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Abstract

In the present paper, we investigate global-in-time Strichartz estimates without loss on non-trapping asymptotically hyperbolic 
manifolds. Due to the hyperbolic nature of such manifolds, the set of admissible pairs for Strichartz estimates is much larger 
than usual. These results generalize the works on hyperbolic space due to Anker–Pierfelice and Ionescu–Staffilani. However, our 
approach is to employ the spectral measure estimates, obtained in the author’s joint work with Hassell, to establish the dispersive 
estimates for truncated/microlocalized Schrödinger propagators as well as the corresponding energy estimates. Compared with 
hyperbolic space, the crucial point here is to cope with the conjugate points on the manifold. Additionally, these Strichartz estimates 
are applied to the L2 well-posedness and L2 scattering for nonlinear Schrödinger equations with power-like nonlinearity and small 
Cauchy data.
© 2017 

Résumé

Dans cet article, nous examinons les estimations de Strichartz sans perte et globales en temps, définies sur des variétés non-
captives asymptotiquement hyperboliques. De par la nature hyperbolique de ces variétés, l’ensemble des paires admissibles pour 
les estimations de Strichartz est beaucoup plus grand que d’ordinaire. Ces résultats généralisent les travaux menés par Anker–
Pierfelice et Ionescu–Staffilani sur les espaces hyperboliques. Toutefois, notre approche utilise ici les estimations de mesures 
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spectrales obtenues par l’auteur en collaboration avec Hassell afin d’établir les estimations de dispersion pour des propagateurs de 
Schrödinger tronqués ou micro-localisés ainsi que les estimations d’énergie correspondantes. À la différence des espaces hyperbo-
liques, l’élément crucial est ici de gérer les points conjugués de la variété. Enfin, ces estimations de Strichartz sont appliquées au 
caractère bien posé dans L2 et à la diffusion L2 pour les équations de Schrödinger avec des non-linearités de type puissance et des 
données initiales petites.
© 2017 
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1. Introduction

This paper, following the author’s joint works [11] and [12] with Andrew Hassell, is the last in a series of papers 
concerning the analysis of the resolvent family and spectral measure for the Laplacian on non-trapping asymptotically 
hyperbolic manifolds. The present paper is devoted to the application of the spectral measure to Schrödinger equations.

We investigate the Cauchy problem of the nonlinear Schrödinger equation{
i ∂
∂t

u(t, z) + �u(t, z) = F(u(t, z))

u(0, z) = f (z)
, (1.1)

on an n + 1-dimensional asymptotically hyperbolic manifold X (see Section 2 for the definition). Here the nonlinear 
term is power-like, i.e. F satisfies

|F(u)| ≤ C|u|γ and |F(u) − F(v)| ≤ C(|u|γ−1 + |v|γ−1)|u − v|,
for 1 < γ ≤ 1 + 4/(n + 1). This sort of nonlinear dispersive equation cuts an important figure in mathematics and 
physics. A fundamental problem is the well-posedness of the equation. We say the equation (1.1) is globally well-
posed in L2 if for any subset B of L2 there exists a subspace A, continuously embedded into C(R+; L2(X)) such 
that (1.1) has a unique solution in A for any initial data f and the map from B to A is continuous. Another interesting 
question is that how the solution of (1.1) behaves as time goes to infinity. One can understand that in terms of L2

scattering, by which we mean the solution of (1.1) converges to the solution of the corresponding homogeneous linear 
equation in L2(X) sense as time goes to ±∞. More precisely, for any solution u of (1.1) there exists scattering data 
u± such that∥∥u − u±

∥∥
L2

z
−→ 0, as t → ±∞.

By the classical theories of well-posedness and scattering for Schrödinger equations (see for example [10,31]), 
these problems usually reduce to the so-called ‘Strichartz estimates’ for the linear Schrödinger equation{

i ∂
∂t

u + �u = F(t, z)

u(0, z) = f (z)
. (1.2)

It has been deeply studied on Euclidean space (see [23,15,24]) as well as on manifolds (see [5–8]). We shall prove 
global-in-time Strichartz estimates without loss in asymptotically hyperbolic geometry.

Theorem 1 (Strichartz estimates). Suppose (X, g) is an (n + 1)-dimensional non-trapping asymptotically hyperbolic 
manifold with no resonance at the bottom of spectrum. For any admissible pairs (q, r) and (q̃ ′, ̃r ′) satisfying

2

q
+ n + 1

r
≥ n + 1

2
, q ≥ 2, r > 2, (q, r) �= (2,∞), (1.3)

we have the inhomogeneous Strichartz estimates

‖u‖L
q
t Lr

z(R×X) ≤ C
(‖f ‖L2(X) + ‖F‖

L
q̃′
t Lr̃′

z (R×X)

)
, (1.4)

provided f and F are both orthogonal to the eigenfunctions of �.
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This result readily applies to L2 well-posedness and L2 scattering for the nonlinear Schrödinger equation (1.1). 
We obtain

Theorem 2 (L2 well-posedness and L2 scattering). Suppose (X, g) is a manifold as in Theorem 1 and there are no 
eigenvalues of �. Given γ ∈ (1, 1 + 4/(n + 1)] and a small Cauchy data f ∈ L2(X), the nonlinear Schrödinger 
equation (1.1) is globally well-posed in L2(X), whilst for any solution u(t, z) there exists u± ∈ L2(X) such that

‖u(t) − eit�u±‖L2(X) −→ 0, as t → ±∞.

Assuming Theorem 1, the proof of Theorem 2 is standard. The well-posedness is given by a contraction mapping 
theorem method with the global-in-time Strichartz estimates, whilst the scattering part is simply given by a quick 
application of Cauchy criterion. We omit the proof and refer the reader to [1], because their argument works verbatim 
in the asymptotically hyperbolic settings.

Return to the Strichartz estimates. By the classical approach formulated by Kato [23], Ginibre and Velo [15], Keel 
and Tao [24] etc., it is sufficient to prove energy estimates

‖eit�f ‖L2 ≤ ‖f ‖L2

and dispersive estimates

‖ei(t−s)�f ‖∞ ≤ |t − s|−(n+1)/2‖f ‖L1 (1.5)

for the Schrödinger propagator on Euclidean space. However, unlike on Euclidean space, dispersive estimates in the 
above form is too strong to hold on asymptotically hyperbolic manifolds.

First of all, unlike (1.5), we don’t have dispersive estimates uniformly in time on hyperbolic space Hn+1 with 
n > 2. Actually, Anker and Pierfelice [1] and independently Ionescu and Staffilani [22] proved the following dispersive 
estimates

∣∣Ker eit�
Hn+1

∣∣ ≤ C

{
t−3/2

(
1 + d(z, z′)

)
e−nd(z,z′)/2 if t ≥ 1 + d(z, z′)

t−(n+1)/2
(
1 + d(z, z′)

)n/2
e−nd(z,z′)/2 if t ≤ 1 + d(z, z′)

(1.6)

on real hyperbolic space Hn+1. Similar results on convex co-compact hyperbolic manifolds were proved by Burq, 
Guillarmou and Hassell [9]. The spectral theorem gives

eit� = eitn2/4

∞∫
0

eitλ2
dE√

(�−n2/4)+(λ, z, z′).

So we can explain (1.6) via the spectral measure dE√
(�−n2/4)+ . On the one hand, the nonuniformity of (1.6) in time 

actually results from the discrepancy of powers in the spectral measure estimates on Hn+1. We shall see in Section 2, 
Section 5 and 6 that the quicker growth for large λ and the slower decay for small λ creates the discrepancy of the 
powers of t . Consequently, the long time dispersive estimates on Hn+1 is at a lower speed than on Euclidean space, 
though the short time estimates are the same with Euclidean case. On the other hand, we also get something better. 
Near the spatial infinity, the spectral measure dE√

(�−n2/4)+ as well as the Schrödinger propagator eit� gains an ex-
ponential decay factor. We can crudely interpret that as follows. Near the spatial infinity the conformal metric creates 
an exponentially growing volume. Since the spectral measure is globally L2 integrable, it must decay exponentially to 
cancel the exponential growth volume as d(z, z′) goes to infinity. Not only does this long distance exponential decay 
compensate the low speed for long times but it also gives better Strichartz estimates. One may note a distinctive phe-
nomenon that the admissible set (1.3) is much wider than the set of sharp Schrödinger admissible pairs on Euclidean 
space, which satisfy

2

q
+ n + 1

r
= n + 1

2
, q, r ≥ 2, (q, r) �= (2,∞).

Banica, Carles and Staffilani [3] first observed this while studying the radial solution of the Schrödinger equations on 
H

n+1. Inspired by that, Anker and Pierfelice [1] and independently Ionescu and Staffilani [22] proved the Strichartz 
estimates on Hn+1 with such admissibility condition.
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More generally, if we study an asymptotically hyperbolic manifold with conjugate points, what kind of dispersive 
estimate could we get instead? The Schwartz kernel of the spectral measure at high energy is a Lagrangian distribution 
microlocally supported on the geodesic flow-out. Then the difficulty is that there will be no global expression for the 
geodesic distance function. Because of that, neither (1.5) nor (1.6) will hold. Alternatively, one can microlocalize the 
spectral measure around the diagonal with a pair of pseudodifferential operators (Qk, Q∗

k). Consequently we can get 
some near-diagonal estimates for the spectral measure, which give some sort of dispersive estimate for corresponding 
microlocalized Schrödinger propagators. It is sufficient to establish the Strichartz estimates. Guillarmou, Hassell and 
Sikora [19], Hassell and Zhang [21], applied this technique to the spectral measure and the Schrödinger propagator 
on asymptotically conic (Euclidean) manifolds.

Due to above distinctive geometric and spectral properties on asymptotically hyperbolic manifolds, we will inte-
grate some existing techniques to prove Theorem 1. First of all, we primarily follow the standard argument due to 
Kato, Ginibre–Velo and Keel–Tao. However, as mentioned before, their method doesn’t exploit the distinctive phe-
nomena of hyperbolic type spaces, including the spatial decay at infinity and the low speed at long times. Therefore, 
borrowing the trick of Anker–Pierfelice and Ionescu–Staffilani, we split the time-space norm of the solution in tem-
poral variables as well as the Schrödinger propagator in spectral parameter. Also inspired by the microlocalization 
argument of Guillarmou–Hassell–Sikora and Hassell–Zhang, we establish the microlocalized dispersive estimates in 
Proposition 6 and in Proposition 9 to cope with the conjugate points.

