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Abstract

In this article we study the problem

(P)

⎧⎨
⎩

−�u + |∇u|q = λg(x)u + f (x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

with 1 � q � 2 and f,g are positive measurable functions. We give assumptions on g with respect to q for which for all λ > 0
and all f ∈ L1, f � 0, problem (P) has a positive solution. In particular we focus our attention on g(x) = 1/|x|2 to prove that the
assumptions on g are optimal.
© 2007

Résumé

Dans cet article nous étudions le problème

(P)

⎧⎨
⎩

−�u + |∇u|q = λg(x)u + f (x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

où 1 � q � 2 et f,g sont des fonctions mesurables positives. Nous donnons des hypothèses sur g dépendant de q telles que pour
tout λ > 0 et pour tout f ∈ L1, f � 0, le problème (P) a une solution positive. Nous portons une attention particulière au cas
g(x) = 1/|x|2 pour montrer que les hypothèses sur g sont optimales.
© 2007
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1. Introduction

This paper is devoted to obtain existence and nonexistence results for nonlinear elliptic equations of the form{−�u + |∇u|q = λg(x)u + f (x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is an open bounded domain, 1 � q � 2 and λ ∈ R. In the whole of this work, we suppose that f

and g are positive measurable functions with some summability assumptions that we will specify in each case. For
λ ≡ 0, equations of the form (1.1) have been widely studied in the literature. We refer to [1,4,5,9,7,8,17,19] and the
references therein. The case q > 2 and f Lipschitz has been studied in [22] with quite different methods. The case
λ > 0 and the presence of the term |∇u|q in the right-hand side of the equation has been recently studied in [2]. In [10]
it is proved that for all λ > 0 the equation

−�u = λ
u

|x|2 + f (x) in Ω ⊂ RN,N � 3 and 0 ∈ Ω, (1.2)

has in general no solution for a positive f ∈ L1(Ω). However, in [3], by adding the gradient term |∇u|2 on the left-
hand side of Eq. (1.2), we find a positive solution for all λ > 0 and for all positive f ∈ L1(Ω). This means that if
q = 2 and g(x) = |x|−2 in problem (1.1), the term |∇u|2 produces a strong regularizing effect. The new feature in this
paper is to find the assumptions on g in terms of q in order to solve problem (1.1) for all λ > 0 and for all f ∈ L1(Ω),
f � 0. We can reformulate the main objective of the paper as follows: fixed g find the optimal q for which for all
λ > 0 and for all positive function f ∈ L1(Ω), problem (1.1) has a positive solution. Precisely we prove the existence
of solution for all λ > 0 and for all f ∈ L1(Ω), f � 0, if g � 0 is an admissible weight in the sense of (2.1) below.
This condition, in general, also becomes optimal. The previous result also proves that the absorption term |∇u|q is
sufficient to break down any resonant effect of the linear zero order term. For f ∈ L1(Ω), we say that u is a weak
solution to problem (1.1) if u ∈ W

1,q

0 (Ω), g(x)u ∈ L1(Ω) and∫
Ω

u(−�φ)dx +
∫
Ω

|∇u|qφ dx = λ

∫
Ω

g(x)uφ dx +
∫
Ω

f (x)φ dx, ∀φ ∈ C∞
0 (Ω).

Since we consider solutions to (1.1) with data in L1(Ω), we refer to [16] and [15] for a complete discussion about
this framework. The paper is organized as follows. Section 2 is devoted to prove existence results. In Subsection 2.1,
fixed 1 < q � 2 we prove the main result, that is, if g is an admissible weight then for all λ > 0 and for all f ∈ L1(Ω),
f � 0, there exists u ∈ W

1,q

0 (Ω) positive solution to problem (1.1). This is the result of Theorem 2.3.
In Subsection 2.2, we obtain conditions on g and λ such that for all 1 < q � 2, there exists solution to problem (1.1)

provided that f is in a suitable class associated explicitly to g. Due to the presence of the Laplace operator and
the linear term λg(x)u, then the natural condition is to assume (2.12). In Subsection 2.3, we give some results on
uniqueness of solution. In Section 3, we consider the Hardy potential to prove nonexistence results that show the
optimality of the condition required for existence in Theorems 2.3 and 2.9. These nonexistence results are related to
the classical Hardy inequality,∫

Ω

|∇u|2 dx � ΛN

∫
Ω

u2

|x|2 dx, for all u ∈ C∞
0 (Ω) where ΛN =

(
N − 2

2

)2

(see for instance [18]). More precisely by setting g(x) = |x|−2, we prove nonexistence results for a very weak solution
if 1 � q � N

N−1 and λ > ΛN , the Hardy constant. Next we prove the optimality of the summability assumption on f

in Theorem 2.9. Finally in Subsection 3.1 we study the potential g(x) = |x|−α , 1 < α < N+2
2 . Given u a measurable

function we consider the k-truncation of u defined by

Tk(u) =
{

u, |u| � k,

k u
|u| , |u| > k.



B. Abdellaoui et al. / Ann. I. H. Poincaré – AN 25 (2008) 969–985 971
2. Existence of weak positive solutions

In this section we prove the existence of positive solution to problem (1.1) according to a relation between q,λ,g

and f . In the first part, we prove that for all λ > 0 and for all f ∈ L1(Ω), f � 0, there exists a positive solution
to (1.1), provided that g satisfies some assumptions related to q . In the second part, we study the class of data f for
which, for all q in [1,2] and under some conditions on g, there exists positive solution for small values of λ.

2.1. Admissible weights: Global existence result

Let consider in (1.1) a fixed q , 1 < q � 2, then we say that g is an admissible weight in the sense of (2.1) below,

g � 0, g ∈ L1(Ω) and C(g,q) = inf
φ∈W

1,q
0 (Ω)\{0}

(
∫
Ω

|∇φ|q dx)
1
q∫

Ω
g|φ|dx

> 0. (2.1)

Remark 2.1. It is clear that if g satisfies (2.1), then g ∈ W−1,q ′
(Ω) ∩ L1(Ω), q ′ = q

q−1 . Moreover (2.1) implies that

(a)
∫
Ω

g|u|dx < ∞ for all u ∈ W
1,q

0 (Ω).

(b) Defining T :W 1,q

0 (Ω) → R by

〈T ,u〉 ≡
∫
Ω

gudx, (2.2)

then T is a linear continuous form on W
1,q

0 (Ω). That means that there exists �F = (f1, f2, . . . , fN) ∈ (Lq ′
(Ω))N

such that g = −div( �F) and then

〈T ,u〉 ≡
∫
Ω

gudx =
∫
Ω

〈 �F,∇u〉dx.

