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Abstract

We propose new entropy admissibility conditions for multidimensional hyperbolic scalar conservation laws with discontinuous 
flux which generalize one-dimensional Karlsen–Risebro–Towers entropy conditions. These new conditions are designed, in partic-
ular, in order to characterize the limit of vanishing viscosity approximations. On the one hand, they comply quite naturally with 
a certain class of physical and numerical modeling assumptions; on the other hand, their mathematical assessment turns out to be 
intricate.

The generalization we propose is not only with respect to the space dimension, but mainly in the sense that the “crossing 
condition” of Karlsen, Risebro, and Towers (2003) [31] is not mandatory for proving uniqueness with the new definition. We prove 
uniqueness of solutions and give tools to justify their existence via the vanishing viscosity method, for the multi-dimensional 
spatially inhomogeneous case with a finite number of Lipschitz regular hypersurfaces of discontinuity for the flux function.
© 2014 
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1. Introduction

Conservation laws of the form

∂tu + divx f(t,x, u) = S(t,x, u) (1)

serve as mathematical models for one-dimensional gas dynamics, road traffic, for flows in porous media with ne-
glected capillarity effects, blood flow, radar shape-from-shading problems, and in several other applications. The 
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multi-dimensional conservation law also appears in coupled models, although in this case the regularity of the flux 
function f in (t, x) is often not sufficient to develop a full well-posedness theory. The mathematical theory of (1) is 
very delicate because, in general, even for regular data classical solutions need not to exist; on the other hand, weak 
(distributional) solutions are, in general, not unique. The classical theory is best established for Cauchy and boundary-
value problems in the case where f is Lipschitz continuous in (t, x) and uniformly locally Lipschitz continuous in u. 
The source S can be assumed, e.g., Lipschitz continuous in u uniformly in (t, x). In this case the S.N. Kruzhkov 
definition of entropy solution in [33] and the associated analysis techniques (vanishing viscosity approximation for 
the existence proof, doubling of variables for the uniqueness proof) provide a well-posedness framework for (1).

1.1. Discontinuous-flux models and rough entropy inequalities

Local Lipschitz assumption on k �→ f(t, x, k) is natural in many applications, but the assumption of regular 
dependence on the spatial variable x is very restrictive. Indeed, road traffic with variable number of lanes [19], 
Buckley–Leverett equation in a layered porous medium (see [29,8]), sedimentation applications (see [23,24,17]) make 
appear models with piecewise regular, jump discontinuous in x flux functions. The theory of such problems, called 
discontinuous-flux conservation laws, has been an intense subject of research in the last twenty years. The main goal 
of this research was to design a suitable approach to definition and numerical approximation of entropy solutions, 
in relation with the physical context of different discontinuous-flux models. Speaking of “notion of solution” in this 
context, one usually means weak solutions subject to some additional admissibility conditions, cf. [33].

Almost all admissibility conditions designed in the literature were confined to the one-dimensional case. We men-
tion here the minimal jump condition [26], minimal variation condition and Γ -condition [23,24], entropy conditions 
[31,2], vanishing capillarity limit [29,8], admissibility conditions via adapted entropies [12,18] or via admissible 
jumps description at the interface [3,4,25]. An extensive overview on the subject as well as a kind of unification of the 
mentioned approaches in the one-dimensional case was given in [11], where further references can be found.

Adimurthi et al. [3] observed that infinitely many different, though equally mathematically consistent, notions of 
solution may co-exist in the discontinuous-flux problems; therefore the choice of solution notion is a part of modeling 
procedure (see, e.g., [8] for an exhaustive study of the vanishing capillarity limits of the one-dimensional Buckley–
Leverett equation, where different sets of admissibility conditions are put forward for different choices of physically 
relevant vanishing capillarity). In the present contribution we limit our attention to characterization of vanishing vis-
cosity limit solutions for problems of kind (1); these approximations were studied in a huge number of works (see, 
e.g., [26,23,24,42,43,41,31,32,13,18,40,25]) including several works in multiple space dimensions (see [28,27,10,39,
16]) and they remain relevant in several models based on discontinuous-flux conservation laws.

The basis of the different definitions of admissibility of solutions is provided by Kruzhkov entropy inequalities [33]
in the regions of smoothness of the flux; the main difficulty consists in taking into account the jump discontinuities of 
the flux. To do so, for a quite general setting one may only assume that

for all k ∈R, f(., ., k) ∈ BVloc
(
R

+ ×R
d
)
. (2)

This rather weak regularity appears naturally e.g. in the study of triangular systems of conservation laws (see [30] and 
references therein). In the framework (2), under a non-degeneracy assumption of the fluxes k �→ f(t, x, k), existence 
of solutions satisfying the family of entropy inequalities

∀k ∈R |u − k|t + divx
(
sgn(u − k)

(
f(t,x, u) − f(t,x, k)

)) − sgn(u − k)S(t,x, u)

≤ − sgn(u − k)
(
divx f(t,x, k)

)ac + ∣∣(divx f(t,x, k)
)s∣∣ in D′(

R
+ ×R

d
)

(3)

has been proved by Panov in [40] using vanishing viscosity method; here,

divx f(t,x, k) = (
divx f(t,x, k)

)ac + (
divx f(t,x, k)

)s

is the Jordan decomposition of the Radon measure divx f(t, x, k) into its absolutely continuous part and its singular 
part (cf. (17) below, for a particular but representative case). Let us stress that inequalities (3) use a roughly estimated 
contribution of the jump singularities in the flux f, which turns out to be a serious obstacle for proving uniqueness of 
solutions in the sense (3).
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In order to explain this more accurately, let us consider the one-dimensional variant of (1) augmented with the initial 
conditions u|t=0 = u0 ∈ L∞(Rd). Condition (3) is the general form of the Karlsen–Risebro–Towers admissibility 
condition (see [42,43,31]; see also [41,13]):

∀k ∈ [a, b] ∂t |u − k| + ∂x

{
sgn(u − k)

[
H(x)

(
f (u) − f (k)

) + H(−x)
(
g(u) − g(k)

)]}
− ∣∣f (k) − g(k)

∣∣δ0(x) ≤ 0 in D′(
R

+ ×R
)
. (4)

This is precisely (3) written for the case with source S ≡ 0 and flux f(t, x; u) = f (u)H(x) + g(u)H(−x); here and 
throughout the paper,

H(·) = sgn+(·) is the Heavyside function;
δ0 is the Dirac measure concentrated at 0, i.e., δ0 = H ′ in D′(R).

The advantage of definition of solution by the family of inequalities (4) lies in a simple and natural existence 
and stability proof. Using the vanishing viscosity approximations of (1) for which existence is easy even in the 
discontinuous-flux setting, one readily obtains for the corresponding solutions uε the inequalities

∂t |uε − k| + ∂x

{
sgn(uε − k)

[
H(x)

(
f (uε) − f (k)

) + H(−x)
(
g(uε) − g(k)

)]}
− sgn

(
uε(t,0) − k

)(
f (k) − g(k)

)
δ0(x) ≤ ε∂xx |uε − k| in D′(

R
+ ×R

)
, (5)

a.e. on (0, T ). Roughly estimating the contribution of the term concentrated on {x = 0}, we can pass to the limit and 
get (4). In a similar way, stability of solutions in the sense (4) under a.e. convergence can be justified.

Concerning the question of uniqueness of solutions admissible in the Karlsen–Risebro–Towers sense, the following 
facts are known:

• Given a datum u0, uniqueness of an admissible solution in the sense (4) to the above problem holds true, provided 
f, g satisfy the crossing condition

f (u) − g(u) < 0 < f (v) − g(v) ⇒ u < v (6)

on the shape of the fluxes f and g. For the proof, see Towers [42,43] (see also [41]) for the case where the fluxes 
f, g have no crossing points in (a, b); see Karlsen, Risebro and Towers [31] for general uniqueness argument under 
assumption (6).

• If the crossing condition (6) fails, then at least for some initial data there exist more than one admissible solution 
in the sense (4), see [11, Sect. 4.7].

Several attempts were made already to improve the Karlsen–Risebro–Towers conditions. Let us mention here the 
following directions.

1. In the work [34], the idea was to use a transformation of the original equation (cf. [39] and [16]) in order to 
enforce the crossing condition for the fluxes depending on the transformed unknown; yet such transformation is often 
artificial with respect to the underlying model.

2. In [25,11,10] the crossing condition was dropped.
(2a) In [25], a new version of the Γ -condition on the solution jumps was proposed, under which the uniqueness 

proof was achieved without the crossing condition. Admissible solutions were characterized in terms of generalized 
Oleinik jump inequalities.

(2b) A different though equivalent to [25] admissibility condition was proposed in [11,10] in terms of the vanishing 
viscosity germ GVV recalled in Section 2.3 below. It was shown that GVV -entropy solutions are always unique, regard-
less the shape of the fluxes. The way to express this admissibility condition is rather tricky. For a straightforward 
approach put forward in [11], one uses intricate interface coupling conditions. Alternatively, a carefully selected fam-
ily of adapted entropies (see [14,12,18]) can be used to characterize admissible solutions, in the place of the classical 
Kruzhkov entropies exploited in (4). Neither the coupling conditions encoded in the germ GVV , nor the associated 
choice of adapted entropies are self-evident; their relation to the vanishing viscosity approximation follows from a 
lengthy analysis of possible viscosity profiles.

To sum up, none of the aforementioned approaches of admissibility is as intuitive and appealing as (3) or (4). In 
the present paper, our goal is to give a definition of solution to (1) which, similarly to the definitions (3) or (4), could 
be seen as a natural one and that would lead to well-posedness without assuming the crossing condition. Notice that 
in passing, we give an equivalent and somewhat more natural characterization of GVV-entropy solutions of [11,10].
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1.2. Singular values of u and refined entropy inequalities

The idea of this paper is to strengthen the definitions of [31,40] by suggesting a finer way to take into account 
the contribution of the flux jumps into the entropy inequality.1 To explain the idea, we go back to the general frame-
work (2); in this case, we suggest to replace (3) by the following less restrictive inequalities:

∀k ∈R |u − k|t + divx
(
sgn(u − k)

(
f(t,x, u) − f(t,x, k)

))
≤ − sgn(pu − k)divx f(t,x, k) in D′(

R
+ ×R

d
)

(7)

where pu is some globally defined Borel function satisfying the property

pu = u a.e. with respect to the Lebesgue measure. (8)

Introducing everywhere defined pu means that we tacitly assign a value to u also on the singular set2 of (t, x) where 
the flux (t, x) �→ f(t, x, k) experiences jumps or Cantor-type singularities.3 In the sequel, we will say that pu encodes 
the singular values of u.

Remark 1. Let us present several observations concerning pu.
(i) Introduction of unknown singular values pu on the jump manifolds Σ may appear as a naive attempt to resolve 

the difficulty of definition of solution: indeed, in general these values cannot be observable.
(ii) Yet from the modeling viewpoint, existence of singular values pu on Σ can be put in relation with the fact that 

the vanishing viscosity approximation ensures global continuity of the approximate solutions uε. This approximation 
is suitable for models where the solution is expected to be continuous across Σ at a finer spatial scale, undergoing rapid 
transition of interface layer kind. Such fine-scale continuity assumptions are also natural in numerical approximation 
and modeling: we refer to [21] for an early work based on this idea, and to [9] for a deeper discussion of a wide class 
of related modeling hypotheses.

(iii) In practice, whenever the values of approximate solutions uε on a jump manifold Σ of the flux (t, x) �→
f(t, x, k) happen to exhibit a non-oscillatory behavior, one obtains pu on Σ as the pointwise limit of uε|Σ , for some 
vanishing sequence of ε. Mathematically, a priori justification of strong convergence of uε|Σ to some limit pu seems 
out of reach even when strong compactness of (uε)ε in L1

loc topology is easy to justify.
(iv) It is also clear that singular values pu need not be uniquely defined with respect to the Hausdorff measure on Σ

in its natural dimension d : to observe this, in is enough to consider the simplest case of converging one-dimensional 
viscosity profiles that may provide a continuum of different values for pu. Proposition 11 suggests some canonical 
choice of pu.

1.3. A brief description of technical ideas and obtained results

Throughout the paper we assume that

at a.e. point of Σ (with respect to the d-dimensional Hausdorff measure),

Σ is not orthogonal to the direction of the time axis. (9)

As a matter of fact, we are not able to suggest technical tools that would permit to exploit definition (7) in the 
general setting (2), (9) neither in view of existence nor in view of uniqueness of solutions. We refer to the recent work 
of Crasta, De Cicco and De Philippis [22] for uniqueness results in the framework of discontinuous SBV flux f (this 

1 This approach goes back to the preprint [35] of the second author. Shortly after the completion of the present paper, the work [22] of Crasta, De 
Cicco and De Philippis has been completed. Results and techniques of [22] appear as complementary to the ours: the flux f in [22] is less regular, 
the solution u is more regular than in our work, moreover, the uniqueness proof of [22] relies on the kinetic formulation, cf. [13].

