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Abstract

We consider a family of interaction functionals consisting of power-law potentials with attractive and repulsive parts and use 
the concentration compactness principle to establish the existence of global minimizers. We consider various minimization classes, 
depending on the signs of the repulsive and attractive power exponents of the potential. In the special case of quadratic attraction 
and Newtonian repulsion we characterize in detail the ground state.
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1. Introduction

We consider the minimization of energies of the form

E[ρ] :=
∫
RN

∫
RN

K(x − y)ρ(x)ρ(y) dx dy, (1)

where

K(x) := 1

q
|x|q − 1

p
|x|p, for − N < p < q. (2)

These functionals are directly connected to a class of self-assembly/aggregation models which recently have received 
much attention (see for example, [1–13]). The aggregation models consist of the following active transport equation 
in RN for the population density ρ:

* Corresponding author.
E-mail addresses: rchoksi@math.mcgill.ca (R. Choksi), van@math.sfu.ca (R.C. Fetecau), itopaloglu@math.mcgill.ca (I. Topaloglu).

L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.anihpc.2014.09.004
0294-1449/© 2014 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.anihpc.2014.09.004
http://www.elsevier.com/locate/anihpc
mailto:rchoksi@math.mcgill.ca
mailto:van@math.sfu.ca
mailto:itopaloglu@math.mcgill.ca
http://dx.doi.org/10.1016/j.anihpc.2014.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anihpc.2014.09.004&domain=pdf


1284 R. Choksi et al. / Ann. I. H. Poincaré – AN 32 (2015) 1283–1305
Fig. 1. Generic examples of K for various values of p and q .

ρt + ∇ · (ρv) = 0, v = −∇K ∗ ρ, (3)

where K represents the interaction potential and ∗ denotes spatial convolution. This partial differential equation is the 
gradient flow of the energy (1) with respect to the 2-Wasserstein metric [14,15]. Indeed, the evolution equation (3) can 
be written in the form

∂tρ = ∇ ·
(

ρ∇ δE[ρ]
δρ

)
,

which is the standard form for the 2-Wasserstein gradient flow [14] of the energy (1).
Model (3) appears in the study of many phenomena, including biological swarms [11,12], granular media [1,13], 

self-assembly of nanoparticles [7,8] and molecular dynamics simulations of matter [16]. The study of solutions to (3)
(well-posedness, finite or infinite time blow-up, long-time behavior) has been a very active area of research during the 
past decade [2–5,10]. It is important to note that the analysis and behavior of solutions to (3) depend essentially on the 
properties of the potential K . In the context of biological swarms, K incorporates social interactions (attraction and 
repulsion) between group individuals. Potentials which are attractive in nature typically lead to blow-up [2,9], while 
attractive–repulsive potentials may generate finite-size, confined aggregations [6,10].

By inspecting the equation for v in (3) one notes that the nature of a symmetric potential K(x) = K(|x|) is dictated 
by the sign of its derivative (K ′ > 0 corresponds to attraction and K ′ < 0 to repulsion). Hence, for K given by (2), 
the exponent q refers to attraction and p to repulsion (p and q can be of any sign). The condition q > p is needed to 
ensure that the potential is repulsive at short ranges and attractive in the far field – see Figs. 1(a)–1(c) for a generic 
illustration of K with p < 0 and Fig. 1(d) for an example of K with p > 0. Note that in the regime p < 0 when 
q � 1, the potential K is positive, convex and K → ∞ as |x| → ∞ whereas when 0 < q < 1, K is still positive and 
grows indefinitely with |x|; however, it is not convex. Finally for −N < q < 0, K becomes negative, approaches 0 as 
|x| → ∞ and is not convex.

Potentials in power-law form have been frequently considered in the recent literature on the aggregation model (3)
[17,18,6,19,20]. As shown in these works, the delicate balance between attraction and repulsion often leads to complex 
equilibrium configurations, supported on sets of various dimensions. Indeed, a simple particle model simulation in 
two dimensions shows accumulation of the density in different states depending on the powers of the interaction 
potential K (see Figs. 2 and 3). The dimensionality of local minimizers of (1) with K given by (2) was recently 
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Fig. 2. 2D particle model simulations in the regime p < 0. In 2D, the Newtonian repulsion is given by − log |x| and below Newtonian repulsion 
corresponds to −2 < p < 0 (see also Remark 3.5).

Fig. 3. 2D particle model simulations in the regime q > p > 0.

investigated in [21]. The repulsion exponent p in [21] is restricted to be above the Newtonian singularity, i.e., p >

2 − N .
A significant number of recent works exploited the gradient flow structure in the particle (individual-based) model 

associated to (3). Specifically, the PDE model (3) can be regarded as the continuum limit of the following particle 
model describing the pairwise interaction of M particles in RN [22]:

dXi

dt
= − 1

M

M∑
j=1
j �=i

∇K(Xi − Xj), i = 1 . . .M, (4)

where Xi(t) represents the spatial location of the i-th individual at time t . The particle model (4) is the gradient flow 
of the interaction energy which is the discrete version of (1) [19]. It has been shown that simple choices of interaction 
potentials in (4) can lead to very diverse and complex equilibrium solutions (e.g., disks, rings and annular regions in 
2D, balls, spheres and soccer balls in 3D) [6,19,20].

By staying entirely at the continuum level (that is, working with (3) without resorting to the particle system (4)) it is 
more difficult to identify equilibria. There are only a few works in this direction. In [18,6] the authors study equilibrium 
solutions to (3) which are supported in a ball, while in [17] the focus is equilibria that are uniformly distributed 
on spherical shells. Such equilibria, along with those revealed by simulations of the discrete model, constitute the 
main motivation for this work. In this article, we directly study the problem from the variational point of view, i.e., 
minimizers of the nonlocal energy (1). In particular, we show the existence of a global minimizer of (1) over the classes 
of uniformly bounded functions (for p < 0 and q > 0), radially symmetric and uniformly bounded functions (for 
p < 0 and q < 0), and probability measures (for p > 0). We address and motivate the assumptions of radial symmetry 
and uniform boundedness in the summary below (see Section 2 and Remark 3.6). Also, most of the previous works 
referenced above consider power-law potentials where the repulsion-power is assumed to be above Newtonian, that 
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is, p � 2 − N . However, in our results we only need integrability at the origin, and consequently, p can take values in 
the larger range p > −N .

Here we also would like to note that during the review process of this manuscript we noticed that the radial 
symmetry and uniform boundedness assumption have been relaxed in the recent preprints [23,24] in certain regimes 
of p and q-values of power-law potentials whereas the results in [25,26] extend our existence results to more general 
potentials.

We conclude the introduction with two remarks concerning related problems.

Remark 1.1 (Repulsion via Nonlinear Diffusion). A model related to (3) considers an interaction kernel which is 
purely attractive and incorporates repulsive interactions through nonlinear diffusion. This model reads

ρt + ∇ · (ρv) = �ρm, v = −∇K ∗ ρ, (5)

where K is purely attractive and m > 1 is a real exponent (cf. [27–34]). Here the associated energy functional is given 
by

Enld[ρ] := 1

2

∫ ∫
K(x − y)ρ(x)ρ(y) dx dy + 1

m − 1

∫
ρm(x)dx.

