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Abstract

We describe the asymptotics of the steady states of the out-of-equilibrium Schrödinger–Poisson system, in the regime of quantum
wells in a semiclassical island. After establishing uniform estimates on the nonlinearity, we show that the nonlinear steady states lie
asymptotically in a finite-dimensional subspace of functions and that the involved spectral quantities are reduced to a finite number
of so-called asymptotic resonant energies. The asymptotic finite dimensional nonlinear system is written in a general setting with
only a partial information on its coefficients. After this first part, a complete derivation of the asymptotic nonlinear system will be
done for some specific cases in a forthcoming article [V. Bonnaillie–Noël, F. Nier, M. Patel, Far from equilibrium steady states of
1D-Schrödinger–Poisson systems with quantum wells II, Prépublications IRMAR, 2007].
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1. Introduction

1.1. Motivation

This analysis is motivated by the study of quantum electronic transport in semiconductor heterostructures, like
resonant tunnelling diodes. It is modelled on the basis of a mean field Hartree type description of the electrosta-
tic interaction of particles, known as the Schrödinger–Poisson system. The modelling of resonant tunnelling diodes
includes the following characteristic features:

(1) Steady electronic currents are observed. This can be achieved only within the modelling of out-of-equilibrium
quantum systems.
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(2) The I–V curves of such devices present negative differential resistance. We are in a far from equilibrium regime,
for which the linear response theory is questionable.

(3) A very rich nonlinear phenomenology can be observed in such devices, with hysteresis phenomena (see [21,29])
and even steadily oscillating currents (see [22]).

(4) The general wisdom about these systems says that the nonlinear effects are governed by a small number of
resonant states.

This article is a part of a larger program, namely the understanding of the nonlinear dynamics of these out-of-
equilibrium quantum systems. One issue is to prove rigorously that a simple Schrödinger–Poisson system in a far
from equilibrium regime, that is when the steady states show a strong anisotropy in the momentum variable at the
quantum scale, can lead to multiple solutions to the nonlinear stationary problem with nontrivial bifurcation dia-
grams. A first check was provided by Jona-Lasinio, Presilla and Sjöstrand in [21,29]. A second issue which goes
definitely further than those previous works is the explanation of the production of complex bifurcation diagrams in
terms of the geometry of the potential, which requires an accurate analysis of tunnel effects.

The present work was achieved on the basis of former works by the second author and of the PhD thesis of the
third author. This analysis lead the three authors to the introduction of some reduced model which happens to be very
efficient in the numerical simulation of realistic devices (see [5]). Only the first part of the mathematical analysis is
provided here and complements will be presented in a forthcoming article [6].

The points (1) and (2) above are now well understood. A presentation can be done within a Landauer-Büttiker
approach (see [7,23,8,4]) which involves the scattering states. This modelling allows a strong anisotropy of the oc-
cupation number with respect to the momentum and it definitely differs from the approach where the density matrix
looks like a function of the Hamiltonian (see [2,3]). This latter modelling (and probably the entropy maximising ap-
proach of [10] as well) better suits the situation of little variations from the thermodynamical equilibrium, ends with
corrected drift-diffusion models and cannot produce multiple solutions due to monotonicity properties. It should be
noted that all these modellings consider the reservoirs as fixed objects which only provide some kind of inhomoge-
neous boundary conditions, in comparison with the theoretical analysis of nonequilibrium steady states widely studied
within the framework of the von Neumann algebraic approach of statistical physics and which concerns the evolution
of the full system, small system plus reservoirs (see for example [20]).

For our model, a complete general functional framework which catches the proper nonlinear steady states and
provides a well defined nonlinear dynamics was provided in [26], after using a phase-space approach with some
specific tools of the time dependent approach in scattering theory.

Besides the building of a proper functional framework, those models became even more interesting after the articles
of Jona-Lasinio, Presilla and Sjöstrand [21,29] where convincing heuristic arguments and calculations on those simple
nonlinear systems were provided as an explanation for observed hysteresis phenomena, in agreement with point (3).
Later the question arose whether a complete explanation from an asymptotic analysis on the Schrödinger–Poisson
system or whether new nonlinear phenomena could be predicted in some more complex geometric setting like a
multiple wells problem. For instance, no real explanation is provided in [21,29] for the presence or the absence
of hysteresis phenomena according to the geometry of the barrier potentials. Our reduced model (see [27,5] and
forthcoming article [6]) provides such an explanation, with additional results.

Finally point (4) provides the relevant asymptotics. Resonant states are effective when the imaginary part of reso-
nances are small. Such a behaviour can be achieved when the potential barrier are high or large and it is well formulated
within a semiclassical asymptotics (small parameter h → 0, imaginary part of resonances of order O(e−c/h)). Never-
theless a full semiclassical asymptotics with O(1) large wells would lead to a large number of resonant states within a
fixed energy interval. Point (4) can be fulfilled by considering quantum wells in a semiclassical island. The introduc-
tion of the small parameter h > 0 as a rescaled Fermi-length as well as a full justification of this asymptotic regime
within the presentation of realistic devices has been done in [5].

From a mathematical point of view, this problem presents two specific difficulties.

• A nonusual multiple wells problem has to be considered: it is not exactly a semiclassical problem and it is non-
linear.

• The introduction of resonances requires the implementation of a complex deformation and the study of non self-
adjoint operators.
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Fortunately, the one-dimensional framework provides some simplifications or accurate estimates which allow a com-
plete analysis. First a uniform control on the nonlinear potential with the help of some monotony principles can be
obtained in W 1,∞. Hence the nonlinear potential can be replaced by an h-dependent potential, with uniform bounds
in W 1,∞. Some standard arguments of the semiclassical analysis for resonances (see [15]), for multiple wells (see [16,
17]), or for the Breit–Wigner formula (see [13]) have to be adapted. Again the weak regularity is partly compensated
by the fact that we work on a 1D problem. Throughout this text proofs which are exactly the same as in the usual
semiclassical setting are not reproduced. Precise references are given for these technical parts. Nevertheless some
details have to be checked in order to ensure that these techniques can be adapted with the quantum wells and the
limited regularity of the nonlinear semiclassical potential. The 1D Schrödinger–Poisson system studied here admits
natural a priori regularity estimates, uniform with respect to the small parameter h → 0. This leads asymptotically to
a perfect splitting of the quantum and classical scales.

1.2. Quantum framework

In the whole study, the framework is the following: h > 0 denotes the semiclassical parameter obtained in realistic
cases as a rescaled Fermi length (see [5]) and I := [a, b] is a given compact interval of the real line. Let P h

B be the
Schrödinger operator on the real line:

P h
B := −h2 d2

dx2
+ B, B ≡ BI + B∞, (1.1)

where

BI (x) := −B
x − a

b − a
1[a,b](x), B∞(x) := −B · 1[b,+∞)(x), (1.2)

and B is a nonnegative constant. The potential B simply describes the applied bias. The reference Hamiltonian is the
self-adjoint realisation in the Hilbert space L2(R) of P h

B :

D(Hh
B) = H 2(R), ∀u ∈ D(Hh

B), Hh
Bu := P h

Bu. (1.3)

Since several self-adjoint (or non self-adjoint) closures of the same differential operator associated with various bound-
ary value problems will be considered, the notation P refers to the differential operators acting on C∞

0 , while H will
be used for its realisation as an unbounded operator on L2.
We restrict our analysis in this work to operators in the form

P h[V ] := P h
B + V, V ∈ L∞(I ), (1.4)

and denote by Hh[V ] the self-adjoint realisation in L2(R) of P h[V ]:
D
(
Hh[V ])= H 2(R), ∀u ∈ D

(
Hh[V ]), Hh[V ]u := P h[V ]u, (1.5)

after identifying V ∈ L∞(I ) with V (x)1I (x) ∈ L∞(R).
Of particular interest is the case where the potential V = V h depends on the small parameter h and describes

quantum wells in an island with cliffs (i.e. the classically forbidden region ends with discontinuities of the potential).
It splits into

V h := V0 + V h
NL, V0 := Ṽ0 − Wh, Ṽ0,V

h
NL ∈ W 1,∞(I ). (1.6)

The function Ṽ0, which models the island potential, can be any nonnegative Lipschitz function independent of h.
Practically it is simply a constant potential on I , Ṽ0(x) = V01I (x) with V0 ∈ R+. The function Wh, which described
the quantum wells, is defined by

Wh(x) :=
N∑

i=1

wi

(
x − ci

h

)
. (1.7)

In this definition of Wh, the positions (ci)
N
i=1 are N given points in (a, b) and wi are nonnegative L∞-functions

supported in the interval [−κ, κ], with κ > 0 fixed. We denote by Uh the support of the function Wh and U :=⋃N
i=1{ci} the region where the quantum wells concentrate, and set c0 := a, cN+1 := b (see Fig. 1).
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Fig. 1. Total potential B + V h − Wh.

Assumption 1. Suppose that

Λ0 := inf
x∈I

Ṽ0(x) + B(x) > 0, (1.8)

and fix the parameters Λ∗ and Λ∗ so that 0 < Λ∗ < Λ∗ < Λ0.

We will focus on the energy range λ ∈ [Λ∗,Λ∗].
Finally the function V h

NL describes the mean field nonlinear potential which takes into account the repulsive elec-
trostatic interaction. It will be given as a solution to the Poisson equation on I = [a, b] and will satisfy

∀h > 0, V h
NL ∈ W 1,∞(I ), V h

NL � 0. (1.9)

Such Hamiltonians are used in the modelling of quantum electronic transport in mesoscopic structures like resonant
tunnelling diodes (RTD) or super-lattices. The nonlinear steady states can be studied within a Landauer–Büttiker
approach: see [7,23,8,4] or [26] for possible functional frameworks concerned with the extension to the nonlinear
analysis including the nonlinear dynamics. This approach involves the scattering wave functions and requires the
analysis of the continuous spectrum of Hh[V ]. Since for any potential V ∈ L∞(I ), Hh[V ] is a compactly supported
L∞-perturbation of the reference Hamiltonian Hh

B or the Hamiltonian with step potential −h2� + B∞, the limiting
absorption principle holds. By standard arguments (see [32,28]) one even gets the absence of embedded eigenvalues

∀h > 0, σess
(
Hh[V ])= σac

(
Hh[V ])= [−B;∞), (1.10)

and the scattering states of Hh[V ] are indeed well defined for any V ∈ L∞(I ).

Remark 1. Under the nonnecessary additional assumption

∀i ∈ {1, . . . ,N}, Ṽ0(ci) + infσ(−� − wi) > 0, (1.11)

one can even check like in Theorem 3.4 or Theorem 3.6 that there is no eigenvalue at all for h > 0 small enough (and
V h

NL � 0);

σ
(
Hh[V ])= σac

(
Hh[V ])= [−B,+∞).

We focus on the energies λ ∈ [Λ∗,Λ∗].
We consider the incoming scattering states ψh−(k, ·) of the Hamiltonian Hh[V ] parameterised by the wave vector k

(we omit to write the dependence with respect to the potential for scattering states). They provide a diagonalisation of
Hh[V ] over the continuous spectrum (see formula (1.19)). Precisely, introduce first the dispersion relation associated
with the reference Hamiltonian Hh

B .

Definition 1.1. Set for k ∈ R
∗

λk :=
∣∣∣∣∣ k

2 if k > 0,

k2 − B if k < 0.
(1.12)
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This dispersion relation (1.12) gives, for the wave vector k, the energy λk of the incoming plane wave represented
by ψh−(k, ·). Again, we are mostly interested in the k’s such that λk ∈ [Λ∗,Λ∗].

By definition, the incoming generalised eigenfunction ψh−(k, ·) defined for k ∈ R solves the differential equation:

P hψh−(k, ·) = λkψ
h−(k, ·), (1.13)

with the normalisation (of incoming plane waves)

for k > 0, ψ−(k, x) =
{

ei kx
h + rke−i kx

h for x < a,

tkei
(λk+B)1/2x

h for x > b,

(1.14)

for k < 0, ψ−(k, x) =
{

tke−i
(λk)1/2x

h for x < a,

ei kx
h + rke−i kx

h for x > b.

