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Abstract

The purpose of this paper is to study boundary blow up solutions for semi-linear fractional elliptic equations of the form⎧⎪⎨
⎪⎩

(−�)αu(x) + |u|p−1u(x) = f (x), x ∈ Ω,

u(x) = 0, x ∈ Ω̄c,

lim
x∈Ω,x→∂Ω

u(x) = +∞,
(0.1)

where p > 1, Ω is an open bounded C2 domain of RN , N ≥ 2, the operator (−�)α with α ∈ (0, 1) is the fractional Laplacian and 
f : Ω → R is a continuous function which satisfies some appropriate conditions. We obtain that problem (0.1) admits a solution 

with boundary behavior like d(x)
− 2α

p−1 , when 1 + 2α < p < 1 − 2α
τ0(α)

, for some τ0(α) ∈ (−1, 0), and has infinitely many solu-

tions with boundary behavior like d(x)τ0(α), when max{1 − 2α
τ0

+ τ0(α)+1
τ0

, 1} < p < 1 − 2α
τ0

. Moreover, we also obtained some 
uniqueness and non-existence results for problem (0.1).
© 2014 
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1. Introduction

In their pioneering work, Keller [22] and Osserman [27] studied the existence of solutions to the nonlinear reaction 
diffusion equation{−�u + h(u) = 0, in Ω,

u = +∞, on ∂Ω,
(1.1)
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where Ω is a bounded domain in RN , N ≥ 2, and h is a nondecreasing positive function. They independently proved 
that this equation admits a solution if and only if h satisfies

+∞∫
1

ds√
H(s)

< +∞, (1.2)

where H(s) = ∫ s

0 h(t)dt , that in the case of h(u) = up means p > 1. This integral condition on the non-linearity is 
known as the Keller–Osserman criteria. The solution of (1.1) found in [22] and [27] exists as a consequence of the 
interaction between the reaction and the diffusion term, without the influence of an external source that blows up at 
the boundary. Solutions exploding at the boundary are usually called boundary blow up solutions or large solutions. 
From then on, more general boundary blow-up problem:{−�u(x) + h(x,u) = f (x), x ∈ Ω,

lim
x∈Ω, x→∂Ω

u(x) = +∞ (1.3)

has been extensively studied, see [2–4,11–14,20,24–26,29]. It has being extended in various ways, weakened the 
assumptions on the domain and the nonlinear terms, extended to more general class of equations and obtained more 
information on the uniqueness and the asymptotic behavior of solution at the boundary.

During the last years there has been a renewed and increasing interest in the study of linear and nonlinear integral 
operators, especially, the fractional Laplacian, motivated by great applications and by important advances on the 
theory of nonlinear partial differential equations, see [5–7,10,15,17–19,28,32] for details.

In a recent work, Felmer and Quaas [15] considered an analog of (1.1) where the Laplacian is replaced by the 
fractional Laplacian⎧⎪⎨

⎪⎩
(−�)αu + |u|p−1u = f, in Ω,

u = g, in Ω̄c,

lim
x∈Ω, x→∂Ω

u(x) = +∞,

(1.4)

where Ω is a bounded domain in RN , N ≥ 2, with boundary ∂Ω of class C2, p > 1 and the fractional Laplacian 
operator is defined as

(−�)αu(x) = −1

2

∫
RN

δ(u, x, y)

|y|N+2α
dy, x ∈ Ω,

with α ∈ (0, 1) and δ(u, x, y) = u(x + y) + u(x − y) − 2u(x). The authors proved the existence of a solution to (1.4)
provided that g explodes at the boundary and satisfies other technical conditions. In case the function g blows up with 
an explosion rate as d(x)β , with β ∈ (− 2α

p−1 , 0) and d(x) = dist(x, ∂Ω), the solution satisfies

0 < lim inf
x∈Ω,x→∂Ω

u(x)d(x)−β ≤ lim sup
x∈Ω,x→∂Ω

u(x)d(x)
2α

p−1 < +∞.

In [15] the explosion is driven by the function g. The external source f has a secondary role, not intervening in 
the explosive character of the solution. f may be bounded or unbounded, in latter case the explosion rate has to be 
controlled by d(x)−2αp/(p−1).

One interesting question not answered in [15] is the existence of a boundary blow up solution without external 
source, that is assuming g = 0 in Ω̄c and f = 0 in Ω , thus extending the original result by Keller and Osserman, 
where solutions exists due to the pure interaction between the reaction and the diffusion terms. It is the purpose of 
this article to answer positively this question and to better understand how the non-local character influences the large 
solutions of (1.4) and what is the structure of the large solutions of (1.4) with or without sources. Comparing with 
the Laplacian case, where well possedness holds for (1.4), a much richer structure for the solution set appears for the 
non-local case, depending on the parameters and the data f and g. In particular, Theorem 1.1 shows that existence, 
uniqueness, non-existence and infinite existence may occur at different values of p and α.

Our first result is on the existence of blowing up solutions driven by the sole interaction between the diffusion and 
reaction term, assuming the external value g vanishes. Thus we will be considering the equation
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(−�)αu + |u|p−1u = f in Ω,

u = 0 in Ωc,

lim
x∈Ω,x→∂Ω

u(x) = +∞. (1.5)

On the external source f we will assume the following hypotheses

(H1) The external source f : Ω →R is a Cβ

loc(Ω), for some β > 0.
(H2) Defining f−(x) = max{−f (x), 0} and f+(x) = max{f (x), 0} we have

lim sup
x∈Ω,x→∂Ω

f+(x)d(x)
2αp
p−1 < +∞ and lim

x∈Ω,x→∂Ω
f−(x)d(x)

2αp
p−1 = 0.

A related condition that we need for non-existence results

(H2∗) The function f satisfies

lim sup
x∈Ω,x→∂Ω

∣∣f (x)
∣∣d(x)2α < +∞.

Now we are in a position to state our first theorem.

Theorem 1.1. Assume that Ω is an open, bounded and connected domain of class C2 and α ∈ (0, 1). Then we have:
Existence: Assume that f satisfies (H1) and (H2), then there exists τ0(α) ∈ (−1, 0) such that for every p satisfying

1 + 2α < p < 1 − 2α

τ0(α)
, (1.6)

Eq. (1.5) possesses at least one solution u satisfying

0 < lim inf
x∈Ω,x→∂Ω

u(x)d(x)
2α

p−1 ≤ lim sup
x∈Ω,x→∂Ω

u(x)d(x)
2α

p−1 < +∞. (1.7)

Uniqueness: If f further satisfies f ≥ 0 in Ω , then u > 0 in Ω and u is the unique solution of (1.5) satisfying (1.7).
Nonexistence: If f satisfies (H1), (H2∗) and f ≥ 0, then in the following three cases:

i) For any τ ∈ (−1, 0) \ {− 2α
p−1 , τ0(α)} and p satisfying (1.6) or

ii) For any τ ∈ (−1, 0) and

p ≥ 1 − 2α

τ0(α)
or (1.8)

iii) For any τ ∈ (−1, 0) \ {τ0(α)} and

1 < p ≤ 1 + 2α, (1.9)

Eq. (1.5) does not have a solution u satisfying

0 < lim inf
x∈Ω,x→∂Ω

u(x)d(x)−τ ≤ lim sup
x∈Ω,x→∂Ω

u(x)d(x)−τ < +∞. (1.10)

Special existence for τ = τ 0(α). Assume f (x) ≡ 0, x ∈ Ω and that

max

{
1 − 2α

τ0(α)
+ τ0(α) + 1

τ0(α)
,1

}
< p < 1 − 2α

τ0(α)
. (1.11)

Then, there exist constants C1 ≥ 0 and C2 > 0, such that for any t > 0 there is a positive solution u of Eq. (1.5)
satisfying

C1d(x)min{τ0(α)p+2α,0} ≤ td(x)τ0(α) − u(x) ≤ C2d(x)min{τ0(α)p+2α,0}. (1.12)
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Remark 1.1. We remark that hypothesis (H2) and (H2∗) are satisfied when f ≡ 0, so this theorem answer the question 
on existence rised in [15]. We also observe that a function f satisfying (H2) may also satisfy

lim
x∈Ω, x→∂Ω

f (x) = −∞,

what matters is that the rate of explosion is smaller than 2αp
p−1 .

For proving the existence part of this theorem we will construct appropriate super and sub-solutions. This construc-
tion involves the one dimensional truncated Laplacian of power functions given by

C(τ) =
+∞∫
0

χ(0,1)(t)|1 − t |τ + (1 + t)τ − 2

t1+2α
dt, (1.13)

for τ ∈ (−1, 0) and where χ(0,1) is the characteristic function of the interval (0, 1). The number τ0(α) appearing in 
the statement of our theorems is precisely the unique τ ∈ (−1, 0) satisfying C(τ) = 0. See Proposition 3.1 for details.

Remark 1.2. For the uniqueness, we would like to mention that, by using iteration technique, Kim in [23] has proved 
the uniqueness of solution to the problem{−�u + u

p
+ = 0, in Ω,

u = +∞, in ∂Ω,
(1.14)

where u+ = max{u, 0}, under the hypotheses that p > 1 and Ω is bounded and satisfying ∂Ω = ∂Ω̄ . García-Melián 
in [20,21] introduced some improved iteration technique to obtain the uniqueness for problem (1.14) with replacing 
nonlinear term by a(x)up . However, there is a big difficulty for us to extend the iteration technique to our problem 
(1.4) involving fractional Laplacian, which is caused by the nonlocal character.

In the second part, we are also interested in considering the existence of blowing up solutions driven by external 
source f on which we assume the following hypothesis

(H3) There exists γ ∈ (−1 − 2α, 0) such that

0 < lim inf
x∈Ω,x→∂Ω

f (x)d(x)−γ ≤ lim sup
x∈Ω,x→∂Ω

f (x)d(x)−γ < +∞.

Depending on the size of γ we will say that the external source is weak or strong. In order to gain in clarity, in this 
case we will state separately the existence, uniqueness and non-existence theorem in this source-driven case.

Theorem 1.2 (Existence). Assume that Ω is an open, bounded and connected domain of class C2. Assume that f
satisfies (H1) and let α ∈ (0, 1) then we have:

(i) (weak source) If f satisfies (H3) with

−2α − 2α

p − 1
≤ γ < −2α, (1.15)

then, for every p such that (1.8) holds, Eq. (1.5) possesses at least one solution u, with asymptotic behavior near the 
boundary given by

0 < lim inf
x∈Ω,x→∂Ω

u(x)d(x)−γ−2α ≤ lim sup
x∈Ω,x→∂Ω

u(x)d(x)−γ−2α < +∞. (1.16)

(ii) (strong source) If f satisfies (H3) with

−1 − 2α < γ < −2α − 2α

p − 1
(1.17)

then, for every p such that

p > 1 + 2α, (1.18)
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Eq. (1.5) possesses at least one solution u, with asymptotic behavior near the boundary given by

0 < lim inf
x∈Ω,x→∂Ω

u(x)d(x)
− γ

p ≤ lim sup
x∈Ω,x→∂Ω

u(x)d(x)
− γ

p < +∞. (1.19)

As we already mentioned, in Theorem 1.1 the existence of blowing up solutions results from the interaction between 
the reaction up and the diffusion term (−�)α , while the role of the external source f is secondary. In contrast, in 
Theorem 1.2 the existence of blowing up solutions results on the interaction between the external source, and the 
diffusion term in case of weak source and the interaction between the external source and the reaction term in case of 
strong source.