The geometric microlocal technique used for the spectral measure does require the non-trapping condition and con-
formal compactness on the space. Bouclet [4] investigates the local-in-time homogeneous Strichartz estimates without 
loss on more general asymptotically hyperbolic manifolds without taking these advantages. The author constructed a 
parametrix for Schrödinger propagators. However, the issue here is that the error may be difficult to control as time 
goes to infinity. For the consideration of long time behaviour, one needs an exact spectral measure or propagator 
(a function of spectral measure) in these estimates. In the joint work of Hassell and the present author [12], we studied 
the spectral measure estimates on asymptotically hyperbolic manifolds, which enables us to study the global-in-time 
Strichartz estimates.

The paper is organized as follows. First of all, we shall review the asymptotically hyperbolic manifolds and the 
spectral measure in Section 2. Based on the spectral measure estimates, we introduce the microlocalized/truncated 
expressions of Schrödinger propagators. We then turn to the proof of L2-energy estimates. In Section 5 and Section 6, 
we establish the dispersive estimates for microlocalized/truncated propagators. The Strichartz estimates will be proved 
in the last two sections.

2. Spectral measure on asymptotically hyperbolic manifolds

A conformally compact manifold X is an (n + 1)-dimensional manifold with boundary ∂X, compact closure X̄
and endowed with a Riemannian metric g which extends smoothly to its closure. One can write

g = dx2

x2
+ h(x, y, dx, dy)

x2
,

where x is a boundary defining function, and h is a metric on the boundary but depending parametrically on x. 
Mazzeo [26] showed g is complete and its sectional curvature approaches −|dx|2

x2g
as it approaches the boundary. In 

particular, g is said to be asymptotically hyperbolic if −|dx|2
x2g

= −1.

Let � be the Laplacian, on (n + 1)-dimensional non-trapping asymptotically hyperbolic manifold X. As on Hn+1, 
the continuous spectrum of � is contained in [n2/4, ∞). Additionally, Mazzeo [27] showed the point spectrum is 
contained in (0, n2/4).

Mazzeo and Melrose [28] constructed the resolvent (� − σ (n − σ ))−1 on asymptotically hyperbolic manifolds for 
fixed parameter σ and proved it has a meromorphic extension except at points (n + 1)/2 − Z+. The resolvent they 
construct is a 0-pseudo differential operator plus a smooth function on the 0-blown up double space X×0 X (or X2

0 for 
short), where the space X ×0 X is obtained by blowing up the boundary of the diagonal ∂diag = {(0, y, 0, y)} ∈ X2.
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We also refer the reader to Guillarmou [17] for more information about the poles (n + 1)/2 −Z+ as well as a nice 
review of the Mazzeo–Melrose resolvent construction. From here on, we will work on X2

0 instead of X2 for the nice 
expression of the resolvent and the spectral measure. A very important feature of X2

0 is that the front face is a bundle 
with fibres similar to hyperbolic space. Therefore hyperbolic space is a good model for asymptotically hyperbolic 
manifolds. Apart from these, we also get the following useful asymptotic expansion of the geodesic distance function 
near the boundaries of X2

0

d(z, z′) = − logρL − logρR + b(z, z′),

where ρL and ρR are boundary defining functions of the left and the right faces respectively, b is a uniformly bounded 
function on X2

0. See [12, Proposition 10]. In particular, b(z, z′) is smooth on X2
0 in the case of asymptotically hy-

perbolic manifolds of Cartan–Hadamard type. This was observed on hyperbolic spaces and proved on asymptotically 
hyperbolic manifolds by Melrose, Sá Barreto and Vasy [29]. On general asymptotically hyperbolic manifolds, arising 
conjugate points ruin the smoothness of b but we still get the boundedness of b. Consequently, we have the asymptotic

e−d(z,z′) ≈ ρLρR, if ρLρR is small. (2.1)

Additionally, Melrose, Sá Barreto and Vasy [29], Wang [32], and Hassell and the present author [11] constructed 
the semiclassical resolvent at high energy (near the infinity of the spectrum). Specifically, the high energy resolvent 
defined on X2

0 is a 0-pseudo differential operator plus a Fourier integral operator microlocally supported on the union 
of the diagonal conormal bundle and its bicharacteristic flow-out. To avoid unnecessary technical details, we wouldn’t 
repeat the bulky theories about 0-calculus, blow-up, flow-out, Lagrangian distribution, intersecting Lagrangian etc., 
but refer the readers to [28,29,11].

Based on the results of the resolvent, Hassell and the author [12] studied the spectral measure on asymptotically 
hyperbolic manifolds, via Stone’s formula

2πi dEL(λ) = RL(λ + i0) − RL(λ − i0),

provided λ is in the continuous spectrum of a self-adjoint operator L.1 Since the spectral measure is defined on the 
continuous spectrum (n2/4, ∞), we are in particular concerned about the asymptotic behaviour around two endpoints 
n2/4 (low energy) and ∞ (high energy) respectively. Because of the absence of embedded eigenvalues, the interme-
diate values can be estimated in either way.

On the one hand, the spectral measure dEP (λ)2 with P = √
(� − n2/4)+ for small λ has a similar structure to the 

resolvent near the bottom of the spectrum. As on Hn+1, it is convenient to assume the smoothness of the resolvent 
at the bottom of the spectrum to gain the asymptotic of spectral measure. We say there is no resonance at the bottom 

1 We use Greek letters λ, μ, ζ to denote the phase variables on cotangent bundle, respectively bold Greek letters λ, μ, ζ to denote spectral 
parameters.

2 Here we use another spectral parameter λ ∈ [0, ∞) with σ = n/2 ± iλ.



808 X. Chen / Ann. I. H. Poincaré – AN 35 (2018) 803–829
of the continuous spectrum if the resolvent is analytic at n2/4.3 With this hypotheses of analyticity at n2/4, we [12]
deduce, from the resolvent of Mazzeo and Melrose, that

dEP (λ)(z, z′) = λ
(
(ρLρR)n/2+iλa(λ, z, z′) − (ρLρR)n/2−iλa(−λ, z, z′)

)
when λ < 1, (2.2)

where a ∈ C∞([0, 1]λ−1 × X2
0). A quick corollary of this result is that

|dEP (λ)(z, z′)| ≤ Cλ2(1 + d(z, z′))e−nd(z,z′)/2. (2.3)

One may note the spectral measure doesn’t vanish as rapidly as its counterparts on some other spaces do at low 
energy. For example, Guillarmou, Hassell and Sikora [19], Hassell and Zhang [21] showed on n + 1-dimensional 
asymptotically Euclidean manifolds there is a pseudodifferential operator partition of unity

I =
N∑

i=1

Qi

such that the kernel of the microlocalized spectral measure reads

QidEP Q∗
i (λ, z, z′) = λneiλd(z,z′)a+(λ, z, z′) + λne−iλd(z,z′)a−(λ, z, z′) + b(λ, z, z′), (2.4)

where the derivatives of a± and b obey∣∣∣∣ dα

dλα a±(λ, z, z′)
∣∣∣∣ ≤ Cλ−α

(
1 + λd(z, z′)

)−n/2
,∣∣∣∣ dα

dλα b(λ, z, z′)
∣∣∣∣ ≤ Cλ−α

(
1 + λd(z, z′)

)−N for any N ∈ Z+.

We remark that one could remove the diagonal microlocalization (Qi, Q∗
i ) in case there are no conjugate points on 

the manifold; however it is necessary for general settings. Apart from the 3-dimensional space where n = 2, the spec-
tral measure on asymptotically hyperbolic manifolds is unable to provide such decay for low energies. Nonetheless, 
the property (2.1) for large distance on asymptotically hyperbolic manifolds compensates the lack of decay with an 
exponential vanishing at spatial infinity.

On the other hand, the spectral measure for large λ shares a microlocal structure with the resolvent at high energies. 
Suppose we have local coordinates {(x, y1, . . . , yn)} near ∂X and local coordinates {(z1, . . . , zn+1)} away from ∂X. 
The 0-cotangent bundle 0T ∗X◦, introduced by Mazzeo and Melrose [28], is a vector bundle with sections

λ
dx

x
+ μ1

dy1

x
+ · · · + μn

dyn

x
near ∂X

ζ1dz1 + · · · + ζn+1dzn+1 away from ∂X.

Recall from [11] that the microlocal support (or wavefront set) of the high energy resolvent is the diagonal conormal 
bundle N∗diag ⊂ 0T X2

0 and its bicharacteristic flow-out 
, which is contained in 0SX◦ × 0SX◦, where

0S∗X◦ = {|ζ |2 = 1 or |λ|2 + |μ|2 = 1} ⊂ 0T X◦.

By Stone’s formula, the spectral measure is microlocally supported on 
, while the singularity at N∗diag cancels 
out by the subtraction between the outgoing resolvent and the incoming resolvent. Therefore the spectral measure is 
a Fourier integral operator associated with the Lagrangian 
. Apart from the boundary behaviour, this Lagrangian 
structure on asymptotically hyperbolic manifolds is analogous to the asymptotically Euclidean case. So we can gain 
similar spectral measure estimates at high energies to (2.4).

To state the microlocalized spectral measure estimates explicitly, let us recall the partition of unity on 0T ∗X◦
in [12]. First of all, we take Q0 microlocally supported away from the spherical bundle 0S∗X◦, say {|ζ |2 >

3 Intriguingly, it is still unknown that what geometric conditions amounts to the analyticity of the resolvent at the bottom of spectrum. However, 
there are some sufficiency results. For instance Guillarmou and Qing [20] shows that the largest real scattering pole of (� − σ (n − σ ))−1 on an 
n + 1-dimensional conformally compact Einstein manifold (X, g) is less than n/2 − 1 if and only if the conformal infinity of (X, g) is of positive 
Yamabe type, where n > 1.
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3/2 or |λ|2 + |μ|2 > 3/2}, which contains the wavefront set of the spectral measure. On the other hand, we divide 
the interval (−3/2, 3/2) into a union of intervals I1, . . . , IN1 with overlapping interiors, and with diameter ≤ δ, which 
is a sufficiently small number, whilst each Ii intersects only Ii−1 and Ii+1. We also take a small strip neighbourhood 
of the boundary such that the sectional curvature is negative; in the meantime, we divide the 0-cotangent bundle over 
this strip into a union of small slices B1, . . . , BN1 such that every Bi ⊂ {λ ∈ Ii}. Then we have 0th-order pseudodiffer-
ential operators Q1, . . . , QN1 supported on them respectively. Next, we divide the remaining region into the union of 
small balls BN1+1, . . . , BN2 with diameter ≤ η, which is also sufficiently small, and have QN1+1, . . . , QN2 supported 
on them respectively. With this partition, we have the estimates for the microlocalized spectral measure.