(1.15)

The square root z1/2 is chosen with the ramification along the half-line iR− in order to ensure that e−i(λk)
1/2x decays

exponentially as x → −∞ when λk ∈ (−B,0).
These coefficients determine the scattering matrix (rk, tk) for positive energies λk > 0. They are linked for λk > 0

by the relation

|rk|2 +
√

λk

λk + B
|tk|2 = 1, λk > 0. (1.16)

Since the wave vector k is a log-derivative, this normalisation of the wave functions can be written in terms of boundary
conditions at x = a and x = b, in this specific one-dimensional case fitting with realistic problems:

[h∂x + iλ1/2
k ]|x=au = 2ikei ka

h ,[
h∂x − i(λk + B)1/2]

|x=b
u = 0, for k > 0, (1.17)

and

[h∂x + iλ1/2
k ]|x=au = 0,[

h∂x − i(λk + B)1/2]
|x=b

u = 2ikei kb
h , for k < 0. (1.18)

Thus the problem over the real line is reduced to a boundary problem on I with boundary conditions depending on the
spectral parameter (1.17)–(1.18). These boundary conditions are exact transparent boundary conditions. This setting
makes rather easy the complex deformation argument used in the analysis of resonances (see [1,15] or [19] for a more
general introduction). Here considering a complex λk around any positive value is easily implemented because the
coefficients on the boundary conditions at x = a and x = b depend holomorphically on λk (or k).

We end this section with three elementary properties:

1. With this normalisation, it appears that for any nonnegative continuous function θ on [Λ∗,Λ∗], the operator
1I θ(Hh[V ])1I is an integral operator. Moreover the kernel is given by

1I θ
(
Hh[V ])1I [x, y] =

∫
R

θ(λk)ψ
h−(k, x)ψh−(k, y)

dk

2πh
, (x, y) ∈ I × I. (1.19)

2. Note that because of the regularity of ψh−, it follows by Mercer’s theorem (see [30, Theorem 3.5]) that this
operator is trace-class, with a trace equal to the diagonal integral.

3. Note also that because the solutions to the ODE (1.13) in the interval I is a 2-dimensional linear subspace, say
Sλk

⊂ H 2(a, b), conditions (1.17)–(1.18) form an affine system in Sλk
. Resonances around positive energies

correspond to the exceptional complex values of λk = z for which the continuous linear functionals defining this
system are proportional.
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1.3. Schrödinger–Poisson system

Here we are interested in the study of the stationary case. We first fix the profile of the incoming beam of electrons
over the structure between a and b.

Notation 1. Fix a continuous nonnegative function k 	→ g(k) such that g(k) = 0 if λk /∈ (Λ∗,Λ∗), see (1.12).

A beam of electrons corresponds to a superposition of scattering states with density g. The electronic density is
described by the measure dng[V ] defined by

dng[V ](x) :=
∫
R

g(k)
∣∣ψh−(k, x)

∣∣2 dk

2πh
. (1.20)

It is convenient to introduce the function g(Kh−) of the asymptotic momentum operator defined (see [11,26] for a more
general presentation) according to:

g(Kh−)[x, y] =
∫
R

g(k)ψh−(k, x)ψh−(k, y)
dk

2πh
.

Its localised version 1I g(Kh−)1I has the integral kernel

1I g(Kh−)1I [x, y] =
∫
R

g(k)1I (x)ψh−(k, x)ψh−(k, y)1I (y)
dk

2πh
. (1.21)

The operator g(Kh−) is a density matrix and the density fulfills the weak formulation

∀ϕ ∈ C 0(I ),

∫
I

ϕ(x)dng[V ](x) = Tr
[
1I g(Kh−)1I ϕ

]
. (1.22)

Note that in the particular case where g(k) is a function of the energy, i.e. g(k) ≡ θ(λk), g(Kh−) is a function of the
Hamiltonian

g(Kh−) = θ(Hh). (1.23)

Functions of the Hamiltonian can be viewed as equilibrium states (and even thermodynamical equilibrium states when
θ is decreasing). For such states, the current through the device is null. Hence out-of-equilibrium steady states with a
nonvanishing current have to be described with a function g(k) which is not a function of the energy. In order to make
this situation clear, we assume the next possibly extendible assumption (see [5] for an easy generalisation towards
more realistic problems).

Assumption 2. Fix a nonnegative function θ ∈ C 0
c ((Λ∗,Λ∗)) and assume that

g(k) = 1k>0 · θ(λk). In particular, 0 � g(k) � θ(λk). (1.24)

The Schrödinger–Poisson system is an Hartree model which includes the self-consistent electrostatic potential
within the device (a � x � b). Hence the nonlinear potential V h

NL is a solution to{
Hh[V h] = Hh

B + Ṽ0 − Wh + V h
NL,

−�V h
NL = dng[V h], V h

NL(a) = V h
NL(b) = 0.

(1.25)

Note that the assumption g � 0 yields dng[V h] � 0 and V h
NL � 0.

It is known, (see [4,26]) , that the system (1.25) admits solutions, for fixed h > 0. Furthermore with the absence
of negative eigenvalues provided by the condition (1.11), it is easily checked that the solutions to (1.25) are the only
steady states of the nonlinear dynamics studied in [26].

Yet, uniform estimates with respect to h are not given in [26]. Here we are interested in the structure of the set of
asymptotic solutions as h → 0. A first step consists in getting a priori estimates on the semi-linear problem. This is
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performed in Section 2. Since for a given h > 0 the density dng[V h] is a bounded positive measure, we introduce the
following spaces:

Definition 1.2. Call (Mb(I ),‖ · ‖b) the Banach space of bounded complex measures on [a, b] and set

BV2
0(I ) := {V ∈ C 0(I )|V ′′ ∈ Mb(I ),V (a) = 0 = V (b)

}
, (1.26)

with the norm ‖V ‖ := ‖V ‖∞ + ‖V ′′‖b .

With this norm, BV2
0(I ) is a Banach space continuously embedded in W 1,∞(I ) and compactly embedded in the Hölder

spaces C 0,α(I ) for α ∈ (0,1).

1.4. Results

Theorem 1.3. Consider problem (1.25). Then for h > 0 sufficiently small:

(i) The family of potentials (V h
NL)h>0 is uniformly bounded in L∞(I ).

(ii) The family of measures (dng[V h])h>0 is bounded in Mb(I ) and the family (V h
NL)h>0 is bounded in BV2

0(I ).
(iii) Consequently, the family of potentials (V h

NL)h>0 is bounded in W 1,∞(I ) and relatively compact in the Hölder
space C 0,α(I ) for any α ∈ (0,1).

After this, we try to identify the weak∗ possible limits dn0
g of the measure dng[V h]. Owing to the boundedness

stated in Theorem 1.3(ii), we shall make the next simplifying assumption which makes sense after possibly extracting
a subsequence (hn)n∈N.

Assumption 3. The convergence

dng[V h] h→0
⇀ dn0

g

holds for the weak topology of Mb(I ) = C 0(I )′.

The following notations for the total potential

V h := V h + B = Ṽ0 + V h
NL − Wh + B, (1.27)

and for the total potential with filled wells

Ṽ h := V h + Wh = Ṽ0 + V h
NL + B, (1.28)

are convenient. The solution to

−�V = dn0
g, V (a) = V (b) = 0 (1.29)

is denoted V 0
NL and we set

Ṽ 0 := Ṽ0 + V 0
NL + B. (1.30)

Theorem 1.3 has the next consequence.

Corollary 1.4. Make Assumption 3. Then the filled potential Ṽ h is uniformly bounded in W 1,∞(I ) and converges
in C 0,α(I ) to Ṽ 0 as h → 0 for any α < 1. Moreover if the second derivative ∂2

x Ṽ0 is a bounded measure, the weak
convergence

∂2
x Ṽ h h→0

⇀ ∂2
x Ṽ 0 = ∂2

x Ṽ0 − dn0
g

also holds in Mb(I ).
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Remark 2. Note that the solution of the asymptotic Poisson equation does not depend on the possible mass of dn0
g

concentrated on x = a or x = b. Indeed the asymptotic potential V 0
NL forgets any boundary layer and the boundary

value problem (1.29) is equivalently written with the restricted measure dn0
g|(a,b).

The idea leading to an accurate description of the asymptotic density dn0
g is the following: suppose in a first step

that the wells are filled, that is Wh = 0 and V h = Ṽ h. In the classical picture, the incoming particles of energy λk � Λ∗
are reflected by the cliffs, so one expects that dn0

g ≡ 0 in (a, b). The introduction of the wells Wh generates trapped
quantum states transformed into resonant states after the interaction with the continuous spectrum. The tunnel effect
allows these states to be occupied in a stationary setting. Besides, the quantum wells with an O(h)-diameter produce
two interesting effects. Firstly the density will asymptotically concentrate like delta-functions in positions around the
ci ’s. Secondly the resonant energies attached to one well are separated by O(1) gaps (see Remark 3 below). With
a finite number of wells, this asymptotics implements the general wisdom that the nonlinear system is essentially
governed by finite number of resonant states of the system (point (4) of our introduction). The relevancy of this
asymptotics, with quantum wells in a semiclassical island, has been carefully checked in [5] with numerical data
fitting with realistic situations.

To state our results we need the notion of asymptotic resonant energy.

Notation 2. Denote, for i = 1, . . . ,N , by σi the set of the eigenvalues of the Hamiltonian −� − wi on the real line

σi := {ei
k}k∈Ki

⊂ (−∞,0), Ki ⊂ N, i = 1, . . . ,N. (1.31)

Definition 1.5. We will say that λ ∈ R is an asymptotic resonant energy for the potential V h if and only if

λ ∈ E0 :=
N⋃

i=1

Ei , Ei := σi + Ṽ 0(ci). (1.32)

Moreover, we define the multiplicity mλ of the asymptotic resonant energy λ as

mλ := #Jλ, where Jλ := {i ∈ {1, . . . ,N} s.t. λ ∈ Ei

}
. (1.33)

Finally, for i = 1, . . . ,N, we will say that the well ci is resonant at the energy λ (or λ-resonant) if and only if i ∈ Jλ.

Remark 3. The set σi + Ṽ 0(ci) is nothing but the set of the eigenvalues of the Hamiltonian Ĥ 1
i := −� − wi + Ṽ 0(ci)

on R, which is unitarily equivalent to the Hamiltonian Ĥ h
i := −h2� − wi(·/h) + Ṽ 0(ci).

Theorem 1.6. Make the Assumptions 1 and 3 and fix a nonnegative function θ ∈ C 0
c ((Λ∗,Λ∗)) and assume the con-

vergence of Ṽ h stated in Corollary 1.4. Let dng[V h] be the density defined according to (1.20) and Assumption 2 or

by taking g(k) = θ(λk). Then the weak limit dn0
g satisfies

dn0
g|(a,b) =

∑
λ∈E0

∑
i∈Jλ

tλi θ(λ)δx=ci
, (1.34)

with the following specifications:

(i) In the case of a function of the Hamiltonian, that is g(k) = θ(λk), all the tλi ’s are equal to 1 for every λ ∈ E0 and
i ∈ Jλ.

(ii) If g(k) = 1k>0 · θ(λk), then for every λ ∈ E0 and i ∈ Jλ, tλi lies in the interval [0,1].

Finally, the asymptotic nonlinear potential V 0
NL which solves (1.29) is an affine function on each interval [ci, ci+1],

i = 0, . . . ,N .

Note that the sum is a finite sum, since the set E0 ∩ supp θ is finite. Observe immediately that point (ii) follows
from (i) because if one denotes

θλ(k) := θ(λk) (1.35)
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one has 0 � dng[V h] � dnθλ [V h], and (ii) is obtained by Theorem 1.3 and Poisson’s equation (1.25). Moreover, the
nonlinearity asymptotically lies in a finite dimensional subspace A of C 0(I ):

A := {V ∈ C 0(I ) s.t. V|∂I = 0 and V|[ci ,ci+1] is affine, i = 0, . . . ,N
}
. (1.36)

In this finite dimensional space, the asymptotic nonlinear system can be written either with the coordinate system
(V (ci))i=1,...,N ∈ R

N or with the more convenient one (−V ′(ci + 0) + V ′(ci − 0))i=1,...,N proportional to the collec-
tion of total charges in the wells.

Theorem 1.6(i) gives a mean to compute the potential V 0
NL in the particular case where g is a function of the

Hamiltonian. In the anisotropic case (ii) the determination of the tλi ’s relies on a discussion on the Agmon distance
between the wells. A forthcoming paper [6] will be dedicated to the analysis of these coefficients.

In order to prove the results, we adopt the following strategy: as the problem is semi-linear, we get a priori estimates
for the nonlinear potential (Section 2), and reduce the analysis to the linear analysis of the Hamiltonian Hh[V h] with
uniform estimates on the potential (V h)h>0. Useful results on the Dirichlet problem in the interval I with accurate
estimates of the resolvent kernel are reviewed in Section 3. The analysis of resonances starts in Section 4 and Section 5
and ends in Section 6 with a version of the Breit–Wigner formula for the local density of states.

