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Abstract

We consider the viscous n-dimensional Camassa–Holm equations, with n = 2,3,4 in the whole space. We establish existence
and regularity of the solutions and study the large time behavior of the solutions in several Sobolev spaces. We first show that if
the data is only in L2 then the solution decays without a rate and that this is the best that can be expected for data in L2. For
solutions with data in Hm ∩ L1 we obtain decay at an algebraic rate which is optimal in the sense that it coincides with the rate of
the underlying linear part.
© 2007

Résumé

On considère les équations visqueuses de Camassa–Holm dans R
n, n = 2,3,4. Nous établissons l’existence et la régularité des

solutions. Nous étudions le comportement asymptotique des solutions dans plusieurs espaces de Sobolev quand le temps tend vers
l’infini. On montre que si la donnée est seulement dans L2 la solution décroît vers zéro, mais la décroissance ne peut être uniforme.
Pour les solutions avec donnée dans L1 ∩ Hm on obtient une décroissance algébrique avec une vitesse qui est optimale dans le
sens où elle coïncïde avec les solutions correspondant à l’équation linéaire.
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1. Introduction

The Viscous Camassa–Holm equations (VCHE) are commonly written

vt + u · ∇v + v · ∇uT + ∇π = ν�v

u − α2�u = v (1.1)

∇ · v = 0

Here we adopt the notation (v · ∇uT )i = ∑
j vj ∂iuj . These equations rose from work on shallow water equations [3],

which led to [11,16], where the equations are derived by considering variational principles and Lagrangian averaging.
In light of this derivation the equations are sometimes called the Lagrangian Averaged Navier–Stokes equations. In [9],
the equations were derived as a “filtered” Navier–Stokes equation, which obeys a modified Kelvin circulation theorem
along filtered velocities. In this setting they are sometimes referred to as the Navier–Stokes-α equations, where α

is the parameter in the filter. Solutions to the VCHE are closely related to solutions of the famous Navier–Stokes
equation (NSE), but the filter allows bounds that are currently unobtainable for the NSE, making them in some ways
better suited for computational turbulence study, see [12].

In [9,10] these equations were studied in relation to turbulence theory, this treatment includes existence and unique-
ness theorems on the torus in three dimensions. The two dimensional case was considered on the torus and the sphere
in [14]. Global existence and uniqueness in three dimensions was proved on bounded domains with zero (non-slip)
boundary conditions in [16]. These equations have also been studied in terms of large eddy simulation and turbulent
pipe flow in [4–6], and [8]. In this paper we extend the current existence theorems and study the large time behavior
of solutions.

This paper is organized as follows. Section two consists of notation and conventions used throughout. Section
three contains preliminary discussion of the VCHE and several useful lemmas. In section four we state existence and
uniqueness results for the VCHE, proofs of these statements are contained in Appendix A. In the next two sections we
continue the decay program of M.E. Schonbek [20,21,23,25,27]. The main result of chapter five considers solutions of
the VCHE in the whole space and we prove that the energy of a solution corresponding to data only in L2(Rn) decays
to zero following the arguments in [18]. We then demonstrate, by constructing counter examples, that no uniform rate
of decay can exists which depends only on the initial energy. In chapter six we consider decay for solutions with initial
data in L1 ∩L2. We show, using the Fourier Splitting Method, that the energy of a solution decays at the rate expected
from the linear part, this is the same rate of decay as solutions to the NSE. For solutions with initial data in Hm ∩ L1

we calculate the decay of derivatives using again the Fourier Splitting Method with an inductive argument. In section
seven we examine how solutions of the VCHE approach solutions of the NSE strongly on intervals of regularity for
the NSE.

2. Notation

In this paper, Lp denotes the standard Lebesgue space with norm ‖φ‖p = (
∫ |φ|p)1/p . We use 〈u,v〉 = ∫

uv to
denote the standard inner product on the Hilbert space L2. Compactly supported solenoidal vector fields (subsets of
Σ = {φ ∈ C∞

0 (Ω)|∇φ = 0}) will be needed to describe incompressible solutions with zero boundary conditions. L
p
σ

will denote the completion of Σ in the norm ‖ · ‖p . Wm,p will be used to denote the standard Sobolev spaces with the
convention that Hm = Wm,2 (and L2 = H 0). The completion of Σ under the Hm norm will be denoted by Hm

σ and
(Hm

σ )′ will be the dual space. To denote the Fourier Transform of a function φ we will use either φ̂ or F (φ), with φ̌

or F −1(φ) the inverse transform. Throughout we will use C to denote an arbitrary constant which may change line to
line, to emphasis the dependence of a constant on a number, say ν, we will write C(ν).

3. Preliminaries

The Kelvin-filtered Navier–Stokes equations (KFNSE) are given by the formula

∂v

∂t
+ u · ∇v + v · ∇uT + ∇π = ν�v

∇ · v = ∇ · u = 0
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v = Ou

In the above, u = g ∗ v represents a spatially filtered fluid velocity and O is the inverse of this convolution. The
term u · ∇v is similar to “mollifying” the Navier–Stokes equations, originally done by Leray, [15], to approximate
solutions. The term v · ∇uT = ∑

vj∇uj allows the solution to obey a modification of the Kelvin circulation theorem
where circulation is conserved around a loop moving with the filtered velocity u. In two and three dimensions, using
the identity

u · ∇v +
∑

vj∇uj = −u × (∇ × v) + ∇(v · u) (3.1)

and including the term ∇(v · u) in the pressure, the KFNSE can be written as

∂v

∂t
+ ∇π = u × (∇ × v) + ν�v

∇ · u = ∇ · v = 0

v = Ou

The following lemma will show that the bilinear term in the Kelvin-filtered Navier–Stokes equations behaves similar
to the bilinear term in the Navier–Stokes equations.

Lemma 3.1. Let u and v be smooth divergence free functions with compact support, then

〈u · ∇v,u〉 + 〈v · ∇uT ,u〉 = 0

〈u × (∇ × v),u〉 = 0

Proof. The second equality is a consequence of the first, the identity (3.1), and the fact that u is divergence free. To
see the first inequality we just need to rearrange the terms and then integrate by parts

∑
i,j

∫
Rn

vj ∂iujui dx = −
∑
i,j

∫
Rn

ui∂ivjuj dx �

Using this lemma, we can formally multiply the KFNSE by u to find〈
∂

∂t
v,u

〉
+ ν〈∇v,∇u〉 = 0 (3.2)

By choosing O to be the Helmholtz operator O = 1 − α2� we recover the Viscous Camassa–Holm equations

vt + u · ∇v + v · ∇uT + ∇π = ν�v

u − α2�u = v

∇ · v = 0

In the case of the VCHE, (3.2) becomes

1

2

d

dt

(〈u,u〉 + α2〈∇u,∇u〉) + ν
(〈∇u,∇u〉 + α2〈�u,�u〉) = 0 (3.3)

This relation gives a priori estimates on u:

∥∥u(·, t)∥∥2
2 + α2

∥∥∇u(·, t)∥∥2
2 + 2ν

t∫
0

∥∥∇u(·, t)∥∥2
2 dt + 2να2

t∫
0

∥∥∇2u(·, t)∥∥2
2 dt � ‖u0‖2

2 + α2‖∇u0‖2
2 (3.4)
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4. Existence of solutions for the VCHE

Existence and uniqueness of solutions for the VCHE on periodic domains in three dimensions was proved first
in [10] using the Galerkin method. The most general existence and uniqueness theorems in three dimensions are
provided in [16] which relies on a fixed point argument. The theorems in [16] assume the initial data u0 ∈ H 1

0 ∩ Hs

with s ∈ [3,5) and u = Au = 0 on the boundary, where A is the Stokes operator. Here we state extended results which
cover the whole space in dimensions 2 � n � 4, proofs are included in Appendix A. As an intermediate step, we
provide a new existence proof on bounded domains in dimensions 2 � n � 4, using the Galerkin Method, with initial
data v0 ∈ L2, and u = v = 0 on the boundary. Our bounded result in three dimensions is slightly stronger then [16],
by assuming v0 ∈ L2 we have only implied u ∈ H 2

σ .

Definition 4.1. Let Ω ⊂ R
n be any open bounded subset or Ω = R

n, n = 2,3,4. A weak solution to the VCHE (1.1),
with zero (no-slip) boundary conditions in the case of Ω bounded, is a pair of functions, u, v, such that

v ∈ L∞([0, T ];L2
σ (Ω)

) ∩ L2([0, T ];H 1
σ (Ω)

)
∂tv ∈ L2([0, T ]; (H 1

σ )′(Ω)
)

u ∈ L∞([0, T ];H 2
σ (Ω)

) ∩ L2([0, T ];H 3
σ (Ω)

)
as well as v(x,0) = v0, and for any φ ∈ L2([0, T ];H 1

σ (Ω)) with φ(T ) = 0 the following equalities are satisfied:

−
T∫

0

〈v, ∂tφ〉ds +
T∫

0

〈u · ∇v,φ〉ds +
T∫

0

〈φ · ∇u,v〉ds + ν

T∫
0

〈∇v,∇φ〉ds = 〈
v0, φ(0)

〉

and for a.e. t ∈ [0, T ],
〈u,φ〉 + α2〈∇u,∇φ〉 = 〈v,φ〉

Theorem 4.2. Let Ω ⊂ R
n be an open bounded set with smooth boundary or Ω = R

n, n = 2,3,4. Given initial data
v0 ∈ HM

σ (Ω), M � 0, there exists a unique weak solution to the VCHE (1.1) in the sense of Definition 4.1. This
solutions satisfies the estimate (3.4) as well as

∥∥∂
p
t ∇mv(t)

∥∥2
2 + ν

t∫
0

∥∥∂
p
t ∇m+1v(s)

∥∥2
2 ds � C

(‖v0‖HM
0

)
(4.1)

for all m + 2p � M .

Proof. Existence is given by Theorems A.4 and A.6 in Appendix A. The regularity statement is Theorem A.8 and
uniqueness is Theorem A.9. The proofs follow from the construction of approximate solutions using the Galerkin
method on bounded domains. A priori bounds are obtained through energy methods. Using a compactness lemma we
are able to find a strongly convergent subsequence which allows the limit of the approximate solutions to pass through
the non-linearity. To extend to unbounded domains we solve the problem in balls of radius {Ri} (a sequence tending
to infinity), and then invoke a diagonal argument. Regularity is established through an inductive argument relying on
energy methods. �

Next, we will state a corollary that describes the action of the filter and will be used many times in the following
two sections.

Corollary 4.3.