Proposition 3 ([12]). One can choose a pseudodifferential operator partition of unity

Id =
N∑

k=0

Qk(λ),

where Qk for k �= 0 is supported around the spherical bundle, such that Qk for any k are uniformly (L2-)bounded 
over λ and the kernel of the microlocalized spectral measure reads

Qk(λ)dEP (λ)Q∗
k(λ) = λneiλd(z,z′)a+(λ) + λne−iλd(z,z′)a−(λ) + O(λ−∞), for large λ,

where a± are defined on the forward and backward bicharacteristic flow respectively and satisfying

dj

dλj
a±(λ) =

⎧⎨
⎩

O
(
λ−j

(
1 + λd(z, z′)

)−n/2
)

, if d(z, z′) is small

O
(
λ−n/2−j e−nd(z,z′)/2

)
, if d(z, z′) is large

.

Here we mean by f = O(λ−∞) that for any N ∈ Z+

f ∈ λ−NC∞([0,1]λ−1 × X2
0).

This result is actually better than (2.4) for large λ. Not only does it give the same growth rate in λ, but there is also 
a spatial exponential decay.

Moreover, the restriction theorem (in the sense of Stein and Tomas)

‖dEP (λ)‖
Lp→Lp′ ≤ Cλ(n+1)(1/p−1/p′)−1 where p ∈ [1,2(n + 2)/(n + 4)],

at high energies on non-trapping asymptotically hyperbolic manifolds follows from the above spectral measure esti-
mates. It is well-known that Strichartz [30] insightfully points out the deep relationship between Strichartz estimates 
and restriction theorem. It motivates us to show the Strichartz estimates from these spectral measure estimates, which 
are sufficient to give restriction theorem. In fact, combining Strichartz estimates and dispersive estimates in this paper 
with our previous results of resolvent in [11], spectral measure with applications to restriction theorem and spectral 
multiplier in [12], we have elucidated the following diagram on non-trapping asymptotically hyperbolic manifolds.

Lp boundedness
of spectral multiplier

↑
Strichartz estimate

of Schrödinger equation
← Restriction theorem

of spectral measure
↑ ↑

Dispersive estimate
of Schrödinger propagator

← Pointwise estimates
for spectral measure

↑
Resolvent construction

near continuous spectrum
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3. Schrödinger propagators via spectral measure

The spectral theorem of projection valued measure form for unbounded self-adjoint operators gives the following 
expression of Schrödinger propagators eit� via spectral measure,

eit� = eitn2/4

∞∫
0

eitλ2
dEP (λ).

We remark that since we assume f and F are orthogonal to the eigenfunction spaces the discrete terms don’t show 
up.

We are motivated to employ the spectral measure estimates, including the microlocalized form at high energy (say 
λ > 1) together with the global form at low energy (say λ < 1), to estimate the Schrödinger propagator. As seen on 
Euclidean space or asymptotically conic manifolds, the spectral measure behaves uniformly on the full continuous 
spectrum, for example see [19]. However, comparing (2.2) and Proposition 3, one can see the discrepancy of the order 
of λ between low energies and high energies on n +1-dimensional asymptotically hyperbolic manifolds for n +1 > 3. 
We thus have to split up the propagator to remedy the discrepancy.

One may pick two smooth bump functions χlow supported in [0, 2) and χ∞ supported in (1, ∞) such that χlow +
χ∞ = 1 and split the propagator as

U(t) =
∞∫

0

eitλ2
χlow(λ) dEP (λ) +

∞∫
0

eitλ2
χ∞(λ) dEP (λ).

In accordance with Proposition 3, we also will have to microlocalize the spectral measure at high energies by a family 
of semiclassical pseudodifferential operators {Qk}N0 as follows

Uk(t) =
∞∫

0

eitλ2
χ∞(λ)Qk(λ) dEP (λ).

In summary, we truncate and microlocalize the propagator and gain the following decomposition

eit�−itn2/4 = Ulow(t) +
N∑

k=0

Uk(t).

Returning to the Cauchy problem (1.2), the solution u is given by Duhamel’s formula

u(t, z) = eit�f (z) − i

t∫
0

ei(t−s)�F (s, z) ds.

To prove the Strichartz estimates, we shall invoke Keel–Tao bilinear approach. In our case, one may reduce to the 
energy estimates and dispersive estimates for the following bilinear propagators

Ulow(t)U∗
low(s) =

∞∫
0

ei(t−s)λχ2
low(λ)dEP (λ), (3.1)

Uk(t)U
∗
k (s) =

∞∫
0

ei(t−s)λχ2∞(λ)Qk(λ)dEP (λ)Q∗
k(λ), (3.2)

Uj(t)U
∗
k (s) =

∞∫
ei(t−s)λχ2∞(λ)Qj (λ)dEP (λ)Q∗

k(λ). (3.3)
0



X. Chen / Ann. I. H. Poincaré – AN 35 (2018) 803–829 811
Here (3.1), (3.2) and (3.3) follow from [21, Lemma 5.3]. Aside from these, we also remark the estimates for 
Ulow(t)U∗

k (s) or Uk(t)U
∗
low(s) are the same with Ulow(t)U∗

low(s).
In the next three sections, we prove the energy estimates for them in Proposition 4 and dispersive estimates for (3.1)

and (3.2) in Proposition 6 and for (3.3) in Proposition 9 respectively.

4. Energy estimates for Schrödinger propagators at high energy

We shall prove the L2-boundedness of microlocalized/truncated Schrödinger propagators. More precisely,

Proposition 4 (Energy estimates). The propagator eit�, low energy truncated propagator Ulow, microlocalized high 
energy truncated propagators U0 and Uk for k = 1, 2, . . . are all L2-bounded.

Proof. 4 The boundedness of eit� and Ulow is clear. Since the entire cut off propagator at high energy is of course 
L2-bounded, we can ignore the k = 0 term but only consider Uk for k = 1, 2, . . . .

Our main tool is almost orthogonality lemma established by Cotlar, Knapp and Stein, see for example [16, p. 620].

Lemma 5 (Almost orthogonality). Let {Tj }j∈Z be a family of bounded operators on Hilbert space H obeying

‖T ∗
j Tk‖H→H + ‖TjT

∗
k ‖H→H ≤ γ (j − k) for any j, k ∈ Z,

where the function γ : Z → R
+ satisfies 

∑
j∈Z

√
γ (j) < ∞. Then linear operator T , the limit of 

∑
|j |<N Tj in the 

norm topology of H as N goes to infinity, is H -bounded.

First of all, the propagators are well-defined on L2 if the integrand is supported on a compact subset of (0, ∞)

in λ as the pseudodifferential operator would be L2-bounded uniformly with respect to λ. We want to extend the 
well-definedness to entire positive half real line by almost orthogonality.

The strategy is to get a decomposition of the microlocalized propagator such that every term is an integral of a com-
pactly supported function with respect to the microlocalized spectral measure, and then show the almost orthogonality 
of the decomposition required in Lemma 5.

First of all, we take the decomposition with a compactly supported smooth function ψ ∈ C∞
c [1/2, 2] valued in 

[0, 1] such that

∑
j

ψ

(
λ

2j

)
= 1.

Then we define

Ui,j (t) =
∞∫

0

eitλ2
χ∞(λ)ψ

(
λ

2j

)
Qi(λ) dEP (λ)

= −
∞∫

0

d

dλ

(
eitλ2

χ∞(λ)ψ

(
λ

2j

)
Qi(λ)

)
EP (λ)

and calculate as follows

Ui,j (t)U
∗
i,k(t) =

∫ ∫
d

dλ

(
eitλ2

χ∞(λ)ψ

(
λ

2j

)
Qi(λ)

)
EP (λ)

×EP (μ)
d

dμ

(
e−itμ2

χ∞(μ)ψ

(
μ

2k

)
Q∗

i (μ)

)
dλdμ

4 This proof is essentially due to Hassell and Zhang [21] in case of asymptotically Euclidean manifolds, as only minor modifications are needed 
here. But we give the detailed proof for the self-containedness of the paper.
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=
∫ ∫
λ≤μ

d

dλ

(
eitλ2

χ∞(λ)χ∞(λ)ψ

(
λ

2j

)
Qi(λ)

)
EP (λ)

× d

dμ

(
e−itμ2

χ∞(μ)ψ

(
μ

2k

)
Q∗

i (μ)

)
dλdμ

+
∫ ∫
μ≤λ

d

dλ

(
eitλ2

χ∞(λ)ψ

(
λ

2j

)
Qi(λ)

)
EP (μ)

× d

dμ

(
e−itμ2

χ∞(μ)ψ

(
μ

2k

)
Q∗

i (μ)

)
dλdμ

We then perform integration by parts and get

Ui,j (t)U
∗
i,k(t) =

∫
d

dλ

(
eitλ2

χ∞(λ)ψ

(
λ

2j

)
Qi(λ)

)
EP (λ)

×
(

− e−itλ2
χ∞(λ)ψ

(
λ

2k

)
Q∗

i (λ)

)
dλ

+
∫ (

− eitμ2
χ∞(μ)ψ

(
μ

2j

)
Qi(μ)

)
EP (μ)

× d

dμ

(
e−itμ2

χ∞(μ)ψ

(
μ

2k

)
Q∗

i (μ)

)
dμ

=
∫

χ2∞(λ)ψ

(
λ

2j

)
ψ

(
λ

2k

)
Qi(λ)dEP (λ)Q∗

i (λ)

=
∫

d

dλ

(
χ2∞(λ)ψ

(
λ

2j

)
ψ

(
λ

2k

)
Qi(λ)

)
EP (λ)Q∗

i (λ)

+
∫

χ2∞(λ)ψ

(
λ

2j

)
ψ

(
λ

2k

)
Qi(λ)EP (λ)

d

dλ
Q∗

i (λ).

As implied, Ui,j (t)U
∗
i,k(t) is indeed t -independent. Therefore, we shall prove the L2-boundedness for all t via 

Ui,j (0)U∗
i,k(0), which equals∫ ∫

EP (λ)
d

dλ

(
χ∞(λ)ψ

(
λ

2j

)
Q∗

i (λ)

)
d

dμ

(
Qi(μ)ψ

(
μ

2k

)
χ∞(μ)

)
EP (μ) dλdμ.

