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Abstract

We study the compactness in L1
loc of the semigroup mapping (St )t>0 defining entropy weak solutions of general hyperbolic 

systems of conservation laws in one space dimension. We establish a lower estimate for the Kolmogorov ε-entropy of the image 
through the mapping St of bounded sets in L1 ∩ L∞, which is of the same order 1/ε as the ones established by the authors for 
scalar conservation laws. We also provide an upper estimate of order 1/ε for the Kolmogorov ε-entropy of such sets in the case of 
Temple systems with genuinely nonlinear characteristic families, that extends the same type of estimate derived by De Lellis and 
Golse for scalar conservation laws with convex flux. As suggested by Lax, these quantitative compactness estimates could provide 
a measure of the order of “resolution” of the numerical methods implemented for these equations.
© 2014 

Résumé

Nous étudions la compacité dans L1
loc du semi-groupe (St )t>0 définissant les solutions faibles d’entropie de systèmes hyper-

boliques de lois de conservation généraux en dimension un d’espace. Nous établissons une estimée inférieure de l’ε-entropie de 
Kolmogorov de l’image par l’application St d’ensembles bornés dans L1 ∩ L∞, qui est du même ordre 1/ε que celles establies 
par les auteurs pour les lois de conservation scalaires. Nous obtenons aussi une estimée supérieure d’ordre 1/ε pour l’ε-entropie 
de Kolmogorov de tels ensembles dans le cas des systèmes de Temple avec des champs charactéristiques vraiment non linéaires, 
ce qui étend le même type d’estimées obtenues par De Lellis et Golse dans le cas des lois de conservation scalaires à flux convexe. 
Comme suggéré par Lax, ces estimées quantitatives pourraient donner une mesure de l’ordre de « résolution » de méthodes numé-
riques mises en place pour ces équations.
© 2014 
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1. Introduction

Consider a general system of hyperbolic conservation laws in one space dimension

ut + f (u)x = 0, t ≥ 0, x ∈R, (1)

where u = u(t, x) ∈ R
N represents the conserved quantities and the flux f (u) = (f1(u), . . . , fN(u)) is a vector valued 

map of class C2, defined on an open, connected domain Ω ⊆R
N containing the origin. Assume that the above system 

is strictly hyperbolic, i.e., that the Jacobian matrix Df (u) has N real, distinct eigenvalues λ1(u) < ... < λN(u) for 
all u ∈ Ω . Several laws of physics take the form of a conservation equation. A primary example of such systems is 
provided by the Euler equations of non-viscous gases (cf. [7]). The fundamental paper of Bianchini and Bressan [4]
shows that (1) generates a unique (up to the domain) Lipschitz continuous semigroup S : [0, ∞[ ×D0 → D0 defined 
on a closed domain D0 ⊂ L1(R, RN), with the properties:

(i) {
v ∈ L1(R,Ω)

∣∣ Tot.Var.(v) ≤ δ0
}⊂D0 ⊂ {v ∈ L1(R,Ω)

∣∣ Tot.Var.(v) ≤ 2δ0
}
, (2)

for suitable constant δ0 > 0.
(ii) For every u ∈ D0, the semigroup trajectory t �→ Stu

.= u(t,·) provides an entropy weak solution of the Cauchy 
problem for (1), with initial data

u(0, ·) = u, (3)

that satisfy the following admissibility criterion proposed by T.P. Liu in [15], which generalizes the classical 
stability conditions introduced by Lax [13].
Liu stability condition. A shock discontinuity of the i-th family (uL, uR), traveling with speed σi[uL, uR], is 
Liu admissible if, for any state u lying on the i-th Hugoniot curve between uL and uR , the shock speed σi[uL, u]
of the discontinuity (uL, u) satisfies

σi

[
uL, u

]≥ σi

[
uL, uR

]
. (4)

Thanks to the uniform BV-bound on the elements of D0, applying Helly’s compactness theorem it follows that St is a 
compact mapping, for every t > 0. Aim of this paper is to provide a quantitative estimate of the compactness of such a 
mapping. Namely, following a suggestion of Lax [12], we wish to estimate the Kolmogorov ε-entropy in L1 of the im-
age of bounded sets in D0 through the map St . We recall that, given a metric space (X, d), and a totally bounded subset 
K of X, for every ε > 0 we define the Kolmogorov ε-entropy of K as follows. Let Nε(K | X) be the minimal number 
of sets in a cover of K by subsets of X having diameter no larger than 2ε. Then, the ε-entropy of K is defined as

Hε(K | X)
.= log2 Nε(K | X).

Throughout the paper, we will call an ε-cover, a cover of K by subsets of X having diameter no larger than 2ε. 
Entropy numbers play a central roles in various areas of information theory and statistics as well as of learning theory. 
In the present setting, this concept could provide a measure of the order of “resolution” of a numerical method for (1), 
as suggested in [14].

In the case of scalar conservation laws (N = 1) with strictly convex (or concave) flux, De Lellis and Golse [8]
obtained an upper bound of order 1/ε on the ε-entropy of St (L), for sets L ⊂ L1(R) of bounded, compactly supported 
functions, of the form

L[I,m,M]
.= {u ∈ L1(R,Ω)

∣∣ Supp(u) ⊂ I, ‖u‖L1 ≤ m,‖u‖L∞ ≤ M
}
, (5)

where I denotes a given interval of R. This upper bound turns out to be optimal since we provided in [1] a lower 
bound of the same order for the ε-entropy of St(L), for sets L as in (5), thus showing that such an ε-entropy is of size 
≈ (1/ε) for scalar conservation laws with strictly convex (or concave) flux.

These estimates hold for classes of initial data with possibly unbounded total variation because the regularizing 
effect due to the convexity (or concavity) of the flux function f yields solutions u(t,·) of (1) that belong to BVloc(R)

for any t > 0. This is no more true in the case of conservation laws with non-convex (or concave) flux and in the case 
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of systems of conservation laws with no monotonicity assumption on the eigenvalues of the Jacobian matrix Df(u). 
On the other hand, the well-posedness theory for a general system of conservation laws has been established only for 
initial data with sufficiently small total variation. Therefore, aiming to establish estimates on the ε-entropy of solutions 
to general systems of conservation laws (1), it is natural to restrict our analysis to classes of initial data with uniformly 
bounded total variation. Namely, we shall provide estimates on the ε-entropy of St(L ∩D0), for sets L as in (5), with 
D0 as in (2). Specifically, we prove the following.

Theorem 1. Let f : Ω → R
N be a C2 map on an open, connected domain Ω ⊂ R

N containing the origin, and 
assume that the system (1) is strictly hyperbolic. Let (St )≥0 be the semigroup of entropy weak solutions generated 
by (1) defined on a domain D0 satisfying (2). Then, given any L, m, M, T > 0, for any interval I ⊂ R of length 
|I | = 2L, and for ε > 0 sufficiently small, the following estimates hold.

(i)

Hε

(
ST (L[I,m,M] ∩D0)

∣∣ L1(R,Ω)
)≥ N2L2

T
· (min{c1, c2

T
L
})2

max{c3, c4
N2L
T

, c5
NL
δ0T

}
· 1

ε
, (6)

where c3 ≥ 0, cl > 0, l = 1, 2, 4, 5, are constants given in (195), (197), which depend only on the eigenvalues 
λi(u) of the Jacobian matrix Df (u), on the corresponding right and left eigenvectors ri(u), li (u), and on their 
derivatives, in a neighborhood of the origin.

(ii)

Hε

(
ST (L[I,m,M] ∩D0)

∣∣ L1(R,Ω)
)≤ 48Nδ0 · LT · 1

ε
, (7)

where

LT
.= L + �∨λ

2
· T , �∨λ

.= sup
{
λN(u) − λ1(v); u,v ∈ Ω

}
. (8)

Remark 1. If the bound δ0 on the total variation of the initial data in the domain D0 satisfies the inequality δ0 <

min{ c5
c3

·NL
T

, c5
c4

· 1
L
} (interpreting 1/c3

.= ∞ when c3 = 0), then the lower estimate (6) takes the form

Hε

(
ST (L[I,m,M] ∩D0)

∣∣ L1(R,Ω)
)≥ NLδ0 · (min{c1, c2

T
L
})2

c5
· 1

ε
. (9)

Therefore, in this case, upper and lower bounds (7), (9) of the ε-entropy turn out to have the same size NLδ0 · 1
ε

. On 
the other hand, if c3 > 0, in the case where T ≥ max{ c1

c2
·L, c4

c3
·N2L, c5

c3
·NL

δ0
}, we obtain by (6), (195), the estimate

Hε

(
ST (L[I,m,M] ∩D0)

∣∣ L1(R,Ω)
)≥ N2L2

T
· c2

1

c3
· 1

ε
, (10)

with c3
.= 2 sup{|∇λi(u)| ; |u| ≤ d, i = 1, . . . , N } for some d > 0. Hence, if c3 > 0, for times T sufficiently large we 

obtain a lower bound on the ε-entropy of ST (L[I,m,M] ∩D0) which is of the same order L2/(|f ′′(0)|T ) · 1
ε

established 
in [1] for solutions to scalar conservation laws with strictly convex (or concave) flux f .

Remark 2. When N = 1, the semigroup map St is defined on the whole space L1(R) (cf. [5, Chapter 6], [11]). 
Thus, in this case we may analyze the ε-entropy of St(L) for sets L of initial data with possibly unbounded total 
variation as in (5). In fact, for scalar conservation laws, with the same arguments used to establish Theorem 1(i), if 
c

.= sup{|f ′′(u)| ; |u| ≤ d} > 0 for some d > 0, one can derive, for ε sufficiently small, the lower bound (cf. Remark 5
and Remark 6):

Hε

(
ST (L[I,m,M])

∣∣ L1(R)
)≥ L2

144 · ln(2) · c · T · 1

ε
. (11)

Thus, Theorem 1 provides in particular an extension of [1, Theorem 1.3] to the case of general scalar conservation 
laws with smooth, not necessarily convex (or concave) flux. Clearly, the lower bound (11) is significative only in the 
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case where inf{|u|; |f ′′(u)| > 0} = 0, since otherwise one can easily see that the left-hand side of (11) equals +∞
for small ε.

The upper bound (7) stated in Theorem 1 can be easily obtained relying on the upper estimates for the cov-
ering number of classes of functions with uniformly bounded total variation established in [2]. In fact, given any 
element ϕ ∈ ST (L[I,m,M] ∩ D0), with L[I,m,M] as in (5), |I | = 2L, by the finite speed of propagation along (gen-
eralized) characteristics (cf. [7, Chapter 10]) we have the bound |Supp(ϕ)| ≤ 2LT on the support of ϕ, with LT as 
in (8). Moreover, observe that, defining the total variation of a vector valued map ϕ = (ϕ1, . . . , ϕp) : R → R

p as 
Tot.Var.(ϕ) .=∑i Tot.Var.(ϕi), and setting

M[L,δ0,p]
.= {ϕ ∈ BV

([0,2L],Rp
) ∣∣ Tot.Var.(ϕ) ≤ 2δ0

}
, (12)

one has

Nε

(
M[L,δ0,N]

∣∣ L1([0,2L],RN
))≤ Nε

(
M[NL,δ0,1]

∣∣ L1([0,2NL],R)). (13)

This is due to the fact that, if we let ϕ�J denote the restriction of a map ϕ to a set J , for every ε-cover 
⋃

α Eα

of M[NL,δ0,1] we can always consider the sets Eα
1 × . . . × Eα

N , with Eα
i

.= {ϕ(· − (i − 1)L)�[(i−1)L,iL]; ϕ ∈ Eα}, 
which provide an ε-cover 

⋃
α(Eα

1 × . . . × Eα
N) of M[L,δ0,N], with the same cardinality as 

⋃
α Eα . Thus, given any 

L, m, M, T > 0 and any interval I ⊂ R of length |I | = 2L, applying [2, Theorem 1], and relying on (2), (13), for 
ε > 0 sufficiently small we find the following upper bound on the minimal covering number

Nε

(
ST (L[I,m,M] ∩D0)

∣∣ L1(R)
)≤ Nε

(
M[LT ,δ0,N]

∣∣ L1([0,2LT ],RN
))

≤ Nε

(
M[NLT ,δ0,N]

∣∣ L1([0,2NLT ],R))
≤ 2

48δ0 ·NLT
ε . (14)

One then clearly recovers (7) from (14).
Therefore, the main novelty of the estimates stated in Theorem 1 consists in the lower bound (6) that is independent 

on the total variation of the functions in D0, for times T sufficiently large (cf. Remark 1). Following the same strategy 
adopted in [1] we shall prove (6) in two steps:

1. For every i-th characteristic family, let s �→ Ri(s) denote the integral curve of the i-th eigenvector ri , starting at the 
origin. Consider a family of profiles of i-simple waves {φι

i}ι defined as parametrizations s �→ φι
i(s) 

.= Ri(βι(s))

of Ri through a suitable class of piecewise affine, compactly supported functions {βι}ι. We will show that, at any 
given time T , any superposition φι1,...,ιN of simple waves φι1

1 , . . . , φιN
N , can be obtained as the value u(T , ·) = ST u

of an entropy admissible weak solution of (1), with initial data u ∈ L[L,m,M] ∩D0.
2. We shall provide an optimal estimate of the maximum number of elements of the family {φι1,...,ιN }ι1,...,ιN con-

tained in a subset of ST (L[I,m,M] ∩D0) of diameter 2ε. This estimate is established with a similar combinatorial 
argument as the one used in [2], and immediately yields a lower bound on the ε-entropy of the set {φι1,...,ιN }ι1,...,ιN . 
In turn, from the lower bounds on Hε({φι1,...,ιN }ι1,...,ιN | L1(R, Ω)), we recover (6).

