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Abstract

In this paper, we will obtain a rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on the three-
dimensional torus T3 from the many-body limit of interacting bosonic systems. This type of result was previously obtained on 
R

3 in the work of Erdős, Schlein, and Yau [54–57], and on T2 and R2 in the work of Kirkpatrick, Schlein, and Staffilani [78]. 
Our proof relies on an unconditional uniqueness result for the Gross–Pitaevskii hierarchy at the level of regularity α = 1, which 
is proved by using a modification of the techniques from the work of T. Chen, Hainzl, Pavlović and Seiringer [20] to the periodic 
setting. These techniques are based on the Quantum de Finetti theorem in the formulation of Ammari and Nier [6,7] and Lewin, 
Nam, and Rougerie [83]. In order to apply this approach in the periodic setting, we need to recall multilinear estimates obtained by 
Herr, Tataru, and Tzvetkov [74].

Having proved the unconditional uniqueness result at the level of regularity α = 1, we will apply it in order to finish the derivation 
of the defocusing cubic nonlinear Schrödinger equation on T3, which was started in the work of Elgart, Erdős, Schlein, and Yau 
[50]. In the latter work, the authors obtain all the steps of Spohn’s strategy for the derivation of the NLS [108], except for the 
final step of uniqueness. Additional arguments are necessary to show that the objects constructed in [50] satisfy the assumptions 
of the unconditional uniqueness theorem. Once we achieve this, we are able to prove the derivation result. In particular, we show 
Propagation of Chaos for the defocusing Gross–Pitaevskii hierarchy on T3 for suitably chosen initial data.
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1. Introduction

1.1. Setup of the problem

In this paper, we will consider the Gross–Pitaevskii hierarchy on the three-dimensional torus T3. Given a more 
general spatial domain Λ = R

d or Td , the Gross–Pitaevskii (GP) hierarchy on Λ is a system of infinitely many 
equations given by:⎧⎪⎪⎨⎪⎪⎩

i∂t γ
(k) + (��xk

− ��x′
k
)γ (k) = λ ·

k∑
j=1

Bj,k+1
(
γ (k+1)

)
γ (k)|t=0 = γ

(k)
0 .

(1)

For k ∈ N, γ (k)
0 is a complex-valued function on Λk × Λk . Such a function is referred to as a density matrix of 

order k. Each γ (k) = γ (k)(t) is a time-dependent density matrix of order k. Here, ��xk
and ��x′

k
denote the Laplace 

operators in the first and second component of Λk. More precisely, ��xk
:= ∑k

j=1 �xj
and ��x′

k
:= ∑k

j=1 �x′
j
. Fur-

thermore, Bj,k+1 denotes the collision operator given by:

Bj,k+1
(
σ (k+1)

) := Trk+1
[
δ(xj − xk+1), σ

(k+1)
]
,

for σ (k+1) a density matrix of order k + 1. Trk+1 denotes the trace in the variable xk+1. In particular Bj,k+1(σ
(k+1))

is a density matrix of order k. A more precise definition is given in (11) below. Finally λ ∈ R is a non-zero coupling 
constant. In this paper, we will take λ ∈ {1, −1}. If λ = 1, we will call the GP hierarchy defocusing, and if λ = −1, 
we will call the hierarchy focusing.

The Gross–Pitaevskii hierarchy (1) is closely related to the cubic nonlinear Schrödinger equation (NLS) on Λ. We 
recall that the cubic NLS on Λ is given by:{

i∂tu + �u = λ · |u|2u, on Rt × Λ

u|t=0 = φ, on Λ.
(2)

This problem is called defocusing if λ = 1 and focusing if λ = −1. Given a solution u of (2), we can build a solution 
to (1) by taking tensor products. In other words,

γ (k)
(
t, �xk; �x′

k

) :=
k∏

j=1

u(t, xj )u
(
t, x′

j

) = |u〉〈u|⊗k
(
t, �xk; �x′

k

)
(3)

solves (1) for initial data given by γ (k)
0 = |φ〉〈φ|⊗k . Here, we denote by |·〉〈·| the Dirac bracket, which is defined 

as |f 〉〈g|(x, x′) := f (x)g(x′). These are called the factorized solutions. In this way, we can embed the nonlinear 
problem (2) into the linear problem (1).

In addition to the structural connection noted above, the study of the GP hierarchy is important in the context of 
the rigorous derivation of the NLS from the dynamics of many-body quantum systems. In particular, given a potential 
V : Λ → R, we can consider the N -body Hamiltonian HN :

HN := −
N∑

j=1

�j + 1

N

N∑
�<j

VN(x� − xj )

defined on a dense subspace of L2
sym(ΛN), the space of all permutation-symmetric elements of L2(ΛN). Here, VN is 

a rescaled version of V involving N . Given ΨN,0 ∈ L2
sym(ΛN), we can study the N -body Schrödinger equation asso-

ciated to HN with initial data ΨN,0:{
i∂tψN,t = HNψN,t

ΨN,t |t=0 = ΨN,0.
(4)
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The solution ψN,t belongs to L2
sym(ΛN). In particular, ‖ΨN,t‖L2(ΛN) = ‖ΨN,0‖L2(ΛN). We define:

γ
(k)
N,t := Trk+1,...,N |ΨN,t 〉〈ΨN,t |. (5)

Here Trk+1,...,N denotes the partial trace in xk+1, . . . , xN . By definition, if k > N , we take γ (k)
N,t := 0. This notation is 

explained in more detail in Subsection 2.3 below.
The sequence (γ (k)

N,t )k then solves the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy:

i∂t γ
(k)
N,t + (��xk

− ��x′
k
)γ

(k)
N,t

= 1

N

k∑
�<j

[
VN(x� − xj ), γ

(k)
N,t

]+ N − k

N

k∑
j=1

Trk+1
[
VN(xj − xk+1), γ

(k+1)
N,t

]
. (6)

We note that, formally, the BBGKY hierarchy converges to the defocusing GP hierarchy as N → ∞. This heuristic 
can be made formal in the following sense: given φ ∈ L2(Λ) with ‖φ‖L2(Λ) = 1, under additional assumptions on 
the sequence of initial data (ΨN)N ∈ ⊕

N∈N L2
sym(ΛN) in terms of φ, one wants to show that there exists a sequence 

Nj → ∞, which is independent of k ∈N and t ∈ [0, T ] such that:

Tr
∣∣γ (k)

Nj ,t − ∣∣St (φ)
〉〈
St (φ)

∣∣⊗k∣∣ → 0, (7)

as j → ∞. Here, Tr denotes the trace and St denotes the flow map for (2).
We will refer to (7) as a rigorous derivation of the cubic NLS equation on Λ from the dynamics of many-body 

quantum systems. This type of result is also referred to as Propagation of Chaos in the sense that the particles become 
decoupled in the limit. In our paper, we will study this derivation in the context of the defocusing problem.

A strategy for proving (7) was developed by Spohn [108], and it consists of first showing that the sequence (γ (k)
N,t )N

is relatively compact and that the limit points solve the GP hierarchy. Once this is established, one shows the GP 
hierarchy admits unique solutions in the class of objects obtained in the limit. This is a non-trivial step, due to the fact 
that the GP hierarchy is an infinite and non-closed system of PDEs.

Spohn [108] applied this approach in order to derive the nonlinear Hartree equation i∂tu + �u = (V ∗ |u|2) · u on 
R

3 when V ∈ L∞(R3). The case of a Coulomb potential V (x) = ± 1
|x| was later solved by Bardos, Golse, and Mauser 

[11] and Erdős and Yau [58]. An alternative proof of the latter result was subsequently given by Fröhlich, Knowles, 
and Schwarz. In a series of works [54–57], Erdős, Schlein, and Yau applied this strategy to obtain a derivation of 
the defocusing cubic nonlinear Schrödinger equation on R3. The uniqueness step required a use of Feynman graph 
expansions [54, Sections 9 and 10]. Subsequently, a combinatorial reformulation of the uniqueness proof on R3 was 
given by Klainerman and Machedon [80]. This argument is applicable in a slightly different class of density matrices. 
The authors prove the uniqueness result in this class by using spacetime estimates reminiscent of their earlier work 
on null-forms for the nonlinear wave equation [79]. The fact that the objects obtained in the limit in the procedure 
outlined above satisfy the assumptions needed to apply the boardgame argument was first verified by Kirkpatrick, 
Schlein, and Staffilani [78] when Λ = R

2 and Λ = T
2. Related results were subsequently proven by T. Chen and 

Pavlović [27] and X. Chen and Holmer [36,39] when Λ =R
3.

In the author’s joint work with Gressman and Staffilani [68, Proposition 3.3], it was noted that the spacetime 
estimate for the free evolution operator needed to apply the boardgame argument as in [80] does not hold in the 
energy space when Λ = T

3. This is in sharp contrast to what happens when Λ =R
3 or Λ = T

2. Heuristically, this is 
a manifestation of the weaker dispersion on periodic domains, which also becomes weaker as the dimension becomes 
larger. In particular, it is not possible to apply the spacetime estimate and show uniqueness of solutions in the class 
from [80] in regularity α = 1. A conditional uniqueness result in this class when α = 1 is still a relevant open problem, 
which will require new tools to solve.

Recently, a new approach to studying the uniqueness problem was taken by T. Chen, Hainzl, Pavlović, and Seiringer 
in [20]. Here, the authors prove an unconditional uniqueness result for the GP hierarchy on R3 by means of the 
Quantum de Finetti Theorem. This theorem is a quantum analogue of the theorem of de Finetti on exchangeable 
sequences of random variables [44,45]. Related results to those of de Finetti were subsequently proven by Dynkin [48], 
Hewitt and Savage [75], and Diaconis and Freedman [47]. The Quantum de Finetti theorem states that, under certain 
assumptions, density matrices can be viewed as averages over factorized states. The precise statement is recalled in 
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Theorem 4.1 below. Similar results were first proven in the C∗ algebra context in the work of Hudson and Moody 
[77], and Størmer [109]. Connections to density matrices were subsequently made in the work of Ammari and Nier 
[6,7], and Lewin, Nam, and Rougerie [83,84].

We recall from [68, Proposition 5.3] that it is possible to estimate factorized objects at the level of regularity of the 
energy space, i.e. when the Sobolev exponent is α = 1. Thus, it would be reasonable to expect that it is also possible 
to estimate averages of factorized states, as one obtains from the Quantum de Finetti Theorem. In particular, the first 
result that we prove is:

Theorem 1 (Unconditional uniqueness for the GP hierarchy on T3 when α = 1). Let us fix T > 0. Suppose that 
(γ (k)(t))k is a mild solution to the Gross–Pitaevskii hierarchy in L∞

t∈[0,T ]H1 such that, for each t ∈ [0, T ], there exist 
ΓN,t ∈ L2

sym(T3N ×T
3N) which are non-negative as operators with trace equal to 1, such that:

Trk+1,...,N ΓN,t ⇀∗ γ (k)(t)

as N → ∞ in the weak-∗ topology of the trace class on L2
sym(T3k). Then, the solution (γ (k)(t))k is uniquely deter-

mined by the initial data (γ (k)
0 )k .

Theorem 1 is stated as Theorem 4.6 in Subsection 4.2. Given a Sobolev exponent α ∈ R, the space Hα is defined 
in Definition 4.4 below. Furthermore, the concept of a mild solution to the Gross–Pitaevskii hierarchy is given in 
Definition 4.5 below. We note that Theorem 1 applies both in the defocusing (λ = 1) and the focusing (λ = −1) 
context. Let us remark that Theorem 1 does not immediately improve on the main result of [68] because the spaces 
which are used in [68] are different and cannot in general be compared to the ones used in the present paper. In 
particular, the norms used in [68] are of Hilbert–Schmidt type, whereas the norms used in the present paper are 
obtained from the trace as in [53–57]. In [68], there is an additional condition involving the collision operator as was 
the case in the analysis of [80].

Let us note that in [50], Elgart, Erdős, Schlein and Yau complete the first step in the strategy developed by Spohn in 
the context of the derivation of the defocusing cubic NLS on T3. In other words, they show that the sequence (γ (k)

N,t )N
is relatively compact and that the limit points of this sequence solve the Gross–Pitaevskii hierarchy. Their analysis 
applies at the level of regularity α = 1.