‖∂p
t ∇mu‖2

2 + 2α2‖∂p
t ∇m+1u‖2

2 + α4‖∂p
t ∇m+2u‖2

2 = ‖∂p
t ∇mv‖2

2

‖∂p
t ∇mu‖2

n + ‖∂p
t ∇m+1u‖2

n � C‖∂p
t ∇mv‖2

2
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∥∥∂
p
t ∇mu(t)

∥∥2
n
+ ν

t∫
0

∥∥∂
p
t ∇m+1u(s)

∥∥2
n
ds � C

(‖v0‖HM
0

)

for all m + 2k � M , where C is a constant which depends only on α, n, m, and k (in the last bound the constant
depends also on ‖v0‖HM

0
).

Proof. This is an application of the Gagliardo–Nirenberg–Sobolev inequality to the bounds in the previous theorem.
Differentiating the filter relation shows

∂
p
t ∇mu − α2∂

p
t ∇m�u = ∂

p
t ∇mv

Squaring this relation then integrating by parts gives

‖∂p
t ∇mu‖2

2 + 2α2‖∂p
t ∇m+1u‖2

2 + α4‖∂p
t ∇m+2u‖2

2 = ‖∂p
t ∇mv‖2

2

This is the first bound in the corollary. Applying the Gagliardo–Nirenberg–Sobolev inequality to ‖u‖n and using the
previous equality shows

‖∂p
t ∇mu‖2

n � C‖∂p
t ∇mv‖2

2

‖∂p
t ∇m+1u‖2

n � C‖∂p
t ∇mv‖2

2

This is the second set of bounds. Combining this with the regularity bounds in the theorem give the final set of
bounds. �
5. Large time behavior of the VCHE: non-uniform decay

In bounded domains it is easy to see that the energy of a solution decays exponentially using the Poincaré inequality

‖u‖2
2 � C(Ω)‖∇u‖2

2

Indeed, start with the energy estimate (3.3) and apply the Poincaré inequality to find

1

2

d

dt

(〈u,u〉 + α2〈∇u,∇u〉) + C(Ω)ν
(〈u,u〉 + α2〈∇u,∇u〉) � 0

This differential inequality implies

〈u,u〉 + α2〈∇u,∇u〉 � C
(‖v0‖2

)
e−C(Ω,ν)t

The situation in unbounded domains is more delicate. If the initial data is assumed only in L2 then the solution decays
to zero but we are unable to determine the rate without more information, the precise statements of this idea are
contained in Theorems 5.2 and 5.4.

We will follow [18] to show that the solutions in the whole space, constructed in Theorem 4.2, approach zero
as time becomes large. The idea is to split the solution into low and high frequency parts using a cut-off function
and generalized energy inequalities to show that both the high and low frequency terms approach zero. The idea of
splitting into low and high frequency was first used in [17].

Lemma 5.1. Solutions of the VCHE constructed in Theorem 4.2 with Ω = R
n satisfy the following generalized energy

inequalities. Let E ∈ C1([0,∞)) and ψ ∈ C1([0,∞);C1 ∩ L2(Rn)), then

E(t)
∥∥ψ(t) ∗ v(t)

∥∥2
2 = E(s)

∥∥ψ(s) ∗ v(s)
∥∥2

2 +
t∫

s

E′(τ )
∥∥ψ(τ) ∗ v(τ)

∥∥2
2 dτ

+ 2

t∫
E(τ)

〈
ψ ′(τ ) ∗ v(τ),ψ(τ) ∗ v(τ)

〉
dτ − 2

t∫
E(τ)

∥∥∇ψ(τ) ∗ v(τ)
∥∥2

2 dτ
s s
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− 2

t∫
s

E(τ)
〈
u · ∇v,ψ(τ) ∗ ψ(τ) ∗ v(τ)

〉
dτ

− 2

t∫
s

E(τ)
〈
v · ∇uT ,ψ(τ) ∗ ψ(τ) ∗ v(τ)

〉
dτ (5.1)

For E ∈ C1([0,∞)) and ψ̃ ∈ C1(0,∞;L∞(Rn)) we have

E(t)
∥∥ψ̃(t)v̂(t)

∥∥2
2 = E(s)

∥∥ψ̃(s)v̂(s)
∥∥2

2 +
t∫

s

E′(τ )
∥∥ψ̃(τ )v̂(τ )

∥∥2
2 dτ + 2

t∫
s

E(τ)
〈
ψ̃ ′(τ )v̂(τ ), ψ̃(τ )v̂(τ )

〉
dτ

− 2

t∫
s

E(τ)
∥∥ξψ̃(τ )v̂(τ )

∥∥2
2 dτ − 2

t∫
s

E(τ)
〈

F (u · ∇v), ψ̃2(τ )v̂(τ )
〉
dτ

− 2

t∫
s

E(τ)
〈

F (v · ∇uT ), ψ̃2(τ )v̂(τ )
〉
dτ (5.2)

Proof. The proof of the first inequality is accomplished by multiplying the VCHE by E(t)ψ ∗ ψ ∗ v then integrating
by parts and in time. The second inequality is obtained by first taking the Fourier Transform of the VCHE, then
multiplying by ψ̃2v̂ and integrating. �
Theorem 5.2. Let v be the solution of the VCHE (1.1) constructed in Theorem 4.2 with Ω = R

n and v0 ∈ L2
σ (Rn),

then

lim
t→0

∥∥v(t)
∥∥

2 = 0 (5.3)

Proof. We work in frequency space. We split the energy into low and high frequency parts

‖v̂‖2 � ‖φv̂‖2 + ∥∥(1 − φ)v̂
∥∥

2 (5.4)

with φ = e−|ξ |2 will be chosen below. To estimate the low frequency part of the energy, begin with the generalized
energy estimate (5.1). Temporarily fix t then choose E = 1 (the constant function) and

ψ(τ) = F −1[e−|ξ |2(t+1−τ)
]

Note that ψ and F (ψ) are rapidly decreasing functions for τ < t + 1. The relation ψ̂ ′ = |ξ |2ψ̂ shows the third and
fourth terms in (5.1) add to zero. Note φ = e−|ξ |2 = ψ(t) and apply the Plancherel Theorem to see

∥∥φv̂(t)
∥∥2

2 �
∥∥e|ξ |2(t−s)φv̂(s)

∥∥2
2 + 2

t∫
s

∣∣〈φ̌2 ∗ (u · ∇v − v · ∇uT ), e2�(t−τ)v(τ )
〉∣∣dτ (5.5)

With Hölder inequality, Young’s inequality, and the Gagliardo–Nirenberg–Sobolev inequality we bound∣∣〈φ̌2 ∗ u · ∇v, e2�(t−τ)v(τ )
〉∣∣ � ‖φ̌2 ∗ u · ∇v‖2

∥∥e2�(t−τ)v(τ )
∥∥

2

� C‖φ̌2‖ 2n
n+2

‖u‖ 2n
n−2

‖∇v‖2‖v‖2

� C(φ)‖v‖2‖∇u‖2‖∇v‖2

Similarly,∣∣〈φ̌2 ∗ v · ∇uT , e2�(t−τ)v(τ )
〉∣∣ � ‖φ̌2 ∗ v · ∇uT ‖2

∥∥e2�(t−τ)v(τ )
∥∥

2

� C‖φ̌2‖ 2n
n+2

‖v‖ 2n
n−2

‖∇u‖2‖v‖2

� C(φ)‖v‖2‖∇u‖2‖∇v‖2
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Using the triangle inequality, Hölder’s inequality, and (4.1) in (5.5) yields

∥∥φv̂(t)
∥∥2

2 �
∥∥e|ξ |2(t−s)φv̂(s)

∥∥2
2 + 2C(φ)‖v0‖2

( t∫
s

‖∇u‖2
2 dτ

)1/2( t∫
s

‖∇v‖2
2 dτ

)1/2

As the first term on the RHS tends to zero, applying the limit t → ∞ yields

lim sup
t→∞

∥∥φv̂(t)
∥∥2

2 � 2C(φ)‖v0‖2

( ∞∫
s

‖∇u‖2
2 dτ

)1/2( ∞∫
s

‖∇v‖2
2 dτ

)1/2

The bounds (3.4) and (4.1) show ‖∇u‖2
2 and ‖∇v‖2

2 are integrable on the positive real line, letting s → ∞ leaves

lim sup
t→∞

∥∥φv̂(t)
∥∥2

2 → 0 (5.6)

To estimate the high frequency start with the generalized energy inequality (5.2) and chose ψ̃ = 1− e−|ξ |2 = 1−φ.
Let BG(t) = {ξ : |ξ | � G(t)} where G(t) will be selected later and use 〈u · ∇v, v〉 = 0 to replace ψ̃2 by 1 − ψ̃2 in the
5th term on the RHS of (5.2).

E(t)
∥∥ψ̃v̂(t)

∥∥2
2 � E(s)

∥∥ψ̃ v̂(s)
∥∥2

2 +
t∫

s

E′(τ )

∫
BG(τ)

∣∣ψ̃ v̂(τ )
∣∣2

dξ dτ

+
t∫

s

(
E′(τ ) − 2E(τ)G2(τ )

) ∫
BC

G(τ)

∣∣ψ̃ v̂(τ )
∣∣2

dξ dτ

+ 2

t∫
s

E(τ)
∣∣〈F (u · ∇v + v · ∇uT ),

(
1 − ψ̃2(τ )

)
v̂(τ )

〉∣∣dτ

+ 2

t∫
s

E(τ)
∣∣〈F (v · ∇uT ), v̂(τ )

〉∣∣dτ (5.7)

We remark both (1 − ψ̃2) and φ = F −1(1 − ψ̃2) are rapidly decreasing functions. Using again Hölder’s inequality
and the Plancherel theorem, then Young’s inequality and the Gagliardo–Nirenberg–Sobolev inequality allows∣∣〈F (u · ∇v + v · ∇uT ),

(
1 − ψ̃2(τ )

)
v̂(τ )

〉∣∣ = ∣∣〈(1 − ψ̃2(τ )
)

F (u · ∇v + v · ∇uT ), v̂(τ )
〉∣∣

�
∥∥F −1(1 − ψ̃2(τ )

) ∗ (u · ∇v + v · ∇uT )
∥∥

2‖v‖2

� C‖1 − ψ̃‖ 2n
n+2

(‖u‖ 2n
n−2

‖∇v‖2 + ‖v‖ 2n
n−2

‖∇u‖2
)‖v‖2

� C(φ)‖v‖2‖∇u‖2‖∇v‖2

Similarly use Hölder’s inequality with the Plancherel theorem, then the Gagliardo–Nirenberg–Sobolev inequality, and
Corollary 4.3 to bound∣∣〈F (v · ∇uT ), v̂(τ )