Regarding uniqueness result for solutions of (1.5), as in Theorem 1.1 we will assume that f is non-negative, 
hypothesis that we need for technical reasons. We have

Theorem 1.3 (Uniqueness). Assume that Ω is an open, bounded and connected domain of class C2, α ∈ (0, 1) and f
satisfies (H1) and f ≥ 0. Then we have

i) (weak source) the solution of (1.5) satisfying (1.16) is positive and unique, and
ii) (strong source) the solution of (1.5) satisfying (1.19) is positive and unique.

We complete our theorems with a non-existence result for solution with a previously defined asymptotic behavior, 
as we saw in Theorem 1.1. We have

Theorem 1.4 (Non-existence). Assume that Ω is an open, bounded and connected domain of class C2, α ∈ (0, 1) and 
f satisfies (H1), (H3) and f ≥ 0. Then we have

i) (weak source) Suppose that p satisfies (1.8), γ satisfies (1.15) and τ ∈ (−1, 0) \ {γ + 2α}. Then Eq. (1.5) does 
not have a solution u satisfying (1.10).

ii) (strong source) Suppose that p satisfies (1.18), γ satisfies (1.17) and τ ∈ (−1, 0) \ { γ
p
}. Then, Eq. (1.5) does not 

have a solution u satisfying (1.10).

All theorems stated so far deal with Eq. (1.4) in the case g ≡ 0, but they may also be applied when g 
≡ 0 and, 
in particular, these result improve those given in [15]. In what follows we describe how to obtain this. We start with 
some notation, we consider L1

ω(Ω̄c) the weighted L1 space in Ω̄c with weight

ω(y) = 1

1 + |y|N+2α
, for all y ∈ R

N.

Our hypothesis on the external values g is the following

(H4) The function g : Ω̄c → R is measurable and g ∈ L1
ω(Ω̄c).

Given g satisfying (H4), we define

G(x) = 1

2

∫
RN

g̃(x + y)

|y|N+2α
dy, x ∈ Ω, (1.20)

where

g̃(x) =
{

0, x ∈ Ω̄,

g(x), x ∈ Ω̄c.
(1.21)

We observe that

G(x) = −(−�)αg̃(x), x ∈ Ω.
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Hypothesis (H4) implies that G is continuous in Ω as seen in Lemma 2.1 and has an explosion of order d(x)β−2α to-
wards the boundary ∂Ω , if g has an explosion of order d(x)β for some β ∈ (−1, 0), as we shall see in Proposition 3.3. 
We observe that under the hypothesis (H4), if u is a solution of Eq. (1.4), then u − g̃ is the solution of⎧⎪⎨

⎪⎩
(−�)αu(x) + |u|p−1u(x) = f (x) + G(x), x ∈ Ω,

u(x) = 0, x ∈ Ω̄c,

lim
x∈Ω, x→∂Ω

u(x) = +∞
(1.22)

and vice versa, if v is a solution of (1.22), then v + g̃ is a solution of (1.4).
Thus, using Theorems 1.1–1.4, we can state the corresponding results of existence, uniqueness and non-existence 

for (1.4), combining f with g to define a new external source

F(x) = G(x) + f (x), x ∈ Ω. (1.23)

With this we can state appropriate hypothesis for g and thus we can write theorems, one corresponding to each of 
Theorem 1.1, 1.2, 1.3 and 1.4. Even though, at first sight we need that G(x) is Cβ

loc(Ω), actually continuity of g is 
sufficient, as we discuss Remark 4.1.

Moreover, in Remark 4.2 we explain how our results in this paper allows to give a different proof of those obtained 
by Felmer and Quaas in [15], generalizing them.

After this paper was completed, we have learned of a preprint of Abatangelo [1] were different, but related results 
are obtained.

This article is organized as follows. In Section 2 we present some preliminaries to introduce the notion of viscosity 
solutions, comparison and stability theorems in case of explosion at the boundary. Then we prove an existence theorem 
for the nonlinear problem with blow up at the boundary, assuming the existence of ordered. Section 3 is devoted to 
obtain crucial estimates used to construct super and sub-solutions. In Section 4 we prove the existence of solution 
to (1.5) in Theorem 1.1 and Theorem 1.2. In Section 5, we give the proof of the uniqueness of solution to (1.5)
in Theorem 1.1 and Theorem 1.3. Finally, the nonexistence related to Theorem 1.1 and Theorem 1.4 are shown in 
Section 6.

2. Preliminaries and existence theorem

The purpose of this section is to introduce some preliminaries and prove an existence theorem for blow-up solutions 
assuming the existence of ordered super-solution and sub-solution which blow up at the boundary. In order to prove 
this theorem we adapt the theory of viscosity to allow for boundary blow up.

We start this section by defining the notion of viscosity solution for non-local equation, allowing blow up at the 
boundary, see for example [7]. We consider the equation of the form:

(−�)αu = h(x,u) in Ω, u = g in Ωc. (2.1)

Definition 2.1. We say that a function u : (∂Ω)c → R, continuous in Ω and in L1
ω(RN) is a viscosity super-solution 

(sub-solution) of (2.1) if

u ≥ g (resp. u ≤ g) in Ω̄c

and for every point x0 ∈ Ω and some neighborhood V of x0 with V̄ ⊂ Ω and for any φ ∈ C2(V̄ ) such that u(x0) =
φ(x0) and

u(x) ≥ φ(x)
(
resp. u(x) ≤ φ(x)

)
for all x ∈ V,

defining

ũ =
{

φ in V,

u in V c,

we have
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(−�)αũ(x0) ≥ h
(
x0, u(x0)

) (
resp. (−�)αũ(x0) ≤ h

(
x0, u(x0)

))
.

We say that u is a viscosity solution of (2.1) if it is a viscosity super-solution and also a viscosity sub-solution of (2.1).

Remark 2.1. This definition is equivalent in the case of super-solution to take φ such that u − φ has a zero at x0 that 
is a global minimum (−�)αũ(x0) ≥ h(x0, u(x0)) for other definitions of super-solution and their equivalence can be 
found in [9].

It will be convenient for us to have also a notion of classical solution.

Definition 2.2. We say that a function u : (∂Ω)c → R, continuous in Ω and in L1
ω(RN) is a classical solution of (2.1)

if (−�)αu(x) is well defined for all x ∈ Ω ,

(−�)αu(x) = h
(
x,u(x)

)
, for all x ∈ Ω

and u(x) = g(x) a.e. in Ωc. Classical super and sub-solutions are defined similarly.

Next we have our first regularity theorem.

Theorem 2.1. Let g ∈ L1
ω(RN) and f ∈ C

β

loc(Ω), with β ∈ (0, 1), and u be a viscosity solution of

(−�)αu = f in Ω, u = g in Ωc,

then there exists γ > 0 such that u ∈ C
2α+γ

loc (Ω)

Proof. Here we use ideas of [32]. Suppose without loss of generality that B1 ⊂ Ω and f ∈ Cβ(B1). Let η be a 
non-negative, smooth function with support in B1, such that η = 1 in B1/2. Now we look at the equation

−�w = ηf in R
N.

By Hölder regularity theory for the Laplacian we find w ∈ C2,β , so that (−�)1−αw ∈ C2α+β , see [33] or Theorem 3.1 
in [16]. Then, since

(−�)α
(
u − (−�)1−αw

) = 0 in B1/2,

we can use Theorem 1.1 and Remark 9.4 of [8] (see also Theorem 4.1 there), to obtain that there exist β̃ such that 
u − (−�)1−αw ∈ C2α+β̃ (B1/2), from where we conclude. �

The Maximum and the Comparison Principles are key tools in the analysis, we present them here for completion.

Theorem 2.2. (Maximum Principle) Let O be an open and bounded domain of RN and u be a classical solution of

(−�)αu ≤ 0 in O, (2.2)

continuous in Ō and bounded from above in RN . Then u(x) ≤ M , for all x ∈O, where M = supx∈Oc u(x) < +∞.

Proof. If the conclusion is false, then there exists x′ ∈ O such that u(x′) > M . By continuity of u, there exists x0 ∈ O
such that

u(x0) = max
x∈O

u(x) = max
x∈RN

u(x)

and then (−�)αu(x0) > 0, which contradicts (2.2). �
Remark 2.2. Maximum Principle for less regular solution can be found for example in [31].
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Theorem 2.3. (Comparison Principle) Let u and v be classical super-solution and sub-solution of

(−�)αu + h(u) = f in O,

respectively, where O is an open, bounded domain, the functions f :O →R is continuous and h :R → R is increas-
ing. Suppose further that u and v are continuous in Ō and v(x) ≤ u(x) for all x ∈ Oc. Then

u(x) ≥ v(x), x ∈ O.

Proof. Suppose by contradiction that w = u − v has a negative minimum in x0 ∈ O, then (−�)αw(x0) < 0 and so, 
by assumptions on u and v, h(u(x0)) > h(v(x0)), which contradicts the monotonicity of h. �

We devote the rest of the section to the proof of the existence theorem through super and sub-solutions. We prove the 
theorem by an approximation procedure for which we need some preliminary steps. We need to deal with a Dirichlet 
problem involving fractional Laplacian operator and with exterior data which blows up away from the boundary. 
Precisely, on the exterior data g, we assume the following hypothesis, given an open, bounded set O in RN with C2

boundary:

(G) g : Oc →R is in L1
ω(Oc) and it is of class C2 in {z ∈ Oc, dist(z, ∂O) ≤ δ}, where δ > 0.

In studying the nonlocal problem (1.4) with explosive exterior source, we have to adapt the stability theorem and 
the existence theorem for the linear Dirichlet problem. The following lemma is important in this direction.

Lemma 2.1. Assume that O is an open, bounded domain in RN with C2 boundary. Let w : RN → R:

(i) If w ∈ L1
ω(RN) and w is of class C2 in {z ∈R

N, d(z, O) ≤ δ} for some δ > 0, then (−�)αw is continuous in Ō.

(ii) If w ∈ L1
ω(RN) and w is of class C2 in O, then (−�)αw is continuous in O.

(iii) If w ∈ L1
ω(RN) and w ≡ 0 in O, then (−�)αw is continuous in O.

Proof. We first prove (ii). Let x ∈ Ω and η > 0 such that B(x, 2η) ⊂ Ω . Then we consider

(−�)αu(x) = L1(x) + L2(x),

where

L1(x) =
∫

B(0,η)

δ(u, x, y)

|y|N+2α
dy and L2(x) =

∫
B(0,η)c

δ(u, x, y)

|y|N+2α
dy.

Since w is of class C2 in O, we may write L1 as

L1(x) =
η∫

0

{ ∫
SN−1

1∫
−1

1∫
1

tωtD2w(x + strω)ωdtdsdω

}
r1−αdr,

where the term inside the brackets is uniformly continuous in (x, r), so the resulting function L1 is continuous. On 
the other hand we may write L2 as

L2(x) = −2w(x)

∫
B(0,η)c

dy

|y|N+2α
− 2

∫
B(x,η)c

w(z)dz

|z − x|N+2α
,

from where L2 is also continuous. The proof of (i) and (iii) are similar. �
The next theorem gives the stability property for viscosity solutions in our setting.

