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Abstract

We study the nonlinear Schrödinger equation with a delta-function impurity in one space dimension. Local well-posedness is
verified for the Cauchy problem in H 1(R). In case of attractive delta-function, orbital stability and instability of the ground state is
proved in H 1(R).
© 2007

Résumé

On étudie l’équation de Schrödinger non linéaire avec une impureté delta de Dirac en dimension 1. On vérifie que le problème
de Cauchy est localement bien posé dans H 1(R). Dans le cas de delta de Dirac attractif, la stabilité et l’instabilité orbitale des
ondes stationnaires sont vérifiées dans H 1(R).
© 2007
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1. Introduction

In this paper we study nonlinear Schrödinger equations of the form

i∂tu + 1

2
D2u + Zδu = −|u|p−1u, (1.1)

where u is a complex-valued function of (t, x) ∈ R × R, ∂t = ∂/∂t , D = ∂/∂x, δ is the Dirac measure at the origin,
Z ∈ R, and 1 � p < ∞. For Z �= 0, the equations of the form (1.1) arise in a wide variety of physical models with a
point defect on the line [13] and references therein. In spite of a large literature on (1.1) with Z = 0 [25], there seems
only a few mathematical studies in (1.1) with Z �= 0 [13,17] available so far.

To be more specific, it was shown in [13] that the Cauchy problem is globally well-posed in H 1(R) =
(1−D2)−1/2L2(R) in the case where Z > 0 and p = 3. Moreover, the authors in [13] studied the stability of nonlinear
bound states uDef given by
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uDef(x) = √
2ω eiωt sech

(√
2ω|x| + tanh−1 Z√

2ω

)
(1.2)

with
√

2ω > Z and ω > 0 in the orbitally Lyapunov sense in H 1 in the case where Z > 0 and p = 3.
The purpose in this paper is to generalize those results and to compare our results with the available results with

Z = 0. We note that the main topic addressed in [13] is an interaction of solitons and defect. In this perspective, we
also refer to [17].

The following proposition is concerned with the well-posedness of Eq. (1.1) in H 1(R).

Proposition 1. For any u0 ∈ H 1, there exists T > 0 and a unique solution u ∈ C([0, T );H 1) ∩ C1([0, T );H−1)

of (1.1) with u(0) = u0 such that either T = ∞ or T < ∞ and limt→T ‖Du‖L2 = ∞. Moreover, u satisfies the
conservation of the energy and the charge:

E
(
u(t)

) = E(u0), Q
(
u(t)

) = Q(u0), (1.3)

for all t ∈ [0, T ), where

E(v) = 1

4
‖Dv‖2

L2 − Z

2

∫
R

δ(x)
∣∣v(x)

∣∣2
dx − 1

p + 1
‖v‖p+1

Lp+1, Q(v) = 1

2
‖v‖2

L2 .

This proposition follows from Theorem 3.7.1 in [4]. We will note briefly how to check it later on. The global well-
posedness of the Cauchy problem holds in H 1(R) for any p with 1 < p < 5 by Gagliardo Nirenberg inequality and
the conservation laws.

Remark 1.1. We recall the definition of the self-adjoint operator H as the precise formulation of a formal expression
−(1/2)D2 − Zδ.

Hu = −1

2
D2u, u ∈ Dom(H),

where

Dom(H) = {
u ∈ H 1(R) ∩ H 2(

R \ {0}): Du(0+) − Du(0−) = −2Zu(0)
}
,

Hm(I) = {
u ∈ L2(I ): Dju ∈ L2 for all with 0 � j � m

}
, I ⊂ R.

All self-adjoint extensions of Ḣ ≡ −(1/2)D2 with domain

Dom(Ḣ ) = {
u ∈ H 2(R): u(0) = 0

}
are parametrized by H with Z ∈ [−∞,+∞) (see [1]).

Nonlinear bound states mean the solutions to (1.1) having the form uω(t, x) = eiωtφω(x), where ω > 0 is the
frequency and φω should satisfy the following semilinear elliptic equations:

−1

2
D2φ + ωφ − Zδφ = |φ|p−1φ, x ∈ R, Z ∈ R. (1.4)

There exists a unique positive symmetric solution of (1.4) which is explicitly described as:

φω(x) =
{

(p + 1)ω

2
sech2

(
(p − 1)

√
ω√

2
|x| + tanh−1

(
Z√
2ω

))} 1
p−1

(1.5)

if
√

2ω > |Z|. Precisely, this solution is constructed from the solution with Z = 0 on each side of the defect pasted
together at x = 0 to satisfy the conditions of continuity and the jump condition in the first derivative at x = 0,
Du(0+) − Du(0−) = −2Zu(0).

