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Abstract

Let (X, d, m) be a proper, non-branching, metric measure space. We show existence and uniqueness of optimal transport maps 
for cost written as non-decreasing and strictly convex functions of the distance, provided (X, d, m) satisfies a new weak property 
concerning the behavior of m under the shrinking of sets to points, see Assumption 1. This in particular covers spaces satisfying 
the measure contraction property.

We also prove a stability property for Assumption 1: If (X, d, m) satisfies Assumption 1 and m̃ = g · m, for some continuous 
function g > 0, then also (X, d, m̃) verifies Assumption 1. Since these changes in the reference measures do not preserve any Ricci 
type curvature bounds, this shows that our condition is strictly weaker than measure contraction property.
© 2014 
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1. Introduction

In [10], Gaspard Monge studied the by now famous minimization problem

inf
T�μ0=μ1

∫
d
(
x,T (x)

)
μ0(dx), (1.1)

on Euclidean space, where μ0 and μ1 are two given probability measures and the minimum is taken over all maps 
pushing μ0 forward to μ1. This problem turned out to be very difficult because the functional is non-linear and the con-
straint set maybe empty. 70 years ago, Kantorovich [8] came up with a relaxation of the minimization problem (1.1). 
He allowed arbitrary couplings q of the two measures μ0 and μ1, which we denote by the set Π(μ0, μ1), and also 
more general cost functions c : X × X → R:

inf
q∈Π(μ0,μ1)

∫
c(x, y)q(dx, dy). (1.2)
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Minimizers of (1.2) are called optimal couplings and, therefore, this family of problems is commonly called optimal 
transport problems. A natural and interesting question is under which conditions do these two minimization problems 
coincide, i.e. under which conditions is the optimal coupling given by a transportation map. In [5], Brenier showed 
using ideas from fluid dynamics that on Euclidean space with cost function c(x, y) = |x − y|2 there is always a 
unique optimal transportation map as soon as μ0 is absolutely continuous with respect to the Lebesgue measure. Soon 
after, McCann [9] generalized this result to Riemannian manifolds with more general cost functions including convex 
functions of the distance. By now, this result is shown in a wide class of settings, for instance for non-decreasing 
strictly convex functions of the distance in Alexandrov spaces [3], for squared distance on the Heisenberg group [2], 
and recently for the squared distance on CD(K, N) and CD(K, ∞) spaces by Gigli [7] and for squared distance cost 
by Ambrosio and Rajala in a metric Riemannian like framework [1].

In this paper we show existence and uniqueness of optimal transport maps on proper, non-branching, metric mea-
sure spaces satisfying a new condition, Assumption 1, for cost functions of the form c(x, y) = h(d(x, y)), with h
strictly convex and non-decreasing.

Assumption 1 does not imply any lower curvature bounds in the sense of Lott, Sturm and Villani. In particular in 
Section 3 we prove that Assumption 1 cannot imply the measure contraction property, MCP. On the other hand the 
measure contraction property implies Assumption 1. Therefore our result applies to spaces enjoying MCP, recovers 
most of the previously mentioned results and in many cases also extends them.

To our knowledge this is the first existence result of optimal maps in metric spaces for c(x, y) = h(d(x, y)), with 
h strictly convex and non-decreasing with no assumption on a lower bound on the Ricci curvature of the space. For 
h = id , existence of optimal maps, again with no assumption on the curvature of the metric space, has been obtained 
in [4].

The crucial idea for the proof of the main result is to approximate the c-cyclically monotone set on which the 
optimal measure is concentrated by means of a suitably chosen sequence of c-cyclically monotone sets representing 
transports into a discrete target.

We conclude this Introduction by describing the structure of the paper. In Section 2 we introduce the general 
setting of the paper, define Assumption 1 and state the two main results: the existence of optimal transport maps 
(Theorem 2.1) and the stability under changes in the reference measure of (X, d, m) of Assumption 1 (Theorem 2.2). 
In Section 3 we prove Theorem 2.2 while Section 4 and Section 5 are devoted to the proof of Theorem 2.1.

2. Notation and main result

We now introduce the setting of this article. If not explicitly stated otherwise we will always assume to work in this 
framework.

Let (X, d, m) be a proper, non-branching, metric measure space, that is

– (X, d) is a proper, complete and separable metric space with a non-branching geodesic structure;
– m is a positive Borel measure, finite over compact sets whose support coincides with X.