As a consequence, the duality product is equivalent to the first integral and

‖T ‖
W−1,q′

(Ω)
= ‖ �F‖

(Lq′
(Ω))N

.

Proposition 2.2. Assume that g satisfies (2.1) and let T be defined by (2.2). Consider gn(x) = min{g(x), n} and the
corresponding linear continuous form

Tn :W 1,q

0 (Ω) → R,

u → Tn(u) =
∫
Ω

gnudx.

The following statements hold.

(i) Tn → T strongly in W−1,q ′
(Ω).

(ii) Assume that un ⇀ u weakly in W
1,q

0 (Ω), un � 0 and un → u a.e., then gnun → gu strongly in L1(Ω).

Proof. (i) As in Remark 2.1 we also have that

〈Tn,u〉 =
∫
Ω

gnudx,

that is, the duality is realized by the integral and moreover

C(gn, q) = inf
φ∈W

1,q
(Ω)\{0}

(
∫
Ω

|∇φ|q dx)
1
q∫

Ω
gn|φ|dx

> 0.
0
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Notice that

‖Tn‖W−1,q′ = sup
‖u‖

W
1,q
0 (Ω)

�1

∣∣〈Tn,u〉∣∣ � sup
‖u‖

W
1,q
0 (Ω)

�1

∣∣∣∣
∫
Ω

gnu

∣∣∣∣ � sup
‖u‖

W
1,q
0 (Ω)

�1

∫
Ω

g|u| � ‖T ‖
W−1,q′ .

Then {Tn}n∈N, up to a subsequence, converges weakly in W−1,q ′
(Ω). Since for all u ∈ W

1,q

0 (Ω), the Lebesgue
theorem proves that

gn|u| → g|u| strongly in L1(Ω), then {Tn}n∈N ⇀ T

therefore,

‖T ‖
W−1,q′ � lim inf

n→∞ ‖Tn‖W−1,q′ � lim sup
n→∞

‖Tn‖W−1,q′ � ‖T ‖
W−1,q′ ,

hence,

Tn → T , strongly in W−1,q ′
(Ω).

(ii) According to the strong convergence proved in (i), we have that if un ⇀ u weakly in W
1,q

0 (Ω), then,

〈Tn,un〉 =
∫
Ω

gnun dx →
∫
Ω

gudx = 〈T ,u〉 as n → ∞.

If we assume that, moreover, un � 0 and un → u a.e., then by using a well-known result in [12] we obtain that
gnun → gu strongly in L1(Ω). (See also [21], Theorem 1.9, page 21.) �

The main result of this section is the following one.

Theorem 2.3. Assume that 1 < q � 2 and let g be a positive function such that (2.1) holds, then for all λ � 0 and for
all f ∈ L1(Ω), f � 0, there exists u ∈ W

1,q

0 (Ω), u � 0, that solves problem (1.1) in the sense of distributions.

To prove Theorem 2.3 we start by proving the result in some particular cases and then we proceed by approximation
of g and f . Notice that since 1 < q � 2, then N

2 � N
q

, therefore the following first approach is quite natural.

Theorem 2.4. Assume that f,g ∈ Lr(Ω) are positive functions with r > N
q

, then for all λ � 0, there exists u ∈
W

1,2
0 (Ω) ∩ L∞(Ω) a weak positive solution to problem (1.1).

Proof. Step 1: For every fixed k > 0, consider v ∈ W
1,2
0 (Ω) ∩ L∞(Ω) such that −�v = λkg(x) + f (x) in Ω and

denote Mk = ‖v‖L∞ . Notice that v is bounded by the assumptions on g and f and by standard elliptic estimates
(see [24]). It follows that zero is a subsolution and v is a supersolution to problems{−�wn + |∇wn|q

1+ 1
n
|∇wn|q = λg(x)Tkwn + f (x),

wn ∈ W
1,2
0 (Ω), wn � 0

(2.3)

for all n ∈ N. By a simple variation of the arguments used in [8] and [4], there exists a sequence of nonnegative minimal
solutions {wn} to problems (2.3). It follows that −�wn � λkg(x) + f (x) = −�v, hence by the weak comparison
principle we conclude that 0 � wn � v � M , uniformly in n, in particular, wn ∈ W

1,2
0 (Ω) ∩ L∞(Ω). Taking wn as

test function in (2.3) we obtain,∫
Ω

|∇wn|2 dx +
∫
Ω

Hn(∇wn)wn dx = λ

∫
Ω

g(x)Tkwnwn dx +
∫
Ω

f (x)wn dx,

where Hn(s) = |s|q/(1 + 1
n
|s|q). It is easy to check that there exists a positive constant C such that∫

|∇wn|2 dx � C(f,g,Ω,k) uniformly in n,
Ω
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therefore, up to subsequences wn ⇀ uk weakly in W
1,2
0 (Ω). By weak-* convergence in L∞(Ω) we also have that

uk ∈ W
1,2
0 ∩L∞(Ω) and uk � Mk . Next we investigate the equation satisfied by uk . To do that we prove the following

claim.

Convergence claim. wn → uk strongly in W
1,2
0 (Ω).

Proof of the convergence claim. We follow closely the argument used in [5]. Consider φ(s) = se
1
4 s2

, which satisfies
φ′(s) − |φ(s)| � 1

2 . Taking φ(wn − uk) as test function in (2.3),∫
Ω

∇wnφ
′(wn − uk)∇(wn − uk) dx +

∫
Ω

Hn(∇wn)φ(wn − uk) dx

= λ

∫
Ω

g(x)Tkwnφ(wn − uk) dx +
∫
Ω

f (x)φ(wn − uk) dx. (2.4)

As wn ⇀ uk weakly in W
1,2
0 (Ω), then a direct computation shows that∫

Ω

∇wnφ
′(wn − uk)∇(wn − uk) dx =

∫
Ω

∣∣∇(wn − uk)
∣∣2

φ′(wn − uk) dx + o(1).

Since q � 2, it is well known that ∀ε > 0 there exists a nonnegative constant Cε such that

sq � εs2 + Cε, s � 0. (2.5)

Hence the second term in the left-hand side can be estimated in the following way,∫
Ω

Hn(∇wn)φ(wn − uk) dx � ε

∫
Ω

|∇wn|2
∣∣φ(wn − uk)

∣∣dx + C(ε)

∫
Ω

∣∣φ(wn − uk)
∣∣dx

= ε

∫
Ω

|∇wn − ∇uk|2
∣∣φ(wn − uk)

∣∣dx − ε

∫
Ω

|∇uk|2
∣∣φ(wn − uk)

∣∣dx

+ 2ε

∫
Ω

∇wn∇uk

∣∣φ(wn − uk)
∣∣dx + C(ε)

∫
Ω

∣∣φ(wn − uk)
∣∣dx.

