<span id="page-0-0"></span>



Available online at [www.sciencedirect.com](http://www.sciencedirect.com)



[Ann. I. H. Poincaré – AN 32 \(2015\) 1199–1228](http://dx.doi.org/10.1016/j.anihpc.2014.08.001)



[www.elsevier.com/locate/anihpc](http://www.elsevier.com/locate/anihpc)

# Large solutions to elliptic equations involving fractional Laplacian

Huyuan Chen<sup>a,b</sup>, Patricio Felmer<sup>b</sup>, Alexander Quaas<sup>c,\*</sup>

<sup>a</sup> *Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, PR China*

<sup>b</sup> *Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, UMR2071 CNRS-UChile, Universidad de Chile,*

*Casilla 170 Correo 3, Santiago, Chile*

<sup>c</sup> Departamento de Matemática, Universidad Técnica Federico Santa María Casilla: V-110, Avda. España 1680, Valparaíso, Chile

Received 27 April 2013; received in revised form 8 April 2014; accepted 6 August 2014

Available online 22 September 2014

#### **Abstract**

The purpose of this paper is to study boundary blow up solutions for semi-linear fractional elliptic equations of the form

$$
\begin{cases}\n(-\Delta)^{\alpha}u(x) + |u|^{p-1}u(x) = f(x), & x \in \Omega, \\
u(x) = 0, & x \in \overline{\Omega}^c, \\
\lim_{x \in \Omega, x \to \partial\Omega} u(x) = +\infty,\n\end{cases}
$$
\n(0.1)

where  $p > 1$ ,  $\Omega$  is an open bounded  $C^2$  domain of  $\mathbb{R}^N$ ,  $N \ge 2$ , the operator  $(-\Delta)^{\alpha}$  with  $\alpha \in (0, 1)$  is the fractional Laplacian and  $f: \Omega \to \mathbb{R}$  is a continuous function which satisfies some appropriate conditions. We obtain that problem (0.1) admits a solution with boundary behavior like  $d(x)^{-\frac{2\alpha}{p-1}}$ , when  $1 + 2\alpha < p < 1 - \frac{2\alpha}{\tau_0(\alpha)}$ , for some  $\tau_0(\alpha) \in (-1, 0)$ , and has infinitely many solutions with boundary behavior like  $d(x)^{\tau_0(\alpha)}$ , when  $\max\{1-\frac{2\alpha}{\tau_0}+\frac{\tau_0(\alpha)+1}{\tau_0}, 1\} < p < 1-\frac{2\alpha}{\tau_0}$ . Moreover, we also obtained some uniqueness and non-existence results for problem  $(0.1)$ .

© 2014 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

*Keywords:* Large solutions; Fractional Laplacian; Existence; Uniqueness; Non-existence infinite existence

# **1. Introduction**

In their pioneering work, Keller [\[22\]](#page-28-0) and Osserman [\[27\]](#page-29-0) studied the existence of solutions to the nonlinear reaction diffusion equation

$$
\begin{cases}\n-\Delta u + h(u) = 0, & \text{in } \Omega, \\
u = +\infty, & \text{on } \partial\Omega,\n\end{cases}
$$
\n(1.1)

Corresponding author.

*E-mail addresses:* [hchen@dim.uchile.cl](mailto:hchen@dim.uchile.cl) (H. Chen), [pfelmer@dim.uchile.cl](mailto:pfelmer@dim.uchile.cl) (P. Felmer), [alexander.quaas@usm.cl](mailto:alexander.quaas@usm.cl) (A. Quaas).

<http://dx.doi.org/10.1016/j.anihpc.2014.08.001>

0294-1449/© 2014 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

<span id="page-1-0"></span>where  $\Omega$  is a bounded domain in  $\mathbb{R}^N$ ,  $N \geq 2$ , and *h* is a nondecreasing positive function. They independently proved that this equation admits a solution if and only if *h* satisfies

$$
\int_{1}^{+\infty} \frac{ds}{\sqrt{H(s)}} < +\infty,\tag{1.2}
$$

where  $H(s) = \int_0^s h(t)dt$ , that in the case of  $h(u) = u^p$  means  $p > 1$ . This integral condition on the non-linearity is known as the Keller–Osserman criteria. The solution of  $(1.1)$  found in [\[22\]](#page-28-0) and [\[27\]](#page-29-0) exists as a consequence of the interaction between the reaction and the diffusion term, without the influence of an external source that blows up at the boundary. Solutions exploding at the boundary are usually called boundary blow up solutions or large solutions. From then on, more general boundary blow-up problem:

$$
\begin{cases}\n-\Delta u(x) + h(x, u) = f(x), & x \in \Omega, \\
\lim_{x \in \Omega, x \to \partial \Omega} u(x) = +\infty\n\end{cases}
$$
\n(1.3)

has been extensively studied, see  $[2-4,11-14,20,24-26,29]$ . It has being extended in various ways, weakened the assumptions on the domain and the nonlinear terms, extended to more general class of equations and obtained more information on the uniqueness and the asymptotic behavior of solution at the boundary.

During the last years there has been a renewed and increasing interest in the study of linear and nonlinear integral operators, especially, the fractional Laplacian, motivated by great applications and by important advances on the theory of nonlinear partial differential equations, see  $[5-7,10,15,17-19,28,32]$  for details.

In a recent work, Felmer and Quaas  $[15]$  considered an analog of  $(1.1)$  where the Laplacian is replaced by the fractional Laplacian

$$
\begin{cases}\n(-\Delta)^{\alpha} u + |u|^{p-1} u = f, & \text{in } \Omega, \\
u = g, & \text{in } \overline{\Omega}^c, \\
\lim_{x \in \Omega, x \to \partial \Omega} u(x) = +\infty,\n\end{cases}
$$
\n(1.4)

where  $\Omega$  is a bounded domain in  $\mathbb{R}^N$ ,  $N \ge 2$ , with boundary  $\partial \Omega$  of class  $C^2$ ,  $p > 1$  and the fractional Laplacian operator is defined as

$$
(-\Delta)^{\alpha}u(x) = -\frac{1}{2}\int_{\mathbb{R}^N} \frac{\delta(u, x, y)}{|y|^{N+2\alpha}} dy, \quad x \in \Omega,
$$

with  $\alpha \in (0, 1)$  and  $\delta(u, x, y) = u(x + y) + u(x - y) - 2u(x)$ . The authors proved the existence of a solution to (1.4) provided that *g* explodes at the boundary and satisfies other technical conditions. In case the function *g* blows up with an explosion rate as  $d(x)$ <sup>*β*</sup>, with  $\beta \in (-\frac{2\alpha}{p-1}, 0)$  and  $d(x) = dist(x, \partial \Omega)$ , the solution satisfies

$$
0 < \liminf_{x \in \Omega, x \to \partial \Omega} u(x) d(x)^{-\beta} \le \limsup_{x \in \Omega, x \to \partial \Omega} u(x) d(x)^{\frac{2\alpha}{p-1}} < +\infty.
$$

In  $[15]$  the explosion is driven by the function *g*. The external source *f* has a secondary role, not intervening in the explosive character of the solution. *f* may be bounded or unbounded, in latter case the explosion rate has to be controlled by  $d(x)^{-2\alpha p/(p-1)}$ .

One interesting question not answered in [\[15\]](#page-28-0) is the existence of a boundary blow up solution without external source, that is assuming  $g = 0$  in  $\overline{\Omega}^c$  and  $f = 0$  in  $\Omega$ , thus extending the original result by Keller and Osserman, where solutions exists due to the pure interaction between the reaction and the diffusion terms. It is the purpose of this article to answer positively this question and to better understand how the non-local character influences the large solutions of  $(1.4)$  and what is the structure of the large solutions of  $(1.4)$  with or without sources. Comparing with the Laplacian case, where well possedness holds for (1.4), a much richer structure for the solution set appears for the non-local case, depending on the parameters and the data *f* and *g*. In particular, [Theorem 1.1](#page-2-0) shows that existence, uniqueness, non-existence and infinite existence may occur at different values of  $p$  and  $\alpha$ .

Our first result is on the existence of blowing up solutions driven by the sole interaction between the diffusion and reaction term, assuming the external value  $g$  vanishes. Thus we will be considering the equation

<span id="page-2-0"></span>
$$
(-\Delta)^{\alpha} u + |u|^{p-1} u = f \quad \text{in } \Omega,
$$
  
\n
$$
u = 0 \quad \text{in } \Omega^c,
$$
  
\n
$$
\lim_{x \in \Omega, x \to \partial \Omega} u(x) = +\infty.
$$
  
\n(1.5)

On the external source *f* we will assume the following hypotheses

- (H1) The external source  $f : \Omega \to \mathbb{R}$  is a  $C_{loc}^{\beta}(\Omega)$ , for some  $\beta > 0$ .
- (H2) Defining  $f_-(x) = \max\{-f(x), 0\}$  and  $f_+(x) = \max\{f(x), 0\}$  we have

$$
\limsup_{x \in \Omega, x \to \partial \Omega} f_+(x) d(x)^{\frac{2\alpha p}{p-1}} < +\infty \quad \text{and} \quad \lim_{x \in \Omega, x \to \partial \Omega} f_-(x) d(x)^{\frac{2\alpha p}{p-1}} = 0.
$$

A related condition that we need for non-existence results

(H2∗) The function *f* satisfies

$$
\limsup_{x \in \Omega, x \to \partial \Omega} |f(x)| d(x)^{2\alpha} < +\infty.
$$

Now we are in a position to state our first theorem.

**Theorem 1.1.** Assume that  $\Omega$  is an open, bounded and connected domain of class  $C^2$  and  $\alpha \in (0, 1)$ . Then we have: **Existence:** Assume that f satisfies (H1) and (H2), then there exists  $\tau_0(\alpha) \in (-1,0)$  such that for every p satisfying

$$
1 + 2\alpha < p < 1 - \frac{2\alpha}{\tau_0(\alpha)},\tag{1.6}
$$

*Eq. (1.5) possesses at least one solution u satisfying*

$$
0 < \liminf_{x \in \Omega, x \to \partial\Omega} u(x) d(x)^{\frac{2\alpha}{p-1}} \le \limsup_{x \in \Omega, x \to \partial\Omega} u(x) d(x)^{\frac{2\alpha}{p-1}} < +\infty. \tag{1.7}
$$

**Uniqueness:** If f further satisfies  $f \ge 0$  in  $\Omega$ , then  $u > 0$  in  $\Omega$  and u is the unique solution of (1.5) satisfying (1.7). **Nonexistence:** *If*  $f$  *satisfies*  $(H1)$ *,*  $(H2^*)$  *and*  $f \ge 0$ *, then in the following three cases:* 

i) *For any*  $\tau \in (-1,0) \setminus \{-\frac{2\alpha}{p-1}, \tau_0(\alpha)\}\$  *and p satisfying* (1.6) *or* 

ii) *For any*  $\tau \in (-1, 0)$  *and* 

$$
p \ge 1 - \frac{2\alpha}{\tau_0(\alpha)} \text{ or } \tag{1.8}
$$

iii) *For any*  $\tau \in (-1, 0) \setminus {\tau_0(\alpha)}$  *and* 

$$
1 < p \le 1 + 2\alpha,\tag{1.9}
$$

*Eq. (1.5) does not have a solution u satisfying*

$$
0 < \liminf_{x \in \Omega, x \to \partial\Omega} u(x) d(x)^{-\tau} \le \limsup_{x \in \Omega, x \to \partial\Omega} u(x) d(x)^{-\tau} < +\infty. \tag{1.10}
$$

**Special existence for**  $\tau = \tau_0(\alpha)$ *. Assume*  $f(x) \equiv 0$ *,*  $x \in \Omega$  *and that* 

$$
\max\left\{1-\frac{2\alpha}{\tau_0(\alpha)}+\frac{\tau_0(\alpha)+1}{\tau_0(\alpha)},1\right\}
$$

Then, there exist constants  $C_1 \ge 0$  and  $C_2 > 0$ , such that for any  $t > 0$  there is a positive solution u of Eq. (1.5) *satisfying*

$$
C_1 d(x)^{\min\{\tau_0(\alpha)p + 2\alpha, 0\}} \le t d(x)^{\tau_0(\alpha)} - u(x) \le C_2 d(x)^{\min\{\tau_0(\alpha)p + 2\alpha, 0\}}.
$$
\n(1.12)

<span id="page-3-0"></span>**Remark 1.1.** We remark that hypothesis (H2) and (H2<sup>∗</sup>) are satisfied when  $f \equiv 0$ , so this theorem answer the question on existence rised in [\[15\].](#page-28-0) We also observe that a function *f* satisfying (H2) may also satisfy

$$
\lim_{x \in \Omega, x \to \partial \Omega} f(x) = -\infty,
$$

what matters is that the rate of explosion is smaller than  $\frac{2\alpha p}{p-1}$ .

For proving the existence part of this theorem we will construct appropriate super and sub-solutions. This construction involves the one dimensional truncated Laplacian of power functions given by

$$
C(\tau) = \int_{0}^{+\infty} \frac{\chi_{(0,1)}(t)|1-t|^{\tau} + (1+t)^{\tau} - 2}{t^{1+2\alpha}} dt,
$$
\n(1.13)

for *τ* ∈ (−1, 0) and where  $χ_{(0,1)}$  is the characteristic function of the interval (0, 1). The number *τ*<sub>0</sub>( $α$ ) appearing in the statement of our theorems is precisely the unique  $τ ∈ (-1, 0)$  satisfying  $C(τ) = 0$ . See [Proposition 3.1](#page-10-0) for details.

**Remark 1.2.** For the uniqueness, we would like to mention that, by using iteration technique, Kim in [\[23\]](#page-28-0) has proved the uniqueness of solution to the problem

$$
\begin{cases}\n-\Delta u + u_+^p = 0, & \text{in } \Omega, \\
u = +\infty, & \text{in } \partial\Omega,\n\end{cases}
$$
\n(1.14)

where  $u_+ = \max\{u, 0\}$ , under the hypotheses that  $p > 1$  and  $\Omega$  is bounded and satisfying  $\partial \Omega = \partial \overline{\Omega}$ . García-Melián in  $[20,21]$  introduced some improved iteration technique to obtain the uniqueness for problem  $(1.14)$  with replacing nonlinear term by  $a(x)u^p$ . However, there is a big difficulty for us to extend the iteration technique to our problem [\(1.4\)](#page-1-0) involving fractional Laplacian, which is caused by the nonlocal character.

In the second part, we are also interested in considering the existence of blowing up solutions driven by external source *f* on which we assume the following hypothesis

(H3) There exists  $\gamma \in (-1 - 2\alpha, 0)$  such that

$$
0 < \liminf_{x \in \Omega, x \to \partial \Omega} f(x) d(x)^{-\gamma} \le \limsup_{x \in \Omega, x \to \partial \Omega} f(x) d(x)^{-\gamma} < +\infty.
$$

Depending on the size of *γ* we will say that the external source is weak or strong. In order to gain in clarity, in this case we will state separately the existence, uniqueness and non-existence theorem in this source-driven case.

**Theorem 1.2** (Existence). Assume that  $\Omega$  is an open, bounded and connected domain of class  $C^2$ . Assume that f *satisfies*  $(H1)$  *and let*  $\alpha \in (0, 1)$  *then we have:* 

*(i) (weak source) If f satisfies (H3) with*

$$
-2\alpha - \frac{2\alpha}{p-1} \le \gamma < -2\alpha,\tag{1.15}
$$

then, for every p such that  $(1.8)$  holds, Eq.  $(1.5)$  possesses at least one solution u, with asymptotic behavior near the *boundary given by*

$$
0 < \liminf_{x \in \Omega, x \to \partial \Omega} u(x) d(x)^{-\gamma - 2\alpha} \le \limsup_{x \in \Omega, x \to \partial \Omega} u(x) d(x)^{-\gamma - 2\alpha} < +\infty. \tag{1.16}
$$

*(ii) (strong source) If f satisfies (H3) with*

$$
-1 - 2\alpha < \gamma < -2\alpha - \frac{2\alpha}{p - 1} \tag{1.17}
$$

*then, for every p such that*

$$
p > 1 + 2\alpha,\tag{1.18}
$$

<span id="page-4-0"></span>*Eq. [\(1.5\)](#page-2-0) possesses at least one solution u, with asymptotic behavior near the boundary given by*

$$
0 < \liminf_{x \in \Omega, x \to \partial\Omega} u(x) d(x)^{-\frac{\gamma}{p}} \le \limsup_{x \in \Omega, x \to \partial\Omega} u(x) d(x)^{-\frac{\gamma}{p}} < +\infty. \tag{1.19}
$$

As we already mentioned, in [Theorem 1.1](#page-2-0) the existence of blowing up solutions results from the interaction between the reaction  $u^p$  and the diffusion term  $(-\Delta)^{\alpha}$ , while the role of the external source f is secondary. In contrast, in [Theorem 1.2](#page-3-0) the existence of blowing up solutions results on the interaction between the external source, and the diffusion term in case of weak source and the interaction between the external source and the reaction term in case of strong source.