In [50], the authors state the uniqueness step as an open problem. In our paper, we will resolve this problem. As 
a result, we will obtain a derivation of the defocusing cubic NLS on T3. The result that we prove is:

Theorem 2 (A derivation of the defocusing cubic NLS on T3). Let φ ∈ H 1(T3) with ‖φ‖L2(T3) = 1 be given. Sup-
pose that the sequence of initial data in the N -body Schrödinger equation (ΨN)N ∈ ⊕

N∈N L2
sym(T3N) satisfies the 

assumptions of:

1) Bounded energy per particle: supN∈N〈HNΨN, ΨN 〉L2(T3N ) < ∞.
2) Asymptotic factorization: Tr | Tr2,3,...,N |ΨN 〉〈ΨN | − |φ〉〈φ|| → 0 as N → ∞.

For fixed N ∈ N, let (γ (k)
N,t )k denote the solution of the BBGKY hierarchy evolving from initial data (γ (k)

N )k :=
Trk+1,...,N |ΨN 〉〈ΨN |. Let T > 0 be fixed. Then, there exists a sequence Nj → ∞, such that for all k ∈ N and for 
all t ∈ [0, T ] the convergence (7) holds.

Theorem 2 is given as Theorem 5.4 in Section 5. We note that this result is stated only in the defocusing context. In 
the proof of Theorem 2, we will use a uniqueness argument based on Theorem 1 and the analysis of [50]. For details 
on the application of the uniqueness result in the proof of Theorem 2, we refer the reader to (72) and to Remark 5.9
below. The assumptions of Theorem 2 are satisfied for purely factorized states ΨN = |φ〉〈φ|⊗N , and the result holds 
in this case as is noted in Corollary 5.5 below.
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1.2. Physical interpretation

The Gross–Pitaevskii hierarchy and the nonlinear Schrödinger equation have a related physical interpretation. Both 
objects occur in the context of Bose–Einstein condensation, a state of matter consisting of dilute bosonic particles 
which are cooled to a temperature close to absolute zero. At such a temperature, these particles tend to occupy the 
lowest quantum state, which can be expressed mathematically as the ground state of an energy functional related to 
the NLS. In this context, the NLS equation is sometimes referred to as the Gross–Pitaevskii equation, following the 
work of Gross [72] and Pitaevskii [98].

The physical phenomenon of Bose–Einstein condensation was theoretically predicted in the pioneering works of 
Bose [15] and Einstein [49] in 1924–1925. Their prediction was verified by experiments conducted independently 
by the teams led by Cornell and Wieman [9] and Ketterle [43] in 1995. These two groups were awarded the Physics 
Nobel Prize in 2001.

1.3. Additional related results

In addition to the references mentioned above, there is a rich literature devoted to the connection between NLS-type 
equations and hierarchies similar to (1). In addition to the strategy developed by Spohn [108], outlined above, an 
independent strategy based on Fock space methods was simultaneously developed by Hepp [73] and Ginibre and 
Velo [66,67]. Spohn’s strategy was subsequently applied in the derivation problem in [1,2,11–14,27,30,33–38,51,
59,62,95,111], whereas the Fock space techniques were subsequently applied in [31,32,60,61,69–71]. The question 
of deriving the nonlinear Hartree equation was revisited in the work of Fröhlich, Tsai, and Yau [63–65]. Once one 
obtains a derivation of the NLS-type equation, it is natural to ask what is the rate of convergence. This question was 
first addressed by Rodnianski and Schlein [101]. Subsequent results on this problem have been obtained in [8,14,19,
31,32,52,60,69–71,81,82,93,95–97]. The Gross–Pitaevskii hierarchy has been studied at the N -body level by Lieb 
and Seiringer [88], Lieb, Seiringer and Yngvason [91,92], and Lieb, Seiringer, Yngvason, and Solovej [89]. In these 
works, the assumption of asymptotic factorization given in the assumption of Theorem 2 was rigorously verified for 
a sequence of appropriate ground states. For more details on this aspect of the problem, we refer the reader to the 
expository work [90] and to the references therein. This question was revisited in a recent preprint of Lewin, Nam, 
and Rougerie [85]. A connection of the above problems with optical lattice models was explored in the work of 
Aizenman, Lieb, Seiringer, Yngvason, and Solovej [3,4]. An expository survey of many of the above results can be 
found in [103].

The Gross–Pitaevskii hierarchy has been studied as a Cauchy problem in its own right in the recent works of 
T. Chen and Pavlović [22,23,25–27], and in their joint works with Tzirakis [28,29], as well as in the subsequent work 
of Z. Chen and Liu [41]. The motivation is to study the Gross–Pitaevskii hierarchy as a generalization of the nonlinear 
Schrödinger equation via the factorized solutions and to prove analogues of the known results for the Cauchy problem 
for the NLS in the context of the GP hierarchy. By appropriately modifying the collision operator, it is also possible 
to consider a hierarchy which is related to the quintic NLS [22–26,28,29], as well as the NLS with more general 
power-type nonlinearities [111]. The Cauchy problem associated to the Hartree equation for infinitely many particles 
has recently been studied by Lewin and Sabin [86,87]. Randomization techniques similar to those used in the context 
of the Cauchy problem for nonlinear dispersive equations in the work of Bourgain [17] and Burq and Tzvetkov [18]
were used in order to study randomized forms of the Gross–Pitaevskii hierarchy in the author’s joint work with 
Staffilani [107], as well as in the author’s work [106].

Techniques similar to those used in [20] have been applied in order to show scattering results in the subsequent 
work of T. Chen, Hainzl, Pavlović and Seiringer [21]. The unconditional uniqueness result of [20] was subsequently 
extended to lower regularities by Hong, Taliaferro, and Xie in [76]. We note that the methods used in [76] do not 
directly apply to the periodic setting due to the weaker dispersion. It is an interesting open problem to see if the 
unconditional uniqueness in the periodic section can be extended to lower regularities. We note that the Quantum de 
Finetti theorem was recently also applied in the context of the Chern–Simons–Schrödinger hierarchy in the work of 
X. Chen and Smith [40].
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1.4. Main ideas of the proof

The proof of the unconditional uniqueness result in Theorem 1 will be based on the Weak Quantum de Finetti 
Theorem used in the work of T. Chen, Pavlović, Hainzl, and Seiringer [20] in the non-periodic setting. Several mod-
ifications will be necessary in order to apply these methods in the periodic setting. The main point is that one needs 
to use Strichartz estimates on T3. We will use the trilinear estimate from the work of Herr, Tataru, and Tzvetkov [74]. 
This result is recalled in Proposition 2.1 below. In particular, using this estimate we are able to prove a product esti-
mate at the level of H 1 regularity in Proposition 3.1. Following the terminology of [20], this result is used in order 
to prove the bound on the L2 level (41) and the bound on the H 1 level (42). As in [20], these estimates allow us 
to bound the contributions from the factors corresponding to distinguished and regular trees in Subsubsection 4.2.5
below.

The proof of the derivation of the defocusing cubic nonlinear Schrödinger equation on T3, i.e. of Theorem 2, 
is based on applying Theorem 1 to the solutions of the defocusing Gross–Pitaevskii hierarchy on T3, which were 
previously constructed in the work of Elgart, Erdős, Schlein, and Yau [50]. In particular, in this paper, the authors 
construct solutions without a statement about uniqueness. The spaces in which they work do not originally involve 
the trace norm. In Section 5, we show that the assumptions of Theorem 1 hold for these solutions. As an intermediate 
step, we will have to use the approximation argument stated in Subsection 5.1 in order to control higher powers of the 
N -body Hamiltonian as was needed in the assumptions in [50]. We note that such a procedure was used in [54,56,57]
in the non-periodic setting, as well as in [78] in the periodic setting.

1.5. Organization of the paper

In Section 2, we will give the relevant notation and we will recall some important facts from Harmonic and Func-
tional analysis. In particular, in Subsection 2.1, we will recall the definition of the function spaces which we will use 
on T3. An important trilinear estimate from the work of Herr, Tataru, and Tzvetkov [74] is recalled in Proposition 2.1. 
Subsection 2.2 is devoted to notation and operations concerning density matrices. In Subsection 2.3, we recall some 
important facts about trace class operators. Section 3 is devoted to the proof of the product estimate at the level of 
H 1 regularity, which is stated in Proposition 3.1. In Section 4, we prove Theorem 1, which is stated in Theorem 4.6. 
The variant of the Quantum de Finetti Theorem which we will use is recalled in Subsection 4.1. The unconditional 
uniqueness result stated in Theorem 1 is proved in Subsection 4.2. Section 5 is devoted to the proof of Theorem 2, 
which is stated as Theorem 5.4. In Subsection 5.1, we recall the relevant approximation procedure which allows us to 
control higher powers of HN applied to the initial data. A comparison of different forms of convergence which appear 
in the problem is given in Subsection 5.2. In Subsection 5.3, we give a proof of the derivation of the defocusing cubic 
NLS on T3, stated in Theorem 2.

2. Notation and known facts from harmonic and functional analysis

In our paper, given non-negative quantities A and B , let us denote by A � B an estimate of the form A ≤ CB , 
for some constant C > 0. If C depends on a parameter p, we write the inequality as A �p B or we emphasize that 
C = C(p). Throughout our paper, we will take the spatial domain Λ to be the three-dimensional torus T3 = [0, 2π ]3.

2.1. Function spaces

Given f ∈ L2(Λ), we can define its Fourier transform as:

f̂ (n) :=
∫
Λ

f (x)e−i〈x,n〉dx.

Here, n ∈ Z
3 and 〈·, ·〉 denotes the inner product on R3.

Let us take the following convention for the Japanese bracket 〈·〉 on Λ:

〈x〉 :=
√

1 + |x|2.
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Given s ∈R, the Sobolev space Hs(Λ) is the normed space corresponding to:

‖f ‖Hs(Λ) :=
(∑

n∈Z3

∣∣f̂ (n)
∣∣2 · 〈n〉2s

) 1
2

.

Let us recall the periodic version of the Sobolev embedding estimate:

‖φ‖L6(Λ) � ‖φ‖H 1(Λ). (8)

The estimate (8) can be deduced from the analogous estimate on R3 by using an extension argument. More precisely, 
given φ ∈ H 1(Λ), we define φe to be the periodic extension of φ to all of R3. We then let F ∈ C∞

0 (R3) be a function 
which is identically 1 on Λ. Then, ‖F · φe‖L6(R3) ∼ ‖φ‖L6(Λ) and ‖F · φe‖H 1(R3) � ‖φ‖H 1(Λ). By the Sobolev 
embedding theorem on R3, we know that ‖F · φe‖L6(R3) � ‖F · φe‖H 1(R3). We can hence deduce (8).

Suppose that N = 2j is a dyadic integer. We will denote by PN the Littlewood–Paley projection to frequencies 
which are of the order N . In order to do this, let us first consider Φ ∈ C∞

0 (−2, 2), a non-negative, even function, such 
that Φ ≡ 1 on [−1, 1]. We define the function ΦN on Z3 by:⎧⎨⎩ Φ

( |ξ |
N

)
− Φ

(
2|ξ |
N

)
, for N ≥ 2.

Φ
(|ξ |), for N = 1.

The operator PN is defined as:

(PNf )̂ (ξ) := ΦN(ξ) · f̂ (ξ). (9)

In particular,

supp(PNf )̂ ⊆ {|ξ | ∼ N
}
.

Proposition 2.1 (A consequence of Proposition 3.5 in [74]). There exists a universal constant δ > 0 such that for any 
dyadic integers N1, N2, N3 with N1 ≥ N2 ≥ N3 ≥ 1, and for any finite interval I ⊆R, it is the case that:∥∥PN1e

it�f1 · PN2e
it�f2 · PN3e

it�f3
∥∥

L2(I×Λ)

�N2N3 max

{
N3

N1
,

1

N2

}δ

· ‖PN1f1‖L2(Λ) · ‖PN2f2‖L2(Λ) · ‖PN3f3‖L2(Λ).

Let us note that the implied constant in the above estimate depends on the length |I | of the interval I . It can be taken 
to be an increasing function of |I |. The result of Proposition 2.1 can be deduced by combining [74, Proposition 3.5]
together with [74, Proposition 2.10] and the inclusion of spaces given in [74, Proposition 2.8]. We will omit the details. 
An analogous estimate was shown on the 3D irrational torus in [110, Proposition 4.1].