〉∣∣ � ‖v · ∇uT ‖2‖v‖2

� C‖v‖ 2n
n−2

‖∇u‖n‖v‖2

� C‖v‖2‖∇v‖2
2

Choosing E(t) = (1 + t)β and G2(t) = β/2(1 + t) in (5.7), so that E′ − 2EG2 = 0, and taking β > 0 sufficiently
large, leaves
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∥∥(1 − φ)v̂(t)
∥∥2

2 � (1 + s)β

(1 + t)β

∥∥(1 − φ)v̂(s)
∥∥2

2 +
t∫

s

β(1 + τ)β−1

(1 + t)β

∫
BG(τ)

∣∣(1 − φ)v̂(τ )
∣∣2

dξ dτ

+ C‖v0‖2

t∫
s

(1 + τ)β

(1 + t)β
‖∇v‖2

(‖∇v‖2 + ‖∇u‖2
)
dτ

For ξ ∈ BG(t) and t sufficiently large, ψ̃ = |1 − φ| � |ξ |2. Therefore |1 − φ|2 � β2/4(1 + t)2 and the second term on
the RHS can be bounded as

t∫
s

β3(1 + τ)−3

4

∫
A(τ)

∣∣v̂(τ )
∣∣2

dξ dτ �
t∫

s

β3(1 + τ)−3

4

∥∥v(τ)
∥∥2

2 dτ

� β3

4
‖v0‖2

2

t∫
s

(1 + τ)−3 dτ

� β3

8
‖v0‖2

2(1 + s)−2

Letting t → ∞ shows

lim sup
t→∞

∥∥(1 − φ)v̂(t)
∥∥2

2 � α3

8
‖v0‖2

2(1 + s)−2 + C‖v0‖2

( ∞∫
s

‖∇v‖2
2 dτ +

∞∫
s

‖∇u‖2
2 dτ

)
(5.8)

The bounds (3.4) and (4.1) again show ‖∇v‖2
2 and ‖∇u‖2

2 are integrable on the real line. Letting s → ∞ proves

lim sup
t→∞

∥∥(1 − φ)v̂(t)
∥∥2

2 = 0

Combining this with (5.6) and the Plancherel theorem completes this proof. �
Corollary 5.3. Let v be the solution of the VCHE (1.1) constructed in Theorem 4.2 with Ω = R

n corresponding to
v0 ∈ H 1

0 (Rn). Then

lim
t→∞

1

t

t∫
0

‖v(τ)‖2 dτ = 0

Proof. Given an ε > 0 we can choose a large s such that ‖v‖2 � ε for τ > s, this follows directly from the previous
theorem. Then

1

t

t∫
0

∥∥v(τ)
∥∥

2 dτ = 1

t

s∫
0

∥∥v(τ)
∥∥

2 dτ + 1

t

t∫
s

∫ ∥∥v(τ)
∥∥

2 dτ

� 1

t

s∫
0

∥∥v(τ)
∥∥

2 dτ + ε
t − s

t
(5.9)

Note that ε was chosen arbitrarily and let t → ∞ to finish the proof. �
We have shown that the energy of a solution to the VCHE will tend to zero as time becomes large, now we will

provide a counter example to show that there is no uniform rate of decay based only on the initial energy of the
system. This is analogous to a result proved in [24]. The idea is to take a family of initial data with a parameter ε that
have constant L2 norm, but norms of higher derivatives of the initial data can be taken arbitrarily small by picking ε
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sufficiently small. It is then possible to bound the higher derivative norms of the solution arbitrarily small by taking
ε small. Combining this with the energy relation (3.3) allows us to place a lower bound on the energy of the solution
which depends on ε. By choosing ε small we can guarantee that a solution will remain away from zero for any finite
amount of time.

Theorem 5.4. Let v be the solution of the VCHE (1.1) constructed in Theorem 4.2 with Ω = R
n and v0 ∈ L2

σ (Rn).
There exists no function G(t,β) : R+ × R

+ → R
+ with the following two properties:

‖v‖2 � G
(
t,‖v0‖2

)
lim

t→∞G(t,β) = 0 ∀β (5.10)

Proof. Fix u0(x) to be any smooth function of compact support and write uε
0(x) = εn/2u0(εx). Let vε

0 = uε
0 −α2�uε

0
and vε the solution of the VCHE given by Theorem 4.2 corresponding to the initial data v0. Note ‖uε

0‖2 = ‖u0‖2 and
‖∇muε

0‖2 = εm‖∇u0‖2 for all ε > 0. Also,

‖vε
0‖2

2 = ‖uε
0‖2

2 + α2‖∇uε
0‖2

2 + α4‖�uε
0‖2

2

= ‖u0‖2
2 + α2ε2‖∇u0‖2

2 + α4ε4‖�u0‖2
2 (5.11)

and

‖∇vε
0‖2

2 = ‖∇uε
0‖2

2 + α2‖�uε
0‖2

2 + α4‖∇�uε
0‖2

2

= ε2‖∇u0‖2
2 + α2ε4‖�u0‖2

2 + α4ε6‖∇�u0‖2
2 (5.12)

From the two previous inequalities and Corollary 4.3 we obtain a constant C = C(‖u0‖H 3
0
), such that for all ε > 0

‖vε‖2
2 � C

‖∇vε‖2
2 � Cε2 (5.13)

Multiply the VCHE (1.1) by �vε , then integrating by parts yields

1

2

d

dt
‖∇vε‖2

2 + ν‖�2vε‖2
2 = 〈uε · ∇vε,�vε〉 + 〈�vε · ∇uε, vε〉

Use the relation 〈uε,∇vε, vε〉 = 0, the Hölder inequality, Sobolev inequality, and then the Cauchy Inequality to see∣∣〈uε · ∇vε,�vε〉∣∣ = ∣∣(−1)
〈
(∇uε) · ∇vε,∇vε

〉∣∣
� C‖∇uε‖n‖∇vε‖2‖∇vε‖ 2n

n−2

� ν

4
‖�vε‖2

2 + C‖∇uε‖2
n‖∇vε‖2

2

Similarly,∣∣〈�vε · ∇uε, vε〉∣∣ � C‖�vε‖2‖∇uε‖n‖vε‖ 2n
n−2

� ν

4
‖�vε‖2

2 + C‖∇vε‖2
2‖∇uε‖2

n

Applied to (5.13):

1

2

d

dt
‖∇vε‖2

2 + ν

2
‖�vε‖2

2 � C‖∇vε‖2
2‖∇uε‖2

n (5.14)

By (3.4) and Corollary 4.3,
∞∫

0

‖∇uε‖2
n dt � ‖uε

0‖2
2 + ‖∇uε

0‖2
2 � ‖vε

0‖2
2

This bound, combined with (5.13) and (5.14) yields

‖∇vε‖2
2 � ‖∇vε

0‖2
2eC‖vε

0‖2
2 � Cε2eCε2
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Again, apply Corollary 4.3

‖∇uε‖2
2 + α2‖�uε‖2

2 � ‖∇vε‖2
2 � ‖∇vε

0‖2
2eC‖vε

0‖2
2

This together with the energy estimate (3.3) implies

1

2

d

dt

(‖uε‖2
2 + α2‖∇uε‖2

2

)
� −Cε2

or,

‖uε‖2
2 + α2‖∇uε‖2

2 � ‖uε
0‖2

2 + α2‖∇uε
0‖2

2 − Cε2t

= ‖u0‖2
2 + ε2α2‖∇u0‖2

2 − Cε2t

� ‖u0‖2
2 − Cε2t (5.15)

From this we can deduce that there is no function G(t,β, ), continuous and approaching zero in t for each fixed β ,
such that ‖u‖2 � G(t,‖u0‖2). If there was such a function, then at some t0 it would satisfy the bound G(t0,‖u0‖2) �
‖u0‖2/2. By choosing ε sufficiently small in (5.15), i.e. ε2 < ‖u0‖2

2/4Ct0, we have found initial data with a solution
which cannot satisfy this estimate. �
6. Large time behavior of the VCHE: Algebraic decay

Although there is no uniform rate of decay for solutions with data exclusively in L2, we now show that there is a
uniform rate of decay depending on the L2 and L1 norm of the initial data. Theorem 6.10 contains the most general
decay result in this section.

There is a relation between the shape of the Fourier Transform of the initial data near the origin and the decay rate
of a solution to a parabolic equation with this data. By requiring the initial data to be absolutely integrable (in L1) we
are in turn requiring the Fourier Transform of the initial data to be bounded. Using the Fourier Splitting Method it will
also be shown that solutions in the whole space decay algebraically in HM as t → ∞ for initial data in L1 ∩ HM ,
M � 0. The decay obtained is the same as for the linear part (the heat equation). Note that the initial conditions can
be weakened to require only that v0 ∈ X where X = {v0|v0(t) � C(1 + t)−β} where v0(t) is the solution of the heat
equation with initial data v0. The decay rate will depend on the relation between β and the number of dimensions. For
similar results corresponding to the Navier–Stokes equations see [27,29], and [30].

The Fourier Splitting Method was originally applied to parabolic conservation laws in [22], and later applied to the
NSE in [23]. In [24] the decay rate was made sharp in dimension n > 2 through a bootstrap method and logarithmic
decay was shown for n = 2. In [31] the decay rate for n = 2 was made sharp through a bootstrap argument involving
the Gronwall inequality. In this section we combine ideas from all of these papers in a slightly different way which
allows us to prove the optimal energy decay rate in dimensions n � 2 without appealing to a bootstrap argument
although we still use a bootstrap argument to obtain decay rates for higher derivatives. This same argument is also
applicable to the NSE.

The first goal of this section is to obtain a decay rate for the filtered velocity u, which is accomplished by applying
the Fourier Splitting Method to the natural energy relation (3.3). This decay rate is then used with an inductive
argument to obtain decay rates for the unfiltered velocity v and all of its derivatives. We start by finding estimates
on ‖v̂‖∞.