2 The literature on discontinuous-flux problems concentrates on the case where the union in k ∈ R of the sets of singularities of (t, x) �→
divx f(t, x, k) is of Lebesgue measure zero, typically it is a locally finite union Σ of hypersurfaces in R+ × R

d . In this case one can say that u is 
defined on the set of full measure excluding singularities, and pu extends u to the singular set Σ .

3 To deal with the general case, rigorous meaning should be given to the last term of (7). The idea of formulation (7), (8) has been deeply 
developed in [22], using fine tools of analysis of BV and SBV (see, e.g., [7]) functions.
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means that in the Jordan decomposition of divx f(t, x, k), the singular part (divx f(t, x, k))s has zero Cantor part: see, 
e.g. [7]). In [22], the authors rely on BV regularity of solutions, which may fail in general, cf. [1]; further analysis 
is needed to provide sufficient conditions for existence of BV solutions or to relax assumptions of the uniqueness 
theorem of [22]. In contrast to [22], we deal with merely L∞ solutions which existence is proved but the results of 
our paper only concern the practical case of piecewise Lipschitz, jump discontinuous across a union Σ of Lipschitz 
hypersurfaces, and genuinely nonlinear fluxes.

In this case, firstly, we are able to prove uniqueness of admissible solutions in the sense (7), (8) without any artificial 
condition on the flux crossing. Uniqueness result for solutions in the sense of (7), (8) is based upon consideration of 
constraints that are imposed by inequalities (7) on the couple (u−, u+)(t0, x0) of one-sided traces of a solution u at a 
point (t0, x0) ∈ Σ where Σ (called interface in the sequel) is a jump discontinuity hypersurface of a piecewise smooth 
flux function (t, x) �→ f(t, x, k) and u−, u+ are strong one-sided traces of the admissible solution u in the sense of 
Definition 1. The traces can be seen as limits, in an appropriate sense, of u((t0, x0) ± hν|Σ(t0, x0)), as h ↓ 0. Here, 
ν|Σ(t0, x0) is a normal vector to Σ with some orientation fixed by the choice of local coordinates in a neighborhood 
of (t0, x0), and one can also define the traces of flux functions

f±(·, k) := lim
h↓0

f
(· ± hν(·), k)

. (10)

The essence of the uniqueness argument is to justify the fact that in the global Kato inequality for two solutions u
and v, which formally reads

∂t |u − v| + divx
(
sgn(u − v)

(
f(t,x, u) − f(t,x, v)

)) ≤ L|u − v| + IHd
∣∣
Σ

in D′(
R

+ ×R
d
)
,

I := {
sgn

(
u+ − v+)(

f+
(·, u+) − f+

(·, v+)) − sgn
(
u− − v−)(

f−
(·, u−) − f−(·, v−)

)} · ν(·),
the contribution of the interface term I on the right-hand side is non-positive. Here Hd |Σ is the d-dimensional Haus-
dorff measure supported on the interface Σ , and L is the uniform in (t, x) Lipschitz constant of the source term 
S(t, x, ·). The non-positivity of I follows indeed from the restrictions on u± imposed by (7), see Section 2.2 (cf. [11]).

The genuine nonlinearity assumption on the flux, i.e., the assumption that for every (ξ0, ξ) in the d-dimensional 
unit sphere Sd , there holds

for almost every (t,x) ∈R
+ ×R

d, the mapping

k �→ ξ0k + ξ · f(t,x, k) is not constant on non-degenerate intervals, (11)

is a technical hypothesis. It ensures existence of strong interface traces u± on Σ , on which our uniqueness proof 
heavily relies. While this property can be circumvented in the space–time homogeneous setting of [11] and of many 
related references, in our case it is essential. Indeed, our approach to existence of admissible solutions also relies on 
existence of u±, but also on invariance of the considered class of equations under variables’ changes. Therefore, we 
have to work with (t, x)-dependent fluxes (and with source terms); in this general setting, assumption (11) is the only 
known condition that guarantees existence of traces (see [6] for more information on traces of entropy solutions to an 
inhomogeneous conservation law).

Assumption (11) is essential for our existence proof also because it ensures compactness of suitable vanishing 
viscosity approximations. It is standard, in this context, to assume in addition some conditions that ensure existence of 
invariant regions for (1); they are needed to obtain uniform L∞ bounds on sequences of approximate solutions (see, 
e.g., [11, Sect. 6]). Here, we take the simplest of such assumptions that is:

∃[a, b] ⊂R such that for a.e. t, f(t, ·, a) ≡ const, f(t, ·, b) ≡ const,

for a.e. (t,x), one has S(t, x, a) ≥ 0 and S(t, x, b) ≤ 0,

and the initial datum fulfills a ≤ u0(·) ≤ b. (12)

Assumption (12) ensures that u(t, x) ≡ a (respectively, u(t, x) ≡ b) is a sub-solution (resp., a super-solution) to the 
Cauchy problem for (1) with initial condition u0, thus (12) confines to the interval [a, b] the values of solutions (and 
also the values of suitably constructed approximate solutions) we will consider.

We are able to prove existence of solutions defined by (7), (8) not by surpassing the technical difficulty of passage 
to the limit in approximate entropy inequalities (5) but using an indirect and rather lengthy argument. This argument 
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exploits the idea of the existence proof in [10], developed in the simple case of a flat interface; see Remark 3 for 
an explanation of this choice. The study of the flat case is combined with appropriately chosen changes of variables 
and a principle of invariance of (7), (8) under such variables’ changes (see in particular Proposition 14). We are 
able to include changes of variables that are singular in a neighborhood of (d − 1)-dimensional singularities such as 
intersections of different d-dimensional interfaces. As a typical and illuminating example, we consider the case of 
interface Σ ⊂R

+ ×R consisting in two Lipschitz curves merging into one.

1.4. Outline of the paper

The paper is organized as follows. In Section 2 we treat the case that is fundamental for our techniques. More 
precisely, in this section we deal with multi-dimensional scalar conservation laws in heterogeneous setting, with a 
source term but with a single flat discontinuity interface Σ . Definition of solution admissibility is stated in Section 2.1
and further discussed in Section 2.5. Uniqueness of an admissible solution to the Cauchy problem is proved in Sec-
tion 2.2, then a different proof exploiting the machinery of [11,10] is sketched in Section 2.3. Existence is justified in 
Section 2.4, with an explicit construction of pu in terms of interface traces u± of the vanishing viscosity limit u.

Section 3 deals with the general geometry of jump discontinuity interfaces of the flux f in (1). In Section 3.1, we 
sketch the uniqueness argument, explain and motivate the existence strategy. In Section 3.2, we give main details 
on the idea of a global singular change of variables that permits to reduce the case of flux f with Lipschitz jump 
discontinuity manifolds of rather general form (possibly curved, intersecting, and closed) to the locally flat case with 
singularities that can be ignored. With minor modifications with respect to Section 2.4, existence in this locally flat 
case is justified. In Section 3.3, examples of changes of variables satisfying the general assumptions of Section 3.2 are 
presented. In addition, in Section 3.4 we briefly describe an alternative construction of solutions where regular local 
changes of variables are pieced together using a kind of partition of unity. In Remark 4, we underline the fact that in 
both approaches, a viscosity approximation adapted to interface geometry is essential for the existence proof.

For readers’ convenience, let us point out that Definition 1 with well-posedness results of Theorems 4, 10 summa-
rize our work for the model case with flat interface. For the general case of piecewise Lipschitz, jump discontinuous 
in (t, x) flux f, Theorem 15 (see also the conclusion of Section 3.4) provides a set of sufficient conditions under which 
the new interpretation (7), (8) of Eq. (1) leads to well-posedness of the Cauchy problem.

2. New admissibility conditions for multidimensional heterogeneous scalar conservation laws with a flat 
discontinuity

This is the fundamental section, indeed, all the other situations that we can resolve are reduced, at least locally, to 
the Cauchy problem investigated here.

2.1. Definition of solution and interface traces

Consider the problem

∂tu + div
(
F(t,x, u)H(x1) + F(t,x, u)H(−x1)

) = S(t,x, u), (13)

u|t=0 = u0, (14)

where F = (F1, . . . , Fd) : R+ ×R
d × [a, b] → R

d and G = (G1, . . . , Gd) : R+ ×R
d × [a, b] → R

d . This is (1) with 
the flux given by

f(t,x, ·) = F(t,x, ·)H(x1) + G(t,x, ·)H(−x1). (15)

We will assume that the flux and the source S satisfy the compatibility conditions at k = a and k = b, as required in 
assumption (12). We also assume that

the fluxes F,G are globally Lipschitz continuous in all variables,

the source S is globally Lipschitz continuous in u ∈ [a, b]. (16)
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Here and in the sequel of this paper, x̂1 = (x2, . . . , xd). The unique interface (jump discontinuity hypersurface) for the 
flux (15) is given by

Σ = {
(t0,0, x̂10)

∣∣ t0 ∈R
+, x̂10 ∈ R

d−1}.
Throughout this section, somewhat abusively we denote by (t0, x0) both the points of Σ with coordinates (t0, x̂10) and 
the points of R ×R

d with coordinates (t0, 0, x̂10).
As explained in the introduction, the main goal of this paper is to propose and justify, by proving well-posedness 

results, the following definition.

Definition 1. We say that a function u ∈ C(R+; L1
loc(R

d)) taking values in [a, b] is an entropy admissible solution to 
(13), (14) if u(0, ·) = u0 and there exists a function pu : Σ → [a, b] such that ∀k ∈ [a, b]

∂t |u − k| + divx
{
sgn(u − k)

(
H(x1)

(
F(t,x, u) − F(t,x, k)

) + H(−x1)
(
G(t,x, u) − G(t,x, k)

))}
− sgn(u − k)S(t,x, u) + sgn(u − k)

(
H(x1)divx F(t,x, k) + H(−x1)divx G(t,x, k)

)
− sgn

(
pu(t, x̂1) − k

)(
F1(t,x, k) − G1(t,x, k)

)
δ0(x1) ≤ 0 in D′(

R
+ ×R

d
)
. (17)

To shorten the calculations, in the sequel we will assume S ≡ 0; the general case is obtained with the help of the 
Gronwall inequality. The technique of the proofs of this section readily extends to a locally finite number of flat, 
possibly crossing discontinuity surfaces, but we will stick to the case of one interface Σ = {x1 = 0}. Let us stress that 
presence of a source term S and of multiple flat discontinuity hypersurfaces is required in order to reduce the case of 
curved, crossing or closed interfaces considered in Section 3 to the case of flat interfaces investigated in the present 
section.

Clearly, inequalities (17) (with S ≡ 0) in the one-dimensional situation imply the Karlsen–Risebro–Towers in-
equalities (4), therefore it is natural to expect that the uniqueness becomes easier to justify, while existence proof will 
present new and considerable difficulties. Indeed, in the present section we will show that

• an admissible solution in the sense of (17) is unique, with a rather standard proof involving a tedious case-by-case 
study;

• the standard vanishing viscosity method converges towards this solution, with a quite indirect proof based upon 
construction of viscosity profiles.

Both results are achieved by looking at the values of one-sided traces of the solutions on the interface, so we start by 
defining these traces and giving sufficient conditions for their existence.

Definition 2. We say that an integrable function W admits left trace W− and right trace W+ on Σ = {x1 = 0} if there 
exist functions W± : R+ ×R

d−1 �→ R such that for every ϕ ∈ Cc(R
d−1) there holds

lim
h→0+

∫
R+×Rd−1

∣∣W(t,±h, x̂1) − W±(t, x̂1)
∣∣ϕ(t, x̂1)dtdx̂1 = 0. (18)

While general L∞ functions do not admit such traces, local entropy solutions of conservation laws admit traces in 
the sense (18) under additional, not very restrictive technical assumptions. Under assumption (11) on the flux (15), the 
arguments from [38] provide existence of traces to local Kruzhkov entropy solutions to (13) in the non-homogeneous 
situation as well (see also [6]). Indeed, while the proof from [38] is given for case where the flux does not de-
pend on time or space variables (i.e. it is homogeneous), its arguments extend to the general, piecewise Lipschitz 
(t, x)-dependent setting with condition (11) (see in particular [6]). Let us mention in passing that in one dimensional 
homogeneous situation, the linear degeneracy of fluxes can also be treated via introduction of “singular mappings” 
that have traces in all cases (see [11]) or by considering traces of the flux and of entropy fluxes instead of the traces of 
the solution itself (see [34]).