Using Lions’ concentration compactness lemma, a proof of global existence for this functional was given in [35]. 
A detailed study of steady state solutions of (5) in one dimension is given in [33,34]. Note that these results do not need 
a uniform L∞-bound on the admissible densities as the energy Enld controls some Ls -norm of the density function ρ. 
Also, since the interaction term in the energy Enld is purely attractive, using symmetric decreasing rearrangement type 
arguments one sees that the minimizers have to be radially symmetric.

Similar energies also appear in astrophysics and quantum mechanics and have been extensively studied [36–38]. 
In fact, in the seminal paper of Lions [38] wherein he introduces the concentration compactness lemma, a direct 
application is the existence of minimizers to a class of these L1 minimization problems. Many of the arguments in our 
present article follow his application.

Remark 1.2 (Thomas–Fermi–Dirac–von Weizsäcker Functionals and the Nonlocal Isoperimetric Problem). Many 
other functions with interacting attractive and repulsive components have been studied, for example the Thomas–
Fermi–Dirac–von Weizsäcker functional in mathematical physics [39–42]. Recently, a binary nonlocal isoperimetric 
functional appeared in connection with the modeling of self-assembly of diblock copolymers [43–45]. Existence and 
non-existence results have been presented in [46–48,42]. In dimension N = 3, the functional has a Newtonian repul-
sive component as in (1) with p = −1. However, the attractive component does not come from an interaction term but 
rather by adding a higher-order regularization. Precisely, for m > 0, the nonlocal isoperimetric problem is to minimize

Enlip[ρ] :=
∫
R3

|∇ρ| +
∫
R3

∫
R3

ρ(x)ρ(y)

4π |x − y| dx dy

over

ρ ∈ BV
(
R

3, {0,1}) with
∫
R3

ρ = m.

Since admissible densities ρ are characteristic functions, the first term in the energy is simply the perimeter of the 
support. Not only is there a competition between the two terms in Enlip but they are in direct competition in the 
following sense: balls are best (least energy) for the first (attractive) term and worst (greatest energy) for the second 
(repulsive) term. The latter point has an interesting history. Poincaré [49] considered the problem of determining the 
equilibrium shapes of a fluid body of mass m. In simplified form, this amounts to minimizing the total potential energy 
of the region of fluid E ⊂R

3

∫ ∫
− 1

C |x − y| dx dy,
E E
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where −(C|x − y|)−1 (C > 0) is the potential resulting from the gravitational attraction between two points x and 
y in the fluid. Poincaré showed that, under some smoothness assumptions, a body has the lowest energy if and only 
if it is a ball. It was not until almost a century later that the essential details were sorted via the rearrangement ideas 
of Steiner for the isoperimetric inequality. These ideas are captured in the Riesz Rearrangement Inequality and its 
development (cf. [50,51]).

In [43,44], it was conjectured that there exists a critical mass m0 below which, a unique minimizer of Enlip exists 
and is the characteristic function of a ball, and above which, the minimizer fails to exist because of “mass” escaping 
to infinity. Note this is in stark contrast to minimizers of (1). The non-existence for sufficiently large m has recently 
been proved in [42]. Existence of a radially symmetric minimizer (i.e. a ball) for m sufficiently small has recently 
been proved in [46,48]. Whether or not balls are the only minimizers remains open.

2. Statements of our results

In this section we state and summarize our main results, placing them in the context of other recent work.

2.1. Existence of global minimizers

We consider the existence of minimizers in two separate cases: p < 0 and p > 0.

Negative power repulsion p < 0 Figs. 2(a)–(c) show examples of particle simulations for interaction potentials that 
consist of Newtonian repulsion1 and an attraction component with various powers q . In the case of negative p, similar 
simulations show that particles do not accumulate on lower-dimensional sets. For example, in [6], the time-dependent 
density ρ(·, t) is shown to be uniformly bounded in L∞ for all t > 0 provided the initial condition ρ0 is in L∞. Also 
in [21], the authors prove that for any N and 2 − N < p < 0, minimizers do not accumulate on a set of dimension 
less than 2 − p and point out that they never observed minimizers with support of non-integer Hausdorff dimension. 
This means that when N = 3 the minimizers are indeed functions; however, for N > 3 the result is weaker and only 
gives a lower bound. Nonetheless, for p < 0, we expect that minimizers exist in the space of density functions (and 
not measures). As a matter of fact, we immediately see that a Dirac delta integrated against an interaction potential 
1/|x|a with 0 < a < N cannot be a minimizer of the energy (6). However, with only an L1-bound on the density, 
accumulation along a set of Hausdorff dimension less than N is a possibility – in fact as we discuss below, such 
possibilities are indeed generic when p > 0. For p < 0, even though there might be some minor symmetry defects 
depending on the choice of number of particles, the simulations with random initial data suggest that the steady states 
are radially symmetric.

We thus consider the minimization of the energy E in the class of radially symmetric, uniformly bounded densities 
when the attraction-power q is negative. However, we relax the radial symmetry assumption for positive exponents 
q > 0. To this end, for p < 0 we take our admissible class of densities ρ as the space of non-negative, uniformly 
bounded L1 functions with fixed mass m when q > 0, and as the space of non-negative, radially symmetric, uniformly 
bounded L1 functions with fixed mass m when q < 0. That is, for −N < p < 0, q > p, m > 0 and M > 0, we consider 
the following variational problem:

minimize E(ρ) =
∫
RN

∫
RN

(
1

q
|x − y|q − 1

p
|x − y|p

)
ρ(x)ρ(y) dx dy (6)

over

A :=
{
ρ ∈ L1(

R
N

) ∩ L∞(
R

N
)
:ρ � 0, ‖ρ‖L∞ � M, and

∫
RN

ρ(x)dx = m

}
(7)

when q > 0; and over

1 In RN , the Newtonian potential is given by the repulsive part of (2) with p = 2 − N . For 2D particle simulations we use − log |x| as the 
Newtonian repulsion. See Remark 3.5 for details.
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Ar :=
{
ρ ∈ L1(

R
N

) ∩ L∞(
R

N
)
:ρ = ρ(|x|) � 0, ‖ρ‖L∞ �M, and

∫
RN

ρ(x)dx = m

}
(8)

when q < 0.
For this minimization problem the first main result we obtain is the existence of minimizers.

Theorem 2.1. There exists a minimum of (6) in A when −N < p < 0 < q , and in Ar when −N < p < q < 0.

Note that the uniform boundedness condition is necessary to prevent concentrations as the energy does not bound 
any Ls norm for s > 1. It is a technical requirement in the structure of the proof, where the key idea is to apply Li-
ons’ concentration compactness lemma (Lemma 10) to a minimizing sequence, extract a subsequence which is tight 
in the sense of measures, and use the uniform boundedness to infer weak convergence in Ls for any 1 < s < ∞. 
Weak convergence of the minimizing (sub)sequence is sufficient for lower semicontinuity of the energy functionals 
(Lemma 3.3). We repeat that while the uniform boundedness condition on the density function ρ is a strong assump-
tion, it is supported by results in [6,18] with p = 2 − N , as well as other works that consider power kernels with 
negative repulsion exponent [21,17,20]. The uniform boundedness of the density when minimizing similar energies, 
is also assumed for example in [36]. As we note in Remark 3.6, this somewhat artificial, albeit justified, assumption 
should not be necessary, but in our opinion its removal would require substantial additional technical steps.

