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Abstract

The Paneitz operator is a fourth order differential operator which arises in conformal geometry and satisfies a certain covariance
property. Associated to it is a fourth order curvature – the Q-curvature.

We prove the existence of a continuum of conformal radially symmetric complete metrics in hyperbolic space H
n, n > 4, all

having the same constant Q-curvature.
Moreover, similar results can be shown also for suitable non-constant prescribed Q-curvature functions.
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1. Introduction

The fourth order Paneitz operator arises naturally in conformal geometry, when one looks for higher order elliptic
operators enjoying some covariance property. We shall be concerned with a corresponding semilinear equation, which
comes up when searching conformal metrics with a certain prescribed fourth order curvature invariant – the so-called
Q-curvature.

Let (Mn,g) be a Riemannian manifold of dimension n. The objective of conformal geometry is the following: can
one change the original metric g conformally into a new metric h with prescribed properties? This means that one
searches for some positive function ρ such that h = ρg and the conformal factor ρ has to satisfy an elliptic boundary
value problem.
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E.g. for n > 2 let Lg := −cn�g + Rg be the conformal Laplacian, where �g is the Laplace Beltrami operator,

cn = 4(n − 1)/(n − 2) and Rg is the scalar curvature. If one sets the conformal factor ρ = u
4

n−2 , u > 0 then it is well
known that L has the following conformal covariance property:

∀ϕ ∈ C∞(M): Lg(uϕ) = u
n+2
n−2 Lh(ϕ).

If one prescribes the scalar curvature Rh for the metric h then u has to satisfy the second order equation

Lg(u) = u
n+2
n−2 Lh(1) = Rhu

n+2
n−2 . (1)

In the case Rh ≡ const. this is the so-called Yamabe problem. In the case Rh is a prescribed function it is called the
Nirenberg problem.

It turns out that there are many operators beside the conformal Laplacian Lg on general Riemannian manifolds of
dimension greater than two which enjoy a conformal covariance property. A particularly interesting one is the fourth
order operator Pn on n-manifolds discovered by Paneitz in 1983, which can be written for n > 4 as:

Pg = �2
g + divg(anRg Id−bnRicg)∇g + n − 4

2
Qg,

where an = (n−2)2+4
2(n−1)(n−2)

, bn = − 4
n−2 . Here Ric :T M → T M is the (1,1)-tensor given by Ricj

i = gjk Ricki , the op-
erator ∇g produces the gradient vector-field of a function and divg the divergence of a vector-field. Further, the
Q-curvature is given by

Qg = − 2

(n − 2)2
|Ricg|2 + n3 − 4n2 + 16n − 16

8(n − 1)2(n − 2)2
R2

g − 1

2(n − 1)
�gR

with |Ric|2 := Ricij Rick� gikgj�. In weak form the Paneitz operator may be written∫
M

(Pgu)ϕ dvg =
∫
M

(
�gu�gϕ − anRg〈∇gu,∇gϕ〉g − bn Ricg(∇gu,∇gϕ) + n − 4

2
Qguϕ

)
dvg

for all ϕ ∈ C∞
0 (M). In the case n > 4, the conformal factor is usually chosen in the form ρ = u4/(n−4), u > 0 and the

conformal covariance property of the Paneitz operator reads as follows:

∀ϕ ∈ C∞(M): Pg(uϕ) = u
n+4
n−4 Ph(ϕ).

If one prescribes the Q-curvature for the metric h by a function Qh this leads to the equation

Pg(u) = u
n+4
n−4 Ph(1) = n − 4

2
Qhu

n+4
n−4 , (2)

which is a fourth order analogue of (1).
Natural generalizations of problems from second order conformal geometry like the Yamabe problem, the Niren-

berg problem or also existence, uniqueness and regularity for equations involving the Paneitz operator or biharmonic
mappings are obvious and interesting questions are to be studied. We refer to the survey articles of Chang [2] and
Chang, Yang [7] and to the lecture notes [3] for more background information on the Paneitz operator

In the present paper the manifold (Mn,g) is the hyperbolic space H
n with its standard metric. We focus on finding

a complete metric h = U
4

n−4 g on H
n such that h has prescribed Q-curvature. We give conditions on Q (which include

the case Q ≡ const.) such that an entire continuum of mutually distinct complete radially symmetric conformal metrics
exists all having the same prescribed Q-curvature. In the case where Q ≡ 1

8n(n2 − 4) this family contains in its
“center” the explicitly known standard hyperbolic Poincaré metric, and at least a sub-continuum of these metrics has
negative scalar curvature.

We point out that it is surprising to find such highly non-unique solutions. In previous work on the second order
Yamabe problem, uniqueness of metrics with constant scalar curvature was found in the case of H

n by Loewner–
Nirenberg [22]. In the case of S

n uniqueness (up to isometries) was proved by Obata [26] and later by Caffarelli,
Gidas and Spruck [1] and Chen and Li [8]. In the fourth order Paneitz problem, uniqueness (up to isometries) of
metrics with constant Q-curvature on S

n was found by Chang and Yang [6] for n = 4, by Wei and Xu [31] and
C.-S. Lin [21] for n > 4 and by Choi and Xu [9] in the exceptional case n = 3.
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In our setting we chose (M,g) to be a non-compact manifold. In contrast to this non-compact case, the literature
for the existence of solutions of the prescribed Q-curvature problem on compact manifolds is considerably bigger.
We only give a brief survey on results concerning fourth order Paneitz operators. In Chang and Yang [5], Wei and
Xu [30] and Gursky [19] existence results for the constant Q-curvature problem in compact 4-manifolds are given.
Recent work of Djadli and Malchiodi [13] provides further extensions and completions of these works.

On compact manifolds of dimension greater then 4 existence results were given for Einstein manifolds by Djadli,
Hebey and Ledoux [12] and in the case of invariance of both the manifold and Q-curvature function under a group of
isometries by Robert [29]. On the sphere S

n we refer to results of Djadli, Malchiodi and Ould Ahmedou [14,15] and
Felli [16].