Regarding uniqueness result for solutions of  $(1.5)$ , as in [Theorem 1.1](#page-2-0) we will assume that  $f$  is non-negative, hypothesis that we need for technical reasons. We have

**Theorem 1.3** (Uniqueness). Assume that  $\Omega$  is an open, bounded and connected domain of class  $C^2$ ,  $\alpha \in (0, 1)$  and f *satisfies (H1) and*  $f \geq 0$ *. Then we have* 

- i) *(weak source) the solution of*  $(1.5)$  *satisfying*  $(1.16)$  *is positive and unique, and*
- ii) *(strong source) the solution of [\(1.5\)](#page-2-0) satisfying (1.19) is positive and unique.*

We complete our theorems with a non-existence result for solution with a previously defined asymptotic behavior, as we saw in [Theorem 1.1.](#page-2-0) We have

**Theorem 1.4** (Non-existence). Assume that  $\Omega$  is an open, bounded and connected domain of class  $C^2$ ,  $\alpha \in (0, 1)$  and *f satisfies*  $(H1)$ *,*  $(H3)$  *and*  $f \geq 0$ *. Then we have* 

- i) (weak source) Suppose that p satisfies [\(1.8\),](#page-2-0)  $\gamma$  satisfies [\(1.15\)](#page-3-0) and  $\tau \in (-1,0) \setminus {\gamma + 2\alpha}$ . Then Eq. [\(1.5\)](#page-2-0) does *not have a solution u satisfying [\(1.10\).](#page-2-0)*
- ii) (strong source) Suppose that p satisfies [\(1.18\),](#page-3-0)  $\gamma$  satisfies [\(1.17\)](#page-3-0) and  $\tau \in (-1,0) \setminus \{\frac{\gamma}{p}\}\$ . Then, Eq. [\(1.5\)](#page-2-0) does not *have a solution u satisfying [\(1.10\).](#page-2-0)*

All theorems stated so far deal with Eq. [\(1.4\)](#page-1-0) in the case  $g \equiv 0$ , but they may also be applied when  $g \neq 0$  and, in particular, these result improve those given in [\[15\].](#page-28-0) In what follows we describe how to obtain this. We start with some notation, we consider  $L^1_\omega(\bar{\Omega}^c)$  the weighted  $L^1$  space in  $\bar{\Omega}^c$  with weight

$$
\omega(y) = \frac{1}{1 + |y|^{N+2\alpha}}, \quad \text{for all } y \in \mathbb{R}^N.
$$

Our hypothesis on the external values *g* is the following

(H4) The function  $g : \overline{\Omega}^c \to \mathbb{R}$  is measurable and  $g \in L^1_\omega(\overline{\Omega}^c)$ .

Given *g* satisfying (H4), we define

$$
G(x) = \frac{1}{2} \int_{\mathbb{R}^N} \frac{\tilde{g}(x+y)}{|y|^{N+2\alpha}} dy, \quad x \in \Omega,
$$
\n(1.20)

where

$$
\tilde{g}(x) = \begin{cases} 0, & x \in \bar{\Omega}, \\ g(x), & x \in \bar{\Omega}^c. \end{cases}
$$
\n(1.21)

We observe that

$$
G(x) = -(-\Delta)^{\alpha} \tilde{g}(x), \quad x \in \Omega.
$$

<span id="page-5-0"></span>Hypothesis (H4) implies that *G* is continuous in  $\Omega$  as seen in [Lemma 2.1](#page-7-0) and has an explosion of order  $d(x)^{\beta-2\alpha}$  towards the boundary  $\partial \Omega$ , if *g* has an explosion of order  $d(x)$ <sup>β</sup> for some  $\beta \in (-1, 0)$ , as we shall see in [Proposition 3.3.](#page-19-0) We observe that under the hypothesis (H4), if *u* is a solution of Eq. [\(1.4\),](#page-1-0) then  $u - \tilde{g}$  is the solution of

$$
\begin{cases}\n(-\Delta)^{\alpha}u(x) + |u|^{p-1}u(x) = f(x) + G(x), & x \in \Omega, \\
u(x) = 0, & x \in \overline{\Omega}^c, \\
\lim_{x \in \Omega, x \to \partial\Omega} u(x) = +\infty\n\end{cases}
$$
\n(1.22)

and vice versa, if *v* is a solution of (1.22), then  $v + \tilde{g}$  is a solution of [\(1.4\).](#page-1-0)

Thus, using [Theorems 1.1–1.4,](#page-2-0) we can state the corresponding results of existence, uniqueness and non-existence for [\(1.4\),](#page-1-0) combining *f* with *g* to define a new external source

$$
F(x) = G(x) + f(x), \quad x \in \Omega.
$$
\n
$$
(1.23)
$$

With this we can state appropriate hypothesis for *g* and thus we can write theorems, one corresponding to each of [Theorem](#page-2-0) 1.1, [1.2,](#page-3-0) [1.3](#page-4-0) and [1.4.](#page-4-0) Even though, at first sight we need that  $G(x)$  is  $C_{loc}^{\beta}(\Omega)$ , actually continuity of *g* is sufficient, as we discuss [Remark 4.1.](#page-20-0)

Moreover, in [Remark](#page-21-0) 4.2 we explain how our results in this paper allows to give a different proof of those obtained by Felmer and Quaas in [\[15\],](#page-28-0) generalizing them.

After this paper was completed, we have learned of a preprint of Abatangelo [\[1\]](#page-28-0) were different, but related results are obtained.

This article is organized as follows. In Section 2 we present some preliminaries to introduce the notion of viscosity solutions, comparison and stability theorems in case of explosion at the boundary. Then we prove an existence theorem for the nonlinear problem with blow up at the boundary, assuming the existence of ordered. Section [3](#page-10-0) is devoted to obtain crucial estimates used to construct super and sub-solutions. In Section [4](#page-19-0) we prove the existence of solution to  $(1.5)$  in [Theorem 1.1](#page-2-0) and [Theorem 1.2.](#page-3-0) In Section [5,](#page-21-0) we give the proof of the uniqueness of solution to  $(1.5)$ in [Theorem 1.1](#page-2-0) and [Theorem 1.3.](#page-4-0) Finally, the nonexistence related to [Theorem](#page-2-0) 1.1 and [Theorem](#page-4-0) 1.4 are shown in Section [6.](#page-24-0)

## **2. Preliminaries and existence theorem**

The purpose of this section is to introduce some preliminaries and prove an existence theorem for blow-up solutions assuming the existence of ordered super-solution and sub-solution which blow up at the boundary. In order to prove this theorem we adapt the theory of viscosity to allow for boundary blow up.

We start this section by defining the notion of viscosity solution for non-local equation, allowing blow up at the boundary, see for example [\[7\].](#page-28-0) We consider the equation of the form:

$$
(-\Delta)^{\alpha} u = h(x, u) \quad \text{in } \Omega, \qquad u = g \quad \text{in } \Omega^c. \tag{2.1}
$$

**Definition 2.1.** We say that a function  $u:(\partial\Omega)^c \to \mathbb{R}$ , continuous in  $\Omega$  and in  $L^1_\omega(\mathbb{R}^N)$  is a viscosity super-solution (sub-solution) of  $(2.1)$  if

$$
u \geq g
$$
 (resp.  $u \leq g$ ) in  $\overline{\Omega}^c$ 

and for every point  $x_0 \in \Omega$  and some neighborhood *V* of  $x_0$  with  $\overline{V} \subset \Omega$  and for any  $\phi \in C^2(\overline{V})$  such that  $u(x_0) =$  $\phi(x_0)$  and

$$
u(x) \ge \phi(x)
$$
 (resp.  $u(x) \le \phi(x)$ ) for all  $x \in V$ ,

defining

$$
\tilde{u} = \begin{cases} \phi & \text{in } V, \\ u & \text{in } V^c, \end{cases}
$$

we have

<span id="page-6-0"></span>
$$
(-\Delta)^{\alpha} \tilde{u}(x_0) \ge h(x_0, u(x_0)) \quad \text{(resp. } (-\Delta)^{\alpha} \tilde{u}(x_0) \le h(x_0, u(x_0))\text{)}.
$$

We say that *u* is a viscosity solution of  $(2.1)$  if it is a viscosity super-solution and also a viscosity sub-solution of  $(2.1)$ .

**Remark 2.1.** This definition is equivalent in the case of super-solution to take  $\phi$  such that  $u - \phi$  has a zero at  $x_0$  that is a global minimum  $(-\Delta)^{\alpha} \tilde{u}(x_0) \ge h(x_0, u(x_0))$  for other definitions of super-solution and their equivalence can be found in [\[9\].](#page-28-0)

It will be convenient for us to have also a notion of classical solution.

**Definition 2.2.** We say that a function  $u:(\partial\Omega)^c \to \mathbb{R}$ , continuous in  $\Omega$  and in  $L^1_\omega(\mathbb{R}^N)$  is a classical solution of [\(2.1\)](#page-5-0) if  $(-\Delta)^{\alpha} u(x)$  is well defined for all *x* ∈ *Ω*,

 $(-\Delta)^{\alpha} u(x) = h(x, u(x)),$  for all  $x \in \Omega$ 

and  $u(x) = g(x)$  a.e. in  $\overline{\Omega}^c$ . Classical super and sub-solutions are defined similarly.

Next we have our first regularity theorem.

**Theorem 2.1.** Let  $g \in L^1_{\omega}(\mathbb{R}^N)$  and  $f \in C^{\beta}_{loc}(\Omega)$ , with  $\beta \in (0, 1)$ , and u be a viscosity solution of

$$
(-\Delta)^{\alpha} u = f \quad \text{in } \Omega, \qquad u = g \quad \text{in } \Omega^c,
$$

*then there exists*  $\gamma > 0$  *such that*  $u \in C_{loc}^{2\alpha + \gamma}(\Omega)$ 

**Proof.** Here we use ideas of [\[32\].](#page-29-0) Suppose without loss of generality that  $B_1 \subset \Omega$  and  $f \in C^{\beta}(B_1)$ . Let *n* be a non-negative, smooth function with support in  $B_1$ , such that  $\eta = 1$  in  $B_{1/2}$ . Now we look at the equation

$$
-\Delta w = \eta f \quad \text{in } \mathbb{R}^N.
$$

By Hölder regularity theory for the Laplacian we find  $w \in C^{2,\beta}$ , so that  $(-\Delta)^{1-\alpha}w \in C^{2\alpha+\beta}$ , see [\[33\]](#page-29-0) or Theorem 3.1 in [\[16\].](#page-28-0) Then, since

$$
(-\Delta)^{\alpha} (u - (-\Delta)^{1-\alpha} w) = 0 \quad \text{in } B_{1/2},
$$

we can use Theorem 1.1 and Remark 9.4 of [\[8\]](#page-28-0) (see also Theorem 4.1 there), to obtain that there exist  $\tilde{\beta}$  such that  $u - (-\Delta)^{1-\alpha} w \in C^{2\alpha+\tilde{\beta}}(B_{1/2})$ , from where we conclude.  $\Box$ 

The Maximum and the Comparison Principles are key tools in the analysis, we present them here for completion.

**Theorem 2.2.** (Maximum Principle) Let  $\mathcal O$  be an open and bounded domain of  $\mathbb{R}^N$  and u be a classical solution of

$$
(-\Delta)^{\alpha} u \le 0 \quad \text{in } \mathcal{O},\tag{2.2}
$$

continuous in  $\overline{O}$  and bounded from above in  $\mathbb{R}^N$ . Then  $u(x) \leq M$ , for all  $x \in O$ , where  $M = \sup_{x \in O} u(x) < +\infty$ .

**Proof.** If the conclusion is false, then there exists  $x' \in \mathcal{O}$  such that  $u(x') > M$ . By continuity of *u*, there exists  $x_0 \in \mathcal{O}$ such that

$$
u(x_0) = \max_{x \in \mathcal{O}} u(x) = \max_{x \in \mathbb{R}^N} u(x)
$$

and then  $(-\Delta)^{\alpha}u(x_0) > 0$ , which contradicts (2.2). **□** 

**Remark 2.2.** Maximum Principle for less regular solution can be found for example in [\[31\].](#page-29-0)

<span id="page-7-0"></span>**Theorem 2.3.** *(Comparison Principle) Let u and v be classical super-solution and sub-solution of*

$$
(-\Delta)^{\alpha} u + h(u) = f \quad \text{in } \mathcal{O},
$$

respectively, where O is an open, bounded domain, the functions  $f: \mathcal{O} \to \mathbb{R}$  is continuous and  $h: \mathbb{R} \to \mathbb{R}$  is increas*ing. Suppose further that u and v are continuous in*  $\overline{O}$  *and*  $v(x) \le u(x)$  *for all*  $x \in \mathbb{O}^c$ *. Then* 

$$
u(x) \ge v(x), \quad x \in \mathcal{O}.
$$

**Proof.** Suppose by contradiction that  $w = u - v$  has a negative minimum in  $x_0 \in \mathcal{O}$ , then  $(-\Delta)^{\alpha} w(x_0) < 0$  and so, by assumptions on *u* and *v*,  $h(u(x_0)) > h(v(x_0))$ , which contradicts the monotonicity of *h*.  $\Box$ 

We devote the rest of the section to the proof of the existence theorem through super and sub-solutions. We prove the theorem by an approximation procedure for which we need some preliminary steps. We need to deal with a Dirichlet problem involving fractional Laplacian operator and with exterior data which blows up away from the boundary. Precisely, on the exterior data *g*, we assume the following hypothesis, given an open, bounded set  $O$  in  $\mathbb{R}^N$  with  $C^2$ boundary:

*(G)*  $g: \mathcal{O}^c \to \mathbb{R}$  is in  $L^1_\omega(\mathcal{O}^c)$  and it is of class  $C^2$  in  $\{z \in \mathcal{O}^c, dist(z, \partial \mathcal{O}) \leq \delta\}$ , where  $\delta > 0$ .

In studying the nonlocal problem [\(1.4\)](#page-1-0) with explosive exterior source, we have to adapt the stability theorem and the existence theorem for the linear Dirichlet problem. The following lemma is important in this direction.

**Lemma 2.1.** Assume that  $\mathcal{O}$  *is an open, bounded domain in*  $\mathbb{R}^N$  *with*  $C^2$  *boundary. Let*  $w : \mathbb{R}^N \to \mathbb{R}$ *:* 

- (i) If  $w \in L^1_\omega(\mathbb{R}^N)$  and w is of class  $C^2$  in  $\{z \in \mathbb{R}^N, d(z, 0) \leq \delta\}$  for some  $\delta > 0$ , then  $(-\Delta)^\alpha w$  is continuous in  $\overline{O}$ .
- (ii) If  $w \in L^1_{\omega}(\mathbb{R}^N)$  and w is of class  $C^2$  in  $\mathcal{O}$ , then  $(-\Delta)^{\alpha}w$  is continuous in  $\mathcal{O}$ .
- (iii) *If*  $w \in L^1_\omega(\mathbb{R}^N)$  *and*  $w \equiv 0$  *in*  $\mathcal{O}$ *, then*  $(-\Delta)^\alpha w$  *is continuous in*  $\mathcal{O}$ *.*

**Proof.** We first prove (ii). Let  $x \in \Omega$  and  $\eta > 0$  such that  $B(x, 2\eta) \subset \Omega$ . Then we consider

$$
(-\Delta)^{\alpha}u(x) = L_1(x) + L_2(x),
$$

where

$$
L_1(x) = \int_{B(0,\eta)} \frac{\delta(u,x,y)}{|y|^{N+2\alpha}} dy \text{ and } L_2(x) = \int_{B(0,\eta)^c} \frac{\delta(u,x,y)}{|y|^{N+2\alpha}} dy.
$$

Since *w* is of class  $C^2$  in  $\mathcal{O}$ , we may write  $L_1$  as

$$
L_1(x) = \int_0^{\eta} \left\{ \int_{S^{N-1}} \int_1^1 \int_1^1 t \omega^t D^2 w(x + str\omega) \omega dt ds d\omega \right\} r^{1-\alpha} dr,
$$

where the term inside the brackets is uniformly continuous in  $(x, r)$ , so the resulting function  $L_1$  is continuous. On the other hand we may write  $L_2$  as

$$
L_2(x) = -2w(x) \int\limits_{B(0,\eta)^c} \frac{dy}{|y|^{N+2\alpha}} - 2 \int\limits_{B(x,\eta)^c} \frac{w(z)dz}{|z-x|^{N+2\alpha}},
$$

from where  $L_2$  is also continuous. The proof of (i) and (iii) are similar.  $\Box$ 

The next theorem gives the stability property for viscosity solutions in our setting.

**Theorem 2.4.** Suppose that  $\mathcal O$  is an open, bounded and  $C^2$  domain and  $h : \mathbb R \to \mathbb R$  is continuous. Assume that  $(u_n)$ ,  $n \in \mathbb{N}$  is a sequence of functions, bounded in  $L^1_\omega(\mathcal{O}^c)$  and  $f_n$  and  $f$  are continuous in  $\mathcal O$  such that:

<span id="page-8-0"></span> $(-\Delta)^{\alpha}u_n + h(u_n) \geq f_n$  (resp.  $(-\Delta)^{\alpha}u_n + h(u_n) \leq f_n$ ) *in*  $\emptyset$  *in viscosity sense,*  $u_n \to u$  *locally uniformly in*  $\mathcal{O}_n$  $u_n \to u$  *in*  $L^1_\omega(\mathbb{R}^N)$ *, and*  $f_n \to f$  *locally uniformly in*  $\mathcal{O}$ *.* 

*Then,*  $(-\Delta)^{\alpha}u + h(u) \geq f$  (resp.  $(-\Delta)^{\alpha}u + h(u) \leq f$ ) *in*  $\mathcal O$  *in viscosity sense.* 

**Proof.** If  $|u_n| \leq C$  in  $\mathcal O$  then we use Lemma 4.3 of [\[7\].](#page-28-0) If  $u_n$  is unbounded in  $\mathcal O$ , then  $u_n$  is bounded in  $\mathcal O_k =$  ${x \in \mathcal{O}, \text{dist}(x, \partial \mathcal{O}) \geq \frac{1}{k}}$ , since  $u_n$  is continuous in  $\mathcal{O}$ , and then by Lemma 4.3 of [\[7\],](#page-28-0) *u* is a viscosity solution of  $(-\Delta)^{\alpha} u + h(u) \geq f$  in  $\mathcal{O}_k$  for any *k*. Thus *u* is a viscosity solution of  $(-\Delta)^{\alpha} u + h(u) \geq f$  in  $\mathcal{O}$  and the proof is completed.  $\square$ 

An existence result for the Dirichlet problem is given as follows:

**Theorem 2.5.** Suppose that O is an open, bounded and  $C^2$  domain,  $g: \mathcal{O}^c \to \mathbb{R}$  satisfies (G),  $f: \overline{\mathcal{O}} \to \mathbb{R}$  is continuous,  $f \in C_{loc}^{\beta}(\mathcal{O})$ , with  $\beta \in (0, 1)$ , and  $p > 1$ . Then there exists a classical solution u of

$$
\begin{cases}\n(-\Delta)^{\alpha}u(x) + |u|^{p-1}u(x) = f(x), & x \in \mathcal{O}, \\
u(x) = g(x), & x \in \mathcal{O}^c,\n\end{cases}
$$
\n(2.3)

*which is continuous in*  $\overline{O}$ .