Theorem 2.4. Suppose that O is an open, bounded and C2 domain and h : R → R is continuous. Assume that (un), 
n ∈N is a sequence of functions, bounded in L1

ω(Oc) and fn and f are continuous in O such that:
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(−�)αun + h(un) ≥ fn (resp. (−�)αun + h(un) ≤ fn) in O in viscosity sense,
un → u locally uniformly in O,
un → u in L1

ω(RN), and
fn → f locally uniformly in O.

Then, (−�)αu + h(u) ≥ f (resp. (−�)αu + h(u) ≤ f ) in O in viscosity sense.

Proof. If |un| ≤ C in O then we use Lemma 4.3 of [7]. If un is unbounded in O, then un is bounded in Ok =
{x ∈ O, dist(x, ∂O) ≥ 1

k
}, since un is continuous in O, and then by Lemma 4.3 of [7], u is a viscosity solution of 

(−�)αu + h(u) ≥ f in Ok for any k. Thus u is a viscosity solution of (−�)αu + h(u) ≥ f in O and the proof is 
completed. �

An existence result for the Dirichlet problem is given as follows:

Theorem 2.5. Suppose that O is an open, bounded and C2 domain, g :Oc → R satisfies (G), f : Ō →R is continu-
ous, f ∈ C

β

loc(O), with β ∈ (0, 1), and p > 1. Then there exists a classical solution u of{
(−�)αu(x) + |u|p−1u(x) = f (x), x ∈ O,

u(x) = g(x), x ∈ Oc,
(2.3)

which is continuous in Ō.

In proving Theorem 2.5, we will use the following lemma:

Lemma 2.2. Suppose that O is an open, bounded and C2 domain, f : Ō → R is continuous and C > 0. Then there 
exist a classical solution of{

(−�)αu(x) + Cu(x) = f (x), x ∈O,

u(x) = 0, x ∈Oc,
(2.4)

which is continuous in Ō.

Proof. For the existence of a viscosity solution u of (2.4), that is continuous in Ō, we refers to Theorem 3.1 in [15]. 
Now we apply Theorem 2.6 of [7] to conclude that u is Cθ

loc(O), with θ > 0, and then we use Theorem 2.1 to conclude 
that the solution is classical (see also Proposition 1.1 and 1.4 in [30]). �

Using Lemma 2.2, we find V̄ , a classical solution of{
(−�)αV̄ (x) = −1, x ∈O,

V̄ (x) = 0, x ∈Oc,
(2.5)

which is continuous in Ō and negative in O. It is classical since we apply Theorem 2.6 of [7] to conclude that u is 
Cθ

loc(O), with θ > 0, and then we use Theorem 2.1 to conclude that the solution is classical (see also Propositions 1.1 
and 1.4 in [30]).

Now we prove Theorem 2.5.

Proof of Theorem 2.5. Under assumption (G) and in view of the hypothesis on O, we may extend g to ḡ in RN as 
a C2 function in {z ∈ R

N, d(z, O) ≤ δ}. We certainly have ḡ ∈ L1
ω(RN) and, by Lemma 2.1 (−�)αḡ is continuous 

in Ō. Next we use Lemma 2.2 to find a solution v of Eq. (2.4) with f (x) replaced by f (x) − (−�)αḡ(x) − Cḡ(x), 
where C > 0. Then we define u = v + ḡ and we see that u is continuous in Ō and it satisfies in the viscosity sense{

(−�)αu(x) + Cu(x) = f (x), x ∈O,

u(x) = g(x), x ∈Oc.

Now we use Theorem 2.6 in [7] and then Theorem 2.1 to conclude that u is a classical solution. Continuing the proof, 
we find super and sub-solutions for (2.3). We define
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uλ(x) = λV̄ (x) + ḡ(x), x ∈R
N,

where λ ∈R and V̄ is given in (2.5). We see that uλ(x) = g(x) in Oc for any λ and for λ large (negative), uλ satisfies

(−�)αuλ(x) + ∣∣uλ(x)
∣∣p−1

uλ(x) − f (x) ≥ (−�)αḡ(x) − λ − f (x) − ∣∣ḡ(x)
∣∣p,

for x ∈ O. Since (−�)αḡ, ḡ and f are bounded in Ō, choosing λ1 < 0 large enough we find that uλ1 ≥ 0 is a 
super-solution of (2.3) with uλ1 = g in Oc.

On the other hand, for λ > 0 we have

(−�)αuλ(x) + |uλ|p−1uλ(x) − f (x) ≤ (−�)αḡ(x) − λ + |ḡ|p−1ḡ(x) − f (x).

As before, there is λ2 > 0 large enough, so that uλ2 is a sub-solution of (2.3) with uλ2 = g in Oc. Moreover, we have 
that uλ2 < uλ1 in O and uλ2 = uλ1 = g in Oc.

Let u0 = uλ2 and define iteratively, using the above argument, the sequence of functions un (n ≥ 1) as the classical 
solutions of

(−�)αun(x) + Cun(x) = f (x) + Cun−1(x) − |un−1|p−1un−1(x), x ∈ O,

un(x) = g(x), x ∈Oc,

where C > 0 is so that the function r(t) = Ct − |t |p−1t is increasing in the interval [minx∈Ō uλ2(x), maxx∈Ō uλ1(x)]. 
Next, using Theorem 2.3 we get

uλ2 ≤ un ≤ un+1 ≤ uλ1 in O, for all n ∈N.

Then we define u(x) = limn→+∞ un(x), for x ∈O and u(x) = g(x), for x ∈Oc and we have

uλ2 ≤ u ≤ uλ1 in O. (2.6)

Moreover, uλ1, uλ2 ∈ L1
ω(RN) so that un → u in L1

ω(RN), as n → ∞.
By interior estimates as given in [6], for any compact set K of O, we have that un has uniformly bounded Cθ(K)

norm. So, by Ascoli–Arzela Theorem we have that u is continuous in K and un → u uniformly in K . Taking a 
sequence of compact sets Kn = {z ∈ O, d(z, ∂O) ≥ 1

n
}, and O = ⋃+∞

n=1 Kn, we find that u is continuous in O and, by 
Theorem 2.4, u is a viscosity solution of (2.3). Now we apply Theorem 2.6 of [7] to find that u is Cθ

loc(O), and then 
we use Theorem 2.1 con conclude that u is a classical solution. In addition, u is continuous up to the boundary by 
(2.6). �
Remark 2.3. In the above limiting proceeding half relaxed limits can be use instead of Cθ regularity.

Now we are in a position to prove the main theorem of this section. We prove the existence of a blow-up solution 
of (1.5) assuming the existence of suitable super and sub-solutions.

Theorem 2.6. Assume that Ω is an open, bounded domain of class C2, p > 1 and f satisfy (H1). Suppose there exists 
a super-solution Ū and a sub-solution U of (1.5) such that Ū and U are of class C2 in Ω , U , Ū ∈ L1

ω(RN),

Ū ≥ U in Ω, lim inf
x∈Ω,x→∂Ω

U(x) = +∞ and Ū = U = 0 in Ω̄c.

Then there exists at least one solution u of (1.5) in the viscosity sense and

U ≤ u ≤ Ū in Ω.

Additionally, if f ≥ 0 in Ω , then u > 0 in Ω .

Proof. Let us consider Ωn = {x ∈ Ω : d(x) > 1/n} and use Theorem 2.5 to find a solution un of{
(−�)αu(x) + |u|p−1u(x) = f (x), x ∈ Ωn,

u(x) = U(x), x ∈ Ωc,
(2.7)
n
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We just replace O by Ωn and define δ = 1
4n

, so that U(x) satisfies assumption (G). We notice that Ωn is of class 
C2 for n ≥ N0, for certain N0 large. Next we show that un is a sub-solution of (2.7) in Ωn+1. In fact, since un is the 
solution of (2.7) in Ωn and U is a sub-solution of (2.7) in Ωn, by Theorem 2.3,

un ≥ U in Ωn.

Additionally, un = U in Ωc
n . Then, for x ∈ Ωn+1 \ Ωn, we have

(−�)αun(x) = −1

2

∫
RN

δ(un, x, y)

|y|N+2α
dy ≤ (−�)αU(x),

so that un is a sub-solution of (2.7) in Ωn+1. From here and since un+1 is the solution of (2.7) in Ωn+1 and Ū is a 
super-solution of (2.7) in Ωn+1, by Theorem 2.3, we have un ≤ un+1 ≤ Ū in Ωn+1. Therefore, for any n ≥ N0,

U ≤ un ≤ un+1 ≤ Ū in Ω.

Then we can define the function u as

u(x) = lim
n→+∞un(x), x ∈ Ω and u(x) = 0, x ∈ Ω̄c

and we have

U(x) ≤ u(x) ≤ Ū(x), x ∈ Ω.

Since U and Ū belong to L1
ω(RN), we see that un → u in L1

ω(RN), as n → ∞. Now we repeat the arguments of the 
proof of Theorem 2.5 to find that u is a classical solution of (1.5). Finally, if f is positive we easily find that u is 
positive, again by a contradiction argument. �
3. Some estimates

In order to prove our existence theorems we will use Theorem 2.6, so that it is crucial to have available super and 
sub-solutions to (1.4). In this section we provide the basic estimates that will allow to obtain in the next section the 
necessary super and sub-solutions.

To this end, we use appropriate powers of the distance function d and the main result in this section are the estimates 
given in Proposition 3.2, that provides the asymptotic behavior of the fractional operator applied to d .

But before going to this estimates, we describe the behavior of the function C defined in (1.13), which is a C2

defined in (−1, 2α). We have:

Proposition 3.1. For every α ∈ (0, 1) there exists a unique τ0(α) ∈ (−1, 0) such that C(τ0(α)) = 0 and

C(τ)
(
τ − τ0(α)

)
< 0, for all τ ∈ (−1,0) \ {

τ0(α)
}
. (3.1)

Moreover, the function τ0 satisfies

lim
α→1− τ0(α) = 0 and lim

α→0+ τ0(α) = −1. (3.2)

Proof. We first observe that C(0) < 0 since the integrand in (1.13) is zero in (0, 1) and negative in (1, +∞). Next 
easily see that

lim
τ→−1+ C(τ) = +∞, (3.3)

since, as τ approaches −1, the integrand loses integrability at 0. Next we see that C(·) is strictly convex in (−1, 0), 
since

C′(τ ) =
+∞∫ |1 − t |τ χ(0,1)(t) log |1 − t | + (1 + t)τ log(1 + t)

t1+2α
dt
0
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and

C′′(τ ) =
+∞∫
0

|1 − t |τ [χ(0,1)(t) log |1 − t |]2 + (1 + t)τ [log(1 + t)]2

t1+2α
dt > 0.

The convexity C(·), C(0) < 0 and (3.3) allow to conclude the existence and uniqueness of τ0(α) ∈ (−1, 0) such that 
(3.1) holds. To prove the first limit in (3.2), we proceed by contradiction, assuming that for {αn} converging to 1 and 
τ0 ∈ (−1, 0) such that

τ0(αn) ≤ τ0 < 0.