2. A priori estimates

We first prove some estimates for self-adjoint realisations of P h on Ω = R or Ω an open sub-interval of I .
Consider the differential operator P h defined by (1.4), for any B � 0 with (1.6)–(1.9), and let P̃ h be defined by

P̃ h[V h] := P h[V h] + Wh ≡ −h2 d2

dx2
+ Ṽ h.

Remark 4. The ˜ symbol recurrently refers to the situation where the wells are filled. According to our general
convention the letter P refers to the differential operator while H refers to some closed realisation as an unbounded
operator.

Proposition 2.1. Fix a nonnegative smooth function θ̂ ∈ C∞
0 (R), and call Hh

Ω (resp. H̃ h
Ω ) the self-adjoint realisation

on L2(Ω) of P h (resp. P̃ h) with domain H 1
0 (Ω) ∩ H 2(Ω). Then, for any given compact subset K ⊂ R, and h > 0,

the operators 1Kθ̂(Hh
Ω)1K and 1Kθ̂(H̃ h

Ω)1K are trace-class. Moreover the estimate

Tr
[
1Kθ̂(Hh

Ω)1K

]− Tr
[
1Kθ̂(H̃ h

Ω)1K

]
� CK

(
1 + ‖Ṽ h‖L∞

)
holds with a constant CK independent of h ∈ (0, h0).

Proof. In dimension 1 and for any fixed h > 0, these operators are trace class (see [30]). For the comparison, we use
the Dynkin–Helffer–Sjöstrand formula (see [9,18,24]):

θ̂ (Hh
Ω) = 1

2iπ

∫
C

∂
˜̂
θ

∂z̄
(z)(z − Hh

Ω)−1 dz ∧ dz̄, (2.1)

where ˜̂
θ is a compactly supported almost-analytic extension of θ̂ . Apply the second resolvent formula for z /∈ R and

write with P̃ h − P h = Wh:

1K(z − Hh
Ω)−11K − 1K(z − H̃ h

Ω)−11K = −1K(z − Hh
Ω)−1Wh(z − H̃ h

Ω)−11K. (2.2)

Introduce a smooth cut-off function χ, equal to 1 on a fixed neighbourhood of Uh if Ω �= R, and take χ ≡ 1 if Ω = R.
Write the r.h.s. of (2.2)[

1K(z − Hh
Ω)−1χ

][
Wh(i + h2�)−1][(i + h2�)χ(z − H̃ h

Ω)−11K

]
, (2.3)

where −� denotes the free Laplacian on R. By the spectral theorem, the first factor of (2.3) is a bounded opera-
tor with norm O(| Im(z)|−1) uniformly w.r.t. h > 0. Since the operator [Wh(i + h2�)−1] is unitarily equivalent to
Wh=1(i + �)−1, it is trace class uniformly with respect to h, z.
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For the last factor, the decomposition

(i + h2�)χ(z − H̃ h
Ω)−1 = (i + h2�)χ(i + h2�Ω)−1[1 + (i − z + Ṽ h)(z − H̃ h

Ω)−1],
leads to∥∥(i + h2�)χ(z − H̃ h

Ω)−1
∥∥� CK

〈z〉
| Im(z)|

(
1 + ‖Ṽ h‖L∞

)
. �

Proposition 2.1 says that the quantum wells can be forgotten for a uniform global estimate of the density of states.
Thanks to a monotony principle shown in [25], one can prove the following result:

Proposition 2.2. Consider the Schrödinger–Poisson system (1.20)–(1.25). Then the family of potentials (V h
NL)h>0 is

uniformly bounded in L∞.

Proof. For a given function F, we will denote by Fλ the function k 	→ F(λk) (see (1.12) for the definition of λk). By
assumption on the shape of the incoming beam of electrons, one has:

0 � g(k) � θλ(k), (2.4)

so we will first study the density of particles corresponding to the equilibrium state described by θλ, that is the
measure dnθλ [V h]. The proof consists in controlling the total mass of the measures by similar quantities relative
to other Hamiltonians. In dimension 1, the regularity provided by the Poisson equation with bounded measure as a
right-hand side allows the integration by parts

1

2

b∫
a

(
dV h

NL

dx

)2

dx =
b∫

a

V h
NL dng[V h](x) �

b∫
a

V h
NL dnθλ [V h](x). (2.5)

Choose a nonnegative smooth compactly supported function θ̂ ∈ C∞
0 (R) decreasing over (−B,Λ∗) and with support

included in (−∞,Λ∗) such that

0 � θ � θ̂ . (2.6)

We get by positivity of V h
NL and the expression of the measure in (1.20)

1

2

b∫
a

(
dV h

NL

dx

)2

dx �
b∫

a

V h
NLdnθλ [V h](x) �

b∫
a

V h
NLdn

θ̂λ
[V h](x). (2.7)

Set

V h
2 := V h − V h

NL ≡ Ṽ0 − Wh, (2.8)

and consider the Hamiltonian Hh
2 := Hh

B + V h
2 . Apply the monotony principle (see Appendix B) with H1 = Hh

2 =
Hh

B + V h
2 and H2 = Hh

B + V h: the last term of (2.7) is bounded by

b∫
a

V h
NLdn

θ̂λ
[V h](x) �

b∫
a

V h
NLdn

θ̂λ
[V h

2 ](x)

� ‖V h
NL‖L∞(I )

b∫
a

dn
θ̂λ

[V h
2 ](x). (2.9)

Applying Proposition 2.1 gives, coming back to (2.8)

b∫
dn

θ̂λ
[Ṽ0 − Wh](x) � C +

b∫
dn

θ̂λ
[Ṽ0](x), (2.10)
a a
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the constant C being independent of h since the potential Ṽ0 does not depend on h. Finally, we need an upper bound
for the density of particles in the island I in the case of the potential Ṽ0 + B. For this, we reduce the problem to the
case of the constant potential on I and equal to Λ∗. Apply again the monotony principle with H1 = Hh

B − B + Λ∗
and H2 = Hh

B + Ṽ0. Since H2 − H1 = Ṽ0 + B − Λ∗ =: δV is larger than Λ0 − Λ∗ > 0 according to (1.8), one has
uniformly on I

δV (x) > inf
I

(Ṽ0 + B) − Λ∗ � Λ0 − Λ∗ =: α > 0, and δV (x) � ‖Ṽ0‖L∞ . (2.11)

By writing dn∗
θ̂λ

for the measure dn
θ̂λ

[Λ∗ − BI ], the inequality

α

b∫
a

dn
θ̂λ

[Ṽ0] �
b∫

a

δV · dn
θ̂λ

[Ṽ0] �
b∫

a

δV · dn∗
θ̂λ

� ‖Ṽ0‖L∞

b∫
a

dn∗
θ̂λ

,

implies

0 �
b∫

a

dn
θ̂λ

[Ṽ0] � ‖Ṽ0‖L∞

α

b∫
a

dn∗
θ̂λ

. (2.12)

Since
∫ b

a
dn∗

θ̂
is a constant not depending on h (see Appendix D for explicit formulas), we get, combining (2.7), (2.10)

and (2.12)

1

2
‖V h

NL‖2
H 1

0
�
(

C + ‖Ṽ0‖L∞

α

b∫
a

dn∗
θ̂

)
‖V h

NL‖L∞ . (2.13)

We conclude with the standard embedding of H 1
0 in L∞. �

Theorem 1.3 gathers the results of Proposition 2.2 with the next result.

Proposition 2.3. The family of measures (dng[V h])h is uniformly bounded in Mb(I ). It follows that the family of
potentials (V h

NL) is bounded in BV2
0(I ). In particular it is a relatively compact family in every Hölder space C 0,α(I ),

α ∈ (0,1).

Proof. By definition of dnθλ and simple comparison, one gets∫
I

dng[V h] �
∫
I

dnθλ [V h] = Tr
[
1I θ(Hh)1I

]
� Tr

[
1I θ̂ (Hh)1I

]
.

Apply again Proposition 2.1, since the family of potentials is uniformly bounded in L∞. Again the uniform bounded-
ness of the right-hand side with respect to h > 0 comes from (2.9), (2.10), (2.12) and Appendix D. �
3. Results on the Dirichlet problem

From now on, we systematically make Assumption 3 and reduce the analysis to a linear analysis of Hh[V h].

For the contribution of the resonances in the evaluation of spectral quantities, the idea consists in considering the
non self-adjoint boundary value problem with complex coefficients in the boundary conditions (1.17)–(1.18) as a
perturbation of the homogeneous Dirichlet problem.

3.1. Some notations

In order to measure the error, we shall use several standard tools:
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1) The h-dependent Hs -norms:

‖u‖2
s,h :=

∑
k�s

‖hk∂k
xu‖2

L2(I )
, (u ∈ Hs(I)) (3.1)

will be used mainly with s = 0,1,2.
2) The Agmon distance is defined for any potential V ∈ L∞(I ) according to

Definition 3.1. For an energy λ ∈ R and a potential V, we define the Agmon distance by:

∀x, y ∈ I, d(x, y;V,λ) =
∣∣∣∣∣

y∫
x

√(
V (t) − λ

)
+ dt

∣∣∣∣∣. (3.2)

For our estimates, we should take V = V h. Yet, it is equivalent to work with the distance relative to the potential
Ṽ h since the support of Wh is included in a finite union of intervals with diameter 2κh.

Moreover owing to the lower bound

∀λ ∈ [Λ∗,Λ∗], ∀x ∈ I, inf
h>0,x∈I

Ṽ h(x) − λ � Λ0 − Λ∗ =: δ > 0, (3.3)

all the Agmon distances (depending on Ṽ h) are uniformly equivalent to the usual Euclidean distance.
3) Finally in the analysis of the tunnel effect, it is usual to introduce the estimates within the next setting.

Definition 3.2. For an h-dependent vector f (h) in a normed space E with norm ‖ ‖E and a positive real valued
function g(h), we write

f (h) = Õ
(
g(h)

)
(as h → 0) (3.4)

if there exists η0 > 0 such that

∀η ∈ (0, η0), ∃Cη > 0, ∀h ∈ (0, h0),
∥∥f (h)

∥∥
E

� Cηe
η
h g(h).

3.2. Decay estimate

Like in Proposition 2.1, Ω denotes an open interval in I and Hh
Ω the self-adjoint Dirichlet realisation of P h[V h]

with domain H 1
0 (Ω) ∩ H 2(Ω).

We shall use the following result about the decay of the eigenfunctions of Hh
Ω .

Proposition 3.3. Suppose that UΩ := {c1, . . . , cN } ∩ Ω is not empty. For every h > 0 sufficiently small, let λh ∈
(Λ∗,Λ∗) be an eigenvalue of Hh

Ω and φh an L2-normalised corresponding eigenfunction:

(Hh
Ω − λh)φh = 0.

Then, the estimate

∀x ∈ Ω,

∣∣∣∣ dj

dxj
φh(x)

∣∣∣∣� Ch−2j−1e− d̃h(x,UΩ )

h , j ∈ {0,1},

holds with C > 0 uniform w.r.t. h ∈ (0, h0) if d̃h stands for the Agmon distance for the potential Ṽ h at the energy λh.

Remark 5. Note that contrary to the general use, we do not introduce at this level the Õ but an accurate estimate made
possible in this simple one-dimensional case. This accurate estimate will be combined in the proof of Theorem 3.4
with the uniform Lipschitz estimate on Ṽ h (see especially (3.11)–(3.13)). This provides a complete splitting between
the semiclassical and quantum scale in spite of a limited regularity assumption.
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Proof. Set Ω = [α,β].
1) Let us begin with the estimate of φh(x).

Apply the Agmon identity of Appendix A with P = P h, z = λh, u1 = u2 = φh and ϕ(x) = d̃h(x,UΩ) where φh

is an eigenfunction of Hh
Ω with eigenvalue λh. Since V h − λh − ϕ′2 = −Wh, the inequalities ϕ = O(h) in Uh and

‖φh‖L2 = 1 imply

e± ϕ
h = O(1) in Uh and

∫
(V h − λh − ϕ′2)|vh|2 = O(1).

From the Agmon identity, we deduce an estimate for vh = eϕ/hφh:∥∥∥∥hdvh

dx

∥∥∥∥
L2

= O(1).

Since vh(α) = vh(β) = 0, it follows

‖vh‖L2 +
∥∥∥∥dvh

dx

∥∥∥∥
L2

= O
(

1

h

)
.

This implies

‖vh‖L∞ = O
(

1

h

)
,

and therefore

∀x ∈ Ω,
∣∣φh(x)

∣∣� C

h
e−d̃h(x,UΩ).

2) For the estimate of dφh/dx, we use the equation⎧⎨
⎩−h2 d2φh

dx2
+ V hφh = λhφh,

φh(α) = φh(β) = 0.