In proving Theorem 2.5, we will use the following lemma:

**Lemma 2.2.** Suppose that  $\mathcal O$  is an open, bounded and  $C^2$  domain,  $f : \bar{\mathcal O} \to \mathbb R$  is continuous and  $C > 0$ . Then there *exist a classical solution of*

$$
\begin{cases}\n(-\Delta)^{\alpha}u(x) + Cu(x) = f(x), & x \in \mathcal{O}, \\
u(x) = 0, & x \in \mathcal{O}^c,\n\end{cases}
$$
\n(2.4)

*which is continuous in*  $\overline{O}$ *.* 

**Proof.** For the existence of a viscosity solution *u* of (2.4), that is continuous in  $\overline{O}$ , we refers to Theorem 3.1 in [\[15\].](#page-28-0) Now we apply Theorem 2.6 of [\[7\]](#page-28-0) to conclude that *u* is  $C_{loc}^{\theta}(\mathcal{O})$ , with  $\theta > 0$ , and then we use [Theorem 2.1](#page-6-0) to conclude that the solution is classical (see also Proposition 1.1 and 1.4 in [\[30\]\)](#page-29-0).  $\Box$ 

Using Lemma 2.2, we find  $\overline{V}$ , a classical solution of

$$
\begin{cases}\n(-\Delta)^{\alpha}\bar{V}(x) = -1, & x \in \mathcal{O}, \\
\bar{V}(x) = 0, & x \in \mathcal{O}^c,\n\end{cases}
$$
\n(2.5)

which is continuous in  $\overline{O}$  and negative in  $O$ . It is classical since we apply Theorem 2.6 of [\[7\]](#page-28-0) to conclude that *u* is  $C^{\theta}_{loc}(\mathcal{O})$ , with  $\theta > 0$ , and then we use [Theorem 2.1](#page-6-0) to conclude that the solution is classical (see also Propositions 1.1) and 1.4 in [\[30\]\)](#page-29-0).

Now we prove Theorem 2.5.

**Proof** of **Theorem 2.5.** Under assumption *(G)* and in view of the hypothesis on  $\mathcal{O}$ , we may extend *g* to  $\bar{g}$  in  $\mathbb{R}^N$  as a  $C^2$  function in  $\{z \in \mathbb{R}^N, d(z, 0) \le \delta\}$ . We certainly have  $\overline{g} \in L^1_\omega(\mathbb{R}^N)$  and, by [Lemma 2.1](#page-7-0)  $(-\Delta)^\alpha \overline{g}$  is continuous in  $\overline{O}$ . Next we use Lemma 2.2 to find a solution *v* of Eq. (2.4) with  $f(x)$  replaced by  $f(x) - (-\Delta)^{\alpha} \overline{g}(x) - C \overline{g}(x)$ , where  $C > 0$ . Then we define  $u = v + \overline{g}$  and we see that *u* is continuous in  $\overline{O}$  and it satisfies in the viscosity sense

$$
\begin{cases}\n(-\Delta)^{\alpha}u(x) + Cu(x) = f(x), & x \in \mathcal{O}, \\
u(x) = g(x), & x \in \mathcal{O}^c.\n\end{cases}
$$

Now we use Theorem 2.6 in [\[7\]](#page-28-0) and then [Theorem 2.1](#page-6-0) to conclude that *u* is a classical solution. Continuing the proof, we find super and sub-solutions for  $(2.3)$ . We define

<span id="page-9-0"></span>
$$
u_{\lambda}(x) = \lambda \bar{V}(x) + \bar{g}(x), \quad x \in \mathbb{R}^{N},
$$

where  $\lambda \in \mathbb{R}$  and  $\overline{V}$  is given in [\(2.5\).](#page-8-0) We see that  $u_{\lambda}(x) = g(x)$  in  $\mathcal{O}^c$  for any  $\lambda$  and for  $\lambda$  large (negative),  $u_{\lambda}$  satisfies

$$
(-\Delta)^{\alpha}u_{\lambda}(x) + |u_{\lambda}(x)|^{p-1}u_{\lambda}(x) - f(x) \geq (-\Delta)^{\alpha}\bar{g}(x) - \lambda - f(x) - |\bar{g}(x)|^{p},
$$

for  $x \in \mathcal{O}$ . Since  $(-\Delta)^{\alpha} \bar{g}$ ,  $\bar{g}$  and  $f$  are bounded in  $\bar{\mathcal{O}}$ , choosing  $\lambda_1 < 0$  large enough we find that  $u_{\lambda_1} \ge 0$  is a super-solution of [\(2.3\)](#page-8-0) with  $u_{\lambda_1} = g$  in  $\mathcal{O}^c$ .

On the other hand, for  $\lambda > 0$  we have

$$
(-\Delta)^{\alpha} u_{\lambda}(x) + |u_{\lambda}|^{p-1} u_{\lambda}(x) - f(x) \leq (-\Delta)^{\alpha} \bar{g}(x) - \lambda + |\bar{g}|^{p-1} \bar{g}(x) - f(x).
$$

As before, there is  $\lambda_2 > 0$  large enough, so that  $u_{\lambda_2}$  is a sub-solution of [\(2.3\)](#page-8-0) with  $u_{\lambda_2} = g$  in  $\mathcal{O}^c$ . Moreover, we have that  $u_{\lambda_2} < u_{\lambda_1}$  in  $\mathcal O$  and  $u_{\lambda_2} = u_{\lambda_1} = g$  in  $\mathcal O^c$ .

Let  $u_0 = u_{\lambda_2}$  and define iteratively, using the above argument, the sequence of functions  $u_n$  ( $n \ge 1$ ) as the classical solutions of

$$
(-\Delta)^{\alpha} u_n(x) + C u_n(x) = f(x) + C u_{n-1}(x) - |u_{n-1}|^{p-1} u_{n-1}(x), \quad x \in \mathcal{O},
$$
  

$$
u_n(x) = g(x), \quad x \in \mathcal{O}^c,
$$

where  $C > 0$  is so that the function  $r(t) = Ct - |t|^{p-1}t$  is increasing in the interval  $[\min_{x \in \bar{O}} u_{\lambda_2}(x), \max_{x \in \bar{O}} u_{\lambda_1}(x)].$ Next, using [Theorem 2.3](#page-7-0) we get

$$
u_{\lambda_2} \le u_n \le u_{n+1} \le u_{\lambda_1}
$$
 in  $\mathcal{O}$ , for all  $n \in \mathbb{N}$ .

Then we define  $u(x) = \lim_{n \to +\infty} u_n(x)$ , for  $x \in \mathcal{O}$  and  $u(x) = g(x)$ , for  $x \in \mathcal{O}^c$  and we have

$$
u_{\lambda_2} \le u \le u_{\lambda_1} \quad \text{in } \mathcal{O}. \tag{2.6}
$$

Moreover,  $u_{\lambda_1}, u_{\lambda_2} \in L^1_\omega(\mathbb{R}^N)$  so that  $u_n \to u$  in  $L^1_\omega(\mathbb{R}^N)$ , as  $n \to \infty$ .

By interior estimates as given in [\[6\],](#page-28-0) for any compact set *K* of  $O$ , we have that  $u_n$  has uniformly bounded  $C^{\theta}(K)$ norm. So, by Ascoli–Arzela Theorem we have that *u* is continuous in *K* and  $u_n \to u$  uniformly in *K*. Taking a sequence of compact sets  $K_n = \{z \in \mathcal{O}, d(z, \partial \mathcal{O}) \geq \frac{1}{n}\}\$ , and  $\mathcal{O} = \bigcup_{n=1}^{+\infty} K_n$ , we find that *u* is continuous in  $\mathcal O$  and, by [Theorem 2.4,](#page-7-0) *u* is a viscosity solution of [\(2.3\).](#page-8-0) Now we apply Theorem 2.6 of [\[7\]](#page-28-0) to find that *u* is  $C_{loc}^{\theta}(\mathcal{O})$ , and then we use [Theorem 2.1](#page-6-0) con conclude that *u* is a classical solution. In addition, *u* is continuous up to the boundary by  $(2.6)$ .  $\square$ 

**Remark 2.3.** In the above limiting proceeding half relaxed limits can be use instead of  $C^{\theta}$  regularity.

Now we are in a position to prove the main theorem of this section. We prove the existence of a blow-up solution of [\(1.5\)](#page-2-0) assuming the existence of suitable super and sub-solutions.

**Theorem 2.6.** Assume that  $\Omega$  is an open, bounded domain of class  $C^2$ ,  $p > 1$  and f satisfy (H1). Suppose there exists a super-solution  $\bar U$  and a sub-solution <u>U</u> of [\(1.5\)](#page-2-0) such that  $\bar U$  and <u>U</u> are of class  $C^2$  in  $\Omega$ , <u>U</u>,  $\bar U\in L^1_\omega(\R^N)$ ,

 $\overline{U} \geq \underline{U}$  *in*  $\Omega$ ,  $\liminf_{x \in \Omega, x \to \partial \Omega} \underline{U}(x) = +\infty$  *and*  $\overline{U} = \underline{U} = 0$  *in*  $\overline{\Omega}^c$ .

*Then there exists at least one solution u of [\(1.5\)](#page-2-0) in the viscosity sense and*

$$
\underline{U} \le u \le \overline{U} \quad \text{in } \Omega.
$$

*Additionally, if*  $f \geq 0$  *in*  $\Omega$ *, then*  $u > 0$  *in*  $\Omega$ *.* 

**Proof.** Let us consider  $\Omega_n = \{x \in \Omega : d(x) > 1/n\}$  and use [Theorem 2.5](#page-8-0) to find a solution  $u_n$  of

$$
\begin{cases}\n(-\Delta)^{\alpha}u(x) + |u|^{p-1}u(x) = f(x), & x \in \Omega_n, \\
u(x) = \underline{U}(x), & x \in \Omega_n^c,\n\end{cases}
$$
\n(2.7)

<span id="page-10-0"></span>We just replace O by  $\Omega_n$  and define  $\delta = \frac{1}{4n}$ , so that  $\underline{U}(x)$  satisfies assumption *(G)*. We notice that  $\Omega_n$  is of class *C*<sup>2</sup> for  $n \geq N_0$ , for certain  $N_0$  large. Next we show that  $u_n$  is a sub-solution of [\(2.7\)](#page-9-0) in  $\Omega_{n+1}$ . In fact, since  $u_n$  is the solution of [\(2.7\)](#page-9-0) in  $\Omega_n$  and *U* is a sub-solution of (2.7) in  $\Omega_n$ , by [Theorem 2.3,](#page-7-0)

$$
u_n \geq \underline{U} \quad \text{in } \Omega_n.
$$

Additionally,  $u_n = U$  in  $\Omega_n^c$ . Then, for  $x \in \Omega_{n+1} \setminus \Omega_n$ , we have

$$
(-\Delta)^{\alpha}u_n(x) = -\frac{1}{2}\int_{\mathbb{R}^N} \frac{\delta(u_n, x, y)}{|y|^{N+2\alpha}} dy \le (-\Delta)^{\alpha} \underline{U}(x),
$$

so that  $u_n$  is a sub-solution of [\(2.7\)](#page-9-0) in  $\Omega_{n+1}$ . From here and since  $u_{n+1}$  is the solution of (2.7) in  $\Omega_{n+1}$  and  $\bar{U}$  is a super-solution of [\(2.7\)](#page-9-0) in  $\Omega_{n+1}$ , by [Theorem 2.3,](#page-7-0) we have  $u_n \leq u_{n+1} \leq \bar{U}$  in  $\Omega_{n+1}$ . Therefore, for any  $n \geq N_0$ ,

 $\underline{U} \leq u_n \leq u_{n+1} \leq \overline{U}$  in  $\Omega$ .

Then we can define the function *u* as

$$
u(x) = \lim_{n \to +\infty} u_n(x), \quad x \in \Omega \quad \text{and} \quad u(x) = 0, \quad x \in \overline{\Omega}^c
$$

and we have

$$
\underline{U}(x) \le u(x) \le \overline{U}(x), \quad x \in \Omega.
$$

Since <u>U</u> and  $\bar{U}$  belong to  $L_{\omega}^1(\mathbb{R}^N)$ , we see that  $u_n \to u$  in  $L_{\omega}^1(\mathbb{R}^N)$ , as  $n \to \infty$ . Now we repeat the arguments of the proof of [Theorem 2.5](#page-8-0) to find that *u* is a classical solution of [\(1.5\).](#page-2-0) Finally, if *f* is positive we easily find that *u* is positive, again by a contradiction argument.  $\Box$ 

# **3. Some estimates**

In order to prove our existence theorems we will use [Theorem 2.6,](#page-9-0) so that it is crucial to have available super and sub-solutions to  $(1.4)$ . In this section we provide the basic estimates that will allow to obtain in the next section the necessary super and sub-solutions.

To this end, we use appropriate powers of the distance function *d* and the main result in this section are the estimates given in Proposition [3.2,](#page-11-0) that provides the asymptotic behavior of the fractional operator applied to *d*.

But before going to this estimates, we describe the behavior of the function *C* defined in [\(1.13\),](#page-3-0) which is a *C*<sup>2</sup> defined in  $(-1, 2\alpha)$ . We have:

**Proposition 3.1.** For every  $\alpha \in (0, 1)$  there exists a unique  $\tau_0(\alpha) \in (-1, 0)$  such that  $C(\tau_0(\alpha)) = 0$  and

$$
C(\tau)(\tau - \tau_0(\alpha)) < 0, \quad \text{for all } \tau \in (-1, 0) \setminus \{\tau_0(\alpha)\}.
$$
 (3.1)

*Moreover, the function*  $\tau_0$  *satisfies* 

$$
\lim_{\alpha \to 1^{-}} \tau_0(\alpha) = 0 \quad \text{and} \quad \lim_{\alpha \to 0^{+}} \tau_0(\alpha) = -1. \tag{3.2}
$$

**Proof.** We first observe that  $C(0) < 0$  since the integrand in [\(1.13\)](#page-3-0) is zero in (0, 1) and negative in (1, + $\infty$ ). Next easily see that

$$
\lim_{\tau \to -1^+} C(\tau) = +\infty,\tag{3.3}
$$

since, as  $\tau$  approaches  $-1$ , the integrand loses integrability at 0. Next we see that  $C(\cdot)$  is strictly convex in  $(-1, 0)$ , since

$$
C'(\tau) = \int_{0}^{+\infty} \frac{|1 - t|^{\tau} \chi_{(0,1)}(t) \log |1 - t| + (1 + t)^{\tau} \log(1 + t)}{t^{1 + 2\alpha}} dt
$$

and

$$
C''(\tau) = \int_0^{+\infty} \frac{|1-t|^{\tau}[\chi_{(0,1)}(t)\log|1-t|]^2 + (1+t)^{\tau}[\log(1+t)]^2}{t^{1+2\alpha}}dt > 0.
$$

The convexity  $C(\cdot)$ ,  $C(0) < 0$  and [\(3.3\)](#page-10-0) allow to conclude the existence and uniqueness of  $\tau_0(\alpha) \in (-1, 0)$  such that [\(3.1\)](#page-10-0) holds. To prove the first limit in [\(3.2\),](#page-10-0) we proceed by contradiction, assuming that for  $\{\alpha_n\}$  converging to 1 and  $\tau_0 \in (-1, 0)$  such that

$$
\tau_0(\alpha_n)\leq \tau_0<0.
$$

Then, for a constant  $c_1 > 0$  we have

$$
\lim_{\alpha_n \to 1^-} \int_0^{\frac{1}{2}} \frac{(1-t)^{\tau_0(\alpha_n)} + (1+t)^{\tau_0(\alpha_n)} - 2}{t^{1+2\alpha_n}} dt \ge c_1 \lim_{\alpha_n \to 1^-} \int_0^{\frac{1}{2}} t^{1-2\alpha_n} dt = +\infty
$$

and, for a constant  $c_2$  independent of  $n$ , we have

$$
\int_{\frac{1}{2}}^{+\infty} \left| \frac{\chi_{(0,1)}(t)(1-t)^{\tau_0(\alpha_n)} + (1+t)^{\tau_0(\alpha_n)} - 2}{t^{1+2\alpha_n}} \right| dt \leq c_2,
$$

contradicting the fact that  $C(\tau_0(\alpha_n)) = 0$ . For the second limit in [\(3.2\),](#page-10-0) we proceed similarly, assuming that for  $\{\alpha_n\}$ converging to 0 and  $\bar{\tau}_0 \in (-1, 0)$  such that

$$
\tau_0(\alpha_n)\geq \bar\tau_0>-1.
$$

There are positive constants  $c_1$  and  $c_2$  we have such that

$$
\int_{0}^{2} \left| \frac{\chi_{0,1}(t)(1-t)^{\tau_0(\alpha_n)} + (1+t)^{\tau_0(\alpha_n)} - 2}{t^{1+2\alpha_n}} \right| dt \leq c_1
$$

and

$$
\lim_{n\to\infty}\int_{2}^{+\infty}\frac{(1+t)^{\tau_0(\alpha_n)}-2}{t^{1+2\alpha_n}}dt\leq-c_2\lim_{n\to\infty}\int_{2}^{+\infty}\frac{1}{t^{1+2\alpha_n}}dt=-\infty,
$$

contradicting again that  $C(\tau_0(\alpha_n)) = 0$ .  $\Box$ 

Next we prove our main result in this section. We assume that  $\delta > 0$  is such that the distance function  $d(\cdot)$  is of class  $C^2$  in  $A_\delta = \{x \in \Omega, d(x) < \delta\}$  and we define

$$
V_{\tau}(x) = \begin{cases} l(x), & x \in \Omega \setminus A_{\delta}, \\ d(x)^{\tau}, & x \in A_{\delta}, \\ 0, & x \in \Omega^c, \end{cases}
$$
 (3.4)

where  $\tau$  is a parameter in (−1, 0) and the function *l* is positive such that  $V_{\tau}$  is  $C^2$  in  $\Omega$ . We have the following