Then, for a constant c1 > 0 we have

lim
αn→1−

1
2∫

0

(1 − t)τ0(αn) + (1 + t)τ0(αn) − 2

t1+2αn
dt ≥ c1 lim

αn→1−

1
2∫

0

t1−2αndt = +∞

and, for a constant c2 independent of n, we have

+∞∫
1
2

∣∣∣∣χ(0,1)(t)(1 − t)τ0(αn) + (1 + t)τ0(αn) − 2

t1+2αn

∣∣∣∣dt ≤ c2,

contradicting the fact that C(τ0(αn)) = 0. For the second limit in (3.2), we proceed similarly, assuming that for {αn}
converging to 0 and τ̄0 ∈ (−1, 0) such that

τ0(αn) ≥ τ̄0 > −1.

There are positive constants c1 and c2 we have such that

2∫
0

∣∣∣∣χ0,1(t)(1 − t)τ0(αn) + (1 + t)τ0(αn) − 2

t1+2αn

∣∣∣∣dt ≤ c1

and

lim
n→∞

+∞∫
2

(1 + t)τ0(αn) − 2

t1+2αn
dt ≤ −c2 lim

n→∞

+∞∫
2

1

t1+2αn
dt = −∞,

contradicting again that C(τ0(αn)) = 0. �
Next we prove our main result in this section. We assume that δ > 0 is such that the distance function d(·) is of 

class C2 in Aδ = {x ∈ Ω, d(x) < δ} and we define

Vτ (x) =
{

l(x), x ∈ Ω \ Aδ,

d(x)τ , x ∈ Aδ,

0, x ∈ Ωc,

(3.4)

where τ is a parameter in (−1, 0) and the function l is positive such that Vτ is C2 in Ω . We have the following

Proposition 3.2. Assume Ω is a bounded, open subset of RN with a C2 boundary and let α ∈ (0, 1). Then there exists 
δ1 ∈ (0, δ) and a constant C > 1 such that:

(i) If τ ∈ (−1, τ0(α)), then

1

C
d(x)τ−2α ≤ −(−�)αVτ (x) ≤ Cd(x)τ−2α, for all x ∈ Aδ1 .
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(ii) If τ ∈ (τ0(α), 0), then

1

C
d(x)τ−2α ≤ (−�)αVτ (x) ≤ Cd(x)τ−2α, for all x ∈ Aδ1 .

(iii) If τ = τ0(α), then∣∣(−�)αVτ (x)
∣∣ ≤ Cd(x)min{τ0(α),2τ0(α)−2α+1}, for all x ∈ Aδ1 .

Proof. By compactness we prove that the corresponding inequality holds in a neighborhood of any point x̄ ∈ ∂Ω and 
without loss of generality we may assume that x̄ = 0. For a given 0 < η ≤ δ, we define

Qη = {
z = (

z1, z
′) ∈R×R

N−1, |z1| < η,
∣∣z′∣∣ < η

}
and Q+

η = {z ∈ Qη, z1 > 0}. Let ϕ : RN−1 → R be a C2 function such that (z1, z′) ∈ Ω ∩ Qη if and only if z1 ∈
(ϕ(z′), η) and moreover, (ϕ(z′), z′) ∈ ∂Ω for all |z′| < η. We further assume that (−1, 0, · · ·, 0) is the outer normal 
vector of Ω at x̄.

In the proof of our inequalities, we let x = (x1, 0), with x1 ∈ (0, η/4), be then a generic point in Aη/4. We observe 
that |x − x̄| = d(x) = x1. By definition we have

−(−�)αVτ (x) = 1

2

∫
Qη

δ(Vτ , x, y)

|y|N+2α
dy + 1

2

∫
RN\Qη

δ(Vτ , x, y)

|y|N+2α
dy (3.5)

and we see that∣∣∣∣
∫

RN\Qη

δ(Vτ , x, y)

|y|N+2α
dy

∣∣∣∣ ≤ c|x|τ , (3.6)

where the constant c is independent of x. Thus we only need to study the asymptotic behavior of the first integral, that 
from now on we denote by E(x1)/2.

Our first goal is to get a lower bound for E(x1). For that purpose we first notice that, since τ ∈ (−1, 0), we have 
that

d(z)τ ≥ ∣∣z1 − ϕ
(
z′)∣∣τ , for all z ∈ Qδ ∩ Ω. (3.7)

Now we assume that 0 < η ≤ δ/2, then for all y ∈ Qη we have x ± y ∈ Qδ . Thus x ± y ∈ Ω ∩ Qδ if and only if 
ϕ(±y′) < x1 ± y1 < δ and |y′| < δ. Then, by (3.7), we have that

Vτ (x + y) = d(x + y)τ ≥ [
x1 + y1 − ϕ

(
y′)]τ , x + y ∈ Qδ ∩ Ω (3.8)

and

Vτ (x − y) = d(x − y)τ ≥ [
x1 − y1 − ϕ

(−y′)]τ , x − y ∈ Qδ ∩ Ω. (3.9)

On the other side, for y ∈ Qη we have that if x ±y ∈ Qδ ∩Ωc then, by definition of Vτ , we have Vτ (x ± y) = 0. Now, 
for y ∈ Qη we define the intervals

I+ = (
ϕ
(
y′) − x1, η − x1

)
and I− = (

x1 − η, x1 − ϕ
(−y′)) (3.10)

and the functions

I (y) = χI+(y1)
∣∣x1 + y1 − ϕ

(
y′)∣∣τ + χI−(y1)

∣∣x1 − y1 − ϕ
(−y′)∣∣τ − 2xτ

1 ,

J (y1) = χ(x1−η,x1)(y1)|x1 − y1|τ + χ(−x1,η−x1)(y1)|x1 + y1|τ − 2xτ
1 ,

I1(y) = {
χI+(y1) − χ(−x1,η−x1)(y1)

}|x1 + y1|τ ,
I2(y) = χI+(y1)

(∣∣x1 + y1 − ϕ
(
y′)∣∣τ − |x1 + y1|τ

)
,

where χA denotes the characteristic function of the set A. Then, using these definitions and inequalities (3.8) and 
(3.9), we have that
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E(x1) ≥
∫
Qη

I (y)

|y|N+2α
dy =

∫
Qη

J (y1)

|y|N+2α
dy + E1(x1) + E2(x1), (3.11)

where

Ei(x1) =
∫
Qη

Ii(y) + I−i (y)

|y|N+2α
dy, i = 1,2. (3.12)

Here we have considered that

I−1(y) = {
χI−(y1) − χ(x1−η,x1)(y1)

}|x1 − y1|τ
and

I−2(y) = χI−(y1)
(∣∣x1 − y1 − ϕ

(−y′)∣∣τ − |x1 − y1|τ
)
,

for y = (y1, y′) ∈ R
N . We start studying the first integral in the right hand side in (3.11). Changing variables we see 

that ∫
Qη

J (y1)

|y|N+2α
dy = xτ−2α

1

∫
Q η

x1

J (x1z1)x
−τ
1

|z|N+2α
dz = 2xτ−2α

1 (R1 − R2),

where

R1 =
∫

Q+
η
x1

χ(0,1)(z1)|1 − z1|τ + (1 + z1)
τ − 2

|z|N+2α
dz

and

R2 =
∫

Q+
η
x1

χ(
η
x1

−1,
η
x1

)(z1)(1 + z1)
τ

|z|N+2α
dz.

Next we estimate these last two integrals. For R1 we see that, for appropriate positive constants c1 and c2∫
R

N+

χ(0,1)(z1)|1 − z1|τ + (1 + z1)
τ − 2

|z|N+2α
dz

=
+∞∫
0

χ(0,1)(z1)|1 − z1|τ + (1 + z1)
τ − 2

z1+2α
1

dz1

∫
RN−1

1

(|z′|2 + 1)
N+2α

2

dz′

= c1 C(τ)

and ∫
(Q+

η
x1

)c

χ(0,1)(z1)|1 − z1|τ + (1 + z1)
τ − 2

|z|N+2α
dz = −c2 x2α

1

(
1 + o(1)

)
.

Consequently we have, for some constant c that

R1 = c1
(
C(τ) + cx2α

1 + o
(
x2α

1

))
. (3.13)

For R2 we have that
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R2 =
η
x1∫

η
x1

−1

(1 + z1)
τ

z1+2α
1

∫
B η

x1

1

(1 + |z′|2)N+2α
2

dz′dz1 ≤ c3x
2α−τ+1
1 , (3.14)

where c3 > 0. Here and in what follows we denote by Bσ the ball of radius σ in RN−1. From (3.13) and (3.14) we 
then conclude that∫

Qη

J (y1)

|y|N+2α
dy = c1x

τ−2α
1

(
C(τ) + cx2α

1 + o
(
x2α

1

))
. (3.15)

Continuing with our analysis we estimate E1(x1). We only consider the term I1(y), since the estimate for I−1(y)

is similar. We have

∫
Qη

I1(y)

|y|N+2α
dy = −

∫
Bη

ϕ(y′)−x1∫
−x1

|x1 + y1|τ
|y|N+2α

dy1dy′ = −xτ−2α
1 F1(x1), (3.16)

where

F1(x1) =
∫

B η
x1

ϕ(x1z′)
x1∫

0

|z1|τ
((z1 − 1)2 + |z′|2)(N+2α)/2

dz1dz′. (3.17)

In what follows we write ϕ−(y′) = min{ϕ(y′), 0} and ϕ+(y′) = ϕ(y′) − ϕ−(y′). Next we see that assuming that 
0 ≤ ϕ+(y′) ≤ C|y′|2 for |y′| ≤ η, for given (z1, z′) satisfying 0 ≤ z1 ≤ ϕ+(x1z

′)
x1

and |z′| ≤ η
x1

then

(1 − z1)
2 + ∣∣z′∣∣2 ≥ 1

4

(
1 + ∣∣z′∣∣2)

, (3.18)

if we assume η small enough. Thus

F1(x1) ≤ C

∫
B η

x1

ϕ+(x1z′)
x1∫

0

|z1|τ
(1 + |z′|2)(N+2α)/2

dz1dz′

≤ Cxτ+1
1

∫
B η

x1

|z′|2(τ+1)

(1 + |z′|2)(N+2α)/2
dz′

≤ Cxτ+1
1

(
x−2τ+2α−1

1 + 1
) ≤ Cx

min{τ+1,2α−τ }
1 .