Next we focus our attention on a particular class of hyperbolic systems introduced by Temple [17,18], under the 
assumption that all characteristic families are genuinely nonlinear or linearly degenerate (see Definition 1 in Subsec-
tion 3.1). Systems of this type arise in traffic flow models, in multicomponent chromatography, as well as in problems 
of oil reservoir simulation. The special geometric features of such systems allow the existence of a continuous semi-
group of solutions S : [0, ∞[ ×D →D defined on domains D of L∞-functions with possibly unbounded variation of 
the form

D .= {v ∈ L1(R,Ω)
∣∣W (v(x)

) ∈ [a1, b1] × · · · × [an, bn] for all x ∈R
}
, (15)

where W(v) = (W1(v), . . . , WN(v)) denotes the Riemann coordinates of v ∈ Ω (see [6,3]).
Every trajectory of the semigroup t �→ Stu

.= u(t,·) yields an entropy weak solution of (1), (3). When all char-
acteristic families are genuinely nonlinear such a semigroup is Lipschitz continuous and the map u(t, x) .= Stu(x)

satisfies the following Oleı̌nik-type inequalities [16] on the decay of positive waves (expressed in Riemann coordi-
nates wi(t,·) .= Wi(u(t,·))):
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wi(t, y) − wi(t, x)

y − x
≤ 1

c t
∀x < y, t > 0, i = 1, . . . ,N, (16)

for some constant

0 < c ≤ inf
{∣∣〈∇λi(u), ri(u)

〉∣∣; u ∈ W−1(Π), i = 1, . . . ,N
}
, (17)

where

Π
.= [a1, b1] × · · · × [an, bn].

In this setting, it is natural to ask whether we can extend the estimates provided by Theorem 1 to classes of initial data 
with unbounded variation. The next result provides a positive answer to this question. Namely, relying on the analysis 
of the evolution of the Riemann coordinates along the characteristics and on the Oleı̌nik-type inequalities, we will 
establish upper and lower estimates on the ε-entropy of solutions to genuinely nonlinear Temple systems which are 
the natural extension to this class of hyperbolic systems of the compactness estimates established in [1,8] for scalar 
conservation laws with strictly convex (or concave) flux. Specifically, letting Sw

t w
.= W(u(t,·)) denote the Riemann 

coordinates expression of the solution of (1), (3), with u .= W−1 ◦ w, determined by the semigroup map S, and 
adopting the norms ‖ |w‖ |L1

.=∑i ‖wi‖L1 , ‖ |w‖ |L∞ .= supi ‖wi‖L∞ on the space L1(R, Π), we prove the following

Theorem 2. In the same setting of Theorem 1, assume that (1) is a strictly hyperbolic system of Temple class, and 
that all characteristic families are genuinely nonlinear or linearly degenerate. Let (St)≥0 be the semigroup of entropy 
weak solutions generated by (1) defined on a domain D as in (15). Then, given any L, m, M, T > 0, and any interval 
I ⊂R of length |I | = 2L, setting

Lw[I,m,M]
.= {w ∈ L1(R,Π)

∣∣ Supp(w) ⊂ I, ‖|w‖|L1 ≤ m, ‖|w‖|L∞ ≤ M
}
, (18)

for ε > 0 sufficiently small, the following hold.

(i)

Hε

(
Sw

T

(
Lw[I,m,M]

) ∣∣ L1(R,Π)
)≥ N2L2

T
· 1

max{c6, c7
NL
T

} · 1

ε
. (19)

where c6, c7 are nonnegative constants given in (201), (202), which depend only on the gradient of the eigenvalues 
λi(u) of the Jacobian matrix Df (u) and on the corresponding right eigenvectors ri(u), in a neighborhood of the 
origin.

(ii) If all characteristic families are genuinely nonlinear, one has

Hε

(
Sw

T

(
Lw[I,m,M]

) ∣∣ L1(R,Π)
)≤ 32N2L2

T

c T
· 1

ε
, (20)

where

LT
.= L +

√
8NmT

c
· sup

{∣∣〈∇λi(u), rj (u)
〉∣∣; ∣∣W(u)

∣∣≤ M, i, j = 1, . . . ,N
}
, (21)

and c is the constant appearing in (16).

The paper is organized as follows. In Section 2 we first introduce a family of simple waves and then construct a 
class of classical solutions of (1) with initial data given by the profiles of N simple waves supported on disjoint sets. 
This analysis is in particular carried out with a finer accuracy for the special class of Temple systems. In Section 3 we 
establish a controllability result and a combinatorial computation both for general hyperbolic systems and for Temple 
systems, which yield the lower bound on the ε-entropy stated in Theorem 1 and Theorem 2. Finally, Section 4 contains 
the derivation of the upper bound on the ε-entropy for Temple systems stated in Theorem 2.
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2. Simple waves and classical solutions

2.1. Simple waves

Let f : Ω → R
N be a C2 map on an open, connected domain Ω , and assume that a neighborhood of the origin 

Bd

.= {u ∈R
n | |u| ≤ d} is contained in Ω . We shall consider here a class of continuous, piecewise C1 solutions of (1)

that take values on the integral curves of the eigenvectors of the Jacobian matrix Df . Such solutions can be regarded 
as the nonlinear analogue of the elementary waves of each characteristic family in which it is decomposed a solution 
of a semilinear system (cf. [7, Section 7.6]). For every i-th characteristic family, let s �→ Ri(s) denote the integral 
curve of the eigenvector ri , passing through the origin. More precisely, we define Ri(·) as the unique solution of the 
Cauchy problem

du

ds
= ri

(
u(s)

)
, u(0) = 0, (22)

that we may assume to be defined on the interval ]−d, d[ of the same size of the neighborhood Bd ⊂ Ω . The curve Ri

is called the i-rarefaction curve through 0. We may select the basis of right eigenvectors ri(u), i = 1, . . . , N , together 
with a basis of left eigenvectors li, i = 1, . . . , N , so that

|ri | ≡ 1, 〈li , rj 〉 ≡ δi,j
.=
{

1 if i = j,

0 if i �= j,
(23)

where u · v denotes the inner product of the vectors u, v ∈R
N . It follows in particular that∣∣Ri(s)

∣∣≤ |s| ∀s ∈ ]−d, d[. (24)

For every b > 0, 0 < d < d , we define the class of functions

PC1[d,b]
.= {β :R→ [−d, d] ∣∣ β is piecewise C1 and

∣∣β̇(x)
∣∣≤ b

}
. (25)

Here, we say that a map β : R → [−d, d] is piecewise C1 if β is continuous on R and continuously differentiable on all 
but finitely many points of R, while the bound on β̇ in (25) is assumed to be satisfied at every point of differentiability 
of β . Given β ∈ PC1[d,b], consider the map

φ
β
i (x)

.= Ri

(
β(x)

)
x ∈R, (26)

and define the corresponding i-th characteristic starting at y ∈ R as:

xi(t, y)
.= y + λi

(
φ

β
i (y)

) · t, t ≥ 0. (27)

Observe that, by (22), one has

d

dx
φ

β
i (x) = β ′(x) · ri

(
φ

β
i (x)

)
(28)

at every point x of differentiability of β . Hence, differentiating (27) w.r.t. y at a point where β is differentiable we 
find

∂

∂y
xi(t, y) = 1 + 〈∇λi

(
φ

β
i (y)

)
, ri
(
φ

β
i (y)

)〉 · β̇(y) · t, t ≥ 0. (29)

Set

α1
.= sup

{∣∣∇λi(u)
∣∣; u ∈ Bd, i = 1, . . . ,N

}
. (30)

Then, relying on (23), (24), (30), and because of the bound on β̇ in (25), we derive from (29) the inequality

∂

∂y
xi(t, y) ≥ 1 − α1 b · t, t ≥ 0, (31)

which, in turn, yields
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∂

∂y
xi(t, y) ≥ 1

2
∀t ∈ [0,1/(2α1 · b)

]
. (32)

The inequality in (32), in particular, implies that the map y �→ xi(t, y) is increasing, hence injective. Moreover, since 
φ

β
i is continuous, from (32) we deduce also that the image of y �→ xi(t, y) is the whole line R. Therefore, for every 

fixed 0 ≤ t ≤ 1/(2α1 · b), we may define the inverse map of xi(t,·) on R. Then, set

zi(t,·) .= x−1
i (t, ·), (33)

and define the function

u(t, x)
.= φ

β
i

(
zi(t, x)

)
, ∀(t, x) ∈ [0, T ] ×R, (34)

with T ≤ 1/(2α1 · b). The next lemma shows that u(t, x) provides a classical solution of (1) on [0, T ] × R, and we 
shall establish some a-priori estimates on u(t,·). We will say that the map u(t, x) in (34) is an i-th simple wave with 
profile φβ

i . We recall that a classical solution of a Cauchy problem (1), (3) is a locally Lipschitz continuous map 
u : [0, T ] × R → Ω that satisfies (1) almost everywhere and (3) for all x ∈ R. A classical solution of (1), (3) is in 
particular an entropy weak solution of (1), (3) (see [7, Section 4.1]).

Lemma 1. Given T > 0, 0 < d < d , 0 < b ≤ 1/(2α1 · T ), with α1 as in (30) (interpreting 1/α1
.= ∞ when α1 = 0), 

for any fixed i = 1, . . . , N , and for every β ∈ PC1[d,b], the map u(t, x) defined in (34) provides a classical solution of 
the Cauchy problem

ut + f (u)x = 0, (35)

u(0, ·) = φ
β
i , (36)

on [0, T ] ×R. Moreover, for every t ≤ T , there hold:∥∥u(t,·)∥∥
L∞(R,Ω)

= ∥∥φβ
i

∥∥
L∞(R,Ω)

≤ d,
∥∥ux(t,·)

∥∥
L∞(R,Ω)

≤ 2 ·
∥∥∥∥ d

dx
φ

β
i

∥∥∥∥
L∞(R,Ω)

≤ 2b. (37)

Proof. Observe first that, by the definitions (33), (34), and because of (28), (32), the map u(t, x) is Lipschitz contin-
uous, and it is differentiable at every point (t, x) lying outside the curves t �→ (t, xi(t, y�)), {y�}� denoting the finite 
collection of points where β (and hence φβ

i ) is not differentiable. Moreover, one has

u
(
t, xi(t, y)

)= φ
β
i (y), ∀(t, y) ∈ [0, T ] × (R \ {y�}�

)
, (38)

and, recalling (24), the first estimate in (37) holds. Taking the derivative with respect to t and y in both sides of (38), 
and recalling (27), (28), we obtain

ut

(
t, xi(t, y)

)+ λi

(
u
(
t, xi(t, y)

)) · ux

(
t, xi(t, y)

)= 0, (39)

and

ux

(
t, xi(t, y)

) · ∂

∂y
xi(t, y) = β ′(y) · ri

(
u
(
t, xi(t, y)

))
, (40)

at every point (t, y) ∈ [0, T ] × (R \ {y�}�). We may divide both sides of (40) by ∂
∂y

xi(t, y) because of (32), and thus 
find

Df
(
u
(
t, xi(t, y)

)) · ux

(
t, xi(t, y)

)= λi

(
u
(
t, xi(t, y)

)) · ux

(
t, xi(t, y)

)
, (41)

which, together with (39), yields

ut (t, x) + Df
(
u(t, x)

) · ux(t, x) = 0,

at every point (t, x) ∈ ([0, T ] ×R) \⋃�{(t, xi(t, y�) | t ∈ [0, T ]}. On the other hand, since by (27) x(0, ·) is the identity 
map, it follows from (33), (34) that u(0, x) = φ

β
i (x) for all x ∈ R. Therefore, u(t, x) is a Lipschitz continuous map 

that satisfies Eq. (35) almost everywhere on [0, T ] ×R, together with the initial condition (36) at every x ∈R. Hence 
u(t, x) provides a classical solution of (35)–(36). Moreover, relying on (23), (28), (32), (38), and because of the bound 
on β̇ in (25), we recover from (40) the second estimates in (37), thus completing the proof of the lemma. �
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2.2. Superposition of simple waves