**Proposition 3.2.** Assume  $\Omega$  is a bounded, open subset of  $\mathbb{R}^N$  with a  $C^2$  boundary and let  $\alpha \in (0, 1)$ . Then there exists  $\delta_1 \in (0, \delta)$  *and a constant*  $C > 1$  *such that:* 

(i) If 
$$
\tau \in (-1, \tau_0(\alpha))
$$
, then  
\n
$$
\frac{1}{C} d(x)^{\tau - 2\alpha} \le -(-\Delta)^{\alpha} V_{\tau}(x) \le C d(x)^{\tau - 2\alpha}, \text{ for all } x \in A_{\delta_1}.
$$

<span id="page-11-0"></span>

<span id="page-12-0"></span>(ii) *If*  $\tau \in (\tau_0(\alpha), 0)$ *, then* 

$$
\frac{1}{C}d(x)^{\tau-2\alpha} \leq (-\Delta)^{\alpha}V_{\tau}(x) \leq C d(x)^{\tau-2\alpha}, \quad \text{for all } x \in A_{\delta_1}.
$$

(iii)  $If \tau = \tau_0(\alpha)$ *, then* 

$$
\left|(-\Delta)^{\alpha}V_{\tau}(x)\right| \leq C d(x)^{\min\{\tau_0(\alpha), 2\tau_0(\alpha) - 2\alpha + 1\}}, \quad \text{for all } x \in A_{\delta_1}.
$$

**Proof.** By compactness we prove that the corresponding inequality holds in a neighborhood of any point  $\bar{x} \in \partial \Omega$  and without loss of generality we may assume that  $\bar{x} = 0$ . For a given  $0 < \eta \le \delta$ , we define

$$
Q_{\eta} = \{z = (z_1, z') \in \mathbb{R} \times \mathbb{R}^{N-1}, |z_1| < \eta, |z'| < \eta\}
$$

and  $Q_{\eta}^+ = \{z \in Q_{\eta}, z_1 > 0\}$ . Let  $\varphi : \mathbb{R}^{N-1} \to \mathbb{R}$  be a  $C^2$  function such that  $(z_1, z') \in \Omega \cap Q_{\eta}$  if and only if  $z_1 \in$  $(\varphi(z'), \eta)$  and moreover,  $(\varphi(z'), z') \in \partial \Omega$  for all  $|z'| < \eta$ . We further assume that  $(-1, 0, \dots, 0)$  is the outer normal vector of  $Ω$  at  $\bar{x}$ .

In the proof of our inequalities, we let  $x = (x_1, 0)$ , with  $x_1 \in (0, \eta/4)$ , be then a generic point in  $A_{\eta/4}$ . We observe that  $|x - \bar{x}| = d(x) = x_1$ . By definition we have

$$
-(-\Delta)^{\alpha}V_{\tau}(x) = \frac{1}{2} \int_{Q_{\eta}} \frac{\delta(V_{\tau}, x, y)}{|y|^{N+2\alpha}} dy + \frac{1}{2} \int_{\mathbb{R}^N \setminus Q_{\eta}} \frac{\delta(V_{\tau}, x, y)}{|y|^{N+2\alpha}} dy
$$
(3.5)

and we see that

$$
\left| \int\limits_{\mathbb{R}^N \setminus \mathcal{Q}_{\eta}} \frac{\delta(V_\tau, x, y)}{|y|^{N+2\alpha}} dy \right| \leq c |x|^{\tau},\tag{3.6}
$$

where the constant  $c$  is independent of  $x$ . Thus we only need to study the asymptotic behavior of the first integral, that from now on we denote by  $E(x_1)/2$ .

Our first goal is to get a lower bound for  $E(x_1)$ . For that purpose we first notice that, since  $\tau \in (-1,0)$ , we have that

$$
d(z)^{\tau} \ge |z_1 - \varphi(z')|^{\tau}, \quad \text{for all } z \in Q_\delta \cap \Omega. \tag{3.7}
$$

Now we assume that  $0 < \eta \le \delta/2$ , then for all  $y \in Q_\eta$  we have  $x \pm y \in Q_\delta$ . Thus  $x \pm y \in \Omega \cap Q_\delta$  if and only if  $\varphi(\pm y') < x_1 \pm y_1 < \delta$  and  $|y'| < \delta$ . Then, by (3.7), we have that

$$
V_{\tau}(x+y) = d(x+y)^{\tau} \ge [x_1 + y_1 - \varphi(y')]^{\tau}, \quad x+y \in Q_{\delta} \cap \Omega
$$
\n(3.8)

and

$$
V_{\tau}(x-y) = d(x-y)^{\tau} \ge [x_1 - y_1 - \varphi(-y')]^{\tau}, \quad x - y \in Q_{\delta} \cap \Omega.
$$
 (3.9)

On the other side, for  $y \in Q_n$  we have that if  $x \pm y \in Q_\delta \cap \Omega^c$  then, by definition of  $V_\tau$ , we have  $V_\tau(x \pm y) = 0$ . Now, for  $y \in Q_n$  we define the intervals

$$
I_{+} = (\varphi(y') - x_1, \eta - x_1) \quad \text{and} \quad I_{-} = (x_1 - \eta, x_1 - \varphi(-y')) \tag{3.10}
$$

and the functions

$$
I(y) = \chi_{I_{+}}(y_{1}) |x_{1} + y_{1} - \varphi(y')|^{T} + \chi_{I_{-}}(y_{1}) |x_{1} - y_{1} - \varphi(-y')|^{T} - 2x_{1}^{T},
$$
  
\n
$$
J(y_{1}) = \chi_{(x_{1} - \eta, x_{1})}(y_{1}) |x_{1} - y_{1}|^{T} + \chi_{(-x_{1}, \eta - x_{1})}(y_{1}) |x_{1} + y_{1}|^{T} - 2x_{1}^{T},
$$
  
\n
$$
I_{1}(y) = \{\chi_{I_{+}}(y_{1}) - \chi_{(-x_{1}, \eta - x_{1})}(y_{1})\} |x_{1} + y_{1}|^{T},
$$
  
\n
$$
I_{2}(y) = \chi_{I_{+}}(y_{1}) (\vert x_{1} + y_{1} - \varphi(y') \vert^{T} - \vert x_{1} + y_{1} \vert^{T}),
$$

where  $\chi_A$  denotes the characteristic function of the set *A*. Then, using these definitions and inequalities (3.8) and (3.9), we have that

<span id="page-13-0"></span>1212 *H. Chen et al. / Ann. I. H. Poincaré – AN 32 (2015) 1199–1228*

$$
E(x_1) \ge \int_{Q_\eta} \frac{I(y)}{|y|^{N+2\alpha}} dy = \int_{Q_\eta} \frac{J(y_1)}{|y|^{N+2\alpha}} dy + E_1(x_1) + E_2(x_1),\tag{3.11}
$$

where

$$
E_i(x_1) = \int_{Q_\eta} \frac{I_i(y) + I_{-i}(y)}{|y|^{N+2\alpha}} dy, \quad i = 1, 2.
$$
\n(3.12)

Here we have considered that

$$
I_{-1}(y) = \left\{ \chi_{I_{-}}(y_1) - \chi_{(x_1 - \eta, x_1)}(y_1) \right\} |x_1 - y_1|^{\tau}
$$

and

$$
I_{-2}(y) = \chi_{I_{-}}(y_1) (|x_1 - y_1 - \varphi(-y')|^{\tau} - |x_1 - y_1|^{\tau}),
$$

for  $y = (y_1, y') \in \mathbb{R}^N$ . We start studying the first integral in the right hand side in (3.11). Changing variables we see that

$$
\int_{Q_{\eta}} \frac{J(y_1)}{|y|^{N+2\alpha}} dy = x_1^{\tau-2\alpha} \int_{Q_{\frac{\eta}{x_1}}} \frac{J(x_1 z_1) x_1^{-\tau}}{|z|^{N+2\alpha}} dz = 2x_1^{\tau-2\alpha} (R_1 - R_2),
$$

where

$$
R_1 = \int\limits_{Q_{\frac{\pi}{x_1}}^+} \frac{\chi_{(0,1)}(z_1)|1-z_1|^{\tau} + (1+z_1)^{\tau} - 2}{|z|^{N+2\alpha}} dz
$$

and

$$
R_2 = \int\limits_{Q_{\frac{r}{x_1}}^+} \frac{\chi_{(\frac{\eta}{x_1}-1,\frac{\eta}{x_1})}(z_1)(1+z_1)^{\tau}}{|z|^{N+2\alpha}} dz.
$$

Next we estimate these last two integrals. For  $R_1$  we see that, for appropriate positive constants  $c_1$  and  $c_2$ 

$$
\int_{\mathbb{R}_+^N} \frac{\chi_{(0,1)}(z_1)|1-z_1|^{\tau} + (1+z_1)^{\tau} - 2}{|z|^{N+2\alpha}} dz
$$
\n
$$
= \int_0^{+\infty} \frac{\chi_{(0,1)}(z_1)|1-z_1|^{\tau} + (1+z_1)^{\tau} - 2}{z_1^{1+2\alpha}} dz_1 \int_{\mathbb{R}^{N-1}} \frac{1}{(|z'|^2+1)^{\frac{N+2\alpha}{2}}} dz'
$$
\n
$$
= c_1 C(\tau)
$$

and

$$
\int_{\frac{(Q^+_{\frac{n}{x_1}})^c}{\frac{x_0}{x_1}}} \frac{\chi_{(0,1)}(z_1)|1-z_1|^{\tau}+(1+z_1)^{\tau}-2}{|z|^{N+2\alpha}}dz = -c_2 x_1^{2\alpha} (1+o(1)).
$$

Consequently we have, for some constant *c* that

$$
R_1 = c_1 (C(\tau) + c x_1^{2\alpha} + o(x_1^{2\alpha})).
$$
\n(3.13)

For *R*<sup>2</sup> we have that

<span id="page-14-0"></span>
$$
R_2 = \int_{\frac{\eta}{x_1}-1}^{\frac{\eta}{x_1}} \frac{(1+z_1)^{\tau}}{z_1^{1+2\alpha}} \int_{B_{\frac{\eta}{x_1}}} \frac{1}{(1+|z'|^2)^{\frac{N+2\alpha}{2}}} dz' dz_1 \leq c_3 x_1^{2\alpha-\tau+1}, \tag{3.14}
$$

where  $c_3 > 0$ . Here and in what follows we denote by  $B_{\sigma}$  the ball of radius  $\sigma$  in  $\mathbb{R}^{N-1}$ . From [\(3.13\)](#page-13-0) and (3.14) we then conclude that

$$
\int_{Q_{\eta}} \frac{J(y_1)}{|y|^{N+2\alpha}} dy = c_1 x_1^{\tau - 2\alpha} \left( C(\tau) + c x_1^{2\alpha} + o(x_1^{2\alpha}) \right).
$$
\n(3.15)

Continuing with our analysis we estimate  $E_1(x_1)$ . We only consider the term  $I_1(y)$ , since the estimate for  $I_{-1}(y)$ is similar. We have

$$
\int_{Q_{\eta}} \frac{I_1(y)}{|y|^{N+2\alpha}} dy = -\int_{B_{\eta}} \int_{-x_1}^{\varphi(y')-x_1} \frac{|x_1+y_1|^{\tau}}{|y|^{N+2\alpha}} dy_1 dy' = -x_1^{\tau-2\alpha} F_1(x_1), \tag{3.16}
$$

where

$$
F_1(x_1) = \int_{B_{\frac{\eta}{x_1}}}^{\frac{\varphi(x_1 z')}{x_1}} \int_{0}^{\frac{|z_1|^{\tau}}{((z_1 - 1)^2 + |z'|^2)^{(N + 2\alpha)/2}} dz_1 dz'.
$$
 (3.17)

In what follows we write  $\varphi_-(y') = \min{\varphi(y',0)}$  and  $\varphi_+(y') = \varphi(y') - \varphi_-(y')$ . Next we see that assuming that  $0 \le \varphi_+(y') \le C|y'|^2$  for  $|y'| \le \eta$ , for given  $(z_1, z')$  satisfying  $0 \le z_1 \le \frac{\varphi_+(x_1z')}{x_1}$  and  $|z'| \le \frac{\eta}{x_1}$  then

$$
(1 - z1)2 + |z'|2 \ge \frac{1}{4}(1 + |z'|2),
$$
\n(3.18)

if we assume *η* small enough. Thus

$$
F_1(x_1) \leq C \int_{B_{\frac{\eta}{x_1}}}^{\frac{\varphi + (x_1 z')}{x_1}} \frac{|z_1|^{\tau}}{(1+|z'|^2)^{(N+2\alpha)/2}} dz_1 dz'
$$
  
\n
$$
\leq C x_1^{\tau+1} \int_{B_{\frac{\eta}{x_1}}}^{\frac{1}{\eta}} \frac{|z'|^{2(\tau+1)}}{(1+|z'|^2)^{(N+2\alpha)/2}} dz'
$$
  
\n
$$
\leq C x_1^{\tau+1} (x_1^{-2\tau+2\alpha-1} + 1) \leq C x_1^{\min{\tau+1, 2\alpha-\tau}}.
$$

Thus we have obtained

$$
E_1(x_1) \ge -Cx_1^{\tau - 2\alpha} x_1^{\min\{\tau + 1, 2\alpha - \tau\}}.
$$
\n(3.19)

We continue with the estimate of  $E_2(x_1)$ . As before we only consider the term  $I_2(y)$ ,

$$
\int_{Q_{\eta}} \frac{I_2(y)}{|y|^{N+2\alpha}} dy = \int_{B_{\eta}} \int_{\varphi(y')-\pi_1}^{\eta-x_1} \frac{|x_1+y_1-\varphi(y')|^{\tau} - |x_1+y_1|^{\tau}}{(y_1^2+|y'|^2)^{\frac{N+2\alpha}{2}}} dy_1 dy'
$$
\n
$$
\geq \int_{B_{\eta}} \int_{\varphi-(y')-\pi_1}^{\eta-x_1} \frac{|x_1+y_1-\varphi-(y')|^{\tau} - |x_1+y_1|^{\tau}}{(y_1^2+|y'|^2)^{\frac{N+2\alpha}{2}}} dy_1 dy'
$$

<span id="page-15-0"></span>
$$
= \int_{B_{\eta}} \int_{\varphi_{-}(y')}^{\eta} \frac{|z_{1} - \varphi_{-}(y')|^{ \tau} - |z_{1}|^{ \tau}}{((z_{1} - x_{1})^{2} + |y'|^{2})^{\frac{N+2\alpha}{2}}} dz_{1} dy'\n\geq \int_{B_{\eta}} \int_{0}^{\eta} \frac{|z_{1} - \varphi_{-}(y')|^{ \tau} - |z_{1}|^{ \tau}}{((z_{1} - x_{1})^{2} + |y'|^{2})^{\frac{N+2\alpha}{2}}} dz_{1} dy' + \int_{B_{\eta}} \int_{(\tau - x_{1})^{2} + |y'|^{2}}^{\eta} \frac{-|z_{1}|^{ \tau}}{((z_{1} - x_{1})^{2} + |y'|^{2})^{\frac{N+2\alpha}{2}}} dz_{1} dy'\n= E_{21}(x_{1}) + E_{22}(x_{1}). \tag{3.20}
$$

We observe that  $E_{22}(x_1)$  is similar to  $F_1(x_1)$ . In order to estimate  $E_{21}(x_1)$  we use integration by parts

$$
E_{21}(x_1) = \frac{1}{\tau + 1} \int_{B_{\eta}} \left\{ \frac{(\eta - \varphi_{-}(y'))^{\tau + 1} - \eta^{\tau + 1}}{((\eta - x_1)^2 + |y'|^2)^{\frac{N + 2\alpha}{2}}} - \frac{(-\varphi_{-}(y'))^{\tau + 1}}{(x_1^2 + |y'|^2)^{\frac{N + 2\alpha}{2}}} \right\} dy'
$$
  
+ 
$$
\frac{N + 2\alpha}{\tau + 1} \int_{B_{\eta}} \int_{0}^{\eta} \frac{(z_1 - \varphi_{-}(y'))^{\tau + 1} - (z_1)^{\tau + 1}}{((z_1 - x_1)^2 + |y'|^2)^{\frac{N + 2\alpha}{2} + 1}} (z_1 - x_1) dz_1 dy'
$$
  
=  $A_1 + A_2$ .