Throughout this section, we will denote by u−(t0, x0), respectively u+(t0, x0), the left trace, respectively the right 
trace at (t0, x0) ∈ Σ of an admissible solution u to (13). We readily derive the Rankine–Hugoniot conditions for 
admissible solutions.
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Lemma 3. Let u be an admissible solution to (13), (14) in the which admits left and right strong traces at the interface 
u+ and u−, respectively. Then, for Hd -a.e. point (t0, x0) ∈ Σ , there holds

F1
(
t0,x0, u

+(t0,x0)
) = G1

(
t0,x0, u

−(t0,x0)
)
. (19)

Proof. Taking k = a then k = b in the entropy inequalities (17), one deduces the weak formulation of (13). Then it 
is enough to test this weak formulation of (13) on the function of the form η = ϕμh, ϕ ∈ C1

c (R+ ×R
d), where μh is 

given by

μh(x) =

⎧⎪⎪⎨⎪⎪⎩
1
h
(x1 + 2h), x1 ∈ [−2h,−h]

1, x ∈ [−h,h]
1
h
(2h − x1), x1 ∈ [h,2h]

0, |x1| > 2h,

(20)

which can be taken for test function by approximation. After letting h → 0, we reach to identity (19) in D′(Σ); since 
both sides of (19) are bounded functions, the identity also holds pointwise, Hd-a.e. on Σ . �
2.2. A uniqueness and L1 contraction proof

We prove the following result. Let B(0, R) = {x ∈R
d | |x| < R}.

Theorem 4. Assume that the flux (15) satisfies (11), (12), (16). Let u, v be two entropy admissible solutions to (13)
in the sense of Definition 1 with source S ≡ 0 and initial data u0 and v0, respectively. Then, for every R > 0, T > 0
there exists C > 0 such that

T∫
0

∫
B(0,R)

∣∣u(t, x) − v(t, x)
∣∣dxdt ≤ T

∫
B(0,R+CT )

∣∣u0(x) − v0(x)
∣∣dx. (21)

Remark 2. Notice that the order-preservation result (u0 ≥ v0 implies u ≥ v) can be proved in the same way. The 
first proof given below is a self-contained case-by-case study. The second proof that will be sketched in Section 2.3
establishes the equivalence between our new definition and the definition of GVV-entropy solution (see [11,10]) for 
which uniqueness follows readily from the general theory developed in [11] (see also [25]).

Proof. We start as in the proof of Lemma 3, but using the entropy inequalities with general k. Namely, insert into (17)
the function ψ = μhϕ, where ϕ ∈ C1

c (Rd+) while μh is given by (20). Letting h → 0, due to arbitrariness of ϕ, as in 
Lemma 3 we reach to the following relation for almost every (t0, x0) ∈ Σ

sgn
(
u+ − k

)(
F1

(
t0,x0, u

+) − F1(t0,x0, k)
) − sgn

(
u− − k

)(
G1

(
t0,x0, u

−) − G1(t0,x0, k)
)

+ sgn(pu − k)
(
F1(t0,x0, k) − G1(t0,x0, k)

) ≤ 0, (22)

where for the sake of brevity, we write

pu(t0,x0) = pu, u+(t0,x0) = u+, u−(t0,x0) = u−.

Notice that in the passage to the limit, we used continuity of the maps

(t,x, z) �→ sgn(z − k)
(
F(t,x, z) − F(t,x, k)

)
(t,x, z) �→ sgn(z − k)

(
G(t,x, z) − G(t,x, k)

)
. (23)

Remark that if

k ≥ max
{
u+, u−,p

}
or k ≤ min

{
u+, u−,p

}
then the left-hand side in (22) is equal to zero according to the Rankine–Hugoniot relation (19). Now, we make precise 
the information contained in the other possible cases where (22) holds true. To shorten the statements like (19), (22)
in the sequel we will use the notation

f (·) := F1(t0,x0, ·) and g(·) := G1(t0,x0, ·). (24)
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Case I: u+ ≤ u−.
• u+ ≤ u− ≤ pu, where two different cases occur:

u+ ≤ u− ≤ k ≤ pu, which implies f (k) ≤ g(k); (25)

u+ ≤ k ≤ u− ≤ pu, which implies f (k) ≤ f
(
u+)

. (26)

• u+ ≤ pu ≤ u−, where we also have two possible cases:

u+ ≤ pu ≤ k ≤ u−, which implies g(k) ≤ g
(
u−); (27)

u+ ≤ k ≤ pu ≤ u−, which implies f (k) ≤ f
(
u+)

. (28)

• p ≤ u+ ≤ u−, here we have the following alternative:

p ≤ u+ ≤ k ≤ u−, which implies f (k) ≤ f
(
u+); (29)

p ≤ k ≤ u+ ≤ u−, which implies g(k) ≤ f (k). (30)

Case II: u− ≤ u+.
• u− ≤ u+ ≤ pu, where we have one of the two situations:

u− ≤ u+ ≤ k ≤ pu, which implies f (k) ≤ g(k); (31)

u− ≤ k ≤ u+ ≤ pu, which implies g
(
u−) ≤ g(k). (32)

• u− ≤ pu ≤ u+, where the alternative is:

u− ≤ pu ≤ k ≤ u+, which implies f
(
u+) ≤ f (k); (33)

u− ≤ k ≤ pu ≤ u+, which implies g
(
u−) ≤ g(k). (34)

• pu ≤ u− ≤ u+, where we have the last two possibilities:

pu ≤ u− ≤ k ≤ u+, which implies f
(
u+) ≤ f (k); (35)

pu ≤ k ≤ u− ≤ u+, which implies g(k) ≤ f (k). (36)

Now, we are ready to pass to the main part of the uniqueness proof, which consists in derivation of the Kato 
inequality: for every ϕ ∈ C1

c (R+ ×R
d),∫

R+×Rd

{|u − v|ϕt + sgn(u − v)
((

F(t,x, u) − F(t,x, v)
)
H(x1)

+ (
G(t,x, u) − G(t,x, v)

)
H(−x1)

) · ∇ϕ
}
dxdt ≥ 0. (37)

The classical doubling of variables technique of [33] ensures that (37) holds for ϕ ∈ C1
c ((R+ ×R

d) \ Σ). Therefore, 
given an arbitrary ψ ∈ C1

c (R+ × R
d), inequality (37) is satisfied with the test function ϕ = (1 − μh)ψ , where μh is 

defined by (20). Letting h → 0, we get∫
R+×Rd

{|u − v|ψt + sgn(u − v)
((

F(t,x, u) − F(t,x, v)
)
H(x1) + (

G(t,x, u) − G(t,x, v)
)
H(−x1)

)∇ψ
}
dxdt

≥
∫
Σ

(− sgn
(
u+ − v+)(

F
(
t0,x0, u

+) − F
(
t0,x0, v

+))
+ sgn

(
u− − v−)(

G
(
t0,x0, u

−) − G
(
t0,x0, v

−)))
ψ(t0,x0) dx̂10dt0

=:
∫
Σ

�
(
u±, v±)

(t0,x0)ψ(t0,x0)dx̂10 dt0, x0 = (0, x̂10). (38)

Now, we prove that the integrand �(u±, v±) (that is a short-cut notation for �(t0, x0, u±(t0, x0), v±(t0, x0))) in the 
right-hand side of the latter expression is greater than or equal to zero, for almost every (t0, x0) = (t, 0, x̂10) ∈ Σ . 
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The proof is tedious and it is accomplished by considering numerous different possibilities depending on pointwise 
relations between the values u±, v± and pu, pv .

Concerning the relation between u± and v±, we see that, according to the Rankine–Hugoniot conditions, the 
quantity �(u±, v±) can be non-zero only when

u− > v− and u+ < v+ or u− < v− and u+ > v+ (39)

(the proof is the same as in Cases 1–5 in the proof of [31, Theorem 2.1]). On the other hand, the two cases from (39)
are symmetric since �(u±, v±) = �(v±, u±), and therefore their analysis is the same. Thus, it is enough to prove the 
inequality �(u±, v±) ≥ 0 whenever the first relation from (39) is satisfied. We proceed by considering the following 
possible sub-cases:

Case 1: u+ < v+ < v− < u−

Case 2: u+ < v− < v+ < u−

Case 3: v− < u+ < v+ < u−

Case 4: v− < u+ < u− < v+

Case 5: v− < u− < u+ < v+.

Notice that, according to the disposition of u± and v± and the Rankine–Hugoniot condition (19), one has

�
(
u±, v±) = − sgn

(
u+ − v+)(

f
(
u+) − f

(
v+)) + sgn

(
u− − v−)(

g
(
u−) − g

(
v−))

= f
(
u+) − f

(
v+) + g

(
u−) − g

(
v−) = 2

(
f

(
u+) − f

(
v+)) = 2

(
g
(
u−) − g

(
v−))

.

Thus, we aim to prove that in each case of the above list, there holds

f
(
u+) − f

(
v+) ≥ 0 or g

(
u−) − g

(
v−) ≥ 0. (40)

Since u, v ∈ L∞(R+ × R
d) are two admissible solutions to (13), we consider two functions pu and pv from 

Definition 1 representing the singular values on Σ corresponding to u and v, respectively.

Case 1 For almost every fixed (t0, x0) ∈ Σ , we have the following possibilities.
• u+ < v+ < v− < u− < pu:
The conclusion follows by taking k = v+ in (26).
• u+ < v+ ≤ pu ≤ u−:
The conclusion follows by taking k = v+ in (28).
• u+ ≤ pu ≤ v− < u−:
The conclusion follows by taking k = v− in (27).
• pu < u+ < v+ < v− < u−:
The conclusion follows by taking k = v− in (29).

Case 5 This case is symmetric with the previous one. We simply need to consider the position of pv instead of pu and 
to apply (31)–(36) instead of (25)–(30).

Case 2 We have the following possibilities.
• u+ < v− < v+ < u− < pu:
The conclusion follows by taking k = v+ in (26).
• u+ < v− < v+ ≤ pu ≤ u−:
The conclusion follows by taking k = v+ in (28).
• u+ < v− ≤ pu ≤ v+ < u−:
Here, we must involve the position of pv. First, recall that from (27) and (28)

g(k) ≤ g
(
u−)

, ∀k ∈ [
pu,u

−]
f (k) ≤ f

(
u+)

, ∀k ∈ [
u+,pu

]
. (41)
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Now, we have the following possibilities.

· u+ < v− ≤ pu ≤ v+ ≤ pv .
From (32) (applied on v) and (41), we have g(v−) ≤ g(pu) ≤ g(u−) which is (40).

· u+ < v− ≤ pu ≤ pv ≤ v+ < u−.
From (34) and (41), we have g(v−) ≤ g(pu) ≤ g(u−).

· u+ < v− ≤ pv ≤ pu ≤ v+ < u−.
From (33) and (41), we have f (v+) ≤ f (pu) ≤ f (u+).

· pv ≤ v− ≤ pu ≤ v+ < u−.
From (35) and (41), we have f (v+) ≤ f (pu) ≤ f (u+).

• u+ ≤ pu ≤ v− < v+ < u−:
The conclusion follows by taking k = v− in (27).
• pu < u+ < v+ < v− < u−:
The conclusion follows by taking k = v− in (29).

Case 4 This case is symmetric with the previous one. We simply need to consider the position of pv instead of pu and 
to apply (31)–(36) instead of (25)–(30) or vice versa, when needed.

Case 3 We have the following possibilities.
• v− < u+ < v+ < u− ≤ pu:
In this case, the first relation in (40) follows by taking k = v+ in (26).
• v− < u+ < v+ ≤ pu ≤ u−:
In this case, (40) follows from (28) by taking k = v+ there.
• v− < u+ ≤ pu ≤ v+ < u−:
We must involve the position of pv again. We have the following possibilities.

· v− < u+ ≤ pu ≤ v+ < u− ≤ pv .
From (32), on v, it follows g(v−) ≤ g(pu) while from (41), g(pu) ≤ g(u−). Thus, (40) follows.

· v− < u+ ≤ pu ≤ v+ ≤ pv ≤ u−.
The situation is the same as the previous one.

· v− < u+ ≤ pu ≤ pv ≤ v+ ≤ u−.
From (34), on v, and (41), it follows g(v−) ≤ g(pu) ≤ g(u−) which is (40).

· v− < u+ ≤ pv ≤ pu ≤ v+ ≤ u−.
From (33) and (41), it follows f (v+) ≤ f (pu) ≤ f (u+) which is (40).

· v− ≤ pv ≤ u+ ≤ pu ≤ v+ ≤ u−.
Relation (40) follows as in the previous case.

· pv ≤ v− < u+ ≤ pu ≤ v+ ≤ u−.
From (35) and (41), it follows f (v+) ≤ f (pu) ≤ f (u+).

• v− ≤ pu ≤ u+ < v+ < u−:
Relation (40) follows from (29).
• pu ≤ v− < u+ < v+ < u−:
The conclusion is the same as in the previous item.
From the above considerations, we conclude that in all possible cases, there holds �(u±, v±) ≥ 0. This means that 

the Kato inequality (37) holds. From here, the proof of the theorem follows in the standard way, see [33,11]. �
2.3. Uniqueness via reduction to GVV-entropy solutions

It is possible to reduce uniqueness proof to the setting of [11,10]. Indeed, in these papers uniqueness of so-called 
GVV -entropy solutions has been proved. Here, given an ordered couple of continuous functions (f, g) on [a, b], the 
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vanishing viscosity germ GVV is the subset of [a, b]2 given by: (u−, u+) ∈ GVV if g(u−) = f (u+) =: s and

either u− = u+,

or u− < u+ and there exists

uo ∈ [
u−, u+]

such that

{
g(z) ≥ s for all z ∈ [u−, uo],
f (z) ≥ s for all z ∈ [uo,u+],

or u− > u+ and there exists

uo ∈ [
u−, u+]

such that

{
g(z) ≤ s for all z ∈ [uo,u−],
f (z) ≤ s for all z ∈ [u+, uo]. (42)

This set is called the vanishing viscosity germ associated with the couple (f, g). We refer to Diehl in [25] for an 
equivalent description of the set GVV in terms of Oleinik-kind inequalities. Then, GVV -entropy solutions are defined as 
follows.