2.2. Density matrices

Let us fix k ∈N. A density matrix of order k on Λ is a function:

γ (k) : Λk × Λk →C.

It is also sometimes called a k-particle density matrix.
Given γ (k) ∈ L2(Λk × Λk), we say that γ (k) ∈ L2

sym(Λk × Λk) if

γ (k)
(
xσ(1), . . . , xσ(k);x′

σ(1), . . . , x
′
σ(k)

) = γ (k)
(
x1, . . . , xk;x′

1, . . . , x
′
k

)
for all (�xk; �x′

k) = (x1, . . . , xk; x′
1, . . . , x

′
k) ∈ Λk × Λk and for all σ ∈ Sk . Similarly, if Ψ ∈ L2(Λk), we say that Ψ ∈

L2
sym(Λk) if:

Ψ (xσ(1), . . . , xσ(k)) = Ψ (x1, . . . , xk)
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for all �xk = (x1, . . . , xk) ∈ Λk and for all σ ∈ Sk . Here, we will always assume that it is clear from context whether 
the object we are considering is a function or a density matrix. In other words, we will be able to distinguish 
L2

sym(Λk × Λk) from L2
sym(Λ2k). Let us note that, if Ψ ∈ L2

sym(Λk), then |Ψ 〉〈Ψ | ∈ L2
sym(Λk × Λk). We will some-

times consider γ (k) as an operator on L2(Λk) by means of identifying an integral operator with its kernel. We will use 
this convention throughout our work.

Given γ (k), a density matrix of order k which belongs to L2(Λk × Λk), its Fourier transform (γ (k)) ̂ is defined as 
follows:(

γ (k)
)̂ (�nk; �n′

k

) :=
∫

Λk×Λk

γ (k)
(�xk; �x′

k

) · e−i·∑k
j=1〈xj ,nj 〉+i·∑k

j=1〈x′
j ,n′

j 〉
d �xk d �x′

k, (10)

for (�nk; �n′
k) = (n1, . . . , nk; n′

1, . . . , n
′
k) ∈ Z

3k × Z
3k . The convention for (10) is consistent with our definition of fac-

torized solutions (3). We will also write (γ (k)) ̂ as γ̂ (k) for simplicity of notation.
The differential operator i∂t +(��xk

−��x′
k
) acts on density matrices of order k. Its associated free evolution operator

is denoted by U (k)(t). More precisely, for γ (k), a density matrix of order k:

U (k)(t)γ (k) := e
it

∑k
j=1 �xj γ (k)e

−it
∑k

j=1 �x′
j .

In this way, we obtain a solution to:(
i∂t + (��xk

− ��x′
k
)
)
U (k)(t)γ (k) = 0.

Given α ∈ R, we can use the Fourier transform and define the operation S(k,α) of differentiation of order α on 
matrices of order k. Given γ (k) a density matrix of order k, we let S(k,α)γ (k) be the density matrix of order k whose 
Fourier transform is given by:(

S(k,α)γ (k)
)̂ (

n1, . . . , nk;n′
1, . . . , n

′
k

)
:= 〈n1〉α · · · 〈nk〉α · 〈n′

1

〉α · · · 〈n′
k

〉α · γ̂ (k)
(
n1, . . . , nk;n′

1, . . . , n
′
k

)
.

We now define the collision operator. Given k ∈ N and j ∈ {1, 2, . . . , k}, the collision operator Bj,k+1 acts linearly 
on density matrices of order k + 1 as:

Bj,k+1
(
γ (k+1)

) = Trk+1
[
δ(xj − xk+1), γ

(k+1)
]

=
∫
Λ

(
δ(xj − xk+1)γ

(k+1)
(�xk, xk+1; �x′

k, xk+1
)
dxk+1

− δ
(
x′
j − xk+1

)
γ (k+1)

(�xk, xk+1; �x′
k, xk+1

))
dxk+1. (11)

Here, δ denotes the Dirac delta function. We note that Bj,k+1(γ
(k+1)) is a density matrix of order k. We sometimes 

omit the parenthesis and write Bj,k+1γ
(k+1). The full collision operator Bk+1 is given by:

Bk+1 :=
k∑

j=1

Bj,k+1. (12)

2.3. Some facts about trace class operators

Let H be a separable Hilbert space over C with inner product (·, ·). Let A be a bounded operator on H and let 
{�ej , j ∈ N} be an orthonormal basis of H. We say that A belongs to the trace class on H if the quantity:

‖A‖1 :=
+∞∑
j=1

((
A∗A

) 1
2 �ej , �ej

)
is finite. If this is the case, the quantity ‖A‖1 can be shown to be independent of the choice of basis. The space of all 
trace-class operators on H is denoted by L1(H).
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Given A ∈H and {�ej , j ∈N} as above, the trace of A:

TrA :=
+∞∑
j=1

(A�ej , �ej )

is well-defined and is independent of the choice of basis. This fact is proved in [99, Theorem VI.24]. We will some-
times write TrA as TrH A in order to emphasize that the operator A acts on the Hilbert space H. We note that 
‖A‖1 = Tr |A| = Tr(A∗A)

1
2 .

Let K(H) denote the space of all compact operators on H. It is a normed vector space with respect to the operator 
norm ‖ · ‖. The following duality result then holds:(

L1(H),‖ · ‖1
) = (

K(H),‖ · ‖)∗ (13)

where the duality pairing is given by:

(T ,K) ∈ L1(H) ×K(H) �→ Tr(T K). (14)

For the proof of the above result we refer the reader to [99, Theorem VI.26].
Given N ∈ N, we let HN := ⊗N

j=1 H. If A ∈ L1(HN), and k ∈ {1, 2, . . . , N}, we define Trk+1,...,N A to be the 
element of L1(Hk) obtained by taking the trace of A in the last N − k factors of H. If k > N , we define Trk+1,...,N A

to be equal to zero. We refer to this procedure as taking the partial trace.
Throughout the paper, we will primarily consider the case when H= L2(Λk) with respect to the Lebesgue measure 

for some k ∈N. In this case, we will write L1(H) as L1
k and K(H) as Kk . These are subspaces of the space of density 

matrices of order k on Λ. We observe that if A ∈L1
k is an integral operator with kernel γ (k) ∈ L2(Λk × Λk), then:

TrA =
∫

Λk×Λk

γ (k)(�xk; �xk) d �xk.

For a more detailed discussion on trace class operators, we refer the reader to [42, Sections 18 and 19] and [99, 
Section VI].

3. Multilinear estimates

We consider the spatial domain Λ :=T
3. The main result of this section is:

Proposition 3.1. Suppose that s ∈ [0, 1] and suppose that I is bounded time interval. Then, the following estimate 
holds:∥∥|∇x |s

(
eit�f1 · eit�f2 · eit�f3

)∥∥
L2(I×Λ)

� min
{‖f1‖Hs · ‖f2‖H 1 · ‖f3‖H 1,‖f1‖H 1 · ‖f2‖Hs · ‖f3‖H 1,‖f1‖H 1 · ‖f2‖H 1 · ‖f3‖Hs

}
,

whenever f1, f2, f3 are functions on Λ for which the right-hand side is well-defined. Here, the implied constant 
depends on s and on the length of I .

Proof. Suppose that f1, f2, f3 are as in the assumptions of the proposition. We will dyadically localize the factors 
according to (9). Namely, for fixed dyadic integers N1, N2, N3, we want to estimate the expression:∥∥|∇x |s

(
PN1e

it�f1 · PN2e
it�f2 · PN3e

it�f3
)∥∥

L2(I×Λ)

which is:

�s max{N1,N2,N3}s · ∥∥PN1e
it�f1 · PN2e

it�f2 · PN3e
it�f3

∥∥
L2(I×Λ)

= max{N1,N2,N3}s · ∥∥PN1e
it�f1 · PN2e

it�f2 · PN3e
it�f3

∥∥
L2(I×Λ)

. (15)
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Hence, we do not have to keep track of complex conjugates throughout the proof. Let us define:

ψj := eit�fj for j = 1,2,3. (16)

Since ‖PN1ψ1 · PN2ψ2 · PN3ψ3‖L2(I×Λ) is symmetric under the permutation of the functions fj , we may assume 
without loss of generality that N1 ≥ N2 ≥ N3 ≥ 1. In this case, the expression in (15) equals:

Ns
1 · ‖PN1ψ1 · PN2ψ2 · PN3ψ3‖L2(I×Λ) =: KN1,N2,N3 .

We will now estimate:

K :=
∑

N1,N2,N3
N1≥N2≥N3

KN1,N2,N3 .

In order to do this, we will estimate each term KN1,N2,N3 by considering the different cases determined by the relative 
sizes of N1 and N2.

Case 1: N1 � N2

In this case, we will estimate KN1,N2,N3 by using duality. Namely, let use take u ∈ L2(I × Λ) such that 
‖u‖L2(I×Λ) = 1 and let us note that:∫

I

∫
Λ

u · (PN1ψ1 · PN2ψ2 · PN3ψ3) dx dt =
∫
I

∫
Λ

PN0u · (PN1ψ1 · PN2ψ2 · PN3ψ3) dx dt,

for some N0 ∼ N1. More precisely, N0 here denotes an appropriate dilation of the dyadic integer N1 and we extend 
the definition of PN0 accordingly.

Consequently, we need to estimate the following sum:

K1 :=
∑

N0,N1,N2,N3
N0∼N1,N1�N2≥N3

Ns
1 ·

∣∣∣∣∫
I

∫
Λ

PN0u · (PN1ψ1 · PN2ψ2 · PN3ψ3) dx dt

∣∣∣∣
≤

∑
N0,N1,N2,N3

N0∼N1,N1�N2≥N3

Ns
1 · ‖PN0u‖L2(I×Λ) · ‖PN1ψ1 · PN2ψ2 · PN3ψ3‖L2(I×Λ)

�|I |
∑

N0,N1,N2,N3
N0∼N1,N1�N2≥N3

‖PN0u‖L2(I×Λ) · Ns
1 · N2 · N3 · max

{
N3

N1
,

1

N2

}δ

· ‖PN1f1‖L2(Λ) · ‖PN2f2‖L2(Λ) · ‖PN3f3‖L2(Λ). (17)

Here, we used the Cauchy–Schwarz inequality on I ×Λ, (16) and Proposition 2.1. By dyadic localization, the expres-
sion in (17) is:

�
∑

N0,N1,N2,N3
N0∼N1,N1�N2≥N3

‖PN0u‖L2(I×Λ) · max

{
N3

N1
,

1

N2

}δ

· ‖PN1f1‖Hs(Λ) · ‖PN2f2‖H 1(Λ) · ‖PN3f3‖H 1(Λ)

�
∑

N0,N1,N2,N3
N0∼N1,N1�N2≥N3

‖PN0u‖L2(I×Λ) ·
{(

N3

N1

) δ
2 ·

(
N2

N1

) δ
2 + 1

N
δ
2

2 · N
δ
2

3

}

· ‖PN1f1‖Hs(I) · ‖PN2f2‖H 1(Λ) · ‖PN3f3‖H 1(Λ).

The latter estimate follows from the fact that N1 ≥ N2 ≥ N3. We use the Cauchy–Schwarz inequality in N2 and in N3
to deduce that this quantity is:
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�
∑

N0,N1
N0∼N1

‖PN0u‖L2(I×Λ) · ‖PN1f1‖Hs(Λ) · ‖f2‖H 1(Λ) · ‖f3‖H 1(Λ)

which by using the Cauchy–Schwarz inequality in N0 ∼ N1 is:

� ‖u‖L2(I×Λ) · ‖f1‖Hs(Λ) · ‖f2‖H 1(Λ) · ‖f3‖H 1(Λ) = ‖f1‖Hs(Λ) · ‖f2‖H 1(Λ) · ‖f3‖H 1(Λ),

since ‖u‖L2(I×Λ) = 1 by assumption. In particular:

K1 � ‖f1‖Hs(Λ) · ‖f2‖H 1(Λ) · ‖f3‖H 1(Λ). (18)

Since s ∈ [0, 1], we know that Ns
1 · N2 · N3 ≤ N1 · Ns

2 · N3, and hence we can replace the factor of Ns
1 · N2 · N3 in 

(17) by N1 · Ns
2 · N3. By the above argument, it follows that:

K1 � ‖f1‖H 1(Λ) · ‖f2‖Hs(Λ) · ‖f3‖H 1(Λ). (19)

Similarly, since Ns
1 · N2 · N3 ≤ N1 · N2 · Ns

3 , it follows that:

K1 � ‖f1‖H 1(Λ) · ‖f2‖H 1(Λ) · ‖f3‖Hs(Λ). (20)

We use duality and (18), (19), and (20) in order to deduce that:∑
N1,N2,N3

N1�N2≥N3

KN1,N2,N3

� min
{‖f1‖Hs · ‖f2‖H 1 · ‖f3‖H 1,‖f1‖H 1 · ‖f2‖Hs · ‖f3‖H 1,‖f1‖H 1 · ‖f2‖H 1 · ‖f3‖Hs

}
. (21)

The implied constant depends on s and the length of I by construction.