We wish to construct now a classical solution of (1), on a fixed time interval [0, T ], with initial data given by 
the profiles of N simple waves, one for each characteristic family, supported on disjoint sets. In order to analyze the 
behavior of the solution in the regions of interaction among simple waves we shall rely on uniform a-priori bounds 
on a classical solution u(t, x) of (1) and on its spatial derivative, which can be derived by a standard technique (e.g. 
see [10, Section 4.2]) when the initial data has sufficiently small norms ‖u(0, ·)‖L∞(R,Ω), ‖ux(0, ·)‖L∞(R,Ω). In order 
to state the next lemma that provides such a-priori estimates we need to introduce some further notation. Letting lT

denote the transpose (row) vector of a given (column) vector l ∈R
N , set

Γ2(u)
.= sup

i,j,k

{∣∣λk(u) − λi(u)
∣∣∣∣lTi (u)Drj (u)

∣∣},
Γ3(u)

.= sup
i,j,k

{∣∣λk(u) − λj (u)
∣∣∣∣lTi (u)Drk(u)

∣∣}+ sup
i

∣∣∇λi(u)
∣∣, (42)

Γ4(u)
.= sup

i

∣∣li (u)
∣∣,

αl
.= sup

{
Γl(u); u ∈ Bd

}
, l = 2,3,4. (43)

Notice that (23) implies α4 ≥ 1. Comparing (30), (42), (43), we deduce that

α1 ≤ α3 ≤ α3α4. (44)

Lemma 2. Given T > 0, 0 < d ≤ (d e−α2/α3)/(2α4N), 0 < b ≤ 1/(2α3α4N
2 · T ), with αl , l = 1, 2, 3, as in (30)

and (43), consider a piecewise C1 map φ : R → Ω that satisfies

‖φ‖L∞(R,Ω) ≤ d,
∥∥φ′∥∥

L∞(R,Ω)
≤ b. (45)

Then, the Cauchy problem

ut + f (u)x = 0, (46)

u(0, ·) = φ, (47)

admits a classical solution u(t, x) on [0, T ] ×R and, for every t ≤ T , there hold∥∥u(t,·)∥∥
L∞(R,Ω)

≤ 2α4N e
α2
α3 · d,

∥∥ux(t,·)
∥∥

L∞(R,Ω)
≤ 2α4N · b. (48)

Proof. We provide here only a sketch of the proof. Further details can be found in [10, Section 4.2]. In order to prove 
the lemma it will be sufficient to show that, for every fixed time T ≤ 1/(2α3α4N

2 · b), and for every initial data φ
satisfying (45), the estimates (48) hold on [0, T ] for a classical solution of (46)–(47). In fact, since by (45) we are 
assuming the initial bound

‖φ‖L∞(R,Ω) ≤ d ≤ d

2α4N
e
− α2

α3 , (49)

the first estimate in (48) guarantees in particular that ‖u(t,·)‖L∞(R,Ω) ≤ d for all t ∈ [0, T ]. As in the proof of [10, 
Theorem 4.2.5], relying on the a-priori bounds (48) one can then actually construct a classical solution of (46)–(47)
on [0, T ], as limit of a Cauchy sequence of approximate solutions of the linearized problem.

Thus, assume that u(t, x) is a classical solution of the Cauchy problem (46)–(47) on [0, T ] ×R, with a piecewise 
C1 initial data φ satisfying (45). We may decompose u and ux along the basis of right eigenvectors r1(u), . . . , rN(u), 
writing

u(t, x) =
∑

i

pi(t, x)ri
(
u(t, x)

)
, ux(t, x) =

∑
i

qi(t, x)ri
(
u(t, x)

)
, (50)

which, because of (23), is equivalent to set

pi(t, x)
.= 〈li(u(t, x)

)
, u(t, x)

〉
, qi(t, x)

.= 〈li(u(t, x)
)
, ux(t, x)

〉
, i = 1, . . . ,N. (51)
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Differentiating pi, qi along the i-th characteristic we find, for each i-th characteristic family, the equations

(pi)t + λi

(
u(t, x)

)
(pi)x =

∑
j,k

γ
p
i,j,k

(
u(t, x)

)
pjqk,

(qi)t + λi

(
u(t, x)

)
(qi)x =

∑
j,k

γ
q
i,j,k

(
u(t, x)

)
qjqk, (52)

where

γ
p
i,j,k(u)

.= (λk(u) − λi(u)
)〈

lTi (u),Drj (u)rk(u)
〉
,

γ
q
i,j,k(u)

.= 1

2

(
λk(u) − λj (u)

)〈
lTi (u),

[
rj (u), rk(u)

]〉− δi,k

〈∇λi(u), rj (u)
〉

(53)

(δi,k being the Kronecker symbol in (23) and [rj , rk] denoting the Lie bracket of the vector fields rj , rk). Observe that, 
by definitions (42)–(43), one has

max
i,j,k

∣∣γ p
i,j,k(u)

∣∣≤ α2, max
i,j,k

∣∣γ q
i,j,k(u)

∣∣≤ α3 ∀u ∈ Bd. (54)

Then, assuming that ‖u(t,·)‖L∞(R,Ω) ≤ d for all t ∈ [0, T ], it follows from the second equation in (52) integrated 
along the characteristics that, setting

Q(t)
.=
∑

i

∥∥qi(t,·)
∥∥

L∞(R,Ω)
, (55)

there holds

Q(t) ≤ Q(0) + α3N

t∫
0

(
Q(s)

)2
ds ∀t. (56)

By a comparison argument one then derives from (56) that

Q(t) ≤ Q(0)

1 − α3Nt Q(0)
∀t ∈

[
0,

1

α3N Q(0)

[
. (57)

On the other hand, notice that by (23), (43), (50), (51), and recalling (23), one has∥∥ux(t,·)
∥∥

L∞(R,Ω)
≤ Q(t) ≤ α4N

∥∥ux(t,·)
∥∥

L∞(R,Ω)
. (58)

Since we assume by (45) the initial bound∥∥φ′∥∥
L∞(R,Ω)

≤ b ≤ 1

2α3α4N2 · T , (59)

which, in turn, because of (58) implies

Q(0) ≤ 1

2α3N · T ,

we obtain

Q(t) ≤ 2Q(0) ∀t ∈ [0, T ].
We deduce with (57), (58), that∥∥ux(t,·)

∥∥
L∞(R,Ω)

≤ Q(t) ≤ 2Q(0) ≤ 2α4N · ∥∥φ′∥∥
L∞(R,Ω)

∀t ≤ T , (60)

proving the second inequality in (48). Next, setting

P(t)
.=
∑∥∥pi(t,·)

∥∥
L∞(R,Ω)

, (61)

i
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and integrating the first equation in (52) along the characteristic, we derive

P(t) ≤ P(0) + α2N

t∫
0

P(s)Q(s)ds ∀t. (62)

Then, applying Gronwall’s lemma, we deduce from (62) that

P(t) ≤ P(0) exp

(
α2N

t∫
0

Q(s)ds

)
∀t. (63)

On the other hand observe that since (59) implies Q(0) ≤ 1
2α3N ·t for all t ≤ T , we deduce from (57) that

t∫
0

Q(s)ds ≤ 2Q(0) t ≤ 1

α3N
∀t ≤ T . (64)

Moreover, by (23), (43), (50), (51) there holds∥∥u(t,·)∥∥
L∞(R,Ω)

≤ P(t) ≤ α4N
∥∥u(t,·)∥∥

L∞(R,Ω)
. (65)

Hence, (63)–(65) together yield∥∥u(t,·)∥∥
L∞(R,Ω)

≤ P(t) ≤ P(0)e
α2
α3 ≤ α4N e

α2
α3 ‖φ‖L∞(R,Ω) ∀t ≤ T . (66)

This completes the proof of the first inequality in (48), and hence of the lemma. �
Relying on Lemma 1 and Lemma 2 we shall construct now a classical solution u(t, x) of (1) on a given time 

interval [0, T ], so that:

– the initial data u(0, ·) is supported on N disjoint intervals Ii , i = 1, . . . , N , of the same length |Ii | = L, and on 
each interval Ii it coincides with the profile of a simple wave of the i-th characteristic family;

– the terminal value u(T , ·) at time T is supported on an interval of length ≈ 2L.

Namely, given L, b > 0, 0 < d < d and

T ≥ L

�∧λ
, �∧λ

.= min
i

{
λi+1(0) − λi(0)

}
, (67)

set

ξ−
i

.= −L/2 − λi(0) · T , ξ+
i

.= ξ−
i + L, i = 1, . . . ,N, (68)

and consider the family of N -tuples of maps

PC1,N
[L,d,b,T ]

.= {β = (β1, . . . , βN) ∈ (PC1[d,b]
)N ∣∣ Supp(βi) ⊂ [ξ−

i , ξ+
i

]
, i = 1, . . . ,N

}
, (69)

where PC1[d,b] denotes the class of functions introduced in (25). Observe that, by (67), (68), one has

ξ+
i+1 ≤ ξ−

i ∀i = 1, . . . ,N − 1. (70)

Then, let β = (β1, . . . , βN) ∈ PC1,N
[L,d,b,T ], and define the function φβ :R → Ω , by setting

φβ(x)
.=
∑

i

φ
βi

i (x) =
{

φ
βi

i (x) if x ∈ Supp(βi), i = 1, . . . ,N,

0 otherwise,
(71)

where

φ
βi (x)

.= Ri

(
βi(x)

)
(72)
i



F. Ancona et al. / Ann. I. H. Poincaré – AN 32 (2015) 1229–1257 1239
denotes a map defined as in (26) in connection with βi ∈PC1[d,b]. The next lemma shows that if we also assume

0 < d ≤ 1

2α4Neα2/α3
· min

{
d,

�∧λ

2α1

}
, 0 < b ≤ min

{
1

2α1 · T ,
�∧λ

4α3α4N2 · L
}

(73)

(interpreting 1/α1
.= ∞ when α1 = 0), for every given β ∈ PC1,N

[L,d,b,T ] we can apply Lemma 1 and Lemma 2 to derive 
the existence of a classical solution of (1) with initial data φβ which possesses the desired properties.

Proposition 1. Let f : Ω → R
N be a C2 map defined on an open, connected domain Ω ⊂ R

N , Ω ⊃ Bd

.= {u ∈ R
n |

|u| ≤ d }, and assume that the Jacobian matrix Df (u) has N real, distinct eigenvalues λ1(u) < ... < λN(u). Given 
L, T , d, b > 0, satisfying (67), (73) (with α1 as in (30), αl , l = 2, 3, 4, as in (43), and �∧λ as in (67)), let PC1,N

[L,d,b,T ]
be the class of maps introduced in (68)–(69), and consider a map φβ : R → Ω as in (71), defined in connection with 
an N -tuple β = (β1, . . . , βN) ∈ PC1,N

[L,d,b,T ]. Then, there exists a classical solution u(t, x) of the Cauchy problem

ut + f (u)x = 0, (74)

u(0, ·) = φβ, (75)

on [0, T ] ×R. Moreover, setting

α5
.= λN(0) − λ1(0)

�∧λ
, (76)

one has

Supp
(
u(T , ·))⊆ [−L · (1 + α5), L · (1 + α5)

]
, (77)

and, for every t ≤ T , there hold:∥∥u(t,·)∥∥
L∞(R,Ω)

≤ 2α4N e
α2
α3 · d,

∥∥ux(t,·)
∥∥

L∞(R,Ω)
≤ 4α4N · b. (78)

Proof. We will prove the existence of a classical solution of the Cauchy problem (74)–(75) on [0, T ] satisfy-
ing (77)–(78), by first showing that such a solution is obtained on [0, T − L/�∧λ] as a superposition of simple 
waves supported on disjoint set, and next deriving a-priori bounds on the solution and its support in the interval 
[T − L/�∧λ, T ].
1. Given β = (β1, . . . , βN) ∈ PC1,N

[L,d,b,T ], define as in (27) the functions

x
�
i (t, y)

.= y + λi

(
φ

βi

i (y)
) · t, t ≥ 0, (79)

for each i = 1, . . . , N . Since (73) implies t ≤ 1/(2α1 · b) for all t ∈ [0, T ], by the inequality in (32) we deduce that 
the maps y �→ x

�
i (t, y), i = 1, . . . , N , are one-to-one in R, for every fixed t ∈ [0, T ]. Then, setting

z
�
i (t,·) .= (x�

i

)−1
(t,·), i = 1, . . . ,N, (80)

and letting φβi

i be the map in (72), define the function

u�(t, x)
.=
{

φ
βi

i (z
�
i (t, x)) if x ∈ [x�

i (t, ξ
−
i ), x

�
i (t, ξ

+
i )] \⋃j �=i[x�

j (t, ξ
−
j ), x

�
j (t, ξ

+
j )], i = 1, . . . ,N,

0 otherwise,
(81)

on [0, T ] ×R. Observe that, because of (69), (72), one has φβi

i (ξ±
i ) = Ri(0) = 0, for all i = 1, . . . , N . Hence, recall-

ing (67), (68), and by (79), there holds

x
�
i+1

(
t, ξ±

i+1

)≤ x
�
i

(
t, ξ±

i

) ∀t ∈
[

0, T − L

�∧λ

]
, i = 1, . . . ,N − 1, (82)

so that one has

u�(t, x) =
{

φ
βi

i (z
�
i (t, x)) if x ∈ [x�

i (t, ξ
−
i ), x

�
i (t, ξ

+
i )], i = 1, . . . ,N,

0 otherwise,
(83)

for all (t, x) ∈ [0, T − L/�∧λ] ×R.
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By (83) the restriction of u�(t, x) to the domain [0, T − L/�∧λ] ×R is a Lipschitz continuous map supported on 
the disjoint union of sets

Di
.= {(t, x)

∣∣ t ∈ [0, T − L/�∧λ], x ∈ [x�
i

(
t, ξ−

i

)
, x

�
i

(
t, ξ+

i

)]}
, i = 1, . . . ,N. (84)

Since (73) implies b < 1/(2α1 · T ), we know by Lemma 1 that u�(t, x) is a classical solution of (74) on each set Di . 
Moreover, recalling that z�

i (0, ·) is the identity map, by (83) one has u�(0, x) = φ
βi

i (x), for all x ∈ [ξ−
i , ξ+

i ], i =
1, . . . , N . Therefore, looking at (69), (71), we deduce that (75) holds. Hence, it follows that u�(t, x) provides a classical 
solution of (74)–(75) on [0, T − L/�∧λ] ×R.