We claim Ui,j (0)U∗
i,k(0) obeys the almost orthogonality estimate

‖Ui,j (0)U∗
i,k(0)‖L2→L2 ≤ C2−|j−k|.

In light of the L2-boundedness of spectral projection, it suffices to prove

d

dλ

(
χ∞(λ)ψ

(
λ

2j

)
Q∗

i (λ)

)
d

dμ

(
Qi(μ)ψ

(
μ

2k

)
χ∞(μ)

)
≤ C2−|j−k|.

We denote the operators in the parentheses Q∗
i,j (λ) and Qi,k(μ) respectively. We write the product of the two as

Q∗
i,j (λ)Qi,k(μ) = λn+1μn+1

∫ ∫ ∫
eiλ(z−z′′)·ζ/x′′

qi,j (z
′′, ζ,λ)

×eiμ(z′′−z′)·ζ ′/x′′
qi,k(z

′′, ζ ′,μ) dζdζ ′dz′′,

away from ∂X or

Q∗
i,j (λ)Qi,k(μ) = λn+1μn+1

∫ ∫ ∫
eiλ((x−x′′)λ+(y−y′′)·μ)/x′′

qi,j (x
′′, y′′, λ,μ,λ)

× eiμ((x′′−x′)λ′+(y′′−y′)·μ′)/x′′
q (x′′, y′′, λ′,μ′,μ) dλdμdλ′dμ′dx′′dy′′,
i,k
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near ∂X. The second case is indeed the same with the first, as one can denote (x, y) by (z1, . . . , zn) and (λ, μ) by 
(ζ1, . . . , ζn). Furthermore, one may assume j > k, equivalent to λ > μ, due to the symmetry. We insert a differential 
operator ix ′′ζ · ∂z′′/(λ|ζ |2), to which eiλ(z−z′′)·ζ/x′′

is invariant, and make integration by parts.

λ−n−1μ−n−1Q∗
i,j (λ)Qi,k(μ)

=
∫ ∫ ∫

ix′′ζ · ∂z′′

λ|ζ |2
(
eiλ(z−z′′)·ζ/x′′)

qi,j (z
′′, ζ,λ)eiμ(z′′−z′)·ζ ′/x′′

qi,k(z
′′, ζ ′,μ) dζdζ ′dz′′

= μ

λ

∫ ∫ ∫
eiλ(z−z′′)·ζ/x′′ ζ · ζ ′

|ζ |2 eiμ(z′′−z′)·ζ ′/x′′
qi,j (z

′′, ζ,λ)qi,k(z
′′, ζ ′,μ) dζdζ ′dz′′

− x′′

λ

∫ ∫ ∫
ieiλ(z−z′′)·ζ/x′′

eiμ(z′′−z′)·ζ ′/x′′ ζ

|ζ |2 · ∂z′′
(

qi,j (z
′′, ζ,λ)qi,k(z

′′, ζ ′,μ)

)
dζdζ ′dz′′

Because i �= 0, Qi is microlocally supported around the spherical bundle, namely, |ζ | ≈ |ζ ′| ≈ 1. Therefore, using the 
L2-boundedness of semiclassical pseudodifferential operators and noting λ, μ ≥ 1 on the support of the high energy 
cut-off function χ∞, we deduce

∥∥Q∗
i,j (λ)Qi,k(μ)

∥∥
L2→L2 ≤ C

μ + x′′

λ
≤ C

μ

λ
≤ C2−|j−k|,

which proves the almost orthogonality for t = 0. Almost orthogonality lemma then gives that 
∑

|j |≤l U
∗
i,j (0) strongly 

converges in L2, that is,

lim
l→∞ sup

m>l

∥∥∥∥ ∑
l≤|j |≤m

U∗
i,j (0)f

∥∥∥∥
2

L2
= 0.

We now extend this conclusion to any t . Given f ∈ L2, we want to have

lim
l→∞ sup

m>l

∥∥∥∥ ∑
l≤|j |≤m

U∗
i,j (t)f

∥∥∥∥
2

L2
= lim

l→∞ sup
m>l

∑
l≤|j |,|j ′|≤m

〈Ui,j (t)U
∗
i,j ′(t)f, f 〉 = 0.

In fact, it is easy to reduce the convergence for general t to the case t = 0 by the time independence of the operator 
Ui,j (t)U

∗
i,j (t)

lim
l→∞ sup

m>l

∑
l≤|j |,|j ′|≤m

〈Ui,j (t)U
∗
i,j ′(t)f, f 〉 = lim

l→∞ sup
m>l

∑
l≤|j |,|j ′|≤m

〈Ui,j (0)U∗
i,j ′(0)f,f 〉 = 0

Finally, noting

‖U∗
i (t)‖2 ≤ lim

l→∞

∥∥∥∥ ∑
|j |≤l

U∗
i,j (t)

∥∥∥∥
2

,

we conclude that Ui(t) is uniformly bounded on L2. �
5. Dispersive estimates for Schrödinger propagators I

In this section we establish the dispersive estimates for diagonal microlocalized/truncated Schrödinger propagators. 
We shall show

Proposition 6 (Dispersive estimates I). The long time dispersive estimates for the microlocalized Schrödinger propa-
gators at high energy

∣∣∣∣
∞∫

eitλ2
χ2∞(λ)

(
Qk(λ)dEP (λ)Q∗

k(λ)
)
(z, z′) dλ

∣∣∣∣ ≤ C|t |−∞e−nd(z,z′)/2 (5.1)
0
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hold, provided t > 1 + d(z, z′). The low energy truncated propagator obeys

∣∣∣∣
∞∫

0

eitλ2
χ2

low(λ)dEP (λ, z, z′) dλ

∣∣∣∣ ≤ C|t |−3/2(1 + d(z, z′)
)
e−nd(z,z′)/2 (5.2)

for all times. On the other hand, we have short time dispersive estimates for the high energy truncated propagator 
microlocalized near the diagonal

∣∣∣∣
∞∫

0

eitλ2
χ2∞(λ)

(
Qk(λ)dEP (λ)Q∗

k(λ)
)
(z, z′) dλ

∣∣∣∣ ≤ C|t |−(n+1)/2(1 + d(z, z′))n/2e−nd(z,z′)/2 (5.3)

provided t < 1 + d(z, z′).

Remark 7. If we work on a manifold without conjugate points, this result will reduce to the dispersive estimates (1.6)
on hyperbolic space, where the microlocalization is needless. Moreover, for short time estimates, say t < 1 + d(z, z′), 
we can combine (5.2) and (5.3).

Proof of (5.1). Let us look at the long time dispersion first. Because we want to use stationary phase estimates, 
we have to split the amplitude of the microlocalized propagator into functions compactly supported in λ. To do so, 
we select a bump function φ ∈ C∞

c [1/2, 2] such that 
∑

j φ(2−jλ) = 1 and let φ0(λ) = ∑
j≤0 φ(2−jλ). Then the 

Schrödinger propagator is decomposed as I0 + ∑
j>0 Ij , which is

I0 =
∞∫

0

eitλ2
χ2∞(λ)Qk(λ)dEP (λ)Q∗

k(λ)φ0(λ) dλ

Ij =
∞∫

0

eitλ2
χ2∞(λ)Qk(λ)dEP (λ)Q∗

k(λ)φ(2−jλ) dλ.

• Case 1: d(z, z′) ≤ 1
As t goes to infinity, the phase function is λ2 which is clearly non-degenerate at the stationary point λ = 0.
Noting 0 is not on the support of χ∞, we have I0 = O(t−∞)e−nd(z,z′)/2. On the other hand, noting the phase 

function of the Ij terms are non-stationary, we deduce

∑
j>0

|Ij | =
∑
j>0

∣∣∣∣
∞∫

0

(
1

2itλ

d

dλ

)N

(eitλ2
)χ2∞(λ)Qk(λ)dEP (λ)Q∗

k(λ)φ(2−jλ) dλ

∣∣∣∣

≤ C
∑
j>0

t−Ne−nd(z,z′)/2

2j+1∫
2j−1

λn−2N dλ ≤ Ct−Ne−nd(z,z′)/2.

Since N is arbitrary, we get the estimate.
• Case 2: d(z, z′) ≥ 1
Since d(z, z′) goes to ∞ as well as t , the phase function consists of not only λ2 but also some other term coming 

from the spectral measure. The outgoing and incoming parts of the spectral measure contribute the oscillatory terms 
e−iλd(z,z′) and eiλd(z,z′) respectively. So the new phase function will be tλ2 ∓ λd(z, z′). In the incoming case, such 
phase function isn’t stationary. Then we can select the bump function φ as above and get compactly supported ampli-
tudes. Noting the support of φ0 isn’t intersected with χ∞, we can obtain the dispersive estimates by running the same 
argument of non-stationary phase and integration by parts
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∑
j>0

|Ij | =
∑
j>0

∣∣∣∣
∞∫

0

(
1

2itλ + id(z, z′)
d

dλ

)N

(eitλ2+id(z,z′)λ)ã+(λ)φ(2−jλ) dλ

∣∣∣∣

≤ C
∑
j>0

t−N

2j+1∫
2j−1

λn−2Ne−nd(z,z′)/2 dλ ≤ Ct−Ne−nd(z,z′)/2,

for any large N . We remark that ã± = a±χ2∞ with a± as in Proposition 3. Since χ∞(λ) ≡ 1 for large λ, ã± obeys the 
same estimates with a±.

On the other hand, the phase function tλ2 − λd(z, z′) is stationary at λ = d(z, z′)/(2t). Nonetheless
d(z, z′)/(2t) < 1 doesn’t lie on the support of χ∞ either, we thus can prove the dispersive estimates by the same 
argument. The proof is now complete. �
Proof of (5.2). It can be deduced from the results of the spectral measure at low energy. We make a change of variable 
and get

Ulow =
∞∫

0

eitλ2
χ2

low(λ)dEP (λ, z, z′) dλ

= t−1/2

∞∫
0

eiλ2
χ2

low(t−1/2λ)dEP (t−1/2λ, z, z′) dλ.