Lemma 6.1. Let v be the solution of the VCHE (1.1) constructed in Theorem 4.2 with Ω = R
n, corresponding to

v0 ∈ L2
σ ∩ L1(Rn). Then,

∣∣F (v)
∣∣ � C

[
1 +

( t∫
0

∥∥u(s)
∥∥2

2

)1/2( t∫
0

∥∥∇v(s)
∥∥2

2

)1/2]

where the constant depends only on the initial data, the dimension of space, and the constants in the VCHE (but
not α).
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Proof. Use the identity∑
i

∇(uivi) =
∑

i

ui∇vi +
∑

i

vi∇ui (6.1)

and write the Fourier transform of the solution F (v) as

F (v) = e−νt |ξ |2 F (v0) +
t∫

0

e−ν(t−s)|ξ |2Ψ (ξ, s) ds

where

Ψ (ξ, t) = ξ · F
(

π +
∑

i

uivi

)
− F (u · ∇v − u · ∇vT ) (6.2)

We would like first to bound Ψ , in that direction we have the following estimate which relies on the bound ‖F (φ)‖∞ �
‖φ‖1 and Young’s inequality∣∣F (u · ∇v − u · ∇vT )

∣∣ � C‖u‖2‖∇v‖2

Also, taking the divergence of the VCHE (1.1) shows

�

(
π +

∑
i

uivi

)
= div(u∇v − u∇vT )

Using the estimate immediately above and the Fourier transform leaves∣∣∣∣ξ F
(

π +
∑

i

uivi

)∣∣∣∣ � C‖u‖2‖∇v‖2

Now we can bound the integrand∣∣Ψ (ξ, t)
∣∣ � C‖u‖2‖∇v‖2

Now take the supremum over ξ of (6.1) and apply the Cauchy–Schwartz Inequality:

∣∣F (v)
∣∣ �

∣∣F (v0)
∣∣ + C

( t∫
0

∥∥u(s)
∥∥2

2 ds

)1/2( t∫
0

∥∥∇v(s)
∥∥2

2 ds

)1/2

The bound |F (v0)|∞ � ‖v0‖1 finishes the proof. �
Theorem 6.2. Let v be the solution of the VCHE (1.1) constructed in Theorem 4.2 with Ω = R

n, corresponding to
v0 ∈ L2

σ ∩ L1(Rn). The solution satisfies the “energy” decay rate∫
Rn

v · udx = ‖u‖2
2 + α2‖∇u‖2

2 � C(t + 1)−n/2

where the constant depends only on the initial data, the dimension of space, and the constants in the VCHE (but
not α).

Proof. The previous lemma, with the bound (4.1), yields

|v̂|2 � C

[
1 +

t∫
0

∥∥u(s)
∥∥2

2 ds

]
(6.3)

Now we begin work with the energy estimate (3.3). Using the Plancherel Theorem we rewrite it as

d

dt

∫
n

(
1 + α2|ξ |2)û2 dξ + 2ν

∫
n

|ξ |2(1 + α2|ξ |2)û2 dξ = 0
R R
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Let B(ρ) be the ball of radius ρ where ρ2 = f ′(t)/(2νf (t)), and f is a positive, increasing function to be specified
later. To simplify our equations we write E2 = û · v̂ = (1 + α2|ξ |2)û2. Then,

d

dt

∫
Rn

E2 dξ + 2νρ2
∫

BC(ρ)

E2 dξ � 0

or
d

dt

∫
Rn

E2 dξ + 2νρ2
∫
Rn

E2 dξ � 2νρ2
∫

B(ρ)

E2 dξ (6.4)

Recall the relation between u and v, that is v = u − α2�u which has Fourier Transform û = v̂/(1 + α2|ξ |2).
Combining this with (6.3) we see

‖E‖2∞ = ‖v̂ · v̂‖∞
(1 + α2|ξ |2)

� C

[
1 +

t∫
0

‖u(s)‖2
2 ds

]

With this bound we can estimate the integral on the right-hand side of (6.4).

d

dt

∫
Rn

E2 dξ + 2νρ2
∫
Rn

E2 dξ � Cρ2+n

[
1 +

t∫
0

‖u(s)‖2
2 ds

]

We now have a differential inequality which can be solved using the integrating factor f to find

d

dt

(
f

∫
Rn

E2 dξ

)
� Cf ′

(
f ′

f

)n/2
[

1 +
t∫

0

‖u(s)‖2
2 ds

]

Choose f = (1 + t)n/2+1 so that f ′/f = (n/2 + 1)/(1 + t)and integrate in time from 0 to r .

(1 + r)n/2+1
∫
Rn

E2(ξ, r) dξ �
∫
Rn

E2(ξ,0) dξ + C

r∫
0

(
1 +

t∫
0

∥∥u(s)
∥∥2

2 ds

)
dt

Note ‖u‖2
2 �

∫
Rn E2 dξ , then using the Tonelli theorem we can evaluate the integral on the RHS as

r∫
0

(
1 +

t∫
0

∥∥u(s)
∥∥2

2 ds

)
dt � r +

r∫
0

(r − s)
∥∥u(s)

∥∥2
2 ds

which leaves

(1 + r)n/2+1
∫
Rn

E2(ξ, r) dξ � C(1 + r) + C

r∫
0

(r − s)

∫
Rn

E2(ξ, s) dξ ds

This is of the form

φ � C(1 + r) + C

r∫
0

φ(s)(r − s)(1 + s)−n/2+1 ds

with φ = (1 + r)n/2+1
∫

Rn E2(ξ, r) dξ . The Gronwall inequality now shows

(1 + r)n/2+1
∫
n

E2(ξ, r) dξ � C(1 + r) exp

(
C

r∫
(r − s)(1 + s)−n/2−1 ds

)

R 0
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For n � 2 the integral
∫ r

0 (r − s)(1 + s)−n/2−1 ds is bounded independent of r . Applying the Plancherel theorem one
more time finishes the proof. �

Next we work out of order and establish the decay rate for the homogeneous H 1 norm of v using a similar argument
as the previous theorem.

Theorem 6.3. Let v be the solution of the VCHE (1.1) constructed in Theorem 4.2 with Ω = R
n corresponding to

v0 ∈ H 1
σ ∩ L1(Rn). The solution satisfies the decay rate

‖∇v‖2
2 � C(t + 1)−1−n/2

where the constant depends only on the initial data, the dimension of space, and the constants in the VCHE (ν, α).

Proof. Multiply the VCHE by �v, use the identity (6.1), after recalling that �v is divergence free use the Hölder
inequality to obtain

1

2

d

dt
‖∇v‖2

2 + ν‖�v‖2
2 � C‖u‖n‖∇v‖ 2n

n−2
‖�v‖2

After using the Sobolev inequality, Corollary 4.3, and the previous theorem, this becomes

1

2

d

dt
‖∇v‖2

2 + ν‖�v‖2
2 � C(1 + t)−n/2‖�v‖2

2

We will now restrict ourselves to t large enough so that C(1 + t)−1 < ν/2, this implies

d

dt
‖∇v‖2

2 + ν‖�v‖2
2 � 0

The next step is to apply the Fourier Splitting method as in the previous theorem. Let B(ρ) be the ball of radius ρ

where ρ2 = f ′/(νf ) and f is a positive increasing function to be specified later, using the Plancherel theorem:

d

dt
‖ξ v̂‖2

2 + νρ2‖ξ v̂‖2
2 � νρ4

∫
B(ρ)

|v̂|2 ξ

Lemma 6.1 with Theorem 6.2 imply

|v̂|2 � C

[
1 +

( t∫
0

(1 + s)−n/2 ds

)( t∫
0

‖∇v‖2
2 ds

)]

With this bound the previous line becomes

d

dt
‖ξ v̂‖2

2 + νρ2‖ξ v̂‖2
2 � Cνρ4+n

[
1 +

( t∫
0

(1 + s)−n/2 ds

)( t∫
0

‖∇v‖2
2 ds

)]

Set f = (1 + t)n/2+2 and use it as an integrating factor

d

dt

(
(1 + t)n/2+2‖ξ v̂‖2

2

)
� C

[
1 +

( t∫
0

(1 + s)−n/2 ds

)( t∫
0

‖∇v‖2
2 ds

)]

Again, as in the previous theorem, integrate in time from 0 to r , then use the Tonelli theorem and the Plancherel
theorem

(1 + r)n/2+2‖∇v‖2
2 � C(1 + r)

( r∫
o

( t∫
0

(1 + s)−n/2 ds

)
dt

) r∫
0

∥∥∇v(s)
∥∥2

2 ds

The Gronwall inequality now shows

(1 + r)n/2+2‖∇v‖2
2 � C(1 + r)eA
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where

A =
[( r∫

o

( t∫
0

(1 + s)−n/2 ds

)
dt

)( r∫
o

(1 + t)−n/2−2 dt

)]

Note A is finite, hence,∥∥∇v(r)
∥∥2

2 � C(1 + r)−n/2−1 �
Corollary 6.4. Let v be the solution of the VCHE (1.1) constructed in Theorem 4.2 with Ω = R

n, corresponding to
v0 ∈ L2

σ ∩ L1(Rn). Then,∣∣F (v)
∣∣ � C∣∣F (u)
∣∣ � C

where the constant depends only on the initial data, the dimension of space, and the constants in the VCHE.

Proof. Combine Lemma 6.1 with Theorems 6.2 and 6.3. �
Corollary 6.5. Let v be the solution of the VCHE (1.1) constructed in Theorem 4.2 with Ω = R

n, corresponding to
v0 ∈ L2

σ ∩ L1(Rn). Then

‖v‖2
2 � C(t + 1)−n/2

where the constant depends only on the initial data, the dimension of space, and the constants in the VCHE.

Proof. In Theorem 6.2 we have shown that

‖u‖2
2 + α2‖∇u‖2

2 � C(t + 1)−n/2 (6.5)

Differentiating the Helmholtz equation, then squaring it and integrating shows

‖∇u‖2
2 + 2α2‖∇2u‖2

2 + α4‖∇3u‖2
2 = ‖∇v‖2

2

Combine this with Theorem 6.3,

‖∇2u‖2
2 � C(t + 1)−n/2−1

With (6.5) we see

‖v‖2
2 = ‖u‖2

2 + 2α2‖∇u‖2
2 + α4‖�u‖2

2 � C(t + 1)−n/2 �
We now turn our attention to a more general situation involving the Fourier Splitting Method. This next theorem

will be used in the remaining decay proofs.

Theorem 6.6. Let ‖∇mw(0)‖2 < ∞. Given an energy inequality of the form

1

2

d

dt
‖∇mw‖2

2 + ν‖∇m+1w‖2
2 � C(1 + t)γ

and the bound∣∣ŵ(ξ, t)
∣∣ � C(1 + t)β

which holds for |ξ |2 < d
ν(1+t)

, we can deduce the asymptotic behavior

‖∇mw‖2
2 � C

[
(1 + t)−m−n/2+2β + (1 + t)γ+1]
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Proof. We proceed directly with Fourier Splitting. Apply Plancherel’s Theorem and break up the integral on the LHS.

1

2

d

dt
‖ξkŵ‖2

2 + νρ2‖ξkŵ‖2
2 � νρ2k+2

∫
B(ρ)

ŵ2 dξ + C(1 + t)γ

Choose, for some large d ,

ρ2 = d

ν(1 + t)

Then, using the assumption for the bound on ŵ and performing the integration on the RHS we have

d

dt

(
(1 + t)d‖ξmŵ‖2

2

)
� C

[
(1 + t)−m−1+d+2β−n/2 + (1 + t)γ+d

]
Integration in time and another application of the Plancherel theorem finishes the proof. �

For the first application of the above theorem we will compute the decay rate for all spacial derivatives for solutions
of the VCHE.