As φh ∈ C 1([α,β]), there exists c ∈ (α,β) such that dφh

dx
(c) = 0. The function g defined by g = eϕ/hdφh/dx satisfies⎧⎨

⎩h2g′ = hϕ′e
ϕ
h
dφh

dx
+ h2e

ϕ
h
d2φh

dx2
,

h2g(c) = 0.

Using the equation satisfied by φh, we deduce

h2g′ = hϕ′(e ϕ
h φh

)′ − |ϕ′|2e
ϕ
h φh + (V h − λh)e

ϕ
h φh

= hϕ′ dvh

dx
− |ϕ′|2vh + (V h − λh)vh.

Then ‖h2g′‖L2 = O(1/h). Cauchy–Schwarz inequality gives the L∞-estimate for g : |g(x)| � C/h3 for any x ∈
[α,β] and also of dφh/dx:

∀x ∈ Ω = [α,β],
∣∣∣∣dφh

dx
(x)

∣∣∣∣� C

h3
e−d̃h(x,UΩ). �

Remark. When the potential is regular, a better estimate like

∀x ∈ Ω,
∣∣φh(x)

∣∣� Ch− 1
2 e−d̃h(x,UΩ)/h,

holds and even a complete WKB expansion is possible. Here the low regularity and the concentration of the quantum
wells prevent from such an accurate result.
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3.3. Spectrum for one single well

From the spectral viewpoint, we are interested in localising the eigenvalues of Hh
Ω in the limit h → 0. The first

result concerns the problem with one well.

Theorem 3.4. Let Ω be a sub-interval of (a, b) containing exactly one well ci, i ∈ {1, . . . ,N}. Then:

(i) Every eigenvalue of Hh
Ω in (Λ∗,Λ∗) converges, and the limit belongs to the set Ei (see (1.32)).

(ii) For every λ0 ∈ (Λ∗,Λ∗) ∩ Ei and any fixed small enough ε > 0, the Dirichlet Hamiltonian Hh
Ω has exactly one

eigenvalue in [λ0 − ε,λ0 + ε] for h ∈ (0, hε).

Proof. Call {λh
1, . . . , λh

r } the eigenvalues of Hh
Ω in the interval [Λ∗,Λ∗], and φh

1 , . . . , φh
r an orthonormal system of

corresponding eigenfunctions. Because of Proposition 2.1, since the rank of the spectral projections are given by traces
of functions of Hh

Ω one has:

r = O(1), h → 0

(take for θ a smooth version of the function 1[ε,Λ0], ε > 0 small). The idea is to use the ellipticity of the problem, and
the scaling of the wells in order to replace the potential Ṽ h near a well by a constant one. Let Ĥ h be the Hamiltonian
with domain H 2(R) given by:

∀u ∈ D(Ĥh), Ĥ hu := P̂ hu, P̂ h := −h2 d2

dx2
+ Ṽ h(ci) · 1 − wi

(
x − ci

h

)
. (3.5)

This Hamiltonian is unitarily equivalent to −� + Ṽ h(ci) − wi(· − ci), whose eigenvalues are the set

E h
i := Ei + αh

i , αh
i = Ṽ h(ci) − Ṽ 0(ci) → 0, h → 0. (3.6)

Since ‖Ṽ h − Ṽ 0‖C 0 → 0 when h → 0, for any λ0 ∈ [Λ∗,Λ∗] ∩ Ei there exists ε0 > 0 such that Ĥ h has exactly one
eigenvalue in (λ0 − ε0, λ0 + ε0). To analyse the spectrum of Hh in the whole set [Λ∗,Λ∗], we choose, for each λ0,

two numbers ε+
0 > 0, ε−

0 > 0 such that the intervals (λ0 − ε−
0 , λ0 + ε+

0 ) are disjoint and their union covers a compact

neighbourhood of [Λ∗,Λ∗] and such that Ĥ h has no eigenvalue in each annulus {ε0 < |λ − λ0| < 2 min{ε+
0 , ε−

0 }}.

Λ∗ Λ∗

λ0��
ε0

��
ε0

�� ε−
0 �� ε+

0 ��δ��δ

�� 2 min(ε+
0 , ε−

0 ) �� 2 min(ε+
0 , ε−

0 )

�� ��
�� ��

Fix η > 0 and let χ be a smooth cut-off function supported in Ω such that χ = 1 if d(x, ∂Ω) � 2η and χ = 0 if
d(x, ∂Ω) � η. Owing to the exponential decay of the φh

j ’s stated in Proposition 3.3, the estimate

〈χφh
j ,χφh

k 〉L2(Ω) = δjk + O(e− co
h ), j, k ∈ {1, . . . , r}, (3.7)

holds for some c0 > 0 independent on h > 0 and η > 0.
For any j ∈ {1, . . . , r}, the function χφh

j belongs to the domain of Ĥ h with the identity

P̂ hχφh
j = λh

j χφh
j + [P h,χ]φh

j + (Ṽ h(ci) − Ṽ h(x)
)
χφh

j . (3.8)

Owing to the exponential decay of φh
j , the commutator term satisfies:

∥∥[P h,χ]φh
j

∥∥
2 = O

(
h−1e− d̃h(ci ,∂Ω)−2η

h
)
, (3.9)
L (Ω)
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where d̃h is the Agmon distance for Ṽ h at the energy λh
i . Because the potential Ṽ h is greater than Λ0 and λh

i � Λ∗ <

Λ0, the r.h.s. in (3.9) is of order O(e−c′/h) with c′ independent of the potential and the energy.
For the last term of the r.h.s. of (3.8), just write for ε > 0[

Ṽ h(ci) − Ṽ h(x)
]
χφh

j = 1|x−ci |�ε · [Ṽ h(ci) − Ṽ h(x)
]
χφh

j + 1|x−ci |>ε · [Ṽ h(ci) − Ṽ h(x)
]
χφh

j . (3.10)

Since the family of potentials (Ṽ h)h>0 is W 1,∞(I )-bounded, the first term is treated by writing∥∥1|x−ci |�ε · [Ṽ h(ci) − Ṽ h(x)
]
χφh

j ‖L2(Ω) � ε sup
∥∥Ṽ h‖W 1,∞‖χφh

j ‖L2(Ω) = O(ε), (3.11)

and again by the accurate decay estimates of Proposition 3.3, the second term is estimated by

∥∥1|x−ci |>ε · (Ṽ h(ci) − Ṽ h(x)
)
χφh

j

∥∥
L2(Ω)

= O(e− c′0ε

h ). (3.12)

We choose

ε := hα, α ∈ (0,1), (3.13)

and we obtain by combining (3.12), (3.11), (3.9), (3.8)

∀j = 1, . . . , r, P̂ hχφh
j = λh

jχφh
j + O(hα) in L2(Ω). (3.14)

Fix δ > 0 such that Ĥ h has no eigenvalue in {ε+
0 < λ − λ0 < ε+

0 + δ} ∪ {−ε−
0 − δ < λ − λ0 < −ε−

0 } and apply

Proposition C.1 (see Appendix C) to A = Ĥ h, [λ−, λ+] = [λ0 −ε−
0 , λ0 +ε+

0 ], N = r, a = δ > 0, μj = λh
j , ψj = χφh

j ,

from which we conclude

�d(span{χφh
1 , . . . , χφh

r },1[λ0−ε−
0 ,λ0+ε+

0 ](Ĥ
h)
)
�
(

r

1 + o(1)

)1/2
ε

a
= O(hα). (3.15)

This last estimate forces Hh to have at most one eigenvalue in [λ0 − ε−
0 , λ0 + ε+

0 ], r � 1, when h > 0 is small enough.
We finish by proving (i) and (ii). Notice that the asymptotic value λ0 is exactly the eigenvalue of the Hamiltonian

−h2d2/dx2 + Ṽ 0(ci) − wi((· − ci)/h), unitarily equivalent to the h-independent operator −d2/dx2 + Ṽ 0(ci) − wi ,
and let φ̂h

0 denote a corresponding normalised eigenvector. Such a wave function φ̂h
0 is an eigenvector of Ĥ h for the

eigenvalue λ0 + αh
i (see (3.6)). Estimates similar to (3.9), (3.11), (3.12) lead to

P hφ̂h
0 = (λ0 + αh

i )χφ̂h
0 + O(hα) in L2(Ω). (3.16)

Apply again Proposition C.1 in a small interval centred around λ0 + αh
i in the following way: since Ĥ h has at most

one eigenvalue in [λ0 − ε−
0 , λ0 + ε+

0 ], it is easy to choose a convenient parameter a in Proposition C.1 (Appendix C)
by a simple argument of counting: set Lj := [jhα/2, (j + 1)hα/2[, and Kj := −Lj ∪ Lj . If {λ0 + αh

i } + K1 contains
the eigenvalue, one defines Ih = [λ0 + αh

i − 2hα/2, λ0 + αh
i + 2hα/2], else Ih = [λ0 + αh

i − hα/2, λ0 + αh
i + hα/2].

This furnishes an interval Ih of diameter O(hα/2) around λ0 + αh
i and a real a = a(h) > 0 of order hα/2 leading again

with Proposition C.1 to

�d(span
(
χφ̂h

0

)
,1Ih

(Hh
Ω)) = O(hα/2). (3.17)

This yields r = 1 and the convergence of the eigenvalue to λ0. �
Remark 6. It follows that the well ci is λ-resonant if and only if there exists a domain Ω containing ci such that for
any open set ω ⊂ Ω the Dirichlet operator Hh

ω has an eigenvalue converging to λ as h goes to 0.

3.4. Spectrum in the multiple wells case

A way of studying the spectral properties of the multiple wells Dirichlet problem consists in decoupling it into N

one-well problems. Following [14] or [17], a good choice of open sets is the following: fix λ ∈ [Λ∗,Λ∗], and if d̃h

(resp. d̃0) denotes the Agmon distance at the energy λ for the potential Ṽ h (resp. Ṽ 0), we define

S1 := min d̃h(cj , ck)
(= S1(h)

)
, (3.18)
j �=k
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and for a fixed small enough η > 0,

Ωi := I \
⋃
k �=i

{
x ∈ I, d̃0(x, ck) � η

}
, i = 1, . . . ,N. (3.19)

The h-dependence of S1 recalled between the parentheses of (3.18) is omitted in the sequel.
Note that these open sets are not disjoint and Ωi contains only the well ci . The use of the distance d̃0 makes sure

that they do not depend on h although the h-dependence would be well controlled.
We first eliminate the nonresonant wells before giving a result similar to Theorem 3.4.

Proposition 3.5. Let λ be an asymptotic resonant energy and suppose that the well ci is not λ-resonant. Then there
exists a positive constant c such that for any eigenvalue λh ∈ (λ − c,λ + c), one has

∀x ∈ (ci − c, ci + c),
∣∣φh(x)

∣∣� e− c
h , h → 0

where φh is an L2-normalised eigenfunction of Hh
I for the eigenvalue λh.

In plain words, eigenfunctions for eigenvalues converging to λ are exponentially small in the non λ-resonant wells.

Proof. Since λ is not a resonant energy for the well ci , we can choose the open set ω containing the only well ci and
the compact energy interval Λ � λ such that for h > 0 sufficiently small, the Dirichlet operator Hh

ω has no spectrum in
Λ (see Remark 6). For a smooth cut-off function θ supported in ω and equal to 1 on a δ-neighbourhood of ci (δ > 0
small), one has

P hθφh = λhθφh + [P h, θ ]φh. (3.20)

The residual term satisfies by Proposition 3.3 the decay estimate∥∥[P h, θ ]φh
∥∥

L2(I )
� Cδe− cδ

h , cδ > 0, h → 0.