We decompose the LHS as I0 + I∞, where

I0 = t−1/2

1∫
0

eiλ2
χ2

low(t−1/2λ)dEP (t−1/2λ, z, z′) dλ

I∞ = t−1/2

∞∫
1

eiλ2
χ2

low(t−1/2λ)dEP (t−1/2λ, z, z′) dλ.

We use (2.3) for low energies to estimate I0 as follows

|I0| = t−1/2
∣∣∣∣

1∫
0

eiλ2
χ2

low(t−1/2λ)dEP (t−1/2λ, z, z′) dλ

∣∣∣∣

≤ t−1/2

1∫
0

(t−1/2λ)2(1 + d(z, z′))e−nd(z,z′)/2 dλ

≤ Ct−3/2(1 + d(z, z′))e−nd(z,z′)/2.

On the other hand, we shall invoke (2.2) for low energies and perform integration by parts on I∞.
• Case 1: t1/2 > 1 + d(z, z′)
We plug in the low energy spectral measure (2.2) and derive that

I∞ = t−1/2

∞∫
1

eiλ2
χ2

low(t−1/2λ)dEP (t−1/2λ, z, z′) dλ

= t−1(ρLρR)n/2

−8i

∞∫
eiλ2

χ2
low(t−1/2λ)λ
1
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×
(

(ρLρR)it
−1/2λa(t−1/2λ) − (ρLρR)−it−1/2λa(−t−1/2λ)

)
dλ,

with a smooth function a supported on [0, 1]. Noting χlow(λ) ≡ 1 on [0, 1], that is the support of a(λ), we perform 
integration by parts and get

I∞ = t−1(ρLρR)n/2

−8i

∞∫
1

(
1

λ

d

dλ

)3(
eiλ2)

χ2
low(t−1/2λ)λ

×
(

(ρLρR)it
−1/2λa(t−1/2λ) − (ρLρR)−it−1/2λa(−t−1/2λ)

)
dλ

= I∞,1 + I∞,2

where we write

I∞,1 = t−1(ρLρR)n/2

8i

(
1

λ

d

dλ

)2(
eiλ2)

χlow(t−1/2λ)

×
(

(ρLρR)it
−1/2λa(t−1/2λ) − (ρLρR)−it−1/2λa(−t−1/2λ)

)∣∣∣∣
λ=1

I∞,2 = t−3/2(ρLρR)n/2

8i

∞∫
1

(
1

λ

d

dλ

)2(
eiλ2)

χlow(t−1/2λ)

×
(

(ρLρR)it
−1/2λa′(t−1/2λ) + (ρLρR)−it−1/2λa′(−t−1/2λ)

+ i(ρLρR)it
−1/2λ ln(ρLρR)a(t−1/2λ) + i(ρLρR)−it−1/2λ ln(ρLρR)a(−t−1/2λ)

)
dλ.

We now use (2.1) to estimate I∞,1. If t < M provided M is sufficiently large,

|I∞,1| ≤ t−1e−nd(z,z′)/2 ≤ CM1/2t−3/2e−nd(z,z′)/2.

On the other hand, if t > M (i.e. t−1/2 is very small), we then use the smoothness of a at 0 and obtain(
(ρLρR)it

−1/2
a(t−1/2) − (ρLρR)−it−1/2

a(−t−1/2)

)
≤ Ct−1/2.

Consequently, we obtain that

|I∞,1| ≤ Ct−3/2e−nd(z,z′)/2.

For I∞,2, by (2.1), we observe the part of the integrand contained in the parentheses is bounded by C(1 + d(z, z′)). 
We make integration by parts two more times and get

|I∞,2| ≤ Ct−3/2(1 + d(z, z′))e−nd(z,z′)/2

×
( ∞∫

1

λ−4 dλ + t−1/2(1 + d(z, z′))
∞∫

1

λ−3 dλ + t−1(1 + d(z, z′)2)

∞∫
1

λ−2 dλ

)
.

Noting 1 + d(z, z′) ≤ t1/2, we conclude that

|I∞,2| ≤ Ct−3/2(1 + d(z, z′))e−nd(z,z′)/2.

• Case 2: 1 < t1/2 < 1 + d(z, z′)
We shall estimate the following integrals instead
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I∞,+ = t−1/2e−nd̃

∞∫
1

eiλ2+id̃t−1/2λλa(t−1/2λ) dλ

I∞,− = t−1/2e−nd̃

∞∫
1

eiλ2−id̃t−1/2λλa(−t−1/2λ) dλ,

where d̃ = ln(ρLρR) and a ∈ C∞
c [0, 1]. Without loss of generality, we assume d̃ ≥ 0. By (2.1), d̃ is an approximation 

of the geodesic distance function. The term I∞,+ is easier, since the first derivative of the phase 2λ + d̃t−1/2 is not 
vanishing. So we directly adopt the standard integration by parts argument as follows. First, we insert an invariant 
operator

|I∞,+| ≤ t−1e−nd̃

∣∣∣∣
∞∫

1

1

2λ + d̃t−1/2

∂

∂λ
eiλ2+id̃t−1/2λ · λa(t−1/2λ) dλ

∣∣∣∣.
Then we perform integration by parts on the integral and get

a(t−1/2)ei+it−1/2d̃

2 + t−1/2d̃
+

∞∫
1

eiλ2+id̃t−1/2λ

(
d̃t−1/2a(t−1/2λ)

(2λ + d̃t−1/2)2
+ λt−1/2a′(t−1/2λ)

2λ + d̃t−1/2

)
dλ

The boundary term and the first term of the integral is bounded by a constant, whilst the second term is yielded to

C

t1/2∫
1

λt−1/2

2λ + t−1/2d̃
dλ.

Also noting t−1/2d̃ > C, we conclude that

|I∞,+| ≤ Ct−3/2e−nd(z,z′)(1 + d(z, z′)).

We now estimate I∞,−. Since 2λ − t−1/2d̃λ might vanish, we have to take a dyadic decomposition. To do so, we 
introduce a partition of unity 

∑
j φ(2−jλ) = 1 with φ ∈ C∞

c [1/2, 2]. We further denote

ψk(λ) = φ
(
2−k|2λ − t−1/2d̃(z, z′)|).

Then we have to estimate the following integrals

I 0∞,− = t−1e−nd̃

∞∫
1

eiλ2−it−1/2d̃λλa(t−1/2λ)
∑
k≤0

ψk(λ) dλ,

I k∞,− = t−1e−nd̃

∞∫
1

eiλ2−it−1/2d̃λλa(t−1/2λ)ψk(λ) dλ, k > 0.

We consider I 0∞,− first. One can find a sufficiently large number M such that for all λ > M we have λ ∼ t−1/2d̃ if 
|2λ − t−1/2d̃| ≤ 2. Since the measure of the support of 

∑
k≤0 ψk(λ) is smaller than 4, we thus get

∣∣∣∣
M∫

1

eiλ2−it−1/2d̃λλa(t−1/2λ)
∑
k≤0

ψk(λ) dλ

∣∣∣∣ ≤ C ≤ Ct−1/2(1 + d(z, z′)).

In the meantime, we have
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∣∣∣∣
∞∫

M

eiλ2−it−1/2d̃λλa(t−1/2λ)
∑
k≤0

ψk(λ) dλ

∣∣∣∣
≤ t−1/2d̃

∣∣∣∣
∞∫

M

eiλ2−it−1/2d̃λ λa(t−1/2λ)

t−1/2d̃

∑
k≤0

ψk(λ) dλ

∣∣∣∣
≤ Ct−1/2(1 + d(z, z′)).

On the other hand, we again use integration by parts N times on I k∞,− for k > 0.

∑
k>0

∣∣∣∣
∞∫

1

eiλ2−it−1/2d̃λλa(t−1/2λ)ψk(λ) dλ

∣∣∣∣

≤
∑
k>0

∣∣∣∣
∞∫

1

(
1

2iλ − it−1/2d̃

∂

∂λ

)N

eiλ2−it−1/2d̃λλa(t−1/2λ)ψk(λ) dλ

∣∣∣∣
≤ Ct−1/2d̃

∑
k>0

2−kN

∫
|2λ−t−1/2d̃|∼2k

λ1−N dλ

≤ Ct−1/2(1 + d(z, z′)).
Plugging these estimates into I 0∞,− and I k∞,− respectively, we conclude

|I∞,−| ≤ Ct−3/2(1 + d(z, z′))e−nd(z,z′)/2.

The proof is now complete. �
Proof of (5.3). Because of the distinction between the long and short distance, we discuss the two cases separately. 
In particular, the exponential decay is negligible in case of short distance, as e−nd(z,z′)/2 is bounded from below. The 
proof of (5.3) in case of small distance is the same with the proof of the dispersive estimates on asymptotically conic 
manifolds by Hassell and Zhang [21], as the spectral measure for small d(z, z′) and large λ obeys the same estimates 
as on asymptotically conic manifolds. In fact, the idea for both long distance and short distance is to perform an 
appropriate dyadic decomposition over the value of the derivative of the phase function for an integration by parts 
argument. We only give the proof for long distance to see the more interesting exponential decay in d(z, z′).

First of all, we rescale the microlocalized high energy truncated propagator Uk as follows

Uk =
∞∫

0

eitλ2
χ2∞(λ)

(
Qk(λ)dEP (λ)Q∗

k(λ)
)
(z, z′) dλ

= t−1/2

∞∫
0

eiλ2
χ2∞(t−1/2λ)

(
QkdEP Q∗

k

)
(t−1/2λ, z, z′) dλ,

provided t < 1 + d(z, z′). Applying Proposition 3 for high energies, we write

Uk = t−(n+1)/2T+ + t−(n+1)/2T−, (5.4)

where

T+ =
∞∫

0

ei(λ2+t−1/2λd(z,z′))λnã+(t−1/2λ, z, z′) dλ

T− =
∞∫

ei(λ2−t−1/2λd(z,z′))λnã−(t−1/2λ, z, z′) dλ
0
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with smooth function ã±(λ, z, z′) on [1, ∞) × X2
0 obeying∣∣∣∣ dj

dλj
ã±(t−1/2λ, z, z′)

∣∣∣∣ = O
(
tn/4λ−n/2−j e−nd(z,z′)/2

)
if d(z, z′) is large.

