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Energy concentration for the Landau–Lifshitz equation
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Abstract

For the Landau–Lifshitz equation on a domain with three space dimensions, we consider energy concentration phenomena
arising in the context of weakly convergent sequences of solutions. The concentration measure can be interpreted as a family of
generalized curves. We establish a connection to a geometric flow.
© 2007

Résumé

Pour l’équation de Landau–Lifshitz sur un domaine en trois dimensions d’espace, nous considérons des phénomènes de concen-
tration d’énergie survenant dans le contexte des suites faiblement convergentes de solutions. La mesure de concentration peut être
interprétée comme famille de courbes généralisées. Nous établissons une connexion avec un flot géométrique.
© 2007 . .
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1. Introduction

For an open set Ω ⊂ R
3 and T > 0, define ΩT = Ω × (0, T ). We consider the Landau–Lifshitz equation

∂u

∂t
+ au ∧ (u ∧ �u) + bu ∧ �u = 0 in ΩT (1)

for a map u :ΩT → S
2, where S

2 ⊂ R
3 is the unit 2-sphere. Here ∧ denotes the vector product in R

3 and a, b ∈ R are
fixed constants. We assume that a > 0, which makes the equation parabolic.

For a map u ∈ C∞(Ω,S
2), the Laplacian �u has the orthogonal decomposition

−�u = |∇u|2u + u ∧ (u ∧ �u). (2)

The expression �u + |∇u|2u is called the tension field of u; it is minus the L2-gradient of the Dirichlet energy

E(u) = 1

2

∫
Ω

|∇u|2 dx
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under the constraint that u takes values in S
2. Using the decomposition (2), we find that (1) is equivalent to

ã
∂u

∂t
+ b̃u ∧ ∂u

∂t
= �u + |∇u|2u (3)

as well as

ãu ∧ ∂u

∂t
− b̃

∂u

∂t
= div(u ∧ ∇u), (4)

where

ã = a

a2 + b2
and b̃ = b

a2 + b2
.

Both (3) and (4) can also be interpreted in the weak sense for a map in the Sobolev space

H 1
loc(ΩT ,S

2) = {
u ∈ H 1

loc(ΩT ,R
3): |u| = 1 almost everywhere

}
.

Eq. (1) stems from a model in micromagnetics which describes the dynamics of the magnetization vector field of
a ferromagnetic body. The equation is also of geometrical interest, however. It can be thought of as a hybrid of two
other geometric evolution equations: the so-called harmonic map heat flow

∂u

∂t
= �u + |∇u|2u (5)

(which is the negative L2-gradient flow for the functional E) on the one hand and the equation

∂u

∂t
= u ∧ �u (6)

on the other hand. Solutions of (6) are often called Schrödinger maps, because the equation is of the type of a non-
linear Schrödinger equation (which is most obvious when u is composed with the stereographic projection).

Suppose that we have a sequence of solutions uk ∈ C∞(Ω × [0, T ),S
2) of (1) such that

sup
k∈N

E
(
uk(·,0)

)
< ∞.

Also assume for the moment that Ω is bounded and has a smooth boundary with outer normal vector ν, and that
ν · ∇uk = 0 on ∂Ω × [0, T ). Taking the scalar product with �uk on both sides of (1), integrating over Ω × {t}, and
performing an integration by parts, we see that

d

dt
E
(
uk(·, t)

) + a

∫
Ω×{t}

|uk ∧ �uk|2 dx = 0. (7)

Hence

E(uk(·, t0)) + a

t0∫
0

∫
Ω

|uk ∧ �uk|2 dx dt = E
(
uk(·,0)

)

for every t0 ∈ [0, T ). In particular the sequence {uk} is bounded in H 1(ΩT ,R
3) and there exists a weakly convergent

subsequence {uki
}. Using the representation (4) for the Landau–Lifshitz equation, it is readily verified that the limit

map is a weak solution. The observed convergence, however, is not strong in H 1(ΩT ,S
2) in general, since the energy

density 1
2 |∇uki

|2 may concentrate near a certain subset of ΩT . Suppose that L4 is the Lebesgue measure on ΩT . Then
a way to describe this energy concentration is to consider the Radon measures

mk = 1

2
L4 |∇uk|2.

For a suitable choice of the above subsequence, we have convergence of mki
to a Radon measure m on ΩT , which

need not be absolutely continuous with respect to L4. The singular part of m measures the energy concentration,
therefore we call it the concentration measure. In the situation studied here, it turns out that the concentration measure
can be interpreted as a geometric object. Namely, for almost every t ∈ [0, T ), it gives rise to a type of generalized
curve in Ω . Our aim is to study the evolution of these generalized curves.
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Without the above boundary conditions, the energy identity (7) is no longer valid, but it can be replaced by a
localized version. For any η ∈ C1

0(ΩT ), a smooth solution of the Landau–Lifshitz equation satisfies

1

2

d

dt

∫
Ω×{t}

η|∇u|2 dx =
∫

Ω×{t}

(
1

2

∂η

∂t
|∇u|2 − aη|u ∧ �u|2 − a∇η · 〈�u,∇u〉 + b∇η · 〈u ∧ �u,∇u〉

)
dx. (8)

Here and throughout the paper, we denote scalar products in T Ω by a dot and in T S
2 by 〈·, ·〉 for clarity. Using (8)

instead of (7), we now obtain local estimates for the energy under suitable conditions, and the questions we study
remain the same.