In case we drop the proper assumption, we will refer to (X, d, m) just as non-branching metric measure space. Let 
μ0, μ1 be probability measures over X and let h : [0, ∞) → [0, ∞) be a strictly convex and non-decreasing map.

We study the following minimization problem

min
T�μ0=μ1

∫
h
(
d
(
x,T (x)

))
μ0(dx), (2.1)

where T�μ0 denotes the push forward of μ0 under the map T . In the sequel, we will often denote the cost function 
h ◦ d just with c. To get hands on the minimization problem (2.1) we also study its relaxed form, the Kantorovich 
problem. Let Π(μ0, μ1) be the set of transference plans, i.e.

Π(μ0,μ1) := {
π ∈ P(X × X) : (P1)�π = μ0, (P2)�π = μ1

}
,

where Pi : X × X → X is the projection map onto the i-th component, Pi(x1, x2) = xi for i = 1, 2.
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We will always assume that μ0 and μ1 have finite c-transport distance in the sense that

inf

{ ∫
X×X

h
(
d(x, y)

)
π(dxdy) : π ∈ Π(μ0,μ1)

}
< ∞.

Recall that a transference plan π ∈ Π(μ0, μ1) is said to be c-cyclically monotone if there exists Γ so that π(Γ ) = 1
and for every N ∈ N and every (x1, y1) . . . , (xN , yN) ∈ Γ it holds

N∑
i=1

c(xi, yi) ≤
N∑

i=1

c(xi+1, yi),

with xN+1 = x1.
We also introduce a few objects connecting geodesics of the space X to optimal transport plans. Let

G(X) ⊂ C
([0,1];X)

be the set of geodesics endowed with the uniform topology inherited from C([0, 1]; X). Being a closed subset of 
C([0, 1]; X), it is Polish. For any t ∈ [0, 1] consider the map

et : G(X) → X,

the evaluation at time t defined by et (γ ) = γt . For a subset A ⊂ X and a point x ∈ X the t -intermediate points between 
A and x are defined as

At,x := et

({
γ ∈ G(X) : γ0 ∈ A,γ1 = x

})
. (2.2)

Assuming A compact, in a general non-branching metric measure space, the set At,x is closed. If we also assume the 
space to be proper, as we do here, the set At,x , being bounded, is in fact compact.

This evolution defined as (2.2) will play a fundamental role in our analysis. In particular we make the following

Assumption 1. A non-branching, metric measure space (X, d, m) verifies Assumption 1 if for every compact set 
K ⊂ X there exists a measurable function f : [0, 1] → (0, 1] with

lim sup
t→0

f (t) >
1

2
,

and a positive δ ≤ 1 such that

m(At,x) ≥ f (t) · m(A), ∀0 ≤ t ≤ δ,

for any compact set A ⊂ K and any base point x ∈ K .

We can now state the main result of this paper.

Theorem 2.1. Let (X, d, m) be a proper, non-branching, metric measure space verifying Assumption 1. Let μ0 and μ1
be two probability measures over X with finite c-transport distance, where c = h ◦d . If μ0 � m and h is strictly-convex 
and non-decreasing, the optimal transport problem associated to (2.1) has a unique solution induced by a map.

In detail we will prove that if μ0 � m then any c-cyclically monotone plan π is induced by a map T : X → X. 
With π induced by a map we mean that π = (id, T )�μ0. This implies that the two minimization problems (1.1) and 
(1.2) coincide. Then a direct corollary of this result is the uniqueness of the optimal coupling. We will prove the claim 
by showing that branching at starting points does not happen almost surely.

Regarding Assumption 1, we will prove the following result, that can be understood as a stability property. Here 
the space is not needed to be proper.

Theorem 2.2. Let (X, d, m) be a non-branching metric measure space verifying Assumption 1. Consider a continuous 
function g : X → (0, ∞) and the measure m̃ := g · m. Then (X, d, m̃) is a non-branching metric measure space 
verifying Assumption 1.



1370 F. Cavalletti, M. Huesmann / Ann. I. H. Poincaré – AN 32 (2015) 1367–1377
3. On Assumption 1

It is clear that spaces satisfying the measure contraction property – for a definition we refer to [11,14] – also satisfy 
Assumption 1. However, as we will prove in this section, Assumption 1 does not imply the measure contraction 
property or, more in general, any synthetic Ricci curvature bounds.