Note that the vector θφh is not zero.
Apply again Proposition C.1 in a compact interval strictly contained in Λ and a > 0 not depending on h > 0. If we

denote by F the spectral subspace for Hh
ω associated to this compact interval, it follows

�d(span{θφh},F )� 1

‖θφh‖
Cδe− cδ

h

a
. (3.21)

Since F is null by choice of Λ, it follows by properties of the distance �d that the l.h.s. of (3.21) is greater than 1.
This provides an L2-estimate of θφh. The H 2 regularity of a solution to (3.20) provides the pointwise estimate in
(ci − δ, ci + δ). Finally choose the constant c > 0 small enough. �

The analogous to Theorem 3.4 writes

Theorem 3.6. Recall that Hh
ω denotes the Dirichlet realisation of P h to the open set ω. Then, for h > 0 sufficiently

small:

(i) After ordering, every eigenvalue of Hh
I in (Λ∗,Λ∗) converges as h → 0 and the limit belongs to the set E0 (see

(1.32)).
(ii) For every λ ∈ (Λ∗,Λ∗) ∩ E0 and any small enough ε > 0, the operators Hh

I has exactly mλ eigenvalue(s) in
[λ − ε,λ + ε] as soon as h < hε .
Call them λh

i (i ∈ Jλ).
(iii) Fix such a λ. Let (Ωi)i∈Jλ be the subdomains of I defined in (3.19). Call (ψh

i )i∈Jλ normalised eigenvectors
associated to the unique eigenvalue of Hh

Ωi
converging to λ. There exists a unitary matrix (ph

i,j )1�i,j�mλ
such

that in L2(I )

∀i ∈ Jλ, φh
i −

∑
j∈Jλ

ph
i,jψ

h
j = Õ

(
e− S1

h
)
,

with S1 defined according to (3.18).
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Proof. It suffices to follow the proof in [14, pp. 34–35], while Proposition 3.5 guarantees that the nonresonant wells
are negligible in the decay estimates (see also [28, p. 148] for details). �
3.5. Resolvent estimates

Let us briefly recall the decay results of the kernel of the resolvents. Fix η > 0 (η small) and for a point p ∈ (a, b),
let χp denote a smooth cut-off function supported in the set {|x − p| � η}.

Like in [17, p. 143] (see also [12] or [28, p. 135] for this specific case), the combination of the Agmon estimate
(see Appendix A) with the spectral theorem provides in the one well-case (N = 1) the following estimates

∀z /∈ σ(Hh
I ),

∥∥χx(H
h
I − z)−1χy

∥∥� Cη

e
−d̃h(x,y)+Cη

h

min(rh,1)
, (3.22)

where rh = dist(z, σ (Hh
I )), and d̃h is the Agmon distance for the potential Ṽ h at the energy λ := Re(z).

A straightforward adaptation of the analysis of the multiple wells Dirichlet problem carried out in [16], [17, p. 147]
or [28, p. 151] provides the same estimate for N > 1.

Proposition 3.7. For h in (0, h0), h0 small enough, consider zh ∈ C \σ(Hh
I ) such that there exists λ0 ∈ [Λ∗,Λ∗] with

zh → λ0 as h → 0 and set λh = Re(zh) and rh = dist(zh, σ (Hh
I )). If rh � e−S1/2h with S1 := mink �=l d̃h(ck, cl), then

the kernel of the resolvent (Hh
I − zh)

−1 satisfies

∣∣(Hh
I − zh)

−1[x, y]∣∣= Õ(e− d̃h(x,y)

h )

min(rh,1)
,

with uniform constants with respect to x, y ∈ I and where d̃h is the Agmon distance for the potential Ṽ h at the energy
λh := Re(zh).

Proof. Let θ be a C∞ even function supported in a neighbourhood [−3η,3η] and equal to 1 on [−η,η] where η and
Ωi are linked by relation (3.19). We define

θi(x) := θ(x − ci), χi(x) = 1 −
∑
j �=i

θj (x), ∀i = 1, . . . ,N. (3.23)

Let χ̃i be C∞ functions with support in Ωi defined in (3.19) such that

N∑
i=1

χ̃i = 1.

Introduce

Ti(z) := (Hh
Ωi

− z)−1 and R0 :=
N∑

i=1

χiTi(z)χ̃i .

This leads to

(Hh
I − z)R0 =

N∑
i=1

χiχ̃i +
N∑

i=1

[P h,χi]Ti(z)χ̃i

= 1 +
N∑

i=1

[P h,χi]Ti(z)χ̃i

= 1 −
N∑∑

[P h, θk]Ti(z)χ̃i ,
i=1 k �=i
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owing to χiχ̃i = χ̃i and (3.23). We have to study the convergence of the series
∑

n�0 R0ε
n with

ε =
N∑

i=1

∑
k �=i

[P h, θk]Ti(z)χ̃i .

We notice that χ̃i[P h, θk] is equal to 0 as soon as k �= i and if k = i, this term is [P h, θk]. Hence

R0ε
n =

N∑
i0=1

N∑
i1 �=i0

. . .

N∑
in−1 �=in

χi0Ti0[P h, θi1]Ti1[P h, θi2]Ti2 . . . [P h, θin]Tin χ̃in .

Since the function θk is localised in a neighbourhood of the well ck , we can write for s = 0, . . . ,N − 1

[P h, θis ]Tis (z)[P h, θis+1] = [P h, θis ]χis Tis (z)χis+1 [P h, θis+1].
This last relation allows to use results on the one-well problem (3.22):

∥∥χis Tis (z)χis+1

∥∥� Cη

e− d̃h(x,y)−Cη

h

min(rh,1)
.

This leads to the following estimate

‖χx0R0ε
nχy0‖ � Cn+1

η

e− ϕn(x0,y0)−nCη

h

min(rh,1)n+1
,

where ϕn(x0, y0) = mini0,...,in d(y0, cin) + d(cin, cin−1) + · · · + d(ci1, ci0) + d(ci0, x0). In fact, the function ϕn is the
length of the shortest way from y to x going through n different wells. The quantity ϕn is bounded from below
according to

ϕn(x0, y0) � d(x0, y0) + nS1.

Hence the serie is convergent under the assumption rh � e−S1/2h and we can write

χx0(H
h
I − z)−1χy0 =

∑
n�0

χx0R0ε
nχy0 .

Appendix E provides the pointwise estimates. �
Corollary 3.8. If rh � C−1hC for some C > 0, then∣∣(z − Hh

I )−1[x, y]∣∣= Õ
(
e−d̃h(x,y)

)
.

Another consequence is the improved pointwise estimate for the eigenfunctions of the Dirichlet problem ([17,
p.138] or [28, p. 153]):

Proposition 3.9. For every h > 0 sufficiently small, let λh belong to (Λ∗,Λ∗) and let φh be an L2-normalised corre-
sponding eigenfunction of Hh

Ω . Suppose that λh → λ0 ∈ E0 ∩ (Λ∗,Λ∗). Then the estimates

∀x ∈ Ω,

∣∣∣∣ dj

dxj
φh(x)

∣∣∣∣= Õ
(
e− d̃0(x,U0)

h
)
, j ∈ {0,1},

hold when d̃0 stands for the Agmon distance for the potential Ṽ 0 at the energy λ0 and U0 =⋃i∈Jλ0
{ci} for the set of

λ0-resonant wells.

Remark 7. Here the Õ-writing of the estimates allows to replace the h-dependent quantities, Ṽ h, d̃h and λh by their
asymptotic values Ṽ 0, d̃0 and λ0.
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4. Complex deformation

4.1. A reduced Stone’s formula

The results of Theorem 1.6 are derived from a good information about the asymptotic local density of states
associated with functions of the Hamiltonian. According to Stone’s formula and the limiting absorption principle, a
possible method is the computing of a quite precise expression of the resolvent, since for λ ∈ [Λ∗,Λ∗] ⊂ σac(H

h)

(Hh = Hh[V h]):
1

2iπ
1I

[(
Hh − (λ + i0)

)−1 − (Hh − (λ − i0)
)−1]1I = 1I

∂E

∂λ
(λ)1I , (4.1)

and of its meromorphic extension through the spectral half-line (0,∞) ⊂ [−B,∞), in order to take into account the
contribution of resonant states.

We will focus on this meromorphic extension from the upper-half plane while the corresponding results for the
extension from the lower-half plane are easily carried over after changing i into −i.

Resolvent. Fix z ∈ C, Im(z) > 0 and consider the problem with unknown u ∈ H 2(R):

(P h − z)u = f, f ∈ L2(I ), z ∈ C, Im(z) > 0, Re(z) ∈ (Λ∗,Λ∗). (4.2)

Again because the potential is constant on both sides of the interval I , the problem with unknown u ∈ H 2(R):

(P h − z)u = f, f ∈ L2(I ),

can be explicitly solved outside I , and the condition u ∈ L2 eliminates exponentially growing modes. It is easy to
check that this condition is exactly given by (1.17)–(1.18) when Im(z) > 0. Precisely, we can write the next statement.

Proposition 4.1. Let z belong to C with Im(z) > 0 and Re(z) ∈ (Λ∗,Λ∗). Consider the linear functionals Ta(z), Tb(z)

on H 2(I ) given by:

Ta(z)u := [h∂x + iz1/2]|x=au, Tb(z)u := [h∂x − i(z + B)1/2]
|x=b

u,

and the closed unbounded operator Hh
z defined by

D(Hh
z ) := {u ∈ H 2(I ) s.t. Ta(z)u = Tb(z)u = 0

}
, ∀u ∈ D(Hh

z ), Hh
z u := P hu.

Then the restriction on I of the solution to Eq. (4.2) is (Hh
z − z)−1f . In other words:

1I (H
h − z)−11I = (Hh

z − z)−1, Im(z) > 0, Re(z) ∈ (Λ∗,Λ∗).

Remark 8.

1. We will check that for such z′s, operator Hh
z − z is invertible (see Proposition 4.2 and Proposition 5.2 below).

2. Note that since the solutions on I of the homogeneous equation associated with (4.2) make a linear 2-dimensional
subspace of H 2(I ), the injectivity of operator (Hh

z −z) is equivalent to the independence of the functionals Ta(z),
Tb(z).

3. By replacing i by −i in the definitions of the functionals Ta(z) and Tb(z), one obtains the corresponding boundary
conditions for Im(z) < 0.

4.2. Resonances

In our one-dimensional situation, it is quite simple to detect the resonances as poles of the scattering matrix.
According to the end of Subsection 4.1, one states

Proposition 4.2. Let z be a complex number such that Re(z) > 0. Then z is a resonance of the operator P if and only
if Hh

z − z is not injective.
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Indeed, the non-injectivity of Hh
z − z is equivalent to the fact that the linear functionals are proportional, so the

normalisation given in (1.14)–(1.15) is not performable.

Remark 9. The anti-resonances are defined similarly after considering the meromorphic extension from the lower
half-plane {Im(z) < 0} while changing i into −i in the transparent boundary conditions (see Remark 8).

4.3. Analysis of the resolvent

Recall that since we are interested in getting the spectral density inside the island I, Proposition 4.1 allows to
work with Hh

z − z in place of Hh − z. Moreover, because Theorem 3.6 ensures that the set E 0 of asymptotic resonant
energies is discrete, we will make the following reduction:

Assumption 4. Suppose that the set [Λ∗,Λ∗] contains exactly one asymptotic resonant energy λ0 ∈ (Λ∗,Λ∗) . Recall
that mλ0 denotes its multiplicity according to (1.33) and that (λh

j )1�j�mλ0
are the ordered eigenvalues of Hh

I lying in
[Λ∗,Λ∗] (and converging to λ0).

Introduce

Ωh := {z ∈ C s.t. Re(z) ∈ Kh, Im(z) ∈ [−4h,4h]}, (4.3)

with Kh := [λ0 − αh,λ0 + αh], and αh := 4 max
{
h, |λ0 − λh

j |, j = 1, . . . ,mλ0

}
. (4.4)

The parameter z is assumed to satisfy

z ∈ Ωh.

Proposition 3.9 indicates that from the spectral viewpoint, around a resonant energy the nonresonant wells do not
matter. We adapt to this remark the filled well Hamiltonians

H̃ h
I = Hh

I + Wh and H̃ h
z = Hh

z + Wh. (4.5)

For given λ ∈ (Λ∗,Λ∗), set

Wh
λ :=

∑
i∈Jλ

wi(
· − ci

h
), Uh

λ := suppWh
λ . (4.6)

Define

H̃ h
I (λ) := Hh

I + Wh
λ and H̃ h

z (λ) := Hh
z + Wh

λ , (4.7)

the operators associated to respectively the Dirichlet and transparent problems with the λ-resonant wells filled. The
parameter λ remains fixed as h → 0 and those definitions lead to

H̃ h• (λ) = Hh•
when λ �= λ0 and

H̃ h• (λ0) = Hh• + Wh
λ0

.

In particular, H̃ h
I (λ0) has no eigenvalue in [Λ∗,Λ∗].

An accurate analysis of the resolvent (Hh
z − z)−1 starts with essentially two steps:

1. Eliminate the nonresonant wells: we show that H̃ h
z (λ0) − z is invertible for all z ∈ Ωh.

2. Check that for z far from λ0, Hh
z − z = H̃ h

z (λ) − z, λ �= λ0, is invertible.

Hence the notation H̃ h
z (λ) is convenient for a compact formulation of different results.