Since wn ⇀ uk weakly in W
1,2
0 (Ω) and by the fact that |φ(wn − uk)| → 0 almost everywhere (and in L2(Ω)), then it

follows

(i)
∫
Ω

|∇uk|2|φ(wn − uk)|dx → 0 as n → ∞,

(ii)
∫
Ω

∇wn∇ukφ(wn − uk) dx →0 as n → ∞.

Therefore, passing to the limit as n tends to ∞, we have∫
Ω

Hn(∇wn)φ(wn − uk) dx � ε

∫
Ω

|∇wn − ∇uk|2
∣∣φ(wn − uk)

∣∣dx + o(1).

Moreover, it is clear that the right-hand side in (2.4) goes to zero as n → ∞. Since φ′(s)−|φ(s)| > 1
2 , choosing ε � 1

we conclude that
1

2

∫
Ω

|∇wn − ∇uk|2 dx �
∫
Ω

(
φ′(wn − uk) − ε

∣∣φ(wn − uk)
∣∣)|∇wn − ∇uk|2 dx � o(1),

whence wn → uk in W
1,2
0 (Ω) and the claim is proved. Moreover, from (2.5) it follows that

Hn(∇wn) � c1|∇wn|2 + c2.
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By the claim, we have in particular the almost everywhere convergence of the gradients and therefore we conclude
that

Hn(∇wn) → |∇uk|q in L1(Ω).

Hence we find that uk solves problem

−�uk + |∇uk|q = λg(x)Tkuk + f (x) in Ω, uk ∈ W
1,2
0 (Ω). (2.6)

Step 2. We claim that there exists M > 0 such that ‖uk‖L∞(Ω) � M for all k > 0.
First of all we prove that {uk} is uniformly bounded in La(Ω) for all a > 1.
Consider

λ1(θ, g) = inf
φ∈C∞

0 (Ω),φ �=0

∫
Ω

|∇φ|θ dx∫
Ω

g|φ|θ dx
.

Since g ∈ Lr(Ω) with r > N
q

, it follows that λ1(θ) > 0 for all θ � q .
Since uk ∈ L∞(Ω), then using ua

k , with a � 2, as a test function in (2.6), we get

a

∫
Ω

ua−1
k |∇uk|2 dx +

∫
Ω

ua
k |∇uk|q dx � λ

∫
Ω

gua+1
k dx +

∫
Ω

f ua dx.

Thus

4a

(2 + a)2

∫
Ω

|∇u
a
2 +1
k |2 dx +

(
q

a + q

)q ∫
Ω

|∇u
a
q
+1

k |q dx � λ

∫
Ω

gua+1
k dx +

∫
Ω

f ua dx.

Using Hölder, Young and Poincaré inequalities there results that∫
Ω

gua+1 dx =
∫
Ω

g
a

2(a+q) u
a
2 g

1
2 u

a
2 +1g

q
2(a+q) dx

�
(∫

Ω

gua+q dx

) a
2(a+q)

(∫
Ω

gua+2 dx

) 1
2
(∫

Ω

g dx

) q
2(a+q)

� ε

∫
Ω

gua+q dx + ε

∫
Ω

gua+2 dx + C(ε)

∫
Ω

g dx

� ε

λ1(q, g)

∫
Ω

|∇u
a
q
+1

k |q dx + ε

λ1(2, g)

∫
Ω

|∇u
a
2 +1
k |2 dx + C(ε,g),

where ε is a positive constant that will be chosen later. On the other hand we have∫
Ω

f ua dx �
(∫

Ω

u2∗( a
2 +1)dx

) a
2∗(a/2+1)

(∫
Ω

f
N(a+2)
2(N+a) dx

) 2(N+a)
N(a+2)

� C(f,S)

(∫
Ω

|∇u
a
2 +1)|2 dx

) a
a+2

� ε

∫
Ω

|∇u
a
2 +1)|2 dx + C(f,S, ε),

where S is the Sobolev constant and 2∗ = 2N
N−2 . Therefore, putting together the above inequalities it follows that(

4a

(1 + a)2
− ελ

λ1(2, g)
− ε

)∫
Ω

|∇u
a
2 +1
k |2 dx +

((
q

a + q

)q

− ελ

λ1(q, g)

)∫
Ω

|∇u
a
q
+1

k |q dx � C(f,g,S, ε).

Choosing ε small enough we conclude that∫
|∇u

a
2 +1
k |2 dx +

∫
|∇u

a
q
+1

k |q dx � C,
Ω Ω
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where C is independent of k. Hence using Sobolev inequality we obtain that ‖uk‖La(Ω) � C(a,λ,f, g) for all a > 1.
Whence {guk + f }Lr(Ω) is uniformly bounded in k, for some r > N

2 . The uniform boundedness is a consequence of
classical results about elliptic regularity, see [24].

Therefore if k > M , u ≡ uk and is a solution to problem (1.1). �
Remark 2.5. Notice that if q � 2, then the passage to the limit in the convergence claim above can be performed in
a different way; indeed using a compactness result by Boccardo–Murat in [6], the gradients converge almost every-
where, therefore using Vitali theorem we get the strong convergence of the gradient.

However, we prove the convergence claim with arguments valid in a more general setting, which are needed to
obtain strong convergence in the next theorems.

In the following result, we continue considering a weight with extra summability, but a general f ∈ L1(Ω).

Theorem 2.6. Assume that f,g are positive functions, f ∈ L1(Ω), f � 0 and g ∈ Lr(Ω) with r > N
q

, then for all

λ � 0, problem (1.1) has a positive solution u ∈ W
1,q

0 (Ω).

Proof. Consider a sequence fn ∈ L∞(Ω) such that fn ↑ f in L1(Ω). Thanks to Theorem 2.4, there exists a sequence
of positive bounded functions {un}, solutions to problems⎧⎨

⎩
−�un + |∇un|q = λg(x)un + fn(x) in Ω,

un > 0 in Ω, un = 0 on ∂Ω,

un ∈ W
1,2
0 (Ω) ∩ L∞(Ω).

(2.7)

Notice that, in particular un solves a problem of the form −�un = Fn ∈ L1(Ω), then un is the unique entropy solution
to this problem. As a consequence we can use Tk(un) as a test function. See for instance [24] or [16].