1.1. The main results

As a model for hyperbolic space H
n we use the Poincaré ball, i.e. H

n is represented by the unit-ball B = B1(0) ⊂
R

n with standard co-ordinates x1, . . . , xn and the Poincaré metric gij = 4/(1 − |x|2)2δij . Since H
n is conformally flat

we may seek the metric h of the form hij = U
4

n−4 gij = u
4

n−4 δij and the corresponding differential equation (2) for u

reduces to

�2u = n − 4

2
Qu(n+4)/(n−4), u > 0 in B, u|∂B = ∞. (3)

The condition u|∂B = ∞ is necessary (and as we shall show also sufficient) for completeness of the metric h. For
U = 1 we are at the Poincaré metric. In this case the conformal factor is given explicitly by

u0(x) =
(

2

1 − |x|2
)(n−4)/2

. (4)

The Poincaré metric (u
4/(n−4)

0 δij )ij with u0 as above has constant Q-curvature Q ≡ 1
8n(n2 − 4).

1.1.1. Infinitely many complete radial conformal metrics with the same constant Q-curvature
Theorem 1. For every α > 0, there exists a radial solution of the prescribed Q-curvature equation (3) in the unit ball
with Q ≡ 1

8n(n2 − 4), infinite boundary values at ∂B and with u(0) = α. Moreover,

(i) the conformal metric (u4/(n−4)δij )ij on B is complete;
(ii) if u(0) > 0 is sufficiently small then the corresponding solution generates a metric with negative scalar curvature.

The existence proof is given in Section 2. Closely related results can be found in a recent and independent work of
Diaz, Lazzo and Schmidt [10]. Statement (ii) is discussed in Section 3.

According to forthcoming work [11] of Diaz, Lazzo and Schmidt, one has, for the solutions constructed in Theo-
rem 1, that asymptotically for r ↗ 1

u(r) ∼ C(1 − r2)(4−n)/2

where C = C(n) does not depend on the solution. Furthermore, the derivatives of u exhibit a corresponding uniform
behavior. This is an even more precise information than just completeness of the conformal metric. However, for the
less far reaching statement (i) of completeness, we provide a relatively simple and elementary independent proof in
Appendix A.

Eq. (3) is invariant under Moebius transformations of the unit ball. But the only solution which is invariant under
all Moebius transformations of the unit ball is the explicit solution (4). Hence, we also have infinitely many distinct
non-radial solutions, which is again in striking contrast to the second order analogue of (3). The following is an open
problem, which we could not solve in this paper but hope to address in future work:

Find a geometric criterion, which singles out the explicit solution (4) among all other solutions of (3).
One might guess that among all radially symmetric metrics the explicit Poincaré metric is uniquely characterized by
a condition of the kind

−C � Rh � − 1
< 0
C
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with a suitable constant C. This is, however, wrong, since it follows from the result of [11] that for every radial
solution u of (3) one has that the scalar curvature of the generated metric satisfies limr→1 Rh = −n(n − 1). It is,
however, trivially true that the Poincaré metric is the only one with Rh ≡ −n(n − 1).

1.1.2. Infinitely many complete radial conformal metrics with the same non-constant Q-curvature
For smooth positive radial functions Q :B → R we give suitable assumptions on Q such that the conformal metric

(u4/(n−4)δij )ij has Q-curvature equal to the given function Q. We can prove a result, which is analogous to Theorem 1.

Theorem 2. Let Q ∈ C1[0,1] and assume that there are two positive constants Q0,Q1 > 0 such that 0 < Q0 <

Q(r) < Q1 on [0,1]. Suppose further that there exists q ∈ [0,1) such that rQ′(r) � −qQ(r) on [0,1], i.e., rqQ(r)

is monotonically increasing. Then, for every α > 0, there exists a radial solution of the prescribed Q-curvature equa-
tion (3) in the unit ball with infinite boundary values at ∂B and with u(0) = α. Moreover,

(i) the conformal metric (u4/(n−4)δij )ij on B is complete;
(ii) if u(0) > 0 is sufficiently small, then the corresponding solution generates a metric with negative scalar curvature.

Infinitely many solutions have also been observed by Chang and Chen [4] in a different conformally covariant
fourth order equation in R

4 with exponential nonlinearity.
R. Mazzeo pointed out that perturbation methods developed by F. Pacard and him [24] might also apply in the

present situation in order to construct neighbourhoods of non-radial solutions close to our radial ones.

2. Shooting method

2.1. Constant Q-curvature

Here we look for radial solutions of (3). By means of a shooting method we shall construct infinitely many distinct
solutions. Applying the special Moebius transforms

ϕa :B → B, ϕa(x) = 1

|a|2
(

a − (|a|2 − 1)
1

|x − a/|a|2|2
(

x − a

|a|2
))

(5)

we even find non-radial solutions by setting

ũ := J (n−4)/(2n)
ϕa

· u ◦ ϕa,

where Jϕa is the Jacobian-determinant of ϕa . All these conformal metrics have constant Q-curvature 1
8n(n2 − 4) and

a continuum of them has negative scalar curvature.
In order to construct solutions of (3) with Q ≡ 1

8n(n2 − 4), we do this for the simplified problem

�2u = u(n+4)/(n−4), u > 0 in B, u|∂B = ∞.

By a simple scaling argument both boundary value problems are equivalent. For radial solutions we study the initial
value problem⎧⎪⎨

⎪⎩
�2u(r) =

(
r1−n ∂

∂r

(
rn−1 ∂

∂r

))2

u(r) = u(r)(n+4)/(n−4), r > 0,

u(0) = α, u′(0) = 0, �u(0) = β, (�u)′(0) = 0,

(6)

where α � 0, β ∈ R are given. If necessary, u(n+4)/(n−4) will denote also the odd extension to the negative reals;
however, we mainly focus on positive solutions. It is a routine application or modification of the Banach fixed point
theorem or the Picard–Lindelöf-result to show that (6) always has unique local C4-solutions.