For the first integral we have

$$
A_1 \ge \frac{1}{\tau + 1} \int_{B_{\eta}} \left\{ \frac{-\eta^{\tau+1}}{((\eta - x_1)^2 + |y'|^2)^{\frac{N+2\alpha}{2}}} - \frac{(-\varphi_-(y'))^{\tau+1}}{(x_1^2 + |y'|^2)^{\frac{N+2\alpha}{2}}} \right\} dy'
$$
  
\n
$$
\ge -C(\eta) - C \int_{B_{\eta}} \frac{|y'|^{2\tau+2}}{(x_1^2 + |y'|^2)^{\frac{N+2\alpha}{2}}} dy'
$$
  
\n
$$
\ge -Cx_1^{\tau-2\alpha+\tau+1} - C.
$$

For the second integral, since  $\tau \in (-1, 0)$  and  $(z_1 - \varphi_-(y'))^{\tau+1} - |z_1|^{\tau+1} > 0$ , we have that

$$
A_{2} \geq \frac{N + 2\alpha}{\tau + 1} \int_{B_{\eta}} \int_{0}^{x_{1}} \frac{(z_{1} - \varphi_{-}(y'))^{\tau+1} - |z_{1}|^{\tau+1}}{((z_{1} - x_{1})^{2} + |y'|^{2})^{\frac{N+2\alpha}{2}+1}} (z_{1} - x_{1}) dz_{1} dy'
$$
  
\n
$$
\geq \frac{N + 2\alpha}{(\tau + 1)^{2}} \int_{B_{\eta}}^{x_{1}} \int_{0}^{x_{1}} \frac{-\varphi_{-}(y')z_{1}^{\tau}}{((z_{1} - x_{1})^{2} + |y'|^{2})^{\frac{N+2\alpha}{2}+1}} (z_{1} - x_{1}) dz_{1} dy'
$$
  
\n
$$
\geq C_{3} x_{1}^{2\tau - 2\alpha + 1} \int_{B_{\eta}/x_{1}} \int_{0}^{1} \frac{|z'|^{2}z_{1}^{\tau}}{((z_{1} - 1)^{2} + |z'|^{2})^{\frac{N+2\alpha}{2}+1}} (z_{1} - 1) dz_{1} dz'
$$
  
\n
$$
\geq -C_{4} x_{1}^{2\tau - 2\alpha + 1}, \qquad (3.21)
$$

where  $C_3, C_4 > 0$  independent of  $x_1$  and the second inequality used  $a = z_1$  and  $b = -\varphi_-(y')$  in the fact that  $(a + b)^{\tau+1} - a^{\tau+1} \leq \frac{a^{\tau}b}{\tau+1}$  for  $a > 0, b \geq 0$ .

Thus, we have obtained

$$
E_2(x_1) \ge -Cx_1^{\tau - 2\alpha} x_1^{\min\{\tau + 1, 2\alpha - \tau\}}.
$$
\n(3.22)

The next step is to obtain the other inequality for  $E(x_1)$ . By choosing  $\delta$  smaller if necessary, we can prove that

**Lemma 3.1.** Under the regularity conditions on the boundary and with the arrangements given at the beginning of the proof of [Proposition 3.2,](#page-11-0) that is, that the boundary is locally described by  $\varphi$  after a rotation. We have that there is *η >* 0 *and C >* 0 *such that*

$$
d(z) \ge (z_1 - \varphi(z')) (1 - C|z'|^2) \quad \text{for all } (z_1, z') \in \Omega \cap Q_\eta.
$$

<span id="page-16-0"></span>**Proof.** Since  $\varphi$  is  $C^2$  and  $\nabla \varphi(0) = 0$ , there exist  $\eta_1 \in (0, 1/8)$  small and  $C_1 > 0$  such that  $C_1 \eta_1 < 1/4$  and

$$
|\varphi(y')| < C_1 |y'|^2, \qquad |\nabla \varphi(y')| \le C_1 |y'|, \quad \forall \ y' \in B_{\eta_1}.
$$
 (3.23)

Choosing  $\eta_2 \in (0, \eta_1)$  such that for any  $z = (z_1, z') \in Q_{\eta_2} \cap \Omega$ , there exists y' satisfying  $(\varphi(y'), y') \in \partial \Omega \cap Q_{\eta_1}$  and  $d(z) = |z - (\varphi(y'), y')|.$ 

We observe that *y'* mentioned above, is the minimizer of

$$
H(z') = (z_1 - \varphi(z'))^2 + |z' - y'|^2, \quad |z'| < \eta_1,
$$

then

$$
-(z_1 - \varphi(y'))\nabla \varphi(y') + (z' - y') = 0,
$$

which, together with  $(3.23)$  implies that

$$
\begin{aligned} |y'| - |z'| &\le |z' - y'| = |(z_1 - \varphi(y')) \nabla \varphi(y')| \le (|z_1| + C_1 |y'|^2) |\nabla \varphi(y')| \\ &\le C_1 \big( \eta_2 + C_1 \eta_1^2 \big) |y'| \le 2C_1 \eta_1 |y'| < \frac{1}{2} |y'|. \end{aligned}
$$

Then

$$
|y'| \le 2|z'|.\tag{3.24}
$$

Denote the points *z*,  $(\varphi(y'), y')$ ,  $(\varphi(z'), z')$  by *A*, *B*, *C*, respectively, and let  $\theta$  be the angle between the segment *BC* and the hyper plane with normal vector  $e_1 = (1, 0, ..., 0)$  and containing *C*. Then the angle  $\angle C = \frac{\pi}{2} - \theta$ . Denotes the arc from *B* to *C* in the plane *ABC* by arc(*BC*). By the geometry, there exists some point  $x = (\varphi(x'), x') \in \text{arc}(BC)$ such that line *BC* parallels the tangent line of arc(*BC*) at point *x*. Then, from (3.24) we have  $|x'| \le \max\{|z'|, |y'|\} \le$  $2|z'|$  and so, from  $(3.23)$  we obtain

$$
\tan(\theta) = \left| \frac{y'-z'}{|y'-z'|} \cdot \nabla \varphi(x') \right| \leq |\nabla \varphi(x')| \leq C_1 |x'| \leq 2C_1 |z'|,
$$

which implies that for some  $C > 0$ ,

$$
\cos(\theta) \ge 1 - C|z'|^2. \tag{3.25}
$$

Then we complete the proof using Sine Theorem and (3.25)

$$
d(z) = \frac{\sin(\angle C)}{\sin(\angle B)}(z_1 - \varphi(z')) \ge (z_1 - \varphi(z'))\sin\left(\frac{\pi}{2} - \theta\right)
$$
  
=  $(z_1 - \varphi(z'))\cos(\theta) \ge (z_1 - \varphi(z'))\left(1 - C|z'|^2\right).$ 

From this lemma, by making *C* and *η* smaller if necessary we obtain that

$$
d^{\tau}(z) \le (z_1 - \varphi(z'))^{\tau} (1 + C|z'|^2) \quad \text{for all } z \in \Omega \cap Q_{\eta}.
$$
 (3.26)

With  $x = (x_1, 0)$  satisfying  $x_1 \in (0, \eta/4)$  as at the beginning of the proof, we have that  $d(x) = x_1$  and for any  $y \in Q_\eta$ we see that  $x \pm y \in Q_\delta$ . We also see that  $x \pm y \in \Omega \cap Q_\delta$  if and only if  $\varphi(\pm y') < x_1 \pm y_1 < \delta$  and  $|y'| < \delta$ . Then, for  $x \pm y \in \Omega \cap Q_{\delta}$ , by (3.26) we have,

$$
V_{\tau}(x \pm y) = d(x \pm y)^{\tau} \le (x_1 \pm y_1 - \varphi(\pm y'))^{\tau} (1 + C|y'|^2).
$$
 (3.27)

For  $y \in Q_\eta$ , we define

$$
I_3(y) = C |y'|^2 \chi_{I_+}(y_1) |x_1 + y_1 - \varphi(y')|^{\tau}
$$

and

$$
I_3(-y) = C |y'|^2 \chi_{L_2}(y_1) |x_1 - y_1 - \varphi(-y')|^{\tau},
$$

where  $I_+$  and  $I_-$  were defined in [\(3.10\).](#page-12-0) Using [\(3.27\)](#page-16-0) as in [\(3.11\)](#page-13-0) we find

$$
E(x_1) = \int_{Q_{\eta}} \frac{\delta(V_{\tau}, x, y)}{|y|^{N+2\alpha}} dy \le \int_{Q_{\eta}} \frac{I(y)}{|y|^{N+2\alpha}} dy + E_3(x_1)
$$
  
= 
$$
\int_{Q_{\eta}} \frac{J(y)}{|y|^{N+2\alpha}} dy + E_1(x_1) + E_2(x_1) + E_3(x_1),
$$
 (3.28)

where  $E_1$  and  $E_2$  were defined in  $(3.12)$  and

$$
E_3(x_1) = \int_{Q_\eta} \frac{I_3(y) + I_3(-y)}{|y|^{N+2\alpha}} dy.
$$
\n(3.29)

We estimate  $E_3(x_1)$  and for that we observe that it is enough to estimate the integral with one of the terms in (3.29) (the other is similar), say

$$
\int_{Q_{\eta}} \frac{I_3(y)}{|y|^{N+2\alpha}} dy = \int_{B_{\eta}} \int_{\varphi(y') - x_1}^{\eta - x_1} \frac{C|y'|^2 |x_1 + y_1 - \varphi(y')|^{\tau}}{|y|^{N+2\alpha}} dy_1 dy'
$$
\n
$$
= C x_1^{\tau - 2\alpha + 2} \int_{B_{\frac{\eta}{x_1}} \frac{\sqrt{x_1}}{\varphi(x_1 z')}} \frac{|z'|^2 |z_1 - \frac{\varphi(x_1 z')}{x_1}|^{\tau}}{((z_1 - 1)^2 + |z'|^2)^{(N+2\alpha)/2}} dz_1 dz'
$$
\n
$$
= C x_1^{\tau - 2\alpha + 2} (A_1 + A_2), \tag{3.30}
$$

where *A*<sup>1</sup> and *A*<sup>2</sup> are integrals over properly chosen subdomains, estimated separately.

$$
A_{1} = \int_{B_{\frac{\pi}{x_{1}}}}^{\frac{\varphi(x_{1}z')}{x_{1}} + \frac{1}{2}} \frac{|z'|^{2}|z_{1} - \frac{\varphi(x_{1}z')}{x_{1}}|^{\tau}}{\left((z_{1} - 1)^{2} + |z'|^{2}\right)^{(N + 2\alpha)/2}} dz_{1} dz'
$$
\n
$$
\leq \frac{c}{(\tau + 1)2^{\tau + 1}} \int_{B_{\frac{\pi}{x_{1}}}}^{\pi} \frac{|z'|^{2}}{\left(1 + |z'|^{2}\right)^{(N + 2\alpha)/2}} dz'
$$
\n
$$
\leq c' \left(\frac{\eta}{x_{1}}\right)^{-2\alpha + 1} . \tag{3.32}
$$

The inequality in (3.31) is obtained noticing that the ball  $B((1, 0), 1/2)$  in  $R^N$  does not touch the band

$$
\left\{ (z_1, z') / |z'| \le \eta, \frac{\varphi(x_1 z')}{x_1} \le z_1 \le \frac{\varphi(x_1 z')}{x_1} + 1/2 \right\}
$$

if  $x_1$  is small enough, and so  $(z_1 - 1)^2 + |z'|^2 \ge \frac{1}{8} + \frac{1}{2}|z'|^2$ . Then simple integration gives the next term. Next we estimate  $A_2$ 

$$
A_2 = \int_{B_{\frac{\eta}{x_1}}} \int_{\frac{\varphi(x_1 z')}{x_1} + \frac{1}{2}}^{\frac{\eta}{x_1}} \frac{|z'|^2 |z_1 - \frac{\varphi(x_1 z')}{x_1}|^{\tau}}{((z_1 - 1)^2 + |z'|^2)^{(N + 2\alpha)/2}} dz_1 dz'
$$

<span id="page-17-0"></span>

$$
\leq \frac{1}{2^{\tau}} \int_{B_{\frac{n}{x_1}} \frac{\varphi(x_1 z')}{x_1} + \frac{1}{2}} \frac{|z'|^2}{((z_1 - 1)^2 + |z'|^2)^{(N + 2\alpha)/2}} dz_1 dz'
$$
\n
$$
\leq c' \left(\frac{\eta}{x_1}\right)^{-2\alpha + 2}.
$$
\n(3.33)

Putting together [\(3.30\),](#page-17-0) [\(3.32\),](#page-17-0) (3.33) and [\(3.29\)](#page-17-0) we obtain

$$
E_3(x_1) = \int_{Q_\eta} \frac{(I_3(y) + I_3(-y))}{|y|^{N+2\alpha}} dy \le cx_1^{\tau}.
$$
\n(3.34)

From  $(3.16)$  but using the other inequality for  $F_1$ , that is,

$$
F_1(x_1) \ge C \int\limits_{B_{\frac{\eta}{x_1}}}^{\frac{\varphi_{-}(x_1z')}{x_1}} \int\limits_{0}^{\frac{|z_1|^{\tau}}{(1+|z'|^2)^{(N+2\alpha)/2}}dz_1dz'}
$$

and arguing similarly we obtain as in  $(3.19)$ 

$$
E_1(x_1) \le C x_1^{\tau - 2\alpha} x_1^{\min\{\tau + 1, 2\alpha\}}.
$$
\n(3.35)

Then we look at  $E_2(x_1)$  and, as in [\(3.20\),](#page-15-0) we only consider the term  $I_2(y)$ :

$$
\int_{Q_{\eta}} \frac{I_2(y)}{|y|^{N+2\alpha}} dy \leq \int_{B_{\eta}} \int_{\varphi_+(y')} \frac{|z_1 - \varphi_+(y')|^{\tau} - |z_1|^{\tau}}{((z_1 - x_1)^2 + |y'|^2)^{\frac{N+2\alpha}{2}}} dz_1 dy' = \tilde{E}_{21}(x_1).
$$

In order to estimate  $\tilde{E}_{21}(x_1)$  we use integration by parts

*η*

$$
\tilde{E}_{21}(x_1) = \frac{1}{\tau+1} \int_{B_{\eta}} \left\{ \frac{(\eta - \varphi_+(y'))^{\tau+1} - \eta^{\tau+1}}{((\eta - x_1)^2 + |y'|^2)^{\frac{N+2\alpha}{2}}} - \frac{(\varphi_+(y'))^{\tau+1}}{((\varphi_+(y') - x_1)^2 + |y'|^2)^{\frac{N+2\alpha}{2}}} \right\} dy'
$$
\n
$$
+ \frac{N+2\alpha}{\tau+1} \int_{B_{\eta}} \int_{\varphi_+(y')}^{\eta} \frac{(z_1 - \varphi_+(y'))^{\tau+1} - z_1^{\tau+1}}{((z_1 - x_1)^2 + |y'|^2)^{\frac{N+2\alpha}{2}+1}} (z_1 - x_1) dz_1 dy'
$$
\n
$$
\leq \frac{N+2\alpha}{\tau+1} \int_{B_{\eta}} \int_{\eta_1}^{x_1} \frac{(z_1 - \varphi_+(y'))^{\tau+1} - z_1^{\tau+1}}{((z_1 - x_1)^2 + |y'|^2)^{\frac{N+2\alpha}{2}+1}} (z_1 - x_1) dz_1 dy'.
$$

This integral can be estimated in a similar way as *E*21, see [\(3.21\)](#page-15-0) and the estimates given before. We then obtain

$$
E_2(x_1) \le C x_1^{2\tau - 2\alpha + 1}.
$$
\n(3.36)

Then we conclude from [\(3.5\),](#page-12-0) [\(3.11\),](#page-13-0) [\(3.15\),](#page-14-0) [\(3.19\),](#page-14-0) [\(3.22\),](#page-15-0) [\(3.28\),](#page-17-0) (3.34), (3.35) and (3.36) that

$$
-(-\Delta)^{\alpha}V_{\tau}(x) = C x_1^{\tau - 2\alpha} (C(\tau) + O(x_1^{\min\{\tau + 1, 2\alpha\}})),
$$
\n(3.37)

where there exists a constant  $c > 0$  so that

$$
|O(x_1^{\min\{\tau+1,2\alpha\}})| \le cx_1^{\min\{\tau+1,2\alpha\}}, \quad \text{for all small } x_1 > 0.
$$

From here, depending on the value of  $\tau \in (-1, 0)$ , conditions (i), (ii) and (iii) follows and the proof of the proposition is complete.  $\Box$ 

We end this section with an estimate we need when dealing with Eq.  $(1.4)$  when the external value *g* is not zero. We have the following proposition

<span id="page-19-0"></span>**Proposition 3.3.** Assume that  $\Omega$  is a bounded, open and  $C^2$  domain in  $\mathbb{R}^N$ . Assume that  $g \in L^1_\omega(\Omega^c)$ . Assume further *that there are numbers*  $\beta \in (-1, 0)$ *,*  $\eta > 0$  *and*  $c > 1$  *such that* 

$$
\frac{1}{c} \le g(x)d(x)^{-\beta} \le c, \quad x \in \overline{\Omega}^c \text{ and } d(x) \le \eta.
$$

*Then there exist*  $\eta_1 > 0$  *and*  $C > 1$  *such that G, defined in* (1.20)*, satisfies* 

$$
\frac{1}{C}d(x)^{\beta-2\alpha} \le G(x) \le C d(x)^{\beta-2\alpha}, \quad x \in A_{\eta_1}.
$$
\n
$$
(3.38)
$$

**Proof.** The proof of this proposition requires estimates similar to those in the proof of [Proposition 3.2](#page-11-0) so we omit it. However, the function *C* used there and defined in [\(1.13\),](#page-3-0) needs to be replaced here by  $\tilde{C}$  :  $(-1,0) \rightarrow \mathbb{R}$  given by

$$
\tilde{C}(\beta) = \int_{1}^{\infty} \frac{|t-1|^{\beta}}{t^{1+2\alpha}} dt.
$$

We observe that this function is always positive.  $\Box$ 

#### **4. Proof of existence results**

In this section, we will give the proof of existence of large solution to  $(1.5)$ . By [Theorem 2.6](#page-9-0) we only need to find ordered super and sub-solution, denoted by  $U$  and  $W$ , for  $(1.5)$  under our various assumptions. We begin with a simple lemma that reduce the problem to find them only in  $A_\delta$ .