In detail, we will show that if (X, d, m) is a non-branching metric measure space verifying Assumption 1 and 
m̃ = gm, with g continuous and strictly positive, then also (X, d, m̃) verifies Assumption 1. Since this kind of changes 
in the measure destroy Ricci lower bounds, Assumption 1 cannot imply any of them. See [14, Theorem 1.7].

The setting of this subsection is slightly different from the remaining of this note, so we will specify all the 
assumptions needed in each statement. We start with two simple lemmas.

Lemma 3.1. Let (X, d, m) be a metric measure space. For any compact set K and any ε > 0 there exist n ∈ N and 
Ki ⊂ K compact for i = 1, . . . , n such that

diam(Ki) ≤ ε, m

(
K \

n⋃
i=1

Ki

)
≤ ε,

and Ki ∩ Kj = ∅ for i �= j .

Proof. So let ε > 0 be given. Then consider the open covering of K given by {Bε(x)}x∈K . By compactness, there 
exist finitely many {xi}i≤n so that every point of K is at distance less than ε for some xi . Then consider the compact 
sets Hi := K ∩ Bε(x) for i = 1, . . . , n. Clearly the union of all Hi covers K and each of Hi has diameter less than ε. 
Taking differences we can pass to a family of Borel sets Ĥi so that

diam(Ĥi) ≤ ε,

n⋃
i=1

Ĥi = K

with Ĥi ∩ Ĥj = ∅ if i �= j . Then by inner regularity with compact sets, choose for each i ≤ n a compact set Ki ⊂ Ĥi

so that m(Ĥi \ Ki) ≤ ε/n. The claim follows. �
Lemma 3.2. Let (X, d, m) be a non-branching metric measure space. Suppose that for each K ⊂ X compact there 
exist δ, ε > 0 and a measurable function f : [0, δ] → (0, ∞) with lim supt→0 f (t) > 1/2, so that

m(At,x) ≥ f (t)m(A), ∀t ∈ [0, δ],
for any x ∈ K and A ⊂ K compact with diam(A) ≤ ε. Then (X, d, m) verifies Assumption 1.

Proof. Consider K ⊂ X compact set. Let δ, ε > 0 and the measurable map f given by the hypothesis. Fix also x ∈ K . 
Let A ⊂ K be any compact set. Now for any η < ε consider the finite family of disjoint compact {Ai}i≤n(η) sets given 
by Lemma 3.1. Then since the space is non-branching and diam(Ai) ≤ ε it follows that

m(At,x) =
∑

i≤n(η)

m
(
(Ai)t,x

)

≥ f (t)
∑

i≤n(η)

m(Ai)

≥ f (t)m(A) − ηf (t),

for all t ∈ [0, δ]. Since η was any positive number less than ε and δ depends only on K and ε, the claim follows. �
It follows from Lemma 3.2 that to verify Assumption 1 it is sufficient to consider compact sets of small diameter. 

This already suggests that Assumption 1 is stable under continuous changes of the measure as the one we proposed 
few lines above. We now state and prove this stability property.
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Theorem 3.3. Let (X, d, m) be a non-branching metric measure space verifying Assumption 1. Consider a continuous 
function g : X → (0, ∞) and the measure m̃ := g · m. Then (X, d, m̃) is a non-branching metric measure space 
verifying Assumption 1.

Proof. Step 1. Note first, that by continuity of g, m̃ is finite over compact sets and therefore (X, d, m̃) is a non-
branching, metric measure space. Let K ⊂ X be any compact set and δ > 0 and f measurable be given by Assump-
tion 1 for (X, d, m). Note that diam(K) is bounded, say by M > 0. Then for any A ⊂ K compact, x ∈ K and t ∈ [0, δ]
the following chain of inequalities holds:

m̃(At,x) =
∫

At,x

g(x)m(dx)

≥ inf
{
g(x) : x ∈ At,x

}
m(At,x)

≥ inf
{
g(x) : x ∈ At,x

}
f (t)m(A)

≥ inf{g(x) : x ∈ At,x}
max{g(x) : x ∈ A} f (t)

∫
A

g(x)m(dx)

= inf{g(x) : x ∈ At,x}
max{g(x) : x ∈ A} f (t)m̃(A).

Moreover from Lemma 3.2 it follows that we can focus only on compact A with arbitrarily small diameter.
Step 2. Then we reason as follows: consider η > 0 so that(

1 − η

α

)
lim sup

t→0
f (t) >

1

2
,

where α > 0 is so that g(x) > α for all x ∈ K . Then since g is uniformly continuous over K , there exists ε > 0 so that 
|g(z) − g(w)| ≤ η whenever d(z, w) ≤ 2ε for z, w ∈ K .