Theorem 6.7. Let v be the solution of the VCHE (1.1) constructed in Theorem 4.2 with Ω = R
n, corresponding to

v0 ∈ HK
σ ∩ L1(Rn). These solutions satisfy the following decay rate for all m � K

‖∇mv‖2
2 � C(t + 1)−m−n/2

Proof. The cases m = 0,1 are Theorems 6.5 and 6.3 respectively. To prove the remaining cases, we first find an
inequality in a form suitable for Theorem 6.6, then using inductive arguments establish decay. Having previously
established regularity of solutions, we proceed formally. Let M � K then multiply the VCHE (1.1) by �Mv and
integrate by parts to find

d

dt
‖∇Mv‖2

2 + ν‖∇M+1v‖2
2 � IM,0 + JM,0

where

IM,0 =
M∑

m=0

(
M

m

)
〈∇mu · ∇M+1v,∇M−mv〉

JM,0 =
M−1∑
m=0

(
M − 1

m

)
〈∇M+1v · ∇m+1u,∇M−mv〉

Using the Holder inequality, the Sobolev inequality, Corollary 4.3, and the Cauchy inequality we find

IM,0 = C

M∑
m=0

‖∇mu‖n‖∇M−mv‖ 2n
n−2

‖∇M+1v‖2

� C‖v‖2
2‖∇M+1v‖2

2 + C‖∇v‖2
2‖∇Mv‖2

2 + C

M∑
m=2

‖∇m−1v‖2
2‖∇M+1−mv‖2

2 + ν

4
‖∇M+1v‖2

2

We treat the other term in a similar way.

JM,0 � C

M−1∑
m=0

‖∇M+1v‖2‖∇m+1u‖n‖∇M−mv‖ 2n
n−2

� C‖v‖2
2‖∇M+1v‖2

2 + C‖∇v‖2
2‖∇Mv‖2

2 + C

M−1∑
m=2

‖∇m−1v‖2
2‖∇M+1−mv‖2

2 + ν

4
‖∇M+1v‖2

2

Together, this leaves
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d

dt
‖∇Mv‖2

2 + ν

2
‖∇M+1v‖2

2 � C‖v‖2
2‖∇M+1v‖2

2 + C‖∇v‖2
2‖∇Mv‖2

2 + C

M∑
m=2

‖∇m−1v‖2
2‖∇M+1−mv‖2

2 (6.6)

The remaining part of this proof will proceed by induction where the base case is Theorems 6.3 and 6.5. We assume
(inductive assumption) that the decay

‖∇mv‖2
2 � C(t + 1)−m−n/2

holds for all m < M and will show that it holds for m = M . With this inductive assumption (6.6) becomes

d

dt
‖∇Mv‖2

2 + ν

4
‖∇M+1v‖2

2 � C(1 + t)−n/2‖∇M+1v‖2
2 + C(1 + t)−1−n/2‖∇Mv‖2

2 + C(1 + t)−M−n/2 (6.7)

Consider t large enough so that C(1 + t)−n/2 � ν/4. Subtracting the first term on the RHS, (6.7) becomes

d

dt
‖∇Mv‖2

2 + ν

4
‖∇M+1v‖2

2 � C(1 + t)−1−n/2‖∇Mv‖2
2 + C(1 + t)−M−n/2

The next step is to apply the bound ‖∇Mv‖2
2 � C (Theorem 4.2) with Theorem 6.6 to obtain the decay rate

‖∇Mv‖2
2 � C(1 + t)−n/2

Continuing with a bootstrap argument, placing this new bound into (6.7) and again using Theorem 6.6 the optimal
decay rate is obtained and the proof is complete. �

The next goal is to extend the decay results to time derivatives of the solution. To begin we will compute a frequency
bound for the spacial derivatives of solutions to the VCHE. This next lemma will be used inductively with Theorem 6.6
to compute decay rates for the L2 norm of all time derivatives.

Lemma 6.8. Let P � 1 and v be the solution of the VCHE (1.1) constructed in Theorem 4.2 with Ω = R
n, corre-

sponding to v0 ∈ H 1
σ ∩ L1(Rn). If

‖∂p
t ∇mv‖2

2 � C(1 + t)−2p−m−n/2

for all p < P and m = 0,1, then∣∣∂P
t v̂(ξ)

∣∣ � C(1 + t)−P

for |ξ |2 � d
ν(1+t)

. Here the constant depends only on the initial data, the dimension of space, and the constants in the
VCHE.

Remark 6.9. Note that the conclusion for P = 0 is true by Corollary 6.4.

Proof. The chain rule

d

dt

t∫
0

f (t, s) ds = f (t, t) +
t∫

0

∂f (t, s)

∂t
ds

applied to (6.2) shows

∂P
t F (v) = (−1)P |ξ |2P e−t |ξ |2 F (v0) +

P−1∑
p=0

(−|ξ |2)P−1−p
∂

p
t Ψ (ξ, t) +

t∫
0

(−|ξ |2)P e−(t−s)|ξ |2Ψ (ξ, s) ds

We bound Ψ (defined by (6.2)) similar to the proof of Lemma 6.1 but using the assumptions of this lemma.

∂
p
t Ψ (ξ, t) = ∂

p
t A + ∂

p
t B + ∂

p
t C
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|∂p
t A| =

∣∣∣∣∂p
t

∑
j

ξj F (uj v)

∣∣∣∣
�

p∑
l=0

C|ξ |‖∂l
t v‖2‖∂p−l

t v‖2

� C(1 + t)−p−n/2−1/2

|∂p
t B| =

∣∣∣∣∂p
t

∑
j

F (uj∇vT
j )

∣∣∣∣
�

p∑
l=0

C‖∂l
t v‖2‖∂p−l

t ∇v‖2

� C(1 + t)−p−n/2−1/2

|∂p
t C| = ∣∣∂p

t ξ F (π)
∣∣

� |∂p
t A| + |∂p

t B|
� C(1 + t)−p−n/2−1/2

The bound |v̂| � C (Corollary 6.4) and |ξ | < d/
√

ν(1 + t) finish the proof. �
Theorem 6.10. Let v be the solution of the VCHE (1.1) constructed in Theorem 4.2 with Ω = R

n, corresponding to
v0 ∈ HK

σ ∩ L1(Rn). These solutions satisfy the following decay rate for all m + 2p � K

‖∂p
t ∇mv‖2

2 � C(t + 1)−2p−m−n/2

where the constant depends only on the initial data, the dimension of space, and the constants in the VCHE.

Proof. This proof follows closely the proof of Theorem 6.7, we first find an inequality in a form suitable for Theo-
rem 6.6, then using inductive arguments we establish decay. Choose P and M such that M + 2P � K , then apply ∂P

t

to the VCHE (1.1), multiply by ∂P
t �Mv and integrate by parts to see

d

dt
‖∂P

t ∇Mv‖2
2 + ν‖∂P

t ∇M+1v‖2
2 � IM,P + JM,P

where

IM,P =
P∑

p=0

M∑
m=0

(
P

p

)(
M

m

)
〈∂p

t ∇mu · ∂P
t ∇M+1v,∇M−m∂

P−p
t v〉

JM,P =
P∑

p=0

M−1∑
m=0

(
P

p

)(
M − 1

m

)
〈∂P

t ∇M+1v · ∇∂
p
t ∇mu, ∂

P−p
t ∇M−mv〉

or, in the case M = 0,

J0,P =
P∑

p=0

(
P

p

)
〈∂P

t v · ∇∂
p
t u, ∂

P−p
t v〉

Use the Holder inequality, the Sobolev inequality, Corollary 4.3, and the Cauchy inequality we find, for M > 0,

IM,P = C

P∑
p=0

M∑
m=0

‖∂p
t ∇mu‖n‖∂P−p

t ∇M−mv‖ 2n
n−2

‖∂P
t ∇M+1v‖2

� C

P∑
‖∂p

t v‖2
2‖∂P−p

t ∇M+1v‖2
2 + C

P∑
‖∂p

t ∇v‖2
2‖∂P−p

t ∇Mv‖2
2

p=0 p=0
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+ C

P∑
p=0

M∑
m=2

‖∂p
t ∇m−1v‖2

2‖∂P−p
t ∇M+1−mv‖2

2 + ν

4
‖∂P

t ∇M+1v‖2
2

Similarly for the second term if M > 0,

JM,P � C

P∑
p=0

M−1∑
m=0

‖∂P
t ∇M+1v‖2‖∂p

t ∇m+1u‖n‖∂P−p
t ∇M−mv‖ 2n

n−2

� C

P∑
p=0

‖∂p
t v‖2

2‖∂P−p
t ∇M+1v‖2

2 + C

P∑
p=0

‖∂p
t ∇v‖2

2‖∂P−p
t ∇Mv‖2

2

+ C

P∑
p=0

M−1∑
m=2

‖∂p
t ∇m−1v‖2

2‖∂P−p
t ∇M+1−mv‖2

2 + ν

4
‖∂P

t ∇M+1v‖2
2

In the case M = 0 the estimate is

I0,P + J0,P � C

P∑
p=0

‖∂p
t v‖2

2‖∂P−p
t ∇v‖2

2 + ν

4
‖∂P

t ∇v‖2
2

We have shown in the case M > 0

d

dt
‖∂P

t ∇Mv‖2
2 + ν

2
‖∂P

t ∇M+1v‖2
2 � C

P∑
p=0

‖∂p
t v‖2

2‖∂P−p
t ∇M+1v‖2

2 + C

P∑
p=0

‖∂p
t ∇v‖2

2‖∂P−p
t ∇Mv‖2

2

+ C

P∑
p=0

M∑
m=2

‖∂p
t ∇m−1v‖2

2‖∂P−p
t ∇M+1−mv‖2

2 (6.8)

and in the case M = 0,

d

dt
‖∂P

t v‖2
2 + ν

2
‖∂P

t ∇v‖2
2 � C

P∑
p=0

‖∂p
t v‖2

2‖∂P−p
t ∇v‖2

2 (6.9)

We now begin the inductive part of our argument where the base case is Theorem 6.7. Pick P � K/2 and assume
(inductive assumption) the decay

‖∂p
t ∇mv‖2

2 � C(t + 1)−2p−m−n/2 (6.10)

holds for all p < P and m such that 2p + m � K . The inductive claim is that the decay holds for p = P with m such
that 2P + m � K . To prove the inductive claim it will be shown first that the decay rate holds for p = P and m = 0
using (6.9). Then, using (6.8) it will be shown that the decay rate holds for the remaining values of m using another
inductive argument.