The radial symmetry assumption on the admissible class when −N < p < q < 0 is also a technical assumption. 
Indeed, in the regime −N < p < 0 < q one can relax this assumption and obtain existence in the general class A. 
This is possible due to the growth of the kernel at infinity when q > 0; however, the argument used to relax the radial 
symmetry assumption does not apply directly when −N < p < q < 0, as the kernel K does not grow indefinitely but 
approach zero in this regime (see Fig. 1(c)).

To our knowledge when p < 0 particle simulations in the literature with power-law potentials of the form (2) do 
not reveal any non-radially symmetric steady states (cf. [21,52,53]). Also given the isotropic and singular nature of 
the interaction kernel K it seems reasonable to conjecture that the minimizers of the energy (1) defined via power-law 
potentials are radially symmetric when p < 0. Proving that the minimizer is radial, though, is a complicated task and 
an open problem. Unlike the case of purely attractive kernels (cf. Remark 1.1 and references [35,33]) where repulsion 
is given by a diffusion term, symmetrization via Riesz rearrangement techniques [51] do not immediately apply here 
because of the repulsive-attractive combination in the kernel.

Remark 2.2. As we will show in the next section, the proof of existence of minimizers also applies for potentials of 
the form

K(x) = f
(|x|) − 1

p
|x|p,

where f (|x|) → ∞ as |x| → ∞ and −N < p < 0. A similar extension could be made in the case p > 0 as well; 
however, here one needs the function f to grow faster than |x|p in the long range.

Positive power repulsion p > 0 The character of the interaction potential K is very different when p > 0. In this 
regime K does not have a singularity at zero and it allows concentration of densities on sets of dimension less than N . 
Note that Fig. 3(a) shows an associated particle simulation for positive p and q with accumulation along a circle. The 
results of [21] support this observation via rigorous bounds on the Hausdorff dimension of the support of minimizers. 
Moreover, for p > 0, simulations shows that minimizers need not be radially symmetric (see Fig. 3(b)). Therefore we 
take the energy E defined over probability measures (cf. [21,17]), that is, in the regime q > p > 0, we consider the 
problem:

minimize E(μ) =
∫
RN

∫
RN

(
1

q
|x − y|q − 1

p
|x − y|p

)
dμ(x)dμ(y), (9)

over probability measures μ ∈P(RN), endowed with the weak-∗ topology. Following similar steps as in Theorem 2.1, 
we prove the existence of a global minimizer.
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Theorem 2.3. There exists a minimum in P(RN) of the problem (9) when q > p > 0.

Related to our positive power repulsion case, in [15] the authors consider a class of aggregation equations with 
interaction potentials which satisfy certain growth and convexity conditions. Using an approach based on the theory 
of gradient flows they establish existence and uniqueness of global-in-time weak measure solutions. Later in [54], 
again working with measure solutions, they find sufficient conditions on the interaction potential which guarantee the 
confinement of localized solutions for all times. In both works their use of a measure theoretic setting as the class of 
admissible functions enables them a unified analysis of both particle and continuum models.

2.2. Ground state for quadratic attraction and Newtonian repulsion

After establishing the existence of global minimizers to the constrained minimization problem (6) the next natural 
question to ask whether one can characterize the global minimizers. In general, this is a very difficult problem to 
tackle. When p = 2 − N , however, the repulsion term corresponds to the Coulomb energy which has a variational 
characterization via the Newtonian potential. This case was investigated in the context of the evolution equation (3)
in [6,18]. There, the authors focused on the existence of symmetric, bounded and compactly-supported steady states 
and they showed that for any attraction component q > 2 − N , a unique such steady state exists. Moreover, numerical 
experiments suggest that these equilibrium solutions are global attractors for solutions of (3).

In particular, for q = 2, the steady state considered in [6] consists in a uniform density in a ball. It was shown in 
[55] that such uniform states (called patch solutions by the authors) are global attractors for the dynamics of (3). Also 
related to this result, in [56] the authors show that in 1D the aggregation equation (3) has a unique globally stable 
steady state when the interaction potential is the sum of Newtonian repulsion and a convex attraction, and the remark 
that when q = 2 this steady state is the characteristic function of an interval. We study these steady states here from a 
variational point of view, and show that they are global minimizers of (6).

Theorem 2.4. For any m > 0 and M � m
ωN

, the function ρ(x) = m
ωN

χB(0,1)(x) is the global minimizer of the prob-

lem (6) in the admissible class A when q = 2, p = 2 − N , where ωN denotes the volume of the unit ball in RN and χ
denotes the characteristic function of a set.

Remark 2.5. We note that the case q = 2 is rather special. Indeed, since the energy E is translation invariant we can 
assume, without loss of generality, that the center of mass of admissible densities is zero, that is,∫

RN

xρ(x) dx = 0.

A simple calculation leads to

1

2

∫
RN

∫
RN

|x − y|2ρ(x)ρ(y) dx dy = 1

2

∫
RN

∫
RN

(|x|2 − 2x · y + |y|2)ρ(x)ρ(y) dx dy

= m

∫
RN

|x|2ρ(x)dx.

With the attractive term being simplified, the energy (6) can be written as

E(ρ) = m

∫
RN

|x|2ρ(x)dx − 1

p

∫
RN

∫
RN

|x − y|pρ(x)ρ(y) dx dy. (10)

3. Proofs of the theorems

In this section we provide proofs of Theorems 2.1, 2.3 and 2.4.
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3.1. Existence of global minimizers

Negative power repulsion p < 0 To prove the existence of a minimizer for (6) we will use a direct method from the 
calculus of variations. The key tool in establishing the existence of minimizers here is the concentration compactness 
lemma by Lions [38, Lemma I.1].

Lemma 3.1 (Concentration Compactness Lemma [38]). Let {ρn}n∈N be a sequence in L1(RN) satisfying

ρn � 0 in R
N,

∫
RN

ρn(x) dx = m,

for some fixed m > 0. Then there exists a subsequence {ρnk
}k∈N satisfying one of the three following possibilities:

(i) (tightness up to translation) there exists yk ∈ R
N such that ρnk

(· + yk) is tight, that is, for all ε > 0 there exists 
R > 0 such that∫

B(yk,R)

ρnk
(x) dx � m − ε for all k;

(ii) (vanishing) limk→∞ supy∈RN

∫
B(y,R)

ρnk
(x) dx = 0, for all R > 0;

(iii) (dichotomy) there exists α ∈ (0, m) such that for all ε > 0, there exist k0 � 1 and ρ1,k , ρ2,k ∈ L1+(RN) satisfying 
for k � k0∥∥ρnk

− (ρ1,k + ρ2,k)
∥∥

L1(RN)
� ε,∣∣‖ρ1,k‖L1(RN) − α

∣∣ � ε,
∣∣‖ρ2,k‖L1(RN) − (m − α)

∣∣ � ε,

and

dist
(
supp(ρ1,k), supp(ρ2,k)

) → ∞ as k → ∞.

In certain cases, we will use the following special form of the Hardy–Littlewood–Sobolev inequality to bound the 
energy from below.

Proposition 3.2 (Cf. Theorem 3.1 in [57]). For any −N < p < 0 and f ∈ L2N/(2N+p)(RN) we have∫
RN

∫
RN

|x − y|pf (x)f (y) dx dy � C(p)‖f ‖2
L2N/(2N+p)(RN)

where the sharp constant C(p) is given by

C(p) = π−p/2 Γ (N/2 + p/2)

Γ (N + p/2)

(
Γ (N/2)

Γ (N)

)−1−p/N

with Γ denoting the Gamma function.