Notice that, letting u�(t,·)|Di(t) denote the restriction of u�(t,·) to the set Di(t) 
.= [x�

i (t, ξ
−
i ), x�

i (t, ξ
+
i )], we deduce 

from (71), (83), that for every t ∈ [0, T − L/�∧λ] there holds∥∥u�(t,·)∥∥
L∞ = max

i

∥∥u�(t,·)|Di(t)

∥∥
L∞ ,

∥∥u�
x(t,·)

∥∥
L∞ = max

i

∥∥u�(t, ·)|Di(t)

∥∥
L∞ ,∥∥φβ

∥∥
L∞ = max

i

∥∥φβi

i

∥∥
L∞ ,

∥∥∥∥ d

dx
φβ

∥∥∥∥
L∞

= max
i

∥∥∥∥ d

dx
φ

βi

i

∥∥∥∥
L∞

. (85)

Therefore, relying on the estimate (37) for each u�(t,·)|Di(t), we derive from (85) the estimates∥∥u�(t,·)∥∥
L∞(R,Ω)

= ∥∥φβ
∥∥

L∞(R,Ω)
≤ d,

∥∥u�
x(t, ·)

∥∥
L∞(R,Ω)

≤ 2

∥∥∥∥ d

dx
φβ

∥∥∥∥
L∞(R,Ω)

≤ 2b, (86)

for all t ∈ [0, T − L/�∧λ].
2. Observe now that

φ(x)
.= u�(T − L/�∧λ, x), x ∈ R, (87)

is a piecewise C1 map that satisfies the estimates (86), with d, b verifying the bounds (73). Thus, applying Lemma 2
we deduce the existence of a classical solution u�(t, x) of (74) on the domain [T − L/�∧λ, T ] ×R, that assumes the 
initial data u�(T − L/�∧λ, ·) = φ, at time t = T − L/�∧λ. Moreover, by (48), (86), there hold∥∥u�(t,·)∥∥

L∞(R,Ω)
≤ 2α4N e

α2
α3 · d,

∥∥u�
x(t, ·)

∥∥
L∞(R,Ω)

≤ 4α4N · b, (88)

for all t ∈ [T − L/�∧λ, T ]. Therefore, the function defined by

u(t, x)
.=
{

u�(t, x) if t ∈ [0, T − L/�∧λ],
u�(t, x) if t ∈]T − L/�∧λ, T ], (89)

provides a classical solution of (74), (75) that, because of (86), (88), satisfies the bounds (78) for all t ∈ [0, T ].
To conclude the proof of the proposition we shall derive now an estimate of the support of u(T , x). Consider, for 

each i-th family, the i-th characteristic curve of u through a point (τ, y) ∈ [0, T ] × R, denoted by t �→ xi(t; τ, y), 
t ∈ [0, T ], and defined as the (unique) solution of the Cauchy problem

ẋ = λi

(
u(t, x)

)
, x(τ ) = y. (90)

Set, for every i = 1, . . . , N ,

τ−
i

.= inf
{
t ∈ [0, T ]; xi

(
t;0, ξ−

i

)= xj

(
t;0, ξ±

j

)
for some j �= i

}
, y−

i

.= xi

(
τ−
i ;0, ξ−

i

)
,

τ+
i

.= inf
{
t ∈ [0, T ]; xi

(
t;0, ξ+

i

)= xj

(
t;0, ξ±

j

)
for some j �= i

}
, y+

i

.= xi

(
τ+
i ;0, ξ+

i

)
, (91)

where the equality xi(t; 0, ξ−
i ) = xj (t; 0, ξ±

j ) is interpreted as xi(t; 0, ξ−
i ) = xj (t; 0, ξ−

j ) or xi(t; 0, ξ−
i ) = xj (t; 0, ξ+

j ), 

and analogously for xi(t; 0, ξ+
i ) = xj (t; 0, ξ±

j ). Next, consider the union of the regions confined between the minimal 

and maximal characteristics emanating from the points (τ±
i , y±

i ), i = 1, . . . , N (see Fig. 1):

Λ
.=
⋃
i

(
Λ−

i ∪ Λ+
i

)
,

Λ−
i

.= {(t, x) ∈ [τ−
i , T

]×R; x1
(
t; τ−

i , y−
i

)≤ x ≤ xN

(
t; τ−

i , y−
i

)}
,

Λ+
i

.= {(t, x) ∈ [τ+
i , T

]×R; x1
(
t; τ+

i , y+
i

)≤ x ≤ xN

(
t; τ+

i , y+
i

)}
.

(92)
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Fig. 1. The sets Λ±
i

.

Observe that ([0, T ] ×R) \ Λ is a domain of determinacy for the Cauchy problem (74)–(75), since, for every fixed 
(τ, y) ∈ ([0, T ] ×R) \Λ and for any i = 1, . . . , N , one has {(t, xi(t; τ, y)); 0 ≤ t ≤ τ } ⊂ ([0, T ] ×R) \Λ. Therefore, 
we deduce that the classical solution u(t, x) of (74), (75) coincides with the function u�(t, x) defined in (81) on the 
whole region ([0, T ] ×R) \ Λ, and that there hold

u(t, x) =
{

φ
βi

i (z
�
i (t, x)) if x ∈ [x�

i (t, ξ
−
i ), x

�
i (t, ξ

+
i )], i = 1, . . . ,N,

0 otherwise,
(93)

for all (t, x) ∈ ([0, T ] ×R) \ Λ, and

xi

(
t; 0, ξ±

i

)= x
�
i

(
t, ξ±

i

) ∀t ∈ [0, τ±
i

]
, i = 1, . . . ,N, (94)

with obvious meaning of notations. Notice that, since by (69), (72) one has φβi

i (ξ±
i ) = Ri(0) = 0, it follows from (68), 

(79) that

x
�
i

(
T , ξ±

i

)= ±L/2. (95)

Thus, letting u(T , ·)|D denote the restriction of u(T , ·) to a set D, we deduce from (93) that

Supp
(
u(T , ·)|{x; (T ,x)/∈Λ}

)⊆ [−L/2,L/2]. (96)

On the other hand, observe that by (82), (91), (94), one has

inf
{
τ−
i , τ+

i ; i = 1, . . . ,N
}≥ T − L

�∧λ
. (97)

Moreover, the first estimate in (78), together with the bound (73), implies in particular ‖u(t,·)‖L∞ < d , for all t ∈
[0, T ], while (69), (72), (91), (93) yield

u
(
τ−
i , y−

i

)= φ
βi

i

(
ξ−
i

)= 0, u
(
τ+
i , y+

i

)= φ
βi

i

(
ξ+
i

)= 0. (98)

Thus, relying on (30), (73), (78), (79), (90), (94), (95), (97), (98) we derive

xN

(
T ; τ±

i , y±
i

)≤ y±
i + (λN(0) + 2α1 α4N e

α2
α3 · d) · (T − τ±

i

)
= x

�
i

(
τ±
i , ξ±

i

)+ (λN(0) + 2α1 α4N e
α2
α3 · d) · (T − τ±

i

)
≤ x

�
i

(
T , ξ±

i

)+ ((λN(0) − λi(0)
)+ 2α1 α4N e

α2
α3 · d) · L

�∧λ

≤ L ·
(

1

2
+ 2α1 α4N e

α2
α3

�∧λ
· d + λN(0) − λ1(0)

�∧λ

)
≤ L ·

(
1 + λN(0) − λ1(0)

)
, (99)
�∧λ
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and, analogously,

x1
(
T ; τ±

i , y±
i

)≥ −L ·
(

1 + λN(0) − λ1(0)

�∧λ

)
. (100)

Then, recalling (76) and looking at the definition (92) of Λ, we deduce from (99)–(100) that there holds

Supp
(
u(T , ·)|{x; (T ,x)∈Λ}

)⊆ [−L · (1 + α5), L · (1 + α5)
]
. (101)

In turn, the inclusion (101) together with (96) yields (77), completing the proof of the proposition. �
Remark 3. Classical solutions of conservation laws coincide with the trajectory of the corresponding semigroup, 
whenever their initial data belongs to the domain of the semigroup. In fact, by the result in [7, Section 5.3], if (1)–(3)
admit a classical solution, then such a solution coincides with any entropy weak solution of the same Cauchy problem. 
Therefore, if we consider a general system of conservation laws that generates a semigroup (St)t≥0 of entropy weak 
solutions with a domain D0 as in (2), and we suppose that the map φβ defined in (71) satisfies Tot.Var.(φβ) ≤ δ0, 
it follows that the classical solution u(t,·) of the Cauchy problem (74)–(75) provided by Proposition 1 coincides 
with Stφ

β .

2.3. Simple waves for rich systems

Here we analyze the structure of simple waves for a class of systems, the so-called rich systems, that can be put 
in diagonal form with respect to Riemann coordinates. We recall that a system of conservation laws (1) is called a 
rich system (see [17]) if there exists a set of coordinates w = (w1, . . . , wN) consisting of Riemann invariants wi =
Wi(u), u ∈ Ω , associated to each characteristic field ri . It is not restrictive to assume that the Riemann coordinates 
are chosen so that W(0) = 0. A necessary and sufficient condition for the existence of Riemann coordinates is the 
Frobenius involutive relation [ri, rj ] = α

j
i ri + αi

j rj , that must be satisfied, for some scalar functions αj
i , αi

j , for 
all i, j = 1, . . . , N . When a system is endowed with a coordinate system of Riemann invariants it is convenient to 
normalize the eigenvectors r1, . . . , rN of Df so that there holds

〈∇Wi, rj 〉 ≡ δi,j (102)

instead of |ri | ≡ 1 as in (23). In turn, (102) implies (cf. [7, Section 7.3]):

[ri , rj ] ≡ 0 ∀i, j = 1, . . . ,N. (103)

Throughout the following, we will write wi(t, x) .= Wi(u(t, x)) to denote the i-th Riemann coordinate of a solution 
u = u(t, x) to (1), and we shall adopt the norms ‖ |w‖ |L1

.=∑i ‖wi‖L1 , ‖ |w‖ |L∞ .= maxi ‖wi‖L∞ . Notice that, because 
of (102), multiplying (1) from the left by DWi , i = 1, . . . , N , we deduce that the system (1) is equivalent to the system 
in diagonal form

(wi)t + λi(w)(wi)x = 0, i = 1, . . . ,N, (104)

within the context of classical solutions. Thus, letting t �→ xi(t, y) denote the i-th characteristic of (104) starting at 
y ∈R, i.e. the solution of the Cauchy problem

ẋ = λi

(
w(t, x)

)
, x(0) = y, (105)

it follows that each i-th Riemann coordinate wi(t, x) of a classical solution to (1) remains constant along every i-th 
characteristic of (104). On the other hand, differentiating (104) w.r.t. x, and setting qi(t, x) .= (wi(t, x))x , we find that

(qi)t + λi

(
w(t, x)

)
(qi)x = −

∑
j

∂

∂wj

λi

(
w(t, x)

)
qjqi . (106)

Observe that, by virtue of (102), the inverse map u = W−1(w) of w = W(u) = (W1(u), . . . , WN(u)) satisfies 
∂u(w)/∂wi = ri(u(w)), for all i = 1, . . . , N , and so the chain rule yields

∂

∂w
λi(w)

∣∣∣∣ = 〈∇λi(u), rj (u)
〉 ∀i, j. (107)
j w=W(u)
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Next, set

α′
1

.= sup
{∣∣〈∇λi(u), ri(u)

〉∣∣; u ∈ Bd, i = 1, . . . ,N
}
, (108)

α′′
1

.= sup
{∣∣〈∇λi(u), rj (u)

〉∣∣; u ∈ Bd, i, j = 1, . . . ,N
}
, (109)

where Bd denotes as usual a ball centered in the origin and contained in the domain Ω of the flux function f . Since 
W(0) = 0, we may assume that{

W−1(w)
∣∣ |wi | ≤ d ′}⊂ Bd, (110)

for some d ′ > 0. Thus, because of (107), (109), we have∣∣∇λi(w)
∣∣≤ √

N α′′
1 ∀w ∈ [−d ′, d ′ ]N, i = 1, . . . ,N. (111)

Then, with the same arguments of the proof of Lemma 2, we deduce the following sharper a-priori bounds on the 
Riemann coordinate expression of a classical solution of a rich system of conservation laws.