It is a simple but very useful observation that the initial value problem enjoys a comparison principle, see [25]:

Lemma 1. Let u,v ∈ C4([0,R)) and Q̃ ∈ C([0,R)), Q̃ � 0 be such that{
∀r ∈ [0,R): �2u(r) − Q̃(r)u(r)(n+4)/(n−4) � �2v(r) − Q̃(r)v(r)(n+4)/(n−4),

′ ′ ′ ′ (7)

u(0) � v(0), u (0) = v (0) = 0, �u(0) � �v(0), (�u) (0) = (�v) (0) = 0.
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Then we have

∀r ∈ [0,R): u(r) � v(r), u′(r) � v′(r), �u(r) � �v(r), (�u)′(r) � (�v)′(r). (8)

Moreover,

(i) the initial point 0 can be replaced by any initial point ρ > 0 if all four initial data at ρ are weakly ordered,
(ii) a strict inequality in one of the initial data at ρ � 0 or in the differential inequality on (ρ,R) implies a strict

ordering of u,u′,�u,�u′ and v, v′,�v,�v′ on (ρ,R).

The problem (6) has the following entire solutions

Uα(r) = α
[n(n2 − 4)(n − 4)] n−4

4

(
√

n(n2 − 4)(n − 4) + (α2/(n−4)r)2)
n−4

2

(9)

of (6) with α > 0 and suitably chosen β0 := β0(α) := �Uα(0). It is known that these solutions are the only positive

entire solutions of (6), cf. [21,31]. The metric h = U
4

n−4
α δij arises as the pullback of the standard metric of the sphere

S
n under a stereographic projection to R

n .
For our purposes it is enough to show the following result: the solution Uα is a separatrix in the r–u-plane, i.e., if

we fix α > 0 and consider β as a varying parameter then Uα separates the blow-up solutions from the solutions with
one sign-change, which lie below Uα .

Lemma 2. Let α > 0 be fixed. Then, for β > β0, the solution u = uα,β blows up on a finite interval, which we denote
by [0,R(α,β)). The blow-up-radius R(α,β) is monotonically decreasing in β .

Proof. It is useful to have the explicit solutions

Vα(r) = α

(
1 −

(
r

λα

)2)−(n−4)/2

, (10)

of (6) at hand, where λα = α−2/(n−4)[n(n2 − 4)(n − 4)]1/4. We fix any α > 0, some β > β0(α) and look at the
corresponding solution u = uα,β of (6). In order to see that u′(r) − U ′

α(r) is strictly increasing, note first by Lemma 1

that �u(r)−�Uα(r) is positive and strictly increasing. Since u′(r)−U ′
α(r) = ∫ 1

0 rtn−1(�u−�Uα)(rt) dt it follows
that u′(r) − U ′

α(r) is also strictly increasing. So u(r) cannot converge to 0 and hence has to become unbounded as r

is increasing. By integrating successively the differential equation of u we find R large enough such that

u(R) > 0, u′(R) > 0, �u(R) > 0, (�u)′(R) > 0.

Since limα̃→0 Vα̃(r) = 0 locally uniformly in C4, we can find a sufficiently small α̃ > 0 such that

u(R) > Vα̃(R), u′(R) > V ′
α̃(R), �u(R) > �Vα̃(R), (�u)′(R) > (�Vα̃)′(R).

But then, the comparison principle Lemma 1 shows that ∀r > R: u(r) > Vα̃(r) and hence, blow up of u at some
finite radius R(α,β). The monotonicity of R(α,β) is also a direct consequence of Lemma 1. �
Lemma 3. Let α > 0 be fixed. The blow-up radius R(α,β) is a continuous function of β ∈ (β0,∞).

Proof. Let β > β0 be arbitrary but fixed and let denote u = uα,β the corresponding solution of (6). The continuity
from the right

βk ↘ β ⇒ R(α,βk) → R(α,β)

follows directly from the monotonicity of R(α,β) in β and continuous dependence on initial data. Only continuity
from the left has to be proved.

First we show that for r close enough to R = R(α,β) the functions u, u′, �u and (�u)′ are finally strictly increas-
ing. For u, rn−1u′, �u and rn−1(�u)′, this follows from successive integration of the differential equation, since the
relevant quantities become – at least finally – positive. It remains to consider u′(R − 0) and (�u)′(R − 0).
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We observe that

∞ = Rn−1u′(R − 0) =
R∫

0

rn−1�udr; (11)

∞ = Rn−1(�u)′(R − 0) =
R∫

0

rn−1�2udr =
R∫

0

rn−1u(n+4)/(n−4) dr. (12)

From this we conclude for r ↗ R:

(�u)′(r) =
r∫

0

(
s

r

)n−1

u(n+4)/(n−4)(s) ds = r

1∫
0

(
u(rt)

)(n+4)/(n−4)
tn−1 dt,

(�u)′′(r) =
1∫

0

(
u(rt)

)(n+4)/(n−4)
tn−1 dt + r

n + 4

n − 4

1∫
0

(
u(rt)

)8/(n−4)
u′(rt)tn dt → +∞ by (12);

u′(r) =
r∫

0

(
s

r

)n−1

�u(s) ds = r

1∫
0

tn−1�u(rt) dt,

u′′(r) =
1∫

0

tn−1�u(rt) dt + r

1∫
0

tn(�u)′(rt) dt → +∞ by (11).

Moreover, for later purposes we note that for r ↗ R

u′′′(r) = 2

1∫
0

tn(�u)′(rt) dt + r

1∫
0

tn+1(�u)′′(rt) dt

� 2

rn+1

r∫
0

sn(�u)′(s) ds − C � 1

C
�u(r) − C → +∞.

Here, C denotes a constant which depends on the solution u.
Now, we consider a sequence βk ↗ β . By monotonicity we have R(α,βk) � R(α,β). For tk > 1, which will be

adequately chosen below, we define the function

vk(r) := t
(4−n)/2
k uα,β

(
r

tk

)
, (13)

which solves the same differential equation as uα,β . We find values r0 − δ < r0 < R(α,β) such that

uα,β(r0) > 0, u′
α,β(r0) > 0, �uα,β(r0) > 0, (�uα,β)′(r0) > 0,

and all these quantities are strictly increasing on (r0 − δ,R(α,β)). By continuous dependence on data, for βk close
enough to β we also have

uα,βk
(r0) > 0, u′

α,βk
(r0) > 0, �uα,βk

(r0) > 0, (�uα,βk
)′(r0) > 0.