Now it suffices to prove both T+ and T− are bounded by (1 + d(z, z′))n/2e−nd(z,z′)/2.
We decompose the T+ term further into 

∑
j≥0 Tj,+, where

Tj,+ =
∞∫

0

ei(λ2+t−1/2λd(z,z′))λnã+(t−1/2λ, z, z′)φ(2−jλ) dλ for j > 0

T0,+ =
∞∫

0

ei(λ2+t−1/2λd(z,z′))λnã+(t−1/2λ, z, z′)(1 −
∑
j>0

φ(2−jλ)) dλ,

where we denote, by a partition of unity 
∑

j φ(2−jλ) = 1 with φ ∈ C∞
c [1/2, 2]. It is clear that T0,+ is bounded by 

(1 + d(z, z′))n/2e−nd(z,z′)/2 after a quick application of Proposition 3. On the other hand, for each Tj,+, the phase 
function of this oscillatory integral is actually non-stationary. One thus can insert a differential operator N times 
leaving the exponential term invariant and take integration by parts

|Tj,+| =
∣∣∣∣

∞∫
0

(
1

i(2λ + t−1/2d(z, z′))
∂

∂λ

)N

ei(λ2+t−1/2λd(z,z′))λnã+(t−1/2λ, z, z′)φ(2−jλ) dλ

∣∣∣∣
≤ C

∫
|λ|∼2j

tn/4e−nd(z,z′)/2λn/2−2N dλ

≤ C(1 + d(z, z′))n/2e−nd(z,z′)/2
∫

|λ|∼2j

λn/2−2N dλ.

The sum of Tj,+s in j is clearly convergent if we take N sufficiently large.
For the term T−, the phase function may be stationary, we have to make a subtler decomposition. One may rewrite 

the integral as T− = ∑
k≥0 Tk,−, where

T0,− =
∞∫

0

eiλ2−it−1/2λd(z,z′)λnã−(t−1/2λ, z, z′)
∑
k≤0

ψk(λ) dλ

Tk,− =
∞∫

0

eiλ2−it−1/2λd(z,z′)λnã−(t−1/2λ, z, z′)ψk(λ) dλ, k > 0

ψk(λ) = φ
(

2−k
∣∣2λ − t−1/2d(z, z′)

∣∣).

If we plug the estimates for ã− in T0,−, we will have T0,− bounded by

(1 + d(z, z′))n/2e−nd(z,z′)/2

∞∫
0

tn/4

(1 + d(z, z′))n/2λn/2
λn

∑
k≤0

ψk(λ) dλ.

The latter integral is convergent. In fact, if t−1/2d(z, z′) is bounded, λ will also be bounded, because of

supp

(∑
ψk

)
= {|2λ − t−1/2d(z, z′)| ≤ 2}.
k≤0
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Therefore, the conditions of large distance (large d(z, z′)), short time (small t ), and high energy (large λ), make the 
fraction in the integrand also bounded on the domain. So the λ-integration is convergent. If t−1/2d(z, z′) is large, the 
restriction |2λ − t−1/2d(z, z′)| ≤ 2 from the support of 

∑
k≤0 ψk implies λ ∼ t−1/2d(z, z′). Consequently, for any 

value of t−1/2d(z, z′), we have

tn/4

(1 + d(z, z′))n/2λn/2
λn ≤ C

Then the integral T0,− is bounded by

C

∫
{2λ−t−1/2d(z,z′)<2}

∑
k<0

ψk dλ ≤ C.

For the Tk,− terms, since |2λ − t−1/2d(z, z′)| > 1, namely the phase function is non-stationary, we can employ the 
integration by parts argument. We denote

L− = 1

2λ − t−1/2d(z, z′)
d

dλ

and get the following estimates for 
∑

k>0 Tk,−

∑
k>0

∣∣∣∣
∞∫

0

ei(λ2−t−1/2d(z,z′)λ)λnã−
(
t−1/2λ, z, z′)ψk(λ) dλ

∣∣∣∣

=
∑
k>0

∣∣∣∣
∞∫

0

LN−
(
ei(λ2−t−1/2d(z,z′)λ)

)
λnã−

(
t−1/2λ, z, z′)ψk(λ) dλ

∣∣∣∣
≤ Ce−nd(z,z′)/2

∑
k>0

2−kN

∫
|2λ−t−1/2d(z,z′)|∼2k

λn/2−Ntn/4 dλ

≤ C(1 + d(z, z′))n/2e−nd(z,z′)/2,

provided N is large enough. �
Remark 8. A key point of this integration by parts argument in this proof is that we can have a non-stationary 
phase function in the oscillatory integral. To get the dispersive estimates for the propagator Ui(t)U

∗
j (s), we will get a 

non-stationary phase function and run this argument again.

6. Dispersive estimates for Schrödinger propagators II

Because we will have to establish the retarded estimates for the Strichartz estimates, the off-diagonal microlocalized 
spectral measure QjdEP Q∗

k will confront us. Before stating off-diagonal microlocalized dispersive estimates, we 
have to define all relations of the microlocalization pairs (Qj, Q∗

k).
This was discussed by Guillarmou and Hassell [18] for Sobolev estimates, which is closely related to Strichartz 

estimates. Let us review their notions of outgoing/incoming relations. Suppose gt is the geodesic/bicharacteristic flow 
and Q, Q′ are two semiclassical pseudodifferential operators of semiclassical order 0 and differential order −∞. We 
say Q is not outgoing related to Q′ if the forward flowout gt (WFh(Q

′)) with t ≥ 0 doesn’t meet WFh(Q), whilst Q
is not incoming related to Q′ if the backward flowout gt (WFh(Q

′)) with t ≤ 0 doesn’t meet WFh(Q). It is useful to 
note Q not incoming related to Q′ is equivalent to Q′ not outgoing related to Q.

Proposition 9 (Dispersive estimates II). There is a refined pseudodifferential operator partition of unity Id =∑N
k=0 Qk such that
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∣∣∣∣
∞∫

0

ei(t−s)λ2
χ2∞

(
Qj(λ)dEP (λ)Q∗

k(λ)
)
(z, z′) dλ

∣∣∣∣
≤ C|t − s|−∞e−nd(z,z′)/2

for |t − s| > 1 + d(z, z′) (6.1)

∣∣∣∣
∞∫

0

ei(t−s)λ2
χ2∞

(
Qj(λ)dEP (λ)Q∗

k(λ)
)
(z, z′) dλ

∣∣∣∣
≤ C|t − s|−(n+1)/2(1 + d(z, z′))n/2e−nd(z,z′)/2

for |t − s| < 1 + d(z, z′), (6.2)

hold for all t �= s if WFh(Qj ) ∩ WFh(Qk) �= ∅, for t < s if Qj is not outgoing related to Qk , for s < t if Qj is not 
incoming related to Qk .

Before proving the dispersive estimates, we have to refine the microlocalization for spectral measure and categorize 
all microlocalization pairs {(Qj , Q∗

k)}Nj,k=1, where Q0 is neglected as it is not on the semiclassical wavefront set of 
spectral measure.

Lemma 10. The microlocalization pair (Qj , Q∗
k) with j, k ≥ 1 must obey one of the following relations:

(i) Qj is not outgoing related to Qk .
(ii) Qj is not incoming related to Qk .

(iii) The off-diagonal microlocalized spectral measure at high energy takes the form

Qj(λ)
dj

dλj
dEP (λ)Q∗

k(λ) = eiλd(z,z′)λnM+ + e−iλd(z,z′)λnM− + O(λ−∞), (6.3)

for large λ, where M± are defined on the forward and backward bicharacteristic flow respectively and satisfying

djM±
dλj

=
⎧⎨
⎩

O
(
λ−j

(
1 + λd(z, z′)

)−n/2
)

, if d(z, z′) is small

O
(
λ−n/2−j e−nd(z,z′)/2

)
, if d(z, z′) is large

.

Proof. 5 Recall in Section 2 we have taken a negatively curved strip neighbourhood of ∂X, say {x ≤ 2ε}. Also recall 
the cubes Q1, . . . , QN1 contained in B1, . . . , BN1 , affiliated with I1, · · · , IN1 , over {x ≤ ε} and QN1+1, . . . , QN2 sup-
ported on BN1+1, . . . , BN2 over {x > ε}. Now we also assume {x ≥ 2ε} is compact and geodesically convex. It is true 
as long as ε is sufficiently small.

Therefore there are the following cases of microlocalization:

(1) (Qj , Q∗
k) with Bj ∩ Bk �= ∅, 1 ≤ j ≤ N1 and 1 ≤ k ≤ N1

Since Bj is intersected with Bk , then Ij is intersected with Ik . One may prescribe k = j + 1. Note both Ij and 
Ij+1 are small subintervals in [−3/2, 3/2] and they are contained in Ij ∪ Ij+1. Then one can find a slice Bj,j+1
in {x < ε} ∩ {λ ∈ Ij ∪ Ij+1}. Since Ij ∪ Ij+1 is a small interval in [−3/2, 3/2] too, we can find a pseudodif-
ferential operator Qj,j+1 microlocally supported on Bj,j+1 such that Qj,j+1dEP Q∗

j,j+1 satisfies (6.3). So does 
QjdEP Q∗

k .
(2) (Qj , Q∗

k) with Bj ∩ Bk �= ∅, N1 ≤ j ≤ N2 and N1 ≤ k ≤ N2
Since the diameter of Bj ∪ Bk is bounded by a very small number, Bj and Bk are contained in a very small 
cube Bjk . Then QjkdEP Q∗

jk , with Qjk microlocally supported on Bjk , satisfies (6.3). Consequently, so does 
QjdEP Q∗

k .
(3) (Qj , Q∗

k) with Bj ∩ Bk �= ∅, 1 ≤ j ≤ N1 and N1 ≤ k ≤ N2
Since the diameter of Bk is very small in the sense of Sasaki distance, we can narrow the range of λ variable 
in Ij and the range of x variable in {x < 2ε} such that both Bk and Bj are contained in a small slice Bjk near 

5 The proof is essentially due to Guillarmou and Hassell [18].
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the boundary with {λ ∈ Ij }. Then we again find a pseudodifferential operator Qjk microlocally supported on Bjk

such that QjkdEP Q∗
jk satisfies (6.3).

(4) (Qj , Q∗
k) with Bj ∩ Bk = ∅, 1 ≤ j ≤ N1 and 1 ≤ k ≤ N1

Recall from [29] or [11] that the 0-Hamilton vector field with Hamiltonian p = λ2 +h(y, λ, μ) on asymptotically 
hyperbolic manifold X is

x
∂p

∂λ

∂

∂x
+ x

∂p

∂μ
· ∂

∂y
−

(
μ · ∂p

∂μ
+ x

∂p

∂x

)
∂

∂λ
+

(
∂p

∂λ
μ − x

∂p

∂y

)
· ∂

∂μ
.