Case 2: N1 ∼ N2

In this case, we will estimate:

K2 :=
∑

N1,N2,N3
N1≥N2≥N3; N1∼N2

KN1,N2,N3 =
∑

N1,N2,N3
N1≥N2≥N3; N1∼N2

Ns
1 · ‖PN1ψ1 · PN2ψ2 · PN3ψ3‖L2(I×Λ).

By (16) and Proposition 2.1, this expression is:

�|I |
∑

N1,N2,N3
N1≥N2≥N3; N1∼N2

Ns
1 · N2 · N3 · max

{
N3

N1
,

1

N2

}δ

· ‖PN1f1‖L2(Λ) · ‖PN2f2‖L2(Λ) · ‖PN3f3‖L2(Λ). (22)

Since N1 ∼ N2 and N3 ≥ 1, this is:

�
∑

N1,N2,N3
N1≥N2≥N3; N1∼N2

Ns
1 · N2 · N3 ·

(
N3

N1

)δ

· ‖PN1f1‖L2(Λ) · ‖PN2f2‖L2(Λ) · ‖PN3f3‖L2(Λ)

�
∑

N1,N2,N3
N1≥N2≥N3; N1∼N2

(
N3

N1

)δ

· ‖PN1f1‖Hs(Λ) · ‖PN2f2‖H 1(Λ) · ‖PN3f3‖H 1(Λ).

By using the Cauchy–Schwarz inequality in N3, we can bound this sum by:

�
∑

N1,N2

‖PN1f1‖Hs(Λ) · ‖PN2f2‖H 1(Λ) · ‖f3‖H 1(Λ).
N1∼N2
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By using the Cauchy–Schwarz inequality in N1 ∼ N2, this sum is:

� ‖f1‖Hs(Λ) · ‖f2‖H 1(Λ) · ‖f3‖H 1(Λ).

As in Case 1, we can replace Ns
1 · N2 · N3 by N1 · Ns

2 · N3 and N1 · N2 · Ns
3 in (22) and we can hence deduce that:

K2 =
∑

N1,N2,N3
N1≥N2≥N3; N1∼N2

KN1,N2,N3

� min
{‖f1‖Hs · ‖f2‖H 1 · ‖f3‖H 1,‖f1‖H 1 · ‖f2‖Hs · ‖f3‖H 1,‖f1‖H 1 · ‖f2‖H 1 · ‖f3‖Hs

}
. (23)

The implied constant depends on s and the length of I by construction.
The proposition now follows from the estimates (21) and (23). �

4. An unconditional uniqueness result

In this section, we will use a version of the Quantum de Finetti Theorem in order to obtain an unconditional 
uniqueness result for the Gross–Pitaevskii hierarchy on T3. The unconditional uniqueness result will hold in a class 
of density matrices with regularity α = 1, and hence for higher regularities. In particular, we will prove an analogue 
of the non-periodic unconditional uniqueness result proved by T. Chen, Hainzl, Pavlović, and Seiringer [20].

4.1. The Weak Quantum de Finetti Theorem

Let H be a separable Hilbert space. We denote by Hk
sym := ⊗k

sym H the associated bosonic k-particle space. More 
precisely, this is the space obtained from the quotient under the action of the symmetric group Sk on H×H× · · · ×H︸ ︷︷ ︸

k times
by σ · (h1, h2, . . . , hk) := (hσ(1), hσ(2), . . . , hσ(k)).

We will use the following variant of the Quantum de Finetti Theorem, which is called the Weak Quantum de Finetti 
Theorem:

Theorem 4.1 (Weak Quantum de Finetti [6,7,83]). Suppose that the sequence (ΓN)N satisfies the following assump-
tions for all N ∈ N:

i) ΓN is a bounded self-adjoint operator on HN
sym.

ii) ΓN ≥ 0 as an operator on HN
sym.

iii) TrHN
sym

ΓN = 1.

Moreover, suppose that for all k ∈ N, the corresponding sequence of k-particle marginals γ (k)
N := Trk+1,...,N ΓN

converges to γ (k) ∈ Hk
sym as N → ∞ in the weak-∗ topology of the trace class, i.e. γ (k)

N ⇀∗ γ (k) in the trace class on 
Hk

sym.
Under these assumptions, there exists a unique Borel probability measure supported on the unit ball B of H, which 

is invariant under multiplication by complex numbers of modulus one such that, for all k ∈ N:

γ (k) =
∫
B

(|φ〉〈φ|⊗k
)
dμ(φ). (24)

Theorem 4.1 is proved in [83, Theorem 2.2] and is based on equivalent results proved in [6] and [7], where 
μ is called a Wigner measure. The connection between Wigner measures and de Finetti measures is explained in 
[5, Section 6.4].

Remark 4.2. By the invariance of μ under multiplication by complex numbers of modulus one, we mean that for all 
z ∈C with |z| = 1 and for all φ ∈ H, it is the case that (z · μ)(φ) := μ(z · φ) = μ(φ).
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Remark 4.3. There is also a Strong Quantum de Finetti Theorem. This is the original result obtained in the 
work of Hudson and Moody [77], and Størmer [109] in the context of C∗ algebras. In the context of den-
sity matrices results, analogues of this result were also obtained in the work of Ammari and Nier [6,7], and 
Lewin, Nam, and Rougerie [83]. In the strong version, the density matrices γ (k) ∈ Hk are not assumed to be 
weak-∗ limits. Instead, they are assumed to have the property that TrHk γ (k) = 1 and that they satisfy the ad-
missibility property γ (k) = Trk+1 γ (k+1). In this case, it is possible to prove (24) with the measure μ sup-
ported on the unit sphere S of H. This strong version can be used to prove an unconditional uniqueness re-
sult with the corresponding assumptions, as was done in [20,76]. For our applications in Section 5, we will use 
the unconditional uniqueness result obtained from the Weak Quantum de Finetti Theorem in Theorem 4.6 be-
low.

4.2. An unconditional uniqueness result

We henceforth consider the Gross–Pitaevskii hierarchy on Λ =T
3:⎧⎪⎪⎨⎪⎪⎩

i∂t γ
(k) + (��xk

− ��x′
k
)γ (k) = λ ·

k∑
j=1

Bj,k+1
(
γ (k+1)

)
γ (k)|t=0 = γ

(k)
0 .

(25)

We will assume that λ ∈ {1, −1}. The results of this section will apply to both the defocusing case λ = 1 and the 
focusing case λ = −1. In Section 5, we will restrict our attention to the defocusing case.

Following [20], we will use the spaces Hα:

Definition 4.4. Given α ≥ 0, Hα denotes the set of all sequences (γ (k))k such that, for each k:

i) γ (k) ∈ L2
sym(Λk × Λk) and γ (�xk, �x′

k) = γ (k)(�x′
k; �xk) for all (�xk, �x′

k) in Λk × Λk .

ii) S(k,α)γ (k) ∈ L1
k .

iii) There exists M > 0, independent of k, for which Tr(|S(k,α)γ (k)|) ≤ M2k .

Variants of such spaces were used previously in the work of Erdős, Schlein, and Yau [53–57] and in related works. 
A different class of spaces, based on a Hilbert–Schmidt norm, was used in the work of Klainerman and Machedon 
[80].

We adopt the terminology from [20]:

Definition 4.5. Given T > 0, we say that (γ (k))k = (γ (k)(t))k is a mild solution to the Gross–Pitaevskii hierarchy (25)
in L∞

t∈[0,T ]Hα if, for all k ∈ N:

i) (γ (k)(0))k = (γ
(k)
0 )k ∈ Hα .

ii) For all t ∈ [0, T ], the following integral equation is valid:

γ (k)(t) = U (k)(t) − iλ

t∫
0

U (k)(t − s)Bk+1γ
(k+1)(s) ds.

iii)

sup
t∈[0,T ]

Tr
(∣∣S(k,α)γ (k)(t)

∣∣) ≤ M2k

for some M > 0 which is independent of k and t .

For point ii), we recall the definition of the full collision operator Bk+1 in (12).
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In what follows, let St denote the flow map of the cubic nonlinear Schrödinger equation:{
iut + �u = λ · |u|2u
u|t=0 = φ.

(26)

More precisely, we let St (φ)(x) := u(x, t). We note that the Cauchy theory of this problem is well-understood [16]
and hence the map St is well-defined.

With these definitions in mind, we will prove:

Theorem 4.6 (An unconditional uniqueness result). Let (γ (k)
0 )k ∈ H1. Suppose that (γ (k)(t))k is a mild solution to 

the Gross–Pitaevskii hierarchy (25) in L∞
t∈[0,T ]H1 with initial data (γ (k)(0))k = (γ

(k)
0 )k such that, for each t ∈ [0, T ], 

γ (k)(t) satisfies the assumptions of Theorem 4.1 with H = L2(Λ). More precisely, we assume that there exist ΓN,t ∈
L2

sym(ΛN × ΛN) as in Theorem 4.1 such that γ (k)
N,t := Trk+1,...,N ΓN,t satisfies γ (k)

N,t ⇀∗ γ (k)(t) as N → ∞ in L1
k . 

Then, the conclusion is that (γ (k)(t))k is uniquely determined by the initial data (γ (k)
0 )k .

Furthermore, suppose that (γ (k)
0 )k satisfies, for all k ∈ N:

γ
(k)
0 =

∫
B

(|φ〉〈φ|⊗k
)
dμ(φ) (27)

for μ a Borel probability measure which is invariant under multiplication by complex numbers of modulus one and 
which is supported on the unit ball B of L2(Λ). Then, for all k ∈N and for all t ∈ [0, T ], it is the case that:

γ (k)(t) =
∫
B

(∣∣St (φ)
〉〈
St (φ)

∣∣⊗k)
dμ(φ). (28)

The remainder of this section is devoted to the proof of Theorem 4.6. Our method will follow the combinatorial 
graph expansion from [20]. The main difference from the non-periodic setting is that we will estimate the terms coming 
from the distinguished vertices by using Proposition 3.1. More precisely, we will have to give a different proof of the 
L2 estimate (41) and of the H 1 estimate (42) below. Namely, the proof of these estimates in the non-periodic setting 
[20, Lemma 7.1] relies on the use of Strichartz estimates on R3, which are not available on T3. We overcome this 
difficulty by applying Proposition 3.1. In addition, in bounding the trilinear term ‖|φ|2φ‖L2

x
, we need to recall the 

Sobolev embedding on T3 in (8). For completeness of the exposition, we will recall the main ideas of the graph 
expansion and how it is used to prove unconditional uniqueness results. For the full details of the construction and the 
methods, we refer the interested reader to [20].