Thus we have obtained

E1(x1) ≥ −Cxτ−2α
1 x

min{τ+1,2α−τ }
1 . (3.19)

We continue with the estimate of E2(x1). As before we only consider the term I2(y),

∫
Qη

I2(y)

|y|N+2α
dy =

∫
Bη

η−x1∫
ϕ(y′)−x1

|x1 + y1 − ϕ(y′)|τ − |x1 + y1|τ
(y2

1 + |y′|2)N+2α
2

dy1dy′

≥
∫
B

η−x1∫
ϕ (y′)−x

|x1 + y1 − ϕ−(y′)|τ − |x1 + y1|τ
(y2

1 + |y′|2)N+2α
2

dy1dy′
η − 1
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=
∫
Bη

η∫
ϕ−(y′)

|z1 − ϕ−(y′)|τ − |z1|τ
((z1 − x1)2 + |y′|2)N+2α

2

dz1dy′

≥
∫
Bη

η∫
0

|z1 − ϕ−(y′)|τ − |z1|τ
((z1 − x1)2 + |y′|2)N+2α

2

dz1dy′ +
∫
Bη

0∫
ϕ−(y′)

−|z1|τ
((z1 − x1)2 + |y′|2)N+2α

2

dz1dy′

= E21(x1) + E22(x1). (3.20)

We observe that E22(x1) is similar to F1(x1). In order to estimate E21(x1) we use integration by parts

E21(x1) = 1

τ + 1

∫
Bη

{
(η − ϕ−(y′))τ+1 − ητ+1

((η − x1)2 + |y′|2)N+2α
2

− (−ϕ−(y′))τ+1

(x2
1 + |y′|2)N+2α

2

}
dy′

+ N + 2α

τ + 1

∫
Bη

η∫
0

(z1 − ϕ−(y′))τ+1 − (z1)
τ+1

((z1 − x1)2 + |y′|2)N+2α
2 +1

(z1 − x1)dz1dy′

= A1 + A2.

For the first integral we have

A1 ≥ 1

τ + 1

∫
Bη

{ −ητ+1

((η − x1)2 + |y′|2)N+2α
2

− (−ϕ−(y′))τ+1

(x2
1 + |y′|2)N+2α

2

}
dy′

≥ −C(η) − C

∫
Bη

|y′|2τ+2

(x2
1 + |y′|2)N+2α

2

dy′

≥ −Cxτ−2α+τ+1
1 − C.

For the second integral, since τ ∈ (−1, 0) and (z1 − ϕ−(y′))τ+1 − |z1|τ+1 > 0, we have that

A2 ≥ N + 2α

τ + 1

∫
Bη

x1∫
0

(z1 − ϕ−(y′))τ+1 − |z1|τ+1

((z1 − x1)2 + |y′|2)N+2α
2 +1

(z1 − x1)dz1dy′

≥ N + 2α

(τ + 1)2

∫
Bη

x1∫
0

−ϕ−(y′)zτ
1

((z1 − x1)2 + |y′|2)N+2α
2 +1

(z1 − x1)dz1dy′

≥ C3x
2τ−2α+1
1

∫
Bη/x1

1∫
0

|z′|2zτ
1

((z1 − 1)2 + |z′|2)N+2α
2 +1

(z1 − 1)dz1dz′

≥ −C4x
2τ−2α+1
1 , (3.21)

where C3, C4 > 0 independent of x1 and the second inequality used a = z1 and b = −ϕ−(y′) in the fact that 
(a + b)τ+1 − aτ+1 ≤ aτ b

τ+1 for a > 0, b ≥ 0.
Thus, we have obtained

E2(x1) ≥ −Cxτ−2α
1 x

min{τ+1,2α−τ }
1 . (3.22)

The next step is to obtain the other inequality for E(x1). By choosing δ smaller if necessary, we can prove that

Lemma 3.1. Under the regularity conditions on the boundary and with the arrangements given at the beginning of 
the proof of Proposition 3.2, that is, that the boundary is locally described by ϕ after a rotation. We have that there is 
η > 0 and C > 0 such that

d(z) ≥ (
z1 − ϕ

(
z′))(1 − C

∣∣z′∣∣2)
for all

(
z1, z

′) ∈ Ω ∩ Qη.
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Proof. Since ϕ is C2 and ∇ϕ(0) = 0, there exist η1 ∈ (0, 1/8) small and C1 > 0 such that C1η1 < 1/4 and∣∣ϕ(
y′)∣∣ < C1

∣∣y′∣∣2
,

∣∣∇ϕ
(
y′)∣∣ ≤ C1

∣∣y′∣∣, ∀ y′ ∈ Bη1 . (3.23)

Choosing η2 ∈ (0, η1) such that for any z = (z1, z′) ∈ Qη2 ∩ Ω , there exists y′ satisfying (ϕ(y′), y′) ∈ ∂Ω ∩ Qη1 and 
d(z) = |z − (ϕ(y′), y′)|.

We observe that y′ mentioned above, is the minimizer of

H
(
z′) = (

z1 − ϕ
(
z′))2 + ∣∣z′ − y′∣∣2

,
∣∣z′∣∣ < η1,

then

−(
z1 − ϕ

(
y′))∇ϕ

(
y′) + (

z′ − y′) = 0,

which, together with (3.23) implies that∣∣y′∣∣ − ∣∣z′∣∣ ≤ ∣∣z′ − y′∣∣ = ∣∣(z1 − ϕ
(
y′))∇ϕ

(
y′)∣∣ ≤ (|z1| + C1

∣∣y′∣∣2)∣∣∇ϕ
(
y′)∣∣

≤ C1
(
η2 + C1η

2
1

)∣∣y′∣∣ ≤ 2C1η1
∣∣y′∣∣ <

1

2

∣∣y′∣∣.
Then ∣∣y′∣∣ ≤ 2

∣∣z′∣∣. (3.24)

Denote the points z, (ϕ(y′), y′), (ϕ(z′), z′) by A, B, C, respectively, and let θ be the angle between the segment BC

and the hyper plane with normal vector e1 = (1, 0, ..., 0) and containing C. Then the angle 
 C = π
2 − θ . Denotes the 

arc from B to C in the plane ABC by arc(BC). By the geometry, there exists some point x = (ϕ(x ′), x′) ∈ arc(BC)

such that line BC parallels the tangent line of arc(BC) at point x. Then, from (3.24) we have |x ′| ≤ max{|z′|, |y′|} ≤
2|z′| and so, from (3.23) we obtain

tan(θ) =
∣∣∣∣ y′ − z′

|y′ − z′| · ∇ϕ
(
x′)∣∣∣∣ ≤ ∣∣∇ϕ

(
x′)∣∣ ≤ C1

∣∣x′∣∣ ≤ 2C1
∣∣z′∣∣,

which implies that for some C > 0,

cos(θ) ≥ 1 − C
∣∣z′∣∣2

. (3.25)

Then we complete the proof using Sine Theorem and (3.25)

d(z) = sin(
 C)

sin(
 B)

(
z1 − ϕ

(
z′)) ≥ (

z1 − ϕ
(
z′)) sin

(
π

2
− θ

)

= (
z1 − ϕ

(
z′)) cos(θ) ≥ (

z1 − ϕ
(
z′))(1 − C

∣∣z′∣∣2)
. �

From this lemma, by making C and η smaller if necessary we obtain that

dτ (z) ≤ (
z1 − ϕ

(
z′))τ (1 + C

∣∣z′∣∣2) for all z ∈ Ω ∩ Qη. (3.26)

With x = (x1, 0) satisfying x1 ∈ (0, η/4) as at the beginning of the proof, we have that d(x) = x1 and for any y ∈ Qη

we see that x ± y ∈ Qδ . We also see that x ± y ∈ Ω ∩ Qδ if and only if ϕ(±y′) < x1 ± y1 < δ and |y′| < δ. Then, for 
x ± y ∈ Ω ∩ Qδ , by (3.26) we have,

Vτ (x ± y) = d(x ± y)τ ≤ (
x1 ± y1 − ϕ

(±y′))τ (
1 + C

∣∣y′∣∣2)
. (3.27)

For y ∈ Qη, we define

I3(y) = C
∣∣y′∣∣2

χI+(y1)
∣∣x1 + y1 − ϕ

(
y′)∣∣τ

and
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I3(−y) = C
∣∣y′∣∣2

χI−(y1)
∣∣x1 − y1 − ϕ

(−y′)∣∣τ ,
where I+ and I− were defined in (3.10). Using (3.27) as in (3.11) we find

E(x1) =
∫
Qη

δ(Vτ , x, y)

|y|N+2α
dy ≤

∫
Qη

I (y)

|y|N+2α
dy + E3(x1)

=
∫
Qη

J (y)

|y|N+2α
dy + E1(x1) + E2(x1) + E3(x1), (3.28)

where E1 and E2 were defined in (3.12) and

E3(x1) =
∫
Qη

I3(y) + I3(−y)

|y|N+2α
dy. (3.29)

We estimate E3(x1) and for that we observe that it is enough to estimate the integral with one of the terms in (3.29)
(the other is similar), say

∫
Qη

I3(y)

|y|N+2α
dy =

∫
Bη

η−x1∫
ϕ(y′)−x1

C|y′|2|x1 + y1 − ϕ(y′)|τ
|y|N+2α

dy1dy′

= Cxτ−2α+2
1

∫
B η

x1

η
x1∫

ϕ(x1z′)
x1

|z′|2|z1 − ϕ(x1z
′)

x1
|τ

((z1 − 1)2 + |z′|2)(N+2α)/2
dz1dz′

= Cxτ−2α+2
1 (A1 + A2), (3.30)

where A1 and A2 are integrals over properly chosen subdomains, estimated separately.

A1 =
∫

B η
x1

ϕ(x1z′)
x1

+ 1
2∫

ϕ(x1z′)
x1

|z′|2|z1 − ϕ(x1z
′)

x1
|τ

((z1 − 1)2 + |z′|2)(N+2α)/2
dz1dz′

≤ c

(τ + 1)2τ+1

∫
B η

x1

|z′|2
(1 + |z′|2)(N+2α)/2

dz′ (3.31)

≤ c′
(

η

x1

)−2α+1

. (3.32)

The inequality in (3.31) is obtained noticing that the ball B((1, 0), 1/2) in RN does not touch the band{(
z1, z

′)/
∣∣z′∣∣ ≤ η,

ϕ(x1z
′)

x1
≤ z1 ≤ ϕ(x1z

′)
x1

+ 1/2

}

if x1 is small enough, and so (z1 − 1)2 + |z′|2 ≥ 1
8 + 1

2 |z′|2. Then simple integration gives the next term. Next we 
estimate A2

A2 =
∫

B η
x1

η
x1∫

ϕ(x1z′)
x

+ 1
2

|z′|2|z1 − ϕ(x1z
′)

x1
|τ

((z1 − 1)2 + |z′|2)(N+2α)/2
dz1dz′
1



H. Chen et al. / Ann. I. H. Poincaré – AN 32 (2015) 1199–1228 1217
≤ 1

2τ

∫
B η

x1

η
x1∫

ϕ(x1z′)
x1

+ 1
2

|z′|2
((z1 − 1)2 + |z′|2)(N+2α)/2

dz1dz′

≤ c′
(

η

x1

)−2α+2

. (3.33)

Putting together (3.30), (3.32), (3.33) and (3.29) we obtain

E3(x1) =
∫
Qη

(I3(y) + I3(−y))

|y|N+2α
dy ≤ cxτ

1 . (3.34)

From (3.16) but using the other inequality for F1, that is,

F1(x1) ≥ C

∫
B η

x1

ϕ−(x1z′)
x1∫

0

|z1|τ
(1 + |z′|2)(N+2α)/2

dz1dz′

and arguing similarly we obtain as in (3.19)

E1(x1) ≤ Cxτ−2α
1 x

min{τ+1,2α}
1 . (3.35)

Then we look at E2(x1) and, as in (3.20), we only consider the term I2(y):

∫
Qη

I2(y)

|y|N+2α
dy ≤

∫
Bη

η∫
ϕ+(y′)

|z1 − ϕ+(y′)|τ − |z1|τ
((z1 − x1)2 + |y′|2)N+2α

2

dz1dy′ = Ẽ21(x1).