The variable λ, along the geodesic, decreases down to −1, in a small neighbourhood of the boundary.
Without loss of generality, one may assume inf(Ij ) > sup(Ik). Take a geodesic γ (t) with γ (0) ∈ Bk . If γ (t)

stays in {x < ε} for t ≥ 0, {γ (t) : t ≥ 0} will be disjoint from Bj , since λ is nonincreasing along the forward 
bicharacteristic near the boundary. On the other hand, if γ (t) goes beyond {x < ε} at time t2 (i.e. γ (t2) ∈ {x ≥ ε}), 
we have λ(0) > 0, hence inf(Ij ) > sup(Ik) > 0. So we can find a maximal interval (t1, t3) containing t2 on {x ≥ ε}
such that λ(t) > 0 for all t < t1 and λ(t) < 0 for all t > t3, since λ is nonincreasing in {x < ε}. Consequently, γ is 
disjoint from Bj whenever t > 0: when 0 < t < t1 i.e. λ < λ(0) < inf(Ij ); when t2 < t < ∞ i.e. λ < 0 < inf(Ij ).

(5) (Qj , Q∗
k) with Bj ∩ Bk = ∅, 1 ≤ j ≤ N1 and N1 ≤ k ≤ N2

Take a geodesic γ with γ (0) ∈ Bj . If sup Ij < 0, then x(t) is non-increasing namely γ (t) will stay in {x < ε} for 
t > 0 and be disjoint from Bk . In the meantime, if inf Ij > 0, γ (t) will stay in {x < ε} for t < 0. If 0 ∈ Ij and 
λ(t0) = 0, x(t) is nonincreasing for all t > t0, since λ is non-positive afterwards. So γ (t) will stay in {x < ε} for 
all t > t0.

(6) (Qj , Q∗
k) with Bj ∩ Bk = ∅, N1 ≤ j ≤ N2 and N1 ≤ k ≤ N2

Consider the function (z, t) → x(gt ). Since dx(gt (z))/dt �= 0 locally in {x > ε/2}, we apply implicit function 
theorem and get an implicit function t (z). We can find a time t (z) such that x(gt(z)) = ε/2. Therefore, for any 
compact set K ⊂ {|ζ | = 1} ∩ {x > ε/2}, there is a T+ > 0 respectively T− < 0 such that gt (K) ⊂ {x < ε/2} for 
all t > T+ respectively t < T−. Assuming Bj and Bk are outgoing related and incoming related, we shall get a 
contradiction. Under this hypothesis and the compactness, there exist two sequences of points {zl} ⊂ {x > ε/2}
and {z′

l} ⊂ {x > ε/2} with two sequences of times {tl : tl < −ι < 0} and {t ′l : t ′l > ι > 0} both going to the same 
point z ∈ {z > ε/2} via the geodesic gt , that is

lim
l→∞gtl (zl) = lim

l→∞gt ′l (z′
l ).

Since T− ≤ t < −ι < ι < t ′ ≤ T+, we can find accumulation points t and t ′ respectively. Then we have gt(z) =
gt ′(z). It gives a periodic geodesic which contradicts the non-trapping condition. Therefore we have either Qj is 
not outgoing related to Qk or Qj is not incoming related to Qk . �

With this lemma, we can prove the dispersive estimates for off-diagonal microlocalized high energy truncated 
Schrödinger propagators.

Proof of Proposition 9. It is proved by the argument of Proposition 6 with minor changes based on the classification 
of microlocalizations in Lemma 10.

If QjdEP (λ)Q∗
k obeys (6.3), it means this operator satisfies the same estimates with the diagonal case as in 

Proposition 3. Therefore, we can get desired dispersive estimates by repeating the proof of Proposition 6.
If Qj and Qk are not outgoing related,6 we claim the Uj(t)U

∗
k (s) for t < s is a Fourier integral operator

∞∫
0

∫
RN

ei(t−s)λ2+λφa(h, z, z′, θ) dθdλ,

provided φ(z, z′, θ) < −ε < 0 is the phase function of the wavefront set 
 of the spectral measure. Since we can 
always write the propagator in this integral form, the only point we need to justify is that φ(z, z′, θ) < −ε < 0.

6 The proof is exactly the same in case Qj and Qk are not incoming related.
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Recall that the forward bicharacteristic flow-out is that the flow-out of the Hamilton vector field of the metric 
function. By standard theory of Lagrangian distributions, the phase function φ can parametrize the forward flow-out 
in the following way that is 
+ is locally furnished coordinates

{(z,φ′
z)|φ′

θ = 0}.
Hence phase function φ of forward bicharacteristic flow-out 
+ satisfies

φ(z, z′, θ) = r(z, z′) ≥ d(z, z′), when φ′
θ = 0

where r is the curve length along the bicharacteristic and d is the geodesic distance. Since Qj is not outgoing related 
to Qk , i.e. the forward geodesic flow-out of WFhQ

∗
k doesn’t meet WFhQj , they are connected by the backward 

flow-out, namely

φ = −r(z, z′) ≤ −d(z, z′) < 0.

The not outgoing relation gives a constantly negative sign of the phase function φ of microlocalized spectral measure 
Qj(λ)dEP (λ)Q∗

k(λ). Since t − s < 0, the phase function of the propagator is negative. So it allows us to play the 
integration by parts argument in Proposition 6 by the differential operator

−i

2λ − φ/
√

s − t

∂

∂λ

to get the prove (6.2), instead of −i/(2λ − t−1/2d(z, z′))∂λ in the proof of (5.3). On the other hand, noting φ and 
t − s have the same sign, namely the phase is non-stationary, we apply the rapid decay estimates, which readily 
shows (6.1). �
7. Strichartz estimates

We turn to proving Theorem 1.
First of all, we shall establish the Strichartz estimates

‖u‖Lq(R,Lr (X)) ≤ C‖f ‖L2(X)

for the homogeneous equations (i.e. F ≡ 0). Recall the low energy truncated propagator and high energy microlocal-
ized propagators. The solution u of the homogeneous equation reads

eitn2/4u(t, x) =
(

Ulow(t) +
N∑

j=0

Uj (t)

)
f (z)

for 0 < t < 1, where

Ulow(t) =
∞∫

0

eitλ2
χlow(λ) dEP (λ) and Uj =

∞∫
0

eitλ2
χ∞(λ)Qj (λ) dEP (λ).

The Strichartz estimates for homogeneous equations

‖eitP 2
f (z)‖L

q
t Lr

z
≤ C‖f ‖L2

z

are equivalent to∥∥∥∥
∫

e−isP 2
G(s, z) ds

∥∥∥∥
L2

z

≤ C‖G‖L
q
t Lr

z
.

Noting the decomposition

ei(−s)P 2 = U∗
low(s) +

N∑
U∗

j (s),
j=0
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it suffices to show∥∥∥∥
∫

U∗
k (s)G(s, z) ds

∥∥∥∥
L2

z

≤ C‖G‖L
q
t Lr

z
,

where k ∈ {0, 1, . . . , N, low}. By T T ∗, it is equivalent to∥∥∥∥
∫ (

Uk(t)U
∗
k (s)F (s, z)

)
ds

∥∥∥∥
L

q
t Lr

z

≤ C‖F‖
L

q′
s Lr′

z

.

One can split the left hand side by time. The long time part reduces to(∫ ∥∥∥∥
∫

|t−s|≥1

Uk(t)U
∗
k (s)F (s, z) ds

∥∥∥∥
q

Lr
z

dt

)1/q

, (7.1)

in the meantime, the short time part reduces to(∫ ∥∥∥∥
∫

|t−s|≤1

Uk(t)U
∗
k (s)F (s, z) ds

∥∥∥∥
q

Lr
z

dt

)1/q

. (7.2)

To estimate these integrals, we need the following mapping properties of the propagators, which we shall prove in 
the last section:

Lemma 11 (Long times). Suppose |t − s| ≥ 1 and 2 < r, ̃r ≤ ∞. Then the following inequalities hold

‖Ulow(t)U∗
low(s)‖

Lr̃′
z →Lr

z
≤ C|t − s|−3/2 (7.3)

‖Uj(t)U
∗
k (s)‖

Lr̃′
z →Lr

z
≤ C|t − s|−3/2 (7.4)

where the last one only holds for either t − s > 1 or s − t > 1 if j �= k and for both if j = k.

Lemma 12 (Short times). Suppose 0 < |t − s| < 1 and 2 < r, ̃r ≤ ∞. Then the following inequalities hold

‖Ulow(t)U∗
low(s)‖

Lr̃′
z →Lr

z
≤ C|t − s|− max{1/2−1/r,1/2−1/r̃}(n+1) (7.5)

‖Uj(t)U
∗
k (s)‖

Lr̃′
z →Lr

z
≤ C|t − s|− max{1/2−1/r,1/2−1/r̃}(n+1), (7.6)

where the last one only holds for either 0 < t − s < 1 or 0 < s − t < 1 if j �= k and for both if j = k.

Assuming these lemmas for the moment, we now continue the proof of Strichartz estimates.
We insert (7.4) and (7.3) into (7.1) and get(∫ ( ∫

|t−s|≥1

∥∥∥Uk(t)U
∗
k (s)F (s, z)

∥∥∥
Lr

z

ds

)q

dt

)1/q

≤ C

(∫ ( ∫
|t−s|≥1

|t − s|−3/2‖F(s, z)‖
Lr′

z
ds

)q

dt

)1/q

≤ ‖F(s, z)‖
L

q′
s Lr′

z

.

We remark the kernel |t − s|−3/2χ|t−s|>1 is integrable so it maps Lq ′
(R) to Lq(R) for any q ≥ 2, where no admissi-

bility is needed.
On the other hand, one can use the short time estimates (7.5) and (7.6). For (q, r) �= (2, 2(n + 1)/(n − 1)), we 

invoke the admissibility condition (1.3) and Hardy–Littlewood–Sobolev inequality
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(∫ ( ∫
|t−s|≤1

‖Uk(t)U
∗
k (s)F (s, z)‖Lr

z
ds

)q

dt

)1/q

≤ C

(∫ ( ∫
|t−s|≤1

1

|t − s|(1/2−1/r)(n+1)
‖F(s, z)‖

Lr′
z

ds

)q

dt

)1/q

≤ C

(∫ ( ∫
|t−s|≤1

1

|t − s|2/q
‖F(s, z)‖

Lr′
z

ds

)q

dt

)1/q

≤ C‖F(s, z)‖
L

q′
s Lr′

z

.