Lemma 3. Assume that (46) is a strictly hyperbolic and rich system. Given T > 0, 0 < d ≤ d ′, 0 < b ≤ 1/(2α′′
1N · T ), 

with α′′
1 as in (109) (interpreting 1/α′′

1
.= ∞ when α′′

1 = 0), consider a piecewise C1 map φ :R → Ω that satisfies

‖|W ◦ φ‖|L∞(R,Ωw) ≤ d,

∥∥∥∥∣∣∣∣ d

dx
(W ◦ φ)

∥∥∥∥∣∣∣∣
L∞(R,Ωw)

≤ b, (112)

where Ωw .= {w ∈ R
N | w = W(u), u ∈ Ω}. Then, the Cauchy problem (46)–(47), admits a classical solution u(t, x)

on [0, T ] ×R and, for every t ≤ T , letting w(t, x) .= W(u(t, x)), there hold∥∥∣∣w(t,·)∥∥∣∣
L∞(R,Ωw)

≤ d,
∥∥∣∣wx(t,·)

∥∥∣∣
L∞(R,Ωw)

≤ 2 · b. (113)

Proof. Proceeding as in the proof of Lemma 2, it will be sufficient to show that, for any fixed time T ≤ 1/(2α′′
1N · b), 

and for every initial data φ satisfying (112), the estimates (113) hold on [0, T ] for the Riemann coordinate expression 
w(t, x) of a classical solution of (46)–(47). Observe that the first inequality in (113) is an immediate consequence of 
the invariance of each i-th Riemann coordinate wi(t, x) along the i-th characteristics of (104), and of the fact that 
w(0, x) = W ◦ φ(x). Next, defining Q(t) .= supi ‖qi(t,·)‖L∞ , and relying on (106), (107), (109), (110), we derive as 
in (56)–(57) the bound

Q(t) ≤ Q(0)

1 − α′′
1Nt Q(0)

≤ 2 · Q(0) ∀0 ≤ t < T , (114)

provided that Q(0) ≤ 1/(2α′′
1N · T ). Thus, since Q(t) = ‖ |wx(t,·)‖ |L∞ by the definition of the L∞-norm, and be-

cause wx(0, x) = d
dx

(W ◦ φ)(x), if we assume b ≤ 1/(2α′′
1N · T ) we recover from (112), (114), the second inequality 

in (113). �
Observe now that as a consequence of (102) we deduce also that the rarefaction curve of the i-th family through 0

can be parametrized in Riemann coordinates as s �→ RR
i (s) .= s ei , s ∈ ]−d ′, d ′[, where ei denotes the i-th element of 

the canonical basis of RN . Therefore, given β ∈ PC1[d,b], d ≤ d ′, the map φβ
i in (26) takes the expression in Riemann 

coordinates:

W ◦ φ
β
i (x)

.= β(x) ei x ∈R. (115)

Similarly, the map φβ in (71) defined in connection with an N -tuple β = (β1, . . . , βN) ∈ PC1,N
[L,d,b,T ], d ≤ d ′, is given 

in Riemann coordinates by

W ◦ φβ(x)
.=

N∑
W ◦ φ

βi

i (x) =
N∑

βi(x) ei = (β1(x), . . . , βN(x)
)
. (116)
i=1 i=1
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Notice that the supports of the simple waves φβi

i may well overlap, because we are not assuming here that T satisfies 
the bound (67). However, by (116) the structure of the solution in Riemann coordinates can be viewed as a super-
position of almost decoupled simple waves since each i-th simple wave has zero j -th Riemann component for every 
j �= i. With similar arguments to the proof of Proposition 1 we then derive the sharper a-priori bound on the size of 
the support of w(t,·) provided by the following

Proposition 2. In the same setting and with the notations of Proposition 1 and Lemma 3, assume that (74) is a strictly 
hyperbolic and rich system. Given L, T > 0, and d, b > 0 satisfying

0 < d ≤ min

{
d ′, �∧λ

2α′′
1

√
N

}
, 0 < b ≤ min

{
1

2α′
1 · T ,

�∧λ

2α′′
1N · L

}
, (117)

with α′
1, α

′′
1 as in (108), (109), and �∧λ as in (67) (interpreting 1/α′

1
.= ∞ when α′

1 = 0 and 1/α′′
1

.= ∞ when α′′
1 = 0), 

let PC1,N
[L,d,b,T ] be the class of maps introduced in (68)–(69), and consider a map φβ : R → Ω as in (71), defined in 

connection with an N -tuple β = (β1, . . . , βN) ∈ PC1,N
[L,d,b,T ]. Then, the Cauchy problem (74)–(75) admits a classical 

solution u(t, x) on [0, T ] ×R. Moreover, letting w(t, x) .= W(u(t, x)), one has

Supp
(
w(T , ·))⊆ [−L, L], (118)

and, for every t ≤ T , there hold:∥∥∣∣w(t,·)∥∥∣∣
L∞(R,Ωw)

≤ d,
∥∥∣∣wx(t,·)

∥∥∣∣
L∞(R,Ωw)

≤ 4b. (119)

Proof. We shall first assume that T ≥ L/�∧λ. In this case, as in the proof of Proposition 1, we will show that 
a classical solution of the Cauchy problem (74)–(75), satisfying (118), (119), is obtained on [0, T − L/�∧λ] as a 
superposition of simple waves supported on disjoint set. Next, we will prove that such a solution can be extended to 
the interval [T −L/�∧λ, T ] relying on Lemma 3. Finally, we will discuss how to derive from Lemma 3 the existence 
of a classical solution of (74)–(75) verifying (118), (119) in the case where T < L/�∧λ.

1. Given β = (β1, . . . , βN) ∈ PC1,N
[L,d,b,T ], consider the functions x�

i (t, y), i = 1, . . . , N , defined in (79). Observe that, 
relying on (107)–(108), (117), by the same computations of Subsection 2.1 we derive the inequality

∂

∂y
x

�
i (t, y) ≥ 1 − α′

1 b · t ≥ 1

2
∀t ∈ [0, T ]. (120)

It follows that the maps y �→ x
�
i (t, y), i = 1, . . . , N , are one-to-one in R, for every fixed t ∈ [0, T ]. Thus, we may 

define the inverse map of x�
i (·, y) on R, and setting

z
�
i (t,·) .= (x�

i

)−1
(t, ·), i = 1, . . . ,N, (121)

we define the function

w
�
i (t, x)

.=
{

βi(z
�
i (t, x)) if x ∈ [x�

i (t, ξ
−
i ), x

�
i (t, ξ

+
i )] \⋃j �=i[x�

j (t, ξ
−
j ), x

�
j (t, ξ

+
j )],

0 otherwise,
i = 1, . . . ,N, (122)

on [0, T ] ×R. As in the proof of Proposition 1, notice that if we assume T ≥ L/�∧λ we derive

x
�
i+1

(
t, ξ±

i+1

)≤ x
�
i

(
t, ξ±

i

) ∀t ∈
[

0, T − L

�∧λ

]
, i = 1, . . . ,N − 1, (123)

so that one has

w
�
i (t, x) =

{
βi(z

�
i (t, x)) if x ∈ [x�

i (t, ξ
−
i ), x

�
i (t, ξ

+
i )],

0 otherwise,
i = 1, . . . ,N, (124)

for all (t, x) ∈ [0, T − L/�∧λ] ×R. Relying on (116), by the same arguments of the proof of Proposition 1 we then 
deduce that w�(t, x) is the Riemann coordinate expression of a classical solution of (74)–(75) on [0, T −L/�∧λ] ×R. 
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Moreover, recalling that by definition (69) one has βi ∈ PC1[d,b], for all i = 1, . . . , N , and relying on (120), we deduce 
from (124) that∥∥∣∣w�(t,·)∥∥∣∣

L∞(R,Ωw)
= max

i
‖βi‖L∞ ≤ d,

∥∥∣∣w�
x(t,·)

∥∥∣∣
L∞(R,Ωw)

≤ max
i

∥∥∥∥( ∂

∂y
x

�
i (t,·)

)−1

· d

dx
βi

∥∥∥∥
L∞

≤ 2b, (125)

for all t ∈ [0, T − L/�∧λ].
2. Relying on (117), (125), and applying Lemma 3, we deduce the existence of a classical solution of (74) on the 
domain [T − L/�∧λ, T ] ×R, that assumes the initial data

φ(x)
.= W−1(w�(T − L/�∧λ, x)

)
, x ∈R, (126)

at time t = T − L/�∧λ. Moreover, the Riemann coordinate expression w�(t, x) of such a solution satisfies the esti-
mates∥∥∣∣w�(t,·)∥∥∣∣

L∞(R,Ωw)
≤ d,

∥∥∣∣w�
x(t,·)

∥∥∣∣
L∞(R,Ωw)

≤ 4 · b, (127)

for all t ∈ [T − L/�∧λ, T ]. Therefore, the function defined by

w(t, x)
.=
{

w�(t, x) if t ∈ [0, T − L/�∧λ],
w�(t, x) if t ∈]T − L/�∧λ, T ], (128)

provides the Riemann coordinate expression of a classical solution of (74)–(75) on [0, T ] ×R that, because of (125), 
(127) satisfies the bounds (119) for all t ∈ [0, T ].

In order to derive an estimate on the support of w(T , ·), consider the i-th characteristic t �→ xi(t, y) starting at y
at time t = 0, associated to w(t, x), i.e. the solution of (105). Since w(t, x) is the Riemann coordinate expression of 
a classical solution of (74) on [0, T ] ×R, it follows that the map y �→ xi(t, y) is a one-to-one correspondence on R, 
for any t ∈ [0, T ]. Hence, setting zi(t,·) .= x−1

i (t,·), and recalling that each i-th Riemann coordinate wi(t, x) remains 
constant along the i-th characteristics, we may express wi(t, x) as

wi(t, x) = βi

(
zi(t, x)

) ∀t ∈ [0, T ], x ∈ R. (129)

Relying on (129), and because of (69), we deduce that in order to prove (118) it will be sufficient to show that the i-th 
characteristic map xi(T , ·) satisfies[

xi

(
T , ξ−

i

)
, xi

(
T , ξ+)]⊆ [−L, L], (130)

for every i = 1, . . . , N . To this end, let t �→ xi(t; τ, y) denote the i-th characteristic starting at y at time t = τ , i.e. the 
solution of

ẋ = λi

(
w(t, x)

)
, x(τ ) = y, (131)

and define the times τ±
i and points y±

i as in (91). Then, recalling (79), thanks to (68), (95), (97), (98), (111), (119), 
(131), and because of (117), we find

xi

(
T , ξ±

i

)≤ y±
i + (λi(0) + √

N α′′
1 · d) · (T − τ±

i

)
= x

�
i

(
T , ξ±

i

)+ √
N α′′

1 · d · (T − τ±
i

)
≤ L

2
+ √

N α′′
1 · d · L

�∧λ
< L. (132)

With similar arguments we derive xi(T , ξ±
i ) > −L, which together with (132), yields (130). This completes the proof 

of the proposition in the case where T ≥ L/�∧λ.