Taking Tkun as test function in (2.7), it follows that∫
Ω

|∇Tkun|2 dx +
∫
Ω

|∇un|qTkun dx = λ

∫
Ω

g(x)unTkun dx +
∫
Ω

fn(x)Tkun dx in Ω.

Define Ψk(s) = ∫ s

0 Tk(t)
1
q dt , that explicitly is,

Ψk(s) =
⎧⎨
⎩

q
q+1 s

q+1
q if s < k,

q
q+1k

q+1
q + (s − k)k

1
q if s > k,

then by using the assumptions on g and f , it follows that for all ε > 0, there exists Cε > 0 such that

∫
Ω

|∇Tkun|2 dx +
∫
Ω

|∇Ψkun|q dx � kελ

(∫
Ω

g(x)un dx

)q

+ λkC(ε) + k‖fn‖L1

� εkλ

C(q,g)

∫
Ω

|∇un|q dx + λkC(ε) + k‖fn‖L1 . (2.8)

Hence, as in the second step of the proof of Theorem 2.4,∫
Ω

|∇un|q dx �
∫
Ω

|∇Tkun|2 dx + k

∫
{un�k}

|∇un|qdx + Cq |Ω|

� εkλ

C(q,g)

∫
|∇un|q dx + λkC(ε) + Cq |Ω| + k‖f ‖L1,
Ω
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then un ⇀ u weakly in W
1,q

0 (Ω) and Tkun ⇀ Tku weakly in W
1,2
0 (Ω). It is clear by the assumption on g that

gun → gu strongly in L1(Ω). Let Gk(s) = s − Tk(s) and define ψk−1(s) = T1(Gk−1(s)), then ψk−1(un)|∇un|q �
|∇un|qχ{un�k}. As in [5], using ψk−1(un) as a test function in (2.7) there results that∫

Ω

∣∣∇ψk−1(un)
∣∣2

dx +
∫
Ω

ψk−1(un)|∇un|q dx =
∫
Ω

(
λg(x)un + fn(x)

)
ψk−1(un) dx.

Since {un} is uniformly bounded in Lp(Ω),∀p � q∗, it follows that∣∣{x ∈ Ω, such that k − 1 < un(x) < k
}∣∣ → 0,

∣∣{x ∈ Ω, such that un(x) > k
}∣∣ → 0 as k → ∞,

uniformly in n. Thus we conclude

lim
k→∞

∫
{un�k}

|∇un|q dx = 0, uniformly in n. (2.9)

We follow the same arguments as in the proof of the convergence claim in Theorem 2.4. Take φ(Tk(un) − Tk(u)) as a
test function in (2.7), then

Tkun → Tku strongly in W
1,2
0 (Ω). (2.10)

To finish the proof, it is sufficient to show that

|∇un|q → |∇u|q strongly in L1(Ω).

Since the sequence of gradients converges a.e. in Ω , we only have to show that is equi-integrable and to apply Vitali’s
theorem. Let E ⊂ Ω be a measurable set. Then,∫

E

|∇un|q dx �
∫
E

|∇Tkun|q dx +
∫

{un�k}∩E

|∇un|q dx.

From (2.10) it follows that for all k > 0, Tk(un) → Tk(u) strongly in W
1,p

0 (Ω) for all p � 2. In particular we obtain
the strong convergence for p = q . Hence the integral

∫
E

|∇Tk(un)|q dx is uniformly small if |E| is small enough. On
the other hand, thanks to (2.9) we obtain that∫

{un�k}∩E

|∇un|q dx �
∫

{un�k}
|∇un|q dx → 0 as k → ∞ uniformly in n.

The equi-integrability of |∇un|q follows immediately, and the proof is completed. �
Proof of Theorem 2.3. We consider the truncation gn(x) = min{g(x), n} ∈ L∞(Ω). Due to Theorem 2.6, there exists
a sequence of positive functions {un} such that un solves⎧⎨

⎩
−�un + |∇un|q = λgn(x)un + f (x) in Ω,

un > 0 in Ω, un = 0 on ∂Ω,

un ∈ W
1,q

0 (Ω).

(2.11)

Since Tkun ∈ W
1,q

0 (Ω) ∩ L∞(Ω), then we can use Tkun as a test function in (2.11), it follows that∫
Ω

|∇Tkun|2 dx +
∫
Ω

|∇Ψkun|q dx � λ

∫
Ω

gn(x)Tkunun dx +
∫
Ω

f (x)Tkun dx

� kλ

∫
Ω

gn(x)un dx + k

∫
Ω

f (x)dx.

Since ∫
Ω

|∇Ψkun|q dx �
∫

|∇Ψkun|q dx � k

∫
|∇u|q dx,
{un�k} {un�k}
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then as above∫
Ω

∣∣∇Tk(un)
∣∣2

dx + k

∫
{un�k}

|∇un|q dx � kελ

(∫
Ω

gn(x)un dx

)q

+ k

∫
Ω

f (x)dx + λkC(ε,Ω).

Therefore by (2.1) we have that∫
Ω

|∇un|q dx � kελ

C(g, q)

∫
Ω

|∇un|q dx + k

∫
Ω

f (x)dx + λkC(ε, q,Ω),

hence un ⇀ u weakly in W
1,q

0 (Ω). We have that un � 0 and by Sobolev and Rellich theorems, up to a subsequence,
we obtain that un → u a.e. Then we apply Proposition 2.2 to obtain that

gnun → gu strongly in L1(Ω).

Therefore to finish the proof it is sufficient to show that un → u strongly in W
1,q

0 (Ω). This fact follows by proving

that Tkun → Tku strongly in W
1,2
0 (Ω) and using Vitali’s theorem as in the previous steps. �

Remarks 2.7.

(1) The solution of problem (1.1) obtained in Theorem 2.3 is also an entropy solution in the sense that we can take in
problem (1.1) test functions of the form Tk(u − v) with v ∈ W 1,2(Ω) ∩ L∞(Ω).

(2) The same existence result holds if f is a bounded positive Radon measure such that f ∈ L1(Ω)+W−1,2(Ω) (f is
absolutely continuous with respect to the classical capacity). These results are obtained with some minor technical
changes, i.e. the result follows using the same approximation arguments. See [15] to find the precise meaning of
solution in this framework and equivalent definitions. By the regularity theory of renormalized solutions we easily
get that if u is a positive solution to problem (1.1), then u ∈ W

1,q

0 (Ω) ∩ W
1,p

0 (Ω) for all 1 � p < N
N−1 .