Definition 5. We say that the function u ∈ L∞(R+ ×R
d) represent GVV -entropy solution to (13), (14) if

• (17) holds when tested on functions ϕ ∈ C1
c ((R+ ×R

d) \ Σ);
• for a.e. (t0, x0) ∈ Σ , left u−(t0, x0) and right u+(t0, x0) traces of u on Σ are such that (u−(t0, x0), u+(t0, x0))

belongs to the vanishing viscosity germ associated with the couple (f, g) given by f : u �→ F1(t0, x0, u), g : u �→
G1(t0, x0, u).

Then it is not difficult to check that a solution is admissible in the sense of Definition 1 if and only if it is a 
GVV -entropy solution. Indeed, one can take for pu(t0, x0) in (17) the value uo(t0, x0) associated with the couple 
(u−, u+)(t0, x0) in definition (42) of GVV , and vice versa. The complete verification involves essentially the same case 
studies as in the direct uniqueness proof developed in the previous section, therefore we omit these details.

2.4. The existence proof

Recall that we assumed that the confinement property (12) holds, and that Eq. (13) is genuinely nonlinear in the 
sense (11). These properties imply that the family of vanishing viscosity approximations for (13), (14) (i.e., solutions 
of (44) below with initial condition (14)) is [a, b]-valued and that it is strongly precompact [40]; moreover, the corre-
sponding limit admits strong traces at the interface Σ (cf. [6]). Recall that we assume that F, G are given Lipschitz 
functions on R+ ×R

d × [a, b]. In addition, for the proof of existence we assume that

∂uF, ∂uG are Lipschitz continuous in (t, x), Hd -a.e. on Σ. (43)

This rather strong, but not restrictive in practice assumption simplifies the proof below; mere continuity and even 
a uniform in k Lebesgue-point property of ∂uF (·,·, k), ∂uG(·,·, k) at Hd -a.a. point of Σ would be enough for the 
technique of the proof to work.

Let u be constructed as an accumulation point, as ε → 0, of vanishing viscosity approximations (uε)ε . The essence 
of the existence proof consists in construction of a function pu on Σ in order to justify that u is an admissible solution 
of (13), (14) in the sense of Definition 1. We will need several auxiliary statements before the conclusion can be given. 
First, we have two lemmas that permit to extract information on u = limε→0 uε from existence of a suitable family 
of vanishing viscosity profiles (Rε)ε with prescribed traces of R := limε→0 Rε on Σ . We start by justifying a Kato 
inequality for uε and Rε , where Rε solves an auxiliary equation with frozen coefficients. Recall that we assumed 
S = 0.

Lemma 6. Assume that in a neighborhood V (t0, x0) of a point (t0, x0) ∈ Σ , the family of functions (uε)ε in 
L2(0, T ; H 1

loc(R
d)) satisfies equations

∂tuε + divx
(
H(x1)F (t,x, uε) + H(x1)G(t,x, uε)

) = ε�uε (44)

in the sense of distributions. Assume that the family of L2(0, T ; H 1
loc(R

d)) functions (Rε)ε takes values in [a, b], has 
its variation is uniformly bounded by a constant M , and Rε satisfies

∂tRε + divx
(
F(t0,x0,Rε)H(x1) + G(t0,x0,Rε)H(−x1)

) = ε�Rε (45)

in the same neighborhood V (t0, x0) of (t0, x0) in the sense of distributions.
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Then, the following Kato-type inequality is satisfied:

∂t |uε − Rε| + divx

(
sgn(uε − Rε)

((
F(t, x,uε) − F(t, x,Rε)

)
H(x1)

+ (
G(t, x,uε) − G(t, x,Rε)

)
H(−x1)

)) ≤ γε(t,x) + ε�|uε − Rε| (46)

in the sense of distributions in V (t0, x0), where (γε)ε is a family of Radon measures in V (t0, x0) verifying

γε(t,x) ≤ C
(|t − t0| + |x − x0|

)(
δ0(x1) + rε(t,x)

) + C. (47)

Here the uniform in ε constant C depends on the Lipschitz constant of F , G, ∂uF and ∂uG; while (rε)ε is a family of 
Radon measures with total variation in V (t0, x0) bounded by M , uniformly in ε.

Remark 3. The analogous result can be stated for a discontinuous flux f having a general Lipschitz jump manifold Σ . 
In this case, one has to assume that Rε verify in V (t0, x0) the viscous conservation law with flux coefficients f±
from (10) frozen at the point (t0, x0) on each side from the jump manifold Σ . Sometimes such profiles Rε can be 
constructed, which may involve a source term Sε in the right-hand side that accounts for the curvature of Σ , see [10]
and Section 3.1 for more information. But in general, the construction of Rε with some prescribed piecewise constant 
behavior, as ε → 0 (this is needed in Lemma 7 below) is very delicate when Σ is not flat; while one-dimensional 
profiles Rε with Sε ≡ 0 are readily constructed for a flat interface. Therefore, in this paper we will stick to the 
basic choice Rε = R(x1

ε
) for a flat boundary Σ = {(t, x) | x1 = 0}, at a price of rectification arguments developed in 

Section 3 for reduction of curved manifolds Σ to the flat case.

Proof. First, we subtract (45) from (44), in the resulting expression we add and subtract the measure

divx

(
F(t, x,Rε)H(x1) + G(t, x,Rε)H(−x1)

)
.

We get

∂t (uε − Rε) + divx

[(
F(t,x, uε) − F(t,x,Rε)

)
H(x1) − (

G(t,x, uε) − g(t,x,Rε)
)
H(−x1)

]
+ divx

(
F(t,x,Rε)H(x1) + G(t,x,Rε)H(−x1)

) − divx

(
F(t0,x0,Rε)H(x1) + G(t0,x0,Rε)H(−x1)

)
= ε�(uε − Rε).

This equality is understood in the distributional sense in V (t0, x0). Due to the L2(0, T ; H 1
loc(Ω)) regularity of uε, Rε , 

proceeding by approximation we can multiply this expression by ϕ sgnα(uε − Rε) where sgnα is a Lipschitz regular-
ization of sgn and ϕ is a localizing test function. Classical chain-rule and passage-to-the-limit in the regularization 
parameter α arguments apply (see, e.g., [36,20]). In this way, we obtain in D′(V (t0, x0)) the following Kato-like 
inequality:

∂t |uε − Rε| + divx

[
sgn(uε − Rε)

((
F(t,x, uε) − F(t,x,Rε)

)
H(x1) + (

G(t,x, uε) − G(t,x,Rε)
)
H(−x1)

)]
≤ |ωε| + ε�|uε − Rε|,

ωε := divx
[(

F(t,x,Rε) − F(t0,x0,Rε)
)
H(x1)

] + divx
[(

G(t,x,Rε) − G(t0,x0,Rε)
)
H(−x1)

]
.

If we denote γε = |ωε|, we obtain (46); it remains to estimate γε.
We get the bound (47) by computing ωε explicitly. First, we estimate the jump term coming from the differen-

tiation of H(±x1), keeping in mind that Rε is continuous across Σ due to its H 1
loc regularity in space. Because 

F(t, x, k) − F(t0, x0, k), G(t, x, k) − G(t0, x0, k) are Lipschitz continuous functions of (t, x, k) taking value zero at 
(t, x) = (t0, x0), the contribution of the jump term is upper bounded by C dist((t, x), (t0, x0))δ0(x1). Next, we focus 
on the terms coming from the differentiation of F(t, x, Rε) − F(t0, x0, Rε) (the contributions of the analogous term 
with G are estimated in the same way). We get the term divx F(t, x, r)|r=Rε(t,x) bounded by the Lipschitz constant of 
F and the term

∇Rε(t,x) · (∂uF (t,x, r) − ∂uF (t0,x0, r)
)∣∣

r=Rε(t,x)

estimated by rε = |∇Rε| times the modulus of continuity of ∂uF , ∂uG (that is how the distance between (t, x) and 
(t0, x0) enters the bound (47)). By assumption, ∂uF , ∂uG are Lipschitz continuous and the integral of rε is bounded 
by the constant M . This leads to (47) and concludes the proof of the lemma. �
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Next, we infer at the limit ε → 0 some information on traces of u = limε→0 uε that can be extracted from informa-
tion available for the traces of R = limε→0 Rε:

Lemma 7. Let V (t0, x0) be a neighborhood of (t0, x0) ∈ Σ . In addition to the assumptions and notations of the 
previous lemma, assume

• uε → u while Rε → R a.e. in V (t0, x0);
• u and R admit strong left and right traces u− and R−, and u+ and R+, respectively, defined on Σ ∩ V (t0, x0);
• and (t0, x0) is the Lebesgue point of u± and of R± on Σ .

With the notation f, g introduced in (24), writing u± for u±(t0, x0) and R± for R±(t0, x0), there holds

sgn
(
u+ − R+)(

f
(
u+) − f

(
R+)) − sgn

(
u− − R−)(

g
(
u−) − g

(
R−)) ≤ 0. (48)

Proof. We first let ε → 0 in (46), using the a.e. convergence and uniform boundedness of uε, Rε as well as (47). We 
find that in D′(V (t0, x0)), there holds

∂t |u − R| + divx

(
sgn(u − R)

((
f (t,x, u) − f (t,x,R)

)
H(x1) + (

g(t,x, u) − g(t,x,R)
)
H(−x1)

))
≤ C

(|t − t0| + |x − x0|
)(

δ0(x1) + r(t,x)
) + C. (49)

Here, r is a measure defined as a weak-* limit, along a subsequence, of the bounded sequence (rε)ε of Radon mea-
sures defined in Lemma 6. Now, proceeding by approximation with C∞

c functions we test (49) with ηh(t, x) =
ϕ(t, x̂1)μh(x1), where the function μh is defined by (20) and ϕ is regular, such that for h small enough, ηh is a 
Lipschitz function supported in V (t0, x0). By letting h → 0, using the existence of one-sided strong traces u±, R±
of u, R on Σ we get (with x = (0, x̂1))∫

Σ

ϕ(t,x)

(
sgn

(
u+(t,x) − R+(t,x)

)(
F

(
t,x, u+(t,x)

) − F
(
t,x,R+(t,x)

))
dtdx̂1

−
∫
Σ

ϕ(t,x) sgn
(
u−(t,x) − R−(t,x)

)(
G

(
t,x, u−(t,x)

) − G
(
t,x,R−(t,x)

)))
dtdx̂1

≤
∫
Σ

C
(|t − t0| + |x − x0|

)
(1 + M)ϕ(t,x)dtdx̂1.

Indeed, the contribution of the term C to the right-hand side vanishes as h → 0 and the contribution of the measure 
r(t, x) is estimated via the bound M on its total variation.

By taking for ϕ an approximation of the Dirac measure concentrated at (t0, x0) taking into account the fact that 
(t0, x0) is the Lebesgue point of the functions u± and R±, we get the desired result. �

To continue, we need two more lemmas. The first one provides a rough information on interface traces u± of u, in 
the spirit of [31]. The second one uses (48) of Lemma 7 to describe more precisely the couples of possible interface 
traces, ensuring existence of a suitable value pu to be used in (17).

Lemma 8. Assume that u is an L1
loc-limit (along a subsequence) of the family (uε)ε of solutions to (44), and it admits 

strong one-sided traces u± on Σ , as defined above. With the notation of Lemma 7, the Rankine–Hugoniot condition 
g(u−) = f (u+) holds, moreover, for all k ∈ [a, b] there holds

sgn
(
u+ − k

)(
f

(
u+) − f (k)

) − sgn
(
u− − k

)(
g
(
u−) − g(k)

) ≤ ∣∣f (k) − g(k)
∣∣. (50)

Proof. The passage to the limit in the weak formulation (44) ensures that u is a weak solution of (13), therefore the 
Rankine–Hugoniot condition (19) of Lemma 3 holds. Moreover, the following (rough) entropy inequality (which is 
precisely (3) written for the case of Eq. (13), see also (4)) holds for every k ∈ [a, b]:
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∂t |u − k| + divx
(
sgn(u − k)

((
F(t,x, u) − F(t,x, k)

)
H(x1) + (

G(t,x, u) − G(t,x, k)
)
H(−x1)

))
+ sgn(u − k)

(
H(x1)divx F(t,x, k) + H(−x1)divx G(t,x, k)

) ≤ ∣∣F1(t,x, k) − G1(t,x, k)
∣∣δ0(x1), (51)

in the sense of distributions. To prove (51), following [33] and [40] it is enough to multiply (44) by a regularization of 
sgn(uε − k) (cf. the proof of Lemma 6) with the rough estimation of the measure term charging Σ ; then to let ε → 0
along the subsequence such that uε strongly converges toward the function u. Then, taking in (51) test functions 
μh(x)ξ(t, x) with ξ ∈ D(Σ) and μh given by (20), letting h → 0 one finds that (50) holds in D′(Σ). The left-hand 
side of (50) being an L∞(Σ) function, (50) also holds pointwise, a.e. on Σ . �
Lemma 9. Assume that u is an L1

loc-limit (along a subsequence) of the family (uε)ε of solutions to (44), and it admits 
strong one-sided traces u± on Σ , as defined above. Given Hd -a.e. point (t0, x0) ∈ Σ , let f, g and u± be defined as in 
Lemma 7.

