending on the minimizer of the problem (4.11). We want to show that it holds

inf
u∈�(G,h)

I (u) = λ < λs
1(∅). (4.22)

Let us define the set of 2-partitions

P2
N = {(ω1,ω2) : ωi ⊂ SN−1 open, ω1 ∩ ω2 = ∅, ω1 ∪ ω2 = SN−1, ω1 ∩ ω2 is a

(N − 2) − dimensional smooth submanifold, HN−1(ω1) =HN−1(ω2),

z ∈ ω1 ⇔ σi(z) ∈ ω2 ∀i = 1, ...,N}. (4.23)

Let us also introduce, for any element (ω1, ω2) ∈ P2
N the space

�(G,h)(ω1,ω2) = {u ∈ �(G,h) : ui = 0 in SN−1 \ ωi, ∀i = 1,2}. (4.24)

We remark that for any 2-partition, this space is not empty since the function v previously constructed is contained. 
The minimization problem in (4.11) can be expressed as
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inf
u∈�(G,h)

I (u) = inf
(ω1,ω2)∈P2

N

inf
u∈�(G,h)(ω1,ω2)

I (u). (4.25)

Let us consider the particular 2-partition (ωN
1 , ωN

2 ) ∈ P2
N so that ωN

1 ⊃ SN−1 ∩ {x1 > 0, ..., xN > 0}. Obviously one 
has

λ ≤ inf
u∈�(G,h)(ω

N
1 ,ωN

2 )

I (u) = λN. (4.26)

Therefore, by considerations over the symmetries and (2.11), it is easy to see that

λN = λs
1(ω

N
1 ) + λs

1(ω
N
2 )

2
= λs

1(ω
N
1 ) < λs

1(∅), (4.27)

since HN−1(ωN
1 ) > 0. Hence, (4.22) holds.

Now we want to show that the equivariant entire solution U = (U1, U2) obtained depends on any xi-variable for 
any i = 1, ..., N . Thanks to the bound in (4.21) and the condition (4.22), we get that

N(r;U) ≤ d < d(λs
1(∅)) = 2s. (4.28)

Let us suppose by contradiction that U does not depend on the variable x1 (we can choose it without loss of generality). 

Then, considering the reflection σ1, one has for any z ∈ R
N+1+

U1(z) = U1(σ1(z)) = U2(z). (4.29)

Let us proceed now by a blow-down construction as in section 2.3 for the proof of Theorem 1.2. The limit of the 
blow-down sequence is a couple (u∞, v∞) of functions solving⎧⎪⎪⎨
⎪⎪⎩

Lau∞ = Lav∞ = 0 in R
N+1+ ,

u∞∂a
y u∞ = v∞∂a

y v∞ = 0 in ∂RN+1+ ,

u∞v∞ = 0 in ∂RN+1+ .

(4.30)

By the uniform convergence, condition (4.29) says that u∞ = v∞ in RN+1+ , and by the segregation condition also that 
u∞ = v∞ = 0 in ∂RN+1+ . Moreover, such solutions have the form

u∞(r, θ) = v∞(r, θ) = rdg(θ),

where g is defined on the upper hemisphere SN+ = ∂+B+
1 . Since we have constructed the blow-down sequence so that 

H(1; UR) = 1, then∫
SN+

yag2 = 1/2. (4.31)

Since d < 2s, we can apply a Liouville type result (see Proposition 3.1 in [19]) in order to conclude that u∞ and v∞
should be trivial everywhere, in contradiction with condition (4.31).
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