For suitably chosen tk we conclude that

vk(r0) = t
(4−n)/2
k uα,β

(
r0

tk

)
� t

(4−n)/2
k uα,β(r0) < uα,βk

(r0),

v′
k(r0) = t

(2−n)/2
k u′

α,β

(
r0

)
� t

(2−n)/2
k u′

α,β(r0) < u′
α,βk

(r0),

tk
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�vk(r0) = t
−n/2
k �uα,β

(
r0

tk

)
� t

−n/2
k �uα,β(r0) < �uα,βk

(r0),

(�vk)
′(r0) = t

(−n−2)/2
k (�uα,β)′

(
r0

tk

)
� t

(−n−2)/2
k (�uα,β)′(r0) < (�uα,βk

)′(r0).

By continuous dependence on data, we may achieve

tk ↘ 1 (k → ∞).

The comparison result of Lemma 1 yields for r � r0:

uα,βk
(r) � vk(r).

This gives finally

R(α,β) � R(α,βk) � R(vk) = R(α,β) · tk → R(α,β) as k → ∞,

where R(vk) denotes the blow-up-radius of vk . The proof is complete. �
Lemma 4. Let α > 0 be fixed. Then, for the limits of the blow-up radius R(α,β), one has:

lim
β↘β0

R(α,β) = ∞, lim
β↗∞R(α,β) = 0. (14)

Proof. The first claim is just a consequence of the global existence of the solution for β = β0 and continuous depen-
dence of solutions on the initial data. The proof of the second statement relies upon some rescaling arguments. First
we note that the same argument as in the proof of Lemma 2 shows that R(0,1) < ∞. By the comparison result from
Lemma 1 we conclude that

∀α′ > 0: R(α′,1) � R(0,1) < ∞. (15)

For β > 0 we find the relation

uα,β(r) =
(

α

α′

)
uα′,1

((
α

α′

)2/(n−4)

r

)
, (16)

where α′ is chosen such that

β =
(

α

α′

)n/(n−4)

, i.e. α′ = α · β(4−n)/n.

Obviously, α′ ↘ 0 for β ↗ ∞. We read from (16) and (15) that

R(α,β) = R(α′,1)

(
α′

α

)2/(n−4)

� R(0,1)

(
α′

α

)2/(n−4)

= R(0,1)β−2/n,

which tends to 0 as β → ∞. �
Theorem 3. For every α > 0 there exists a radial solution of (6) with u(0) = α which blows up at r = 1. Moreover,

(i) if u, ũ are two such solutions with u(0) < ũ(0) then �u(0) > �ũ(0),

(ii) if 0 < u(0) � [n(n2 − 4)(n − 4)] n−4
8 then the corresponding solution generates a metric with negative scalar

curvature.

Proof. Let α > 0 be fixed, and denote by uα,β the solution of (6). According to Lemmas 3 and 4, we find a suitable
β > β0(α) such that for the blow-up-radius, we have precisely R(α,β) = 1. Property (i) is a consequence of Lemma 1.

To see property (ii) note that under the hypothesis 0 < u(0) < Vα0(0) with α0 = [n(n2 − 4)(n − 4)] n−4
8 we find by (i)

that �u(0) > �Vα0(0) > 0 and hence �u > 0 on [0,1). Thus by Lemma 8 below the solution u generates a metric
with negative scalar curvature. �

In order to conclude the proof of Theorem 1, it remains to prove the completeness of the induced metrics. Indeed,
these metrics are complete, see Appendix A.



854 H.-Ch. Grunau et al. / Ann. I. H. Poincaré – AN 25 (2008) 847–864
2.2. Nonconstant Q-curvature

To obtain radial solutions of (3) for a prescribed smooth radial Q-curvature function Q :B → R we also use the
shooting method. For simplicity let Q̃ := n−4

2 Q. We then study the problem

�2u = Q̃u(n+4)/(n−4), u > 0 in B, u|∂B = ∞, (17)

such that the conformal metric (u4/(n−4)δij )ij has Q-curvature equal to the given function Q. In all of our discussion
we make the following assumptions on the function Q̃:

(Q1) there are two positive constants Q0,Q1 such that 0 < Q0 < Q̃(r) < Q1 on [0,1], Q̃ ∈ C1[0,1],
(Q2) there exists q ∈ [0,1) such that rQ̃′(r) � −qQ̃(r) on [0,1], i.e., rqQ̃(r) is increasing.

We extend Q̃ as a C1-function to [0,∞) which is bounded on [1,∞) and satisfies (Q1), (Q2) on [0,∞).

Theorem 4. Let Q̃ satisfy (Q1), Q(2). For every α > 0, there exists a radial solution of the prescribed Q-curvature
equation (17) in the unit ball with infinite boundary values and with u(0) = α. Moreover,

(i) if u, ũ are two solutions with u(0) < ũ(0) then �u(0) > �ũ(0),
(ii) if u(0) > 0 is sufficiently small then the corresponding solution generates a metric with negative scalar curvature.

The initial value problem for (17) takes the form⎧⎪⎨
⎪⎩

�2u(r) =
(

r1−n ∂

∂r

(
rn−1 ∂

∂r

))2

u(r) = Q̃(r)u(r)(n+4)/(n−4), r > 0,

u(0) = α, u′(0) = 0, �u(0) = β, (�u)′(0) = 0,

(18)

where α > 0, β ∈ R are given. Existence and uniqueness of local C4-solutions denoted by uα,β is standard.
We recall from (9) the definition of β0 = β0(α) = �Uα(0) < 0.

Lemma 5. Let α > 0 be fixed. Then there exists a value β∗ ∈ [√Q1β0,
√

Q0β0] with the following properties:

(i) For −∞ < β < β∗ the solution uα,β is decreasing and has a finite first zero.
(ii) For β > β∗ the solution uα,β blows up on a finite interval [0,R(α,β)). For fixed α, the blow-up-radius is de-

creasing in β .
(iii) For β = β∗ the solution uα,β∗ exists on [0,∞) and converges to 0 at ∞.