Let now A ⊂ K be any compact set with diam(A) ≤ ε and take t ≤ min{δ, ε/M}. Then if z ∈ At,x and w ∈ A, it 
follows that d(z, w) ≤ 2ε: indeed there exists a geodesic γ so that γ0 ∈ A, γ1 = x and γt = z, then

d(z,w) ≤ d(z, γ0) + d(γ0,w) ≤ t · diam(K) + ε ≤ 2ε.

Then if A ⊂ K compact set with diam(A) ≤ ε, x ∈ K and t ≤ min{δ, ε/M} and xM ∈ A so that g(xM) = max{g(x) :
x ∈ A}, we have:

1 − inf{g(x) : x ∈ At,x}
max{g(x) : x ∈ A} = sup{g(xM) − g(z) : z ∈ At,x}

g(xM)
≤ η

α
,

and therefore

m̃(At,x) ≥
(

1 − η

α

)
f (t)m̃(A).

By the choice of η we have proved Assumption 1 for all compact sets with diameter smaller than ε. Lemma 3.2 gives 
the claim. �

Nevertheless if (X, d, m) is also proper, Assumption 1 carries some geometric property of the space.

Proposition 3.4. Any proper, non-branching, metric measure space (X, d, m) satisfying Assumption 1 is locally dou-
bling.

Proof. Take any ball B2r of radius 2r . Fix 0 < t ≤ δ and n such that (1 − t)n ≤ 1/2. Contracting B2r to its center 
yields (B2r )t = B(1−t)2r . Contracting B(1−t)2r to its center yields (B(1−t)2r )t = B(1−t)22r . Since (X, d, m) is proper 
we can use Assumption 1 and estimate

m(B(1−t)22r ) ≥ f (t)m(B(1−t)2r ) ≥ f (t)2m(B2r ).
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Repeating this another n − 2 times yields

m(Br) ≥ m(B(1−t)n2r ) ≥ f (t)nm(B2r ). �
Remark 3.5. Assume that (X, d, m) is locally doubling and for any compact set K ⊂ X there exists 0 < δ ≤ 1 such 
that for any t ≤ δ there exists a map Ft : K × K → X such that

d
(
x,Ft (x, y)

) = td(x, y),
1

L(t)
d(x, z) ≤ d

(
Ft(x, y),Ft (z, y)

) ≤ L(t) d(x, z)

and L(t) → 1 as t goes to 0. Moreover, assume that Ft varies continuously in time and for all compact sets K :

lim sup
t→0

inf

{
m(Br(Ft (x, y)))

m(Br(x))
: x, y ∈ K,r > 0

}
>

1

2
.

Then it is not hard to show using covering theorems that (X, d, m) verifies Assumption 1.
This says that a certain type of Ahlfors regularity together with a bi-Lipschitz selection of t -intermediate points 

implies Assumption 1.

4. Evolution estimates

Following Section 2, we fix once for all (X, d, m) a proper, non-branching, metric measure space verifying 
Assumption 1, two probability measures μ0, μ1 with μ0 � m and h : [0, ∞) → [0, ∞) strictly convex and non-
decreasing.

Since we have to prove a local property, we can assume that supp(μ0), supp(μ1) ⊂ K with K compact. Then by 
standard results in optimal transportation, there exists a couple of Kantorovich potentials (ϕ, ϕc) such that if

Γ := {
(x, y) ∈ X × X : ϕ(x) + ϕc(y) = c(x, y)

}
,

then the transport plan π is optimal iff π(Γ ) = 1 (e.g. see Theorem 5.10 in [15]). Note also that the set Γ is c-cyclically 
monotone. So also K, ϕ, ϕc and Γ are fixed.

We start by proving the standard property of geodesics belonging to the support of the optimal dynamical transfer-
ence plan π : they cannot meet at the same time t if t �= 0, 1. For existence results and details on dynamical transference 
plans we refer to [15, Chapter 7].

Lemma 4.1. Let (x0, y0), (x1, y1) ∈ Γ be two distinct points. Then for any t ∈ (0, 1),

d
(
x0(t), x1(t)

)
> 0,

where xi(t) is any t -intermediate point between xi and yi , for i = 0, 1.