In case of Z = 0 it is unique for ω > 0 up to translations, which, we denote by ψω(x). Orbital stability for the case
of Z = 0 has been well studied (see [2,4,5,7,14,15,26,27]). Cazenave and Lions [5] proved that eiωtψω(x) is stable for
any ω > 0 if p < 5. On the other hand, it was shown that eiωtψω(x) is unstable for any ω > 0 if p � 5 (see Berestycki
and Cazenave [2] for p > 5, and Weinstein [26] for p = 5).
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As we have mentioned, Goodman, Holmes and Weinstein [13] claimed in the case where Z > 0 and p = 3 that (1.2)
are nonlinearly orbitally Lyapunov stable by the same method as that of Rose and Weinstein [22], Weinstein [26]. More
exactly, the authors established a variational characterization for (1.2) and proved the stability using the bifurcation
from the linear mode, i.e., the corresponding eigenfunction to the eigenvalue λ = −Z2/2. They also remark that as
ω → ∞, (1.2) looks more and more like the solitary wave of (1.1) with Z = 0 and ω = 1. However, we address in this
article a different point from the case Z = 0.

The notion of the stability and instability in this paper is formulated as follows.

Definition 1. For η > 0, we put

Uη(φω) :=
{
v ∈ H 1(R): inf

θ∈R

‖v − eiθφω‖H 1 < η
}
.

We say that a standing wave solution eiωtφω(x) of (1.1) is stable in H 1(R) if for any ε > 0 there exists η > 0 such
that for any u0 ∈ Uη(φω), the solution u(t) of (1.1) with u(0) = u0 satisfies u(t) ∈ Uε(φω) for any t � 0. Otherwise,
eiωtφω(x) is said to be unstable in H 1(R).

Before we mention our result, we should remark a variational characterization of φω for the discussion below. From
now on, we will consider only the case of Z > 0.

Definition 2. For Z > 0 and ω > Z2/2, we define two C1 functionals on H 1(R):

Sω(v) := E(v) + ωQ(v),

Iω(v) := 1

2
‖Dv‖2

L2 + ω‖v‖2
L2 − Z

∫
R

δ(x)
∣∣v(x)

∣∣2
dx − ‖v‖p+1

Lp+1

= 1

2
‖Dv‖2

L2 + ω‖v‖2
L2 − Z

∣∣v(0)
∣∣2 − ‖v‖p+1

Lp+1 .

Let Gω be the set of all nonnegative minimizers for the minimization problem

d(ω) = inf
{
Sω(v): v ∈ H 1(R) \ {0}, Iω(v) = 0

}
. (1.6)

The existence of nonnegative minimizers for (1.6) is proved by the standard variational argument. We will briefly
show the following proposition in Section 3 for the sake of completeness.

Proposition 2. Let Z > 0. For any ω > Z2/2, the minimization problem (1.6) is attained by a symmetric nonincreasing
function vanishing at infinity.

Remark 1.2.

(i) For Z > 0, let

λ = inf

{
1

2
‖Dv‖2

L2 − Z

∫
R

δ(x)
∣∣v(x)

∣∣2
dx: ‖v‖L2 = 1, v ∈ H 1(R)

}
.

Then we have λ = −Z2/2 and the corresponding eigenfunction is Φ(x) = Ze−Z|x|.
(ii) We note that

Iω(v) = ∂λSω(λv)|λ=1 = 〈
S′

ω(v), v
〉

for λ > 0.
(iii) Let vω ∈ Gω. Then, there exists a Lagrange multiplier Λ ∈ R such that S′

ω(vω) = ΛI ′
ω(vω). Thus, we have

〈S′
ω(vω), vω〉 = Λ〈I ′

ω(vω), vω〉. Since 〈S′
ω(vω), vω〉 = Iω(vω) = 0 and 〈I ′

ω(vω), vω〉 = −(p − 1)‖vω‖p+1
p+1 < 0,

we have Λ = 0. Namely, vω satisfies (1.4). Moreover, for any v ∈ H 1(R) \ {0} satisfying S′
ω(v) = 0, we have