To establish the decay for p = P and m = 0, apply the inductive assumption to (6.9) to find

d

dt
‖∂P

t v‖2
2 + ν

2
‖∂P

t ∇v‖2
2 � C(1 + t)−n/2‖∂P

t ∇v‖2
2 + C(1 + t)−2P−1−n

Take t large enough so that C(1 + t)−n/2 � ν/4 and move the first term on the RHS to the left side

d

dt
‖∂P

t v‖2
2 + ν

2
‖∂P

t ∇v‖2
2 � C(1 + t)−2P−1−n

Now, an application of Theorem 6.6 with Lemma 6.8 establishes the decay (6.10) for p = P and m = 0. This is the
base case for the next inductive argument. Assume (inductive assumption) the decay (6.10) holds for m � M +1 when
p < P , and m < M when p = P , we will show that this implies the decay holds for m = M and p = P . Proving this
inductive claim will finish the proof. Begin by applying the inductive assumption to (6.8).
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d

dt
‖∂P

t ∇Mv‖2
2 + ν

2
‖∂P

t ∇M+1v‖2
2 � C(1 + t)−n/2‖∂P

t ∇M+1v‖2
2 + C(1 + t)−n/2−1‖∂P

t ∇Mv‖2
2

+ C(1 + t)−2p−M−n

Take t large so that C(1 + t)−n/2 � ν/4 and move the first term on the RHS to the LHS. Then apply Theorem 6.6 with
Lemma 6.8 to establish the decay rate

‖∂p
t ∇mv‖2

2 � C(t + 1)−n/2 (6.11)

Another bootstrap argument gives the optimal decay and finishes the proof. �
7. Convergence of the VCHE to the NSE in the whole space

To understand how solutions of the VCHE approach solutions of the NSE as the filter constant α approaches zero
we must first understand how a solution u of the Helmholtz equation

u − α2�u = v (7.1)

approaches v when taking α to zero. To begin we state a theorem concerning the Helmholtz equation in all of space,
the theorem is standard elliptic theory and no proof is given. This theorem can be proved using elliptic estimates and
interpolation or if one multiplies the Helmholtz equation by eτ/α2

and divides by α2 it can be thought of as the heat
equation and the bounds follow from estimates on the heat kernel.

Theorem 7.1. Given v ∈ Lp(Rn), p ∈ (1,∞), there exists a u ∈ W 1,p(Rn) that is a weak solution to the Helmholtz
equation u − α2�u = v. Moreover, this function satisfies

‖u‖p � ‖v‖p

‖u‖q � C(n,p,q)

α1+γ
‖v‖p for γ = n

2

(
1

p
− 1

q

)
< 1

‖∇u‖q � C(n,p,q)

α3/2+γ
‖v‖p for γ = n

2

(
1

p
− 1

q

)
<

1

2

If n(2/p − 1) < 1 then the solution is unique.

Proof. Standard elliptic theory. �
A solution u of the Helmholtz equation corresponding to v will approach v weakly as the filter parameter tends to

zero. Indeed, fix v ∈ Lp(Rn) and let {αi} be a sequence tending to zero. By the above theorem, for each αi there is a
weak solution uαi

∈ W 1,p(Rn) of the Helmholtz equation such that∫
Rn

uαi
· φ dx + α2

i

∫
Rn

∇uαi
· ∇φ dx =

∫
Rn

v · φ dx

The functions uαi
are bounded in Lp(Rn) independent of αi , so there exists a (possible) subsequence αij with a weak

limit in Lp(Rn). Also, for 1/p + 1/q = 1

α2
i

∫
Rn

∇u · ∇φ dx � α2
i ‖∇u‖p‖∇φ‖q � C(n)α

1/2
i ‖v‖p‖∇φ‖q

which approaches zero as αi → 0. This proves that uαi
⇀ v in Lp(Rn). We can do better then this if v is sufficiently

differentiable.

Theorem 7.2. Let v ∈ W 1,p(Rn) and let u be the corresponding solution to the Helmholtz equation (7.1). Then

‖u − v‖q � C(n,p,q)α1/2−γ ‖∇v‖p for γ = n

2

(
1

p
− 1

q

)
<

1

2

If α is a sequence tending to zero and uα are solutions the Helmholtz equation, then uα → v strongly in Lq(Rn) for
1/p − 1/q < 1/n.
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Proof. If u and v satisfy the Helmholtz equation, then

‖u − v‖q � α2‖�u‖q (7.2)

The Helmholtz equation is linear, so the derivatives of the functions obey the relation ∇u − α2�∇u = ∇v. Applying
Theorem 7.1 to this PDE with the restriction on γ allows the bound

‖�u‖q � C(n,p,q)

α3/2+γ
‖∇v‖p

Together with (7.2),

‖u − v‖q � C(n,p,q)α1/2−γ ‖∇v‖p

The second statement is an immediate consequence of this. �
In [9,10], the authors show how the solutions of the VCHE approach a solution of the NSE weakly when the

parameter in the filter tends to zero (α → 0). We will show how solutions to the VCHE approach solutions to the
NSE strongly as α → 0 when the solution to the NSE is known to be regular. The proof requires estimates on the
solution of the VCHE which are independent of α, but in regions of time where the NSE is known to be regular by
some functional analytic arguments, the passive bound on the filter make this assumption reasonable.

For example, solutions of the Navier–Stokes equation obey the Prodi Inequality [19]

d

dt
‖∇u‖2

2 � C‖∇u‖2n
2

This can be used to prove existence of a strong solution in some time interval [0, T ] or regular solutions for all time
if the initial data is small. The Prodi inequality is proved through energy estimates, using the passive bound for the
filter in Theorem 7.1 and following the same energy arguments allows the same bound for solutions of the VCHE.
This bound will be independent of α, so we can apply the following theorem to conclude that in some closed interval
[0, T ] the solution of the VCHE approaches a solution to the NSE strongly.

Theorem 7.3. Let {αi} be a sequence of filter coefficients tending to zero and vαi
the solutions of the VCHE (1.1)

constructed in Theorem 4.2 with Ω = R
n corresponding to w0 ∈ H 1

σ (Rn). Let w be the solution the NSE with initial
conditions w0. In any time interval [0, T ] where a solution to the NSE is known to be regular, if there exists a bound

sup
αi

sup
t∈[0,T ]

(‖vαi
‖l + ‖∇vαi

‖l

)
< C

which is independent of α, then vα approaches w strongly in L∞([0, T ],Lq(Rn)) as α → 0, where q = 2l
l−2 .

Proof. We begin with a mild form of the solutions to both problems. We are working in a time domain with known
regularity so these are the unique solutions. If P is the Leray projector onto the divergence free subspace of L2 and Φ

is the heat kernel, then

w(t) = Φ(t) ∗ w0 −
t∫

0

Φ(t − s) ∗ P[w · ∇w](s) ds

v(t) = Φ(t) ∗ w0 −
t∫

0

Φ(t − s) ∗ P

[
u · ∇v +

∑
uj∇vj

]
(s) ds

By adding and subtracting cross terms we see

w(t) − v(t) = −
t∫

0

Φ(t − s) ∗ P
[
(w − u) · ∇w + u · ∇(w − v)

] + P
[
uj∇(vj − wj) + (uj − wj)∇wj

]
(s) ds

The first term in the integrand is bounded using Young’s inequality and the definition of the projector
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∥∥Φ(t − s) ∗ P
[
(w − u) · ∇w

]
(s)

∥∥
q

�
∥∥Φ(t − s)

∥∥
p

∥∥(w − u) · ∇w
∥∥

2

�
∥∥Φ(t − s)

∥∥
p
‖w − u‖q‖∇w‖l

where 1/q + 1 = 1/p + 1/2 and 1/2 = 1/q + 1/l. Using Theorem 7.2 with γ = (1/2 − 1/q)n/2 < 1/2 we obtain∥∥Φ(t − s) ∗ P
[
(w − u) · ∇w

]
(s)

∥∥
q

�
∥∥Φ(t − s)

∥∥
p
‖∇w‖l

(‖w − v‖q + Cα1/2−γ ‖∇v‖2
)

The fourth term can be bounded in essentially the same way. We approach the second term in a slightly different
way, by first passing the derivative to the heat kernel. These functions are smooth functions of the whole space so the
projector will commute with the derivative.∥∥Φ(t − s) ∗ P

[
u · ∇(w − v)

]∥∥
q

= ∥∥∇Φ(t − s) ∗ P
[
u · (w − v)

]∥∥
q

Then by using Young’s inequality and the definition of the projector∥∥Φ(t − s) ∗ P
[
u · ∇(w − v)

]∥∥
q

�
∥∥∇Φ(t − s)

∥∥
p
‖u‖l‖w − v‖q

To bound the third term, start with the product rule and again pass the derivative the heat kernel∥∥Φ(t − s) ∗ P
[
uj∇(vj − wj)

]∥∥
q

= ∥∥∇Φ(t − s) ∗ P
[
uj (wj − vj )

]∥∥
q

+ ∥∥Φ(t − s) ∗ P
[∇uj (wj − vj )

]∥∥
q

Then, using Young’s inequality and again the definition of the projector∥∥Φ(t − s) ∗ P
[
uj∇(vj − wj)

]∥∥
q

�
(∥∥∇Φ(t − s)

∥∥
p
‖uj‖l + ∥∥Φ(t − s)

∥∥
p
‖∇uj‖l

)‖wj − vj‖q

Putting all of these bounds together and estimating the heat kernel yields

‖v − w‖q � Aα1/2−γ + B

t∫
0

1

(t − s)δ
‖v − w‖q(s) ds

A = C

t∫
0

‖∇v‖2 ds

B = C sup
s∈[0,T ]

(‖∇w‖l + ‖u‖l + ‖∇u‖l

)
Here, δ = 1/2+ (1−1/p)n/2 < 1 by the assumption l > n. Application of the Gronwall inequality finishes the proof.
For example, a modified Gronwall inequality [26] now shows

‖v − w‖q � Aα1/2−γ Υ
(
B�(1 − δ)tδ

)
Υ (z) =

∞∑
n=0

z

�(n(1 − δ) + 1)

See also [1]. Letting α → 0 we see that v → w strongly in Lq(R3). �
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Appendix A

Here we construct a weak solution to the VCHE. Due to the close relation between the VCHE and the Navier–
Stokes equation, our proof is similar to known existence proofs for the NSE. See, for example, [1,2,7,13,15,28]. First,
we construct solutions on any bounded Ω with smooth boundary using the Galerkin method, this is where the Stokes
operator is known to be compact thanks to the Poincaré Inequality. Special care is taken to use inequalities which
do not depend on the size of Ω so we can use these solutions to prove existence of a weak solution in unbounded
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domains. The only step that requires Ω bounded is in the compact inclusion used to obtain the strong convergence
necessary to pass limits through the non-linear term. This problem is overcome by working in the compact support of
the test functions.