Proof. Assume by contradiction the existence of x0(t) = x1(t) ∈ X, t -intermediate points of (x0, y0) and (x1, y1), i.e.

d
(
x0, x0(t)

) = td(x0, y0), d
(
x0(t), y0

) = (1 − t)d(x0, y0),

and

d
(
x1, x1(t)

) = td(x1, y1), d
(
x1(t), y1

) = (1 − t)d(x1, y1).

Case 1: d(x0, y0) �= d(x1, y1). Then

h
(
d(x0, y1)

) + h
(
d(x1, y0)

) ≤ h
(
d
(
x0, x0(t)

) + d
(
x1(t), y1

)) + h
(
d
(
x1, x1(t)

) + d
(
x0(t), y0

))
< th

(
d(x0, y0)

) + (1 − t)h
(
d(x1, y1)

) + th
(
d(x1, y1)

) + (1 − t)h
(
d(x0, y0)

)
= h

(
d(x0, y0)

) + h
(
d(x1, y1)

)
,

where between the first and the second line we have used the strict convexity of h. From c-cyclical monotonicity we 
have a contradiction.

Case 2: d(x0, y0) = d(x1, y1). Let γ 0, γ 1 ∈ G(X) be such that

γ 0
0 = x0, γ 0

t = x0(t), γ 0
1 = y0, γ 1

0 = x1, γ 1
t = x1(t), γ 1

1 = y1,
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and define the curve γ : [0, 1] → X by

γt :=
{

γ 0
s , s ∈ [0, t]

γ 1
s , s ∈ [t,1].

Then γ is a geodesic different from γ 0 but coinciding with it on the non-trivial interval [0, t]. Since this is a contra-
diction with the non-branching assumption, the claim is proved. �
Remark 4.2. In the framework of metric measure spaces enjoying synthetic Ricci curvature bounds, like CD(K, N), 
see [14] for its definition, it has recently been shown by Rajala and Sturm, see [13], that assuming the convexity of 
the entropy along all L2-Wasserstein geodesics implies that any optimal transport plan is concentrated on a family 
of non-branching geodesics, even if the space is not assumed to be non-branching. Unfortunately, in our framework 
such a technique cannot be used, at least for now. Indeed while all the curvature information are stated in terms of 
L2-Wasserstein geodesics, here we would need a non-branching property of the geodesics of the space X with final 
and initial points forming a c-cyclically monotone set. The latter property cannot be deduced straightforwardly by 
d2-monotonicity. For the moment the only result going in this direction is for h = id and it is proven in [6].

For any compact set Λ ⊂ X × X we can now consider the associated evolution map. For every t ∈ [0, 1] and every 
A ⊂ X compact set

At,Λ := et

(
(e0, e1)

−1((A × X) ∩ Λ
))

.

It is easily seen that At,Λ is a closed and bounded set. Hence since (X, d, m) is proper we also obtain compactness 
of At,Λ. Moreover we will use the following notation: to any Λ ⊂ X × X we associate the following set:

Λ̂ := (
P1(Λ) × P2(Λ)

) ∩ Γ. (4.1)

We are now ready to prove the main consequence of Assumption 1.

Proposition 4.3. For any Λ ⊂ Γ compact the following inequality holds:

m(A
t,Λ̂

) ≥ f (t)m(A), t ∈ [0, δ], (4.2)

for any A ⊂ P1(Λ).

Proof. Step 1. Let {yi}i∈N ⊂ P2(Λ) be a dense set in P2(Λ).
Consider the following family of sets: for n ∈N and i ≤ n

En(i) := {
x ∈ P1(Λ) : c(x, yi) − ϕc(yi) ≤ c(x, yj ) − ϕc(yj ), j = 1, · · · , n}

.

If we now consider

Λn :=
n⋃

i=1

En(i) × {yi},

it is straightforward to check that P1(Λn) = P1(Λ) and Λn is c-cyclically monotone. Indeed, for any (x1, y1), . . . ,
(xm, ym) ∈ Λn, by definition it holds that

c(xi, yi) − ϕc(yi) ≤ c(xi, yi+1) − ϕc(yi+1), i = 1, . . . ,m.