Iω(v) = 0. Thus, by the definition of Gω, we have Sω(vω) � Sω(v). Namely, vω ∈ Gω is a ground state (minimal
action solution) of (1.4) in H 1(R). It is easy to see that a ground state of (1.4) in H 1(R) is a minimizer of (1.6).
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(iv) The minimizer v ∈ Gω obtained above, which is nonnegative, symmetric and nonincreasing, satisfies the bound-
ary value problem (see Lemma 3.2 below):

v ∈ C2(
R \ {0}) ∩ C(R), v(x) > 0, x ∈ R,

−1

2
D2v + ωv − vp = 0, x �= 0,

Dv(0+) − Dv(0−) = −2Zv(0),

Dv(x), v(x) → 0, as |x| → ∞.

(v) We note that there is no nontrivial solution in H 1(R) when ω � Z2/2.

Remark 1.3. The minimizer obtained in Proposition 2 is precisely the same as φω defined by (1.5) since the positive
solution with the boundary value problem in Remark 1.2(iv) is uniquely determined.

To prove stability and instability, we use the following sufficient condition originally obtained by Shatah [23] and
Shatah and Strauss [24] (see also [9,10] for the proof).

Proposition 3. Let p > 1, Z > 0 and ω > Z2/2. Let vω ∈ Gω. Assume that ω �→ vω is a C1 mapping.

(i) If ∂ω‖vω‖2
L2 > 0 at ω = ω0, then eiω0t vω0(x) is stable in H 1(R).

(ii) If ∂ω‖vω‖2
L2 < 0 at ω = ω0, then eiω0t vω0(x) is unstable in H 1(R).

Remark 1.4. In case of Z = 0, it is easy to verify this condition since we have ‖ψω‖2
L2 = ω2/(p−1)−1/2‖ψ1‖2

L2 by
the scaling invariance even in the higher dimensional case. Due to the potential term we lost the scaling invariance in
general (see [6,10–12,18,20,28,29] for example). However, in the present one-dimensional case where the potential is
a Dirac-delta, we can compute exactly the increase and decrease of L2 norm of (1.5).

Theorem 1. Let Z > 0 and ω > Z2/2.

(i) Let 1 < p � 5. Then eiωtφω(x) is stable in H 1(R) for any ω ∈ (Z2/2,∞).
(ii) Let p > 5. Then there exists a unique ω1 > Z2/2 such that eiωtφω(x) is stable in H 1(R) for any ω ∈ (Z2/2,ω1),

and that it is unstable in H 1(R) for any ω ∈ (ω1,∞), where ω1 is exactly defined as follows:
p − 5

p − 1
J (ω1) = Z√

2ω1

(
1 − Z2

2ω1

)
,

J (ω1) =
∞∫

A(ω1)

sech4/(p−1)y dy, A(ω1) = tanh−1
(

Z√
2ω1

)
.

Remark 1.5. Concerning the critical case ∂ω‖φω‖2
L2 = 0, we conjecture that eiω1t φω1(x) would be unstable in view

of the result of Comech and Pelinovsky [7]. For that purpose, the above variational characterizations of φω would be
useful to investigate the number of nonpositive eigenvalues of the linearized operators around eiωtφω(x) (see [16,8]).

Remark 1.6. A similar result is known for one dimensional nonlinear Schrödinger equations with Z = 0 and with
double power nonlinearity (see Ohta [21]).

In Section 2, we give an idea of Proposition 1. In Section 3, we prove Proposition 2 and we complete the proof of
Theorem 1 by checking the increase and the decrease of L2 norm of φω as a function of ω. Also, we give the outline
of the proof of Proposition 3.
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2. Remarks on Proposition 1

In this section, we give some remarks about the verification of Proposition 1.
We apply Theorem 3.7.1 of [4] to our problem. We check the assumptions of Theorem 3.7.1.
First, we remark that H defined in Remark 1.1 satisfies H � −m, where m = Z2/2, if Z > 0 and m = 0 if Z < 0.

Thus, A = −H −m is a self-adjoint operator on X = L2(R) with domain Dom(A) = Dom(H), and A � 0. Moreover,
in our case, we may take XA = H 1(R) whose norm is equivalent to H 1(R) norm, namely,

‖u‖2
XA

= 1

2
‖Du‖2

L2 + (m + 1)‖u‖2
L2 − Z

∣∣u(0)
∣∣2

.