Finally, we state and prove a lemma which we will use in establishing the lower semicontinuity of the energy E. 
A similar argument appears in the proof of Theorem II.1 in [38].

Lemma 3.3. Let {fn}n∈N ⊂ A (or Ar ) and f ∈ A (or Ar ) be given such that fn ⇀ f weakly in Ls(RN) for some 
1 < s < ∞. Then

lim
n→∞

∫
RN

∫
RN

fn(x)fn(y)

|x − y|a dx dy =
∫
RN

∫
RN

f (x)f (y)

|x − y|a dx dy

where 0 < a < N .
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Proof. First note that∣∣∣∣∣
(∫
RN

∫
RN

fn(x)fn(y)

|x − y|a dx dy

)1/2

−
(∫
RN

∫
RN

f (x)f (y)

|x − y|a dx dy

)1/2
∣∣∣∣∣

�
∣∣∣∣
∫
RN

∫
RN

(fn(x) − f (x))(fn(y) − f (y))

|x − y|a dx dy

∣∣∣∣
1/2

. (11)

On the other hand, for R > 0 we have that∣∣∣∣
∫
RN

∫
RN

(fn(x) − f (x))(fn(y) − f (y))

|x − y|a dx dy

∣∣∣∣
�

∣∣∣∣
∫
RN

∫
RN

(fn(x) − f (x))(fn(y) − f (y))

|x − y|a χ{|·|<1/R}
(|x − y|)dx dy

∣∣∣∣
+

∣∣∣∣
∫
RN

∫
RN

(fn(x) − f (x))(fn(y) − f (y))

|x − y|a χ{|·|>R}
(|x − y|)dx dy

∣∣∣∣
+

∣∣∣∣
∫
RN

∫
RN

(fn(x) − f (x))(fn(y) − f (y))

|x − y|a χ{1/R<|·|<R}
(|x − y|)dx dy

∣∣∣∣,
where χA denotes the characteristic function of the set A. Since fn and f are in A (or Ar ), they are uniformly bounded 
and ‖fn‖L1(RN) = ‖f ‖L1(RN) = m. Hence, the above inequality yields∣∣∣∣

∫
RN

∫
RN

(fn(x) − f (x))(fn(y) − f (y))

|x − y|a dx dy

∣∣∣∣
� C1

1

RN−a
+ C2

1

Ra
+

∣∣∣∣
∫
RN

∫
RN

(fn(x) − f (x))(fn(y) − f (y))

|x − y|a χ{1/R<|·|<R}
(|x − y|)dx dy

∣∣∣∣, (12)

for some constants C1, C2 > 0 depending only on a, M and N .
For simplicity of presentation, define

g(x − y) := 1

|x − y|a χ{1/R<|·|<R}
(|x − y|)

and note that g(x − ·) ∈ L1(RN) ∩ L∞(RN). Also, define

Fn(x) :=
∫
RN

fn(y)g(x − y)dy and F(x) :=
∫
RN

f (y)g(x − y)dy.

Since fn ⇀ f weakly in Ls(RN), for all x ∈ R
N we have that

Fn(x) → F(x), as n → ∞.

Moreover, since f , fn and g are non-negative functions, we have

‖fn ∗ g‖L1(RN) = ‖fn‖L1(RN)‖g‖L1(RN) = ‖f ‖L1(RN)‖g‖L1(RN) = ‖f ∗ g‖L1(RN)

which trivially implies that ‖Fn‖L1(RN) → ‖F‖L1(RN). Since |Fn −F | � |Fn| +|F |, the function |Fn| +|F | −|Fn −F |
is positive. So, applying Fatou’s theorem we get that

lim inf
n→∞

∫
N

|Fn| + |F | − |Fn − F |dx �
∫
N

lim inf
n→∞ |Fn| + |F | − |Fn − F |dx;
R R
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hence,

2‖F‖L1(RN) − lim sup
n→∞

∫
RN

|Fn − F |dx � 2‖F‖L1(RN).

Thus lim supn→0

∫
RN |Fn − F | dx = 0, that is, Fn → F strongly in L1(RN).

Consequently, Fn → F in Ls(RN). This follows from the fact that the strong L1(RN)-convergence im-
plies that Fn(x) → F(x) for a.e. x ∈ R

N , and this along with the dominated convergence theorem implies the 
Ls(RN)-convergence. Now, since fn ⇀ f weakly in Ls(RN), we have that∫

RN

∫
RN

(
fn(x) − f (x)

)(
fn(y) − f (y)

)
g(x − y)dx dy → 0

as n → ∞. Letting R → ∞ in (12) yields, by (11), the desired result. �
We now prove the existence theorem for p < 0.

Proof of Theorem 2.1. To prove the theorem we consider the two regimes of q separately, as the character of the 
interaction potential K is quite different in the two cases (see Figs. 1(a)–(c)). We minimize the energy over A when 
q > 0 and over Ar when q < 0.

Case 1: −N < p < 0 < q . Let {ρn}n∈N ⊂ A be a minimizing sequence of the problem (6), that is, let {ρn} ⊂ A be a 
sequence such that

lim
n→∞E(ρn) = inf

{
E(ρ):ρ ∈A

}
.

In this regime both terms of the energy are positive. Hence, E(ρ) � 0 for all ρ ∈ A, so the above infimum exists and is 
non-negative. As {ρn}n∈N is a minimizing sequence, for sufficiently large n the energy E(ρn) is uniformly bounded.

By the concentration compactness lemma (Lemma 10) the sequence {ρn}n∈N has a subsequence which satisfies 
one of the three possibilities: “tightness up to translation”, “vanishing” or “dichotomy”. We will show that “tightness 
up to translation” is the only possibility. To this end, suppose “vanishing” occurs. Let R > 0 be arbitrary. Then for k
large enough∫

B(0,R)

ρnk
(x) dx � sup

y∈RN

∫
B(y,R)

ρnk
(x) dx < m/2.

Since ρnk
∈ A this implies that∫

RN\B(0,R)

ρnk
(x) dx � m/2 > 0. (13)

Now we are going to use the fact that the attractive term grows indefinitely at infinity. Since ρnk
are positive, by (13)

we have that∫
RN

∫
RN

|x − y|qρnk
(x)ρnk

(y) dx dy �
∫
RN

∫
|x−y|>R

|x − y|qρnk
(x)ρnk

(y) dx dy

� Rq

∫
RN

ρnk
(x)

( ∫
|x−y|>R

ρnk
(y) dy

)
dx

� Rq m(m/2).

Thus

E(ρnk
) � 1

q

∫
N

∫
N

|x − y|qρnk
(x)ρnk

(y) dx dy � C Rq.
R R
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As q > 0, for sufficiently large R > 0 there exists a sufficiently large k0 > 0 such that for all nk > k0, E(ρnk
) �

CRq > inf{E(ρ): ρ ∈ A}, contradicting the fact that ρnk
is a minimizing sequence. Therefore “vanishing” does not 

occur.
Next, suppose “dichotomy” occurs. Using the notation of Lemma 10(iii), let

dk := dist
(
supp(ρ1,k), supp(ρ2,k)

)
denote the distance between the supports of ρ1,k and ρ2,k . We can further assume that the supports of ρ1,k and ρ2,k

are disjoint.
Inspecting again the attraction term we get that for some constant C > 0,

1

q

∫
RN

∫
RN

|x − y|qρnk
(x)ρnk

(y) dx dy

� C

q

∫
supp(ρ1,k)

∫
supp(ρ2,k)

|x − y|qρ1,k(x)ρ2,k(y) dx dy

� C

q
d

q
k ‖ρ1,k‖L1(RN)‖ρ2,k‖L1(RN).