In order to estimate Ẽ21(x1) we use integration by parts

Ẽ21(x1) = 1

τ + 1

∫
Bη

{
(η − ϕ+(y′))τ+1 − ητ+1

((η − x1)2 + |y′|2)N+2α
2

− (ϕ+(y′))τ+1

((ϕ+(y′) − x1)2 + |y′|2)N+2α
2

}
dy′

+ N + 2α

τ + 1

∫
Bη

η∫
ϕ+(y′)

(z1 − ϕ+(y′))τ+1 − zτ+1
1

((z1 − x1)2 + |y′|2)N+2α
2 +1

(z1 − x1)dz1dy′

≤ N + 2α

τ + 1

∫
Bη

x1∫
min{ϕ+(y′),x1}

(z1 − ϕ+(y′))τ+1 − zτ+1
1

((z1 − x1)2 + |y′|2)N+2α
2 +1

(z1 − x1)dz1dy′.

This integral can be estimated in a similar way as E21, see (3.21) and the estimates given before. We then obtain

E2(x1) ≤ Cx2τ−2α+1
1 . (3.36)

Then we conclude from (3.5), (3.11), (3.15), (3.19), (3.22), (3.28), (3.34), (3.35) and (3.36) that

−(−�)αVτ (x) = Cxτ−2α
1

(
C(τ) + O

(
x

min{τ+1,2α}
1

))
, (3.37)

where there exists a constant c > 0 so that∣∣O(
x

min{τ+1,2α}
1

)∣∣ ≤ cx
min{τ+1,2α}
1 , for all small x1 > 0.

From here, depending on the value of τ ∈ (−1, 0), conditions (i), (ii) and (iii) follows and the proof of the proposition 
is complete. �

We end this section with an estimate we need when dealing with Eq. (1.4) when the external value g is not zero. 
We have the following proposition
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Proposition 3.3. Assume that Ω is a bounded, open and C2 domain in RN . Assume that g ∈ L1
ω(Ωc). Assume further 

that there are numbers β ∈ (−1, 0), η > 0 and c > 1 such that

1

c
≤ g(x)d(x)−β ≤ c, x ∈ Ω̄c and d(x) ≤ η.

Then there exist η1 > 0 and C > 1 such that G, defined in (1.20), satisfies

1

C
d(x)β−2α ≤ G(x) ≤ Cd(x)β−2α, x ∈ Aη1 . (3.38)

Proof. The proof of this proposition requires estimates similar to those in the proof of Proposition 3.2 so we omit it. 
However, the function C used there and defined in (1.13), needs to be replaced here by C̃ : (−1, 0) → R given by

C̃(β) =
∞∫

1

|t − 1|β
t1+2α

dt.

We observe that this function is always positive. �
4. Proof of existence results

In this section, we will give the proof of existence of large solution to (1.5). By Theorem 2.6 we only need to find 
ordered super and sub-solution, denoted by U and W , for (1.5) under our various assumptions. We begin with a simple 
lemma that reduce the problem to find them only in Aδ.

Lemma 4.1. Let U and W be classical ordered super and sub-solution of (1.5) in the sub-domain Aδ . Then there 
exists λ large such that Uλ = U − λV̄ and Wλ = W + λV̄ , where V̄ is the solution of (2.5), with O = Ω , are ordered 
super and sub-solution of (1.5).

Proof. Notice that by negativity V̄ in Ω , we have that Uλ ≥ U and Wλ ≤ W , so they are still ordered in Aδ . In 
addition Uλ satisfies

(−�)αUλ + |Uλ|p−1Uλ − f (x) ≥ (−�)αU + |U |p−1U − f (x) + λ > 0, in Ω.

This inequality holds because of our assumption in Aδ , the fact that (−�)αU + |U |p−1U − f (x) is continuous in 
Ω \ Aδ and by taking λ large enough.

By the same type of arguments we find the Wλ is a sub-solution of the first equation in (1.5) and we complete the 
proof. �

Now we are in position to prove our existence results that we already reduced to find ordered super and sub-solution 
of (1.5) with the first equation in Aδ with the desired asymptotic behavior.

Proof of Theorem 1.1 (Existence). Define

Uμ(x) = μVτ (x) and Wμ(x) = μVτ (x), (4.1)

with τ = − 2α
p−1 . We observe that τ = − 2α

p−1 ∈ (−1, τ0(α)) and τp = τ − 2α. Then by Proposition 3.2 and (H2) we 
find that for x ∈ Aδ and δ > 0 small

(−�)αUμ(x) + Up
μ(x) − f (x) ≥ −Cμd(x)τ−2α + μpd(x)τp − Cd(x)τp,

for some C > 0. Then there exists a large μ > 0 such that Uμ is a super-solution of (1.5) with the first equation in Aδ

with the desired asymptotic behavior. Now by Proposition 3.2 we have that for x ∈ Aδ and δ > 0 small

(−�)αWμ(x) + Wp
μ(x) − f (x) ≤ −μ

d(x)τ−2α + μpd(x)τp − f (x) ≤ 0,

C
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in the last inequality we have used (H2) and μ > 0 small. Then, by Theorem 2.6 there exists a solution, with the 
desired asymptotic behavior. �
Proof of Theorem 1.1 (Special case τ = τ0(α)). We define for t > 0,

Uμ(x) = tVτ0(α)(x) − μVτ1(x) and Wμ(x) = tVτ0(α)(x) − μVτ1(x), (4.2)

where τ1 = min{τ0(α)p + 2α, 0}. If τ1 = 0, we write V0 = χΩ and we have

(−�)αV0(x) =
∫

RN\Ω

1

|z − x|N+2α
dz, x ∈ Ω.

By direct computation, there exists C > 1 such that

1

C
d(x)−2α ≤ (−�)αV0(x) ≤ Cd(x)−2α, x ∈ Ω. (4.3)

We see that τ1 ∈ (τ0(α), 0] and, if τ1 < 0, we have τ1 − 2α = τ0(α)p and

τ1 − 2α < min
{
τ0(α), τ0(α) − 2α + τ0(α) + 1

}
.

Then, by Proposition 3.2 and (4.3), for x ∈ Aδ , it follows that

(−�)αUμ(x) + ∣∣Uμ(x)
∣∣p−1

Uμ(x) ≥ −Ctd(x)min{τ0(α),τ0(α)−2α+τ0(α)+1} − Cμd(x)τ1−2α + tpd(x)τ0(α)p.

Thus, letting μ = tp/(2C) if τ1 < 0 and μ = 0 if τ1 = 0, for a possible smaller δ > 0, we obtain

(−�)αUμ(x) + ∣∣Uμ(x)
∣∣p−1

Uμ(x) ≥ 0, x ∈ Aδ.

For the sub-solution, by Proposition 3.2 and (4.3), for x ∈ Aδ , we have

(−�)αWμ(x) + ∣∣Wμ

∣∣p−1
Wμ(x) ≤ Ctd(x)min{τ0(α),τ0(α)−2α+τ0(α)+1} − μ

C
d(x)τ1−2α + tpd(x)τ0(α)p,

where C > 1. Then, for μ ≥ 2Ctp and a possibly smaller δ > 0

(−�)αWμ(x) + |Wμ|p−1Wμ(x) ≤ 0, x ∈ Aδ,

completing the proof. �
Proof of Theorem 1.2. We define Uμ and Wμ as in (4.1). In the case of a weak source, we take τ = γ + 2α and 
we observe that γ + 2α ≥ − 2α

p−1 ≥ τ0(α) and p(γ + 2α) ≥ γ . Using Proposition 3.2 and (H3) we find that Uμ is a 
super-solution for μ > 0 large (resp. Wμ is a sub-solution for μ > 0 small) of (1.5) with the first equation in Aδ for 
δ > 0 small. In the case of a strong source, we take τ = γ

p
and observe that γ <

γ
p

− 2α. Using Proposition 3.2 we 
find ∣∣(−�)αUμ

∣∣, ∣∣(−�)αUμ

∣∣ ≤ Cd(x)
γ
p

−2α
.

By (H3) we find that Uμ is a super-solution for μ large (resp. Wμ is a sub-solution for μ small) of (1.5) with the first 
equation in Aδ for δ small. �
Remark 4.1. In order to obtain the above existence results for classical solution to (1.4), that is, when g is not 
necessarily zero, we only need use the above results with F as a right hand side as given in (1.23). Here we only need 
to assume that g satisfies (H4). In fact, as above we find super and sub-solutions for (1.5), with f replaced by F . 
Then, as in the proof of Theorem 2.6, we find a viscosity solution of (1.5) and then v = u + g̃ is a viscosity solution 
of (1.4). Next we use Theorem 2.6 in [7] and then we use Theorem 2.1 to obtain that v is a classical solution of (1.4).
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Remark 4.2. Now we compare Theorem 1.1 with the result in [15]. Let us assume that f and g satisfies hypothesis 
(F0)–(F2) and (G0)–(G3), respectively, given in [15]. We first observe that the function F , as defined above, satisfies 
(H1) thanks to (G0), (G3) and (F0). Next we see that F satisfies (H2), since (G2), (F1) and (F2) holds. Here we have to 
use Proposition 3.3. In the range of p given by (1.6), we then may apply Theorem 1.1 to obtain existence of a blow-up 
solution as given in Theorem 1.1 in [15]. We see that the existence is proved here, without assuming hypothesis (G1), 
thus we generalized this earlier result. Moreover, here we obtain a uniqueness and nonexistence of blow-up solution, if 
we further assume hypotheses on f and g, guaranteeing hypothesis (H2∗) in Theorem 1.1. The complementary range 
of p is obtained using Theorem 1.2 for the existence of solutions as given in Theorem 1.1 in [15] and uniqueness and 
non-existence as in Theorem 1.3 and 1.4 are truly new results. The hypotheses needed on g to obtain (H3) for the 
function F are a bit stronger, since we are requiring in (H3) that the explosion rate is the same from above and from 
below, while in (G2) and (G4) they may be different.

5. Proof of uniqueness results

In this section we prove our uniqueness results, which are given in Theorem 1.1 and Theorem 1.3. These results are 
for positive solutions, so we assume that the external source f is non-negative. We assume that there are two positive 
solutions u and v of (1.5) and then define the set

A= {
x ∈ Ω, u(x) > v(x)

}
. (5.1)

This set is open, A ⊂ Ω and we only need to prove that A = Ø, to obtain that u = v, by interchanging the roles of u
and v.

We will distinguish three cases, depending on the conditions satisfying u and v: Case a) u and v satisfy (1.6) and 
(1.7) (uniqueness part of Theorem 1.1), Case b) u and v (1.15) and (1.16) (weak source in Theorem 1.3) and Case c) 
u and v with (1.17)–(1.19) (strong source in Theorem 1.3).

We start our proof considering an auxiliary function

V (x) =
{

c(1 − |x|2)3, x ∈ B1(0),

0, x ∈ Bc
1(0),

(5.2)

where the constant c may be chosen so that V satisfies

(−�)αV (x) ≤ 1 and 0 < V (0) = max
x∈RN

V (x). (5.3)

In order to prove the uniqueness result in the three cases, we need first some preliminary lemmas.