It is easy to see that the uniqueness of solutions and the conditions (3.7.1), (3.7.3)–(3.7.6) hold choosing r = ρ = 2,
since we are in one dimensional case.

Lastly, the condition (3.7.2) with p = 2 is satisfied for the reason that A is a self-adjoint operator on L2(R). Here,
we note that only the case p = 2 in (3.7.2) is needed for our case since we can take r = ρ = 2 in (3.7.5).

3. Existence of ground states and proof of Theorem 1

To show Proposition 2, we remark that the following variational problem is equivalent to d(ω):

d1(ω) = inf

{
p − 1

2(p + 1)
‖v‖p+1

Lp+1 : v ∈ H 1(R) \ {0}, Iω(v) � 0

}
. (3.1)

We will make use of the following lemma by Brézis and Lieb [3].

Lemma 3.1. Let 2 � q < ∞ and {wj } be a bounded sequence in Lq(R). Assume that wj(x) → w0(x) a.e. x ∈ R as
j → ∞. Then we have

‖wj‖q
Lq − ‖wj − w0‖q

Lq − ‖w0‖q
Lq → 0, as j → ∞.

We recall that ψω(x) is a unique positive symmetric solution of (1.4) with Z = 0. It is known that ψω(x) is a
minimizer of

d0(ω) = inf
{
S0

ω(v): v ∈ H 1(R) \ {0}, I 0
ω(v) = 0

}
= inf

{
p − 1

2(p + 1)
‖v‖p+1

Lp+1 : v ∈ H 1(R) \ {0}, I 0
ω(v) � 0

}
,

where

S0
ω(v) = 1

4
‖Dv‖2

L2 + ω

2
‖v‖2

L2 − 1

p + 1
‖v‖p+1

Lp+1,

I 0
ω(v) = 1

2
‖Dv‖2

L2 + ω‖v‖2
L2 − ‖v‖p+1

Lp+1 .

Proof of Proposition 2. Let {vj } be a minimizing sequence for d1(ω), then we have that ‖vj‖2
H 1 is bounded. In-

deed, vj satisfies

1

2
‖Dvj‖2

L2 + ω‖vj‖2
L2 − Z

∫
R

δ(x)
∣∣vj (x)

∣∣2
dx � C.

By (i) of Remark 1.2, (ω + λ)‖vj‖2
L2 � C. Also, by Sobolev embedding,

1

2
‖Dvj‖2

L2 � C + Z
∣∣vj (0)

∣∣2

� C + C‖vj‖L2‖Dvj‖L2

� C + C

(
1 ‖vj‖2

L2 + ε ‖Dvj‖2
L2

)
.

2ε 2
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Taking ε > 0 sufficiently small, we have that ‖Dvj‖2
L2 is bounded and so that ‖vj‖2

H 1 is bounded. Thus, there ex-

ists v0 ∈ H 1(R) such that a subsequence of {vj }, which we will denote by the same letter, converges to v0 weakly
in H 1(R). Therefore, vj (x) converges to v0(x) a.e. x ∈ R. Now suppose that v0 ≡ 0. Then we have, I 0

ω(vj ) → 0,

as j → ∞. Since Z > 0, we have Iω(ψω) < 0, and hence we obtain,

d1(ω) <
p − 1

2(p + 1)
‖ψω‖p+1

Lp+1 = d0(ω). (3.2)

We set

λj =
(‖Dvj‖2

L2 + ω‖vj‖2
L2

‖vj‖p+1
Lp+1

) 1
p−1

.

We here remark that lim infj→∞ ‖vj‖p+1
Lp+1 = d1(ω) > 0. It then follows that

λ
p−1
j − 1 = I 0

ω(vj )

‖vj‖p+1
p+1

→ 0, as j → ∞,

and we see that I 0
ω(λjvj ) = 0 and λjvj �≡ 0. By the definition of d0(ω), we obtain,

d0(ω) � p − 1

2(p + 1)
λ

p+1
j ‖vj‖p+1

Lp+1 → d1(ω), as j → ∞,

which is a contradiction to (3.2) and we conclude that v0 �≡ 0. By Lemma 3.1, we have, as j → ∞,

‖vj‖p+1
Lp+1 − ‖vj − v0‖p+1

Lp+1 − ‖v0‖p+1
Lp+1 → 0, (3.3)

Iω(vj ) − Iω(vj − v0) − Iω(v0) → 0. (3.4)

Now we suppose that Iω(v0) > 0. Then, it follows from (3.4) and the fact Iω(vj ) � 0 that Iω(vj − v0) < 0 for

sufficiently large j . Accordingly, from the definition of d1(ω), we obtain p−1
2(p+1)

‖vj − v0‖p+1
Lp+1 � d1(ω) for large j .