Proposition 4.3. Make Assumption 4 and fix any λ ∈ [Λ∗,Λ∗].
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(i) For any z ∈ Ωh if λ = λ0 (resp. z ∈ [Λ∗,Λ∗] × [−4h,4h] and dist(z, λ0) > αh/2 or | Im(z)| � 2h if λ �= λ0), the
operator H̃ h

z (λ) − z is invertible. The kernel of the resolvent is estimated by∣∣(H̃ h
z (λ) − z

)−1[x, y]∣∣= Õ
(
e− d̃(x,y)

h
)
,

where d̃ stands for the Agmon distance for the potential Ṽ h at the energy Re(z). Moreover the constants can be
chosen uniform with respect to x, y ∈ I and z.

(ii) For any function ϕ ∈ C 0
c ((a, b)), (H̃ h

z (λ) − z)−1ϕ belongs to the space L1 of trace-class operators for z ∈ Ωh if
λ = λ0 (resp. z ∈ [Λ∗,Λ∗] × [−4h,4h] and dist(z, λ0) > αh/2 or | Im(z)| � 2h if λ �= λ0), with the estimate∥∥(H̃ h

z (λ) − z
)−1

ϕ
∥∥

L1 � Cϕh−2.

Remark 10. In particular, applying (i) with λ = λ0, gives, since Hh
z (λ) = Hh

z and using Proposition 4.2 that P h has
no resonance in the set{

z ∈ Ωh,
∣∣Im(z)

∣∣> 2h or dist(z, λ0) � αh

2

}
.

Proof. The first statement will be proved in three steps (a), (b) and (c) where the last two ones are very similar.
(i)-(a) We start with the strongly elliptic problem: suppose that λ = λ0, z ∈ Ωh and Jλ0 = {1, . . . ,N}, that is

H̃ h
z (λ0) = H̃ h

z (every well is filled). We use the Agmon identity of Appendix A where ϕ is a C 1(I )-function satisfying
the eiconal condition:

inf
h>0,x∈I

Ṽ h(x) − Re(z) − ϕ′2(x) � m > 0,

and we take the real part of both sides. Since z ∈ Ωh is possibly complex, there are boundary terms in the Agmon
estimates (see Appendix A) but their coefficients are O(h3). For z ∈ Ωh and with the condition Λ0 −Λ∗ > 0 according
Assumption 1, the coercivity of the variational formulation with the transparent conditions (see Proposition 4.1) is
easily checked when h > 0 is small enough: Taking ϕ ≡ 0 provides the existence of the resolvent and uniform bounds.

Taking ϕ with the above eiconal condition provides the weighted estimate

∀f ∈ L2(I ),
∥∥e

ϕ
h (H̃ h

z − z)−1f
∥∥

1,h
� C

∥∥e
ϕ
h f
∥∥

L2 .

The case ϕ ≡ (1 − η)d̃(·, y) for fixed y ∈ (a, b) (which satisfies the eiconal condition) implies (i) in this specific case.
The pointwise estimate of the Schwartz kernel of the resolvent is obtained after Appendix E.

(i)-(b) In the weaker case, λ = λ0, z ∈ Ωh, Jλ0 �= {1, . . . ,N}, the problem is neither self-adjoint nor strongly
elliptic. Only the wells in Uh

λ0
= suppWh

λ0
according to (4.6) are filled and the other nonresonant wells are left. We

use an approximation argument with the latter estimate. Set

Sz
0 := d̃(Uh \ Uh

λ0
, ∂I ) (4.8)

where d̃ is the Agmon distance for the potential Ṽ h and the energy Re(z). Introduce, for η > 0 small, the cut-off
functions χ, ψ̃ such that 0 � χ, ψ̃ � 1, χ ≡ 1 in the set {x ∈ I, d̃(x,Uh \Uh

λ0
) � Sz

0 − η}, ψ̃ ≡ 1 in the set {d̃(x, Ũh \
Uh

λ0
) � (Sz

0 − η)/2}, χ ≡ 0 in {d̃(x,Uh \ Uh
λ0

) � Sz
0 − η/2} and ψ̃ ≡ 0 in the set {d̃(x, Ũh

λ \ Uh
λ0

) � (Sz
0 + η)/2}.

Choose

R(λ0) := (H̃ h
z − z)−1(1 − ψ̃) + χ

(
H̃ h

I (λ0) − z
)−1

ψ̃ (4.9)

as an approximate right inverse for H̃ h
z (λ0) − z: Actually H̃ h

z (λ0) is replaced by the corresponding Dirichlet Hamil-
tonian around the remaining non λ0-resonant wells. Note that R(λ0) is well defined since for z ∈ Ωh, z is uniformly
far away from the spectrum of H̃ h

I (λ0).
A straightforward computation using H̃ h

z (λ0)χ = H̃ h
I (λ0)χ and χψ̃ = ψ̃ gives(

H̃ h
z (λ0) − z

)
R(λ0) = 1 − ε, ε := ε0 + ε1, (4.10)

where

ε0 := W̃h
λ (H̃ h

z − z)−1(1 − ψ̃), ε1 := −[P h,χ](H̃ h
I (λ0) − z

)−1
ψ̃. (4.11)
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With the estimate about (H̃ h
z − z)−1 and the control of the resolvent (H̃ h

I (λ0) − z)−1 of the Dirichlet Hamiltonian
provided by Proposition 3.7 with the uniform lower bound dist(z, σ (Hh

I (λ0))) � c > 0, one deduces the inequality

‖ε0‖ + ‖ε1‖ � Cηe
−S

z
0+cη

2h , (4.12)

in the operator norm.
The relation(

H̃ h
z (λ0) − z

)
R(λ0) = 1 − ε, ‖ε‖ � Cηe

−S
z
0+cη

2h (4.13)

ensures the injectivity of (H̃ h
z (λ0) − z) and provides a right inverse after using the Neumann series for (1 − ε)−1.

Similarly, setting

L(λ0) := (1 − ψ̃)(H̃ h
z − z)−1 + ψ̃

(
H̃ h

I (λ0) − z
)−1

, (4.14)

leads to

L(λ0)
(
H̃ h

z (λ0) − z
)= 1 + ε′, ‖ε′‖ � Cηe

−S
z
0+cη

2h , (4.15)

and provides a left inverse for H̃ h
z (λ0) − z .

The estimate of the kernel of the resolvent is obtained after considering the first terms in the expansion series
defining the inverse

χx · R(λ0)

∞∑
k=0

εk · χy.

The estimate for k = 0 is clear according to the estimates of the kernels (part (a) and Proposition 3.7) appearing in
the definition of R(λ0). For k � 1, note first, since ψ̃[P h,χ] = 0 and (1 − ψ̃)W̃ h

λ = 0 that by computing the terms
corresponding to k = 1, k = 2 and then by induction, the general term splits for any k � 1 into two terms, namely

χxR(λ)εkχy = χx(H̃
h
z − z)−1

(
k∏

j=1

ε[j ]

)
χy + χx

(
H̃ h

I (λ0) − z
)−1

(
k∏

j=1

ε[j+1]

)
χy, (4.16)

where [�] stands for the class of � modulo 2. Each term involves k+1 resolvents, which induces a prefactor (Cηe
cη
2h )k+1

in the estimate

∀k � 1,
∥∥χx · R(λ)εk · χy

∥∥� (Cηe
cη
2h )k+1e− ϕk(x,y)

h ,

with

ϕk(x, y) = min
{
Lk(x, y),Lk(y, x)

}
, Lk(x, y) = d̃(x, ∂I ) + (k − 1)

Sz
0

2
+ d̃(y, Ũh

λ ).

We conclude, since ϕk(x, y) � d̃(x, y) + (k − 2)Sz
0, that the series is convergent (the convergence is uniform w.r.t.

z ∈ Ωh). Again the pointwise estimate is provided by Appendix E.
(i)-(c) To finish the proof of (i), it remains the case λ �= λ0, dist(z, λ0) � αh/2 or | Im(z)| � 2h. The strategy is

essentially the same as in (i)-(b): we replace Hh
z = H̃ h

z (λ) by H̃ h
z far away from the wells and by H̃ h

I (λ) = Hh
I around

non λ-resonant wells, which are all the wells. Consider this time

Sz
0 := d(Uh, ∂I ), with Uh = suppWh,

and χ,ψ such that 0 � χ,ψ � 1, χ ≡ 1 in the set {x ∈ I, d̃(x,Uh) � Sz
0 − η}, ψ ≡ 1 in the set {d̃(x,Uh) � (Sz

0 −
η)/2} and ψ ≡ 0 in the set {d̃(x,Uh) � (Sz

0 + η)/2}. Choose as an approximate right inverse (well defined for z ∈ Ωh

such that | Im(z)| > h or dist(z,Λ0) � αh/2)

R = (H̃ h
z − z)−1(1 − ψ) + χ(Hh

I − z)−1ψ,

and as an approximate left inverse

L = (1 − ψ)(H̃ h
z − z)−1 + ψ(H̃h

I − z)−1.
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One obtains again a norm-convergent series thanks to resolvent estimates and the pointwise estimates of the kernel
are derived from Appendix E.

(ii) We start again like for (i) by the case where λ = λ0, Jλ0 = {1, . . . ,N}. For Hh
0 being the Dirichlet h-Laplacian

on I , write, since (Hh
0 + i)ϕ = (H̃ h

z + i − z − Ṽ h)ϕ:

ϕ(H̃ h
z − z)−1 = (Hh

0 + i)−1ϕ
[
1 + (z + i − Ṽ h)

]
(H̃ h

z − z)−1 + (Hh
0 + i)−1[P h,ϕ](H̃ h

z − z)−1. (4.17)

One sees that the first term of the r.h.s. of (4.17) is trace-class with the announced estimates because (Hh
0 + i)−1 is

trace-class whereas the second factor is uniformly bounded. For the last term, use again that (Hh
0 + i)−1 is trace-class

and the fact that we obtained estimates for (H̃ h
z − z)−1 in the H 1,h-norm. The result follows by taking the adjoint. In

the case λ = λ0, z ∈ Ωh and mλ0 < N , use the series R(λ0)
∑∞

k=0 εk to see that(
H̃ h

z (λ0) − z
)−1 = [(H̃ h

z − z)−1(1 − ψ̃) + χ
(
H̃ h

I (λ0) − z
)−1

ψ̃
][

1 + O(e− c
h )
]
, (4.18)

and notice that the first factor is trace-class. Finally, one has something similar for λ �= λ0 and suitable z

(Hh
z − z)−1 = [(H̃ h

z − z)−1(1 − ψ̃) + χ(Hh
I − z)−1ψ̃

][
1 + O(e− c

h )
]
. � (4.19)

5. Localising resonances

The formalism of Grushin’s Problem provides a convenient way to treat simultaneously the question of the invert-
ibility of the operator(Hh

z − z) raised in the latter section, and (through a perturbative formulation) to localise the
resonances of P h. We refer the reader to the appendix of [15] or to [31] for a general presentation of this technique.
Fix the reference energy to the value λ0 ∈ (Λ∗,Λ∗) and work in the set Ωh defined in (4.3). Denote by λh

1, . . . , λh
n

the eigenvalues of Hh
I converging to λ0 (they lie in Kh), and φh

1 , . . . , φh
mλ0

a corresponding orthonormal system of

eigenvectors. Start by writing the Grushin’s problem for the Dirichlet realisation Hh
I :{

(Hh
I − z)u + R−

0 u− = v,

R+
0 u = v+,

(5.1)

with

(u,u−) ∈ D(Hh
I ) × C

mλ0 , (v, v+) ∈ L2(I ) × C
mλ0 ,

R−
0 : Cmλ0 −→ L2(I ), u− :=

⎛
⎜⎜⎝

u−
1

...

u−
mλ0

⎞
⎟⎟⎠ 	→ R−

0 u− :=
mλ0∑
j=1

u−
j φh

j , (5.2)

and

R+
0 :L2(I ) −→ C

mλ0 , u 	→ R+
0 u :=

⎛
⎜⎜⎝

〈u,φh
1 〉L2

...

〈u,φh
mλ0

〉L2

⎞
⎟⎟⎠ . (5.3)

Set F ′′ := span{φh
j }nj=1, F ′ := (F ′′)⊥. This problem is invertible and the solution is given, with obvious notations by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′ = (Hh
I

′ − z)−1v′,

u′′ =
mλ0∑
j=1

〈u,φh
j 〉φh

j =
mλ0∑
j=1

v+
j φh

j ,

u−
j = 〈v,φh

j 〉 + (z − λh
j )v

+
j , j = 1, . . . ,mλ0 ,

(5.4)

where Hh
I

′
denotes the restriction of Hh

I to F ′. In terms of operators{
u = E0(z)v + E+

0 v+,

u− = E−v + E−+(z)v+,
(5.5)
0 0
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with

E0(z)v = (H ′h
I − z)−1Πh

I v, E+
0 v+ =

mλ0∑
j=1

v+
j φh

j ,

E−
0 v =

⎛
⎜⎜⎝

〈v,φh
1 〉L2

...