3. Assume T < L/�∧λ, and observe that by (117) one has b ≤ 1/(2α′′
1N · T ). Then, applying Lemma 3, we deduce 

the existence of a classical solution of (74)–(75) on [0, T ] ×R that satisfies the bounds (119) for all t ∈ [0, T ]. Letting 
w(t, x) denote the Riemann coordinate expression of such a solution, by the same arguments above we can show 
that (129), (130) hold, which, together with (69), yield (118), thus concluding the proof of the proposition. �
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Remark 4. The same conclusion of Remark 3 holds if we consider a rich system that generates a semigroup of entropy 
weak solutions (St )t≥0 with a domain D as in (15), and we assume that]

d ′, d ′[ ⊂ [ai, bi] ∀i = 1, . . . ,N. (133)

In fact, under this assumption it clearly follows that, for every given β = (β1, . . . , βN) ∈ PC1,N
[L,d,b,T ], d < d ′, the map 

φβ defined in (71) belongs to D, and thus, relying on [7, Section 5.3], we deduce that the classical solution u(t,·) of 
the Cauchy problem (74)–(75) provided by Proposition 2 coincides with Stφ

β .

3. Lower compactness estimates for conservation laws

3.1. A controllability result

For arbitrary constants L, b > 0, 0 < M < d ( d being the radius of the ball contained in the domain of the flux 
function where condition (30) is verified), and T > 0 satisfying (67), recalling the definitions (68), (69), (71), let us 
consider the set

A[L,M,b,T ]
.= {ψ ∈ C(R,Ω)

∣∣ψ(x) = φβ(−x) ∀x ∈R, for some β = (β1, . . . , βN) ∈ PC1,N
[L,M,b,T ]

}
. (134)

Notice that, because of (68), every map ψ ∈ A[L,M,b,T ] is supported on N disjoint intervals [ξ−
i , ξ+

i ], i = 1, . . . , N , 
of length L. The next result shows that the elements of such a set can be obtained as the values ST u at a fixed time T

of the semigroup generated by (1), for initial data u varying in a set of the form (5).

Proposition 3. Let f : Ω → R
N be a C2 map on an open, connected domain Ω ⊂ R

N containing the origin, and 
assume that the system (1) is strictly hyperbolic. Let (St )≥0 be the semigroup of entropy weak solutions generated 
by (1) defined on a domain D0 satisfying (2). Then, given any L, m, M, T > 0, and setting

L̃
.= min

{
L

(1 + α5)
, T · �∧λ

}
(135)

(�∧λ, α5 being the constants in (67), (76)), for every

0 ≤ b ≤ min

{
1

2α1 · T ,
�∧λ

4α3α4N2 · L,
δ0

8α4NL

}
,

0 ≤ h ≤ min

{
d

2α4N eα2/α3
,

�∧λ

4α1 α4N eα2/α3
,

M

2α4N eα2/α3
,

m

2L

}
(136)

(αl , l = 1, 2, 3, 4, being the constants in (30), (43), interpreting 1/α1
.= ∞ when α1 = 0 ), there holds

A[L̃,h,b,T ] ⊂ ST (L[IL,m,M] ∩D0), IL
.= [−L,L], (137)

where A[L̃,h,b,T ], L[IL,m,M] denote the sets defined as in (134), (5), respectively.

Proof. Following the same strategy adopted in [1], we will show that any element ψ ∈ A[L̃,h,b,T ] can be obtained 
as the value at time T of a classical solution to (1) by reversing the direction of time, and constructing a backward 
solution to (1) that starts at time T from ψ . Namely, given

ψ ∈A[L̃,h,b,T ], (138)

by definition (134) there will be an N -tuple of maps β = (β1, . . . , βN) ∈ PC1,N

[L̃,h,b,T ], such that letting φβ be the 

function defined in (71), one has ψ(x) = φβ(−x), for all x. Notice that, by (135), one has

T ≥ L̃

�∧λ
, (139)

as in (67), while (136) imply that h, b satisfy the bounds (73) on d, b. Then, set
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ω0(x)
.= ψ(−x) = φβ(x) ∀x ∈R, (140)

and let ω : [0, T ] ×R → Ω denote the classical solution of the Cauchy problem (74)–(75), provided by Proposition 1. 
Next, consider the function

u(t, x)
.= ω(T − t,−x), (t, x) ∈ [0, T ] ×R. (141)

Observe that u(t, x) is a classical solution of (1) with initial data u(0, ·) = ω(T , −·) that, by (140), satisfies

u(T , ·) = ψ. (142)

Moreover, by (77), (135) we have |Supp(ω(T , −·))| = |Supp(ω(T , ·))| ≤ 2(1 + α5)L̃ ≤ 2L. Therefore, relying on the 
second estimate in (78) and on (136), we derive

Tot.Var.
(
ω(T ,−·))≤ ∥∥ωx(T , ·)∥∥

L1(R,Ω)

≤ ∥∥ωx(T , ·)∥∥
L∞(R,Ω)

· ∣∣Supp
(
ω(T , ·))∣∣

≤ 4α4N · b · 2L ≤ δ0. (143)

Thus, by (2) we deduce that u(0, ·) = ω(T , −·) ∈ D0, and hence, recalling Remark 3, we have u(t,·) = Stω(T , −·), 
for all t ∈ [0, T ]. Because of (142), this implies in particular that ψ = ST ω(T , −·). To conclude the proof of

ψ ∈ ST (L[IL,m,M] ∩D0) (144)

it thus remains to show that

ω(T ,−·) ∈ L[IL,m,M]. (145)

Since ω is the classical solution of (74)–(75) provided by Proposition 1, recalling that ψ(−·) = φβ , β ∈ PC1,N

[L̃,h,b,T ], 
and relying on (77), (78), (135), (136), (138), we deduce that

Supp
(
ω(T ,−·))⊂ [−L,L],∥∥ω(T ,−·)∥∥

L∞(R,Ω)
≤ 2α4N e

α2
α3 · h ≤ M,∥∥ω(T ,−·)∥∥

L1(R,Ω)
≤ 2Lh ≤ m. (146)

Therefore, the inclusion (145) is verified because of (146), which completes the proof of the proposition. �
Remark 5. When N = 1, under the same assumptions as Proposition 3, assume also that f ′(0) = 0 (possibly perform-
ing a space and flux transformation). Then, relying on Lemma 1 (where we may reach the same conclusion assuming 
that b ≤ 3/(4c ·T ), with c .= sup{|f ′′(u)|; |u| ≤ d}), we can show that the following holds. Given any L, m, M, T > 0, 
for every

0 ≤ b ≤ 3

4c · T , 0 ≤ h ≤ min

{
d ′, M,

m

2L

}
,

one has

A[L,h,b,T ] ⊂ ST (L[IL,m,M]), IL
.= [−L/2,L/2], (147)

where A[L,h,b,T ], L[IL,m,M] denote sets defined as in (134), (5), respectively.

We shall now extend the previous controllability results to class of functions with possibly unbounded total varia-
tion in the case of hyperbolic systems of conservation laws of Temple class. We recall that (see [7,17,18]):

Definition 1. A system of conservation laws (1) is called of Temple class if:

– it is a rich system, i.e. if it is endowed with a coordinates system w = (w1, . . . , wn) of Riemann invariants wi =
Wi(u) associated to each characteristic field ri ;

– the level sets {u ∈ Ω; Wi(u) = constant} of every Riemann invariant are hyperplanes.
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We shall assume that W(0) = 0 and that as w ranges within the product set Π .= [a1, b1] × · · · × [aN, bN ], the 
corresponding state u = W−1(w) remains inside the domain Ω of the flux function f .

We also recall that a characteristic field ri of a system (1) is said to be genuinely nonlinear (GNL) in the sense of 
Lax if 〈∇λi(u), ri(u)〉 �= 0 for all u ∈ Ω , while we say that ri is linearly degenerate (LD) if 〈∇λi(u), ri(u)〉 ≡ 0 for 
all u ∈ Ω .

As observed in the introduction, the results in [3,6] show that a Temple system with GNL or LD characteristic 
families admits a continuous semigroup of entropy weak solutions S : [0, ∞[ × D → D} defined on domains D
as in (15) of functions having possibly unbounded variation. We shall adopt the notation Sw

t w
.= W(u(t,·)) for the 

Riemann coordinates expression of the solution of (1), (3), with u .= W−1 ◦ w. Therefore, relying on the sharper 
a-priori bounds on the classical solutions of a rich system provided by Proposition 2, and setting

Aw[L,M,b,T ]
.= {ψ ∈ C(R,Π)

∣∣ψ(x) = β(−x) ∀x ∈R, for some β = (β1, . . . , βN) ∈PC1,N
[L,M,b,T ]

}
. (148)

we establish the following

Proposition 4. In the same setting of Proposition 3, assume that (1) is a strictly hyperbolic system of Temple class, 
and that all characteristic families are genuinely nonlinear or linearly degenerate. Let (St)≥0 be the semigroup of 
entropy weak solutions generated by (1) defined on a domain D as in (15), and assume that (133) holds. Then, given 
any L, m, M, T > 0, for every b, h satisfying

0 ≤ b ≤ min

{
1

2α′
1 · T ,

�∧λ

2α′′
1N · L

}
, 0 ≤ h ≤ min

{
d ′, �∧λ

2α′′
1

√
N

, M,
m

2L

}
(149)

(α′
1, α

′′
1 being the constants in (108), (109) and �∧λ as in (67), interpreting 1/α′

1
.= ∞ when α′

1 = 0 and 1/α′′
1

.= ∞
when α′′

1 = 0) there holds

Aw[L,h,b,T ] ⊂ Sw
T

(
Lw[IL,m,M]

)
, IL

.= [−L,L], (150)

where the sets Aw[L,h,b,T ], Lw[IL,m,M] are defined as in (148) and in (18), respectively.

Proof. The proof of Proposition 4 is entirely similar to that of Proposition 3, relying on Proposition 2 and Remark 4, 
and recalling (116), thus we omit it. �
3.2. Lower compactness estimates on a family of simple waves

We shall provide now a lower estimate on the ε-entropy of the class A[L,M,b,T ] introduced in (134). To this end, 
set

α6
.= sup

{∣∣Dri(u)
∣∣; u ∈ Bd, i = 1, . . . ,N

}
, (151)

where Bd denotes as usual a ball centered in the origin and contained in the domain Ω of the flux function f . 
Following a similar strategy as the one pursued in [1] we then establish the following

Proposition 5. In the same setting of Proposition 3, given L, b > 0, 0 < M < d , and T > 0 satisfying (67), for every 
ε > 0 satisfying

ε ≤ min

{
LNM

24
,

LN

48α6

}
, (152)

(α6 being the constant in (151)), letting A[L,M,b,T ] be the set defined in (134), one has

Hε

(
A[L,M,b,T ] | L1(R,Ω)

)≥ L2N2b

216 ln(2)
· 1

ε
. (153)

Proof. Towards a proof of (153), we shall first introduce a two-parameter family Fn,h ⊂ A[L,M,b,T ], depending 
on n ≥ 2 and h > 0, of superposition of simple waves φβ , β = (β1, . . . , βN) ⊂ PC1,N , defined as in (71) in 
[L,M,b,T ]
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Fig. 2. The function βι
k

for n = 8 and ι = (0,1,1,0,0,0,1,1).

connection with piecewise affine, compactly supported maps βi ∈ PC1[M,b]. Next, we shall provide an optimal lower 
bound on the covering number Nε(Fn,h | L1(R, Ω)), for a suitable choice of n, h, which, in turn, will yield the lower 
bound (153) on the ε-entropy of A[L,M,b,T ].