**Lemma 4.1.** Let U and W be classical ordered super and sub-solution of  $(1.5)$  in the sub-domain  $A_{\delta}$ . Then there exists  $\lambda$  large such that  $U_\lambda = U - \lambda \overline{V}$  and  $W_\lambda = W + \lambda \overline{V}$ , where  $\overline{V}$  is the solution of [\(2.5\),](#page-8-0) with  $\mathcal{O} = \Omega$ , are ordered *super and sub-solution of [\(1.5\).](#page-2-0)*

**Proof.** Notice that by negativity  $\overline{V}$  in  $\Omega$ , we have that  $U_\lambda \geq U$  and  $W_\lambda \leq W$ , so they are still ordered in  $A_\delta$ . In addition *Uλ* satisfies

$$
(-\Delta)^{\alpha}U_{\lambda}+|U_{\lambda}|^{p-1}U_{\lambda}-f(x)\geq(-\Delta)^{\alpha}U+|U|^{p-1}U-f(x)+\lambda>0,\quad\text{in }\Omega.
$$

This inequality holds because of our assumption in  $A_\delta$ , the fact that  $(-\Delta)^\alpha U + |U|^{p-1}U - f(x)$  is continuous in *Ω* \ *A*<sup> $δ$ </sup> and by taking  $λ$  large enough.

By the same type of arguments we find the  $W_\lambda$  is a sub-solution of the first equation in [\(1.5\)](#page-2-0) and we complete the proof.  $\square$ 

Now we are in position to prove our existence results that we already reduced to find ordered super and sub-solution of [\(1.5\)](#page-2-0) with the first equation in  $A_\delta$  with the desired asymptotic behavior.

# **Proof of Theorem 1.1 (Existence).** Define

$$
U_{\mu}(x) = \mu V_{\tau}(x) \quad \text{and} \quad W_{\mu}(x) = \mu V_{\tau}(x), \tag{4.1}
$$

with  $\tau = -\frac{2\alpha}{p-1}$ . We observe that  $\tau = -\frac{2\alpha}{p-1} \in (-1, \tau_0(\alpha))$  and  $\tau p = \tau - 2\alpha$ . Then by [Proposition 3.2](#page-11-0) and (H2) we find that for  $x \in A_\delta$  and  $\delta > 0$  small

$$
(-\Delta)^{\alpha} U_{\mu}(x) + U_{\mu}^{p}(x) - f(x) \ge -C\mu d(x)^{\tau-2\alpha} + \mu^{p} d(x)^{\tau p} - C d(x)^{\tau p},
$$

for some  $C > 0$ . Then there exists a large  $\mu > 0$  such that  $U_{\mu}$  is a super-solution of [\(1.5\)](#page-2-0) with the first equation in  $A_{\delta}$ with the desired asymptotic behavior. Now by [Proposition 3.2](#page-11-0) we have that for  $x \in A_\delta$  and  $\delta > 0$  small

$$
(-\Delta)^{\alpha} W_{\mu}(x) + W_{\mu}^{p}(x) - f(x) \leq -\frac{\mu}{C} d(x)^{\tau - 2\alpha} + \mu^{p} d(x)^{\tau p} - f(x) \leq 0,
$$

<span id="page-20-0"></span>in the last inequality we have used (H2) and  $\mu > 0$  small. Then, by [Theorem 2.6](#page-9-0) there exists a solution, with the desired asymptotic behavior.  $\square$ 

## **Proof** of **Theorem 1.1** (Special case  $\tau = \tau_0(\alpha)$ ). We define for  $t > 0$ ,

$$
U_{\mu}(x) = t V_{\tau_0(\alpha)}(x) - \mu V_{\tau_1}(x) \quad \text{and} \quad W_{\mu}(x) = t V_{\tau_0(\alpha)}(x) - \mu V_{\tau_1}(x), \tag{4.2}
$$

where  $\tau_1 = \min{\{\tau_0(\alpha) p + 2\alpha, 0\}}$ . If  $\tau_1 = 0$ , we write  $V_0 = \chi_{\Omega}$  and we have

$$
(-\Delta)^{\alpha} V_0(x) = \int_{\mathbb{R}^N \setminus \Omega} \frac{1}{|z - x|^{N+2\alpha}} dz, \quad x \in \Omega.
$$

By direct computation, there exists  $C > 1$  such that

$$
\frac{1}{C}d(x)^{-2\alpha} \leq (-\Delta)^{\alpha}V_0(x) \leq C d(x)^{-2\alpha}, \quad x \in \Omega.
$$
\n(4.3)

We see that  $\tau_1 \in (\tau_0(\alpha), 0]$  and, if  $\tau_1 < 0$ , we have  $\tau_1 - 2\alpha = \tau_0(\alpha)p$  and

 $\tau_1 - 2\alpha < \min\{\tau_0(\alpha), \tau_0(\alpha) - 2\alpha + \tau_0(\alpha) + 1\}.$ 

Then, by [Proposition 3.2](#page-11-0) and (4.3), for  $x \in A_\delta$ , it follows that

$$
(-\Delta)^{\alpha}U_{\mu}(x) + |U_{\mu}(x)|^{p-1}U_{\mu}(x) \geq -Ctd(x)^{\min\{\tau_0(\alpha),\tau_0(\alpha)-2\alpha+\tau_0(\alpha)+1\}} - C\mu d(x)^{\tau_1-2\alpha} + t^p d(x)^{\tau_0(\alpha)p}.
$$

Thus, letting  $\mu = t^p/(2C)$  if  $\tau_1 < 0$  and  $\mu = 0$  if  $\tau_1 = 0$ , for a possible smaller  $\delta > 0$ , we obtain

$$
(-\Delta)^{\alpha}U_{\mu}(x) + |U_{\mu}(x)|^{p-1}U_{\mu}(x) \ge 0, \quad x \in A_{\delta}.
$$

For the sub-solution, by [Proposition 3.2](#page-11-0) and (4.3), for  $x \in A_\delta$ , we have

$$
(-\Delta)^{\alpha}W_{\mu}(x) + |W_{\mu}|^{p-1}W_{\mu}(x) \leq Ctd(x)^{\min\{\tau_0(\alpha),\tau_0(\alpha)-2\alpha+\tau_0(\alpha)+1\}} - \frac{\mu}{C}d(x)^{\tau_1-2\alpha} + t^p d(x)^{\tau_0(\alpha)p},
$$

where  $C > 1$ . Then, for  $\mu > 2Ct^p$  and a possibly smaller  $\delta > 0$ 

$$
(-\Delta)^{\alpha}W_{\mu}(x) + |W_{\mu}|^{p-1}W_{\mu}(x) \le 0, \quad x \in A_{\delta},
$$

completing the proof.  $\Box$ 

**Proof** of Theorem 1.2. We define  $U_{\mu}$  and  $W_{\mu}$  as in [\(4.1\).](#page-19-0) In the case of a weak source, we take  $\tau = \gamma + 2\alpha$  and we observe that  $\gamma + 2\alpha \ge -\frac{2\alpha}{p-1} \ge \tau_0(\alpha)$  and  $p(\gamma + 2\alpha) \ge \gamma$ . Using [Proposition 3.2](#page-11-0) and (H3) we find that  $U_\mu$  is a super-solution for  $\mu > 0$  large (resp.  $W_{\mu}$  is a sub-solution for  $\mu > 0$  small) of [\(1.5\)](#page-2-0) with the first equation in  $A_{\delta}$  for *δ* > 0 small. In the case of a strong source, we take  $\tau = \frac{\gamma}{p}$  and observe that  $\gamma < \frac{\gamma}{p} - 2\alpha$ . Using [Proposition 3.2](#page-11-0) we find

$$
\left|(-\Delta)^{\alpha}U_{\mu}\right|,\left|(-\Delta)^{\alpha}U_{\mu}\right|\leq Cd(x)^{\frac{\gamma}{p}-2\alpha}.
$$

By (H3) we find that  $U_\mu$  is a super-solution for *μ* large (resp.  $W_\mu$  is a sub-solution for *μ* small) of [\(1.5\)](#page-2-0) with the first equation in  $A_\delta$  for  $\delta$  small.  $\Box$ 

**Remark 4.1.** In order to obtain the above existence results for classical solution to [\(1.4\),](#page-1-0) that is, when *g* is not necessarily zero, we only need use the above results with  $F$  as a right hand side as given in  $(1.23)$ . Here we only need to assume that *g* satisfies (H4). In fact, as above we find super and sub-solutions for [\(1.5\),](#page-2-0) with *f* replaced by *F*. Then, as in the proof of [Theorem 2.6,](#page-9-0) we find a viscosity solution of [\(1.5\)](#page-2-0) and then  $v = u + \tilde{g}$  is a viscosity solution of [\(1.4\).](#page-1-0) Next we use Theorem 2.6 in [\[7\]](#page-28-0) and then we use [Theorem 2.1](#page-6-0) to obtain that *v* is a classical solution of [\(1.4\).](#page-1-0)

<span id="page-21-0"></span>**Remark 4.2.** Now we compare [Theorem 1.1](#page-2-0) with the result in [\[15\].](#page-28-0) Let us assume that *f* and *g* satisfies hypothesis  $(F0)$ – $(F2)$  and  $(G0)$ – $(G3)$ , respectively, given in [\[15\].](#page-28-0) We first observe that the function *F*, as defined above, satisfies (H1) thanks to (G0), (G3) and (F0). Next we see that *F* satisfies (H2), since (G2), (F1) and (F2) holds. Here we have to use [Proposition 3.3.](#page-19-0) In the range of  $p$  given by  $(1.6)$ , we then may apply [Theorem 1.1](#page-2-0) to obtain existence of a blow-up solution as given in Theorem 1.1 in [\[15\].](#page-28-0) We see that the existence is proved here, without assuming hypothesis (G1), thus we generalized this earlier result. Moreover, here we obtain a uniqueness and nonexistence of blow-up solution, if we further assume hypotheses on *f* and *g*, guaranteeing hypothesis (H2∗) in [Theorem 1.1.](#page-2-0) The complementary range of *p* is obtained using Theorem 1.2 for the existence of solutions as given in Theorem 1.1 in [\[15\]](#page-28-0) and uniqueness and non-existence as in Theorem 1.3 and 1.4 are truly new results. The hypotheses needed on *g* to obtain (H3) for the function *F* are a bit stronger, since we are requiring in (H3) that the explosion rate is the same from above and from below, while in (G2) and (G4) they may be different.

# **5. Proof of uniqueness results**

In this section we prove our uniqueness results, which are given in [Theorem 1.1](#page-2-0) and [Theorem 1.3.](#page-4-0) These results are for positive solutions, so we assume that the external source *f* is non-negative. We assume that there are two positive solutions  $u$  and  $v$  of  $(1.5)$  and then define the set

$$
\mathcal{A} = \{x \in \Omega, \ u(x) > v(x)\}.\tag{5.1}
$$

This set is open,  $A \subset \Omega$  and we only need to prove that  $A = \emptyset$ , to obtain that  $u = v$ , by interchanging the roles of *u* and  $v$ .

We will distinguish three cases, depending on the conditions satisfying *u* and *v*: Case a) *u* and *v* satisfy  $(1.6)$  and  $(1.7)$  (uniqueness part of [Theorem 1.1\)](#page-2-0), Case b) *u* and *v*  $(1.15)$  and  $(1.16)$  (weak source in [Theorem 1.3\)](#page-4-0) and Case c)  $u$  and  $v$  with  $(1.17)$ – $(1.19)$  (strong source in [Theorem 1.3\)](#page-4-0).

We start our proof considering an auxiliary function

$$
V(x) = \begin{cases} c(1-|x|^2)^3, & x \in B_1(0), \\ 0, & x \in B_1^c(0), \end{cases}
$$
(5.2)

where the constant *c* may be chosen so that *V* satisfies

$$
(-\Delta)^{\alpha} V(x) \le 1 \quad \text{and} \quad 0 < V(0) = \max_{x \in \mathbb{R}^N} V(x). \tag{5.3}
$$

In order to prove the uniqueness result in the three cases, we need first some preliminary lemmas.

**Lemma 5.1.** *Given*  $k > 1$ *, if*  $A_k = \{x \in \Omega, u(x) - kv(x) > 0\} \neq \emptyset$ *, then* 

$$
\partial \mathcal{A}_k \cap \partial \Omega \neq \emptyset. \tag{5.4}
$$

**Proof.** If (5.4) is not true, there exists  $\bar{x} \in \Omega$  such that

$$
u(\bar{x}) - kv(\bar{x}) = \max_{x \in \mathbb{R}^N} (u - kv)(x) > 0,
$$

Then, we have

$$
(-\Delta)^{\alpha}(u - kv)(\bar{x}) \ge 0,
$$

which contradicts

$$
(-\Delta)^{\alpha}(u - kv)(\bar{x}) = -u^{p}(\bar{x}) + kv^{p}(\bar{x}) - (k - 1)f(\bar{x})
$$
  

$$
\leq -(k^{p} - k)v^{p}(\bar{x}) < 0. \qquad \Box
$$

**Lemma 5.2.** *If*  $A_k \neq \emptyset$ , *for*  $k > 1$ *, then* 

$$
\sup_{x \in \Omega} (u - kv)(x) = +\infty. \tag{5.5}
$$

<span id="page-22-0"></span>**Proof.** Assume that  $\overline{M} = \sup_{x \in \Omega} (u - kv)(x) < +\infty$ . We see that  $\overline{M} > 0$  and there is no point  $\overline{x} \in \Omega$  achieving the supreme of *u* − *kv*, by the same argument given above. Let us consider  $x_0 \in A_k$ ,  $r = d(x_0)/2$  and define

$$
w_k = u - kv \quad \text{in } \mathbb{R}^N. \tag{5.6}
$$

Under the conditions of Case a) and b) (resp. Case c)), for all *x* ∈ *B<sub>r</sub>*(*x*<sub>0</sub>) ∩  $A_k$  we have

$$
(-\Delta)^{\alpha} w_k(x) = -u^p(x) + kv^p(x) + (1 - k)f(x) \le -K_1 r^{\tau - 2\alpha},\tag{5.7}
$$

(resp.  $\leq -K_1 r^{\gamma}$ ). Here we have used that  $\tau = -2\alpha/(p-1)$  and, in Case a) [\(1.7\)](#page-2-0) for *v*, in Case b) (H3) and [\(1.15\)](#page-3-0) and in Case c) (H3). Moreover, in Case a) we have considered  $K_1 = C(k^p - k)$  and in Cases b) and c)  $K_1 = C(k - 1)$ for some constant *C*. Now we define

$$
w(x) = \frac{2\bar{M}}{V(0)}V\left(\frac{x - x_0}{r}\right)
$$

for  $x \in \mathbb{R}^N$ , where *V* is given in [\(5.2\),](#page-21-0) and we see that

$$
w(x_0) = 2\bar{M} \tag{5.8}
$$

and

$$
(-\Delta)^{\alpha} w \le \frac{2\overline{M}}{V(0)} r^{-2\alpha}, \quad \text{in } B_r(x_0). \tag{5.9}
$$

Since  $\tau$  < 0 ( $\gamma$  < −2 $\alpha$  in the Case c)), by [Lemma 5.1](#page-21-0) we can take  $x_0 \in A_k$  close to  $\partial \Omega$ , so that

$$
\frac{2\bar{M}}{V(0)} \leq K_1 r^{\tau} \quad \left(\frac{2\bar{M}}{V(0)} \leq K_1 r^{\gamma+2\alpha}, \text{ in Case c)}\right).
$$

From here, combining  $(5.7)$  with  $(5.9)$ , we have that

$$
(-\Delta)^{\alpha}(w_k+w)(x)\leq 0, \quad x\in B_r(x_0)\cap \mathcal{A}_k.
$$

Then, by the Maximum Principle, we obtain

$$
w_k(x_0) + w(x_0) \le \max\left\{\bar{M}, \sup_{x \in B_r(x_0) \cap \mathcal{A}_k^c} (w_k + w)\right\}.
$$
\n(5.10)

In case we have

$$
\bar{M} < \sup_{x \in B_r(x_0) \cap \mathcal{A}_k^c} (w_k + w),\tag{5.11}
$$

then

$$
w(x_0) < (w_k + w)(x_0) \le \sup_{x \in B_r(x_0) \cap \mathcal{A}_k^c} (w_k + w)(x) \\ \le \sup_{x \in B_r(x_0) \cap \mathcal{A}_k^c} w(x) \le w(x_0), \tag{5.12}
$$

which is impossible. So that  $(5.11)$  is false and then, from  $(5.10)$  we get

$$
w(x_0) < w_k(x_0) + w(x_0) \leq \bar{M},
$$

which is impossible in view of  $(5.8)$ , completing the proof.  $\Box$ 

**Lemma 5.3.** *There exists a sequence*  $\{C_n\}$ *, with*  $C_n > 0$ *, satisfying* 

$$
\lim_{n \to +\infty} C_n = 0 \tag{5.13}
$$

*and such that for all*  $x_0 \in A_k$  *and*  $k > 1$  *we have* 

$$
0 < \int\limits_{Q_n} \frac{w_k(z) - M_n}{|z - x|^{N + 2\alpha}} dz \le C_n r^{\tau - 2\alpha}, \quad \forall x \in B_r(x_0),
$$

*where we consider*  $r = d(x_0)/2$ *,*  $Q_n = \{z \in A_{r/n} / w_k(z) > M_n\}$  *and*  $M_n = \max_{x \in \Omega \setminus A_{r/n}} w_k(x)$ *.* 

**Proof.** In Case a): we see that  $Q_n \subset A_{r/n}$  and  $\lim_{n \to +\infty} |Q_n| = 0$ , so that using [\(1.10\)](#page-2-0) we directly obtain

$$
\int\limits_{Q_n}\frac{w_k(z)-M_n}{|z-x|^{N+2\alpha}}dz\leq C_0r^{-N-2\alpha}\int\limits_{A_{r/n}}d(z)^{\tau}dz\leq Cr^{-N-2\alpha}\int\limits_{0}^{r/n}t^{\tau}t^{N-1}dt\leq \frac{C}{n^{N+\tau}}r^{\tau-2\alpha},
$$

where *C* depends on *C*<sub>0</sub> and  $\partial \Omega$ . We complete the proof defining  $C_n = \frac{C}{n^{N+r}}$ .