To begin we recall a standard but useful elliptic estimate.

Remark A.1. Let 2 � n � 4 and Ω ⊂ R
n be an open set with smooth boundary. If u ∈ H 2

σ , and v ∈ L2
σ satisfy the

Helmholtz equation

u − α2�u = v

on Ω , then

‖u‖n � C‖v‖2 (A.1)

‖∇u‖n � C‖v‖2 (A.2)

‖u‖2
2 + 2α2‖∇u‖2

2 + α4‖�u‖2
2 = ‖v‖2

2 (A.3)

where the constants C depend only on α and n.

The stationary Stokes equation

�u + ∇p = v

u|∂Ω = 0

is known to have a solution u ∈ H 1
σ (Ω) for each v ∈ L2

σ (Ω) when Ω is an open bounded set. Solving this PDE defines
an operator L2

σ (Ω) → H 1
σ (Ω). Composing this with the compact inclusion H 1

σ (Ω) → L2
σ (Ω) gives a compact and

self-adjoint operator L2
σ (Ω) → L2

σ (Ω), which we call the Stokes operator.

Lemma A.2. Let Ω ⊂ R
n be an open bounded set. There exists an orthonormal basis of L2

σ (Ω), {ωj }∞j=1, where
each ωj is an eigenfunction of the Stokes Operator on Ω . The associated eigenvalues are all positive real numbers
and the eigenvectors are smooth and approach zero on the boundary. Let Hm = span{ω1, . . . ,ωm} and let Pm be the
orthogonal projection Pm :L2

σ (Ω) → Hm. Given v0 ∈ C∞
0 (Ω), for each m there is an approximate solution

vm =
m∑

j=1

gjm(t)ωj

and

um =
m∑

j=1

gjm(t)

1 + α2λj

ωj

where gjm ∈ C1([0, Tm]) for some time Tm. These approximate solutions satisfy the following relations:

〈∂tvm,ωi〉 + 〈um · ∇vm,ωi〉 − 〈ωi · ∇vm,um〉 = ν〈�vm,ωi〉
vm(0) = Pmv0

(A.4)

Proof. Owing to spectral theory the Stokes operator (self-adjoint, compact) has a countable number of positive eigen-
values λi , and associated smooth, divergence-free eigenfunctions ωi which form a basis for L2

σ (Ω). These functions
satisfy the relation

−�ωi = λiωi

To determine the scalars gim we construct a system of m ODE’s.

dgim

dt
+ νλigim +

m∑ gjmgkm

1 + α2λk

(〈ωk · ∇ωj ,ωi〉 − 〈ωi · ∇ωj ,ωk〉
) = 0
j,k=1



C. Bjorland, M.E. Schonbek / Ann. I. H. Poincaré – AN 25 (2008) 907–936 929
Local existence of solutions to ODE’s give existence of solutions gim, which are defined for some time interval
[0, Tm]. �

The bounds in the next lemma will prove that Tm can be bounded independent of m, and in fact Tm = ∞ for all m.

Lemma A.3. For 2 � n � 4, the approximate solutions constructed in Lemma A.2 have the following bounds, which
do not depend on T , Ω or m.

‖vm‖L∞([0,T ];L2
σ (Ω)) + ‖∇vm‖L2([0,T ];L2

σ (Ω)) � C
(
n,α, ν,‖v0‖2

)
‖∂tvm‖L2([0,T ];(H 1

σ )′(Ω)) � C
(
n,α, ν,‖v0‖2

)
Proof. Similar to formal multiplication of the VCHE (1.1) by u, multiply (A.4) by 1

1+α2λi
gim, sum, then apply

Lemma 3.1 to see

‖um‖2
2 + α2‖∇um‖2

2 + 2ν

T∫
0

‖∇um‖2
2 dt + 2α2ν

T∫
0

‖�um‖2
2 dt = ‖u0‖2

2 + α2‖∇u0‖2
2 (A.5)

With the Poincaré inequality and (A.3 this becomes first bound in the theorem. Using (A.1) we deduce

‖um‖2
n +

∞∫
0

‖∇um‖2
n dt < C

(
n,α, ν,‖u0‖2,‖∇u0‖2

)
(A.6)

To bound the derivative start with (A.4). Any φ ∈ H 1
σ can be written as a sum of the ωi so each approximate

solution satisfies

〈∂tvm,φ〉 + 〈um · ∇vm,φ〉 − 〈φ · ∇vm,um〉 = ν〈�vm,φ〉
After integration by parts and applying the Hölder inequality with the Gagliardo–Nirenberg–Sobolev inequality we
find ∣∣〈∂tvm,φ〉∣∣ � C‖um‖n‖∇vm‖2‖∇φ‖2 + C‖∇vm‖2‖∇φ‖2

As φ was chosen arbitrarily we conclude

‖∂tvm‖(H 1
σ )′ � C

(‖um‖n‖∇vm‖2 + ‖∇vm‖2
)

This, together with (A.5) and (A.6), proves the second bound in the theorem. �
Theorem A.4. Let Ω ∈ R

n, 2 � n � 4 be a bounded set with smooth boundary and v0 ∈ C∞
0 (Ω). Then, there exists a

weak solution to the VCHE (1.1) in the sense of Definition (4.1).

Proof. Thanks to Lemmas A.2 and A.3 we only need to prove the convergence of the approximate solutions.
Lemma A.3 shows how the sequence vm remains bounded, so using a possible subsequence and the Banach–Alaoglu
theorem there exists a function

v ∈ L∞([0, T ];L2
σ (Ω)

) ∩ L2([0, T ];H 1
σ (Ω)

)
∂tv ∈ L2([0, T ]; (H 1

σ )′(Ω)
)

such that

vm ⇀ v in L∞([0, T ];L2
σ (Ω)

)
weak ∗ (A.7)

vm ⇀ v in L2([0, T ];H 1
σ (Ω)

)
weakly (A.8)

We will now show that v is a weak solution to the VCHE (1.1).
By the construction of our approximate solutions and integration by parts, we know for any basis vector ωj ∈

L2
σ (Ω) and any smooth scalar function of time φj (t) such that φj (T ) = 0,
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T∫
0

〈vm,φ′ωj 〉ds +
T∫

0

〈u · ∇v,φωj 〉ds +
T∫

0

〈φωj · ∇u,v〉ds +
T∫

0

〈∇v,∇φωj 〉ds = 〈
vm(0),φ(0)ωj

〉

The convergence (A.7) and (A.8) implies

t∫
0

〈vm,φ′
jωj 〉ds →

t∫
0

〈v,φ′
jωj 〉ds

t∫
0

〈∇vm,φj∇ωj 〉ds →
t∫

0

〈∇v,φj∇ωj 〉ds

Also, 〈
vm(0),φj (0)ωj

〉 = 〈
Pm(v0),φj (0)ωj

〉 → 〈
v0, φj (0)ωj

〉
(A.9)

Passing through the non-linear terms will require strong convergence, so we use the fact that the bounds in
Lemma A.3 imply (see [7], Lemma 8.2) the existence of a possible subsequence vm such that

vm → v in L2([0, T ];L2(Ω)
)

strongly (A.10)

Theorem 7.1 give the existence of a function u which satisfies

u − α2�u = v

Similar to (A.3),

‖um − u‖2
2 + α2‖∇(um − u)‖2

2 + α4‖∇2(um − u)‖2
2 = ‖vm − v‖2

2

In particular, applying the Gagliardo–Nirenberg–Sobolev Inequality shows ‖um − u‖2
n � C‖vm − v‖2

2. This, with the
strong convergence (A.10), shows how um approaches u strongly.

We can now prove the convergence of the non-linear terms

T∫
0

〈um · ∇vm,φjωj 〉ds →
T∫

0

〈u · ∇v,φjωj 〉ds

t∫
0

〈φjωj · ∇vm,um〉ds →
t∫

0

〈φjωj · ∇v,u〉ds

Indeed, adding and subtracting the cross terms, then using the Hölder Inequality, the Gagliardo–Nirenberg–Sobolev
Inequality∣∣〈um · ∇vm,φωj 〉 − 〈u · ∇v,φjωj 〉

∣∣ � A1 + B1

A1 = ∣∣〈(um − u) · ∇vm,φjωj

〉∣∣
� ‖um − u‖n‖∇vm‖2‖φjωj‖ 2n

n−2

� ‖vm − v‖2‖∇vm‖2‖φj∇ωj‖2

Due to the strong convergence (A.10) the bound in Lemma A.3, and the Hölder inequality, we see
∫ T

0 A1 ds → 0.
Similarly,

B1 = ∣∣〈u · ∇(vm − v),φjωj

〉∣∣
= ∣∣〈u · ∇φjωj , (vm − v)

〉∣∣
� ‖u‖n‖φj∇ωj‖ 2n

n−2
‖vm − v‖2

� C‖v‖2‖φj∇ωj‖ 2n ‖vm − v‖2

n−2
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Again, owing to (A.10), Lemma A.3, and the Hölder inequality,
∫ T

0 B1 ds → 0. Putting this together,

T∫
0

〈um · ∇vm,φjωj 〉ds →
T∫

0

〈u · ∇v,φjωj 〉ds

The remaining non-linear term is handled in a similar way∣∣〈φjωj · ∇vm,um〉 − 〈φjωj · ∇v,u〉∣∣ � A2 + B2

A2 = ∣∣〈φjωj · ∇vm, (um − u)
〉∣∣

� ‖φjωj‖ 2n
n−2

‖∇vm‖2‖um − u‖n

� C‖φj∇ωj‖2‖∇vm‖2‖vm − v‖2

B2 = ∣∣〈φjωj · ∇(vm − v),u
〉∣∣

= ∣∣〈φjωj · ∇u,vm − v〉∣∣
� ‖φjωj‖ 2n

n−2
‖vm − v‖2‖∇u‖n

� C‖φj∇ωj‖2‖vm − v‖2‖v‖2

Applying (A.10) with Lemma A.3 and the Hölder inequality shows

T∫
0

〈φjωj · ∇vm,um〉ds →
T∫

0

〈φjωj · ∇v,u〉ds

Since the ωj are dense in L2
σ and φj is an arbitrary smooth function the proof is complete. �

Corollary A.5. The conclusions of Theorem A.4 hold with the relaxed hypothesis v0 ∈ L2
σ (Ω).