Let us suppose that (γ (k)
1 (t))k and (γ (k)

2 (t))k are solutions to (25) with initial data (γ (k)
0 )k which satisfy the as-

sumptions of the theorem. We need to show that γ (k) := γ
(k)
1 − γ

(k)
2 is identically zero on [0, T ] for all k ∈ N. In 

particular, it suffices to show that:

Tr
(∣∣γ (k)(t)

∣∣) = 0 (29)

for all k ∈N and for all t ∈ [0, T ].
By Theorem 4.1, there exist unique time-dependent Borel probability measures μ(1)

t and μ(2)
t , which are invariant 

under multiplication by complex numbers of modulus one and which are supported on the unit ball B of L2(Λ) such 
that for all k ∈ N and t ∈ [0, T ]:

γ
(k)
j (t) =

∫
B

(|φ〉〈φ|⊗k
)
dμ

(j)
t (φ)

for j = 1, 2. Hence, we can write:

γ (k)(t) =
∫ (|φ〉〈φ|⊗k

)
dμt (φ), (30)
B
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where μt := μ1
t − μ2

t is a signed Borel measure on B. The assumption that (γ (k)
1 (t))k and (γ (k)

2 (t))k ∈ L∞
t∈[0,T ]H1

implies that for j = 1, 2, there exists Mj > 0, such that for all k ∈N and for all t ∈ [0, T ]:

Tr
(∣∣γ (k)

j (t)
∣∣) =

∫
B

‖φ‖2k
H 1 dμ

(j)
t (φ) ≤ Mk

j . (31)

Let us note that, by the Duhamel expansion:

γ (k)(t) =
t∫

0

t1∫
0

· · ·
tr−1∫
0

(−iλ)r · J k(tr ) dtr , (32)

where t r := (t1, t2, . . . , tr ) and:

J k(tr ) := U (k)(t − t1)Bk+1U (k+1)(t1 − t2)Bk+2 · · ·
U (k+r−1)(tr−1 − tr )Bk+rγ

(k+r)(tr ). (33)

By using the same reductions as in [20, Section 4.1], based on the Erdős–Schlein–Yau combinatorial method in the 
boardgame form [80], it is possible to write:

γ (k)(t) = (−iλ)r ·
∑

σ∈Nk,r

∫
D(σ,t)

∫
B

J k(φ;σ ; t, t1, . . . , tr ) dμt (φ)dtr . (34)

Here Nk,r denotes the set of all monotonically increasing mappings σ : {k+1, k+2, . . . , k+r} → {1, 2, . . . , k+r −1}
such that σ(j) < j for all j ∈ {k + 1, k2, . . . , k + r} and D(σ, t) denotes a union of simplices contained in [0, t]r , 
whose interiors are mutually disjoint. Moreover, for σ ∈ Nk,r and φ ∈ B, we write:

J k
(
φ;σ ; t, t1, . . . , tr ; �xk; �x′

k

)
:= U (k)(t − t1)Bσ(k+1),k+1U (k+1)(t1 − t2) · · ·U (k+r−1)(tr−1 − tr )Bσ(k+r),k+r

(|φ〉〈φ|⊗(k+r)
)(�xk; �x′

k

)
. (35)

In (35), we use the convention as in [20] that the time variable t� is attached to the interaction operator Bσ(k+�),k+�.

4.2.1. A reformulation of the Duhamel expansion following [20]
In [20, Eq. (4.23)], it is noted that J k(φ; σ ; t, t1, . . . , tr ; �xk; �x′

k) has the following product structure:

J k
(
φ;σ ; t, t1, . . . , tr ; �xk; �x′

k

) =
k∏

j=1

J 1
j

(
φ;σj ; t, t�j,1 , . . . , t�j,mj

;xj ;x′
j

)
. (36)

The interaction operators which appear in J 1
j are labelled “internally” with the maps σj , j = 1, . . . , k. Relative to 

J 1
j , σj is in upper echelon form in the sense of [80], i.e. it is monotonically increasing. We note that the construction 

of [20] carries over to the periodic setting without any changes. In particular:

Tr
(∣∣γ (k)(t)

∣∣) ≤ Ck+r ·
2∑

�=1

sup
σ∈Nk,r

∫
[0,t]r

∫
B

k∏
j=1

Tr
(∣∣J 1

j (φ;σj ; t, t�j,1 , · · · , t�j,mj
)
∣∣)dμ

(�)
tr

(φ) dtr . (37)

4.2.2. The precise definition of the graph expansion (after [20])
Let us now recall the precise definition of the graph structure following [20, Section 5]. One assigns to the expres-

sion (35) and the product structure (36) a union of k disjoint binary tree graphs. As is noted in [20], these graphs have 
already appeared as substructures associated to the graphs in the more involved analysis of [57]. More precisely, one 
assigns:

1) An internal vertex v� associated to each collision operator Bσ(k+�),k+�, for � = 1, 2, . . . , r . Hence, the time vari-
able t� can be thought of as being attached to the vertex v�.

2) A root vertex wj to each factor J 1, for j = 1, 2, . . . , k.
j
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3) A leaf vertex ui to the factor (|φ〉〈φ|)(xi; x′
i ) occurring in |φ〉〈φ|⊗(k+r)(�xk+r , �x′

k+r ). Here i = 1, 2, . . . , k + r .

The equivalence relation “∼” of connectivity between vertices is given by:

1) Suppose that j ∈ {1, 2, . . . , k} is given. If � is the smallest element of {1, 2, . . . , r} such that σ(k + �) = j , then 
the root vertex wj is connected to the internal vertex v�, i.e. these two vertices are equivalent. We say that wj is 
the parent vertex of v� and that v� is the child vertex of wj .

2) If there exists no internal vertex connected to wj as above, then the root vertex wj is connected to the leaf 
vertex uj . We say that wj is the parent vertex of uj and uj is the child vertex of wj .

3) Suppose that � ∈ {1, 2, . . . , r}. If there exists �′ ∈ {1, 2, . . . , r} with �′ > � such that k+� = σ(k+�′) or σ(k+�) =
σ(k + �′), then we say that v� ∼ v�′ . In this case, it is said that v� is a parent vertex of v�′ and that v�′ is a child 
vertex of v�. The two child vertices of v� will be denoted by vκ−(�) and vκ+(�), where by convention one takes 
κ−(�) < κ+(�).

4) If there exists no internal vertex v�′ with �′ > � and k + � = σ(k + �′) as above, then v� is connected to the leaf 
vertex u�. In this case, we say that v� is the parent vertex of u� and that u� is a child vertex of v�. Furthermore, if 
there exists no internal vertex v�′ such that σ(k + �) = σ(k + �′), then v� is connected to the leaf vertex uσ(k+�). 
In this case, we say that v� is the parent vertex of uσ(k+�) and that uσ(k+�) is a child vertex of v�.

In this way, one obtains a graph which is a disjoint union of k binary trees. These binary trees are denoted by τj , 
for j = 1, 2, . . . , k. The root of τj is given by wj . We note that the σj in (36) can be viewed as σ |τj

. In other words, 
this is the internal labeling of the collision operators that respects the ordering of the vertices of τj . Moreover, τj has 
mj internal vertices corresponding in this way to time labels t�j,1, t�j,2 , . . . , t�j,mj

.
The internal vertex vr is called the distinguished vertex. The other internal vertices are called regular. The two 

children vertices corresponding to vr are called the distinguished leaves. All the other leaves are called regular. The 
tree τj is called distinguished if vr ∈ τj and otherwise it is called regular. For more details on this construction, we 
refer the reader to [20, Section 5].

4.2.3. A detailed analysis of the distinguished tree graph
Let us now recall the analysis of the distinguished tree from [20, Section 6]. As above, the analysis transfers to the 

periodic setting. For completeness, we will summarize the notation and the main ideas.

Let τj be a distinguished tree. This tree contains mj internal vertices (v�j ,a)
mj

a=1 and mj +1 leaf vertices (uj,s)
mj +1
s=1 . 

The internal vertices are enumerated by a ∈ {1, 2, . . . , mj }, and a corresponds to the label in the collision operator 
Bσj (a+1),a+1. It is advantageous to continue this labeling and to denote the leaf vertices by a ∈ {mj +1, . . . , 2mj +1}.

By the semigroup property of U (k)(t), it is possible to show that the term in (36) corresponding to the distinguished 
tree τj equals:

J 1
j

(
φ;σj ; t, t�j,1 , . . . , t�j,mj

;xj ;x′
j

)
= U (1)(t − t�j,1)B1,2U (2)(t�j,1 − t�j,2)Bσj (3),3 · · ·Bσj (a),aU (a)(t�j,a−1 − t�j,a

)Bσj (a+1),a+1 · · ·
U (mj )(t�j,mj −1 − t�j,mj

)Bσj (mj +1),mj +1
(|φ〉〈φ|)⊗(mj +1)

.

We now want to bound the integral:∫
[0,T ]mj −1

Tr
(∣∣J 1

j (φ;σj ; t, t�j,1 , . . . , t�j,mj
)
∣∣)dt�j,mj −1 dt�j,mj −1 · · ·dt�j,1 . (38)

In order to estimate the expression in (38), one associates to the vertex labeled by a a kernel θa . It can be seen 
that, at a regular leaf vertex θa(x; x′) := φ(x) · φ(x′). Moreover, at the distinguished vertex, θmj

(x; x′) := ψ̃(x) ·
φ(x′) − φ(x) · ψ̃(x′), for ψ̃ := |φ|2φ. Using an inductive formula, it is shown in [20, Lemma 6.1] that for every 
a ∈ {1, 2, . . . , mj }, the kernel θa can be written as:

θa

(
x;x′) =

∑
ca
βa

χa
βa

(x)ψa
βa

(
x′) (39)
βa
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for at most 2mj−α+1 coefficients ca
βa

∈ {−1, 1}. By using additional product identities as in [20, Section 6.4], it is 
possible to inductively obtain the factors χa

βa
and ψa

βa
. We will omit the details. Finally, without loss of generality, it 

is possible to assume that ψ1
β1

and its iterates, i.e. the terms of the form ψ
κ

q
+(1)

β
κ
q
+(1)

are functions of ψ̃ = |φ|2φ. We say 

that these factors are distinguished. Here, κq
+(1) denotes the q − th iterate of κ+ applied to the vertex with label 1.

4.2.4. Recursive L2 and H 1 bounds for the distinguished tree
We now summarize the main ideas from [20, Section 7] in which one inductively uses L2 and H 1 bounds in order 

to estimate the expression in (38). As we will see, at this step, a modification of the argument will be required to deal 
with the periodic case.

By the definition of the kernel θ1 and by (39), the expression in (38) is:

≤
∑
β1

∫
[0,T ]mj −1

∥∥ψ1
β1

∥∥
L2

x
· ∥∥χ1

β1

∥∥
L2

x
dt�j,mj −1 dt�j,mj −2 · · ·dt�j,1 . (40)

In what follows, one denotes by τj,a the subtree of τj which is rooted at the vertex a. Given τj,a , da denotes the 
number of non-leaf (i.e. internal and root) vertices in τj,a . Finally, one defines:∫

[0,T ]da

(· · ·)
∏

a′∈τj,a

dt�j,a′

to denote the integral with respect to the time variables which correspond to the non-leaf vertices in τj,a. If τj,a = ∅, 
we just evaluate the integrand. If we emphasize that a′ �= mj , then we will not be integrating with respect to t�j,mj

. 
The following estimates hold for all a ∈ {1, 2, . . . , mj − 1}:∫

[0,T ]da

∥∥ψa
βa

∥∥
L2

x
· ∥∥χa

βa

∥∥
H 1

x

∏
a′∈τj,a

dt�j,a′

≤ CT
1
2 ·

( ∫
[0,T ]dκ−(a)

∥∥ψ
κ−(a)

βκ−(a)

∥∥
H 1

x
· ∥∥χ

κ−(a)

βκ−(a)

∥∥
H 1

x

∏
a′∈τj,κ−(a)

dt�j,a′
)

·
( ∫

[0,T ]dκ+(a)

∥∥ψ
κ+(a)

βκ+(a)

∥∥
L2

x
· ∥∥χ

κ+(a)

βκ+(a)

∥∥
H 1

x

∏
a′∈τj,κ+(a)

dt�j,a′
)

(41)

and ∫
[0,T ]da

∥∥ψa
βa

∥∥
H 1

x
· ∥∥χa

βa

∥∥
H 1

x

∏
a′∈τj,a

dt�j,a′

≤ CT
1
2 ·

( ∫
[0,T ]dκ−(a)

∥∥ψ
κ−(a)

βκ−(a)

∥∥
H 1

x
· ∥∥χ

κ−(a)

βκ−(a)

∥∥
H 1

x

∏
a′∈τj,κ−(a)

dt�j,a′
)

·
( ∫

[0,T ]dκ+(a)

∥∥ψ
κ+(a)

βκ+(a)

∥∥
H 1

x
· ∥∥χ

κ+(a)

βκ+(a)

∥∥
H 1

x

∏
a′∈τj,κ+(a)

dt�j,a′
)

. (42)

The estimate in (41) is referred to as the bound on the L2 level, and the estimate in (42) is referred to as the bound on 
the H 1 level. The L2 estimate (41) is proved by using Proposition 3.1 when s = 0. In particular, we use:∥∥(eit�f1

)
(x) · (eit�f2

)
(x) · (eit�f3(x)

)∥∥
L2[0,T ]L2

x
≤ C‖f1‖H 1

x
· ‖f2‖H 1

x
· ‖f3‖L2

x
. (43)

Here, we recall that, by assumption, T ∈ [0, 1]. The estimate (43) was also used in the non-periodic setting [20, 
Section 7]. In this case, the trilinear estimate was deduced from Strichartz estimates on R3. The rest of the proof 
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of (41) proceeds as in [20, Section 7]. We will omit the details. The estimate (42) is proved by using Proposition 3.1
when s = 1.