〈v,φh
mλ0

〉L2

⎞
⎟⎟⎠ , E−+

0 (z)v+ = diag(z − λh
j )v

+,

and Πh
I is the orthogonal projector onto F ′:

Πh
I v :=

(
1 −

mλ0∑
j=1

|φh
j 〉〈φh

j |
)

v. (5.6)

Finally, write

Hh
I (z) :=

(
Hh

I − z R−
0

R+
0 0

)
, E h

I (z) := (Hh
I (z)

)−1 =
(

E0(z) E+
0

E−
0 E−+

0 (z)

)
. (5.7)

We perturb the problem in order to obtain the resonant problem. Like in the proof of Proposition 4.3, set

S0 := d̃0(U
h
λ0

, ∂I ), (5.8)

where d̃0 is the Agmon distance for the potential V 0 at the energy λ0. For η > 0 small, fix two smooth cut-off functions
χ,ψ such that 0 � χ,ψ � 1, χ ≡ 1 in the set {x ∈ I, d(x,Uh

λ0
) � S0 − η}, ψ ≡ 1 in the set {d(x,Uh

λ0
) � (S0 − η)/2}

and ψ ≡ 0 in the set {d(x,Uh
λ0

) � (S0 + η)/2}. Define

H(z;h) :=
(

Hh
z − z χR−

0

R+
0 0

)
, z ∈ Ωh. (5.9)

Far from the resonant wells, Hh
z looks like H̃ h

z (λ0) and around the wells the Dirichlet problem (with all the wells) is
a good approximation of Hh

z . This leads to set

F (z;h) :=
(

χE0ψ + (H̃ h
z (λ0) − z)−1(1 − ψ) χE+

0

E−
0 ψ E−+

0

)
. (5.10)

One shows that

H(z;h)F (z;h) = 1 + K(z;h)

and K satisfies the estimate

K(z;h) =
(

Õ(e− S0
2h ) Õ(e− S0

h )

Õ(e− S0
2h ) Õ(e− 2S0

h )

)
. (5.11)

More precise computations with the second order expansion of the Neumann series and using the resolvent estimates
of Proposition 4.3 can be done. When all the wells are resonant, mλ0 = N , details are given by the direct transcription
of [15, pp. 117–128]. The more general case was treated in [28, pp. 178–189].

Proposition 5.1. With the notations (4.3) and (5.8) and for z ∈ Ωh, the operator is invertible, and the inverse is given
by the norm convergent series

H(z;h)−1 = F (z;h)

∞∑
j=0

(−1)j Kj (z;h) =
(

E(z;h) E+(z;h)

E−(z;h) E−+(z;h)

)
,

with

E−+(z) = E−+
0 + Õ

(
e− 2S0

h
)
.

Moreover, it is uniformly norm-bounded holomorphic function of z ∈ Ωh.
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Within the Grushin problem approach, the inversibility of Hh
z − z is reduced to the question of invertibility of the

finite-dimensional block E−+(z) (see the Schur complement formula (6.7)). In particular, considering det(E−+(z))

leads to the next standard approximation result of resonances by Dirichlet eigenvalues.

Proposition 5.2. Take the notation (4.3) and (5.8). The operator P h has exactly mλ0 resonances (counted with multi-
plicity) zh

1 , . . . , zh
mλ0

in Ωh. They satisfy

∀j ∈ {1, . . . ,mλ0}, |zh
j − λh

j | = Õ
(
e− 2S0

h
)

and have negative imaginary parts.

6. Local density of states

We end the proof of Theorem 1.6 by considering the asymptotic behaviour of the density associated with a function
of the energy.

Proposition 6.1. Let θ ∈ C 0
c ((Λ∗,Λ∗)) and keep the notations (4.4) under Assumptions 1, 3 and 4. The particle density

dnθλ [V h] defined for g(k) = θ(λk) satisfies the following weak∗ asymptotics in Mb((a, b)): For all ϕ ∈ C 0
c ((a, b)),

lim
h→0

b∫
a

ϕ(x)dnθλ = lim
h→0

Tr
[
θ(Hh)ϕ

]= lim
h→0

Tr
[
(θ.1Kh

)(Hh)ϕ
]= ∑

i∈Jλ0

θ(λ0)ϕ(ci). (6.1)

This result which is a Breit–Wigner type formula for the density of states like in [13] will be proved in two steps:
1) eliminating the nonresonant energies; 2) specifying the contribution of resonant states.

6.1. Eliminating the nonresonant energies

We first check that the density goes to 0 in (a, b) as h goes to 0 when all the wells are filled, that is for H̃ h, and
reduce the more general nonresonant energy problem to this case after using an approximate resolvent provided by
(4.18)–(4.19). We start with a simple accurate estimate.

Proposition 6.2. Let ψ̃h−(k, ·) be the incoming scattering states of H̃ h, such that λk ∈ [Λ∗,Λ∗]. The function ψ̃h−(k, ·)
is uniformly bounded with respect to x ∈ [a, b] and k. Moreover one has the uniform pointwise estimate

ψ̃h−(k, x) = O
(
h−1/2e− d̃h(a,x)

h
)
, k > 0,

and ψ̃h−(k, x) = O
(
h−1/2e− d̃h(b,x)

h
)
, k < 0,

where d̃h stands for the Agmon distance for the potential Ṽ h at the energy λk .

Proof. We focus on the case k > 0 (if k < 0, just swap a and b). Start by noticing that for given k, the function
Ah

k :x 	→ |ψ̃h−(k, x)|2 satisfies

h2 d2

dx2
Ah

k = 2
∣∣h∂xψ̃

h−(k, ·)∣∣2 + 2(Ṽ h − λk)
∣∣ψ̃h−(k, ·)∣∣2 � 0. (6.2)

It follows that the function h∂xA
h
k is increasing on I. But the scattering condition (1.17) says that this function

vanishes at x = b. So the function Ah
k is convex and decreasing on I. Now, it suffices to show that the family (Ah

k (a))k
is uniformly bounded. But it equals

Ah
k(a) = ∣∣ψ̃h−(k, a)

∣∣2 = ∣∣ei ka
h + rke−i ka

h

∣∣2, (6.3)

which is bounded according to (1.16).
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Use the Agmon estimate of Appendix A with V = Ṽ h, z = λk, u = v = ψ̃h−(k, ·) and ϕ = d̃h(a, x). Since P̃ hu =
zu, and V − ϕ′2 − z = 0, this leads after taking the real part to

∥∥h∂x

(
e

ϕ
h ψ̃h−(k, ·))∥∥2

L2(I )
� h2e

2ϕ(a)
h

∣∣Re
(
h∂xψ̃

h−(k, a)ψ̃h−(k, a)
)∣∣+ h2e

2ϕ(b)
h

∣∣Re
(
h∂xψ̃

h−(k, b)ψ̃h−(k, b)
)∣∣ (6.4)

� 2|k|Ah
k(a)1/2 = O(1). (6.5)

Writing

e
ϕ(x)

h ψ̃h−(k, x) = ψ̃h−(k, a) + h−1

x∫
a

h∂x

(
e

ϕ(t)
h ψ̃h−(k, t)

)
dt,

and Schwarz’s inequality yield the result. �
Corollary 6.3. Assume θ ∈ C 0

c ((Λ∗,Λ∗)) and ϕ ∈ C 0
c ((a, b)). The operator θ(H̃ h)ϕ is trace-class with a trace esti-

mated by

Tr
[
θ(H̃ h)ϕ

]= Õ
(
e− c dist(suppϕ,∂I )

h
)
,

where dist(x, y) = |x − y| and c is a positive constant. The family of measures (dnθλ [Ṽ h])h>0 weakly converges to 0
in Mb((a, b)).

Proof. The function ϕ can be assumed nonnegative. We write

b∫
a

ϕ(x)dnθλ [Ṽ h](x) = Tr
[
ϕ1/2θ(H̃ h)ϕ1/2]

=
b∫

a

∫
R

θ(λk)
∣∣ψ̃h−(k, x)

∣∣2ϕ(x)
dk

2πh
,

after using the expression of the kernel of θ(H̃ h). Proposition 6.2 combined with the fact that the Agmon distance d̃h

associated with Ṽ and an energy λ ∈ (Λ∗,Λ∗) is uniformly equivalent to the Euclidean distance, yields the result after
integration. �

Thanks to this result one easily gets rid of nonresonant energies.

Proposition 6.4. Consider the energy interval Kh defined in (4.4) and set θ̃ h(λ) := (1 − 1Kh
(λ)) · θ(λ). Then in

restriction to (a, b), the measure dnh

θ̃h
λ

weakly converges to 0 as h goes to 0:

∀ϕ ∈ C 0
c

(
(a, b)

)
, lim
h→0

Tr
(
θ̃ h(Hh)ϕ

)= 0.

Proof. We again assume again ϕ � 0 and apply Stone’s formula in order to compute the trace of ϕ1/21I θ̃
h(Hh)1I ϕ

1/2.
By referring to Proposition 4.1 and by using successively (4.18)–(4.19) one obtains

Tr
(
θ̃ h(Hh)ϕ

)= Tr
(
θ̃ h(H̃ h)(1 − ψ̃)ϕ

)+ Tr
(
χθ̃h(Hh

I )ϕ̃
)+ O(h−2e− c

h ), h → 0. (6.6)

The first term can be estimated by

0 � Tr
(
θ̃ h(H̃ h)(1 − ψ̃)ϕ

)
� Tr

(
θ(H̃ h)(1 − ψ̃)ϕ

)
,

with a right-hand side converging to 0 by Corollary 6.3. Meanwhile the second term cancels since Hh
I has no spectrum

on the support of θ̃ h. This finishes the proof. �
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6.2. Contribution of resonant states

Let us first go back to the Grushin problem introduced in Section 5. According to Proposition 5.1, and estimates
(5.11) we have

H(z;h)−1 :=
(

E(z) E+(z)

E−(z) E−+(z)

)
= F (z;h)

(
1 + ε(z) ε+(z)

ε−(z) 1 + ε−+(z)

)
,

with ε•(z) = Õ(e−S0/2h) uniformly in z ∈ Ωh. This implies

[Hh
z − z]−1 = E(z) − E+(z)

(
E−+(z)

)−1
E−(z). (6.7)

Coming back to the definition (5.10) of F h(z), this can be improved into

E(z) = (H̃ h
z (λ0) − z

)−1
(1 − ψ)(1 + ε) + χE0(z)ψ(1 + ε) + χE+

0 ε−, (6.8)

E+(z) = χE+
0 + (H̃ h

z (λ0) − z
)−1

(1 − ψ)ε+ + χE+
0 ε−+ + χE0(z)ψε+, (6.9)

E−(z) = E−
0 ψ + E0(z)ψε + E−+

0 (z)ε−, (6.10)

E−+(z) = E−+
0 (z) + Õ

(
e− 2S0

h
)
. (6.11)

We are ready to apply Stone’s formula with a complex deformation of the integration contour. Before this, we write
under an adapted form the polar part coming from (6.11).

Lemma 6.5. Set Ω̃h := [λ0 − αh/2, λ0 + αh/2] × [−2ih,2ih]. For z in Ωh \ Ω̃h, there exist a constant c > 0 and a
matrix-valued meromorphic function G such that

E−+(z)−1 = E−+
0 (z)−1 + G(z),

∥∥G(z)
∥∥= O(e− c

h ), h → 0.

Proof. Fix any matrix-norm on C
mλ0 and use again (6.11) to see that

E−+(z) = (1 + F(z)E−+
0 (z)−1)E−+

0 (z), z �= λh
j ,

‖F(z)‖ = O
(
e− 2S

h
)
, 0 < S < S0 for z ∈ Ωh \ Ω̃h. (6.12)

Because of the expression of E−+
0 (z),

∥∥F(z)E−+
0 (z)−1

∥∥= O
(
e− 2S

h
)(

min
j=1,...,mλ0

|z − λh
j |
)−1

.

For z �= zh
j , j = 1, . . . ,mλ0 ,

E−+(z)−1 = E−+
0 (z)−1[1 + F(z)E−+

0 (z)−1]−1
, (6.13)

and the condition z ∈ Ωh \ Ω̃h implies minj=1,...,mλ0
|z − λh

j | � h. Therefore, the Neumann expansion of [1 +
F(z)E−+

0 (z)−1]−1 converges, which yields the result. �
We can end the proof of Theorem 1.6 with the

Proof of Proposition 6.1. Owing to Proposition 6.4 it is enough to consider the trace

1I (1Kh
.θ)(Hh)1I ϕ.