Since dk → ∞ as k → ∞, and ‖ρi,k‖L1(RN) does not converge to zero, the above estimate gives that E(ρnk
) → ∞, 

contradicting again the fact that ρnk
is a minimizing sequence. Thus “dichotomy” does not occur.

Therefore “tightness up to translation” is the only possibility, i.e., there exists a sequence {yk}k∈N in RN such that

for all ε > 0 there exists R > 0 satisfying m �
∫

B(yk,R)

ρnk
(x) dx � m − ε. (14)

Now, let ρnk
(x) = ρnk

(x + yk) and note that E(ρnk
) = E(ρnk

) by translation invariance of the energy E. Thus, 
{ρnk

}k∈N is also a minimizing sequence. Since {ρnk
}k∈N ⊂ A, all members of the sequence are uniformly bounded in 

L1(RN) ∩ L∞(RN) and passing to a subsequence if necessary, we may assume that

ρnk
⇀ ρ0 weakly in Ls

(
R

N
)

for some 1 < s < ∞ and some ρ0 ∈ L1(RN) ∩ L∞(RN).2 Moreover, by (14),∫
RN

ρ0(x) dx = m,

or in other words, when passing to the limit as k → ∞ the sequence ρnk
does not “leak-out” at infinity. To show that 

ρ0 � 0 a.e. let

S := {
x ∈R

N :ρ0(x) < 0
}
.

Then the characteristic function of S, χS , is an admissible test function for the weak convergence of ρnk
, so we get 

that ∫
S

ρnk
(x) dx →

∫
S

ρ0(x) dx < 0.

However, since ρnk
∈ A, we see that

lim inf
k→∞

∫
S

ρnk
(x) dx � 0;

hence, S has measure zero. Similarly we can show that ‖ρ0‖L∞(RN) � M . Thus ρ0 ∈ A.

2 In fact, the sequence ρnk
converges weakly to ρ0 in Ls(RN) for every 1 < s < ∞ because of the uniform bound on the sequence. The weak 

convergence holds for s = 1, as well, by (14) and since the translation sequence {yk}k∈N can be taken to be zero by the translation invariance of 
the energy.
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Next we need to show that the energy is weakly lower semicontinuous. Here, with an abuse of notation, we will 
drop the bar on ρn, and simply denote them by ρn.

By Lemma 3.3, the repulsive part is weakly lower semicontinuous and we have that

− 1

p

∫
RN

∫
RN

|x − y|pρn(x)ρn(y) dx dy → − 1

p

∫
RN

∫
RN

|x − y|pρ0(x)ρ0(y) dx dy (15)

as n → ∞.
On the other hand, for the attractive part, define

Gn(x) =
∫

B(0,R)

|x − y|qρn(y) dy and G0(x) =
∫

B(0,R)

|x − y|qρ0(y) dy,

for any fixed R > 0. Note that since ‖ρ0‖L∞(RN) � M and q > 0, we see that G0 ∈ L∞(B(0, R)), in particular, 
G0 ∈ Ls/(s−1)(B(0, R)). Therefore, by the weak convergence of ρn in Ls(B(0, R)),∫

B(0,R)

G0(x)
[
ρn(x) − ρ0(x)

]
dx → 0 (16)

as n → ∞. Also, since ρn are uniformly bounded, taking 
∫
B(0,R)

| · −y|q dy ∈ Ls/(s−1)(B(0, R)) as a test function, 
we see that∫

B(0,R)

ρn(x)
[
Gn(x) − G0(x)

]
dx → 0 (17)

as n → ∞, by the weak convergence of ρn in Ls(B(0, R)).
Thus, using (16) and (17), we have that∫

B(0,R)

Gn(x)ρn(x) dx =
∫

B(0,R)

G0(x)
[
ρn(x) − ρ0(x)

]
dx

+
∫

B(0,R)

ρn(x)
[
Gn(x) − G0(x)

]
dx +

∫
B(0,R)

G0(x)ρ0(x) dx

converges to∫
B(0,R)

G0(x)ρ0(x) dx

as n → ∞. Hence,

lim inf
n→∞

∫
B(0,R)

∫
B(0,R)

|x − y|qρn(x)ρn(y) dx dy =
∫

B(0,R)

∫
B(0,R)

|x − y|qρ0(x)ρ0(y) dx dy.

Now, by (14), for given ε > 0, we can choose R > 0 such that∫
B(0,R)

ρ0(x) dx � m − ε.

Then, for such R, since E(ρ0) < ∞, we can control the excess of the attractive part on RN \ B(0, R) and we get 
that
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∫
RN

∫
RN

|x − y|qρ0(x)ρ0(y) dx dy �
∫

B(0,R)

∫
B(0,R)

|x − y|qρ0(x)ρ0(y) dx dy + Cε

� lim inf
n→∞

∫
B(0,R)

∫
B(0,R)

|x − y|qρn(x)ρn(y) dx dy + Cε

� lim inf
n→∞

∫
RN

∫
RN

|x − y|qρn(x)ρn(y) dx dy + Cε. (18)

Letting ε → 0 and combining with (15) yields

inf
{
E(ρ) : ρ ∈ A

}
� E(ρ0) � lim inf

n→∞ E(ρn) = inf
{
E(ρ) : ρ ∈A

}
,

that is, ρ0 is a solution to the minimization problem (6) in the regime −N < p < 0 < q .

Case 2: −N < p < q < 0. In this regime, the character of the interaction potential is quite different than in the 
previous case. Now the attractive term is strictly negative whereas the repulsive part of the energy E is still strictly 
positive. We also remind the reader that in this regime we prove the existence of a global minimizer of the energy 
under the additional assumption of radial symmetry on the admissible functions, i.e., in the class Ar . Here we use 
the radial symmetry to rule out “dichotomy” and we believe that radial symmetry assumption can be relaxed in this 
regime, as well; however, the argument used to rule out “vanishing” of a minimizing sequence when q > 0 does not 
apply directly in this case as the kernel K does not grow indefinitely but approach zero in this regime (see Fig. 1(c)).

First, using Proposition 3.2 we see that the attractive term is bounded below, and we conclude that in this regime

inf
{
E(ρ):ρ ∈ Ar

}
> −∞.

Next, looking at the scaling

ρλ(x) = 1

λN
ρ

(
x

λ

)

we see that ρλ ∈ Ar for λ � 1, and the energy of ρλ is given by

E(ρλ) = λq

q

∫
RN

∫
RN

|x − y|qρ(x)ρ(y) dx dy − λp

p

∫
RN

∫
RN

|x − y|pρ(x)ρ(y) dx dy,

for any given function ρ ∈ Ar . Note that, in particular, we can choose ρ to be the characteristic function of a ball. 
Since −N < p < q < 0, for λ large enough we get that E(ρλ) < 0, and hence,

Im := inf
{
E(ρ):ρ ∈Ar

}
< 0.

Again, we will make use of the concentration compactness lemma, Lemma 14, and show that for a minimizing 
sequence ρn the possibilities of “vanishing” and “dichotomy” do not occur.