In Case b) we argue similarly using  $(1.16)$  and define  $C_n$  as before, while in Case c) we argue similarly using  $(1.19)$ , but defining  $\overline{C}_n = \frac{C}{n^{N+\gamma/p}}$ . <del>□</del>

Now we are in a position to prove our non-existence results.

**Proof** of **uniqueness results in Cases a**), **b**) **and c**). We assume that  $A \neq \emptyset$ , then there exists  $k > 1$  such that  $A_k \neq \emptyset$ . By [Lemma 5.2](#page-21-0) there exists  $x_0 \in A_k$  such that

$$
w_k(x_0) = \max\big\{w_k(x)/x \in \Omega \setminus A_{d(x_0)}\big\}.
$$

Proceeding as in [Lemma 5.2](#page-21-0) with the function

$$
w(x) = \frac{K_1}{2} r^{\tau} V\left(\frac{x - x_0}{r}\right) \quad \text{and} \quad w(x) = \frac{K_1}{2} r^{\gamma + 2\alpha} V\left(\frac{x - x_0}{r}\right), \text{ in Case c)},
$$

we see that

$$
(-\Delta)^{\alpha}(w_k+w)(x) \leq -\frac{K_1}{2}r^{\tau-2\alpha}, \quad x \in B_r(x_0) \cap \mathcal{A}_k.
$$
\n
$$
(5.14)
$$

and 
$$
(-\Delta)^{\alpha}(w_k + w)(x) \le -\frac{K_1}{2}r^{\gamma}
$$
, in Case c). (5.15)

With  $M_n$ , as given in [Lemma 5.3,](#page-22-0) we define

$$
\bar{w}_n(x) = \begin{cases}\n(w_k + w)(x), & \text{if } w_k(x) \le M_n, \\
M_n, & \text{if } w_k(x) > M_n,\n\end{cases}
$$
\n(5.16)

for  $n > 1$ . By [Lemma 5.3](#page-22-0) we find  $n_0$  such that

$$
(-\Delta)^{\alpha}\bar{w}_{n_0}(x) = (-\Delta)^{\alpha}(w_k + w)(x) + 2\int\limits_{Q_{n_0}} \frac{w_k(z) - M_{n_0}}{|z - x|^{N + 2\alpha}} dz
$$
  
  $\leq 0, \quad \text{in } B_r(x_0) \cap \mathcal{A}_k.$ 

In Case b) we have use  $(1.15)$  and in Case c) we have use  $(1.17)$ , to get similar conclusion. Then, by the Maximum Principle, we get

$$
\bar{w}_{n_0}(x_0) \le \max\Big\{M_{n_0}, \sup_{x \in B_r(x_0) \cap \mathcal{A}_k^c} (w_{k_0} + w)\Big\}.
$$

Using the same argument as in  $(5.12)$ , we conclude that

$$
\sup_{x \in B_r(x_0) \cap \mathcal{A}_k^c} (w_{k_0} + w) > M_{n_0}
$$

does not hold and therefore

$$
\bar{w}_{n_0}(x_0) = w_k(x_0) + w(x_0) \le M_{n_0}.\tag{5.17}
$$

<span id="page-23-0"></span>

<span id="page-24-0"></span>Next, by the definition of  $M_n$ , we choose  $x_1 \in \Omega \setminus A_{r/n_0}$  such that  $w_k(x_1) = M_{n_0}$ . But then we have

$$
w_k(x_0) + w(x_0) \ge w(x_0) = \frac{K_1}{2}V(0)r^{\tau}
$$
 in Case a) and b)

and  $w_k(x_0) + w(x_0) \ge w(x_0) = \frac{K_1}{2} V(0) r^{\gamma + 2\alpha}$  in Case c).

Thus, by the asymptotic behavior of  $v$ ,  $(1.6)$  in Case a),  $(1.15)$  in Case b) and  $(1.17)$  in Case c), we have

$$
r^{\tau} \ge n_0^{\tau}Cv(x_1)
$$
 and  $r^{\gamma+2\alpha} \ge r^{\gamma/p} \ge n_0^{\gamma/p}Cv(x_1)$  in Case c).

We recall that in Case a)  $K_1 = C(k^p - k)$ , so from [\(5.17\)](#page-23-0)

$$
u(x_1) > (1 + c_0)kv(x_1),\tag{5.18}
$$

where  $c_0 > 0$  is a constant, not depending on  $x_0$  and increasing in *k*. Now we repeat this process above initiating by *x*<sub>1</sub> and  $k_1 = k(1 + c_0)$ . Proceeding inductively, we can find a sequence  $\{x_m\} \subset \mathcal{A}$  such that

$$
u(x_m) > (1 + c_0)^m k v(x_m),
$$

which contradicts the common asymptotic behavior of *u* and *v*.

In the Case b) and c) recall that  $K_1 = C(k - 1)$  and, as before, we can proceed inductively to find a sequence  ${x_m} \subset A$  such that

$$
u(x_m) > (k + mc_0)v(x_m),
$$

which again contradicts the common asymptotic behavior of  $u$  and  $v$ .  $\Box$ 

# **6. Proof of our non-existence results**

In this section we prove our non-existence results. Our arguments are based on the construction of some special super and sub-solutions and some ideas used in Section [5.](#page-21-0) The main portion of our proof is based on the following proposition that we state and prove next.

**Proposition 6.1.** Assume that  $\Omega$  is an open, bounded and connected domain of class  $C^2$ ,  $\alpha \in (0,1)$ ,  $p > 1$  and f is nonnegative. Suppose that U is a sub or super-solution of [\(1.5\)](#page-2-0) satisfying  $U = 0$  in  $\Omega^c$  and [\(1.10\)](#page-2-0) for some  $\tau \in (-1,0)$ . Moreover, if  $\tau > -\frac{2\alpha}{p-1}$ , assume there are numbers  $\epsilon > 0$  and  $\delta > 0$  such that, in case U is a sub-solution *of [\(1.5\),](#page-2-0)*

$$
(-\Delta)^{\alpha}U(x) \le -\epsilon d(x)^{\tau - 2\alpha} \quad or \quad f(x) \ge \epsilon d(x)^{\tau - 2\alpha}, \quad \text{for } x \in A_{\delta}, \tag{6.1}
$$

*and in case U is a super-solution of [\(1.5\),](#page-2-0)*

$$
(-\Delta)^{\alpha}U(x) \ge \epsilon d(x)^{\tau - 2\alpha} \quad \text{and} \quad f(x) \le \frac{\epsilon}{2}d(x)^{\tau - 2\alpha}, \quad \text{for } x \in A_{\delta}.
$$

*Then there is no solution u of [\(1.5\)](#page-2-0) such that, in case U is a sub-solution,*

$$
0 < \liminf_{x \in \Omega, x \to \partial \Omega} u(x) d(x)^{-\tau} \leq \limsup_{x \in \Omega, x \to \partial \Omega} u(x) d(x)^{-\tau} \\
 < \liminf_{x \in \Omega, x \to \partial \Omega} U(x) d(x)^{-\tau} \tag{6.3}
$$

*or in case U is a super-solution,*

$$
0 < \limsup_{x \in \Omega, x \to \partial \Omega} U(x) d(x)^{-\tau} < \liminf_{x \in \Omega, x \to \partial \Omega} u(x) d(x)^{-\tau} \\
 \leq \limsup_{x \in \Omega, x \to \partial \Omega} u(x) d(x)^{-\tau} < \infty. \tag{6.4}
$$

<span id="page-25-0"></span>We prove this proposition by a contradiction argument, so we assume that  $u$  is a solution of  $(1.5)$  satisfying  $(6.3)$  or  $(6.4)$ , depending on the fact that *U* is a sub-solution or a super-solution. Since f is non-negative we have that  $u > 0$ in  $\Omega$  and by our assumptions on *U*, there is a constant  $C_0 \geq 1$  so that, in case *U* is a sub-solution

$$
C_0^{-1} \le u(x)d(x)^{-\tau} < U(x)d(x)^{-\tau} \le C_0, \quad x \in A_\delta \tag{6.5}
$$

and, in case *U* is a super-solution

$$
C_0^{-1} \le U(x) d(x)^{-\tau} < u(x) d(x)^{-\tau} \le C_0, \quad x \in A_\delta. \tag{6.6}
$$

Here  $\delta$  is decreased if necessary so that  $(6.1)$ ,  $(6.2)$ ,  $(6.5)$  and  $(6.6)$  hold. We define

$$
\pi_k(x) = \begin{cases} U(x) - ku(x), & \text{in case } U \text{ is a sub-solution,} \\ u(x) - kU(x), & \text{in case } U \text{ is a super-solution,} \end{cases}
$$
\n(6.7)

where  $k \geq 0$ . In order to prove [Proposition 6.1,](#page-24-0) we need the following two preliminary lemmas.

**Lemma 6.1.** *Under the hypotheses of [Proposition 6.1.](#page-24-0) If*  $A_k = \{x \in \Omega \mid \pi_k(x) > 0\} \neq \emptyset$ , for  $k > 1$ . *Then,* 

$$
\partial \mathcal{A}_k \cap \partial \Omega \neq \emptyset. \tag{6.8}
$$

The proof of this lemma follows the same arguments as the proof of [Lemma 5.1](#page-21-0) so we omit it.

**Lemma 6.2.** *Under the hypotheses of [Proposition 6.1.](#page-24-0) If*  $A_k \neq \emptyset$ , for  $k > 1$ , *then* 

$$
\sup_{x \in \Omega} \pi_k(x) = +\infty. \tag{6.9}
$$

**Proof.** If (6.9) fails, then we have  $M = \sup_{x \in \Omega} \pi_k(x) < +\infty$ . We see that  $M > 0$  and, as in [Lemma 5.2,](#page-21-0) there is no point  $\bar{x} \in \Omega$  achieving *M*. By Lemma 6.1 we may choose  $x_0 \in A_k$  and  $r = d(x_0)/4$  such that  $B_r(x_0) \subset A_\delta$ , where *r* could be chosen as small as we want. Here  $\delta$  is as in [\(6.1\)](#page-24-0) and [\(6.2\).](#page-24-0)

In what follows we consider  $x \in B_r(x_0) \cap A_k$  and we notice that  $3r < d(x) < 5r$ . We first analyze the case *U* is a sub-solution and  $\tau \leq -\frac{2\alpha}{p-1}$ . We have

$$
(-\Delta)^{\alpha} \pi_k(x) \le -U^p(x) + k u^p(x) - (k-1) f(x)
$$
  
\n
$$
\le -(k^{p-1} - 1) k u^p(x)
$$
  
\n
$$
\le -C_0^{-p} (k^{p-1} - 1) k d(x)^{rp} \le -K_1 r^{r-2\alpha},
$$

where we have used  $f \ge 0$ ,  $k > 1$ , (6.5),  $K_1 = 5^{\tau-2\alpha} C_0^{-p} (k^{p-1} - 1)k > 0$  and  $C_0$  is taken from (6.5). Next we consider the case *U* is a sub-solution and  $\tau > -\frac{2\alpha}{p-1}$ . By the first inequality in [\(6.1\),](#page-24-0) we have

$$
(-\Delta)^{\alpha} \pi_k(x) \le -\epsilon d(x)^{\tau - 2\alpha} + k u^p(x) - k f(x)
$$
  
 
$$
\le -(\epsilon - k C_0^p r^{2\alpha - \tau + \tau p}) d(x)^{\tau - 2\alpha} \le -K_1 r^{\tau - 2\alpha},
$$

where the last inequality is achieved by choosing *r* small enough so that  $(\epsilon - kC_0^p r^{2\alpha - \tau + \tau p}) \ge \frac{\epsilon}{2}$  and  $K_1 = 5^{\tau - 2\alpha} \frac{\epsilon}{2}$ . On the other hand, if the second inequality in  $(6.1)$  holds, we have

$$
(-\Delta)^{\alpha} \pi_k(x) \leq k u^p(x) - (k-1) \epsilon d(x)^{\tau - 2\alpha}
$$
  
 
$$
\leq -\left( (k-1)\epsilon - kC_0^p r^{2\alpha - \tau + \tau p} \right) d(x)^{\tau - 2\alpha} \leq -K_1 r^{\tau - 2\alpha},
$$

where *r* satisfies  $(k - 1)\epsilon - kC_0^p r^{2\alpha - \tau + \tau p} \ge \frac{k-1}{2}\epsilon$  and  $K_1 = 5^{\tau - 2\alpha} \frac{k-1}{2}\epsilon$ .

In case *U* is a super-solution and  $\tau \leq -\frac{2\alpha}{p-1}$ , we argue similarly to obtain

$$
(-\Delta)^{\alpha} \pi_k(x) \le -u^p(x) + kU^p(x) - (k-1)f(x) \le -K_1 r^{\tau - 2\alpha},
$$

where  $K_1 = 5^{\tau-2\alpha} C_0^{-p} (k^{p-1} - 1)k > 0$ . Finally, in case *U* is a super-solution and  $\tau > -\frac{2\alpha}{p-1}$ , using [\(6.2\)](#page-24-0) we find

<span id="page-26-0"></span>
$$
(-\Delta)^{\alpha} \pi_k(x) \le -u^p(x) - k\epsilon d(x)^{\tau - 2\alpha} + f(x) \le -K_1 r^{\tau - 2\alpha},
$$

with  $K_1 = 5^{\tau - 2\alpha} \frac{k}{2} \epsilon > 0$ . Thus, in all cases we have obtained

$$
(-\Delta)^{\alpha} \pi_k(x) \le -K_1 r^{\tau - 2\alpha}, \quad x \in B_r(x_0) \cap \mathcal{A}_k,
$$
\n
$$
(6.10)
$$

for some  $K_1 = K_1(k) > 0$  non-decreasing with k. From here we can argue as in [Lemma 5.2](#page-21-0) to get a contradiction  $\Box$ 

Now proof of [Proposition 6.1](#page-24-0) is easy.

**Proof** of **Proposition 6.1.** From (6.10), recalling that  $K_1$  non-decreasing with  $k$ , we can argue as in the proof of uniqueness result in Case b) to get a sequence  $(x_m)$  in  $A_\delta$  such that, for some  $k_0 > 1$  and  $\overline{k} > 0$ , in case U is a sub-solution we have

 $U(x_m) > (k_0 + m\bar{k})u(x_m)$ 

and, in case *U* is a super-solution we have

$$
u(x_m) > (k_0 + m\bar{k})U(x_m).
$$

From here we obtain a contradiction with  $(6.5)$  or  $(6.6)$ , for *m* large.  $\Box$ 

**Proof** of **non-existence** part of Theorem 1.1. For any  $t > 0$  we construct a sub-solution or super-solution *U* of [\(1.5\)](#page-2-0) such that

$$
\lim_{x \in \Omega, x \to \partial \Omega} U(x) d(x)^{-\tau} = t,\tag{6.11}
$$

and *U* satisfies the assumption of [Proposition 6.1,](#page-24-0) for different combinations of the parameters *p* and *τ* . For *t >* 0 and  $\mu \in \mathbb{R}$  we define

$$
U_{\mu,t} = tV_{\tau} + \mu V_0 \quad \text{in } \mathbb{R}^N, \tag{6.12}
$$

where  $V_0 = \chi_{\Omega}$  is the characteristic function of  $\Omega$  and  $V_{\tau}$  is defined in [\(3.4\).](#page-11-0) It is obvious that (6.11) holds for  $U_{\mu,t}$ for any  $\mu \in \mathbb{R}$ . To complete proof we show that for any  $t > 0$ , there is  $\mu(t)$  such that  $U_{\mu(t),t}$  is a sub-solution or super-solution of [\(1.5\),](#page-2-0) depending on the zone to which  $(p, \tau)$  belongs.