Lemma 5.1. Given k > 1, if Ak = {x ∈ Ω, u(x) − kv(x) > 0} 
= Ø, then

∂Ak ∩ ∂Ω 
= Ø. (5.4)

Proof. If (5.4) is not true, there exists x̄ ∈ Ω such that

u(x̄) − kv(x̄) = max
x∈RN

(u − kv)(x) > 0,

Then, we have

(−�)α(u − kv)(x̄) ≥ 0,

which contradicts

(−�)α(u − kv)(x̄) = −up(x̄) + kvp(x̄) − (k − 1)f (x̄)

≤ −(
kp − k

)
vp(x̄) < 0. �

Lemma 5.2. If Ak 
= Ø, for k > 1, then

sup
x∈Ω

(u − kv)(x) = +∞. (5.5)
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Proof. Assume that M̄ = supx∈Ω(u − kv)(x) < +∞. We see that M̄ > 0 and there is no point x̄ ∈ Ω achieving the 
supreme of u − kv, by the same argument given above. Let us consider x0 ∈Ak , r = d(x0)/2 and define

wk = u − kv in R
N. (5.6)

Under the conditions of Case a) and b) (resp. Case c)), for all x ∈ Br(x0) ∩Ak we have

(−�)αwk(x) = −up(x) + kvp(x) + (1 − k)f (x) ≤ −K1r
τ−2α, (5.7)

(resp. ≤ −K1r
γ ). Here we have used that τ = −2α/(p − 1) and, in Case a) (1.7) for v, in Case b) (H3) and (1.15)

and in Case c) (H3). Moreover, in Case a) we have considered K1 = C(kp − k) and in Cases b) and c) K1 = C(k − 1)

for some constant C. Now we define

w(x) = 2M̄

V (0)
V

(
x − x0

r

)

for x ∈ R
N , where V is given in (5.2), and we see that

w(x0) = 2M̄ (5.8)

and

(−�)αw ≤ 2M̄

V (0)
r−2α, in Br(x0). (5.9)

Since τ < 0 (γ < −2α in the Case c)), by Lemma 5.1 we can take x0 ∈Ak close to ∂Ω , so that

2M̄

V (0)
≤ K1r

τ

(
2M̄

V (0)
≤ K1r

γ+2α, in Case c)

)
.

From here, combining (5.7) with (5.9), we have that

(−�)α(wk + w)(x) ≤ 0, x ∈ Br(x0) ∩Ak.

Then, by the Maximum Principle, we obtain

wk(x0) + w(x0) ≤ max
{
M̄, sup

x∈Br(x0)∩Ac
k

(wk + w)
}
. (5.10)

In case we have

M̄ < sup
x∈Br(x0)∩Ac

k

(wk + w), (5.11)

then

w(x0) < (wk + w)(x0) ≤ sup
x∈Br(x0)∩Ac

k

(wk + w)(x)

≤ sup
x∈Br(x0)∩Ac

k

w(x) ≤ w(x0), (5.12)

which is impossible. So that (5.11) is false and then, from (5.10) we get

w(x0) < wk(x0) + w(x0) ≤ M̄,

which is impossible in view of (5.8), completing the proof. �
Lemma 5.3. There exists a sequence {Cn}, with Cn > 0, satisfying

lim
n→+∞Cn = 0 (5.13)

and such that for all x0 ∈ Ak and k > 1 we have
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0 <

∫
Qn

wk(z) − Mn

|z − x|N+2α
dz ≤ Cnr

τ−2α, ∀x ∈ Br(x0),

where we consider r = d(x0)/2, Qn = {z ∈ Ar/n / wk(z) > Mn} and Mn = maxx∈Ω\Ar/n wk(x).

Proof. In Case a): we see that Qn ⊂ Ar/n and limn→+∞ |Qn| = 0, so that using (1.10) we directly obtain

∫
Qn

wk(z) − Mn

|z − x|N+2α
dz ≤ C0r

−N−2α

∫
Ar/n

d(z)τ dz ≤ Cr−N−2α

r/n∫
0

tτ tN−1dt ≤ C

nN+τ
rτ−2α,

where C depends on C0 and ∂Ω . We complete the proof defining Cn = C
nN+τ .

In Case b) we argue similarly using (1.16) and define Cn as before, while in Case c) we argue similarly using 
(1.19), but defining Cn = C

nN+γ /p . �
Now we are in a position to prove our non-existence results.

Proof of uniqueness results in Cases a), b) and c). We assume that A 
= Ø, then there exists k > 1 such that Ak 
= Ø. 
By Lemma 5.2 there exists x0 ∈ Ak such that

wk(x0) = max
{
wk(x) /x ∈ Ω \ Ad(x0)

}
.

Proceeding as in Lemma 5.2 with the function

w(x) = K1

2
rτV

(
x − x0

r

)
and w(x) = K1

2
rγ+2αV

(
x − x0

r

)
, in Case c),

we see that

(−�)α(wk + w)(x) ≤ −K1

2
rτ−2α, x ∈ Br(x0) ∩Ak. (5.14)

and (−�)α(wk + w)(x) ≤ −K1

2
rγ , in Case c). (5.15)

With Mn, as given in Lemma 5.3, we define

w̄n(x) =
{

(wk + w)(x), if wk(x) ≤ Mn,

Mn, if wk(x) > Mn,
(5.16)

for n > 1. By Lemma 5.3 we find n0 such that

(−�)αw̄n0(x) = (−�)α(wk + w)(x) + 2
∫

Qn0

wk(z) − Mn0

|z − x|N+2α
dz

≤ 0, in Br(x0) ∩Ak.

In Case b) we have use (1.15) and in Case c) we have use (1.17), to get similar conclusion. Then, by the Maximum 
Principle, we get

w̄n0(x0) ≤ max
{
Mn0 , sup

x∈Br(x0)∩Ac
k

(wk0 + w)
}
.

Using the same argument as in (5.12), we conclude that

sup
x∈Br (x0)∩Ac

k

(wk0 + w) > Mn0

does not hold and therefore

w̄n0(x0) = wk(x0) + w(x0) ≤ Mn0 . (5.17)
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Next, by the definition of Mn, we choose x1 ∈ Ω \ Ar/n0 such that wk(x1) = Mn0 . But then we have

wk(x0) + w(x0) ≥ w(x0) = K1

2
V (0)rτ in Case a) and b)

and wk(x0) + w(x0) ≥ w(x0) = K1

2
V (0)rγ+2α in Case c).

Thus, by the asymptotic behavior of v, (1.6) in Case a), (1.15) in Case b) and (1.17) in Case c), we have

rτ ≥ nτ
0Cv(x1) and rγ+2α ≥ rγ /p ≥ n

γ/p

0 Cv(x1) in Case c).

We recall that in Case a) K1 = C(kp − k), so from (5.17)

u(x1) > (1 + c0)kv(x1), (5.18)

where c0 > 0 is a constant, not depending on x0 and increasing in k. Now we repeat this process above initiating by 
x1 and k1 = k(1 + c0). Proceeding inductively, we can find a sequence {xm} ⊂A such that

u(xm) > (1 + c0)
mkv(xm),

which contradicts the common asymptotic behavior of u and v.
In the Case b) and c) recall that K1 = C(k − 1) and, as before, we can proceed inductively to find a sequence 

{xm} ⊂ A such that

u(xm) > (k + mc0)v(xm),

which again contradicts the common asymptotic behavior of u and v. �
6. Proof of our non-existence results

In this section we prove our non-existence results. Our arguments are based on the construction of some special 
super and sub-solutions and some ideas used in Section 5. The main portion of our proof is based on the following 
proposition that we state and prove next.

Proposition 6.1. Assume that Ω is an open, bounded and connected domain of class C2, α ∈ (0, 1), p > 1 and 
f is nonnegative. Suppose that U is a sub or super-solution of (1.5) satisfying U = 0 in Ωc and (1.10) for some 
τ ∈ (−1, 0). Moreover, if τ > − 2α

p−1 , assume there are numbers ε > 0 and δ > 0 such that, in case U is a sub-solution 
of (1.5),

(−�)αU(x) ≤ −εd(x)τ−2α or f (x) ≥ εd(x)τ−2α, for x ∈ Aδ, (6.1)

and in case U is a super-solution of (1.5),

(−�)αU(x) ≥ εd(x)τ−2α and f (x) ≤ ε

2
d(x)τ−2α, for x ∈ Aδ. (6.2)

Then there is no solution u of (1.5) such that, in case U is a sub-solution,

0 < lim inf
x∈Ω, x→∂Ω

u(x)d(x)−τ ≤ lim sup
x∈Ω, x→∂Ω

u(x)d(x)−τ

< lim inf
x∈Ω, x→∂Ω

U(x)d(x)−τ (6.3)

or in case U is a super-solution,

0 < lim sup
x∈Ω, x→∂Ω

U(x)d(x)−τ < lim inf
x∈Ω, x→∂Ω

u(x)d(x)−τ

≤ lim sup
x∈Ω, x→∂Ω

u(x)d(x)−τ < ∞. (6.4)
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We prove this proposition by a contradiction argument, so we assume that u is a solution of (1.5) satisfying (6.3) or 
(6.4), depending on the fact that U is a sub-solution or a super-solution. Since f is non-negative we have that u > 0
in Ω and by our assumptions on U , there is a constant C0 ≥ 1 so that, in case U is a sub-solution

C−1
0 ≤ u(x)d(x)−τ < U(x)d(x)−τ ≤ C0, x ∈ Aδ (6.5)

and, in case U is a super-solution

C−1
0 ≤ U(x)d(x)−τ < u(x)d(x)−τ ≤ C0, x ∈ Aδ. (6.6)

Here δ is decreased if necessary so that (6.1), (6.2), (6.5) and (6.6) hold. We define

πk(x) =
{

U(x) − ku(x), in case U is a sub-solution,

u(x) − kU(x), in case U is a super-solution,
(6.7)

where k ≥ 0. In order to prove Proposition 6.1, we need the following two preliminary lemmas.

Lemma 6.1. Under the hypotheses of Proposition 6.1. If Ak = {x ∈ Ω / πk(x) > 0} 
= Ø, for k > 1. Then,

∂Ak ∩ ∂Ω 
= Ø. (6.8)

The proof of this lemma follows the same arguments as the proof of Lemma 5.1 so we omit it.

Lemma 6.2. Under the hypotheses of Proposition 6.1. If Ak 
= Ø, for k > 1, then

sup
x∈Ω

πk(x) = +∞. (6.9)

Proof. If (6.9) fails, then we have M = supx∈Ω πk(x) < +∞. We see that M > 0 and, as in Lemma 5.2, there is no 
point x̄ ∈ Ω achieving M . By Lemma 6.1 we may choose x0 ∈ Ak and r = d(x0)/4 such that Br(x0) ⊂ Aδ , where r
could be chosen as small as we want. Here δ is as in (6.1) and (6.2).