Suppose “vanishing” occurs. Since Im < 0 in this regime and since the repulsive part is strictly positive, looking at 
the attractive part we have that

lim inf
n→∞

∫
RN

∫
RN

|x − y|qρn(x)ρn(y) dx dy > 0. (19)

Let R > 1 and q = −a for 0 < a < N . Then, as in the proof of Lemma 3.3,∫
RN

∫
RN

|x − y|qρn(x)ρn(y) dx dy =
∫
RN

∫
RN

ρn(x)ρn(y)

|x − y|a χ{|x|<1/R}
(|x − y|)dx dy

+
∫
N

∫
N

ρn(x)ρn(y)

|x − y|a χ{1/R<|x|<R}
(|x − y|)dx dy
R R
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+
∫
RN

∫
RN

ρn(x)ρn(y)

|x − y|a χ{|x|>R}
(|x − y|)dx dy

� CmM

RN−a
+ m2

Ra
+ Ra

∫
RN

ρn(x)

∫
|x−y|<R

ρn(y) dy dx

� CmM

RN−a
+ m2

Ra
+ Ra m sup

x∈RN

( ∫
|x−y|<R

ρn(y) dy

)

where C is positive constant depending only on a and N , M is the uniform bound on ρn and m is the mass of ρn, as 
before.

Since ρn vanishes by Lemma 10 (ii), we get that as n → ∞ the last term in the above inequality is zero; hence,

lim inf
n→∞

∫
RN

∫
RN

|x − y|qρn(x)ρn(y) dx dy � CmM

RN−a
+ m2

Ra
.

Letting R → ∞, since 0 < a < N , this yields that

lim inf
n→∞

∫
RN

∫
RN

|x − y|qρn(x)ρn(y) dx dy � 0,

contradicting (19). Thus “vanishing” does not occur.
To show that “dichotomy” does not occur, first we need to prove a subadditivity condition similar to the one in [38]. 

As in [35, Lemma 1], we can prove a weaker subadditivity condition which states that

for m1 > m2 we have Im1 < Im2, (20)

where, as above, Imi
denotes the infimum of E over Ami

r with mass constraint 
∫
RN ρ(x) dx = mi . Here we choose to 

display the dependence of the admissible class Ar on the mass by using the notation Ami
r to avoid confusion.

Suppose m1 > m2 and let ψ ∈Am2
r be an arbitrary function. For

c := m2

m1
< 1

define ρ ∈ Am1
r such that

ψ = c ρ.

Then we have that

E[ψ] = c2 E[ρ].
Note that since Im1 < 0 in this regime and since c2 < 1 we have that

c2 Im1 > Im1 .

Thus

E[ψ] = c2 E[ρ]� c2 Im1 > Im1,

and taking the infimum of both sides over Am2
r implies that

Im2 > Im1 .

Now, suppose “dichotomy” occurs, that is, there exists α ∈ (0, m) such that for all ε > 0, there exist k0 � 1 and 
ρ1,k , ρ2,k ∈ L1+(RN) satisfying for k � k0∥∥ρnk

− (ρ1,k + ρ2,k)
∥∥

L1(RN)
� ε,∣∣‖ρ1,k‖L1(RN) − α

∣∣ � ε,
∣∣‖ρ2,k‖L1(RN) − (m − α)

∣∣ � ε,
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and

dist
(
supp(ρ1,k), supp(ρ2,k)

) → ∞ as k → ∞.

Furthermore, after defining vk := ρnk
− (ρ1,k + ρ2,k) we can assume that

0 � ρ1,k, ρ2,k, vk � ρnk
and ρ1,kρ2,k = ρ1,kvk = ρ2,kvk = 0 a.e. (21)

We have that, for any 0 < a < N ,∫
RN

∫
RN

ρnk
(x)ρnk

(y)

|x − y|a dx dy =
∫
RN

∫
RN

ρ1,k(x)ρ1,k(y)

|x − y|a dx dy

+
∫
RN

∫
RN

ρ2,k(x)ρ2,k(y)

|x − y|a dx dy + 2
∫
RN

∫
RN

ρ1,k(x)ρ2,k(y)

|x − y|a dx dy

+ 2
∫
RN

∫
RN

ρnk
(x)vk(y)

|x − y|a dx dy −
∫
RN

∫
RN

vk(x)vk(y)

|x − y|a dx dy. (22)

The last two terms above vanish as k → ∞ using the integrability of the kernel around zero, the uniform bound on 
ρnk

and the fact that ‖vk‖L1(RN) → 0. Since dist(supp(ρ1,k), supp(ρ2,k)) → ∞ as k → ∞, and lim|x|→∞ K(|x|) = 0
in this regime, the third term on the right hand side of (22) goes to zero as k → ∞.

Again, since dist(supp(ρ1,k), supp(ρ2,k)) → ∞ as k → ∞, we see that one of the components of ρn is localized and 
the other component (say ρ2,k , without loss of generality) spreads to infinity, i.e., dist(0, supp(ρ2,k)) → ∞ as k → ∞. 
Also, as the supports of ρ1,k , ρ2,k and vk are disjoint as noted in (21) and the functions ρnk

are radially symmetric, 
so are the functions ρ2,k . Using the radial symmetry of ρ2,k , and recalling that the kernel K(|x|) approaches zero as 
|x| → ∞, we get that

lim
k→∞

∫
RN

∫
RN

K(x − y)ρ2,k(x)ρ2,k(y) dx dy = 0.

This follows from the fact that the radial symmetry of the functions ρ2,k guarantee that their supports do not extend to 
infinity in one direction but rather in such a way that one can bound the energy from below by∫

S

∫
−S

K(x − y)ρ2,k(x)ρ2,k(y) dx dy,

where S is a sector defined by x ∈ R
N with |x| > R and such that the angle of the vector x with a fixed direction v is 

less than a constant angle, say, π/4.
These observations combined with (22) imply that

Im = lim
k→∞

∫
RN

∫
RN

K(x − y)ρnk
(x)ρnk

(y) dx dy

� lim inf
k→∞

∫
RN

∫
RN

K(x − y)ρ1,k(x)ρ1,k(y) dx dy

= Iα, (23)

which contradicts the weak subadditivity condition (20). Thus “dichotomy” does not occur.
As in the first case, “tightness up to translation” is the only possibility. Therefore the weak limit ρ0 of the translated 

sequence ρn satisfies the mass constraint and hence, is a member of Ar .
The weak lower semicontinuity in this regime follows directly from Lemma 3.3 as both attractive and repulsive 

terms of the energy are of the form considered in the lemma and by (14) the assumptions of the lemma are satisfied. 
We conclude that the minimization problem (6) has a solution when −N < p < q < 0. �
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Remark 3.4. The concentration compactness principle suffices to establish a weaker form compactness so that we can 
pass to a weak limit in the sequence ρn. However, the sequence does not necessarily convergence strongly to ρ in any 
Ls(RN). Indeed, strong convergence can fail due to mass leaking out at infinity and/or because of oscillations. By the 
tightness of the sequence {ρn}n∈N the former does not happen; but, we cannot rule out the oscillations of ρn.

On the other hand, we note that for functionals which contain a term that is convex in ρ (cf. Remark 1.1), one can 
further show that the convergence of {ρn}n∈N is strong (cf. [35,38]).

Remark 3.5. When N = 2 the Newtonian potential is given by − 1
2π

log |x|. Either considering the logarithmic term 
as the repulsion in

K(x) = 1

q
|x|q − log |x|, q > 0, x ∈R

2

or as the attraction in

K(x) = log |x| − 1

p
|x|p, −2 < p < 0, x ∈R

2

the proof of Theorem 2.1 applies since the properties of the interaction potential (singularity at the origin and blow-up 
at infinity) remain the same as in higher dimensions.