1. Given any integer n ≥ 2 and any constant h > 0, for every k-th characteristic family and for any given n-tuple 
ι = (ι1, . . . , ιn) ∈ {0,1}n, we consider the function βι

k : R → [−h, h], with support contained in [ξ−
k , ξ+

k ], defined by 
setting (see Fig. 2)

βι
k(x)

.= (−1)ι�
2hn

L
·
(

L

2n
−
∣∣∣∣x − ξ−

k − (2� + 1) · L

2n

∣∣∣∣) ∀x ∈
[
ξ−
k + �L

nN
, ξ−

k + (� + 1)L

nN

]
, (154)

for all � ∈ {0, . . . , n − 1}. Recall that the quantities ξ±
k = ±L/2 − λk(0) · T were introduced in (68). Observe that, if 

we assume

0 < h ≤ min

{
M,

Lb

2n

}
, (155)

by definition (25) it follows that βι
k ∈ PC1[M,b], for every n-tuple ι = (ι1, . . . , ιn) ∈ {0,1}n. Therefore, for any given 

N -tuple of n-tuples (ι1, . . . , ιN ) ∈ ({0,1}n)N , letting βιk
k , k = 1, . . . , N , be the maps defined as in (154), and recalling 

definition (69), we deduce that (βι1
1 , . . . , βιN

N ) ∈ PC1,N
[L,M,b,T ]. Thus, for all n ≥ 2 and h satisfying (155), setting

Bn,h
.= {(βι1

1 , . . . , β
ιN
N

) ∣∣ βιk
k : R→ [−h,h] defined as in (154) with

Supp
(
β

ιk
k

)⊂ [ξ−
k , ξ+

k

] ∀k, (ι1, . . . , ιN ) ∈ ({0,1}n)N}, (156)

one has

Bn,h ⊂PC1,N
[L,M,b,T ]. (157)

Then, for any given N -tuple of n-tuples (ι1, . . . , ιN ) ∈ ({0,1}n)N , let

φι1,...,ιN .= φ(β
ι1
1 ,...,β

ιN
N )

denote the map defined as in (71) in connection with the N -tuple (βι1
1 , . . . , βιN

N ) ∈ Bn,h, and set

Fn,h
.= {φι1,...,ιN (−·) ∣∣ (ι1, . . . , ιN ) ∈ ({0,1}n)N}. (158)

Recalling definition (134), and because of (157), it follows that there holds

Fn,h ⊂A[L,M,b,T ], (159)

for all n ≥ 2 and h > 0 satisfying (155). Therefore, observing that (158) implies

Hε

(
A[L,M,b,T ]

∣∣ L1(R,Ω)
)≥ Hε

(
Fn,h

∣∣ L1(R,Ω)
)
, (160)

we deduce that, in order to establish (153), it will be sufficient to show

Hε

(
Fn,h

∣∣ L1(R,Ω)
)≥ L2N2b

216 ln(2)
· 1

ε
, (161)

for a suitable choice of n ≥ 2 and h > 0 satisfying (155).
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2. Towards an estimate of the covering number Nε(Fn,h | L1(R, Ω)), let us denote with CFn (ε) the maximum num-
ber of elements in Fn,h that have L1-distance less than ε from a given element of Fn,h. Namely, for any fixed 

φῑ1,...,ῑN (−·) .= φ(β
ῑ1
1 ,...,β

ῑN
N )(−·) ∈ Fn,h, ῑ .= (ῑ1, . . . , ̄ιN ) ∈ ({0,1}n)N , define

CFn,ῑ(ε)
.= Card

{
φι1,...,ιN (−·) ∈ Fn,h

∣∣ ∥∥φι1,...,ιN − φῑ1,...,ῑN
∥∥

L1(R,Ω)
≤ ε
}
, (162)

and set

CFn (ε)
.= max

{
CFn,ι(ε)

∣∣ ι .= (ι1, . . . , ιN ) ∈ ({0,1}n)N}. (163)

Observe that any element of an ε-cover of Fn,h contains at most CFn (2ε) functions of Fn,h. Thus, since the cardinality 
of Fn,h is the same of the set Bn,h, which is 2nN , it follows that the number of sets in an ε-cover of Fn,h is at least

Nε

(
Fn,h

∣∣ L1(R,Ω)
)≥ 2nN

CFn (2ε)
. (164)

Therefore, we wish to provide now an upper bound on CFn (2ε). To this end, consider any two N -tuples ῑ �=
ι ∈ ({0,1}n)N , ῑ .= (ῑ1, . . . , ̄ιN ), ι .= (ι1, . . . , ιN ), and let φῑ1,...,ῑN .= φ(β

ῑ1
1 ,...,β

ῑN
N ), φι1,...,ιN .= φ(β

ι1
1 ,...,β

ιN
N ), denote the 

maps defined as in (71) in connection with the corresponding N -tuples βῑ1,...,ῑN .= (β
ῑ1
1 , . . . , βῑN

N ) and βι1,...,ιN .=
(β

ι1
1 , . . . , βιN

N ) of Bn,h. Recall that the eigenvectors are normalized so that |rk(u)| ≡ 1, for all k = 1, . . . , N . Moreover, 
by definitions (71), (156), and because of (67), the maps φῑ1,...,ῑN , φι1,...,ιN and βῑ1,...,ῑN , βι1,...,ιN are supported on the 
disjoint union of sets [ξ−

k , ξ+
k ], k = 1, . . . , N . Thus, recalling (151), we find

∥∥φῑ1,...,ῑN − φι1,...,ιN
∥∥

L1(R,Ω)
=

N∑
k=1

∫
[ξ−

k ,ξ+
k ]

∣∣Rk

(
β

ῑk
k (x)

)− Rk

(
β

ιk
k (x)

)∣∣dx

=
N∑

k=1

∫
[ξ−

k ,ξ+
k ]

∣∣∣∣∣
β

ῑk
k (x)∫

β
ιk
k (x)

rk
(
Rk(s)

)
ds

∣∣∣∣∣dx

≥
N∑

k=1

[ ∫
[ξ−

k ,ξ+
k ]

[∣∣βῑk
k (x) − βι

k(x)
∣∣− ∣∣∣∣∣

β
ῑk
k (x)∫

β
ιk
k (x)

∣∣rk(Rk(s)
)− rk(0)

∣∣ds

∣∣∣∣∣
]
dx

]

≥
N∑

k=1

∫
[ξ−

k ,ξ+
k ]

∣∣βῑk
k (x) − βι

k(x)
∣∣ · [1 − ‖Drk‖L∞(Bh,Mn(R)) · h]dx

≥
N∑

k=1

∥∥βῑk
k − βι

k

∥∥
L1(R,R)

· [1 − α6 · h], (165)

where α6 is the constant in (151). Hence, if we assume that

0 < h ≤ 1

2α6
, (166)

it follows from (165) that, adopting (with a slight abuse of notation) the L1-distance

∥∥βῑ1,...,ῑN − βι1,...,ιN
∥∥

L1(R,RN)

.=
N∑

k=1

∥∥βῑk
k − βι

k

∥∥
L1(R,R)

∀(ῑ1, . . . , ῑN ), (ι1, . . . , ιN ) ∈ ({0,1}n)N, (167)

on the set Bn,h in (156), and the usual L1-distance on the set Fn,h in (158), there holds
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∥∥βῑ1,...,ῑN − βι1,...,ιN
∥∥

L1(R,RN)
≤ 2
∥∥φῑ1,...,ῑN − φι1,...,ιN

∥∥
L1(R,Ω)

∀(ῑ1, . . . , ῑN ), (ι1, . . . , ιN ) ∈ ({0,1}n)N. (168)

Then, if we define CBn (ε) as the maximum number of elements in Bn,h that have L1-distance (defined as in (167)) less 
than ε from any given element of Bn,h, we deduce from (168) that CFn (2ε) ≤ CBn (4ε). In turn, this inequality, together 
with (164), yields

Nε

(
Fn,h

∣∣ L1(R,Ω)
)≥ 2nN

CBn (4ε)
(169)

for all h satisfying (166).
In order to provide an upper estimate on CBn (4ε), observe that, given any pair of nN -tuples (ι1, . . . , ιN ), 

(ῑ1, . . . , ̄ιN ) ∈ ({0,1}n)N , letting (βι1
1 , . . . , βιN

N ), (βῑ1
1 , . . . , βῑN

N ) denote the corresponding N -tuples in Bn,h, by defi-
nitions (154), (156), (167), and because every interval [ξ−

i , ξ+
i ] has length L, one has∥∥βῑ1,...,ῑN − βι1,...,ιN

∥∥
L1(R,RN)

= Lh

n
· d((ι1, . . . , ιN ), (ῑ1, . . . , ῑN )

)
, (170)

where

d
(
(ι1, . . . , ιN ), (ῑ1, . . . , ῑN )

) .= Card
{
(k, �) ∈ {1, . . . ,N} × {1, . . . , n} ∣∣ (ιk)� �= (ιk)�

}
.

Then, given any fixed nN -tuple ῑ .= (ῑ1, . . . , ̄ιN ) ∈ ({0,1}n)N , define

CIn (ε)
.= Card

{
(ι1, . . . , ιN ) ∈ ({0,1}n)N ∣∣ d((ι1, . . . , ιN ), (ῑ1, . . . , ῑN )

)≤ ε
}
. (171)

Notice that the number CIn (ε) is independent of the choice of ῑ .= (ῑ1, . . . , ̄ιN ) ∈ ({0,1}n)N , and that, by (170), there 
holds

CBn (4ε) = CIn
(

4nε

Lh

)
. (172)

We next derive an upper bound on CIn (ε) following the same strategy as in the proof of Proposition 2.2 in [1]. Namely, 
by standard combinatorial properties, counting the nN -tuples that differ for a given number of entries, we compute

CIn
(

4nε

Lh

)
=

� 4nε
Lh

�∑
�=0

(
nN

�

)
, (173)

where �α� .= max{z ∈ Z | z ≤ α} denotes the integer part of α. Next, observe that if X1, . . . , XnN are independent 
random variables with Bernoulli distribution P(Xi = 0) = P(Xi = 1) = 1

2 , then for any integer k ≤ nN one has

P(X1 + . . . + XnN ≤ k) = 1

2nN

k∑
�=0

(
nN

�

)
. (174)

Now, we recall Hoeffding’s inequality [9, Theorem 2] which guarantees that, setting SnN
.= X1 + . . . + XnN , for any 

fixed μ > 0 there holds

P
(
SnN −E(SnN) ≤ −μ

)≤ exp

(
−2μ2

nN

)
, (175)

where E(SnN) denotes the expectation of SnN . Notice that by the above assumptions on X1, . . . , XnN , we have 
E(SnN) = nN

2 . Hence, taking k .= � 4nε
Lh

�, μ .= nN
2 − � 4nε

Lh
�, and assuming

ε ≤ NLh

8
, (176)

which implies μ > 0, we deduce from (172)–(175) that there holds
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CBn (4ε) ≤ 2nN · exp

(
−2

( nN
2 − � 4nε

Lh
�)2

nN

)
≤ 2nN · exp

(
−nN

2

(
1 − 8ε

LhN

)2)
. (177)

In turn, (177) together with (169) yields

Nε

(
Fn,h

∣∣ L1(R,Ω)
)≥ exp

(
nN

2

(
1 − 8ε

LhN

)2)
, (178)

for all n ≥ 2 and h satisfying (166), (176). In order to derive the largest lower bound on the right-hand side of (178)
we maximize the map

Ψ (h,n)
.= nN

2

(
1 − 8ε

LhN

)2

,

with h, n, subject to (155), (166), (176). If we first fix n ≥ 2, and then optimize the map h �→ Ψ (h, n), when h satisfies 
the bound (155), we find that the maximum is attained for

hn
.= Lb

2n
. (179)

Next, optimizing the map n �→ Ψ (hn, n), with hn satisfying (176), i.e. with n ≤ NL2b
16ε

, we deduce that the maximum 
is attained for

n
.=
⌊

NL2b

48ε

⌋
+ 1. (180)

One can check that

hn = Lb

2n
≤ 24ε

NL
,

NLhn

8
= NL2b

16n
≥ 3ε

2
,

so that, with hn, n defined by (179), (180), all conditions (155), (166), (176) are verified, provided that ε satisfies (152). 
Hence, we deduce from (178) that

Nε

(
Fn,hn

∣∣ L1(R,Ω)
)≥ exp

(
Ψ (hn,n)

)= exp

(
L2N2b

216
· 1

ε

)
, (181)

which, in turn, yields

Hε

(
Fn,hn

∣∣ L1(R,Ω)
)≥ L2N2b

216 ln(2)
· 1

ε
(182)

for all ε satisfying (152). By the above observations at Point 1, recalling (160), this concludes the proof of the propo-
sition. �
Remark 6. When N = 1, under the same assumptions as Proposition 3 the following holds. Given L, M, b, T > 0, 
for every 0 < ε ≤ LM/12, letting A[L,M,b,T ] be the set defined in (134) one has

Hε

(
A[L,M,b,T ]

∣∣ L1(R)
)≥ L2b

108 ln(2)
· 1

ε
. (183)

In order to analyze the ε-entropy of solutions to Temple systems of conservation laws, we shall now provide a lower 
bound on the ε-entropy of the class of maps Aw[L,M,b,T ] introduced in (148). Here, we are considering the ε-entropy 
of Aw related to the topology induced by the L1-norm ‖ |w‖ |L1

.=∑i ‖wi‖L1 .
[L,M,b,T ]
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Proposition 6. Given L, M, b, T > 0, for every ε > 0 satisfying

ε ≤ LNM

12
, (184)

letting Aw[L,M,b,T ] be the set defined in (148), one has

Hε

(
Aw[L,M,b,T ]

∣∣ L1(R,Π)
)≥ L2N2b

108 ln(2)
· 1

ε
. (185)

Proof. The lower bound (185) is established with similar arguments to those of the proof of Proposition 5. Namely, 
given any integer n ≥ 2 and any constant h satisfying (155), we consider the set Bn,h introduced in (156). Observe 
that by definitions (148), (156) one has

Nε

(
A[L,M,b,T ]

∣∣ L1(R,Π)
)≥ Nε

(
Bn,h

∣∣ L1(R,Π)
)
. (186)

Next, let CBn (ε) denote the maximum number of elements in Bn,h that have L1-distance (defined as in (167)) less 
than ε from any given element of Bn,h. With the same combinatory arguments of the proof of Proposition 5, for all

ε ≤ NLh

4
, (187)

we derive

Nε

(
Bn,h

∣∣ L1(R,Π)
)≥ 2nN

CBn (2ε)
≥ exp

(
Ψ (h,n)

)
, (188)

with

Ψ (h,n)
.= nN

2

(
1 − 4ε

LhN

)2

. (189)

Maximizing the map (189) when h, n are subject to (155), (187), and combining (186), (188), we find

Nε

(
Aw[L,M,b,T ]

∣∣ L1(R,Π)
)≥ exp

(
Ψ (hn,n)

)
, (190)

with

n
.=
⌊

NL2b

24ε

⌋
+ 1, hn = Lb

2n
≤ 12ε

NL
. (191)

Finally, observing that

Ψ (hn,n) = L2N2b

108
· 1

ε
,

NLhn

4
≥ 3ε

2
,

and taking the logarithm of both sides of (190), we recover the estimate (185) for all ε > 0 satisfying (184). �
3.3. Conclusion of the proofs of Theorem 1(i) and Theorem 2(i)

Proof of Theorem 1(i). We shall provide a proof of the lower bound (6) for sets of functions of the form (5) with 
support contained in the interval IL

.= [−L, L]. The case of sets of functions supported in any other given interval I
of length |I | = 2L can be recovered observing that every function in ST (L[I,m,M]) is obtained by shifting horizontally 
a corresponding-function in ST (L[IL,m,M]) by a fixed constant. Thus, the ε-entropy of the two sets turns out to be the 
same.