Then there exists a measurable function pu : Σ → [a, b] such that for Hd -a.e. (t0, x0) ∈ Σ , the value pu =
pu(t0, x0) satisfies

sgn
(
u+ − k

)(
f

(
u+) − f (k)

) − sgn
(
u− − k

)(
g
(
u−) − g(k)

) + sgn(pu − k)
(
f (k) − g(k)

) ≤ 0, (52)

and pu lies in the (closed) interval with the endpoints u+ and u−.

Proof. Fix (t0, x0) ∈ Σ , a Lebesgue point of traces u± defined on Σ . We will define pointwise pu(t0, x0); observe that 
the construction given below is based on a case study of inequalities for functions f = F(t0, x0, ·), g = G(t0, x0, ·)
that depend continuously on (t0, x0); therefore it provides a measurable function pu defined on Σ . To simplify the 
analysis, assume that u+ ≥ u−; the other case is symmetric. Remark that it is enough to prove (52) for k ∈ [u−, u+]
since for other values of k the result is evident. Indeed, if k /∈ (u−, u+) then with any choice of pu ∈ [u−, u+], 
inequality (52) follows from the Rankine–Hugoniot relation f (u+) = g(u−) of Lemma 8.

We have the following cases:
• If the crossing condition (6) is satisfied for the couple of functions (f, g) on the interval [u−, u+], then we define 

pu(t0, x0) (denoted pu in the sequel) by

pu :=

⎧⎪⎨⎪⎩
u+, f (k) ≥ g(k) ∀k ∈ [u−, u+]
u−, f (k) ≤ g(k) ∀k ∈ [u−, u+]
uo, if uo ∈ (u−, u+) is a crossing point of f and g.

Indeed, due to the crossing condition (6) the above choice yields

sgn(pu − k)
(
f (k) − g(k)

) = −∣∣f (k) − g(k)
∣∣,

which reduces (52) to the already proved property (50).
• Assume next that the couple of functions (f, g) does not satisfy the crossing condition (6), but there exists some 

intersection point (denoted again uo) such that

g
(
u−) ≤ g(k), k ∈ [

u−, uo
]
,

f
(
u+) ≤ f (k), k ∈ [

uo,u+]
.

Then we can still proceed as above, taking pu = uo.
• Now, if none of the above possibilities holds, then there exists a crossing point uo ∈ (u−, u+) of f and g such 

that there exist k− ∈ (u−, uo), k+ ∈ (uo, u+) satisfying

g
(
u−)

> g(k−) and f
(
u+)

> f (k+). (53)

We will prove that this case is impossible, arguing by contradiction. First, notice that it holds:

g
(
u−) = f

(
u+) ≤ f

(
uo

) = g
(
uo

)
. (54)

This relation is obtained by putting k = uo in (50) and using the Rankine–Hugoniot relation of Lemma 8. From (54)
and the assumptions (53), we see that we can choose values k− ∈ [k−, uo) and k+ ∈ (uo, k+] such that
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g
(
k−) = f

(
k+)

< f
(
u+) = g

(
u−) ≤ g

(
uo

) = f
(
uo

); (55)

moreover, we will take

k− = max
{
k ∈ (

u−, uo
) : g(k) ≤ max

{
g(k−), f (k+)

}}
,

k+ = min
{
k ∈ (

uo,u+) : f (k) ≤ max
{
g(k−), f (k+)

}}
.

Now, using the procedure from the proof of [11, Proposition 5.1], we argue that there exists a stationary solution 
to (45) Rε under the form of one-dimensional profile R(x1

ε
) satisfying

lim
z→−∞R(z) = k−, lim

z→+∞R(z) = k+, R(0) = uo. (56)

Indeed, R is given by

R(z) =
{

Rl(z), z ≤ 0
Rr(z), z ≥ 0,

where Rl and Rr are solutions to the ODEs(
Rl

)′ = g
(
k−) − g

(
Rl

)
,

(
Rr

)′ = f
(
Rr

) − f
(
k+)

respectively, with the initial data Rl(0) =uo =Rr(0). Remark that this does ensure Rl(−∞) = k− and Rr(+∞) = k+. 
Indeed, according to the choice of k− and k+, there holds g(Rl) −g(k−) > 0, Rl ∈ (k−, uo], and f (k+) −f (Rr) < 0, 
Rr ∈ [uo, k+). This actually means that Rl will decrease from 0 to −∞ until it asymptotically reaches the stationary 
point k− of the corresponding ODE; while Rr will decrease from 0 to ∞ tending to k+.

This construction provides R ∈ C(R) ∩ C1(R \ {0}) and thus the corresponding rescaled profile Rε belongs to 
L2

loc(R
+; H 1

loc(R
d)) and it is readily checked that it represents a solution to (45) in the sense of distributions. Remark 

that such (Rε)ε is a family of functions of uniformly bounded variation; in view of the explicit formula (56), Rε

converges to R(x1) = k− for x1 < 0, and to R(x1) = k+ for x1 > 0. Therefore the family of functions (Rε)ε satisfies 
conditions of Lemmas 6, 7 with Sε = 0, the corresponding traces R± of R = limε→0 Rε being equal to k±. The family 
(uε)ε satisfies as well the assumptions of these lemmas, therefore we conclude from (48) (recalling the meaning of 
notation for f, g, u±, R±) that the following relation holds

sgn
(
u+ − k+)(

f
(
u+) − f

(
k+)) − sgn

(
u− − k−)(

g
(
u−) − g

(
k−)) ≤ 0.

Since u− ≤ k− ≤ k+ ≤ u+, this reduces to

f
(
u+) + g

(
u−) ≤ f

(
k+) + g

(
k−)

,

which contradicts (55) implying that case (53) is not possible. This concludes the proof. �
Now, it is easy to prove existence of the entropy admissible solution to (13), (14).

Theorem 10. Let (11), (12), (16) and (43) be fulfilled. Then, there exists a solution u to (13), (14) in the sense of 
Definition 1.

Proof. Existence of weak solutions to (44) in L2
loc(R

+; H 1
loc(R

d)) (as required in Lemma 6) with a given initial datum 
u0 can justified with rather classical arguments. Let us give a very brief sketch of stages of one among many possible 
construction arguments.

• One can start with L2(Rd) data u0 and construct solutions uε in the energy space L2(0, T ; H 1(Rd)) with Galerkin 
approximations, see, e.g., [36] and references therein, see also [11, Sect. 6.2].

• Further, assumption (12) along with the comparison principle for uε (that can be proved as in [36,20,44,15]) 
ensures the confinement property a ≤ uε ≤ b, which yields the uniform L∞ bound on (uε)ε .

• Using, by approximation, the test function exp(−|x|)uε , one finds estimates on uε in the space L2(0, T ;
H 1(Rd, w)) for all T > 0, where H 1(Rd, w) is the weighted H 1 space with the norm defined by ‖u‖2

1,w :=∫
d exp(−|x|)(|u|2 + |∇u|2); as soon as u0 remains [a, b]-valued, these estimates do not depend on ‖u0‖L2(Rd ).
R
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• With a.e. approximation by [a, b]-valued L2(Rd) functions, using space and time compactness that follows from 
the above uniform estimates and the variational formulation of (44) in (L2(0, T ; H 1(Rd, w)))∗ (cf., e.g., [36]), one 
can extend the solution construction to any [a, b]-valued u0 and get solutions uε ∈ L2(0, T ; H 1(Rd , w)). Clearly, 
these solutions lie in L2

loc(R
+; H 1

loc(R
d)).

Then, (11) guarantees existence of an accumulation point u of (uε)ε , as ε → 0, thanks to strong precompactness 
theorems ([40], see also [5]).

By construction, the result of the previous lemma can be applied to u. It is not difficult to check that the function 
pu defined in the previous lemma and the strong limit u of (uε)ε the vanishing viscosity approximations of (44) with 
fixed initial datum u0 satisfy conditions of Definition 1.

Indeed, given k ∈ [a, b], denote by Lk the element of the dual of C1
c (R+ ×R

d) defined by the left-hand side of (17). 
For any nonnegative compactly supported function ϕ ∈ C1(R+ ×R

d), using μh defined by (20) we have:

Lk(t, x)(ϕ) = Lk

(
(1 − μh)ϕ

) + Lk(μhϕ). (57)

The first summand in the right-hand side of (57) is less than or equal to zero due to (51), since the truncation function 
(1 − μh) is supported on a subset of R+ × R

d where the left-hand sides of (51) and (17) coincide. Further, due 
to existence of traces u± and to the continuity of the maps (23) the limit as h → 0 of the second summand in the 
right-hand side of (57) can be written as∫

Σ

�u(t0,x0)ϕ(t0,x0) dt0dx̂10

which is non-positive, since the quantity

�u(t0,x0) := sgn
(
u+(t0,x0) − k

)(
f

(
u+(t0,x0)

) − f (k)
) − sgn

(
u−(t0,x0) − k

)(
g
(
u−(t0,x0)

) − g(k)
)

+ sgn
(
pu(t0,x0) − k

)(
f (k) − g(k)

)
is non-positive due to inequality (48) proved in Lemma 9. Thus, as h → 0 we find that Lk is a non-positive distribution, 
which proves (17).

It remains to prove continuity of the map t0 �→ u(t0, ·) with values in L1
loc(R

d). First, as a consequence of entropy 
inequalities away from Σ and of assumption (9), there exist strong L1

loc one-sided traces u(t0+, ·) and u(t0−, ·)
at hypersurfaces {(t, x) | t = t0}. Indeed, existence of a right trace u(t0+, ·) for every t0 ≥ 0 is justified in [37] in 
the homogeneous case and in [6] in the (t, x)-dependent case. Existence of the left trace u(t0−, ·) for every t0 > 0
follows from the rescaling method used in [37,38,6] and the isentropicity (which implies reversibility) of the solution 
obtained as the limit of the rescaled sequence. Second, the weak formulation of the evolution equation (13) satisfied 
by u readily implies the equality u(t0−, ·) = u(t0+, ·) for all t0. Indeed, we simply multiply (13) by ϕ ∈ C1

c (R), pass 
to the weak formulation with respect to x ∈ R

d , integrate over (t0 − ε, t0 + ε) and let ε → 0. Due to arbitrariness 
of ϕ, the conclusion follows. Moreover, the weak formulation of (13), (14) entails that u(0+, ·) = u0, i.e., the initial 
condition is satisfied. �
2.5. Remark to the definition of admissibility

Let us underline that a shortcoming of the admissibility concept of Definition 1 is that the singular values given 
by a function pu : R+ → [a, b] are not explicitly determined on the set Σ , see Remark 1(iv). To weaken this inde-
termination, let us show that the function pu on Σ can be chosen so that it takes values only from the set of the 
crossing points of the fluxes f, g defined in (24) (observe that a, b always belong to the set of crossing points, due to 
assumption (12)). Indeed, we have

Proposition 11. Assume that the function u : R+ × R
d → [a, b] represents an entropy admissible solution to (13), 

i.e., (17) holds with some Hd -measurable function pu on Σ . Then there exists another Hd -measurable function 
pu : Σ → [a, b] such that for Hd -a.e. point (t0, x0) ∈ Σ , one has

pu(t0,x0) ∈ C(t0,x0) := {
k ∈ [a, b] : F1(t0,x0, k) = G1(t0,x0, k)

}
,

such that (17) is still satisfied with this new function pu.
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Proof. Notice that it is enough to prove that there exists required function pu such that (52) holds for the right and 
left traces u+ and u−, respectively, of the function u. Since u− and u+ must satisfy (19), we have the following 
possible situations (Hd -a.e. point of (t0, x0) ∈ Σ being fixed in the arguments that follow), classified as in the case 
study (25)–(36):

Case 1: u+ ≤ u−.
• u+ ≤ u− ≤ pu.
From (25) and (26) we see that instead of pu we can take uo ∈ C such that it is the minimal element from C

satisfying uo ≥ pu.
• u+ ≤ pu ≤ u−.
From (27) and (28) and the Rankine–Hugoniot conditions, we see that there exists uo ∈ C such that u+ ≤ uo ≤ u−. 

Such uo can be taken instead of the given pu.
• pu ≤ u+ ≤ u−.
From (29) and (30) we see that instead of pu we can take uo ∈ C such that it is the maximal element from C

satisfying uo ≤ pu.