Remark 3.6 (Uniform Boundedness). The uniform L∞ bound is used for admissible densities ρ in the proof of 
Theorem 2.1 to control the energy near the singularity of K , and provide weak compactness in some function space. 
We have motivated, for example from the point of view of gradient flow dynamics, why this assumption is natural, 
or more precisely, acceptable. However, we do not believe it is essential but rather convenient for our proof. In 
fact, we believe that the assumption can be relaxed by just taking densities in some Ls (not necessarily uniformly 
bounded), using tightness of a minimizing sequence to imply convergence of measures, and then showing that, due to 
the negative-power repulsion, finite energy rules out concentrations (i.e. the densities remain functions). During the 
review process of this work we became aware of the work [24] where the authors address this issue when −N < p <

2 − N using an obstacle problem interpretation.

Positive power repulsion p > 0 The main tool in establishing the existence of minimizers for (9) is, again, the 
concentration compactness principle. We refer to [58, Section 4.3] for the following lemma.

Lemma 3.7 (Concentration Compactness Lemma for Measures). Let {μn}n∈N be a sequence of probability measures 
on RN . Then there exists a subsequence {μnk

}k∈N satisfying one of the three following possibilities:

(i) (tightness up to translation) there exists yk ∈ R
N such that for all ε > 0 there exists R > 0 with the property that∫

B(yk,R)

dμnk
(x) � 1 − ε for all k.

(ii) (vanishing) limk→∞ supy∈RN

∫
B(y,R)

dμnk
(x) = 0, for all R > 0;

(iii) (dichotomy) there exists α ∈ (0, 1) such that for all ε > 0, there exists a number R > 0 and a sequence {yk}k∈N ⊂
R

N with the following property:

Given R′ > R there are non-negative measures μ1
k and μ2

k such that

0 � μ1
k + μ2

k � μnk
,

supp
(
μ1

k

) ⊂ B(yk,R), supp
(
μ2

k

) ⊂R
N \ B

(
yk,R

′),
lim sup
k→∞

(∣∣∣∣α −
∫
RN

dμ1
k(x)

∣∣∣∣ +
∣∣∣∣(1 − α) −

∫
RN

dμ2
k(x)

∣∣∣∣
)
� ε.
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Proof of Theorem 2.3. For any μ ∈ P(RN) we have that 
∫
RN dμ(x) = 1. Also when q > p > 0 the interaction 

potential satisfies K(|x|) � 1/q − 1/p. Thus

inf
{
E(μ):μ ∈P

(
R

N
)}

> −∞.

Since K(|x|) � 0 when 0 � |x| � (q/p)1/(q−p) we see that the above infimum is negative.
Now let {μn}n∈N ⊂ P(RN) be a minimizing sequence of the problem (9). Then by the concentration compactness 

lemma for measures there is a subsequence of {μnk
}k∈N which satisfies one of the three possibilities in Lemma 23.

Suppose “vanishing” occurs, i.e., for 0 < ε < 1 and R > 0 and for k sufficiently large enough we have that∫
B(y,R)

dμnk
(x) < ε

for any y ∈ R
N . This implies that∫

RN\B(0,R)

dμnk
(x) � 1 − ε > 0.

Note that since K is a polynomial of |x| there exists a constant Cp,q > 0 depending on p and q only such that

K(x) � |x|q−p − Cp,q (24)

with q − p > 0.
Now looking at the energy and using the indefinite growth of the interaction potential K as |x| → ∞ (see Fig. 1(d)) 

we see that∫
RN

∫
RN

K(x − y)dμnk
(x) dμnk

(y) �
∫
RN

∫
|x−y|>R

(|x − y|q−p − Cp,q

)
dμnk

(x) dμnk
(y)

� Rq−p

∫
RN

( ∫
|x−y|>R

dμnk
(y)

)
dμnk

(x) − Cp,q

� Rq−p (1 − ε) − Cp,q;
hence, for sufficiently large R, there exists k0 > 0 such that the energy E[μnk

] > 0 for all nk > k0. This contradicts 
the fact that {μnk

}k∈N is a minimizing sequence.
Similarly, if we assume that “dichotomy” occurs, looking at the energy and using (24) we get that

lim inf
k→∞

∫
RN

∫
RN

K(x − y)dμnk
(x) dμnk

(y) � lim inf
k→∞

∫
RN

∫
RN

K(x − y)dμ1
k(x)dμ2

k(y)

�
(
R′ − R

)q−p
α(1 − α) − Cp,q .

Again, since q > p > 0 and K(|x|) ↗ ∞ as |x| → ∞, by taking R′ large enough we get that

lim inf
k→∞ E[μnk

] > 0,

a contradiction.
Therefore “tightness up to translation” is the only possibility. As in the case of Theorem 2.1 for q > 0, the cen-

ters yk associated with the translation can be taken to be zero by the translation invariance of the energy. Hence we 
may assume the sequence of probability measures, {μn}n∈N is tight. Then, by the Prokhorov’s theorem (cf. [59, The-
orem 4.1]) there exists a further subsequence of {μn}n∈N which we still index by n, and a measure μ0 ∈ P(RN) such 
that

μn
weak-∗
⇀ μ0

in P(RN) as n → ∞.



1300 R. Choksi et al. / Ann. I. H. Poincaré – AN 32 (2015) 1283–1305
To show weak lower semicontinuity of E(μ) we will proceed as in the proof of Theorem 2.1, paying attention to 
the fact that in this regime K becomes negative.

Since the sequence {μn}n∈N is tight, for any given ε > 0 there exists r > 0 such that∫
B(0,r)

dμ0(x) � 1 − ε.

Choose R := max{(q/p)1/(q−p) + 1, r}, and define

G̃n(x) :=
∫

B(0,R)

K(x, y) dμn(y) and G̃0(x) :=
∫

B(0,R)

K(x, y) dμ0(y).

As K(x, y) is continuous in x on B(0, R), the sequence of functions G̃n converges uniformly to G̃ on C(B(0,R))

by the Arzela–Ascoli theorem, using the compactness of the closed ball and the equicontinuity of G̃n. Then, by the 
uniform convergence of G̃n and the weak-∗ convergence of μn we get that

lim inf
n→∞

∫
B(0,R)

∫
B(0,R)

K(x, y) dμn(x) dμn(y) =
∫

B(0,R)

∫
B(0,R)

K(x, y) dμ0(x) dμ0(y).

Since E(μ0) < ∞, again, the energy on RN \ B(0, R) is controlled and the above equality, as in (18), yields∫
RN

∫
RN

K(x, y) dμ0(x) dμ0(y) �
∫

B(0,R)

∫
B(0,R)

K(x, y) dμ0(x) dμ0(y) + Cε

� lim inf
n→∞

∫
B(0,R)

∫
B(0,R)

K(x, y) dμn(x) dμn(y) + Cε

� lim inf
n→∞

∫
RN

∫
RN

K(x, y) dμn(x) dμn(y) + Cε.