(3) The existence result obtained in Theorem 2.3 in particular means that resonance phenomenon doesn’t occur if we
add |∇u|q as an absorption term. Without the gradient term, positive solution exists just by assuming that λ is
less than the infimum of the spectrum of the operator −� with the corresponding weight g and under a suitable
condition on f .

As a direct application of Theorem 2.3 we obtain the following well known result.

Corollary 2.8. Assume that λ = 0, then problem (1.1) has an entropy positive solution for all 0 � f ∈ L1(Ω) and for
all 1 � q � 2.

In fact we can consider g ∈ L∞(Ω) in Theorem 2.3 and then pass to the limit using a priori estimates as λ goes to 0.
A direct proof of this particular existence result can be obtained using truncation argument. See [5]. We will analyze
in particular the Hardy potential in section 3 in order to prove the optimality of the assumptions in Theorem 2.3.

2.2. Existence of solution for all q ∈ [1,2] and small λ

In this section we will find general conditions on g and f that assure the existence of solution for all q � 2. The
presence of the linear term λg(x)u motivates the following assumption on g,

g � 0, g �≡ 0 and g ∈ L1(Ω) with λ1(g,2) = inf
φ∈W

1,2
0 (Ω)\{0}

∫
Ω

|∇φ|2 dx∫
Ω

g|φ|2 dx
> 0. (2.12)

It is easy to check that under assumption (2.12), for every λ̄ < λ1(g,2) there exists a unique ϕ ∈ W
1,2
0 (Ω), positive

weak solution to the problem

−�ϕ = λ̄g(x)ϕ + g(x) in Ω, ϕ = 0 on ∂Ω. (2.13)

The main result in this section is the following one.
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Theorem 2.9. Assume that 0 < λ < λ1(g,2) and let ϕ be the solution to problem (2.13) with λ < λ̄ < λ1(g,2).
Suppose that f is a positive function such that

∫
Ω

f ϕ dx < ∞, then there exists u ∈ W
1,q

0 (Ω) positive solution to
problem (1.1) and moreover,

∫
Ω

|∇u|p dx < ∞,∀p � q if q � N
N−1 and p < N

N−1 , on the contrary case.

Proof. By using Theorem 2.4, we find a sequence {un} of positive solutions to the approximated problems{−�un + |∇un|q = λgn(x)un + fn(x) in Ω,

un ∈ W
1,q

0 (Ω),
(2.14)

with gn(x) = min{g(x), n} ∈ L∞(Ω) and fn(x) = min{f (x), n} ∈ L∞(Ω). It is clear that
∫
Ω

fn(x)ϕ dx < C uni-
formly in n. By a duality argument we obtain∫

Ω

un(−�ϕ)dx +
∫
Ω

|∇un|qϕ dx = λ

∫
Ω

gn(x)unϕ dx +
∫
Ω

fn(x)ϕ dx.

Therefore,

(λ̄ − λ)

∫
Ω

g(x)unϕ dx +
∫
Ω

g(x)un dx +
∫
Ω

|∇un|qϕ dx �
∫
Ω

fn(x)ϕ dx �
∫
Ω

f (x)ϕ dx � C,

and hence we conclude that∫
Ω

g(x)unϕ dx � C

λ̄ − λ
uniformly in n,

∫
Ω

g(x)un dx � C uniformly in n,

∫
Ω

|∇un|qϕ dx � C uniformly in n.

Taking Tkun as a test function in (2.14), we have that∫
Ω

|∇Tkun|2 dx +
∫
Ω

|∇un|qTkun dx � λk

∫
Ω

gn(x)un dx + k

∫
Ω

f (x)dx.

Thus 1
k

∫
Ω

|∇Tkun|2dx � C and Tkun ⇀ Tku weakly in W
1,2
0 (Ω). In particular for k = 1 we obtain that∫

Ω

|∇un|q �
∫
Ω

|∇T1un|2 dx + C(q,Ω) +
∫
Ω

|∇un|qT1un dx � C,

therefore un ⇀ u weakly in W
1,q

0 (Ω). If q > N
N−1 and g ∈ Lm(Ω) with m > N

2 or g(x) = |x|−2 the existence result

is a consequence of the previous theorem. On the contrary, if q � N
N−1 , then using the regularity result for entropy

solutions obtained in [16] (see also [15] for the case of Radon measures), we obtain an extra regularity, that is, un ⇀ u

in W
1,p

0 (Ω) for all p < N
N−1 . We claim that gn(x)un → g(x)u strongly in L1(Ω). To prove the claim we consider the

sequence {wn} ∈ W
1,2
0 (Ω) of solutions to the problem,{ −�wn = λgn(x)wn + fn(x) in Ω,

wn = 0 on ∂Ω.
(2.15)

Since λ < λ1(g,2), then using the assumption on f we obtain that wn ↗ w everywhere and wn ⇀ w weakly in
W

1,p

0 (Ω), for all p < N
N−1 , with w the unique entropy solution to problem −�w = λg(x)w + f . Notice that solu-

tions to (2.14) are subsolutions to (2.15), hence gnun � gnwn � gw. Thanks to the dominated convergence theorem,
gn(x)un → g(x)u in L1(Ω) and we conclude. To finish we have just to prove the strong convergence of |∇un|q to
|∇u|q in L1(Ω). The proof is done in two steps. First we start by proving the strong convergence of Tk(un) to Tk(u)

in W
1,2

(Ω), which follows by applying to Tk(un) and Tk(u) the techniques used in the proof of convergence claim in
0
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Theorem 2.4. Then to get the main convergence we use Vitali’s Lemma and a suitable test function as in the last step
in the proof of Theorem 2.6. �
Remarks 2.10.

(1) Notice that if g(x) = |x|−2, then the regularity required on f in Theorem 2.9, depends on λ. See [10].
(2) In Section 3 we will show that the condition on the integrability of f in Theorem 2.9 is, in general, optimal.

2.3. Some remarks on the uniqueness

We consider the case q = 2 for which a change of variables allows us to find a comparison principle and uniqueness.

Lemma 2.11. Let u ∈ W
1,2
0 (Ω) be such that u �= 0 and −�u + |∇u|2 � 0, then there exist constants C,R > 0 such

that u � C in BR(0) ⊂ Ω .

Proof. The change of variables v = 1 − e−u transforms −�u + |∇u|2 � 0 into −�v � 0 with v �= 0. It is sufficient
to apply the classical maximum principle of the Laplacian operator and we conclude. �
Lemma 2.12. Assume that f ∈ L1(Ω) is a positive function and g satisfies (2.1). Then for all λ > 0 the problem⎧⎨

⎩
−�u + |∇u|2 = λg(x)u + f (x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(2.16)

has at most a positive solution u ∈ W
1,2
0 (Ω).