Case 2: u− ≤ u+.
• u− ≤ u+ ≤ pu.
From (31) and (32) we see that instead of pu we can take uo ∈ C such that it is the minimal element from C

satisfying uo ≥ pu.
• u− ≤ pu ≤ u+.
From (33) and (34) and the Rankine–Hugoniot conditions, we see that there exists uo ∈ C such that u+ ≤ uo ≤ u−. 

Such uo can be taken instead of the given pu.
• pu ≤ u− ≤ u+.
From (35) and (36) we see that instead of pu we can take uo ∈ C such that it is the maximal element from C

satisfying uo ≤ pu.

This concludes the proof, the value pu being re-defined in each case by pu := uo ∈ C. Observe that the measurabil-
ity of the so re-defined pu follows from the continuity of F1, G1 as functions of (t0, x0) ∈ Σ and from measurability 
of the traces u± and of the original function pu defined on Σ . �
3. Piecewise regular discontinuous-flux Cauchy problems

Clearly, the flat case of the previous section is a model case. More realistic problems of the kind (1) can present 
flux discontinuities along multiple curved, possibly intersecting hypersurfaces: one example is the case of flows in 
a homogeneous porous medium with inclusions of another homogeneous porous medium. In this section, we justify 
well-posedness of (1), (14) in the case where the discontinuity interfaces Σ are not necessarily flat, with two different 
approaches to construction of solutions under ad hoc technical restrictions on the singularities of the flux f.

3.1. Guidelines for extension of well-posedness results

First, let us explain why the uniqueness proof is generalized in a straightforward way, and what are the difficulties 
of the existence proof and the ideas to overcome these difficulties.

We start with state-of-the-art observations. Approaches to uniqueness and existence in the case of multiple, non-flat 
and possibly crossing jump manifolds Σ of the flux f have already been developed (in the setting of the Karlsen–
Risebro–Towers definition, [31]; and in the setting of GVV -entropy solutions, [10]). In a part, they can be exploited 
with our new definition (7), (8).

• Both the definition of admissible solution and the uniqueness proof of the flat case are easily extended to the 
setting of piecewise Lipschitz regular, genuinely nonlinear fluxes with a locally finite number of jump discontinuities 
along Lipschitz hypersurfaces (see [10], see also [31]).

For instance, following the approach of Section 2.3, one readily extends the definitions to the case of a curved 
interface Σ : it is enough to replace the couple (f, g) = (F1, G1) in Definition 5 by the couple of normal flux functions 
with coefficients frozen at (t0, x0):
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f : u �→ F(t0,x0, u) · ν(t0,x0)
(
flux in the direction of ν(t0,x0)

)
,

g : u �→ G(t0,x0, u) · ν(t0,x0) (flux in the opposite direction),

where ν(t0, x0) is some fixed unit normal vector to Σ at the point x0, and traces u±(t0, x0) are taken according to 
this fixed orientation of ν(t0, x0). As in the flat case, being solution in the sense of Definition 5 is equivalent to being 
admissible solution in the sense of (7), (8). Indeed, the arguments that ensure constraints on the couple (u−, u+)(t0, x0)

starting from (7), (8) reduce to a pointwise discussion.
For the uniqueness proof, first observe that the analogue of the Kato inequality (38) is easily obtained for a locally 

finite union Σ of Lipschitz interfaces. Then the constraints on (u−, u+)(t0, x0) derived from (7) (constraints that 
amount to the fact that (u−, u+)(t0, x0) belongs to the vanishing viscosity germ associated with the point (t0, x0)

of Σ ) give the desired sign to the quantity �(u±, v±)(t0, x0) in the analogue of inequality (38). This results in the 
L1-contraction principle (with an exponential growth term, if a non-zero, Lipschitz continuous in u source term S is 
present in Eq. (1)) and to uniqueness of an admissible solution in the sense (7), (8).

• At the same time, in order to justify the existence of solutions in the sense (7), (8), unlike for the Karlsen–
Risebro–Towers definition ([31]) we cannot hope for a simple existence proof based on straightforward passage to 
the limit from approximate solutions: nothing seems to ensure strong compactness of singular values (puε(·))ε on Σ . 
An indirect existence proof analogous to that of the flat case in Section 2.4 is known ([10], see also Remark 3) under 
the additional local regularity of jump manifolds: for instance, piecewise convexity or concavity of these manifolds is 
enough. The construction was proposed in [10] where it was presented under the simplifying assumption that the flux 
is piecewise constant in (t, x) and the jump manifold is given by the graph of a t -independent C2 function: x1 = φ(x̂1). 
It is straightforward to extend this method to (t, x)-dependent genuinely nonlinear fluxes with jump manifolds given 
as portions Σi of graphs of the form x1 = φi(t, x̂1) (up to relabeling the axes), where functions φi are Lipschitz con-
tinuous in (t, x) and such that, additionally, �x̂1φi is a Radon measure on R+ × R

d−1. We refer in particular to [10, 
estimate (28)] for the details of the computations.

• To sum up, uniqueness of solutions in the sense (7), (8) for (1), (12) can be proved for the case of piecewise 
Lipschitz f with locally finite number of Lipschitz components in the jump manifolds Σ . However, existence in this 
sense requires unnatural assumptions, if we follow the method of [10]; while direct existence arguments used, e.g., in 
[31], are not applicable.

In this paper, we want to drop the unnatural restriction on �x̂1φi in the existence proof based on the approach of 
[10] and Section 2.4. The method mainly consists in comparison of the solution with limits of appropriate viscosity 
profiles. Yet we do not attempt to construct approximate viscosity profiles (cf. Remark 3) satisfying the original 
equation up to a measure source term not charging the interface (such construction is successful for the flat case or 
under the above mentioned restrictions on �x̂1φi , but it is very delicate in the general case). Instead, we rely upon the 
invariance of the notion of solution – in the sense (7), (8) – under Lipschitz changes of coordinates in Eq. (1). This 
invariance permits us to exploit the possibility to rectify Σ , at least locally, with a change of variables. Actually we 
propose two methods for constructing solutions: the one in Section 3.2 (given with the essential details and examples) 
and the one of Section 3.4 (this method is more general but the details of construction are quite tedious, therefore they 
are only sketched).

As a matter of fact, in both cases the construction of solutions via a change of variables amounts to a specific 
“adapted” viscosity approximation of the original equation (1). Such approximation is considerably more involved 
than the isotropic homogeneous viscosity ε�uε used in most of the previous works on the subject (see, e.g., in [31,
40,25,10]). The use of an involved viscosity regularization operator need not be seen as a drawback of the method: 
indeed, we put forward the following remark.

Remark 4. As observed in Remark 1(ii), an important feature of the vanishing viscosity approximation is to ensure 
the global continuity of the approximate solutions (this contrasts with the properties of the vanishing capillarity reg-
ularizations, see, e.g., [29,8]). Regularizing the strongly heterogeneous first-order model (1) with introduction of the 
isotropic homogeneous diffusion ε�u may look un-realistic. Heuristically, along with this basic vanishing hetero-
geneous diffusion operator one should consider, for the existence proof, the possibility to approximate solutions via 
more involved heterogeneous diffusion operators that still ensure global continuity of uε.
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Fig. 1. Change of variables transforming square into circle.

3.2. Existence for almost rectifiable sets of singularities

The proof developed here relies on three ingredients. First, we have already known how to construct solutions 
(where the main difficulty is to construct pu) for the case of a flat portion of the interface; moreover, the arguments 
put forward in Lemmas 6–9 are local arguments that work in a neighborhood of Hd -a.e. interface point, provided the 
corresponding portion of the interface is flat. Second, we point out the invariance of the notion of admissible solution 
with respect to a family of (possibly singular) changes of variables. Third, it is possible to deal with interface-rectifying 
changes of variables involving lower-dimensional singularities.

The combination of the two latter ideas leads to the definition of almost rectifiability for jump manifolds, illustrated 
by several examples that show that this notion is in fact rather general.

Definition 12. A union of hypersurfaces Σ in R+ ×R
d is called almost rectifiable if there exists a direction �e1 ∈ R

d

(that, up to a rotation of coordinate axes, can be assumed to be the direction of the first canonical basis vector, i.e., 
∂�e1 = ∂x1 ) and a closed set γ ⊂ Σ consisting of a locally finite number of disjoint Lipschitz manifolds of codimension 
in Rd+1 greater than one, satisfying the following (Σ \ γ )-rectification property:

There exists a continuous surjective map

Φ :R+ ×R
d →R

+ ×R
d, Φ : (t̃ , x̃1,˜̂x1) �→ (t, x1, x̂1)

that only acts in the direction �e1, i.e., it has the form

t = t̃ , x̂1 = ˜̂x1, x1 = φ(t̃, x̃) (58)

with some scalar function φ on R+ ×R
d , and such that Φ fulfills the following properties:

(a) There exists a closed subset Γ of R+ ×R
d such that:

1. One has Φ(Γ ) = γ , moreover, the restriction of Φ to Ω̃ := (R+ ×R
d) \ Γ is injective;

2. the map Φ is Locally Lipschitz continuous on Ω̃ and the inverse of Φ , defined on Ω := (R+ × R
d) \ γ , is 

locally Lipschitz continuous as well;
3. in addition, the second-order derivatives ∂2

t̃ x̃1
φ and ∂2

x̃j x̃1
φ, 2 ≤ j ≤ d , are locally bounded on Ω̃;

(b) There exists a set Σ̃ ⊂ Ω̃ consisting of flat manifolds orthogonal to the direction x̃1 such that Φ(Σ̃) = Σ \ γ .

Heuristically, the almost-rectifiability property of Σ means that, up to a union of lower-dimensional sub-manifolds 
γ of the union Σ of hypersurfaces of Rd+1, a change of variables rectifies Σ . To do this, one may need Φ−1 to be 
multivalued. For instance, a circle can be transformed into a square by rectifying the two open half-circles, but then 
the two poles of the circle have to be stretched into segments (see Fig. 1).

Remark 5. To construct such transformation in practice, having chosen coordinates in such a way that �e1 is transversal 
to Σ in a.e. point with respect to the d-dimensional Hausdorff measure on Σ , the map φ

t, ˜̂x1
(·) := φ(t, ·, ˜̂x1) from R

to R can taken to be a non-strictly increasing, piecewise polynomial function; moreover, whenever Σ is a union of 
Lipschitz hypersurfaces, one can ask for a Lipschitz dependence of the function φ

t, ˜̂x1
(·) on the parameters t, ˜̂x1 (such 

construction leads to the desired bounds on the mixed second derivatives ∂2 φ and ∂2 φ).

t̃x̃1 x̃j x̃1
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The simplest explicit example is the case where Σ := {(t, x1, x̂1) | x1 = φ0(t, x̂1)} in which case it is enough to set 
x1 = x̃1 +φ0(t, ̃x̂1). The properties (a)(1)–(3) and (b) are readily checked in this case. Further examples are presented 
in Section 3.3.

In the sequel, whenever convenient we will denote (x̃1, ˜̂x1) by y and we will not distinguish t̃ and t since they are 
equal; to summarize the definition, we can write

(t,x) = Φ(t̃, x̃1, ˜̂x1) = Φ(t,y),

Φ is a locally bi-Lipschitz bijection from Ω̃ = (
R

+ ×R
d
) \ Γ to Ω = (

R
+ ×R

d
) \ γ

such that Φ−1 rectifies Σ \ γ,

with specific mixed second derivatives of Φ that are locally bounded on Ω̃ .
In the sequel, we assume that the flux f in (1) has its jump manifolds contained in an almost rectifiable set Σ and 

it is Lipschitz continuous in all variables on each connected component of the complementary of Σ . Notice that one 
can drop the assumption γ ⊂ Σ whenever this is convenient for construction of the change of variables Φ: indeed, 
one can always extend Σ by including “ghost” interfaces across which the flux (t, x) �→ f(t, x, k) has jump zero, for 
all k.

Using the change of variables Φ described in Definition 12, we transform Eq. (1) set up in R+ × R
d into an 

analogous equation set up in the domain Ω̃ = Φ−1(Ω), where Ω is the set (R+ × R
d) \ γ which complementary γ

is of codimension 2 or more. Indeed, observe that considering the first-order equation (1) (in a weak or in an entropy 
sense) in the whole space R+ × R

d is equivalent to considering it (in the same sense) restricted to Ω : cf. the proof 
of Proposition 14 below. Then, by an explicit calculation we see that under the change of variables (t, x) = Φ(t, y)

Eq. (1) becomes the equation on Ω̃ under the analogous conservative form

∂t ũ + divy f̃(t,y, ũ) = S̃(t,y, ũ). (59)

Here

f̃(t,y, k) =D(t,y)f
(
Φ(t,y), k

) + k∂tφ(t,y)�e1

(D(t, ·) being the d × d Jacobian matrix of the change of variables x into y given by x = Φ(t, y)) and S̃ is computed 
using f, S and second-order derivatives of φ that appear in assumption (a)(3) of Definition 12. For the Ansatz (58)
and under the assumption (a) of Definition 12, the scalar function S̃(t, y, k) defined on Ω̃ × [a, b] is measurable with 
respect to (t, y) and locally Lipschitz continuous in k. Further, f̃= f̃(t, y, k) is a piecewise continuous vector-function 
defined on Ω̃ × [a, b] which is discontinuous with respect to (t, y) along the union of flat manifolds Σ̃ contained 
in Ω̃ (see (b) of Definition 12), and which is Lipschitz with respect to (t, y, k), locally in (t, y) ∈ Ω̃ and globally 
in k ∈ [a, b]. Similarly, if one imposes the (t, x)-Lipschitz property (43) of the derivatives ∂uf in each component of 
(R+ × R

d) \ Σ , this property persists for the flux f̃ in variables (t, y) in each component of Ω̃ \ Σ̃ , locally in Ω̃ . 
This means in particular that the Lipschitz constant of ∂uf̃ may blow up as (t, y) approaches Γ ; this, however, will not 
harm the analysis as seen from the proof of Proposition 14.