In what follows we consider x ∈ Br(x0) ∩Ak and we notice that 3r < d(x) < 5r . We first analyze the case U is a 
sub-solution and τ ≤ − 2α

p−1 . We have

(−�)απk(x) ≤ −Up(x) + kup(x) − (k − 1)f (x)

≤ −(
kp−1 − 1

)
kup(x)

≤ −C
−p

0

(
kp−1 − 1

)
kd(x)τp ≤ −K1r

τ−2α,

where we have used f ≥ 0, k > 1, (6.5), K1 = 5τ−2αC
−p

0 (kp−1 − 1)k > 0 and C0 is taken from (6.5). Next we 
consider the case U is a sub-solution and τ > − 2α

p−1 . By the first inequality in (6.1), we have

(−�)απk(x) ≤ −εd(x)τ−2α + kup(x) − kf (x)

≤ −(
ε − kC

p

0 r2α−τ+τp
)
d(x)τ−2α ≤ −K1r

τ−2α,

where the last inequality is achieved by choosing r small enough so that (ε − kC
p

0 r2α−τ+τp) ≥ ε
2 and K1 = 5τ−2α ε

2 . 
On the other hand, if the second inequality in (6.1) holds, we have

(−�)απk(x) ≤ kup(x) − (k − 1)εd(x)τ−2α

≤ −(
(k − 1)ε − kC

p

0 r2α−τ+τp
)
d(x)τ−2α ≤ −K1r

τ−2α,

where r satisfies (k − 1)ε − kC
p

0 r2α−τ+τp ≥ k−1
2 ε and K1 = 5τ−2α k−1

2 ε.
In case U is a super-solution and τ ≤ − 2α

p−1 , we argue similarly to obtain

(−�)απk(x) ≤ −up(x) + kUp(x) − (k − 1)f (x) ≤ −K1r
τ−2α,

where K1 = 5τ−2αC
−p

(kp−1 − 1)k > 0. Finally, in case U is a super-solution and τ > − 2α , using (6.2) we find
0 p−1
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(−�)απk(x) ≤ −up(x) − kεd(x)τ−2α + f (x) ≤ −K1r
τ−2α,

with K1 = 5τ−2α k
2ε > 0. Thus, in all cases we have obtained

(−�)απk(x) ≤ −K1r
τ−2α, x ∈ Br(x0) ∩Ak, (6.10)

for some K1 = K1(k) > 0 non-decreasing with k. From here we can argue as in Lemma 5.2 to get a contradiction �
Now proof of Proposition 6.1 is easy.

Proof of Proposition 6.1. From (6.10), recalling that K1 non-decreasing with k, we can argue as in the proof of 
uniqueness result in Case b) to get a sequence (xm) in Aδ such that, for some k0 > 1 and k̄ > 0, in case U is a 
sub-solution we have

U(xm) > (k0 + mk̄)u(xm)

and, in case U is a super-solution we have

u(xm) > (k0 + mk̄)U(xm).

From here we obtain a contradiction with (6.5) or (6.6), for m large. �
Proof of non-existence part of Theorem 1.1. For any t > 0 we construct a sub-solution or super-solution U of (1.5)
such that

lim
x∈Ω,x→∂Ω

U(x)d(x)−τ = t, (6.11)

and U satisfies the assumption of Proposition 6.1, for different combinations of the parameters p and τ . For t > 0 and 
μ ∈R we define

Uμ,t = tVτ + μV0 in R
N, (6.12)

where V0 = χΩ is the characteristic function of Ω and Vτ is defined in (3.4). It is obvious that (6.11) holds for Uμ,t

for any μ ∈ R. To complete proof we show that for any t > 0, there is μ(t) such that Uμ(t),t is a sub-solution or 
super-solution of (1.5), depending on the zone to which (p, τ) belongs.

Zone 1: We consider p > 1 and τ ∈ (τ0(α), 0). By Proposition 3.2 (ii), there exist δ1 > 0 and C1 > 0 such that

(−�)αVτ (x) > C1d(x)τ−2α, x ∈ Aδ1 . (6.13)

Combining with (H2∗), for any μ > 0, there exists δ1 > 0 depending on t such that

(−�)αUμ,t (x) + U
p
μ,t (x) − f (x) > C1td(x)τ−2α − Cd(x)−2α ≥ 0, x ∈ Aδ1 .

On the other hand, since Vτ is of class C2, f is continuous in Ω and Ω \Aδ1 is compact, there exists C2 > 0 such that

|f |, ∣∣(−�)αVτ (x)
∣∣ ≤ C2, x ∈ Ω \ Aδ1 . (6.14)

Then, using (4.3), there exists μ > 0 such that

(−�)αUμ,t (x) + U
p
μ,t (x) − f (x) > −2C2 + C0μ ≥ 0, x ∈ Ω \ Aδ1 . (6.15)

We conclude that for any t > 0, there exists μ(t) > 0 such that Uμ(t),t is a super-solution of (1.5) and, by (H2∗) and 
(6.13), it satisfies (6.2).

Zone 2: We consider p > 1 +2α and τ ∈ (−1, − 2α
p−1 ). By Proposition 3.2 (i) and (ii), there exists δ1 > 0 depending 

on t such that

(−�)αUμ,t (x) + U
p
μ,t (x) − f (x) ≥ −C1td(x)τ−2α + tpd(x)τp − Cd(x)−2α ≥ 0, (6.16)

for x ∈ Aδ1 and for any μ > 0, where we used that 0 > τ − 2α > τp. On the other hand, for x ∈ Ω \ Aδ1 , (6.15) holds 
for some μ > 0 and so we have constructed a super-solution of (1.5).
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Zone 3: We consider 1 + 2α < p ≤ 1 − 2α
τ0(α)

and τ ∈ (− 2α
p−1 , τ0(α)), which implies that τp > τ − 2α. By Propo-

sition 3.2 (i) and f ≥ 0 in Ω , there exists δ1 > 0 so that for all μ ≤ 0

(−�)αUμ,t (x) + U
p
μ,t (x) − f (x) ≤ −C1td(x)τ−2α + tpd(x)τp ≤ 0, (6.17)

for x ∈ Aδ1 . Then, using (4.3) and (6.14), there exists μ = μ(t) < 0 such that

(−�)αUμ,t (x) + U
p
μ,t (x) − f (x) < 2C2 + C0μ ≤ 0, x ∈ Ω \ Aδ1 . (6.18)

We conclude that for any t > 0, there exists μ(t) < 0 such that Uμ(t),t is a sub-solution of (1.5) and it satisfies (6.1).
We see that Zone 1, 2 and 3 cover the range of parameters in part (i) of Theorem 1.1, completing the proof in the 

case.
Zone 4: To cover part (ii) of Theorem 1.1 we only need to consider p = 1 − 2α

τ0(α)
with τ = τ0(α) = − 2α

p−1 , which 
implies that τp = τ − 2α < min{τ − 2α + τ + 1, τ }. By Proposition 3.2 (iii), there exists δ1 > 0 depending on t such 
that

(−�)αUμ,t (x) + U
p
μ,t (x) − f (x) ≥ −C1td(x)min{τ−2α+τ+1,τ } + tpd(x)τp

−Cd(x)−2α ≥ 0, x ∈ Aδ1

for any μ > 0. For x ∈ Ω \ Aδ1 , (6.15) holds for some μ > 0, so we have constructed a super-solution of (1.5).
We see that Zones 1, 2 and 4 cover the parameters in part (ii) of Theorem 1.1, so the proof is complete in this case 

too.
Zone 5: We consider 1 < p ≤ 1 + 2α and τ ∈ (−1, τ0(α)), which implies that τp > τ − 2α. By Proposition 3.2 (i) 

and f ≥ 0 in Ω , there exists δ1 > 0 such that for all μ ≤ 0 and x ∈ Aδ1 , inequality (6.17) holds. Then, using (4.3) and 
(6.14), there exists μ = μ(t) < 0 such that (6.18) holds and we conclude that for any t > 0, there exists μ(t) < 0 such 
that Uμ(t),t satisfies the first inequality of (6.1) and it is a sub-solution of (1.5).

We see that Zones 1 and 5 cover the parameters in part (iii) of Theorem 1.1. This completes the proof. �
Proof of Theorem 1.4. Here again we construct sub or super-solutions satisfying Proposition 6.1 to prove the theo-
rem. In the case of a weak source, that is, part (i) of Theorem 1.4, we have p ≥ 1 − 2α

τ0(α)
and −2α − 2α

p−1 ≤ γ < −2α, 

which implies that −1 < τ0(α) ≤ − 2α
p−1 ≤ γ + 2α < 0. We consider two zones depending on τ .

Zone 1: we consider τ ∈ (γ + 2α, 0), so we have γ < τp and γ < τ − 2α. By Proposition 3.2 (ii) and (H3), we 
have that, for any t > 0 there exist δ1 > 0, C1 > 0 and C2 > 0 such that

(−�)αUμ,t (x) + U
p
μ,t (x) − f (x) ≤ C1td(x)τ−2α + tpd(x)τp − C2d(x)γ ≤ 0, (6.19)

for x ∈ Aδ1 and any μ ≤ 0. On the other hand, using (4.3) and (6.14) we find μ = μ(t) < 0 such that (6.18) holds for 
x ∈ Ω \ Aδ1 . We conclude that for any t > 0, there exists μ(t) < 0 such that Uμ(t),t is a sub-solution of (1.5) and by 
(H3), it satisfies (6.1).

Zone 2: We consider τ ∈ (−1, γ + 2α). For τ ∈ (τ0(α), γ + 2α) in case τ0(α) < γ + 2α, by Proposition 3.2 (i) 
there exists δ1 > 0, depending on t , such that

(−�)αUμ,t (x) + U
p
μ,t (x) − f (x) ≥ C1td(x)τ−2α − C2d(x)γ ≥ 0, (6.20)

for x ∈ Aδ1 and any μ ≥ 0. For τ ∈ (−1, τ0(α)] ∩ (−1, γ + 2α), we have τp < γ and τp < τ − 2α, so by Proposi-
tion 3.2 (i) and (iii), there exists δ1 > 0 dependent of t such that (6.16) holds for any μ ≥ 0, while for x ∈ Ω \ Aδ1 , 
(6.15) holds for some μ > 0. We conclude that for any t > 0, there exists μ(t) > 0 such that Uμ(t),t is a super-solution 
of (1.5) and by (H3) it satisfies (6.2), completing the proof in the weak source case.

Next we consider the case of strong source, that is part (ii) of Theorem 1.4. Here we have that

−1 <
γ

p
< − 2α

p − 1
< 0.

Here again we have two zones, depending on the parameter τ .
Zone 1: We consider τ ∈ (

γ
p
, 0), in which case we have τ − 2α > γ and τp > γ . Then there exist δ1 > 0, C1 > 0

and C2 > 0 such that (6.19) holds for any μ ≤ 0 and using (4.3) and (6.14), there exists μ = μ(t) < 0 such that (6.18)
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holds for x ∈ Ω \ Aδ1 . Thus, for any t > 0 there exists μ(t) < 0 such that Uμ(t),t is a sub-solution of (1.5) and (H3) 
implies the first inequality of (6.1).

Zone 2: we consider τ ∈ (−1, γ
p
), in which case we have τp < τ −2α and τp < γ . Then there exist δ1 > 0, C1 > 0

and C2 > 0 such that (6.20) holds for x ∈ Aδ1 and μ ≥ 0. We see also that for x ∈ Ω \ Aδ1 , inequality (6.15) holds for 
some μ > 0 and so for any t > 0, there exists μ(t) > 0 such that Uμ(t),t is a super-solution of (1.5).

This completes the proof of the theorem. �
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