Here the last inequality requires q < 2, which is invalid for endpoints.
The short time endpoint estimates are proved via dispersive estimates and energy estimates by the standard Keel–

Tao argument.
Next, following an argument from [21], we prove the inhomogeneous Strichartz estimates with the homogeneous 

estimates we have proved, that is

‖eitP 2
f (z)‖L

q
t Lr

z
≤ C‖f ‖L2

z
,

provided (q, r) satisfies (1.3). These estimates are equivalent to∥∥∥∥
∫

ei(t−s)P 2
F(s)

∥∥∥∥
L

q
s Lr

z

≤ C‖F‖
L

q̃′
t Lr̃′

z

,

provided (q̃, ̃r) also satisfies (1.3). By Duhamel’s formula, the desired inhomogeneous Strichartz estimates are equiv-
alent to the retarded estimates∥∥∥∥

∫
s<t

ei(t−s)P 2
F(s)

∥∥∥∥
L

q
s Lr

z

≤ C‖F‖
L

q̃′
t Lr̃′

z

. (7.7)

For the non-endpoint case i.e. neither of (q, r) and (q̃, ̃r) is (2, 2(n + 1)/(n − 1)), the retarded estimates (7.7) follow 
immediately from Christ–Kiselev lemma:

Lemma 13 ([13]). Let X, Y be Banach spaces, let I be a time interval, let K ∈ C0(I × I ) be a kernel taking values 
in the space bounded operators from X to Y . Suppose that 1 ≤ p < q ≤ ∞ and∥∥∥∥

∫
I

K(t, s)f (s) ds

∥∥∥∥
L

q
t (I→Y)

≤ C‖f ‖L
p
t (I→X).

Then one has∥∥∥∥
∫

{s∈I :s<t}
K(t, s)f (s) ds

∥∥∥∥
L

q
t (I→Y)

≤ C‖f ‖L
p
t (I→X).

On the other hand, in order to establish the endpoint inhomogeneous estimates, we end up with the following 
bilinear estimates∫ ∫

s<t

〈ei(t−s)P 2
F(s),G(t)〉dsdt ≤ C‖F‖

L2
t L

r′
z
‖G‖

L2
t L

r′
z
.

Plugging in the decomposition of the propagator, we have to establish the following estimates∫ ∫
〈Uj (t)U

∗
k (s)F (s),G(t)〉dsdt ≤ C‖F‖

L2
t L

r′
z
‖G‖

L2
t L

r′
z

(7.8)
s<t



826 X. Chen / Ann. I. H. Poincaré – AN 35 (2018) 803–829
∫ ∫
s<t

〈Ulow(t)U∗
low(s)F (s),G(t)〉dsdt ≤ C‖F‖

L2
t L

r′
z
‖G‖

L2
t L

r′
z

(7.9)

∫ ∫
s<t

〈Ulow(t)U∗
k (s)F (s),G(t)〉dsdt ≤ C‖F‖

L2
t L

r′
z
‖G‖

L2
t L

r′
z
. (7.10)

We want to use the standard Keel–Tao endpoint argument [24, Section 7]. So we have to establish the dispersive 
estimates and energy estimates for these propagators. The energy estimates are proved in Proposition 4. The dispersive 
estimates for Ulow(t)U∗

low(s) are proved in (5.2), while Ulow(t)U∗
k (s) actually satisfies (5.2) as well. Therefore (7.9)

and (7.10) are proved by the standard Keel–Tao retarded estimates.
The tricky one is (7.8). According to Proposition 9, we only have the dispersive estimates for Uj(t)U

∗
k (s) when 

t < s in the case of Qj is not outgoing related to Qk , though (7.8) is proved as above for other cases. Namely, what 
we can prove by the Keel–Tao argument when Qj is not outgoing related to Qk is that∫ ∫

t<s

〈Uj (t)U
∗
k (s)F (s),G(t)〉dsdt ≤ C‖F‖

L2
t L

r′
z
‖G‖

L2
t L

r′
z
.

Nevertheless, noting that the homogeneous Strichartz estimates, by duality, implies∫ ∫
〈Uj (t)U

∗
k (s)F (s),G(t)〉dsdt ≤ C‖F‖

L2
t L

r′
z
‖G‖

L2
t L

r′
z
.

So we still obtain (7.8).

8. Mapping properties of Schrödinger propagators

It remains to prove Lemma 11 and Lemma 12.

Proof of (7.5) and (7.6). The short time behaviour (7.5) and (7.6) come from the interpolation among

‖ · ‖L1→Lr ≤ Ct−(n+1)/2 for any r > 2, (8.1)

‖ · ‖
Lr′→L∞ ≤ Ct−(n+1)/2 for any r > 2, (8.2)

‖ · ‖L2→L2 ≤ C. (8.3)

The last one (8.3) is indeed Proposition 4, while we shall prove (8.1) and (8.2), via dispersive estimates, by a 
comparison argument with hyperbolic space. The identical argument is used to show the restriction theorem in [12].

Observing the RHS of the short time dispersive estimates in Proposition 6, let us consider the kernel

Kt(z, z
′) = t−(n+1)/2(1 + d(z, z′))n/2e−nd(z,z′)/2

instead of the propagators. We claim, for r > 2,

‖Kt‖L1→Lr = sup
z′

‖Kt‖Lr
z
≤ t−(n+1)/2.

Thinking of Kt as a function supported on X2
0, we decompose it as

Kt = Kt · χU + Kt · (1 − χU),

where U is a small neighbourhood of the front face.
The second part is proved by the fact that d(z, z′) is comparable to − log(xx′) away from the front face. Then we 

have

sup
z′

‖Kt‖Lr
z
= t−(n+1)/2 sup

z′

(∫
(1 + d(z, z′))nr/2e−nrd(z,z′)/2dgz

)1/r

≤ Ct−(n+1)/2 sup
x′

∫ ( − log(xx′)
)nr/2

(xx′)nr/2 dx

xn

≤ Ct−(n+1)/2.
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On the other hand, consider the spectral measure restricted to U say Kt,U (z, z′) = Kt · χU . Before looking into the 
specific estimate, we shall compare this region with hyperbolic space Hn+1. To do so, one may further decompose the 
set U into subsets Ui , where on each Ui , we have x ≤ ε, x′ ≤ ε and d(y, yi), d(y′, yi) ≤ ε for some yi ∈ ∂X (where 
the distance is measured with respect to the metric h(y, dy) on ∂X). Choose local coordinates (x, y) on X, centred at 
(0, yi) ∈ ∂X, covering the set Vi = {x ≤ ε, d(y, yi) ≤ ε}, and use these local coordinates to define a map φi from Vi

to a neighbourhood V ′
i of (0, 0) in hyperbolic space Hn+1 using the upper half-space model (such that the map is the 

identity in the given coordinates). The map φi induces a diffeomorphism �i from Ui ⊂ X2
0 to a subset of (Hn+1)2

0, the 
double space for Hn+1, covering the set x ≤ ε, x′ ≤ ε, |y|, |y ′| ≤ ε in this space. Clearly, this map identifies ρL and 
ρR on Ui with corresponding boundary defining functions for the left face and right face on (Hn+1)2

0. We now reduce 
the kernel to

φi ◦ Kt,Ui
◦ φ−1

i (8.4)

as an integral operator on (Hn+1)2
0. After linking the front face to the hyperbolic case, we now can reduce to the 

estimate to the hyperbolic case as follows.

sup
z′

‖K‖Lr
z(Vi ) = C sup

z′
‖K̃‖Lr

z(V
′
i )

≤ C|t |−(n+1)/2,

where K is mapped to K̃ on hyperbolic space and the Lr norm of K̃ on hyperbolic space. �
Proof of (7.3) and (7.4). The long time behaviour results from the interpolation among

‖ · ‖L1→Lr ≤ Ct−3/2 for any r > 2, (8.5)

‖ · ‖
Lr′→L∞ ≤ Ct−3/2 for any r > 2, (8.6)

‖ · ‖
Lr′→Lr ≤ Ct−3/2 for any r > 2, (8.7)

provided t > 1.
The proofs of (8.5) and (8.6) are exactly the same with (8.1) and (8.2).
The novelty in the proof of (8.7) is a non-trivial non-Euclidean ingredient called the Kunze–Stein phenomenon, 

which is named after Kunze and Stein [25]. Specifically, the Kunze–Stein phenomenon on hyperbolic space Hn+1 at 
(2, 2) is expressed as

‖f ∗ F‖L2(Hn+1) ≤ C‖f ‖L2(Hn+1) ·
∞∫

0

|F(ρ)|(1 + ρ)enρ/2dρ,

for any f, F ∈ C0(H
n+1), provided F(ρ) is a radial function. See Cowling’s work [14] for a general result on semi-

simple Lie groups. There is a generalized inequality

‖f ∗ F‖Lr(Hn+1) ≤ C‖f ‖
Lr′ (Hn+1)

·
( ∞∫

0

|F(ρ)|r/2(1 + ρ)enρ/2dρ

)2/r

, for r ≥ 2 (8.8)

obtained by Anker and Pierfelice [2].
According to the long time dispersive estimates (5.1)–(5.2),7 we consider a kernel Kt(z, z′) = t−3/2(1 +

d(z, z′))e−nd(z,z′)/2 on X2
0 and decompose it as

Kt = Kt · χU + Kt · (1 − χU),

where U is a small neighbourhood of the front face.
The part away the front face is proved like the short time case

‖Kt‖Lr′→Lr = ‖Kt‖Lr(X2
0\U) ≤ t−3/2

(∫
(1 + d(z, z′))nr/2e−nrd(z,z′)dgzdgz′

)1/r

≤ Ct−3/2.

7 Note t−(n+1)/2 < t−3/2 for the intermediate times 1 < |t − s| < 1 + d(z, z′).
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For the part near the front face, we link the front face to hyperbolic space as in (8.4) and then have∥∥∥∥
∫

K ∗ f

∥∥∥∥
Lr(Vi)

= C

∥∥∥∥
∫

K̃ ∗ f̃

∥∥∥∥
Lr(V ′

i )

≤ Ct−3/2‖f ‖
Lr′ (Vi)

,

by invoking (8.8), where K and f are mapped to K̃ and f̃ on hyperbolic space respectively. �
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