Furthermore, the genuine nonlinearity property (11) is inherited by the flux f̃ on Ω̃ × [a, b] provided it is satisfied 
by f on (R+ ×R

d) × [a, b]. Finally, property (12) for f, S ensures that for Eq. (59),

the constant a (resp., b) is a weak sub- (resp., super-) solution. (60)

Because Eq. (59) has to be considered only in Ω̃ = (R+ ×R
d) \Γ (recall that Ω ∩{(t, x) | t > 0} is an open subset 

of R+ × R
d which can have holes or cracks, see Fig. 1 and examples below), i.e., with test functions that belong to 

D(Ω̃), we propose the following definition of which Definition 1 is a particular case corresponding to Γ = ∅ and 
Σ = {(t, x) | x1 = 0}.

Definition 13. We say that a function ũ taking values in [a, b] is an admissible solution to (59) with initial datum ũ0
if ũ it satisfies the analogue of (7) within Ω̃ :

∀k ∈R |ũ − k|t + divy
(
sgn(ũ − k)

(
f̃(t,y, ũ) − f̃(t,y, k)

)) ≤ − sgn(pũ − k)divy f(t,y, k) in D′(Ω̃) (61)
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with ũ(0, ·) = ũ0, where

pu is some Borel function that coincides with ũ a.e. on Ω̃. (62)

As in Definition 1, the initial datum entering the entropy inequalities can be included in C(R+; L1
loc(R

d)) sense. 
The following easy observation follows:

Proposition 14. Assume that the flux f in (1) is piecewise Lipschitz, discontinuous in (t, x) across a set Σ almost 
rectifiable in the sense of Definition 12.

Given a measurable function u0 on Rd taking values in [a, b], consider initial condition ũ0 defined on Ω̃0 =
∂Ω̃ ∩ {(t, y) | t = 0} by ũ0(y) := u0(x) where y is such that x = Φ(0, y). Let f̃, S̃ be defined so that (1) transforms into 
(59) under the change of variables Φ .

A function ũ on Ω̃ is an admissible solution of (59) with initial datum ũ0 in the sense of Definition 13 if and only 
if the function u on R+ ×R

d such that u(t, x) = ũ(t, y) with x = Φ(t, y) is an admissible solution of (1) in the sense 
(7), (8) with the initial datum u0.

Proof. Since u, f(·, u(·)) and S(·, u(·)) belong to L∞(R+ × R
d) and ũ, f̃(·, ũ(·)) and S̃(·, ũ(·)) belong at least to 

L∞
loc(Ω̃), the spaces D(Ω) and D(Ω̃) for test functions can be replaced by the spaces W 1,1

c of locally Lipschitz, 
compactly supported in Ω and in Ω̃ , respectively, test functions. The latter spaces are transported the one onto the 
other under the change of variables Φ that maps Ω̃ onto Ω .

Therefore, first, the claim of the proposition holds true when the inequalities (7), (8) for u are restricted to D′(Ω)

test functions. Indeed, the change of variables transforms one inequality into the other, with the transformed test 
function. In particular, under the change Φ the values pu on Σ \ γ featuring in inequalities (7), (8) become the values 
of pũ on Σ̃ in inequalities (61), (62) and vice versa.

Second, it is easily seen that the entropy formulations (7), (8) on Ω = (R+ ×R
d) \ γ and on R+ ×R

d are in fact 
equivalent. Indeed, sets in Rd+1 of codimension at least 2 have zero Hd Hausdorff measure and zero W 1,1 capacity. 
In particular, the measure in the right-hand side of (7) does not charge γ ; the space W 1,1

c ((R+ ×R
d) \ γ ) of Lipschitz 

continuous compactly supported functions, extended by 0 on γ , is dense in W 1,1
c (R+ × R

d); and passage to the 
limit in (7) with a sequence of W 1,1

c ((R+ ×R
d) \ γ ) test functions converging in W 1,1(R+ ×R

d) leads to the same 
inequality with the limit test function. Therefore, considering W 1,1

c (Ω) test functions and considering D(R+ × R
d)

test functions in the context of integral inequalities (7) is equivalent.
Combining the first and the second observation, we justify our claim. �
Due to Proposition 14, existence of admissible solutions for (1) with almost rectifiable jump manifolds Σ is reduced 

to existence of solutions, in the sense of Definition 13, to analogous conservation law (59) set up in Ω̃ . The crucial 
advantage of the latter is that it admits only flat jump manifolds. Because coefficients of (59) may become singular in 
a neighborhood of ∂Ω̃ , existence of admissible solutions to (59) is ensured by a combination of vanishing viscosity 
with a suitable truncation of Ω̃ . Indeed, one can approximate Ω̃ from inside by a sequence of open domains ω̃h; their 
convergence to Ω̃ is understood in the sense that⋃

ε>0

ω̃ε = Ω̃,
⋃
ε>0

∂ω̃ε ⊃ Ω̃0, and (ω̃ε)ε are embedded in the sense that ω̃ε0 ⊂ ω̃ε for 0 < ε < ε0.

(63)

Then f̃ is globally Lipschitz continuous on ω̃ε × [a, b], (t, x, k) �→ S̃(t, x, k) is uniformly Lipschitz continuous in 
k on ω̃ε × [a, b]. We can choose ω̃ε with the property that the boundary of ∂ω̃ε is piecewise parallel, piecewise 
orthogonal to the time axis. This can be achieved by covering compact subsets of Ω̃ ∪ Ω̃0 by a finite number of 
cylinders contained in Ω̃ ∪ Ω̃0. We will denote by ∂par ω̃ε the parabolic boundary of ω̃ε , i.e., the part of ∂ω̃ε where 
the exterior unit normal vector is either orthogonal to the time direction (the lateral boundary), or it points in the 
direction of increasing time (this is the union of lower boundaries of ω̃ε , that contains Ω̃0 ∩ ∂ω̃ε; but in general, it 
can also contain pieces of hyperplanes {(t, y) | t = const}). Then, in the place of the initial-value viscosity regularized 
problem for the equation
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∂t ũ + divy f̃(t,y, ũ) = S̃(t,y, ũ) + ε�yũ, (64)

we consider the more general problem with the condition u = a prescribed on the part ∂par ω̃ε \ Ω̃0 of the parabolic 
boundary:

ũ|∂par ω̃ε\Ω̃0
= a (65)

and initial condition on the lower boundary:

ũ(0, ·)|∂par ω̃ε∩Ω̃0
= ũ0 ∈ [a, b]. (66)

While this is not a classical initial–boundary value problem because ω̃ε is not cylindrical, solutions can be constructed 
in the same way as for the classical setting of cylindrical domain (cf. the proof of Theorem 10). To account for 
the specificity of the domain geometry, one can combine a Galerkin semi-discretization scheme with a restarting 
procedure that accounts for a finite number of changes of geometry of the sections ω̃t

ε := {y ∈ R
d | (t, y) ∈ ω̃ε}. We 

denote by ũε the so constructed solution of (64), (65), (66).
The so constructed solutions obey the comparison property, which is also proved in the same way as for the classical 

initial–boundary value problems, cf. the proof of Lemma 6. Recall that due to the choice of [a, b]-valued boundary 
and initial conditions, property (60) is still valid for the generalized initial–boundary value problem (59), (65), (66) set 
in ω̃ε . This guarantees that ũε is [a, b]-valued. Due to the genuine nonlinearity property (11) of f̃ and the embedding 
property of (ω̃ε)ε , for all fixed ε0 > 0 (ũε)ε has an accumulation point u defined in ω̃ε0 . Then, the diagonal extraction 
procedure and the convergence of ω̃ε to Ω̃ in the sense explained above permit us to define u globally on Ω̃ .

Therefore, arguments developed in the proof of Theorem 10 and the related lemmas prove that ũ = limε→0 ũε

verifies (61) with test functions in D′(ω̃ε0) and some values pũ as in (62). It is easily seen that the initial data pass to 
the limit, i.e., ũ(0, ·) = ũ0. Due to convergence of ω̃ε0 to Ω̃ as ε0 → 0, this ensures that u is a solution to (59) in the 
sense of Definition 13 with initial datum ũ0.

Observe that the above approach gives not only an existence proof but also a uniqueness proof, due to the equiva-
lence stated in Proposition 14 and to an elementary extension of the calculations of Section 2.2 to the case of several 
flat interfaces (to be precise, for the uniqueness of solutions in the sense of Definition 13, a uniform Lipschitz con-
dition of dependence on u of f̃, S̃ should be imposed; it is verified in the examples we provide below). Yet the direct 
uniqueness proof for solutions of (1) can be conducted without making appeal to a global change of variables, see 
Section 3.1 and [31,10]. Therefore, we can summarize our result as follows.

Theorem 15. Consider Eq. (1) with initial datum u0. We impose:

• the confinement assumption (12) on the flux f, source S and initial datum u0;
• the genuine nonlinearity assumption (11) of the flux f;
• the almost-rectifiability assumption (Definition 12) on the set Σ of jump discontinuities in (t, x) of the flux f;
• on every connected component of (R+ ×R

d) \Σ , the assumptions of Lipschitz continuity of the flux f with respect 
to all variables (t, x, k) and of ∂uf with respect to (t, x);

• the assumption of global Lipschitz continuity of k �→ S(t, x, k) for the source term.

Then there exists a unique weak solution to Eq. (1) that is admissible in the sense of (7), (8) and takes the initial 
value u0.

Now, we will provide two examples explaining how to check the almost-rectifiability assumptions introduced 
above. Along with the example of Fig. 1, this gives an idea of how large is the area of applicability of Theorem 15.

3.3. Two examples of almost rectifiable jump manifolds

Now, we will explicitly construct the almost-rectifying maps Φ for two basic examples that permit to overview the 
ideas helpful in construction of almost-rectifying maps of Definition 12.

First, we deal with a family of curved non-crossing surfaces (for the case d = 2, with jump surfaces parallel to 
the time axis) assuming that they have a common, globally defined transversal direction. The crossing is permitted 
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Fig. 2. Case of several non-intersecting hypersurfaces in Σ .

in the second example, where we focus on the case of two merging curves (for the case d = 1, with t -dependent 
jump curves). Clearly, the techniques for these examples can be combined. For example, the case of jump across the 
hyper-cylinder Σ = {(t, x) | t ≥ 0, |x| = 1} (which is a prototype of the situation not covered by the first example) can 
be treated by considering Σ as the union of two hypersurfaces that merge along the lines {(t, 0, x̂1) | t ≥ 0, |x̂1| = 1}, 
in the spirit of the second example.

3.3.1. The case of several non-intersecting simple discontinuity manifolds
For simplicity, we will work in two-dimensional space, where we select the preferred direction x1; we have x̂1 = x2. 

Assume that the flux discontinuity corresponding to the t -independent flux f from (1) consists of several curves 
(that become hypersurfaces, if the time variable is also considered) prescribed via Lipschitz continuous functions 
φi :R → R, i = 1, 2, . . . , n:

Σ =
n⋃

i=1

Σi ≡R
+ ×

(
n⋃

i=1

σi

)
, σi = {

x ∈ R : x1 = φi(x2)
}
,

with a strict separation (non-intersection) condition φi − φi−1 ≥ δ > 0 for i = 1, . . . , n − 1.
The equation that we are considering is thus (with the notation χΩ for the characteristic function of the set Ω)

∂tu +
n+1∑
i=1

divx
(
Fi(t,x, u)χωi

(x)
) = 0, (67)

u|t=0 = u0, a ≤ u0 ≤ b, (68)

where Fi(t, x, u) = (F1,i (t, x, u), F2,i (t, x, u)) are Lipschitz continuous and ωi is the open region between the curves 
σi−1 and σi , i = 1, . . . , n + 1, with the convention σ0 = {(x1, x2) | x1 = −∞} and σn+1 = {(x1, x2) | x1 = +∞}. 
We can also add a source term here, but we will omit it because it plays a passive role in the construction of the 
almost-rectifying map for Σ .

Now, the transformation Φ from Definition 12 is constructed as follows (see Fig. 2). In the domain ω1 = {(x1, x2) |
x1 ≤ φ1(x2)} we set

y1 = x1 − φ1(x2), y2 = x2.