4.2.5. Estimating the factors corresponding to distinguished and regular trees
We will now record the bounds for the contributions from the distinguished tree and from the regular trees in (37).
For the distinguished tree, it is necessary to estimate the expression in (38). By applying (41), it is possible to 

bound the right-hand side of (40) by:∑
βκ−(1),βκ+(1)

CT
1
2 ·

( ∫
[0,T ]dκ−(1)

∥∥ψ
κ−(1)

βκ−(1)

∥∥
H 1

x
· ∥∥χ

κ−(1)

βκ−(1)

∥∥
H 1

x

∏
a′∈τj,κ−(1)

dta

)

·
( ∫

[0,T ]dκ+(1)−1

∥∥ψ
κ+(1)

βκ+(1)

∥∥
L2

x
· ∥∥χ

κ+(1)

βκ+(1)

∥∥
H 1

x

∏
a′∈τj,κ+(1), a′ �=mj

dta′
)

. (44)

The key point is that the distinguished factor ψκ+(1)

βκ+(1)
is estimated in the L2 norm. This is possible to do because in 

Proposition 3.1, when s = 0, we can choose which factor we want to estimate in L2. By iterating (42) as in [20, 
Section 8], it follows that:∫

[0,T ]dκ−(1)

∥∥ψ
κ−(1)

βκ−(1)

∥∥
H 1

x
· ∥∥χ

κ−(1)

βκ−(1)

∥∥
H 1

x

∏
a′∈τj,κ−(1)

dta ≤ C
dκ−(1)

1 · T
dκ−(1)

2 · ‖φ‖2bκ+(1)

H 1
x

. (45)

Here, ba denotes the number of regular, i.e. non-distinguished leaf vertices of the subtree τj,a , which is rooted at a. 
C1 > 0 denotes the constant in (42).

Moreover, by combining (41) and (42) as in [20, Section 8], it follows that, for some constant C1 > 0:∫
[0,T ]dκ+(1)−1

∥∥ψ
κ+(1)

βκ+(1)

∥∥
L2

x
· ∥∥χ

κ+(1)

βκ+(1)

∥∥
H 1

x

∏
a′∈τj,κ+(1), a′ �=mj

dta′

≤ C
dκ+(1)−1
1 · T

dκ+(1)−1

2 · ‖φ‖2bκ+(1)+1

H 1
x

· ∥∥|φ|2φ∥∥
L2

x
. (46)

By applying the Sobolev embedding result in (8), it follows that the right-hand side of (46) is:

≤ C
dκ+(1)−1

2 · T
dκ+(1)−1

2 · ‖φ‖2bκ+(1)+4

H 1
x

, (47)

for some constant C2 > 0.
Using the expansion (39), the estimates (45), (47), and counting the number of terms, it follows that, for some 

constant C3 > 0:∫
[0,T ]mj −1

Tr
(∣∣J 1

j (φ;σj ; t, t�j,1 , . . . , t�j,mj
)
∣∣)dt�j,mj −1 · · ·dt�j,1

≤ C
mj

3 · T
mj −1

2 · ‖φ‖2mj +2
H 1

x
. (48)

This is the bound that one uses for the distinguished tree τj .
Suppose now that τj is a regular tree. In this case, we can iteratively use the estimate (42) and obtain the bound as 

in [20, Proposition 8.2]:∫
[0,T ]mj

Tr
(∣∣J 1

j (φ;σj ; t, t�j,1, . . . , t�j,mj
)
∣∣)dt�j,mj

dt�j,mj −1 · · · dt�j,1

≤ C
mj

4 · T
mj
2 · ‖φ‖2mj +2

H 1
x

(49)

for some constant C4 > 0. This is the bound that we use for the regular trees.
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4.2.6. The proof of Theorem 4.6
By using the previous results, we will now give the proof of Theorem 4.6:

Proof. Combining (37), (48), and (49), the result of Theorem 4.6 is now proved in the same way as in [20, Sec-
tion 8]. �
5. The derivation of the defocusing cubic NLS on T3

We will now apply the above unconditional uniqueness theorem in order to obtain a derivation of the defocusing 
cubic NLS on T3, following the program of Elgart, Erdős, Schlein, and Yau [50] and Erdős, Schlein, and Yau [53–57]. 
Let us note that the results of Section 4 apply both in the focusing and in the defocusing regime. The results of this 
section will apply only in the defocusing regime. More precisely, in what follows, we will set λ = 1 in (25) and (26). 
As before, St will denote the corresponding flow map. The main point that we want to address in the analysis of this 
section is that, for appropriately chosen initial data, the solution to the Gross–Pitaevskii hierarchy obtained as a limit 
in [50] satisfies the assumptions of Theorem 4.6. In this context, it is possible to apply the unconditional uniqueness 
result from Theorem 4.6 and uniquely characterize the limit point Γ∞,t . This will be an important idea in the proof of 
the main result, which is stated as Theorem 5.4 below.

For completeness, let us now briefly summarize the main results of [50]. Suppose that V : R3 → R is a smooth, 
non-negative function with compact support such that 

∫
R3 V (x) dx = 1. The bosons in T3 interact via a two-body 

potential which is given by:

VN(x) := N3βV
(
Nβx

)
,

for β > 0 a parameter. The N -body Hamiltonian for the N weakly coupled bosons is given by:

HN := −
N∑

j=1

�j + 1

N

N∑
�<j

VN(x� − xj ). (50)

In [50], it is assumed that:

β ∈
(

0,
3

5

)
. (51)

In what follows, we will make the same assumption on β . HN acts on a dense subset of L2
sym(ΛN × ΛN). We remark 

that VN is originally a function on R3. Nevertheless, for N large, VN is supported in a small neighborhood of 0. 
Hence, it can be extended to a periodic function on R3. By this procedure, it can be thought of as a function on T3. 
We will use this convention in our paper.

Let us fix ΨN,0 ∈ L2
sym(ΛN). Let ΨN,t be the solution of the N -body Schrödinger equation associated to HN with 

initial data ΨN,0 given in (4). We recall from (5) that if we take γ (k)
N,t := Trk+1,...,N |ΨN,t 〉〈ΨN,t |, the sequence (γ (k)

N,t )k
solves the BBGKY hierarchy (6).

In [50,53], the authors define for Γ ∈ ⊕
k∈N L2

sym(Λk × Λk) the following quantities:

‖Γ ‖H− :=
+∞∑
k=1

2−k · ∥∥γ (k)
∥∥2

L2(Λk×Λk)
(52)

‖Γ ‖H+ := sup
k≥1

2k · ∥∥γ (k)
∥∥2

L2(Λk×Λk)
. (53)

One then defines H− to be the set of Γ ∈ ⊕
k∈N L2

sym(Λk × Λk) for which ‖Γ ‖H− is finite. The space H+ is defined 
as {Γ ∈ ⊕

k∈N L2(Λk × Λk), limk→∞ 2k · ‖γ (k)‖2
L2(Λk×Λk)

= 0}, with the norm given by (53). H− and H+ are then 
Banach spaces. Furthermore:

(H+)∗ = H−
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with respect to the pairing:

(Γ1,Γ2) �→
+∞∑
k=1

〈
γ

(k)
1 , γ

(k)
2

〉
L2(Λk×Λk)

,

whenever Γ1 = (γ
(k)
1 )k and Γ2 = (γ

(k)
2 )k in 

⊕
k∈N L2

sym(Λk × Λk).
Given T > 0, C([0, T ], H−) denotes the space of functions of t ∈ [0, T ] which take values in H−, and which are 

continuous with respect to the weak-∗ topology on H−. The space H+ is separable, and hence it is possible to find a 
countable dense subset in the unit ball of H+, which is denoted by {Ji,�, � ∈ N}. The metric � on H− is defined as:

�(Γ1,Γ2)

:=
+∞∑
�=1

2−� ·
∣∣∣∣∣
+∞∑
k=1

∫
Λk×Λk

J (k)
i,�

(�xk; �x′
k

) · [γ (k)
1

(�xk; �x′
k

)− γ
(k)
2

(�xk; �x′
k

)]
d �xk d �x′

k

∣∣∣∣∣, (54)

whenever Γ1 = (γ
(k)
1 )k , Γ2 = (γ

(k)
2 )k in H−.

The metric ̂� on C([0, T ], H−) is defined as:

�̂(Γ1,Γ2) := sup
t∈[0,T ]

�
(
Γ1(t),Γ2(t)

)
,

whenever Γ1, Γ2 ∈ C([0, T ], H−). For more details on these spaces, we refer the reader to [50,53].
The main result of [50] is the following:

Theorem 1 in [50]. Given N ∈ N, let HN be as in (50). Suppose that γN,0 ∈ L2
sym(ΛN × ΛN) is such that γN,0 is 

self-adjoint, γN,0 ≥ 0 as an operator on L2(ΛN) and TrγN,0 = 1. Furthermore, suppose that there exists a constant 
C1 > 0 such that for all k, N ∈N:

TrHk
NγN,0 ≤ Ck

1Nk. (55)

Let us fix T > 0 and let ΓN,t = (γ
(k)
N,t )k be the solution to the BBGKY hierarchy (6) with initial data ΓN,0 = (γ

(k)
N,0)k . 

Then:

i) The sequence (ΓN,t )N is relatively compact in C([0, T ], H−) with respect to the metric ̂�.

ii) If Γ∞,t = (γ
(k)
∞,t )k is a limit point of (ΓN,t )N with respect to the metric ̂�, then there exists a constant C2 > 0 such 

that:

Tr
∣∣S(k,1)γ

(k)
∞,t

∣∣ ≤ Ck
2 ,

for all k ∈ N and for all t ∈ [0, T ].
iii) Trγ (k)

∞,t = 1 for all k ∈N and for all t ∈ [0, T ].
iv) Γ∞,t solves the Gross–Pitaevskii hierarchy (25) with λ = 1.

Remark 5.1. In the assumption (55), we note that the operator HN acts only in the first N components.

Remark 5.2. Γ∞,t constructed in [50, Theorem 1] is a mild solution of the Gross–Pitaevskii hierarchy in the sense of 
Definition 4.5. The precise argument showing that the solution of type as is constructed in [50] is a mild solution is 
given in [54, Eq. (8.31)].

Remark 5.3. The fact that we can take λ = 1 in (25) follows from the assumption that 
∫
R3 V (x) dx = 1.

In the discussion that follows, let us fix φ ∈ H 1(Λ) with ‖φ‖L2(Λ) = 1. By properly choosing the initial data, 

we will show that Theorem 4.6 implies that Γ∞,t is uniquely determined and that γ (k)
∞,t = |St (φ)〉〈St (φ)|⊗k . Let 

us observe that, by the assumption (55) of [50, Theorem 1], it is not possible to directly take factorized initial 
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data γN,0 = |φ⊗N 〉〈φ⊗N | = |φ〉〈φ|⊗N . Namely, then (55) only holds when k = 1. In order to obtain the full range 
of k, it is necessary to perform an additional approximation argument which is outlined in Subsection 5.1 be-
low.

Let us consider a sequence (ΨN)N ∈ ⊕
N∈N L2

sym(ΛN) which satisfies the following assumptions:

1) Bounded energy per particle:

sup
N

1

N
〈HNΨN,ΨN 〉L2(ΛN) < +∞. (56)

Here, HN is the N -body Hamiltonian defined in (50).
2) Asymptotic factorization:

Tr
∣∣γ (1)

N − |φ〉〈φ|∣∣ → 0 (57)

as N → ∞. Here, γ (1)
N := Tr2,3,...,N |ΨN 〉〈ΨN |.