Proof. For simplicity we assume that 1 � Q̃(r) � 2 for r ∈ [0,∞). As in the proof of Lemma 2 we find with the help
of the same subsolution Vα̃(r) (α̃ > 0 small enough) that for β > β0 the solution uα,β must blow up at a finite value

R(α,β). Likewise, we can use the functions Ūα(r) := Uα(
4
√

2r) solving �2Ūα = 2Ū
n+4
n−4
α on [0,∞) as supersolutions

to see that for β <
√

2β0 the solutions uα,β have a finite first zero. Hence we can define

β∗ := sup{β ∈ R: uα,β has a finite first zero} = inf{β ∈ R: uα,β blows up at a finite value},
where it is easy to see that the two numbers coincide. Moreover, β∗ ∈ [√2β0, β0]. Finally, the solution uα,β∗ must
exist on [0,∞) and can therefore only decay to 0 at ∞. �
Lemma 6. Let α > 0 be fixed. Then, the blow-up radius R(α,β) is a continuous function of β ∈ (β∗,∞).

Proof. Let β > β∗ be fixed. Continuity of the blow-up radius from the right follows as before. For the continuity from
the left one shows first that for r close enough to R = R(α,β) the functions u, u′, �u and (�u)′ are finally strictly
increasing. For u, rn−1u′, �u and rn−1(�u)′, this follows from successive integration of the differential equation. To
see the strict monotonicity of u′, (�u)′ near the blow-up point one finds as before
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∞ = Rn−1u′(R − 0) =
R∫

0

rn−1�udr; (19)

∞ = Rn−1(�u)′(R − 0) =
R∫

0

rn−1�2udr =
R∫

0

rn−1Q̃(r)u(n+4)/(n−4) dr. (20)

From this we conclude for r ↗ R:

(�u)′(r) =
r∫

0

(
s

r

)n−1

Q̃(s)u
n+4
n−4 (s) ds = r

1∫
0

Q̃(rt)u
n+4
n−4 (rt)tn−1 dt,

(�u)′′(r) =
1∫

0

Q̃(rt)u
n+4
n−4 (rt)tn−1 dt + r

n + 4

n − 4

1∫
0

Q̃(rt)u
8

n−4 (rt)u′(rt)tn dt

+ r

1∫
0

Q̃′(rt)u
n+4
n−4 (rt)tn dt

→ +∞ by (20),

where we have used hypothesis (Q2). The same proof as in Lemma 3 shows that u′′(r), u′′′(r) → ∞ as r ↗ R. The
actual continuity proof of Lemma 3 was based on finding a subsolution

vk(r) := t
−γ

k uα,β

(
r

tk

)

with γ = n−4
2 and suitable tk > 1. For non-constant Q we need to choose a different positive γ , since the condition

for vk being a subsolution is given by

�2vk = t
−γ−4+γ n+4

n−4
k Q̃(r/tk)v

n+4
n−4
k � Q̃(r)v

n+4
n−4
k .

To achieve this we use hypothesis (Q2). Hence we need to choose γ > 0 such that −γ − 4 + γ n+4
n−4 � −q . Since

q ∈ [0,1) one possible choice is γ = 3(n − 4)/8. Then the rest of the proof of Lemma 3 goes through. �
Lemma 7. Let α > 0 be fixed. Then, for the limits of the blow-up radius R(α,β), one has:

lim
β↘β∗ R(α,β) = ∞, lim

β↗∞R(α,β) = 0. (21)

Proof. For β = β∗ there exists a global solution tending to 0 at ∞. By continuous dependence on the initial data the
first statement follows. The proof of the second statement is adapted from Lemma 4. Let vα,β be the solution of �2v =
Q0v

n+4
n−4 with v(0) = α, v′(0) = 0, �v(0) = β , (�v)′(0) = 0. The argument of Lemma 5 shows that v0,1 blows up at

the finite point S(0,1). For α′ > 0 let us denote the blow-up point of vα′,1 by S(α′,1). Then S(α′,1) � S(0,1) < ∞.
For positive β we find the relation

vα,β(r) =
(

α

α′

)
vα′,1

((
α

α′

)2/(n−4)

r

)
, (22)

where α′ is chosen such that

β =
(

α

α′

)n/(n−4)

, i.e. α′ = α · β(4−n)/n.

We see that vα,β is a subsolution to uα,β . The blow-up positions therefore satisfy

R(α,β) � S(α,β) = S(α′,1)

(
α′

α

)2/(n−4)

� S(0,1)

(
α′

α

)2/(n−4)

= S(0,1)β−2/n,

which tends to 0 as β → ∞. �
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Proof of Theorem 4. The proof follows from Lemmas 6 and 7. Let us prove property (ii). If we define V := Q
4−n

8
1 Vα0

with α0 = [n(n2 − 4)(n − 4)] n−4
8 then �2V = Q1V

n+4
n−4 . Therefore, if 0 < u(0) < V (0) then �u(0) > �V (0) > 0 by

an argument similar to (i), and hence �u > 0 on [0,1). Thus by Lemma 8 below the solution u generates a metric
with negative scalar curvature. �

In order to finish the proof of Theorem 2, it remains to show the completeness of the induced metrics. See
Appendix A.

3. Subharmonicity and negative scalar curvature

Let us recall that we consider conformal metrics of the form

hij = u4/(n−4)δij . (23)

In order to compute the scalar curvature it is more convenient to write the conformal factor as

hij = v4/(n−2)δij ,

i.e. we set v := u(n−2)/(n−4), u = v(n−4)/(n−2). The scalar curvature Ru of the metric (hij )ij is then given by

Ru = −4(n − 1)

(n − 2)
v−(n+2)/(n−2) �v = −4(n − 1)

(n − 2)
u−(n+2)/(n−4)�u(n−2)/(n−4)

= −4(n − 1)

(n − 4)
u−(n+2)/(n−4)

(
u2/(n−4)�u + 2

(n − 4)
u(6−n)/(n−4)|∇u|2

)
. (24)

The following lemma is an immediate consequence of this formula:

Lemma 8. Let u :B → (0,∞) be a C4-function such that −�u � 0 in B . Then the conformal metric h given by (23)
satisfies

Ru � 0 in B.

For radially symmetric solutions, also the converse is true:

Proposition 1. Let u :B → (0,∞) be an unbounded smooth radially symmetric solution of the perturbed Paneitz
equation (17) for the hyperbolic ball with Q > 0. Assume further that Ru � 0 in B . Then

−�u � 0 in B.

Proof. Since �2u > 0, the function −�u is superharmonic. So, if we assume that −�u > 0 somewhere, then in
particular

−�u(0) > 0.