In the domains ωi = {(x1, x2) | φi−1(x2) ≤ x1 ≤ φi(x2)}, i ∈ {2, . . . , n − 1}, we set

y1 = x1 − φi(x2)

φi−1(x2) − φi(x2)
+ i − 2, y2 = x2.

In the domain ωn+1{(x1, x2) | φn(x2) ≤ x1}, we take

y1 = x1 − φn(x2) + (n − 1), y2 = x2.

Since the curves are non-intersecting, the above defined transform is bi-Lipschitz globally. Its inverse, given by is the 
formula
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Fig. 3. Case of two merging curves in Σ .

x1 = (
φ1(y2) + y1

)
H(−y1)

+
n−1∑
i=1

(
φi+1(y2) − (y1 − i)

(
φi(y2) − φi+1(y2)

))
H

(
y1 − (i − 1)

)
H(i − y1)

+ (
φn(y2) + y1 − (n − 1)

)
H

(
y1 − (n − 1)

)
with H denoting the Heaviside function, satisfies the properties required in Definition 12 with γ = ∅, Γ = ∅.

3.3.2. The case of two merging lines
Consider a scalar conservation law whose flux has discontinuities disposed along two curves {(t, φ−1(t)) | t ∈

[0, t∗]} and {(t, φ1(t)) | t ∈ [0, t∗]} merging into one curve {(t, φ0(t)) | t ∈ [t∗, +∞)} at the point (t∗, x∗) (see Fig. 3).
Let φ−1, φ1, φ0 be three functions of t that coincide at t = t∗, with the common value x∗. We assume that for all 

t < t∗, φ−1(t) < φ1(t). The functions φ−1, φ1, φ0 are assumed to be Lipschitz continuous.
Then we define γ := {(t∗, x∗)}, whose codimension with respect to Rd+1, d = 1, is equal to two. We construct the 

map from (t, y) ∈ R+ × R defined as follows. The straight rays or segments composing the set Γ := {(t∗, y) | y ∈
[−1, 1]} and the set

Σ̃ := ([0, t∗) × {−1}) ∪ ([0, t∗) × {+1}) ∪ (
(t∗,+∞) × {0})

split R+ ×R into five regions A, B , B ′, C and C′. The map Φ : (t, y) �→ (t, x) = (t, x(t, y)) is defined per region (we 
consider all the regions as closed, because the values of Φ match on the boundaries between the regions).

A. In the region t ≤ t∗, −1 ≤ y ≤ 1,

x(t, y) = φ−1(t) + y + 1

2

(
φ1(t) − φ−1(t)

)
.

The image of this region is the space between the curves {(t, φ−1(t)) | t ≤ t∗} and {(t, φ1(t)) | t ≤ t∗}.
B . In the region t ≤ t∗, y ≤ −1,

x(t, y) = φ−1(t) + (
1 + |t − t∗|

)
(y + 1).

The image is the region {(t, x) | t ≤ t∗, x ≤ φ−1(t)}.
B ′. In the region t ≥ t∗, y ≤ 0,

x(t, y) = φ0(t) + (y + 1)H
(−(y + 1)

) + |t − t∗|y.

The image is the region {(t, x) | t ≥ t∗, x ≤ φ0(t)}.
C. In the region t ≤ t∗, y ≥ 1,

x(t, y) = φ1(t) + (
1 + |t − t∗|

)
(y − 1).

The image is the region {(t, x) | t ≤ t∗, x ≥ φ1(t)}.
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C′. In the region t ≥ t∗, y ≥ 0,

x(t, y) = φ0(t) + (y − 1)H(y − 1) + |t − t∗|y.

The image is the region {(t, x) | t ≥ t∗, x ≥ φ0(t)}.

This is an example of map constructed according to the recipe of Remark 5. It is Lipschitz continuous (observe 
that each of the regions B ′, C′ is split into two subregions with different polynomials defining the map) matching on 
the boundaries between (sub)regions. Both the map Φ and its inverse are Lipschitz away from any neighborhood of 
γ or Γ , respectively. The second derivatives whose local boundedness is required in Definition 12(a)(3) are easily 
computed and controlled.

3.4. An alternative method for construction of solutions

Let us briefly indicate another way of constructing solutions.

Definition 16. A union of hypersurfaces Σ in R+ ×R
d is called locally almost rectifiable if up to a set of codimension 

greater than 1, Σ can be included into the locally finite union of disjoint open sets Ui such that for all i, Σ ∩ Ui is a 
portion of the graph of a Lipschitz function ψi :Rd �→R.

This property is easily checked in practice. For example, the cylinder Σ = {(t, x1, x2) | t ≥ 0, x2
1 + x2

2 = 1} can be 
covered, up to the union of the four lines {(t, 0, ±1)} ∪ {(t, ±1, 0)} and the curve {(0, x1, x2) | x2

1 + x2
2 = 1}, by the 

union of the four regions

Ui = {
(t, x1, x2)

∣∣ t > 0, θix1 > 0, θ ix2 > 0
}
, θi, θ

i ∈ {−1,1}.
In the sequel, we consider fluxes which singularities are included in a locally almost rectifiable set Σ . According 

to assumption (9), we exclude the possibility that the discontinuity hypersurface is orthogonal to the time direction. 
Therefore up to an i-dependent rotation of space coordinates in Ui we can assume that

Σ ∩ Ui = {
(t, x1, x̂1)

∣∣ x1 = ψi(t, x̂1)
}
,

with Lipschitz continuous ψi . The fact that Ui are disjoint permits to consider a family of nonnegative C∞
c (Ui)

functions (λε
i )ε with supports of λε

i , λ
ε
j that are disjoint, for all i �= j , and such that for all i, λε

i converges to 1 a.e. on 
Ui as ε → 0; moreover, we can assume that λε

i ≡ 1 inside Ui except in the ε-neighborhood of ∂Ui .
Now, we sketch the following construction that can be seen as another “adapted viscosity” approximation of (1).

3.4.1. An adapted diffusion operator
For every Ui , one can make the change of coordinates x1 = x̃1 +ψi(t, x̂1) that rectifies Σ ∩Ui ; by analogy with the 

construction of Definition 12, let us write (t, x) = Φi(t, y), with Ui = Φi(Ũi), but keeping in mind that Φi has a much 
simpler structure than in Section 3.2 (it is bi-Lipschitz, of jacobian 1, and the mixed derivatives featuring in (a)(2) of 
Definition 12 are equal to zero). In the sequel, whenever u is considered at (t, x) ∈ Ui , we mean that (t, x) = Φi(t, y)

with (t, y) ∈ Ũi , and we write ũ for the transformed function ũ(t, y) = u(t, x).
Denote by λ̃ε

i the function in the transformed variables such that λ̃ε
i (t, y) = λε

i (t, x). In the new variables y in Ũi , 
consider the following degenerate elliptic operator in conservative form:

Ãε
i : ũ �→ ε

d∑
k=1

∂yk

(
λ̃ε

i ∂yk
ũ
);

observe that, by the definition of λε
i , Ãε

i acts as ε times the Laplacian in new variables y in a large portion of Ũi . Let 
Aε

i be the corresponding operator acting on functions u = ũ ◦ Φ−1
i defined on Ui , this operator is implicitly defined 

by the change of variables Φi . For a global definition of Aε
i , observe that values of (Aε

i u)(·) outside Ui can be set 
to zero, because λε

i are supported in Ui . Therefore Aε
i is a degenerate anisotropic heterogeneous diffusion operator 

(in general, in non-divergence form) with coefficients that are Lipschitz continuous.
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Due to the fact that the supports of (λε
i )i are disjoint, the operators Aε

i , implicitly defined on Ui in the original 
coordinates, can be just pieced together to yield a second-order degenerate diffusion operator Aε = ∑

i A
ε
i . By con-

struction, near Σ this operator represents the homogeneous isotropic Laplacian diffusion in coordinates adapted to 
the geometry of Σ , except in an ε-neighborhood N ε of Σ ∩ (

⋃
i ∂Ui) in which the diffusion can degenerate.

Then we claim that the original equation (1) regularized with the following sum of diffusion operators:

u �→ δ�u + Aεu

permits to construct a solution of (1) in the sense of (7), by letting first δ ↓ 0 with ε > 0 fixed, then letting ε ↓ 0.
Indeed, to start with, given δ, ε > 0, existence of L2(R+; H 1

loc(R
d)) solutions uδ,ε with prescribed initial datum 

u0 is ensured by classical theories of uniformly parabolic equations in non-divergence form. It remains to pass to the 
limit and to characterize limε→0 limδ→0 uδ,ε by inequalities (7), with singular values (8).

3.4.2. Auxiliary problem with degenerate adapted diffusion
In the first step, the compactness argument based on (11), as used in Section 2.4, permits to obtain an accumulation 

point uε from (uε,δ)δ , as δ → 0. Away from an ε-neighborhood N ε of Σ ∩ (
⋃

i ∂Ui), the function uε is an entropy 
solution to Eq. (1) regularized with degenerate diffusion operator Aε:

∂tu + divx f(t,x, u) = Aεu + S(t,x, u). (69)

Observe that in this limit problem, non-degenerate diffusion adapted to the geometry of Σ persists in a vicinity 
of Σ \N ε .

To be precise, the limit uε verifies in (R+ × R
d) \ N ε the entropy formulation of (69) analogous to the one put 

forward in the work [15]; in particular, uε is a local Kruzhkov entropy solution of (1) in the regions where the flux f is 
Lipschitz continuous and Aε degenerates. The uniqueness theory of [15] only covers the case of degenerate anisotropic 
diffusion but at a price of lengthy technicalities, it can be generalized in a straightforward way to the heterogeneous 
case (cf. [44] for analogous extension of the isotropic homogeneous theory of [20] to the isotropic heterogeneous 
case). Therefore, the (possibly local) formulation of [15] for Eq. (69) leads to the (local) Kato inequality for every 
couple of (local) entropy solutions uε, ûε of (69).

3.4.3. Convergence of adapted diffusion approximations
Starting from this point, our analysis mimics the one of Section 2.4, using a family of explicit local viscosity profiles 

for (69); these are easily obtained in transformed coordinates (t, y), considering separately each of the sets Ũi .
Namely, in the second step we apply the analogous (11)-based compactness argument to (uε)ε . An accumulation 

point u, as ε → 0, is a local Kruzhkov entropy solution of (1) away from Σ . Indeed, the contribution of Aε to the 
entropy dissipation is nonnegative, and its contribution to the entropy flux vanishes, as ε → 0, because there holds 
a uniform estimate on 

∑
i ‖

√
ελε

i ∇yũ
ε‖L2 . Further, since Ui cover Σ up to a lower-dimensional set, in order to see 

that u is a solution of (1) in the sense (7), (8) it is enough to justify the entropy inequalities (7) with test functions 
supported in Ui , for every i, and some pu satisfying (8). The simplicity of the change of coordinates defined on Ui

implies the invariance principle analogous to the one shown in Proposition 14: u verifies (7), (8) with test functions 
supported in Ui if and only if ũ verifies the analogous inequalities with test functions supported in Ũi and appropriate 
singular values pũ. In variables (t, y) of Ũi , the interface Σ̃i := φ−1

i (Σ ∩ Ui) is flat, orthogonal to the direction x̃1; 
and the diffusion that appears in the equation on ũε is the isotropic Laplacian ε�y except in the set Φ−1(Ui ∩ N ε)

that vanishes, as ε → 0. Therefore in a neighborhood of every point of Σ̃i one can construct profiles R̃ε that only 
depend on x̃1/ε, as in the construction of Section 2.4. The analogue of Lemma 6 follows from the Kato inequality 
involving ũε and R̃ε . Then or all i, the arguments of Section 2.4 permit to characterize the one-sided traces of ũ on 
Σ̃i and to define singular values pũ, Hd -a.e. on Σ̃i . This provides entropy inequalities (7), (8) with support of the 
test functions restricted to Ui , where the corresponding singular values pu are obtained from pũ with the help of the 
transformation φi . Combining those with classical Kruzhkov entropy inequalities in (R+ × R

d) \ Σ , we justify (7), 
(8) globally.

This concludes the sketch of construction of a solution u in the sense (7), (8) under the assumption of local recti-
fiability of Σ up to a lower-dimensional subset (Definition 16). In this way, the result fully analogous to the one of 
Theorem 15 can be obtained for a different (at least as large as the class of almost rectifiable Σ ’s, see Definition 12) 
class of jump singularities Σ in the flux f.
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4. Conclusion

We have presented a new definition of solution to some discontinuous-flux problems, along with detailed unique-
ness and existence proofs for the case of a flat interface (a flux discontinuity hypersurface being seen as an interface). 
These results can be put in close correspondence with the results of [10], where a simple particular case has been 
considered and quite different (rather artificial) approach to solutions characterization has been pursued. We think 
that, although our proofs in this paper do not appear any simpler than the proofs of [10], the new definition of solution 
may be particularly useful in engineering applications because it complies with the physical and numerical intuition. 
Further, we demonstrate that our well-posedness arguments extend to a general configuration in spatially inhomoge-
neous media with a locally finite number of Lipschitz-regular interfaces, by providing two original constructions of 
adapted viscosity approximate solutions.
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