On the other hand, by (3.3), we have

p − 1

2(p + 1)
‖v0‖p+1

Lp+1 = d1(ω) − p − 1

2(p + 1)
lim

j→∞‖wj − v0‖p+1
Lp+1 ,

which is a contradiction since ‖v0‖p+1
Lp+1 > 0. Therefore, we get Iω(v0) � 0 and then,

d1(ω) � p − 1

2(p + 1)
‖v0‖p+1

Lp+1 � p − 1

2(p + 1)
lim inf
j→∞ ‖vj‖p+1

Lp+1 = d1(ω).

This concludes that v0 is a minimizer of d1(ω). We may verify that the minimizer is nonnegative, symmetric and
nonincreasing using a rearrangement inequality of [19, Theorem 3.4]. �

To assure that the minimizer satisfies the boundary condition and decays at infinity, we prove the following lemma.

Lemma 3.2. Let p > 1, Z > 0 and ω > Z2/2. Assume that v ∈ Gω. Then v is symmetric, positive and satisfies the
following.

v ∈ Cj
(
R \ {0}) ∩ C(R), j = 1,2, (3.5)

−1

2
D2v + ωv − vp = 0, x �= 0, (3.6)

Dv(0+) − Dv(0−) = −2Zv(0), (3.7)

Dv(x), v(x) → 0, as |x| → ∞. (3.8)
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Proof. Since v satisfies S′
ω(v) = 0, v satisfies (1.4). To check (3.5) and (3.8), we take an appropriate test function

ξ ∈ C∞
0 (R \ {0}). Then ξv satisfies

−1

2
D2(ξv) + ωξv = −1

2
(D2ξ)v − (Dξ)(Dv) + ξvp,

in the sense of distributions. We employ the standard bootstrap argument for this equation (see Section 8 of [4] for
details). The right-hand side is in L2(R) and so ξv ∈ H 2(R), that is, v ∈ H 2(R \ {0}) ∩ C1(R \ {0}). The case of
j = 2 is similar. Eq. (3.6) follows from the fact that C∞

0 (R \ {0}) is dense in L2(R). Concerning (3.7), we integrate
S′

ω(v) = 0 from −ε to ε.

−1

2

ε∫
−ε

D2v dx + ω

ε∫
−ε

v dx − Z

ε∫
−ε

δ(x)v dx =
ε∫

−ε

vp dx.

Then we have the initial boundary condition

Dv(0+) − Dv(0−) = −2Zv(0)

letting ε → 0. Multiplying Eq. (3.6) by Dv and integrating resulting terms in x > 0 and in x < 0, we have

−1

4
(Dv)2 = F

(
v(x)

)
, x �= 0. (3.9)

We note that v(x) > 0 for x ∈ R. If not, there exists x0 such that v(x0) = 0. From (3.9), we have Dv(x0) = 0. It
implies v ≡ 0, which is impossible. �

To show Theorem 1, we check the sufficient condition for stability and instability in Proposition 3.

Proof of Theorem 1. We put α = ω−1/2, for ω > Z2/2 and then it follows from (1.5) that

∂

∂ω
‖φω‖2

L2 = −α3

2

∂

∂α
‖φα‖2

L2 = −Cpα−4/(p−1)+3g(α),

g(α) = p − 5

p − 1
J (α) − αZ(1 − C2

α)−(p−3)/(p−1),

J (α) =
∞∫

A(α)

sech4/(p−1)y dy, A(α) = tanh−1(Cα),

where Cα = Zα/
√

2 and Cp is a positive constant depending only on p. It suffices to check the sign of g(α). In
the case where Z > 0 and p � 5, we have g(α) < 0 for any α ∈ (0,