Proof. Note that all of the bounds attained in Lemma A.3 and used in the proof of the previous theorem depend only
on the L2 norm of the initial data. Let vi

0 ∈ C∞
0 (Ω) be a sequence of functions approaching v0 strongly in H 1

0 such
that

‖vi
0‖H 1

0
� ‖v0‖H 1

0

Such a sequence can be constructed using standard mollifiers and cutoff functions. Considering each vi
0 as initial data,

Theorem A.4 and its corollary give the existence of a weak solution vi in the sense of Definition 4.1. Applying (A.3),
we see that these weak solutions satisfy the bounds

‖vi‖L∞([0,T ];L2
σ (Ω)) + ‖∇vi‖L2([0,T ];L2

σ (Ω)) � C
(
n,α, ν,‖v0‖2

)
‖∂tv

i‖L2([0,T ];(H 1
σ )′(Ω)) � C

(
n,α, ν,‖v0‖2

)
and for each φ ∈ H 1

σ the relation

T∫
0

〈vi, ∂tφ〉ds +
T∫

0

〈ui · ∇vi, φ〉ds +
T∫

0

〈φ · ∇ui, vi〉ds +
T∫

0

〈∇vi,∇φ〉ds = 〈v0, φ〉 (A.11)

As before, using the Banach–Alaoglu Theorem and extracting a possible subsequence implies that there exists a
function

v ∈ L∞([0, T ];L2
σ (Ω)

) ∩ L2([0, T ];H 1
σ (Ω)

)
∂tv ∈ L2([0, T ]; (H 1

σ )′(Ω)
)

such that
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vi ⇀ v in L∞([0, T ];L2
σ (Ω)

)
weak ∗

vi ⇀ v in L2([0, T ];H 1
σ (Ω)

)
weakly

Passing the limits through (A.11) follows by the same steps as in the proof of the previous theorem. �
Theorem A.6. Let v0 ∈ L2

σ (Rn) Then, there exists a weak solution in the sense of Definition 4.1, with initial data v0

in the whole space R
n, 2 � n � 4.

Proof. Let Ri be a sequence tending to infinity and χRi
a smooth cutoff function which is equal to 1 inside the ball

of radius Ri − ε and zero on the boundary of the ball with radius Ri . Corollary A.5 now gives existence of a weak
solution vRi on the ball of radius Ri with initial conditions v0χRi

. Extend vRi to all of R
n by setting it equal to zero

outside the ball of radius Ri . All of the bounds in Lemma A.3 were found independent of the size of Ω , so here they
hold independent of Ri . Using the Banach–Alaoglu Theorem we have the existence of a function

v ∈ L∞([0, T ];L2
σ (Rn)

) ∩ L2([0, T ];H 1
σ (Rn)

)
∂tv ∈ L2([0, T ]; (H 1

σ )′(Rn)
)

such that

vRi ⇀ v in L∞([0, T ];L2
σ (Rn)

)
weak ∗ (A.12)

vRi ⇀ v in L2([0, T ];H 1
σ (Rn)

)
weakly (A.13)

There exists an orthogonal basis {φi} for L2([0, T ]; (Rn)) where each function in the basis is smooth and has compact
support in space. For Ri larger then the support of φ, Theorem A.4 with it’s corollary show

T∫
0

〈vRi , ∂tφ〉ds +
T∫

0

〈uRi · ∇vRi , φ〉ds +
T∫

0

〈φ · ∇uRi , vRi 〉ds +
T∫

0

〈∇vRi ,∇φ〉ds = 〈v0, φ〉

The limit m → ∞ can be passed through the linear terms just as before. In the (compact) support of each basis
function φj , we have the strong convergence to pass the limit through the non-linear terms. A diagonal argument
shows this convergence holds as Ri → ∞. �

In the above existence theorems, the pressure term can be found by either taking the divergence of the VCHE and
solving the Poisson equation, or using a famous result of de Rham. See, for example, [28].

Theorem A.7. The solutions to the VCHE constructed in Theorems A.4 and A.6, with initial data in v0 ∈ HK
σ , satisfy

the bound

‖∇Mv‖2
2 +

t∫
0

‖∇M+1v‖2
2 � C

(
n,α, ν,‖v‖HK

0

)
(A.14)

for all M � K .

Proof. We will do the calculations formally and note that these bounds can be applied to the approximate solutions
constructed in Theorem A.2, this proof proceeds by induction. The inductive assumption is that the following bound
holds for all m < M .

‖∇mv‖2
2 +

T∫
‖∇m+1v‖2

2 dt � C
0
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The base case (m = 0) is true by Lemma A.3, we will now show that it holds for m = M . The bound A.1 with the
inductive assumption implies

‖∇mu‖2
n +

T∫
0

‖∇m+1u‖2
n dt � C

Multiply the VCHE (1.1) by �Mv and integrate by parts to find

1

2

d

dt
‖∇Mv‖2

2 + ν‖∇M+1v‖2
2 � IM + JM

IM =
M∑

m=0

(
M

m

)
〈∇mu · ∇∇M−mv,∇Mv〉 (A.15)

JM =
M∑

m=0

(
M

m

)
〈∇Mv · ∇∇mu,∇M−mv〉

The two integrals on the RHS are estimated essentially the same way. The key difference is that in the first one we use
the relation 〈u · ∇v, v〉 = 0 while in the second we can place an extra derivative on u.

With application of 〈u,∇v, v〉 = 0 the first bound becomes

IM =
M∑

m=1

(
M

m

)
〈∇mu · ∇∇M−mv,∇Mv〉

Hölder’s inequality, the Sobolev inequality, and Cauchy’s inequality show

IM � C

M∑
m=1

‖∇mu‖n‖∇M+1−mv‖2‖∇Mv‖ 2n
n−2

� C

M∑
m=1

‖∇mu‖2
n‖∇M+1−mv‖2

2 + ν

4
‖∇M+1v‖2

2

Similarly for the second term

JM � C

M∑
m=0

‖∇Mv‖ 2n
n−2

‖∇m+1u‖n‖∇M−mv‖2

� ν

4
‖∇M+1v‖2

2 + C

M∑
m=0

‖∇m+1u‖2
n‖∇M−mv‖2

2

Equation (A.15) becomes

d

dt
‖∇Mv‖2

2 � C

M∑
m=0

‖∇m+1u‖2
n‖∇M−mv‖2

2

The Gronwall inequality with application of the inductive assumption finish the proof. �
Theorem A.8. The solution to the VCHE constructed in Theorems A.4 and A.6, with initial data in v0 ∈ HK

σ , satisfies
the bounds

‖∂p
t ∇mv‖2

2 +
t∫

0

‖∂p
t ∇m+1v‖2

2 � C
(
n,α, ν,‖v‖HK

0

)
(A.16)

for all M + 2P � K .
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Proof. To prove this, we will bound the time derivatives of the solution in terms of the space derivatives, then use
the previous theorem to establish regularity. We will do the calculations formally and note that these bounds can be
applied to the approximate solutions constructed in Theorem A.2.

Apply ∂P
t ∇M to the solution of the VCHE, from this we have the inequality

‖∂P+1
t ∇Mv‖2

2 � C
(‖∂P

t ∇M+2v‖2
2 + ∥∥∂P

t ∇M(u · ∇v)
∥∥2

2 + ∥∥∂P
t ∇M(v · ∇uT )

∥∥2
2

)
Using the Gagliardo–Nirenberg–Sobolev inequality and (A.1) we can bound the first term on the right-hand side as

∥∥∂P
t ∇M(u · ∇v)

∥∥2
2 =

P∑
p=0

M∑
m=0

(
P

p

)(
M

m

)
‖∂p

t ∇mu‖2
n‖∂P−p

t ∇M+1−mv‖2
2n

n−2

� C

P∑
p=0

M∑
m=0

‖∂p
t ∇mv‖2

2‖∂P−p
t ∇M+2−mv‖2

2

Similarly for the second term,

∥∥∂P
t ∇M(v · ∇uT )

∥∥2
2 =

P∑
p=0

M∑
m=0

(
P

p

)(
M

m

)
‖∂p

t ∇m+1u‖2
n‖∂P−p

t ∇M−mv‖2
2n

n−2

� C

P∑
p=0

M∑
m=0

‖∂p
t ∇m+1v‖2

2‖∂P−p
t ∇M+1−mv‖2

2

Putting this together we can deduce

‖∂P+1
t ∇Mv‖2

2 � C‖∂P
t v‖2

HM+2
0

This implies, for all M , P , such that M + 2P � K ,

‖∂P
t ∇Mv‖2

2 � C‖v‖2
HK

0

Appealing to Theorem A.7 finishes the proof. �
The previous theorem demonstrates how the norms ‖v‖Hm and ‖v‖Hm+1 can be bounded in terms of ‖v0‖Hm . Since

the PDE is parabolic we can expect regularity from interior estimates but the bounds will not depend explicitly on the
initial conditions.

Theorem A.9. The solution to the VCHE constructed in Theorems A.4 and A.6 is unique.

Proof. Let v and w be two solutions to the VCHE (1.1) with the same initial conditions. Let u and ω be the corre-
sponding “filtered” velocities. The difference solves the PDE

(v − w)t − ν�(v − w) + ∇p + u · ∇v − ω · ∇w + v · ∇uT − w · ∇ωT = 0

with zero initial conditions. Multiplying this relation by v − w and integrating by parts leaves

1

2

d

dt
‖v − w‖2

2 + ν
∥∥∇(v − w)

∥∥2
2 = 〈

(u − ω) · ∇w, (v − w)
〉 + 〈

(v − w) · ∇(u − ω), v
〉 + 〈

(v − w) · ∇ω,v − w
〉

Using Hölder’s inequality, the Gagliardo–Nirenberg–Sobolev inequality, Cauchy’s inequality, and (A.6), estimate the
RHS 〈

(u − ω) · ∇w, (v − w)
〉
� ‖u − ω‖n‖∇w‖2‖v − w‖ 2n

n−2

� C‖v − w‖2
2‖∇w‖2

2 + ν

4

∥∥∇(v − w)
∥∥2

2〈
(v − w) · ∇(u − ω), v

〉
� ‖v − w‖2

∥∥∇(u − ω)
∥∥

n
‖v‖ 2n
n−2
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� C‖v − w‖2
2‖∇v‖2

2 + ν

8

∥∥∇(v − w)
∥∥2

2〈
(v − w) · ∇ω,v − w

〉
� ‖v − w‖2‖∇ω‖n‖v − w‖ 2n

n−2

� C‖v − w‖2
2‖w‖2

2 + ν

8

∥∥∇(v − w)
∥∥2

2

After using the bounds in Lemma A.3 we have

1

2

d

dt
‖v − w‖2

2 + ν

2

∥∥∇(v − w)
∥∥2

2 � C‖v − w‖2
2

By assumption ‖v0 − w0‖2 = 0, so ‖v − w‖2 = 0 for all t ∈ [0, T ]. �
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