Since u is assumed to be radially symmetric, we also have

∇u(0) = 0.

Now, formula (24) would give Ru(0) > 0, a contradiction. �
Appendix A. Completeness of the conformal metric

Completeness of the metric h = u
4

n−4 δij on B means that every maximally extended geodesic curve has infinite
length. However, the following lemma reduces this to a property, which is simpler to check.
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Lemma 9. Let u be a radial solution of (17). The induced metric u
4

n−4 δij on H
n is complete if and only if

1∫
0

u(r)2/(n−4) dr = ∞.

Proof. To see necessity of the above condition note that for fixed z ∈ R
n \ {0} the curve γ (r) = rz/|z| for r ∈ (−1,1)

is a maximally extended geodesic and its length is given by

2

1∫
0

〈
γ ′(r), γ ′(r)

〉1/2
h

dr = 2

1∫
0

u
2

n−4 dr.

Next we prove sufficiency. Let γ be a maximally extended geodesic in (B,h) parameterized over R. Then
limt→±∞ |γ (t)| = 1. Clearly γ has infinite length if δ(t) = disth(γ (t),0) becomes unbounded for t → ±∞. Since

δ(t) =
|γ (t)|∫
0

u
2

n−4 (r) dr

the claim follows. �
We recall that according to forthcoming work [11] of Diaz, Lazzo and Schmidt, one has, for the solutions with

constant Q-curvature constructed in Theorem 1, that asymptotically for r ↗ 1

u(r) ∼ C(1 − r2)(4−n)/2,

where C = C(n) does not depend on the solution. This gives in particular that

1∫
u(r)2/(n−4) dr = ∞

and so, the completeness of the conformal metric. This work covers a very general situation, is quite involved and
relies on deep work of Mallet-Paret and Smith [23] on Poincaré–Bendixson results for monotone cyclic feedback
systems. Moreover, we expect all these solutions to oscillate infinitely many times around the explicit solution (4) and
around each other.

In what follows we give an independent and relatively simple and elementary proof of the statement of complete-
ness by means of a suitable transformation and energy considerations. The proof applies in the same way both to the
case of constant and non-constant Q-curvature functions. The final statement of completeness is given in Theorem 5
in Section A.6 below.

Estimates from above and a first non-optimal estimate from below are deduced in the original setting of Eq. (17).
For the final conclusion that

∫ 1
u(r)2/(n−4) dr = ∞ we have to perform a change of variables such that r ↗ 1 is

replaced by s → ∞ so that elementary qualitative theory of dynamical systems becomes applicable. This procedure
is somehow motivated by techniques recently developed for fourth order equations in [18,17].

A.1. Pohožaev’s identity for solutions of (17)

The following is true for every r ∈ (0,1), cf. [27,28]:

−n − 4

2n

∫
Br (0)

x · ∇Q̃(x)u
2n

n−4 dx =
∫

Sr (0)

∇�u · ν
(

x · ∇u + n − 4

2
u

)
+ 2 − n

2
�u∇u · ν dσ

−
∫

Sr (0)

�u
(
xT D2uν

) − 1

2
(x · ν)(�u)2 + n − 4

2n
(x · ν)Q̃(x)u

2n
n−4 dσ.

For radial solutions this implies
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−n − 4

2n

r∫
0

Q̃′(s)u
2n

n−4 sn ds = rn−1(�u)′
(

ru′ + n − 4

2
u

)
+ n

2
rn−1u′�u − rn

(
1

2
(�u)2 + n − 4

2n
Q̃(r)u

2n
n−4

)
.

(25)

A corresponding equality holds for radial solutions on [ρ, r], where the integration on the left-hand side is from ρ to
r and on the right-hand side the corresponding term evaluated at ρ is subtracted.

A.2. Maximal blow-up rate for radial solutions of (17)

Proposition 2. Let u :B → [0,∞) be an unbounded smooth radial solution of the perturbed Paneitz equation (17) on
the unit ball with 1 � Q̃(r) � 2. Then there exists a constant C = C(u) such that

u(r) � C

(
1

1 − r2

) n−4
2

.

Proof. As was shown in the proof of Lemma 3, we may choose ρ ∈ (0,1) such that

u,u′, u′′,�u, (�u)′ > 0 are increasing in (ρ,1).

By C we denote a constant depending on u. By using the analogue of Pohožaev’s identity (25) on the interval [ρ, r]
we obtain for all r ∈ (ρ,1)

−n − 4

2n

r∫
ρ

Q̃′(s)u
2n

n−4 (s)sn ds + n − 4

2n
rnQ̃(r)u

2n
n−4 (r) + rn

2

(
�u(r)

)2

= rn−1(�u)′
(

ru′ + n − 4

2
u

)
+ n

2
rn−1u′�u + C. (26)

We estimate the two sides of the equality separately.
Right-hand side: The following estimates for r > ρ are obtained by integration

u(r) = u(ρ) +
r∫

ρ

u′(s) ds � u′(r) + C,

�u(r) � (�u)′(r) + C.

Hence the entire right-hand side of (26) can be estimated by C1u
′(r)(�u)′(r) + C2 and since u′(r), (�u)′(r) → ∞

for r → 1 we find that Cu′(r)(�u)′(r) for ρ < r < 1 is an upper estimate for the right-hand side of (26).
Left-hand side: After dropping the last term in the left-hand side of (26) a lower bound is given by

−n − 4

2n

r∫
ρ

Q̃′(s)u
2n

n−4 (s)sn ds + (1 − ε)
n − 4

2n

r∫
ρ

d

ds

(
snQ̃(s)u

2n
n−4 (s)

)
ds + ε

n − 4

2n
rnQ̃(r)u

2n
n−4 (r), (27)

where ε ∈ (0,1) is chosen later. The two integrals add up to

r∫
ρ

(−εQ̃′(s) + n(1 − ε)Q̃(s)s−1)n − 4

2n
u

2n
n−4 (s)sn + (1 − ε)Q̃(s)snu

n+4
n−4 (s)u′(s) ds,

which is positive provided ε = ε0 is chosen sufficiently small. Hence, for finding a lower bound for (27) the two
integrals can be dropped. Moreover, by using 1 � Q̃ � 2 we obtain finally that

ε0
n − 4

2n
rnu

2n
n−4 (r)

is lower bound for the left-hand side of (26).
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Hence, (26) yields the existence of a constant C = C(u,ρ, ε) such that

u
2n

n−4 � Cu′(�u)′ on [ρ,1).