Combining Proposition 3 and Proposition 5 we find that, for every

0 < ε ≤ min

{
Ld

48α4 eα2/α3
,

L�∧λ

96α1 α4 eα2/α3
,

LM

48α4 eα2/α3
,

N m

48
,

LN

48α6

}
·min

{
1

1 + α5
,

T ·�∧λ

L

}
(192)

(αl , l = 2, . . . , 6 and �∧λ being the constants defined in (43), (76), (151) and (67), respectively) there holds
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Hε

(
ST (L[IL,m,M] ∩D0)

∣∣ L1(R,Ω)
)≥ L̃2N2b

216 ln(2)
· 1

ε
, (193)

with

L̃ = L · min

{
c1, c2

T

L

}
, b = 1

T
· 1

max{c3, c4
N2L
T

, c5
NL
δ0T

}
, (194)

where

c1
.= c2

c2 + λN(0) − λ1(0)
c2

.= min
i

{
λi+1(0) − λi(0)

}
,

c3
.= 2 sup

{∣∣∇λi(u)
∣∣; u ∈ Bd, i = 1, . . . ,N

}
, c5

.= 8 sup
{∣∣li (0)

∣∣; u ∈ Bd, i = 1, . . . ,N
}

(195)

c4
.= c5

2c2
· (sup

{∣∣λk(u) − λj (u)
∣∣∣∣lTi (u)Drk(u)

∣∣; u ∈ Bd, i, j, k ∈ {1, . . . ,N}}
+ sup

{∣∣∇λi(u)
∣∣; u ∈ Bd, i = 1, . . . ,N

})
. (196)

Thus, (193)–(195)–(196) together yield (6), taking

cl = cl, for l = 1,2, cl = 216 ln(2) · cl, for l = 3,4,5. � (197)

Proof of Theorem 2(i). As for the proof of Theorem 1(ii), it will be sufficient to establish the lower bound (19) for 
sets of functions of the form (18) with support contained in the interval IL

.= [−L, L].
Combining Proposition 4 and Proposition 6 we find that, for every

0 < ε ≤ min

{
LN d ′

12
,

L
√

N �∧λ

24α′′
1

,
LNM

12
,

Nm

24

}
(198)

(α′′
1 , �∧λ being the constants defined in (109), (67), respectively) there holds

Hε

(
Sw

T

(
Lw[IL,m,M]

) ∣∣ L1(R,Π)
)≥ L2N2b

108 ln(2)
· 1

ε
, (199)

with

b = 1

T
· 1

max{c6, c7
NL
T

} , (200)

where

c6
.= 2 sup

{∣∣〈∇λi(u), ri(u)
〉∣∣; u ∈ Bd, i = 1, . . . ,N

}
,

c7
.= 2

c2
· sup

{∣∣〈∇λi(u), rj (u)
〉∣∣; u ∈ Bd, i, j = 1, . . . ,N

}
. (201)

Thus, (199)–(201) together yield (19), taking

cl = 108 ln(2) · cl, for l = 6,7. � (202)

4. Upper compactness estimates for genuinely nonlinear Temple systems

Assume that (1) is a strictly hyperbolic system of Temple class, and that all characteristic families are genuinely 
nonlinear (cf. Subsection 3.1). Let (Sw

t )t≥0 be the Riemann coordinate expression of the semigroup of entropy weak 
solutions generated by (1), defined on a domain L1(R, Π) with Π .= [a1, b1] × · · · × [aN, bN ]. In connection with a 
class of initial data Lw[I,m,M] ⊂ L1(R, Π) as in (18), consider the sets of i-th components of elements of Sw

T (Lw[I,m,M]), 
at a fixed time T > 0:

Sw
T,i

(
Lw[I,m,M]

) .= {ϕi

∣∣ (ϕ1, . . . , ϕN) ∈ Sw
T

(
Lw[I,m,M]

)}
, i = 1, . . . ,N. (203)

Thanks to the Oleı̌nik-type inequalities (16), we may establish an upper estimate on the ε-entropy for Sw
T,i(Lw[I,m,M])

following the same strategy adopted in [8] for scalar conservation laws with convex flux, relying on the upper bound 
on the ε-entropy for classes of nondecreasing functions provided by:
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Lemma 4. (See [8, Lemma 3.1].) Given any, L, M > 0, setting

I[L,M]
.= {v : [0,L] → [0,M] ∣∣ v is nondecreasing

}
, (204)

for 0 < ε < LM
6 , there holds

Hε

(
I[L,M]

∣∣ L1([0,L]))≤ 4LM

ε
.

In order to obtain an a-priori bound on size of the support of solutions to (1), expressed in terms of the L1-norm of 
their initial data, we will use the next technical lemma derived in [1].

Lemma 5. (See [1, Lemma 4.2].) Given v ∈ BV(R), compactly supported and satisfying

Dv ≤ B in the sense of measures, (205)

for some constant B > 0, there holds

‖v‖L∞ ≤√2B‖v‖L1 . (206)

Proof of Theorem 2(ii). As for the proof of Theorem 2(i), it will be sufficient to establish the upper bound (20) for 
sets of functions of the form (18) with support contained in the interval IL

.= [−L, L]. As stated in the introduction, 
we adopt the norms ‖ |w‖ |L1

.=∑i ‖wi‖L1 , ‖ |w‖ |L∞ .= supi ‖wi‖L∞ on the space L1(R, Π).

1. Given any initial data w ∈ Lw[IL,m,M], let w(t, x) .= Sw
t w(x) be the corresponding entropy weak solution of (1)

satisfying the Oleı̌nik-type inequalities (16). Observe that, by the properties of solutions of Temple systems (cf. [6]), 
and because w ∈ Lw[IL,m,M], for all t ≥ 0, i = 1, . . . , N , one has∥∥wi(t,·)

∥∥
L∞(R,Π)

≤ ‖wi‖L∞(R,Π) ≤ M,
∥∥wi(t,·)

∥∥
L1(R,Π)

≤ ‖wi‖L1(R,Π). (207)

On the other hand, notice that wi(t,·) is compactly supported, and that by virtue of (16), (207), one has wi(t,·) ∈
BV(R) for all t > 0 and

Dwi(t,·) ≤ 1

c t
∀t > 0, i = 1, . . . ,N. (208)

Thus, invoking Lemma 5 and relying on (207), (208), we derive∑
i

∥∥wi(t, ·)
∥∥

L∞ ≤
∑

i

√
2‖wi‖L1

c t
≤
√

2N

c t

√∑
i

‖wi‖L1 ≤
√

2Nm

c t
, ∀t > 0. (209)

Moreover, applying the theory of generalized characteristics (see [7, Section 10.2]), letting ξ−
(t,z)(·), ξ+

(t,z)(·) denote the 
minimal and maximal backward characteristics emanating from (t, z), and setting

l−(t)
.= inf

{
z
∣∣ ξ+

(t,z)(0) ≥ −L
}
, l+(t)

.= sup
{
z
∣∣ ξ−

(t,z)(0) ≤ L
}
, (210)

we find

Supp
(
wi(t,·)

)⊂ [l−i (t), l+i (t)
]
, (211)

for all t ≥ 0, i = 1, . . . , N . Then, recalling that the minimal backward characteristic ξ−
(t,z)(·) is a solution of

ξ̇ (s) = λi

(
w
(
s, ξ(s)−)) a.e. s ∈ [0, t], (212)

setting

αi,j
.= sup

{∣∣〈∇λi(u), rj (u)
〉∣∣; ∣∣W(u)

∣∣≤ M
}
, (213)

and relying on (209), we derive
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l+i (t) ≤ L + λi(0) · t +
∑
j

αi,j

t∫
0

∥∥wj(s, ·)
∥∥

L∞ ds

≤ L + λi(0) · t + sup
j

αi,j

t∫
0

∑
j

∥∥wj(s, ·)
∥∥

L∞ ds

≤ L + λi(0) · t + sup
j

αi,j

√
2Nm

c

t∫
0

1√
s

ds

≤ L + λi(0) · t + sup
j

αi,j

√
8Nmt

c
, (214)

for all t ≥ 0, i = 1, . . . , N . Analogously, observing that the maximal backward characteristic ξ+
(t,z)(·) is a solution of

ξ̇ (s) = λi

(
w
(
s, ξ(s)+)) a.e. s ∈ [0, t], (215)

with the same arguments above we derive

l−i (t) ≥ −L + λi(0) · t − sup
j

αi,j

√
8Nmt

c
∀t ≥ 0, i = 1, . . . ,N, (216)

which, together with (211), (214), yields

Supp
(
wi(t,·)

)⊂ [−Lt + λi(0) · t, Lt + λi(0) · t], Lt
.=
(

L + sup
i,j

αi,j

√
8Nmt

c

)
, (217)

for all t ≥ 0, i = 1, . . . , N . Finally, observing that by (17), (213) we have c ≤ supi,j αi,j , and combining (209)
with (217), we find∥∥wi(t,·)

∥∥
L∞ ≤

√
2Nmc t

c t

≤
√

2Nmt

c t
· supi,j αi,j√

c

≤ Lt

c t
∀t > 0, i = 1, . . . ,N. (218)

2. In connection with any given ψ ∈ Sw
T (Lw[IL,m,M]), consider the function ϕ�

i : [0, 2LT ] → R defined by setting

ϕ
�
i (x)

.= x

c T
− ψ

(
x + λi(0) · T − LT

)+ LT

c T
, (219)

with LT as in (216). Notice that, by virtue of (208), ϕ�
i is nondecreasing and, thanks to (218), one has

0 ≤ ϕ
�
i (x) ≤ 4LT

c T
∀x ∈ [0, 2LT ]. (220)

Hence, recalling the definition (204), we have

ϕ
�
i ∈ I[2LT ,

4LT
c T

].

Finally, observe that since ϕ�
i is obtained from ϕi by a change of sign, a translation by a fixed function, and a shift of 

a fixed constant, it follows that, setting

U �
i

.= {ϕ�
i

∣∣ ϕ ∈ Sw
T

(
Lw[IL,m,M]

)}
,

recalling (203), there holds
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Nε

(
Sw

T,i

(
Lw[I,m,M]

) ∣∣ L1([−LT + λi(0) · T , LT + λi(0) · T ]))= Nε

(
U �

i | L1([0, 2LT ]))
≤ Nε

(
I[2LT ,

4LT
c T

]
∣∣ L1([0, 2LT ])). (221)

On the other hand, by virtue of (216), one has

Nε

(
Sw

T,i

(
Lw[I,m,M]

) ∣∣ L1(R)
)= Nε

(
Sw

T,i

(
Lw[I,m,M]

) ∣∣ L1([−LT + λi(0) · T , LT + λi(0) · T ])). (222)

Thus, applying Lemma 4, and relying on (221), (222), we find

Nε

(
Sw

T,i

(
Lw[I,m,M]

) ∣∣ L1(R)
)≤ 2

32L2
T

c T
· 1
ε ∀i = 1, . . . ,N, (223)

which, in turn, yields

Nε

(
Sw

T

(
Lw[I,m,M]

) ∣∣ L1(R,Π)
)≤ N∏

i=1

N ε
N

Nε

(
Sw

T,i

(
Lw[I,m,M]

) ∣∣ L1(R)
)≤ 2

32N2L2
T

c T
· 1
ε , (224)

proving the upper bound (20). �
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