According to Stone’s formula and Proposition 4.1 one gets for nonnegative functions θ ∈ C 0
c ((Λ∗,Λ∗)), and ϕ ∈

C 0
c (I ),

1I (1Kh
.θ)(Hh)1I ϕ = −1

2iπ

∫
θ(λ)(λ − Hh

λ )−1ϕ dλ + 1

2iπ

∫
θ(λ)(λ − H ′h

λ )−1ϕ dλ, (6.14)
Kh+i0 Kh−i0
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Fig. 2. Application of Stone’s formula. Resonances lie on the second sheet and close to λ0 (semi-circle gray).

where (H ′h
z − z)−1 denotes the (meromorphic continuation from the lower-half complex plane) of the truncated

resolvent 1I (H
h − z)−11I , corresponding to the anti-resonant boundary conditions (see Remark 9).

For fixed ε > 0, consider the contour Cε made by the segments (Λ∗ + iε,Λ∗ + iε)∩Ωh and (Λ∗ − iε,Λ∗ − iε)∩Ωh

scoured in opposite way, the first one by real parts increasing (see Fig. 2). This contour in homotopic to the union of
the circle γh and the contour C′

ε (depicted in Fig. 2) which lies on the square root Riemann surface ramified along R+.
Part of the deformation takes place on the second sheet where resonances appear as poles. Meanwhile in the lower
half-plane (first sheet) the resolvent is given by the anti-resonant boundary conditions (see Remark 9). The operator
corresponding to these dual transparent boundary conditions is denoted by H ′h

z and its resolvent, [H ′h
z − z]−1, has

the same properties as [Hh
z − z]−1, up to the sign of imaginary parts. Since for any given function ϕ ∈ C 0

c ((a, b)), the
functional θ 	→ Tr[θ(Hh)ϕ] defines a nonnegative measure while the right-hand side

∑
i∈Jλ0

θ(λ0)ϕ(ci) of (6.1) is

also a positive functional of θ , the function θ can be replaced by a polynomial approximation on the interval [Λ∗,Λ∗].
Use polynomial approximations from below (resp. from above) in order to get a lower bound (resp. upper bound) of
the limit in (6.1). Hence we can assume that θ is a polynomial function on [Λ∗,Λ∗], which allows the complex
deformation of the contour integral.

We first integrate the polar part. Consider first the integral over γh, which involves only (Hh
z −z)−1. Use expression

(6.7) first. Let us note immediately that E(z) is a holomorphic function in a neighbourhood of γh, its integral is null.
Moreover (6.9) and (6.10) say

E+(z) = χE+
0 + Õ

(
e− S0

2h
)
, E−(z) = E−

0 ψ + Õ
(
e− S0

2h
)
. (6.15)

These estimates hold in the norm of trace-class operators since these operators are of finite-rank.
On the contour γh, one has

E−+(z)−1 = E−+
0 (z)−1 + G(z), G(z) = O(1), (6.16)

so coming back to (6.7)

(z − Hh
z )−1 = −E(z) + χE+

0 E−+
0 (z)−1E−

0 ψ + O
(
e− S0

2h
)
, h → 0. (6.17)

We integrate over γh and we obtain with θ(λh
j ) = θ(λ0) + o(1):

∫
γh

θ(z)(Hh
z − z)−1ϕ

dz

2iπ
= 0 + θ(λ0)χE+

0 E−
0 ψϕ + o(1)‖ϕ‖∞. (6.18)

Note that E+
0 E−

0 is nothing but the orthogonal projector on the Dirichlet states
∑mλ0

j=1 |φh
j 〉〈φh

j |. By taking the trace
and using its cyclicity, one has with the approximation of the Dirichlet states by superpositions of the eigenfunctions
of the one-well problem in Theorem 3.6
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Tr

[
χ

mλ0∑
j=1

|φh
j 〉〈φh

j |ψϕ

]
= Tr

[ mλ0∑
j=1

|φh
j 〉〈φh

j |ψϕ

]

=
mλ0∑
j=1

〈φh
j ,φh

j ψϕ〉L2

=
∑

j∈J (λ0)

ϕ(cj ) + o(1)‖ϕ‖∞.

Let us come to the contour C′
ε of which the projection on C lies in Ωh \ Ω̃h. Note that the polar part coming from

(H ′h
z −z)−1 is to be treated with the integral of the polar part coming from (Hh

z −z)−1. Since (with obvious notations)

E′−+(z)−1 − E−+(z)−1 = E′−+(z)−1(E−+(z) − E′−+(z)
)
E−+(z)−1,

Lemma 6.5 implies that the difference is exponentially small because the resonances and anti-resonances are at dis-
tance greater than h from C′

ε .
It remains the holomorphic part over C′

ε. Because the polar part is treated, one can compute this integral after the
inverse homotopy leading back to Cε . But coming back to the expansion series (6.8) of E(z) (resp. E′(z)) with main

term given by H̃ h
z (resp. H̃ ′h

z ), the application of Stone’s formula gives that the contribution of these terms is zero by
Proposition 6.4. �
Appendix A. Agmon identity

Here we just give the basic energy identity.

Lemma A.1. Let Ω := (α,β) be an open interval, V ∈ L∞(ω), z ∈ C and ϕ a Lipschitz real function on Ω. Denote
by P the Schrödinger operator P := −h2d2/dx2 + V. Then for any u1, u2 in H 2(Ω), and setting vj := eϕ/huj one
has:

β∫
α

e
2ϕ
h (P − z)u1ū2 dx =

β∫
α

hv′
1hv′

2 dx +
β∫

α

(V − z − ϕ′2)v1v̄2 dx +
β∫

α

hϕ′(v′
1v̄2 − v1v̄

′
2) dx

+ h2(e 2ϕ(α)
h u′

1ū2(α) − e
2ϕ(β)

h u′
1ū2(β)

)
.

This identity is obtained after conjugation of hd/dx by eϕ/h and integration by parts.

Appendix B. Monotony principle

A small variation of [25] provides the next result.

Proposition B.1. For i = 1,2, let Vi be two nonnegative functions in L∞(I ) and Hi := Hh
B +Vi . Consider a function

F ∈ S(R) which is decreasing on [−B,+∞). Write Fλ(k) = F(λk) and define dnFλ according to (1.35) and (1.20).
Then the inequality∫

I

(V2 − V1)dnF [V2] �
∫
I

(V2 − V1)dnF [V1]

holds.

This inequality is a convexity inequality which is a key ingredient in the analysis of thermodynamical equilibria of
Schrödinger–Poisson systems (see [24,25]). Here the assumption Vi � 0 ensures σ(Hi) ⊂ [−B,+∞). The convexity
inequality with a continuous spectrum has been proved in [25], with the assumption that the potential is 0 at infinity.
Here the different values 0 and −B for x < a and x > b do not bring any additional difficulties in this simple one-
dimensional problem.
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Appendix C. Spectral approximation

We refer the reader to [14,16] for the details. Recall that if E and F are two given closed subspaces of a Hilbert
space H, with orthogonal projections ΠE and ΠF , the nonsymmetric distance from E to F, denoted by �d(E,F ) ∈
[0,1] is the norm of operator (1 − ΠF )ΠE , and if �d(E,F ) < 1, ΠF induces on E a continuous injection on its range
with bounded inverse. Moreover, if at the same time �d(F,E) < 1, the latter distances are equal. In particular E and
F have same dimension.

Proposition C.1. Let A be an unbounded self-adjoint operator on H and Λ := [λ−, λ+] ⊂ R. Suppose that there
exist ε > 0, N linearly independent vectors ψ1, . . . ,ψN in the domain of A, μ1, . . . ,μN , N real numbers in Λ such
that Aψj = μjψj + rj , with ‖rj‖ � ε. If A has no spectrum in {x,0 < dist(x,Λ) � 2a} for some a > 0, then the
subspaces E := Span(ψ1, . . . ,ψN) and F equal to the spectral subspace 1Λ(A)H verify

�d(E,F ) �
(

N

ρ∗

)1/2
ε

a
,

where ρ∗ is the smallest eigenvalue of the Gram matrix with entries 〈ψi,ψj 〉.

In particular if A is known to have only discrete spectrum and if the directed distance �d(E,F ) can be proved in
this way to be smaller than 1, then A has at least N eigenvalues lying in Λ.

Appendix D. Scattering states for the barrier

Proposition D.1. Let V0 denote the constant potential V0(x) ≡ Λ∗ on I . Set Hh
0 := −h2� + V0 − B · 1(b,∞) and let

{ψh−(k, ·)}k denote its scattering states. Set Sk := √
(Λ∗ − λk), λk < Λ∗. Then one has as h → 0, and uniformly for

x ∈ I, for k > 0

∣∣ψh−(k, x)
∣∣2 = 4k2

Λ∗ e− Sk(x−a)

h
(
1 + O

(
e− 2Sk(b−x)

h
))

,

∣∣ψh−(−k, x)
∣∣2 = 4k2

Λ∗ + B
e

Sk(x−b)

h
(
1 + O

(
e− 2Sk(x−a)

h
))

.

It suffices to solve explicitly on I the system characterising ψh−(k, ·) on the explicit basis of solutions to the ODE
(since the potential is constant on I ). Use the scattering conditions (1.17)–(1.18). These conditions are still valid when
λ < 0 because of the choice of the square root indeed. Finally the computation reduces to the solving of 2 by 2 affine
systems. We just give the final result.

Appendix E. Pointwise estimate for the resolvent

The next result shows that no Lipschitz regularity is necessary in dimension 1 in order to transform weighted
L2-estimates into pointwise estimates of the Green functions. Once the weighted L2-estimates are obtained from the
Agmon identity of Appendix A, it suffices to use the equation after the regularisation of the Agmon distance which is
possible because the Õ estimates can absorb little exponential errors.

Proposition E.1. Let H = −h2� + V be a closed operator with V ∈ L∞(I ), I = [a, b], D(H) ⊂ H 2(I ), with dual
H ′ and D(H ′) ⊂ H 2(I ). Fix z ∈ C such that z /∈ σ(H) for all h ∈ (0, h0). We assume that there is a distance d ∈
C 0(I × I ), such that the resolvent estimate∥∥χx(z − H)−1χy

∥∥
L(L2)

� CηA(h)e
−d(x,y)+η

h

holds for all (x, y,h) ∈ I × I × (0, h0) as soon as η ∈ (0, η0), with η0 > 0 small enough and χp generically denotes
a cut-off function supported in |x − p| = O(η). Then the pointwise estimate∣∣(z − H)−1[x, y]∣∣= Õ

(
A(h)e

−d(x,y)
h
)

holds with uniform constants with respect to (x, y,h) ∈ I × I × (0, h0).
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Proof. Let y0 ∈ I be fixed. Consider a smooth function ϕ ∈ C∞(I ) which is an approximation of d(x, y0), such that
‖ϕ − d(., y0)‖L∞ � η and f ∈ L2(I ).

Let u be the solution to (H − z)u = χy0f so that

e
ϕ
h (−h2� + V − z)e− ϕ

h
(
e

ϕ
h u
)= e

ϕ
h χy0f.

By defining v = eϕ/hu, the assumption leads to the estimate

‖v‖L2 � CηA(h)e
cη
h ‖χy0f ‖. (E.1)

Using the relation

e
ϕ
h
(−(h∂x)

2 + V − z
)
e− ϕ

h = −h2∂2
x + 2hϕ′∂x + hϕ′′ + V − (ϕ′)2 − z,

we can write

[C − h2∂2
x + 2hϕ′∂x]v = e

ϕ
h χy0f + Cv + hϕ′′v − (V − (ϕ′)2 − z

)
v, (E.2)

where C is a strictly positive constant large enough. The regularity of ϕ implies

‖v‖H 2,h � Cηe
cη
h ‖χy0 f̃ ‖L2 .

In dimension one, H 2,h is continuously embedded in C 0([a, b]). Thus the application f 	→ eϕ/h(H − z)−1e−ϕ/hχy0f

is continuous from L2([a, b]) onto C 0([a, b]) with the above uniform estimate.
By duality, χy0 e−ϕ/h(H ′ − z)−1e−ϕ/h is continuous from (Mb(I ),‖ · ‖b) onto L2.
By changing y0 into x0 and H into H ′, this says that v1 = χx0 ed(x0,y0−cη)/h(H − z)−1δy0 has an L2(I )-norm

bounded by CηA(h). A bootstrap with (E.2) leads to the uniform estimate of |v1(x)|, which yields the pointwise
resolvent estimate. �
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