**Zone** 1: We consider  $p > 1$  and  $\tau \in (\tau_0(\alpha), 0)$ . By [Proposition 3.2](#page-11-0) (ii), there exist  $\delta_1 > 0$  and  $C_1 > 0$  such that

$$
(-\Delta)^{\alpha} V_{\tau}(x) > C_1 d(x)^{\tau - 2\alpha}, \quad x \in A_{\delta_1}.
$$
\n
$$
(6.13)
$$

Combining with (H2<sup>∗</sup>), for any  $\mu > 0$ , there exists  $\delta_1 > 0$  depending on *t* such that

$$
(-\Delta)^{\alpha} U_{\mu,t}(x) + U_{\mu,t}^{p}(x) - f(x) > C_1 t d(x)^{\tau - 2\alpha} - C d(x)^{-2\alpha} \ge 0, \quad x \in A_{\delta_1}.
$$

On the other hand, since  $V_\tau$  is of class  $C^2$ ,  $f$  is continuous in  $\Omega$  and  $\Omega \setminus A_{\delta_1}$  is compact, there exists  $C_2 > 0$  such that

$$
|f|, |(-\Delta)^{\alpha} V_{\tau}(x)| \le C_2, \quad x \in \Omega \setminus A_{\delta_1}.
$$
\n
$$
(6.14)
$$

Then, using [\(4.3\),](#page-20-0) there exists  $\mu > 0$  such that

$$
(-\Delta)^{\alpha} U_{\mu,t}(x) + U_{\mu,t}^{p}(x) - f(x) > -2C_2 + C_0 \mu \ge 0, \quad x \in \Omega \setminus A_{\delta_1}.\tag{6.15}
$$

We conclude that for any  $t > 0$ , there exists  $\mu(t) > 0$  such that  $U_{\mu(t),t}$  is a super-solution of [\(1.5\)](#page-2-0) and, by (H2<sup>∗</sup>) and (6.13), it satisfies [\(6.2\).](#page-24-0)

**Zone 2:** We consider  $p > 1 + 2\alpha$  and  $\tau \in (-1, -\frac{2\alpha}{p-1})$ . By [Proposition 3.2](#page-11-0) (i) and (ii), there exists  $\delta_1 > 0$  depending on *t* such that

$$
(-\Delta)^{\alpha} U_{\mu,t}(x) + U_{\mu,t}^{p}(x) - f(x) \ge -C_1 t d(x)^{\tau - 2\alpha} + t^p d(x)^{\tau p} - C d(x)^{-2\alpha} \ge 0,
$$
\n(6.16)

for  $x \in A_{\delta_1}$  and for any  $\mu > 0$ , where we used that  $0 > \tau - 2\alpha > \tau p$ . On the other hand, for  $x \in \Omega \setminus A_{\delta_1}$ , (6.15) holds for some  $\mu > 0$  and so we have constructed a super-solution of [\(1.5\).](#page-2-0)

<span id="page-27-0"></span>**Zone** 3: We consider  $1 + 2\alpha < p \leq 1 - \frac{2\alpha}{\tau_0(\alpha)}$  and  $\tau \in (-\frac{2\alpha}{p-1}, \tau_0(\alpha))$ , which implies that  $\tau p > \tau - 2\alpha$ . By [Propo](#page-11-0)[sition 3.2](#page-11-0) (i) and  $f \ge 0$  in  $\Omega$ , there exists  $\delta_1 > 0$  so that for all  $\mu \le 0$ 

$$
(-\Delta)^{\alpha} U_{\mu,t}(x) + U_{\mu,t}^{p}(x) - f(x) \le -C_1 t d(x)^{\tau - 2\alpha} + t^p d(x)^{\tau p} \le 0,
$$
\n(6.17)

for  $x \in A_{\delta_1}$ . Then, using [\(4.3\)](#page-20-0) and [\(6.14\),](#page-26-0) there exists  $\mu = \mu(t) < 0$  such that

$$
(-\Delta)^{\alpha} U_{\mu,t}(x) + U_{\mu,t}^{p}(x) - f(x) < 2C_2 + C_0 \mu \le 0, \quad x \in \Omega \setminus A_{\delta_1}.\tag{6.18}
$$

We conclude that for any  $t > 0$ , there exists  $\mu(t) < 0$  such that  $U_{\mu(t),t}$  is a sub-solution of [\(1.5\)](#page-2-0) and it satisfies [\(6.1\).](#page-24-0)

We see that Zone 1, 2 and 3 cover the range of parameters in part (i) of [Theorem 1.1,](#page-2-0) completing the proof in the case.

**Zone 4:** To cover part (ii) of [Theorem 1.1](#page-2-0) we only need to consider  $p = 1 - \frac{2\alpha}{\tau_0(\alpha)}$  with  $\tau = \tau_0(\alpha) = -\frac{2\alpha}{p-1}$ , which implies that  $\tau p = \tau - 2\alpha < \min\{\tau - 2\alpha + \tau + 1, \tau\}$ . By [Proposition 3.2](#page-11-0) (iii), there exists  $\delta_1 > 0$  depending on *t* such that

$$
(-\Delta)^{\alpha} U_{\mu,t}(x) + U_{\mu,t}^{p}(x) - f(x) \ge -C_1 t d(x)^{\min\{\tau - 2\alpha + \tau + 1, \tau\}} + t^{p} d(x)^{\tau p} -C d(x)^{-2\alpha} \ge 0, \quad x \in A_{\delta_1}
$$

for any  $\mu > 0$ . For  $x \in \Omega \setminus A_{\delta_1}$ , [\(6.15\)](#page-26-0) holds for some  $\mu > 0$ , so we have constructed a super-solution of [\(1.5\).](#page-2-0)

We see that Zones 1, 2 and 4 cover the parameters in part (ii) of [Theorem 1.1,](#page-2-0) so the proof is complete in this case too.

**Zone 5:** We consider  $1 < p \leq 1 + 2\alpha$  and  $\tau \in (-1, \tau_0(\alpha))$ , which implies that  $\tau p > \tau - 2\alpha$ . By [Proposition 3.2](#page-11-0) (i) and  $f \ge 0$  in  $\Omega$ , there exists  $\delta_1 > 0$  such that for all  $\mu \le 0$  and  $x \in A_{\delta_1}$ , inequality (6.17) holds. Then, using [\(4.3\)](#page-20-0) and [\(6.14\),](#page-26-0) there exists  $\mu = \mu(t) < 0$  such that (6.18) holds and we conclude that for any  $t > 0$ , there exists  $\mu(t) < 0$  such that  $U_{\mu(t),t}$  satisfies the first inequality of [\(6.1\)](#page-24-0) and it is a sub-solution of [\(1.5\).](#page-2-0)

We see that Zones 1 and 5 cover the parameters in part (iii) of [Theorem 1.1.](#page-2-0) This completes the proof.  $\Box$ 

**Proof of Theorem 1.4.** Here again we construct sub or super-solutions satisfying [Proposition 6.1](#page-24-0) to prove the theo-rem. In the case of a weak source, that is, part (i) of [Theorem 1.4,](#page-4-0) we have  $p \ge 1 - \frac{2\alpha}{\tau_0(\alpha)}$  and  $-2\alpha - \frac{2\alpha}{p-1} \le \gamma < -2\alpha$ ,

which implies that  $-1 < \tau_0(\alpha) \leq -\frac{2\alpha}{p-1} \leq \gamma + 2\alpha < 0$ . We consider two zones depending on  $\tau$ . **Zone 1:** we consider  $\tau \in (\gamma + 2\alpha, 0)$ , so we have  $\gamma < \tau p$  and  $\gamma < \tau - 2\alpha$ . By [Proposition 3.2](#page-11-0) (ii) and (H3), we

have that, for any  $t > 0$  there exist  $\delta_1 > 0$ ,  $C_1 > 0$  and  $C_2 > 0$  such that

$$
(-\Delta)^{\alpha} U_{\mu,t}(x) + U_{\mu,t}^{p}(x) - f(x) \le C_1 t d(x)^{\tau - 2\alpha} + t^p d(x)^{\tau p} - C_2 d(x)^{\gamma} \le 0,
$$
\n(6.19)

for  $x \in A_{\delta_1}$  and any  $\mu \le 0$ . On the other hand, using [\(4.3\)](#page-20-0) and [\(6.14\)](#page-26-0) we find  $\mu = \mu(t) < 0$  such that (6.18) holds for  $x \in \Omega \setminus A_{\delta_1}$ . We conclude that for any  $t > 0$ , there exists  $\mu(t) < 0$  such that  $U_{\mu(t),t}$  is a sub-solution of [\(1.5\)](#page-2-0) and by  $(H3)$ , it satisfies  $(6.1)$ .

**Zone 2:** We consider  $\tau \in (-1, \gamma + 2\alpha)$ . For  $\tau \in (\tau_0(\alpha), \gamma + 2\alpha)$  in case  $\tau_0(\alpha) < \gamma + 2\alpha$ , by [Proposition 3.2](#page-11-0) (i) there exists  $\delta_1 > 0$ , depending on *t*, such that

$$
(-\Delta)^{\alpha} U_{\mu,t}(x) + U_{\mu,t}^{p}(x) - f(x) \ge C_1 t d(x)^{\tau - 2\alpha} - C_2 d(x)^{\gamma} \ge 0,
$$
\n(6.20)

for  $x \in A_{\delta_1}$  and any  $\mu \ge 0$ . For  $\tau \in (-1, \tau_0(\alpha)] \cap (-1, \gamma + 2\alpha)$ , we have  $\tau p < \gamma$  and  $\tau p < \tau - 2\alpha$ , so by [Proposi](#page-11-0)[tion 3.2](#page-11-0) (i) and (iii), there exists  $\delta_1 > 0$  dependent of *t* such that [\(6.16\)](#page-26-0) holds for any  $\mu \ge 0$ , while for  $x \in \Omega \setminus A_{\delta_1}$ , [\(6.15\)](#page-26-0) holds for some  $\mu > 0$ . We conclude that for any  $t > 0$ , there exists  $\mu(t) > 0$  such that  $U_{\mu(t),t}$  is a super-solution of  $(1.5)$  and by  $(H3)$  it satisfies  $(6.2)$ , completing the proof in the weak source case.

Next we consider the case of strong source, that is part (ii) of [Theorem](#page-4-0) 1.4. Here we have that

$$
-1 < \frac{\gamma}{p} < -\frac{2\alpha}{p-1} < 0.
$$

Here again we have two zones, depending on the parameter  $\tau$ .

**Zone 1:** We consider  $\tau \in (\frac{\gamma}{p}, 0)$ , in which case we have  $\tau - 2\alpha > \gamma$  and  $\tau p > \gamma$ . Then there exist  $\delta_1 > 0$ ,  $C_1 > 0$ and  $C_2 > 0$  such that (6.19) holds for any  $\mu \le 0$  and using [\(4.3\)](#page-20-0) and [\(6.14\),](#page-26-0) there exists  $\mu = \mu(t) < 0$  such that (6.18) <span id="page-28-0"></span>holds for  $x \in \Omega \setminus A_{\delta_1}$ . Thus, for any  $t > 0$  there exists  $\mu(t) < 0$  such that  $U_{\mu(t),t}$  is a sub-solution of [\(1.5\)](#page-2-0) and (H3) implies the first inequality of [\(6.1\).](#page-24-0)

**Zone 2:** we consider  $\tau \in (-1, \frac{\gamma}{p})$ , in which case we have  $\tau p < \tau - 2\alpha$  and  $\tau p < \gamma$ . Then there exist  $\delta_1 > 0$ ,  $C_1 > 0$ and  $C_2 > 0$  such that [\(6.20\)](#page-27-0) holds for  $x \in A_{\delta_1}$  and  $\mu \ge 0$ . We see also that for  $x \in \Omega \setminus A_{\delta_1}$ , inequality [\(6.15\)](#page-26-0) holds for some  $\mu > 0$  and so for any  $t > 0$ , there exists  $\mu(t) > 0$  such that  $U_{\mu(t),t}$  is a super-solution of [\(1.5\).](#page-2-0)

This completes the proof of the theorem.  $\Box$ 

## **Conflict of interest statement**

We certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

# **Acknowledgements**

H.C. was partially supported by CONICYT Ph.D. scholarship. P.F. was partially supported by FONDECYT # 1110291 and Programa BASALCMM U. de Chile. A.Q. was partially supported by FONDECYT # 1110210 and Programa BASAL-CMM U. de Chile.

# **References**

- [1] N. Abatangelo, Large *s*-harmonic functions and boundary Blow-up solutions for the fractional Laplacian, [arXiv:1310.3193](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib61626174616E67656C6Fs1) [math.AP].
- [2] J.M. Arrieta, A. [Rodríguez-Bernal,](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4152s1) Localization on the boundary of blow-up for reaction–diffusion equations with nonlinear boundary conditions, Commun. Partial Differ. Equ. 29 (2004) [1127–1148.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4152s1)
- [3] C. Bandle, M. Marcus, Large solutions of semilinear elliptic equations: Existence, [uniqueness](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib424D31s1) and asymptotic behaviour, J. Anal. Math. 58 [\(1992\)](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib424D31s1) 9–24.
- [4] C. Bandle, M. Marcus, [Dependence](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib424D32s1) of blowup rate of large solutions of semilinear elliptic equations on the curvature of the boundary, Complex Var. Theory Appl. 49 (2004) [555–570.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib424D32s1)
- [5] X. Cabré, L. [Caffarelli,](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4343s1) Fully Nonlinear Elliptic Equation, Colloq. Publ. Am. Math. Soc., vol. 43, 1995.
- [6] L. Caffarelli, L. Silvestre, Regularity theory for fully nonlinear [integro-differential](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib435331s1) equations, Commun. Pure Appl. Math. 62 (5) (2009) [597–638.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib435331s1)
- [7] L. Caffarelli, L. Silvestre, Regularity results for nonlocal equations by [approximation,](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib435332s1) Arch. Ration. Mech. Anal. 200 (1) (2011) 59–88.
- [8] L. Caffarelli, L. Silvestre, The [Evans–Krylov](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib43535F4576616E73s1) theorem for nonlocal fully non linear equations, Ann. Math. 174 (2) (2011) 1163–1187.
- [9] G. Barles, C. Imbert, Second-order elliptic [integro-differential](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4249s1) equations: viscosity solutions theory revisited, Ann. Henri Poincaré 25 (2008) [567–585.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4249s1)
- [10] H. Chen, P. Felmer, Liouville Property for fully nonlinear integral equation in exterior domain, preprint.
- [11] M. Chuaqui, C. Cortázar, M. Elgueta, J. [García-Melián,](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib434345s1) Uniqueness and boundary behaviour of large solutions to elliptic problems with singular weights, [Commun.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib434345s1) Pure Appl. Anal. 3 (2004) 653–662.
- [12] M. del Pino, R. Letelier, The influence of domain geometry in boundary blow-up elliptic problems, [Nonlinear](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib444Cs1) Anal. 48 (6) (2002) 897–904.
- [13] G. Díaz, R. Letelier, Explosive solutions of quasilinear elliptic equations: existence and [uniqueness,](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib444C31s1) Nonlinear Anal. 20 (2) (1993) 97–125.
- [14] Y. Du, Q. Huang, Blow-up solutions for a class of [semilinear](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4448s1) elliptic and parabolic equations, SIAM J. Math. Anal. 31 (1999) 1–18.
- [15] P. Felmer, A. Quaas, Boundary blow up solutions for fractional elliptic equations, [Asymptot.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib465130s1) Anal. 78 (3) (2012) 123–144.
- [16] P. Felmer, A. Quaas, J. Tan, Positive solutions of nonlinear [Schrodinger](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib465154s1) equation with the fractional Laplacian, Proc. R. Soc. Edinb., Sect. A, Math. 142 [\(2012\)](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib465154s1) 1–26.
- [17] P. Felmer, A. Quaas, [Fundamental](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib465131s1) solutions and two properties of elliptic maximal and minimal operators, Trans. Am. Math. Soc. 361 (11) (2009) [5721–5736.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib465131s1)
- [18] P. Felmer, A. Quaas, [Fundamental](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib465132s1) solutions and Liouville type theorems for nonlinear integral operators, Adv. Math. 226 (2011) 2712–2738.
- [19] P. Felmer, A. Quaas, [Fundamental](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib465133s1) solutions for a class of Isaacs integral operators, Discrete Contin. Dyn. Syst. 30 (2) (2011) 493–508.
- [20] J. García-Melián, [Nondegeneracy](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib47s1) and uniqueness for boundary blow-up elliptic problems, J. Differ. Equ. 223 (1) (2006) 208–227.
- [21] J. García-Meliían, R. [Gómez-Reñasco,](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4747s1) J. López-Gómez, J. Sabina de Lis, Pointwise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where [bifurcation](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4747s1) from infinity occurs, Arch. Ration. Mech. Anal. 145 (3) (1998) 261–289.
- [22] J.B. Keller, On solutions of  $\Delta u = f(u)$ , [Commun.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4Bs1) Pure Appl. Math. 10 (1957) 503–510. [23] S. Kim, A note on boundary blow-up problem of  $\Delta u = u^p$ , IMA preprint, No. 1872, 2002.
- [24] C. Loewner, L. Nirenberg, Partial differential equations invariant under conformal projective [transformations,](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4C4Es1) in: Contributions to Analysis, Academic Press, New York, 1974, [pp. 245–272,](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4C4Es1) a collection of papers dedicated to Lipman Bers.
- [25] M. Marcus, L. Véron, Existence and [uniqueness](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4D56s1) results for large solutions of general nonlinear elliptic equation, J. Evol. Equ. 3 (2003) [637–652.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4D56s1)
- [26] M. Marcus, L. Véron, [Uniqueness](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4D5631s1) and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. Henri Poincaré 14 (2) (1997) [237–274.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4D5631s1)
- <span id="page-29-0"></span>[27] R. Osserman, On the inequality  $\Delta u = f(u)$ , Pac. J. Math. 7 (1957) [1641–1647.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib4Fs1)
- [28] G. Palatucci, O. Savin, E. Valdinoci, Local and global [minimizers](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib505653s1) for a variational energy involving a fractional norm, Ann. Mat. Pura Appl. (4) 192 (2013) [673–718.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib505653s1)
- [29] V. Rǎdulescu, Singular phenomena in nonlinear elliptic problems: from blow-up boundary solutions to equations with singular [nonlinearities,](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib52s1) in: Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4, 2007, [pp. 485–593.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib52s1)
- [30] X. Ros-Oton, J. Serra, The Dirichlet problem for the fractional [Laplacian,](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib726F736F746F6Es1) regularity up to the boundary, J. Math. Pures Appl. 101 (3) (2014) [275–302.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib726F736F746F6Es1)
- [31] R. Servadei, E. [Valdinoci,](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib5345525641s1) Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 (1) (2014) 133–154.
- [32] L. Silvestre, Hölder estimates for solutions of integro [differential](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib53s1) equations like the fractional Laplace, Indiana Univ. Math. J. 55 (2006) [1155–1174.](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib53s1)
- [33] E.M. Stein, Singular Integrals and [Differentiability](http://refhub.elsevier.com/S0294-1449(14)00072-9/bib535445494Es1) Properties of Functions, Princeton University Press, 1970.