Multiplication with u′ leads to(
u

3n−4
n−4

)′ � Cu′2(�u)′ = C(u′2�u)′ − 2Cu′u′′�u � C(u′2�u)′ on [ρ,1),

and integration shows

u
3n−4
n−4 � C1u

′2�u + C2 � Cu′2�u on [ρ,1).

Now, as above, we can estimate

�u(r) = u′′(r) + n − 1

r
u′(ρ) + n − 1

r

r∫
ρ

u′′(s) ds � Cu′′(r) + C � Cu′′(r)

and we may proceed to the inequality

u
3n−4
n−4 � C(u′)2�u � C(u′)2u′′.

In a similar way, multiplication with u′ and integration leads to

u
4n−8
n−4 � Cu′4 on [ρ,1), u

n−2
n−4 � Cu′ on [ρ,1).

Solutions of Cv′ = v
n−2
n−4 on some interval [ρ, δ) are given by

vδ(r) =
(

n − 4

2
C

) n−4
2

(δ − r)
4−n

2 , δ � 1.

If for some value of r0 ∈ [ρ,1) we would have u(r0) > v1(r0) then u(r0) > vδ(r0) for some δ ∈ (0,1). Then u

stays strictly above vδ and hence u blows up somewhere in the interval (ρ, δ), i.e., strictly before the point 1. This
contradiction shows that u(r) � v1(r) for all r ∈ [ρ,1). This establishes the claim. �
A.3. A first estimate from below for the blow-up rate of radial solutions to (17)

Let u = u(r) solve �2u = Q̃(r)u
n+4
n−4 on [0,1), u(1) = ∞ with 1 � Q̃(r) � 2. Then, for r � r0 we may assume

that u(r) is increasing and (�u)′(r) � 0. Thus

(�u)′(r) =
(

r0

r

)n−1

(�u)′(r0) +
r∫

r0

(
s

r

)n−1

Q̃(r)u
n+4
n−4 (s) ds � (�u)′(r0) + 2u

n+4
n−4 (r),

and hence

�u(r) � �u(r0) + (�u)′(r0) + 2u
n+4
n−4 (r) = K + 2u

n+4
n−4 (r)

with suitably chosen K = K(u) > 0. Now let v be the unique radial solution of

�v = K + 2v
n+4
n−4 for r0 < r < 1, v(r0) = u(r0), v(1) = ∞.

Then v is a subsolution for u and

u(r) � v(r) � C

(
1

1 − r2

) n−4
4

on [r0,1)

where C = C(r0;u). Hence we have proved the following result:

Proposition 3. Let u :B → [0,∞) be an unbounded smooth radial solution of the perturbed Paneitz equation (17) on
B with 1 � Q̃(r) � 2. Then there exists a constant C = C(u) such that

u(r) � C

(
1

1 − r2

) n−4
4

on [1/2,1).
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A.4. A transformation: Moving the boundary r = 1 to ∞

Eq. (17) reads in radial coordinates

u(4)(r) + 2(n − 1)

r
u′′′(r) + (n − 1)(n − 3)

r2
u′′(r) − (n − 1)(n − 3)

r3
u′(r) = Q̃(r)u

n+4
n−4 (r).

With the transformation

u(r) = (
1 − r2) 4−n

2 v
(− log(1 − r2)

)
, v(t) = e(4−n)t/2u

(√
1 − e−t

)
, t ∈ (0,∞)

we get

K4(t)v
(4)(t) + K3(t)v

′′′(t) + K2(t)v
′′(t) + K1(t)v

′(t) + K0v(t) = 1

16
q(t)v

n+4
n−4 (t) (28)

with

K0 = 1

16
(n4 − 4n3 − 4n2 + 16n),

K1(t) = 1

16

(
(1 − e−t )2(−4n2 + 24n − 32) + (1 − e−t )(4n3 − 16n2 − 16n + 64) + 4n3 − 4n2 − 24n

)
,

K2(t) = 1

16

(
(1 − e−t )2(4n2 − 40n + 80) + (1 − e−t )(16n2 − 16n − 96) + 4n2 + 8n

)
,

K3(t) = (1 − e−t )2(n − 4) + (1 − e−t )(n + 2),

K4(t) = (1 − e−t )2,

q(t) = Q̃
(√

1 − e−t
)
.

Eventually, it will be useful to have the values K∞
i = limt→∞ Ki(t), i.e.

K∞
0 = 1

16
n(n − 2)(n + 2)(n − 4), K∞

1 = 1

2
(n − 1)(n2 − 2n − 4),

K∞
2 = 3

2
n2 − 3n − 1, K∞

3 = 2n − 2, K∞
4 = 1.

In view of the differentiability properties assumed on Q̃ it is enough to consider

q(t) = 1 + αe−t

as a prototype.
Note that (28) has always the constant solution v0 ≡ 0. Moreover, in the case of constant Q, i.e. α = 0, it has a

second constant solution v1 ≡ (16K0)
n−4

8 .
Motivated by the observation that

u′(r) = 0 ⇔ v′(t) + n − 4

2
v(t) = 0

we transform (28) into a system for w(t) = (w1(t),w2(t),w3(t),w4(t))
T by setting

w1(t) = v(t), w2(t) = v′(t) + n − 4

2
v(t), w3(t) = v′′(t) + n − 4

2
v′(t),

w4(t) = v′′′(t) + n − 4

2
v′′(t).

The resulting system is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w′
1(t) = −n−4

2 w1(t) + w2(t),

w′
2(t) = w3(t),

w′
3(t) = w4(t),

K (t)w′ (t) = C (t)w (t) + C (t)w (t) + C (t)w (t) + 1 q(t)w (t)
n+4
n−4 ,

(29)
4 4 2 2 3 3 4 4 16 1
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where

Cm(t) = −
4∑

k=m−1

Kk(t)

(
4 − n

2

)k+1−m

.