Taking the sum over i, the property follows.
By Assumption 1 there exists f : [0, 1] → R measurable with f (0) > 1/2, independent of the sequence {yi}i∈N

and of n, such that for any A ⊂ P1(Λ) compact it holds that

m
((

A ∩ En(i)
)
t,yi

) ≥ f (t)m
(
A ∩ En(i)

)
, ∀t ∈ [0, δ],

where (A ∩ En(i))t,yi
= (A ∩ En(i))t,En(i)×{yi }. Note that since A = ⋃

i≤n A ∩ En(i) it follows that
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At,Λn = et

(
(e0, e1)

−1((A × X) ∩ Λn

))
=

⋃
i≤n

et

(
(e0, e1)

−1(((A ∩ En(i)
) × X

) ∩ Λn

))
=

⋃
i≤n

(
A ∩ En(i)

)
t,Λn

⊃
⋃
i≤n

(
A ∩ En(i)

)
t,En(i)×{yi }.

Moreover, Lemma 4.1 implies(
A ∩ En(i)

)
t,yi

∩ (
A ∩ En(j)

)
t,yj

= ∅, i �= j,

for all t ∈ (0, 1).
Then it holds for all t ∈ [0, δ]:

m(At,Λn) ≥ m

(
n⋃

i=1

(
A ∩ En(i)

)
t,En(i)×{yi }

)
=

n∑
i=1

m
((

A ∩ En(i)
)
t,yi

)

≥ f (t)

n∑
i=1

m
(
A ∩ En(i)

)

≥ f (t)m

(
n⋃

i=1

A ∩ En(i)

)

= f (t)m(A). (4.3)

Step 2. Note that for every n ∈N, Λn ⊂ supp(μ0) × supp(μ1) and the latter, by assumption, is a subset of K × K . 
Since the space of closed subsets of K × K endowed with the Hausdorff metric (C(K × K), dH) is a compact space, 
there exist a subsequence {Λnk

}k∈N and Θ ⊂ K × K compact such that

lim
k→∞dH(Λnk

,Θ) = 0.

Since the sequence {yi}i∈N is dense in P2(Λ) and Λ ⊂ Γ is compact, by definition of En(i), necessarily for every 
(x, y) ∈ Θ it holds

ϕ(x) + ϕc(y) = c(x, y), x ∈ P1(Λ), y ∈ P2(Λ).

Hence Θ ⊂ (P1(Λ) × P2(Λ)) ∩ Γ = Λ̂. To conclude the proof we observe that

m(At,Θ) ≥ lim sup
k→∞

m(At,Λnk
).

Indeed, since At,Θ is a compact set, it follows that if Aε
t,Θ = {x ∈ X : d(x, At,Θ) ≤ ε}, then for k sufficiently large

At,Λnk
⊂ Aε

t,Θ and m(Aε
t,Θ) converges to m(At,Θ).

Then

m(A
t,Λ̂

) ≥ lim sup
k→∞

m(At,Λnk
) ≥ f (t)m(A),

and the claim follows. �
5. Existence of optimal maps

In this section we show that branching at starting points does not happen almost surely. Recall that

Γ = {
(x, y) ∈ X × X : ϕ(x) + ϕc(y) = c(x, y)

}
and any optimal transport plan is concentrated on Γ .

Lemma 5.1. Let Λ1, Λ2 ⊂ Γ be compact sets such that
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i) P1(Λ1) = P1(Λ2);
ii) P2(Λ1) ∩ P2(Λ2) = ∅.

Then m(P1(Λ1)) = m(P1(Λ2)) = 0.

Proof. Note that since P2(Λ1) ∩ P2(Λ2) = ∅, necessarily Λ̂1 ∩ Λ̂2 = ∅, where Λ̂i are defined by (4.1), for i = 1, 2. 
Hence from Lemma 4.1, for every A ⊂ P1(Λ1) = P1(Λ2)

A
t,Λ̂1

∩ A
t,Λ̂2

= ∅,

for every t ∈ (0, 1). Then let A := P1(Λ1) = P1(Λ2) and recall that as t → 0 the sets At,Λ1 and At,Λ2 both converge 
in Hausdorff topology to A. Put Aε = {x : d(x, A) ≤ ε}. Then it follows from Proposition 4.3 that

m(A) = lim sup
ε→0

m
(
Aε

) ≥ lim sup
t→0

m(At,Λ1 ∪ At,Λ2)

= lim sup
t→0

(
m(At,Λ1) + m(At,Λ2)

)
≥ m(A) lim sup

t→0
2f (t) = α · m(A),

with α > 1. Hence, necessarily m(P1(Λ1)) = m(P1(Λ2)) = m(A) = 0, and the claim follows. �
We will use the following notation: Γ (x) := ({x} ×X) ∩Γ and given a set Θ ⊂ X ×X we say that T is a selection 

of Θ if T : P1(Θ) → X is m-measurable and graph(T ) ⊂ Θ .