√
2/Z). In the case where Z > 0 and p > 5,

we see that g′(α) > 0 in a neighborhood of 0, g′(α) < 0 in a neighborhood of
√

2/Z and that g′′(α) < 0 for any
α ∈ (0,

√
2/Z). Therefore, there exists a unique α∗ ∈ (0,

√
2/Z) such that g(α∗) = 0, g(α) > 0 for any α ∈ (0, α∗)

and that g(α) < 0 for any α ∈ (α∗,
√

2/Z) since g(0) > 0. We put α∗ = ω
−1/2
1 and then ω1 > Z2/2. �

For the sake of completeness, we give a remark on the proof of Proposition 3. First, we consider the stability. We
explain briefly because the proof is similar to that of [10, Proposition 1] (see also Fibich and Wang [9]). We remark
that d ′(ω) = Q(φω) and it follows from the explicit form of (1.5) that the mapping ω �→ φω is C1.

We introduce the C1 map ω(·) :Uη(φω) → R defined by

ω(u) = d−1
(

p − 1

2(p + 1)
‖u‖p+1

Lp+1

)
. (3.10)

Here, let us denote φω0 by φ0 for simplicity. The following lemma is important to have the stability. We omit the
proof since it is the same as that of Lemma 4.2 in [10].



844 R. Fukuizumi et al. / Ann. I. H. Poincaré – AN 25 (2008) 837–845
Lemma 3.3. Let p > 1, Z > 0 and ω > Z2/2. Assume d ′′(ω) > 0 at ω = ω0 for some ω0 ∈ (Z2/2,∞). Then there
exists η = η(ω0) > 0 such that for all u ∈ Uη(φ0),

E(u) − E(φ0) + ω(u)
{
Q(u) − Q(φ0)

}
� 1

4
d ′′(ω0)

(
ω(u) − ω0

)2
.

We verify the statement of Proposition 3(i) by contradiction. Assume that eiω0tφ0(x) is unstable in H 1(R). Then
we have ε0 > 0 and initial data uk(0) ∈ U1/k(φ0) such that

sup
t�0

inf
θ∈R

∥∥uk(t) − eiθφ0
∥∥

H 1 � ε0,

where uk(t) is the solution of (1.1) with initial data uk(0). Let tk be the first time at which

inf
θ∈R

∥∥uk(tk) − eiθφ0
∥∥

H 1 = ε0

2
. (3.11)

We put vk = uk(tk). Since E and Q are conserved in t , we have∣∣E(vk) − E(φ0)
∣∣ = ∣∣E(

uk(0)
) − E(φ0)

∣∣ → 0, (3.12)∣∣Q(vk) − Q(φ0)
∣∣ = ∣∣Q(

uk(0)
) − Q(φ0)

∣∣ → 0 (3.13)

as k → ∞. From (3.11), we have ‖vk‖H 1 � C uniformly in k. Also we note that ωk = ω(vk) is uniformly bounded
in k since ω(u) is a continuous map. Here, we take η small enough so that Lemma 3.3 may be applied. Then we have

E(vk) − E(φ0) + ωk

{
Q(vk) − Q(φ0)

}
� 1

4
d ′′(ω0)(ωk − ω0)

2. (3.14)

Since d ′′(ω0) > 0, this implies that ωk → ω0 as k → ∞. By using Iω0(φ0) = 0 and the fact that d(·) is continuous, it
follows that

lim
k→∞

p − 1

2(p + 1)
‖vk‖p+1

Lp+1 = lim
k→∞d(ωk) = d(ω0) = p − 1

2(p + 1)
‖φ0‖p+1

Lp+1 . (3.15)

From (3.12) and (3.13), we have

Sω0(vk) = Sω0(vk) − Sω0(φ0) + Sω0(φ0)

= E(vk) − E(φ0) + ω0
(
Q(vk) − Q(φ0)

) + d(ω0)

→ d(ω0), (3.16)

as k → ∞. Let wk = (‖φ0‖Lp+1/‖vk‖Lp+1)vk . Then, wk satisfies ‖wk‖Lp+1 = ‖φ0‖Lp+1 and ‖wk − vk‖H 1 → 0 as
k → ∞. Furthermore, by (3.15) and (3.16), Sω0(wk) → d(ω0) as k → ∞. Therefore, {wk} is a minimizing sequence
for d(ω0). By a similar argument we have done in the proof of Proposition 2 and the uniqueness of minimizers of
d(ω0), there exists a sequence {θk} ⊂ R such that ‖wk − eiθkφ0‖H 1 → 0 as k → ∞. Namely, we get