The main result of this section is the following:

Theorem 5.4 (A derivation of the defocusing cubic NLS on T3). Let φ ∈ H 1(Λ) with ‖φ‖L2(Λ) = 1 be given. Suppose 
that the sequence (ΨN)N ∈ ⊕

N∈N L2(ΛN) satisfies the assumptions (56) and (57). For fixed N ∈ N, we define: 
γ

(k)
N := Trk+1,...,N |ΨN 〉〈ΨN |. Let (γ (k)

N,t )k denote the solution of the BBGKY hierarchy evolving from initial data 

(γ
(k)
N )k .
Let us fix T > 0. There exists a sequence Nj → ∞ as j → ∞ such that, for all k ∈N and for all t ∈ [0, T ]:

Tr
∣∣γ (k)

Nj ,t − ∣∣S(t)φ
〉〈
S(t)φ

∣∣⊗k∣∣ → 0 (58)

as j → ∞.

In particular, we obtain:

Corollary 5.5 (Evolution of purely factorized states). In the assumptions (56) and (57), it is possible to take purely 
factorized states ΨN = φ⊗N for φ ∈ H 1(Λ) with ‖φ‖L2(Λ) = 1. Thus, (58) holds if the initial data is purely factorized.

Remark 5.6. The derivation method that we will present applies only in the defocusing setting. In order to study the 
focusing problem, one would need to take potentials V which would be negative on some set. We need to assume the 
non-negativity of the potential V in order to apply [50, Theorem 1]. The necessity of this assumption can be seen in 
the analysis of [50, Section 3].

5.1. Approximation of the initial data

We would like to use [50, Theorem 1] in order to prove Theorem 5.4. In order to do this, we will first apply an 
approximation procedure to the sequence (ΨN)N satisfying (56) and (57) so that the initial data satisfies the assumption 
(55) of [50, Theorem 1]. Let us choose ζ ∈ C∞

0 (R) with 0 ≤ ζ ≤ 1, ζ ≡ 1 on [0, 1] and ζ ≡ 0 on (2, +∞). Finally, let 
us fix κ > 0 to be a small parameter.

As in [54, Proposition 5.1], [56, Proposition 9.1], and [57, Proposition 8.1], we define the following approximation 
to ΨN :

Ψ̃ κ
N := ζ(κ · HN

N
)ΨN

‖ζ(κ · HN

N
)ΨN‖L2(ΛN)

.

In other words, we smoothly cut off the high frequencies in ΨN , and we normalize the result in L2(ΛN).
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The function Ψ̃ κ
N ∈ L2

sym(ΛN) then satisfies the following properties:

1) 〈Hk
NΨ̃ κ

N , ̃Ψ κ
N 〉 = TrHk

N |Ψ̃ κ
N 〉〈Ψ̃ κ

N | ≤ 2kNk

κk .
2) For some universal constant C > 0:

sup
N

∥∥ΨN − Ψ̃ κ
N

∥∥
L2(ΛN)

≤ Cκ
1
2 . (59)

3) We let γ̃ (k)
κ;N := Trk+1,...,N |Ψ̃ κ

N 〉〈Ψ̃ κ
N |. For κ > 0 small enough, it is then the case that:

γ̃
(k)
κ; N

⇀∗ |φ〉〈φ|⊗k (60)

as N → ∞ in the weak-∗ topology on L1
k .

This approximation procedure was first used in the non-periodic setting [54,56,57]. The proofs of the analogues of 
points 1) and 2) in the non-periodic setting [54, Proposition 5.1 i), ii)] and [57, Proposition 8.1 i), ii)] carry over to the 
periodic setting. We note that the proof of the analogue of 1), given in [54], relies on a Sobolev type inequality whose 
analogue on T3 was proven in Appendix A of [50]. The proof of the non-periodic analogue of point 3), given in [54, 
Proposition 5.1 iii)], which builds on the previous work of Michelangeli [94], also carries over to the periodic setting 
by using an appropriate extension argument. In [54], it is assumed that β < 2

3 , which holds since we are considering 
β ∈ (0, 35 ) by (51). A proof of the non-periodic variant of 3) is also given in [57, Proposition 8.1 iii)]. We will omit 
the details. Let us note that the same approximation argument was also used in the 2D periodic setting in [78].

We observe that, by 1), |Ψ̃ κ
N 〉〈Ψ̃ κ

N | satisfies the assumption (55) with implied constant 2
κ

. Let us fix T > 0 and let 

Γ̃κ;N,t = (γ̃
(k)
κ;N,t

)k be the solution to the BBGKY hierarchy (6) with initial data Γ̃κ;N,0 = (γ̃
(k)
κ;N)k on the time interval 

[0, T ]. In particular, for all k ∈N and for all t ∈ [0, T ]:
γ̃

(k)
κ; N,t

= Trk+1,...,N

∣∣Ψ̃ κ
N,t

〉〈
Ψ̃ κ

N,t

∣∣, (61)

where Ψ̃ κ
N,t is the solution of:{
i∂t Ψ̃

κ
N,t = HNΨ̃ κ

N,t

Ψ̃ κ
N,t |t=0 = Ψ̃ κ

N .

By [50, Theorem 1], there exists a limit point Γ̃κ;∞,t = (γ̃
(k)
κ;∞,t

)k of (Γ̃κ;N,t )N with respect to the metric �̂ which 
solves the GP hierarchy. In other words, there exists Nj → ∞ such that:

Γ̃κ; Nj ,t → Γ̃κ; ∞,t (62)

as j → ∞ with respect to the metric ̂�.
Let us note that, for fixed k ∈ N and t ∈ [0, T ]:

Tr γ̃ (k)
κ; N,t

= Tr
∣∣Ψ̃ κ

N,t

〉〈
Ψ̃ κ

N,t

∣∣ = Tr
∣∣Ψ̃ κ

N

〉〈
Ψ̃ κ

N

∣∣ = ∥∥Ψ̃ κ
N

∥∥2
L2(ΛN)

= 1. (63)

Here, we used the fact that Tr |Ψ̃ κ
N,t 〉〈Ψ̃ κ

N,t | = ‖Ψ̃ κ
N,t‖2

L2(ΛN)
is conserved in time. Furthermore, we note that, for all 

(�xk; �x′
k) ∈ Λk × Λk :

γ̃
(k)
κ; N,t

(�xk; �x′
k

) =
∫

ΛN−k

Ψ̃ κ
N,t (�xk, �yN−k) · Ψ̃ κ

N,t

(�x′
k, �yN−k

)
d �yN−k.

Hence, for all �xk ∈ Λk :∣∣γ̃ (k)
κ; N,t

(�xk; �xk)
∣∣ = γ̃

(k)
κ; N,t

(�xk; �xk) =
∫

ΛN−k

∣∣Ψ̃ κ
N,t (�xk, �yN−k)

∣∣2 d �yN−k.

In particular:

Tr
∣∣γ̃ (k)

κ; N,t

∣∣ = Tr γ̃ (k)
κ; N,t

= 1. (64)
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5.2. A comparison of different forms of convergence

Let us henceforth fix κ to be sufficiently small so that (60) holds. We would like to use Theorem 4.6 and deduce 
that γ̃ (k)

κ;∞,t
= |St (φ)〉〈St (φ)|⊗k for all k ∈ N and for all t ∈ [0, T ]. We can not directly apply Theorem 4.6 since the 

convergence in (62) is given in terms of the metric ̂�, and in the assumptions of the theorem, the convergence of each 
component is given with respect to the weak-∗ topology on L1

k .
The arguments in [50, Section 4.1] imply that the sequence (Γ̃κ;N,t )N satisfies the following equicontinuity result:
For all k ≥ 1 and for all Z(k) ∈ W 1,∞(Λk × Λk), it is the case that, for every ε > 0, there exists δ > 0 such that:∣∣〈Z(k), γ̃

(k)
κ; N,t

− γ̃
(k)
κ; N,s

〉
L2(Λk×Λk)

∣∣ ≤ ε, (65)

for all s, t ∈ [0, T ] with |s − t | ≤ δ. The quantity δ depends on k and Z(k), but is independent of N .
We would like to prove an equicontinuity result of the type (65) in the weak-∗ topology on L1

k . In order to do this, 
we first prove the following:

Lemma 5.7. Let us fix k ∈ N. Then, integral operators on L2(Λk) with kernels in W 1,∞(Λk × Λk) are dense in Kk

with respect to the operator norm topology.

Proof. Suppose that J (k) ∈ Kk . Let ε > 0 be given. We can then find a finite-rank operator T1 such that 
‖J (k) − T1‖ < ε

2 . The operator T1 will have a kernel of the form: K1(�xk; �x′
k) =

∑M
j=1 αj · fj (�xk) · gj (�x′

k) for some 
M ∈ N, α1, α2, . . . , αM ∈ C, and for some f1, . . . , fM, g1, . . . , gM ∈ L2(Λk). In particular, K1 ∈ L2(Λk × Λk). Since 
W 1,∞(Λk × Λk) is dense in L2(Λk × Λk) with respect to ‖ · ‖L2(Λk×Λk) (we can see this by truncating Fourier 
series), it follows that there exists Z(k) ∈ W 1,∞(Λk × Λk) such that ‖Z(k) − K1‖L2(Λk×Λk) < ε

2 . We denote the 
integral operator associated with Z(k) by T . It follows that ‖T − T1‖ = ‖Z(k) − K1‖L2(Λk×Λk) < ε

2 and hence 
‖J (k) − T ‖ ≤ ‖J (k) − T1‖ + ‖T − T1‖ < ε. The density result now follows. �

Let us return to the proof of the equicontinuity result in the weak-∗ topology on L1
k . Suppose that J (k) ∈ L1

k . Let 

ε > 0 be given. Then, by Lemma 5.7, we can find J (k)
1 , an integral operator with kernel Z(k) ∈ W 1,∞(Λk × Λk) such 

that ‖J (k) −J (k)
1 ‖ ≤ ε

4 . In particular, for all s, t ∈ [0, T ], it is the case that:∣∣Tr
(
J (k) −J (k)

1

)(
γ̃

(k)
κ; N,t

− γ̃
(k)
κ; N,s

)∣∣ ≤ ∣∣Tr
(
J (k) −J (k)

1

)(
γ̃

(k)
κ; N,t

)∣∣+ ∣∣Tr
(
J (k) −J (k)

1

)(
γ̃

(k)
κ; N,s

)∣∣
≤ ∥∥J (k) −J (k)

1

∥∥ · Tr
∣∣γ̃ (k)

κ; N,t

∣∣+ ∥∥J (k) −J (k)
1

∥∥ · Tr
∣∣γ̃ (k)

κ; N,s

∣∣ ≤ ε

4
+ ε

4
= ε

2
.

In the last line, we used the duality pairing (14) as well as (64).
Furthermore, we notice that:

TrJ (k)
1

(
γ̃

(k)
κ; N,t

− γ̃
(k)
κ; N,s

) = 〈
Z(k),

(
γ̃

(k)
κ; N,t

− γ̃
(k)
κ; N,s

)〉
L2(Λk×Λk)

.

Hence, from (65), it follows that there exists δ > 0 (which depends on k and J (k)
1 ) such that for all s, t ∈ [0, T ] with 

|s − t | ≤ δ:∣∣TrJ (k)
1

(
γ̃

(k)
κ; N,t

− γ̃
(k)
κ; N,s

)∣∣ ≤ ε

2
.