Proof. If u ∈ W
1,2
0 (Ω) is a solution to (2.16) then v = 1 − e−u satisfies 0 � v � 1 in Ω and it is a solution to{

−�v = λg(x)(1 − v) log( 1
1−v

) + (1 − v)f (x) in Ω,

v = 0 on ∂Ω.
(2.17)

Define

H(x, v) =
{

λg(x)(1 − v) log( 1
1−v

) + (1 − v)f (x), if 0 � v < 1,

0, if v � 1.

By a direct computation we find that H(v,x)
v

is a nonincreasing function in v for v � 0, then by similar arguments as
in [11] we conclude that v is the unique solution to (2.17). Therefore, u is the unique solution to (2.16). �
Remark 2.13. Using the same ideas of Lemma 2.12 we get a comparison principle for a sub- and super-solution to
problem (2.16), namely if u1 is a nonnegative subsolution and u2 is a nonnegative supersolution such that u1, u2 ∈
W 1,2(Ω) and u2 � u1 on ∂Ω , then u2 � u1 in Ω .

We will prove the following comparison principle, that we will use below, without change of variables.

Theorem 2.14. Assume that 1 � q < N
N−1 and 0 � f ∈ L1(Ω). Let v,u be two nonnegative functions such that

u,v ∈ W 1,q (Ω), �u,�v ∈ L1(Ω) and{−�u + |∇u|q � f (x) in Ω,

−�v + |∇v|q � f (x) in Ω,

v � u on ∂Ω,

(2.18)

then v � u in Ω .

Proof. Consider w = v − u, then it is clear that w ∈ W 1,q(Ω), w � 0 on ∂Ω and �w ∈ L1(Ω). In order to conclude,
it is sufficient to prove that w+ = 0. It follows that

−�w + |∇v|q − |∇u|q � 0.
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Since 1 � q � 2, we obtain{−�w � a(q, x)|∇w|,
w � 0 on ∂Ω,

w ∈ W 1,q (Ω),�w ∈ L1(Ω),

with a(q, x) � q|∇u|q−1 if q > 1 and a(q, x) = 1 if q = 1. Therefore, applying Kato’s inequality (see [20] and [13])
it follows that⎧⎨

⎩
−�w+ � a(q, x)|∇w+|,
w+ = 0 on ∂Ω,

w+ ∈ W
1,q

0 (Ω).

Since q < N
N−1 , then a(q, x) ∈ Lr(Ω) with r > N , therefore we can apply the results of [4], thus we conclude that

w+ = 0. �
Corollary 2.15.

(1) Assume that q < N
N−1 and let f ∈ L1(Ω) be a positive function, then problem{−�u + |∇u|q = f (x) in Ω,

u = 0 on ∂Ω,
(2.19)

has a unique positive solution.
(2) If q < N

N−1 , then problem (1.1) has a minimal solution.

3. The Hardy potential: optimal results

Consider the problem,⎧⎨
⎩

−�u + |∇u|q = λ u

|x|2 + f (x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(3.1)

where Ω ⊂ RN is an open bounded domain with N � 3,0 ∈ Ω . We have that |x|−2 ∈ L(q∗)′ if and only if q > N
N−1 .

According to the definition in (2.1) and Hölder inequality, it follows that

C

(
1

|x|2 , q

)
> 0 if and only if q >

N

N − 1
.

We have the following strong nonexistence result.

Theorem 3.1. Assume that q < N
N−1 . If λ > ΛN = (N−2)2

4 , then problem (3.1) has no positive very weak positive

supersolution in the sense that u, u

|x|2 , |∇u|q ∈ L1
loc(Ω) and∫ (

u(−�φ) + |∇u|qφ
)
dx � λ

∫
uφ

|x|2 dx +
∫

f (x)φ dx, for all φ ∈ C∞
0 (Ω).

Proof. We argue by contradiction. Suppose that problem (3.1) has for some λ > ΛN a nonnegative very weak super-
solution u in the sense defined above , then u ∈ W

1,q

loc (Ω). Without loss of generality we can assume that f ∈ L∞(Ω).
We claim that problem (3.1) has an entropy solution. To prove the claim we consider the sequence {un} defined by

−�u1 + |∇u1|q = f (x), u1 ∈ W
1,q

0

(
Br(0)

)
,

with Br(0) � Ω . The existence of u1 follows using the result of the previous sections. Therefore by Theorem 2.14 it
follows that 0 � u1 � u. Let us define now un by setting

−�un + |∇un|q = λ
un−1

2
+ f (x), un ∈ W

1,q

0

(
Br(0)

)
. (3.2)
|x|
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According with the comparison result of Theorem 2.14 we prove by recurrence that

0 � un−1 � un � u.

Using Tk(un) as a test function in (3.2) and taking into account that un � u we obtain that ‖un‖W
1,q
0 (Br (0))

� C

independently of n. Hence there exists w � 0 such that un ⇀ w weakly in W
1,q

0 (Br(0)), un ↑ w in Lα(Br(0)), α < q∗
and w � u. By the monotone convergence theorem,

λ
un−1

|x|2 + f (x) → λ
w

|x|2 + f (x) strongly in L1(Br(0)
)
,

therefore with the same arguments as in the proof of Theorem 2.3 we obtain that w ∈ W
1,q

0 (Br(0)) solves prob-
lem (3.1) in Br(0) in the sense of distributions. Since |∇w|q, w

|x|2 ∈ L1(Br(0)) we conclude that w is an entropy
solution to problem (3.1) in the sense defined in [16]. Hence the claim follows. Thus by [14] it follows that
w ∈ W

1,p

0 (Br(0)) for all p < N
N−1 , in particular w ∈ Lm(Br(0)) for all m < N

N−2 . Since q � 1 then using the strong

maximum principle proved in [23] there results that w > 0. As a consequence, we can consider φ2

w
as a test function

in (3.1), with φ ∈ C∞
0 (Bη(0)) and η << r a small positive number that we will chose later. Hence,

−
∫

Bη(0)

|∇w|2φ2

w2
dx + 2

∫
Bη(0)

φ∇φ

w
∇w dx +

∫
Bη(0)

|∇w|qφ2

w
dx � λ

∫
Bη(0)

φ2

|x|2 dx. (3.3)

Let us analyze the left-hand side of previous inequality (3.3) term by term∫
Bη(0)

|∇w|qφ2

w
dx =

∫
Bη(0)

|∇w|q
wq

wq−1φ2 dx

�
( ∫

Bη(0)

|∇w|2
w2

φ2 dx

) q
2
( ∫

Bη(0)

w
2(q−1)

2−q φ2 dx

) 2−q
2

� q

2
ε

2
q

0

∫
Bη(0)

|∇w|2
w2

φ2 dx + 2 − q

2
ε
− 2

2−q

0

∫
Bη(0)

w
2(q−1)

2−q φ2 dx,

where ε0 is a positive number that we will choose later. On the other hand we have

2
∫

Bη(0)

φ∇φ

w
∇w dx � ε2

1

∫
Bη(0)

φ2|∇w|2
w2

dx + ε−2
1

∫
Bη(0)

|∇φ|2 dx.