‖vk − eiθkφ0‖H 1 → 0

as k → ∞, which is a contradiction to (3.11). �
Next, concerning the sufficient condition for instability, i.e., Proposition 3(ii), we can apply a similar method by

Shatah and Strauss [24] to our present case. Indeed, we modify the function ψ(ω), which was defined in the proof
of Theorem 5 in [24] and used to determine an unstable direction in solving the ordinary differential equation of
Lemma 11 in [24], as the following: For any fixed ω0 ∈ (Z2/2,∞), we put for any vω ∈ Gω,

ψ(ω) = λ(ω)vω(x), λ(ω) = ‖vω0‖L2

‖vω‖L2

for any ω ∈ (Z2/2,∞) which is close to ω0. We also remark that our variational characterization is different
from theirs only in the point that d(ω) = p−1

2(p+1)
‖vω‖p+1

Lp+1 . Accordingly, we change the norm in the statement of

Lemma 11(iv) in [24] to Lp+1 norm. In consequence, their method works and Theorem 17 in [24] holds for the
present case.



R. Fukuizumi et al. / Ann. I. H. Poincaré – AN 25 (2008) 837–845 845
Acknowledgements

The authors would like to thank the referees for their helpful advice and useful comments.

References

[1] S. Albeverio, F. Gesztesy, R. Hëgh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, New York, 1988.
[2] H. Berestycki, T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires, C. R. Acad.

Sci. Paris. 293 (1981) 489–492.
[3] H. Brézis, E.H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88

(1983) 486–490.
[4] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, American Mathematical Society, Courant

Institute of Mathematical Sciences, 2003.
[5] T. Cazenave, P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys. 85 (1982)

549–561.
[6] C. Cid, P. Felmer, Orbital stability of standing waves for the nonlinear Schrödinger equation with potential, Rev. Math. Phys. 13 (2001)

1529–1546.
[7] A. Comech, D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy, Commun. Pure Appl. Math. 56 (2003) 1565–

1607.
[8] A. de Bouard, R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri

Poincaré 6 (2005) 1157–1177.
[9] G. Fibich, X.P. Wang, Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Physica D 175

(2003) 96–108.
[10] R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials, Adv. Differential

Equations 10 (2005) 259–276.
[11] R. Fukuizumi, M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations 16

(2003) 691–706.
[12] R. Fukuizumi, M. Ohta, Stability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations 16

(2003) 111–128.
[13] R.H. Goodman, P.J. Holmes, M.I. Weinstein, Strong NLS soliton-defect interactions, Physica D 192 (2004) 215–248.
[14] M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987) 160–197.
[15] M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal. 94 (1990) 308–348.
[16] Y. Kabeya, K. Tanaka, Uniqueness of positive radial solutions of semilinear elliptic equations in R

n and Séré’s non-degeneracy condition,
Comm. Partial Differential Equations 24 (1999) 563–598.

[17] J. Holmer, J. Marzuola, M. Zworski, Fast soliton scattering by delta impurities, Preprint.
[18] M. Kunze, T. Küpper, V.K. Mezentsev, E.G. Shapiro, S. Turitsyn, Nonlinear solitary waves with Gaussian tails, Physica D 128 (1999) 273–295.
[19] E.H. Lieb, M. Loss, Analysis, second ed., American Mathematical Society, 2001.
[20] Y.G. Oh, Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials, Commun. Math. Phys. 121 (1989) 11–33.
[21] M. Ohta, Stability and instability of standing waves for one dimensional nonlinear Schrödinger equations with double power nonlinearity,

Kodai Math. J. 18 (1995) 68–74.
[22] H.A. Rose, M.I. Weinstein, On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D 30 (1988) 207–218.
[23] J. Shatah, Stable standing waves of nonlinear Klein–Gordon equations, Commun. Math. Phys. 91 (1983) 313–327.
[24] J. Shatah, W. Strauss, Instability of nonlinear bound states, Commun. Math. Phys. 100 (1985) 173–190.
[25] C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139,

Springer-Verlag, New York, 1999.
[26] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys. 87 (1983) 567–576.
[27] M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math. 39 (1986) 51–68.
[28] J. Zhang, Stability of standing waves for the nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys. 51 (2000)

489–503.
[29] J. Zhang, Stability of attractive Bose–Einstein condensates, J. Statist. Phys. 101 (2000) 731–745.