By explicit calculations we get C1(t) ≡ 0 and

C2(t) = −1

8
n3 + 1

2
n,

C3(t) = 1 − 3

4
n2 + e−t

(
1

2
n2 − n

)
+ e−2t

(
1

2
n − 1

)
,

C4(t) = −3

2
n + e−t (2n − 2) + e−2t

(
2 − 1

2
n

)
.

To get an idea about the behavior of the almost-autonomous system (29) we replace the functions Ci(t) by their limit
C∞

i = limt→∞ Ci(t), i = 2,3,4 and t �→ q(t) by the constant 1. In other words, we put for the moment α = 0 and
study the resulting autonomous system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

w′
1(t) = −n−4

2 w1(t) + w2(t),

w′
2(t) = w3(t),

w′
3(t) = w4(t),

w′
4(t) = C∞

2 w2(t) + C∞
3 w3(t) + C∞

4 w4(t) + 1
16w1(t)

n+4
n−4 ,

(30)

where

C∞
2 = −1

8
n3 + 1

2
n, C∞

3 = 1 − 3

4
n2, C∞

4 = −3

2
n.

The autonomous system has the steady-states

O = (0,0,0,0) and P =
(

(16K0)
n−4

8 ,
n − 4

2
(16K0)

n−4
8 ,0,0

)
;

note that O is also a steady state for the almost autonomous system (29). At the point O the system (30) has the
linearized stability matrix

MO =
⎛
⎜⎝

4−n
2 1 0 0
0 0 1 0
0 0 0 1
0 C∞

2 C∞
3 C∞

4

⎞
⎟⎠

with four negative eigenvalues

λ1 = 2 − n

2
> λ2 = 1 − n

2
> λ3 = −n

2
> λ4 = −1 − n

2

and corresponding eigenvectors

φ1 = (1,0,0,0), φ2 =
(

1,−1,−1 + n

2
,− (n − 2)2

4

)
,

φ3 =
(

1,−2, n,−n2

2

)
, φ4 =

(
1,−3,3 + 3n

2
,−3(n + 2)2

4

)
.

Thus O is asymptotically stable for (30). At the point P the linearized stability matrix is

MP =
⎛
⎜⎝

4−n
2 1 0 0
0 0 1 0
0 0 0 1

n+4 ∞ ∞ ∞

⎞
⎟⎠
n−4K0 C2 C3 C4
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with the eigenvalues

μ1 = 1, μ2 = −n, μ3 = 1 − n

2
− i

2

√
n2 + 2n − 9, μ4 = 1 − n

2
+ i

2

√
n2 + 2n − 9.

Thus P has a three-dimensional stable manifold and a one-dimensional unstable manifold.

A.5. Stability of O in the non-autonomous equation (28)

Lemma 10. The origin O is an asymptotically stable steady state of the system (29). Moreover the following holds

(i) if w is a solution to the system (29) such that for a sequence tk → ∞, one has that w(tk) → O , then for any ε > 0
one has that eventually

∣∣w(t)
∣∣ � exp

((
4 − n

2
+ ε

)
t

)
;

(ii) the corresponding solution u(r) = (1 − r2)
4−n

2 w1(− log(1 − r2)) of the original equation (17) is bounded near
r = 1.

Proof. System (29) has the form

w′(t) = MOw(t) + G
(
t,w(t)

);
G(t,w) =

(
1

16
+ O(e−t )

)
(0,0,0,w

(n+4)/(n−4)

1 )T + e−tBw + e−2tCw

with constant 4 × 4-matrices B and C. In particular

lim
t→∞,w→O

G(t,w)

|w| = 0,

i.e. condition [20, (8.11)] is satisfied. Since all eigenvalues of MO are below μ := (4 − n)/2, the corollary of [20,
Theorem 8.1] shows asymptotic stability of the origin O . Moreover, for a solution w with w(tk) → O , it follows from
this corollary that

lim sup
t→∞

log |w(t)|
t

� μ = 4 − n

2
.

Hence, for any ε > 0, one has that eventually

∣∣w(t)
∣∣ � exp

((
4 − n

2
+ ε

)
t

)
.

For the solution u of the original equation (17) this means that for r < 1 close enough to 1

u(r) � (1 − r2)−ε.

In view of the minimal blow up rate for unbounded solutions proved in Proposition 3, this shows that r �→ u(r) has to
remain bounded near r = 1. �
A.6. Energy considerations

Theorem 5. Let u :B → [0,∞) be an unbounded smooth radial solution of the perturbed Paneitz equation (17) on
the unit ball with 1 � Q̃(r) � 2. Then

1∫
u(r)2/(n−4) dr = ∞.
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Proof. First we take from Proposition 2 that in the transformed coordinates, v is bounded. Then, as in [17, Lemma 2],
we see that also v′, . . . , v(4) are bounded.

Let us assume for contradiction that
1∫
u(r)2/(n−4) dr < ∞,

which gives that
∞∫

0

v(s)2 ds � C

∞∫
0

v(s)2/(n−4) ds < ∞.

Testing the differential equation (28) once with v and once with v′ gives that for t → ∞
t∫

0

v′′(s)2 ds − K∞
2

t∫
0

v′(s)2 ds = O(1);

K∞
3

t∫
0

v′′(s)2 ds − K∞
1

t∫
0

v′(s)2 ds = O(1).

Observe that only the terms with constant coefficients are relevant since all other terms contain a factor e−t and
produce finite integrals.

Combining the two equations above gives

(K∞
2 K∞

3 − K∞
1 )

t∫
0

v′′(s)2 ds = O(1).

Since

(K∞
2 K∞

3 − K∞
1 ) > 0,

this shows first
∞∫

0

v′′(s)2 ds < ∞

and then
∞∫

0

v′(s)2 ds < ∞.

Testing the differential equation (28) with v′′′ finally gives
∞∫

0

v′′′(s)2 ds < ∞

so that
∞∫

0

(
w1(s)

2 + w2(s)
2 + w3(s)

2 + w4(s)
2)ds < ∞.

Consequently there is a sequence tk ↗ ∞ such that

lim (w1,w2,w3,w4)(tk) = 0.

k→∞
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Since O = (0,0,0,0) is stable, this shows that

lim
t→∞(w1,w2,w3,w4)(t) = 0.

From Lemma 10 we conclude that u(r) remains bounded near r = 1, contradicting the assumption on u. �
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