Hence it follows that

λ

∫
Bη(0)

φ2

|x|2 dx � −
(

1 − ε2
1 − q

2
ε

2
q

0

) ∫
Bη(0)

∣∣∣∣∇w

w

∣∣∣∣
2

φ2 dx + 2 − q

2
ε
− 2

2−q

0

∫
Bη(0)

w
2(q−1)

2−q φ2 dx + ε−2
1

∫
Bη(0)

|∇φ|2 dx.

Fixed ε1 > 0 such that ε2
1λ > ΛN , then we can fix ε0 small enough such that (1 − ε2

1 − q
2 ε

2
q

0 ) � 0, thus we conclude
that

ε2
1λ

∫
Bη(0)

φ2

|x|2 dx � ε2
1

2 − q

2
ε
− 2

2−q

0

∫
Bη(0)

w
2(q−1)

2−q φ2 dx +
∫

Bη(0)

|∇φ|2 dx.

We deal now with the mixed term,∫
B (0)

w
2(q−1)

2−q φ2 dx �
( ∫

B (0)

|φ|2∗
dx

) 2
2∗ ( ∫

B (0)

w
N(q−1)

2−q dx

) 2
N

η η η
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� S−1
( ∫

Bη(0)

w
N(q−1)

2−q dx

) 2
N

∫
Bη(0)

|∇φ|2 dx,

where S is the classical Sobolev constant. Since q < N
N−1 we get N(q−1)

2−q
< N

N−2 , thus we conclude that∫
Bη(0)

w
N(q−1)

2−q dx → 0 as η → 0.

Hence we can choose ε0 and ε1 such that

ε2
1

2 − q

2
ε
− 2

2−q

0 S−1
( ∫

Bη(0)

w
N(q−1)

2−q dx

) 2
N → 0 as η → 0.

Then there exists η > 0 small enough and ε0, ε1 < 1 with ε1 ∼ 1 such that

ε2
1λ

{
1 + ε2

1
2 − q

2
ε
− 2

2−q

0 S−1
( ∫

Bη(0)

w
N(q−1)

2−q dx

) 2
N

}−1

≡ λ1 > ΛN.

Therefore we conclude that

λ1

∫
Bη(0)

φ2

|x|2 dx �
∫

Bη(0)

|∇φ|2 dx,

a contradiction with Hardy inequality. �
We will also take g(x) = |x|−2 to show that the summability condition on f in Theorem 2.9 is optimal. Consider

again q < N
N−1 , λ < ΛN , and α = N−2

2 − √
ΛN − λ. Assume that ϕ ∈ W

1,2
0 (Ω) is the unique positive solution to{−�ϕ = λ

ϕ

|x|2 + 1
|x|2 in Ω,

ϕ = 0 on ∂Ω.
(3.4)

An easy computation shows that ϕ � C|x|−α in BR(0), for some R > 0. Applying Theorem 2.9 with g(x) = 1
|x|2 ,

we deduce that if f is a nonnegative function such that
∫
Ω

f |x|−α dx < ∞, then there exists u ∈ W
1,q

0 (Ω) positive
solution to (3.1) such that

∫
Ω

|∇u|p dx < ∞,∀p < max{q, N
N−1 }.

Theorem 3.2. Assume q < N
N−1 . Let ϕλ be the solution to problem (3.4). There exists λ(q) > 0 such that for all

0 < λ < λ(q) and for all f ∈ L1(Ω) satisfying
∫
Ω

f ϕλ dx = ∞, problem (3.1) has no solution.

Proof. We argue by contradiction. Assume that u ∈ W
1,q

0 (Ω) is a positive solution to (3.1) such that u

|x|2 ∈ L1(Ω).

Using the regularity result for entropy solutions we obtain that u ∈ W
1,p

0 (Ω) for all p < N
N−1 . Let q̄ ≡ N+2

2(N−1)
+√

ΛN−λ
N−1 , then 0 < q̄ < N

N−1 and q̄ → N
N−1 as λ → 0. Hence there exists λ(q) > 0 such that if λ < λ(q), then q < q̄ .

Notice that we also can assume that λ(q) < ΛN . Consider ϕn solution to

−�ϕn = λan(x)ϕn + an(x), ϕn = 0 on ∂Ω, an(x) = min
{
n, |x|−2}.

Take ϕn as a test function in (3.1), then∫
Ω

uan(x) dx +
∫
Ω

|∇u|qϕn dx = λ

∫
Ω

u

(
1

|x|2 − an

)
ϕn dx +

∫
Ω

f ϕn dx �
∫
Ω

f ϕn dx.

Since λ < ΛN , then ϕn < ϕn+1 for all n and ϕn ↑ ϕ, solution to (3.4). Therefore,
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(i)
∫
Ω

uan(x) dx → ∫
Ω

u

|x|2 dx as n → ∞.

(ii) Since u ∈ W
1,p

0 (Ω) for all p < N
N−1 , by the summability properties of ϕn and taking into account that q < q̄ , then

Hölder inequality gives
∫
Ω

|∇u|qϕn dx → ∫
Ω

|∇u|qϕ dx < ∞.

But then we reach a contradiction with the fact that
∫
Ω

f ϕn dx → ∫
Ω

f ϕ dx = ∞. �
Remark 3.3. If λ = ΛN , let H(Ω) be the closure of C∞

0 (Ω) with respect to the norm

‖ψ‖2
H =

∫
Ω

(
|∇ψ |2 −

(
N − 2

2

)2 |ψ |2
|x|2

)
dx.

Problem (3.4) with λ = ΛN has a solution ϕ ∈ H(Ω) and then problem (3.1) has a solution provided∫
Ω

f |x|− N−2
2 dx < ∞.

3.1. Further remarks: g(x) ≡ |x|−α

We will consider the problem (1.1) with g(x) = 1
|x|α , α ∈ (−∞, N+2

2 ), 1 < q � 2, and f a suitable positive func-

tion. To avoid the trivial cases, hereafter we will consider α ∈ (1, N+2
2 ). Namely, we deal with the problem{−�u + |∇u|q = λ u

|x|α + f (x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(3.5)

As a direct application of the existence result proved in Theorem 2.3, we get the following consequence.