In particular, by the triangle inequality, it follows that for all s, t ∈ [0, T ] with |s − t | ≤ δ:∣∣TrJ (k)
(
γ̃

(k)
κ; N,t

− γ̃
(k)
κ; N,s

)∣∣ ≤ ε. (66)

Remark 5.8. Let us note that similar density arguments were used in order to obtain equicontinuity results in 
the periodic setting in [53, Lemma 9.2] the non-periodic setting in [54, Lemma 7.2], [56, Lemma 6.2], [57, 
Lemma 6.2].
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Let us recall from (13) that L1
k = K∗

k . Since Kk is separable, there exists a countable dense subset of the unit ball 

of Kk given by {J (k)
c,� , � ∈ N}. As in [54,56,57], using the operators J (k)

c,� , it is possible to define a metric on L1
k as:

ηk

(
γ

(k)
1 , γ

(k)
2

) :=
+∞∑
�=1

2−� · ∣∣TrJ (k)
c,�

(
γ

(k)
1 − γ

(k)
2

)∣∣. (67)

The topology induced by the metric ηk and the weak-∗ topology are equivalent on the unit ball of L1
k , c.f. [102, 

Theorem 3.16].
Let C([0, T ], L1

k) denote the space of all functions from [0, T ] which take values in L1
k and which are continuous 

with respect to the topology given by the metric ηk given in (67). On C([0, T ], L1
k), one defines the metric:

η̂k

(
γ

(k)
1 (·), γ (k)

2 (·)) := sup
t∈[0,T ]

ηk

(
γ

(k)
1 (t), γ

(k)
2 (t)

)
. (68)

Finally, one defines τprod to be the product metric on 
⊕

k∈N C([0, T ], Lk
1) obtained from the metric ̂ηk defined in (68).

5.3. Proof of Theorem 5.4

We will now use the above facts and prove Theorem 5.4:

Proof. It follows from (66) that the sequence (γ̃ (k)
κ;N,t

)N is equicontinuous with respect to ηk . More precisely, given 
ε > 0, we find M > 1 such that 

∑
�>M 2−� < ε

4 . We note that∣∣TrJ (k)
c,�

(
γ̃

(k)
κ; N,t

− γ̃
(k)
κ; N,s

)∣∣ ≤ ∥∥J (k)
c,�

∥∥ · Tr
∣∣γ̃ (k)

κ; N,t
− γ̃

(k)
κ; N,s

∣∣ ≤ 2.

Here, we used the triangle inequality and (64). Hence:

ηk

(
γ̃

(k)
κ; N,t

, γ̃
(k)
κ; N,s

) ≤
M∑

�=1

2−� · ∣∣TrJ (k)
c,�

(
γ̃

(k)
κ; N,t

− γ̃
(k)
κ; N,s

)∣∣+ ε

2
,

which can be made ≤ ε by using (66) if we choose |t − s| to be sufficiently small. By the Arzelà–Ascoli theorem, it 
follows that the sequence (γ̃ (k)

κ;N,t
)N is relatively compact with respect to ̂ηk . By using an additional diagonal argument, 

it follows that (Γ̃κ;N,t )N is relatively compact with respect to τprod. In particular, it follows that there exists Γ κ;∞,t =
(γ

(k)
κ;∞,t

)k ∈ ⊕
k∈N C([0, T ], Lk

1) and Nj → ∞ such that:

Γ̃κ; Nj ,t → Γ κ; ∞,t (69)

as j → ∞ with respect to τprod . Let us note that “ · ” in the above notation does not mean a complex conjugate. By 
taking subsequences, we can arrange for the Nj in (62) and (69) to be the same. Let us note that the sequence (Nj)j
depends on κ .

We now want to show that, for all t ∈ [0, T ]:
Γ̃κ; ∞,t = Γ κ; ∞,t (70)

as elements of L2(Λk ×Λk). Let us fix k ∈N and t ∈ [0, T ]. Suppose that F ∈ L2(Λk ×Λk). The integral operator T
with kernel F is Hilbert–Schmidt and hence is compact, i.e. it belongs to Kk . Since γ̃ (k)

κ;Nj ,t
⇀∗ γ

(k)
κ;∞,t

in the weak-∗
topology on L1

k as j → ∞, it follows from (14) that:

Tr
(
T γ̃

(k)
κ; Nj ,t

) → Tr
(
T γ

(k)
κ; ∞,t

)
as j → ∞, which can be rewritten as:∫

Λk×Λk

F
(�xk; �x′

k

) · γ̃ (k)
κ; Nj ,t

(�xk; �x′
k

)
d �xk d �x′

k

→
∫
k k

F
(�xk; �x′

k

) · γ (k)
κ; ∞,t

(�xk; �x′
k

)
d �xk d �x′

k. (71)
Λ ×Λ
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In particular:

γ̃
(k)
κ; Nj ,t

⇀ γ
(k)
κ; ∞,t

weakly in L2(Λk × Λk) as j → ∞.
Let us observe that (62) implies that:

γ̃
(k)
κ; N,t

→ γ̃
(k)
κ; ∞,t

strongly in L2(Λk × Λk) as j → ∞. In particular, (γ̃ (k)
κ;N,t

)k also converges to γ̃ (k)
κ;∞,t

weakly in L2(Λk × Λk).

By the uniqueness of weak limits, it follows that γ̃ (k)
κ;∞,t

= γ
(k)
κ;∞,t

as elements of L2(Λk × Λk). In particular, we 
can deduce (70). We will henceforth write the limit as Γ̃κ;∞,t .

To summarize, we know from [50, Theorem 1] that Γ̃κ;∞,t is a mild solution of the Gross–Pitaevskii hierarchy 
which belongs to L∞

t∈[0,T ]H1. Let us note that, by construction:

γ̃
(k)
κ;N,t

= Trk+1,...,N

∣∣Ψ̃ κ
N,t

〉〈
Ψ̃ κ

N,t

∣∣ ≥ 0

when considered as an operator on L2(Λk). Furthermore, γ̃ (k)
κ;N,t

is bounded and self-adjoint on L2(Λk). We recall 

from (63) that Tr γ̃ (k)
κ;N,t

= 1. Finally, we note that for all k ∈ N and for all t ∈ [0, T ], it is the case that γ̃ (k)
κ;Nj ,t

⇀∗

γ̃
(k)
κ;∞,t

as j → ∞ in the weak-∗ topology on L1
k . By (60), we can deduce that, for all k ∈ N, it is the case that 

γ̃
(k)
κ;∞,0 = |φ〉〈φ|⊗k .

In particular, it follows that Γ̃κ;∞,t is a mild solution of the Gross–Pitaevskii hierarchy with initial data given by 
Γ̃κ,∞,0 = (|φ〉〈φ|⊗k)k , which satisfies the assumptions of Theorem 4.6. We can now apply Theorem 4.6 and deduce 
that:

Γ̃κ;∞,t = (∣∣St (φ)
〉〈
St (φ)

∣∣⊗k)
k
. (72)

Consequently:

γ̃
(k)
κ;Nj ,t

⇀∗ ∣∣S(t)φ
〉〈
S(t)φ

∣∣⊗k (73)

as j → ∞ in the weak-∗ topology on L1
k .

Let us note that by (64) and the fact that ‖φ‖L2 = 1:

Tr
∣∣γ̃ (k)

κ;Nj ,t

∣∣ = Tr
∣∣∣∣S(t)φ

〉〈
S(t)φ

∣∣⊗k∣∣ = 1. (74)

We observe that (73) and (74) imply that:

Tr
∣∣γ̃ (k)

κ;Nj ,t
− ∣∣S(t)φ

〉〈
S(t)φ

∣∣⊗k∣∣ → 0 (75)

as j → ∞. In other words, weak-∗ convergence in L1
k and convergence of the norms implies strong convergence 

in L1
k . This fact was already noted in [56, Proposition 9.1 iii)]. It follows from a more general fact about convergence 

in the trace class proved by Arazy [10]. For related results, we refer the reader to [104], [105, Addendum H], and [83, 
Corollary 2.4], as well as [46] and [100]. Let us note that, in (75), the sequence (Nj )j can be taken to be independent 
of k ∈N and t ∈ [0, T ]. We recall that (Nj )j does depend on κ .

Let us now prove an analogue of (75) which is obtained by starting from the original functions ΨN . In other words, 
we start from (ΨN)N ∈ ⊕

N∈N L2(ΛN) which satisfies (56) and (57), and we consider:

γ
(k)
N,t := Trk+1,...,N |ΨN,t 〉〈ΨN,t |

as in (5).
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We want to estimate Tr |γ (k)
N,t − γ̃

(k)
κ;N,t

| for γ̃ (k)
κ;N,t

as in (61). Let us note that:

Tr
∣∣γ (k)

N,t − γ̃
(k)
κ; N,t

∣∣ = Tr1,2,...,k

∣∣Trk+1,...,N |ΨN,t 〉〈ΨN,t | − Trk+1,...,N |Ψ̃κ; N,t 〉〈Ψ̃κ; N,t |
∣∣

≤ Tr
∣∣|ΨN,t 〉〈ΨN,t | − |Ψ̃κ; N,t 〉〈Ψ̃κ; N,t |

∣∣
≤ Tr

∣∣|ΨN,t 〉
〈
(ΨN,t − Ψ̃κ; N,t )

∣∣∣∣+ Tr
∣∣∣∣(ΨN,t − Ψ̃κ; N,t )

〉〈ΨN,t |
∣∣

+ Tr
∣∣∣∣(ΨN,t − Ψ̃κ; N,t )

〉〈
(ΨN,t − Ψ̃κ; N,t )

∣∣∣∣
≤ 2‖ΨN,t‖L2(ΛN) · ‖ΨN,t − Ψ̃κ; N,t‖L2(ΛN) + ‖ΨN,t − Ψ̃κ; N,t‖2

L2(ΛN)

= 2‖ΨN‖L2(ΛN) · ‖ΨN − Ψ̃κ; N‖L2(ΛN) + ‖ΨN − Ψ̃κ; N‖2
L2(ΛN)

. (76)

Above, we used the triangle inequality, the Cauchy–Schwarz inequality and the fact that ‖ΨN,t‖L2(ΛN) and ‖ΨN,t −
Ψ̃κ;N,t‖L2(ΛN) are conserved in time. We note that (57) implies that ‖ΨN‖L2(ΛN) → 1 as N → ∞. In particular, 
(‖ΨN‖L2(ΛN))N is bounded. By using (59) and the fact that ‖ΨN‖L2(ΛN) � 1, it follows that the expression in (76) is:

≤ C′ · κ 1
2 (77)

for some C′ > 0, which is independent of k, N and κ .
Let us recall that, the sequence (Nj )j for which (75) holds, depends on κ . We will now emphasize this by writing 

Nj = Nj(κ). Consequently, by (77), we note that:

Tr
∣∣γ (k)

Nj (κ),t − ∣∣S(t)φ
〉〈
S(t)φ

∣∣⊗k∣∣ ≤ Tr
∣∣γ̃ (k)

κ; Nj (κ),t
− ∣∣S(t)φ

〉〈
S(t)φ

∣∣⊗k∣∣+ Tr
∣∣γ (k)

Nj (κ),t − γ̃
(k)
κ; Nj (κ),t

∣∣
≤ Tr

∣∣γ̃ (k)
κ; Nj (κ),t

− ∣∣S(t)φ
〉〈
S(t)φ

∣∣⊗k∣∣+ C′ · κ 1
2 .

We take a sequence κn := 1
n

, and we apply (75) and a diagonal argument in order to deduce that there exists a new 
sequence of positive integers tending to infinity, which is again denoted by (Nj)j , which is independent of k and t , 
and has the property that:

Tr
∣∣γ (k)

Nj ,t − ∣∣S(t)φ
〉〈
S(t)φ

∣∣⊗k∣∣ → 0 (78)

as j → ∞. The theorem now follows from (78). �
Remark 5.9. We note that the place where we applied the uniqueness result from Theorem 4.6 is in (72) above 
in order to deduce that Γ̃κ;∞,t is uniquely determined. In general, we can deduce that Γ∞,t in [50, Theorem 1] is 
uniquely determined provided that it satisfies the assumptions of Theorem 4.6. As we saw above, this was true in the 
intermediate step (72) of deriving the defocusing cubic nonlinear Schrödinger equation on T3.
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[22] T. Chen, N. Pavlović, On the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies, Discrete Contin. Dyn. Syst. 27 (2) 

(2010) 715–739.
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[26] T. Chen, N. Pavlović, Higher order energy conservation and global well-posedness for Gross–Pitaevskii hierarchies, Commun. Partial Differ. 

Equ. 39 (9) (2014) 1597–1634.
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[52] L. Erdős, B. Schlein, Quantum dynamics with mean field interactions: a new approach, J. Stat. Phys. 134 (5) (2009) 859–870.
[53] L. Erdős, B. Schlein, H.-T. Yau, Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate, Commun. Pure 

Appl. Math. 59 (12) (2006) 1659–1741.
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[57] L. Erdős, B. Schlein, H.-T. Yau, Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate, Ann. Math. (2) 

172 (1) (2010) 291–370.
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