Sending ε to 0 gives the weak lower semicontinuity of E; hence, μ0 ∈ P(RN) is a solution of the minimization 
problem (9). �
3.2. Ground state for quadratic attraction and Newtonian repulsion

Finally, going back to the setting of admissible functions, i.e., working in A defined by (7), we will prove The-
orem 2.4 and characterize the ground state when q = 2 and p = 2 − N . To establish this we need to derive the full 
Euler–Lagrange equations for the energy E. We obtain these equations not in the restricted class of radially symmetric 
densities but in the wider class (7). The same Euler–Lagrange equations were formally obtained in [60] in one dimen-
sion and derived in the context of minimization with respect to the 2-Wasserstein distance in [21]. Similar conditions 
were considered in [60, Section 2.3]; however, here we take a more direct and elementary approach in the spirit of a 
variational inequality.

Lemma 3.8 (First Variation of the Energy). Let ρ0 ∈ A be a minimizer of the energy E. Then we have

Λ(x) � η a.e. on the set
{
x : ρ0(x) = 0

}
,

Λ(x) = η a.e. on the set
{
x : ρ0(x) > 0

}
, (25)

where

Λ(x) := 2
∫
RN

(
1

q
|x − y|q − 1

p
|x − y|p

)
ρ0(y) dy, (26)

and η is a constant.
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Proof. Proceeding as in [51], let ρ0 be a minimizer of E and let ζ ∈ Z be an arbitrary function. For 0 � ε � 1, 
consider

ρε(x) := ρ0(x) + ε

(
ζ(x) −

∫
RN ζ(x) dx

m
ρ0(x)

)
. (27)

Clearly 
∫
RN ρε(x) dx = m. Also, since ζ ∈ Z, we have ρε � 0.

Note that the function

e(ε) := E

[
ρ0(x) + ε

(
ζ(x) −

∫
RN ζ(x) dx

m
ρ0(x)

)]
(28)

is defined on the interval [0, 1]. Indeed, 0 is a boundary point, since for any ε < 0, the perturbation function ρε can be 
made negative; hence, it is not a member of the admissible class.

Now the minimality of ρ0 implies that

e′(0+) = d

dε

∣∣∣∣
ε=0+

E(ρε) � 0. (29)

In explicit terms this means that

d

dε

∣∣∣∣
ε=0+

E(ρε) = 2
∫
RN

∫
RN

(
1

q
|x − y|q − 1

p
|x − y|p

)
ρ0(y)ζ(x) dx dy

− 2

(∫
RN ζ(x) dx

m

) ∫
RN

∫
RN

(
1

q
|x − y|q − 1

p
|x − y|p

)
ρ0(x)ρ0(y) dx dy

=
∫
RN

Λ(x)ζ(x) dx − η

∫
RN

ζ(x) dx

=
∫
RN

(
Λ(x) − η

)
ζ(x) dx,

where Λ was defined in (26), and

η :=
∫
RN Λ(x)ρ0(x) dx

m
. (30)

Hence, we get that∫
RN

(
Λ(x) − η

)
ζ(x) dx � 0. (31)

The inequality (31) above holds, in particular, for all non-negative functions ζ ∈ L1(RN) ∩ L∞(RN) satisfying∫
RN

ζ(x) dx � m

2
.

This, in turn, implies that

Λ(x) − η � 0 a.e.

Moreover, note that η is the average of Λ with respect to the measure ρ0(x)dx, and hence the condition Λ(x) � η a.e. 
implies that Λ(x) = η for a.e. x where ρ0(x) > 0. This establishes (25). �

It is evident that in Lemma 3.8, we actually do not need ρ0 to be a minimizer but simply a critical point in the sense 
of (29) holding for all ζ ∈ Z.
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Remark 3.9 (Equipartition of the Energy). Note that the equipartition (up to constants) of the energy is a necessary 
condition for criticality. Namely, when for ρ ∈ A, and for any λ �= 0 we consider the rescaled function ρλ given by 
ρλ(x) := (1/λN)ρ(x/λ), then a necessary condition for criticality (in particular for being a local minimizer) is that

d

dλ

∣∣∣∣
λ=1

E
(
ρλ

) = 0. (32)

In particular, if ρ0 ∈ A satisfies (32), then∫
RN

∫
RN

|x − y|qρ0(x)ρ0(y) dx dy =
∫
RN

∫
RN

|x − y|pρ0(x)ρ0(y) dx dy (33)

Now we can prove Theorem 2.4.

Proof of Theorem 2.4. The existence of a minimizer was established in Theorem 2.1. Now, first we note that since 
M � m

ωN
, the function ρ is in the admissible class A, where ωN = πN/2

Γ (N/2+1)
denotes the volume of the unit ball in R

N . 
Next, we check that ρ is a critical point of the functional E, i.e., that ρ satisfies (25). As noted in Remark 2.5, the 
attractive term of the energy simplifies when q = 2. On the other hand, when p = 2 − N the repulsive part is the 
Newtonian potential (i.e., −�y(|x − y|2−N) = N(N − 2)ωNδx ), and

Φ(x) :=
∫

B(0,1)

1

N(N − 2)ωN |x − y|N−2
dy

solves the Poisson problem

−�Φ(x) =
{

1 if |x| � 1,

0 if |x| > 1.

Since the right-hand side of the Poisson problem is radial, so is Φ(x). We use the expression of the Laplacian on RN

in hyper-spherical coordinates,

−�Φ(x) = − 1

rN−1

d

dr

(
rN−1 dΦ(r)

dr

)
,

with r = |x|, and integrate once to get

dΦ(r)

dr
=

{− r
N

if r � 1,

− 1
NrN−1 if r > 1.

Integrating one more time and using the fact that Φ ∈ C1 by elliptic regularity, we get that

Φ(r) =
{

− r2

2N
+ 1

2(N−2)
if r � 1,

1
N(N−2)rN−2 if r > 1.

Then we calculate the function Λ(x) given by (26) to find

Λ(x) = 2
∫
RN

(
1

2
|x − y|2 − 1

2 − N
|x − y|2−N

)
m

ωN

χB(0,1)(y) dy

= m

ωN

( ∫
B(0,1)

|x|2 + |y|2 dy

)
+ 2m

ωN(N − 2)

∫
B(0,1)

1

|x − y|N−2
dy

=
{

2mN2

N2−4
if |x| � 1,

m|x|2 + 2m

(N−2)|x|N−2 + mN
N+2 , if |x| > 1.

Clearly, supp(ρ) = {x ∈ R
N : |x| � 1}, and when |x| � 1, we have Λ ≡ η by (30). For |x| > 1, note that Λ(x) is an 

increasing function of |x| and equals η when |x| = 1; hence, ρ satisfies (25), and is a critical point of E.
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Note that we can write the repulsive part in (10) using the H−1-norm,3 and write the energy as

E(ρ) = m

∫
RN

|x|2ρ(x)dx + N(N − 2)ωN‖ρ‖2
H−1(RN)

.

Here, both terms in the energy are strictly convex.4 Since the energy is strictly convex in every direction and ρ(x) =
m
ωN

χB(0,1)(x) is a critical point, it is the global minimizer of the problem (6). �
Remark 3.10. When p = 2 − N the repulsive term is always strictly convex as it can be written as the square of the 
H−1-norm of ρ; however, for q > 2 − N , q �= 2, it is difficult to check the convexity of the attractive term due to 
cross-integral terms in the energy.

Remark 3.11. The scaling of the uniform distribution (m/ωN)χB(0,1) can be determined by looking at the weak 
criticality condition (33). Indeed, when q = 2 and p = 2 − N , an explicit calculation shows that for any given m > 0
the function

ρR(x) := m

ωNRN
χB(0,R)(x)

satisfies the weak condition (33) if and only if R = 1.
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