Corollary 3.4. Assume that α ∈ (1, N+2
2 ) and define qα = max{1, N

(N+1)−α
}. If q > qα , then, for all λ � 0 and for all

f ∈ L1(Ω), f � 0, problem (3.5) has a solution.

Proof. Thanks to Theorem 2.3, it is sufficient to prove that 1
|x|α ∈ Lr(Ω), with r > (q∗)′. Since q > qα , then α(q∗)′ =

αNq
(N+1)q−N

<
αNqα

(N+1)qα−N
� N . Hence we conclude that 1

|x|α ∈ Lr(Ω) for some r > (q∗)′ and the result follows. �
If α = N+2

2 , then qα = 2 and we cannot apply Theorem 2.3. However we have the following nonexistence result.

Theorem 3.5. Assume that α = N+2
2 and consider q = 2, then problem (3.5) has no positive solution for λ >

(N−2)(N−1)
2 .

Proof. We suppose by contradiction that there exists u ∈ W
1,2
0 (Ω), a positive solution to (3.5) with α = N+2

2 and
q = 2. Thanks to Lemma 2.11 there exist constants C,R > 0 such that u � C in BR(0). Let β be a parameter we will
choose later and define wn(x) = 1

(r+ 1
n
)β

in BR(0). For the scaled function, wn = γwn, we have

−�wn(x) + |∇wn|2 = −γ�wn(x) + γ 2|∇wn|2

= γ

r(r + 1/n)β+1

[
(N − 2 − β)β + β

n

(β + 1)

(r + 1/n)

]
+ γ 2β2

(r + 1/n)2(β+1)

� wn

r(r + 1/n)

[
(N − 2 − β)β + β(β + 1)

] + γβ2wn

(r + 1/n)β+2

� wn

r(r + 1/n)β+1

[
(N − 2 − β)β + β(β + 1) + γβ2].

We set β = N−2
2 and then, choosing γ small enough and using the fact that λ >

(N−2)(N−1)
2 ,

−�wn(x) + |∇wn|2 � λ
wn

N+2
2

� λ
wn

N+2
2

+ f in BR(0),

|x| |x|
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namely, wn is a subsolution to (3.5) with α = N+2
2 and q = 2. Since u ∈ W

1,2
0 (Ω) is a solution to (3.5), then in

particular is a supersolution. Similar calculations as in Lemma 2.12, give that wn � u in BR(0), thus wn/|x|N+2
2 �

u/|x|N+2
2 . Since u/|x|N+2

2 ∈ L1(Ω), then using the Lebesgue theorem we can pass to the limit as n → ∞ to obtain

that γ /|x|N+2
2 +β ∈ L1(Ω), a contradiction with the choice of β . �

In the case where q = 1 we have the following nonexistence result.

Theorem 3.6. Assume q = 1. If α > 2, then there is no positive solution to problem (3.5) for any λ > 0. If α = 2
then problem (3.5) has no positive solution for λ > ΛN . If α < 2, there exists λ∗ > 0 such that problem (3.5) has no
positive solution for λ > λ∗.

Proof. We follow an argument by contradiction. Suppose that u is a weak solution to (3.5) with q = 1. Taking φ2

u
as

test function in (3.5) with q = 1 and φ ∈ C∞
0 (Ω), we get

−
∫
Ω

|∇u|2φ2

u2
dx + 2

∫
Ω

φ∇φ

u
∇udx +

∫
Ω

|∇u|φ2

u
dx � λ

∫
Ω

φ2

|x|α dx. (3.6)

As above we have∫
Ω

|∇u|φ2

u
dx � ε

∫
Ω

∣∣∣∣∇u

u

∣∣∣∣
2

φ2 dx + C(ε)

∫
Ω

φ2 dx,

2
∫
Ω

φ∇φ

u
∇udx � ε̄

∫
Ω

φ2
∣∣∣∣∇u

u

∣∣∣∣
2

dx + 1

ε̄

∫
Ω

|∇φ|2 dx.

Therefore it follows that the right term of Eq. (3.6) satisfies

λ

∫
Ω

φ2

|x|α dx � −(1 − ε − ε̄)

∫
Ω

∣∣∣∣∇u

u

∣∣∣∣
2

φ2 dx + C(ε)

∫
Ω

φ2 dx + 1

ε̄

∫
Ω

|∇φ|2 dx.

Choosing ε̄ > 0 in such a way that ε < 1 − ε̄, we get

λ

∫
Ω

φ2

|x|α dx � C(ε)

∫
Ω

φ2 dx + 1

ε̄

∫
Ω

|∇φ|2 dx.

(i) If α > 2, then independently of the value of λ, using the Poincaré inequality we reach a contradiction with the
classical Hardy inequality, hence there is no solution for any λ > 0.

(ii) If α = 2, we choose ε̄ < 1 such that ΛN < λε̄, hence we get the existence of a positive number σ > 0 such that

(ΛN + σ)

∫
Ω

φ2

|x|2 dx � λε̄

∫
Ω

φ2

|x|2 dx � ε̄C(ε)

∫
Ω

φ2 dx +
∫
Ω

|∇φ|2 dx,

thus

(ΛN + σ)

∫
Ω

φ2

|x|2 dx � ε̄C(ε)

∫
Ω

φ2dx +
∫
Ω

|∇φ|2 dx. (3.7)

Consider

A(c) = inf
ψ∈C∞

0 (Ω)\{0}

∫
Ω

|∇ψ |2 dx + c
∫
Ω

ψ2 dx∫
Ω

ψ2

|x|2 dx
,

then using a dilatation argument we can prove that A(c) = ΛN for all c � 0. Hence we get a contradiction with
(3.7). Therefore there is no solution for λ > λN .
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(iii) If α < 2, then we get easily the existence of positive constants c1 and c2 depending only on the data such that

λ

∫
Ω

φ2

|x|α dx � c1

∫
Ω

φ2 dx + c2

∫
Ω

|∇φ|2 dx � (c1λ1 + c2)

∫
Ω

|∇φ|2 dx,

where λ1 is the first eigenvalue of the Laplacian operator in Ω . By setting λ∗ = (c1λ1 + c2)λ1(
1

|x|α ), we conclude
that problem (3.5) has no solution for λ > λ∗. �

Finally, if α > 2 and q � N
N−1 , it is no hard to prove that problem (3.5) has no positive solution for any λ > 0.
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