Proposition 5.2. Consider the sets

E := {
x ∈ P1(Γ ) : Γ (x) is not a singleton

}
, ΓE := Γ ∩ (E × X).

Then for any selection T of ΓE and every π ∈ Π(μ0, μ1) with π(Γ ) = 1 it holds

π
(
ΓE \ graph(T )

) = 0.

Proof. Step 1. Suppose by contradiction the existence of π ∈ Π(μ0, μ1) with π(Γ ) = 1 and of a selection T of ΓE

such that

π
(
ΓE \ graph(T )

) = β > 0.

By inner regularity, to prove the complete statement it is enough to prove it under the additional assumptions that E
is compact and T is continuous.

Note that

ΓE \ graph(T ) =
∞⋃

n=1

{
(x, y) ∈ ΓE : d(

y,T (x)
) ≥ 1/n

}
.

Hence, there exists n ∈N such that

π
({

(x, y) ∈ ΓE : d(
y,T (x)

) ≥ 1/n
}) ≥ β ′ > 0.

Put Λ := {(x, y) ∈ ΓE : d(y, T (x)) ≥ 1/n}. Note that m(P1(Λ)) > 0.
Step 2. From the continuity of T it follows the existence of η > 0 so that if d(x, z) ≤ η then d(T (x), T (z)) ≤ 1/2n. 

Clearly we can take x ∈ P1(Λ) so that

m
(
P1(Λ) ∩ B̄η(x)

)
> 0,

where B̄η(x) denotes the closed ball of radius η around x. So consider the two sets

Ξ1 := graph(T ) ∩ ((
B̄η(x) ∩ P1(Λ)

) × X
)
, Ξ2 := (

B̄η(x) × X
) ∩ Λ.

By construction Ξ1, Ξ2 ⊂ Γ and

P1(Ξ1) = P1(Ξ2) = P1(Λ) ∩ B̄η(x),

therefore m(P1(Ξ1)) > 0.
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Moreover for any y ∈ P2(Ξ2) there exists w ∈ B̄η(x) so that

d
(
y,T (w)

) ≥ 1

n
.

Hence for any z ∈ B̄η(x) it holds

d
(
y,T (z)

) ≥ d
(
y,T (w)

) − d
(
T (w),T (z)

) ≥ 1

n
− 1

2n
= 1

n
.

Hence

P2(Ξ1) ∩ P2(Ξ2) = ∅.

Since this is in contradiction with Lemma 5.1, the claim is proved. �
We can now state the main result of this paper whose proof now follows as a straightforward corollary of what we 

proved so far.

Theorem 5.3. Let (X, d, m) be a non-branching metric measure space verifying Assumption 1. Let μ0 and μ1 be two 
probability measures over X with finite c-transport distance, with c = h ◦ d . If μ0 � m and h is strictly-convex and 
non-decreasing, for any π ∈ Π(μ0, μ1) such that π(Γ ) = 1 there exists an m-measurable map T : X → X such that

π
(
graph(T )

) = 1.

Proof. Let π ∈ Π(μ0, μ1) be any transference plan so that π(Γ ) = 1. As for Proposition 5.2, consider the sets

E := {
x ∈ P1(Γ ) : Γ (x) is not a singleton

}
, ΓE := Γ ∩ (E × X).

Since

ΓE = P12
({

(x, y, z,w) ∈ Γ × Γ : d(x, z) = 0, d(y,w) > 0
})

,

the set ΓE is an analytic set. For the definition of analytic set, see Chapter 4 of [12]. We can then use the Von Neumann 
Selection Theorem for analytic sets, see Theorem 5.5.2 of [12], to obtain a map T : E → X, A-measurable, where A
is the σ -algebra generated by analytic sets, so that (x, T (x)) ∈ ΓE .

Then Proposition 5.2 implies that

π�ΓE
= (Id,T )�μ0�E.

Since on Γ \ ΓE π is already supported on a graph, the claim follows. �
This directly implies

Corollary 5.4. Under the assumptions of Theorem 5.3, there is a unique optimal transport map.

Proof. The last theorem shows that every optimal coupling is induced by a transport map. As the set of all optimal 
couplings is convex this directly implies the uniqueness. �
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