For the harmonic map heat flow (5), the corresponding problem has been studied by Li and Tian [12] and by Lin
and Wang [18] (also for higher-dimensional domains and other target manifolds). These papers give a connection
between the energy concentration measure and the mean curvature flow. We will show a similar connection for the
Landau–Lifshitz equation, but the mean curvature flow has to be replaced by another geometric flow.

We briefly recall the definition of the mean curvature flow, before we modify it in order to obtain the equation that is
relevant in the context of this paper. For simplicity, we restrict our attention to the flow for closed curves in Ω here. In
this situation, the mean curvature flow is also known as the curve shortening flow. Suppose that F : S1 × [0, T ) → Ω

is a smooth map such that Σt = F(S1 × {t}) is an embedded curve for every t ∈ [0, T ). Let Ht :Σt → R
3 be the

curvature vector for Σt . We say that F is a solution of the mean curvature flow (curve shortening flow) if it satisfies
the equation

∂F

∂t
(s, t) = Ht

(
F(s, t)

)
for s ∈ S

1, t ∈ [0, T ),

or in shorter notation,

∂F

∂t
= Ht . (9)

This is the negative L2-gradient flow for the length functional. We write H1 for the 1-dimensional Hausdorff measure.
If we have a smooth solution of (9), then for any η ∈ C1

0(ΩT ), we can compute

d

dt

∫
Σt

η dH1 =
∫
Σt

(
∂η

∂t
− η|Ht |2 + ∇η · Ht

)
dH1. (10)

A relaxed version of this identity (with the equality replaced by an inequality for test functions with non-negative
values) was used by Brakke [3] to define a generalization of the mean curvature flow. This generalization is also the
formulation that is used in [18], and with a modification in [12], to describe the evolution of the energy concentration
set for the harmonic map heat flow.

Next we regard Σt as oriented curves, and we choose a unit tangent vector τt :Σt → S
2 that is continuous (also

with respect to t ). We replace (9) by the equation

∂F

∂t
= aHt − bτt ∧ Ht, (11)

or, equivalently,

ã
∂F

∂t
+ b̃τt ∧ ∂F

∂t
= Ht .

Then instead of (10) we obtain

d

dt

∫
Σt

η dH1 =
∫
Σt

(
∂η

∂t
− aη|Ht |2 + a∇η · Ht − b∇η · τt ∧ Ht

)
dH1. (12)

A certain formal similarity between (8) and (12) can immediately be seen. We will establish a rigorous connection in
this paper and show that (a generalized version of) the flow (11) describes the behaviour of the concentration measure
for the Landau–Lifshitz equation in a certain sense.

Before we can state our main result, we need some notation. We assume that the reader is familiar with the notion
of countable rectifiability. If not, we refer to Federer [7] or Simon [24]. Suppose Σ ⊂ Ω is a countably 1-rectifiable
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set. Then we write TxΣ for the approximate tangent space at every point x ∈ Σ where it exists. If φ ∈ C1(Ω,R
3) and

L is a linear subspace of R
3, then divL φ(x) is the divergence of φ at x with respect to L. That is, if ΠL denotes the

matrix of the orthogonal projection onto L, then

divL φ(x) = tr
(
ΠL∇φ(x)

)
.

Similarly, we write

divΣ φ(x) = divTxΣ φ(x).

Suppose that p ∈ S
2 and X = (X1,X2,X3), Y = (Y1, Y2, Y3) ∈ R

3 ⊗TpS
2; then we write X⊗Y for the (3×3)-matrix

with (α,β)-th component 〈Xα,Yβ〉.
Theorem 1.1. Suppose uk ∈ C∞(ΩT ,S

2) are solutions of the Landau–Lifshitz equation (1) such that

sup
k∈N

∫
ΩT

|∇uk|2 dz < ∞.

Then there exists a subsequence {uki
} such that the following is true.

(i) There exists a weak solution u ∈ H 1
loc(ΩT ,S

2) of (4) such that uki
⇀ u weakly in H 1

loc(ΩT ,R
3) and �u +

|∇u|2u ∈ L2
loc(ΩT ,R

3).
(ii) There exists a function θ :ΩT → N ∪ {0} such that for almost every t ∈ [0, T ),

• θt = θ(·, t) is locally H1-integrable, and
• Σt = θ−1

t (N) is closed relative to Ω and countably 1-rectifiable,
and for every η ∈ C0

0(ΩT ),

lim
i→∞

T∫
0

∫
Ω

η|∇uki
|2 dx dt =

T∫
0

∫
Ω

η|∇u|2 dx dt + 8π

T∫
0

∫
Ω

ηθ dH1 dt. (13)

(iii) There exists a vector field H :ΩT → R
3 such that for almost every t ∈ [0, T ),

• Ht = H(·, t) ∈ L2
loc(H

1 θt ,R
3), and

• Ht(x) ⊥ TxΣt at H1-almost every x ∈ Σt ,
and for every φ ∈ C1

0(ΩT ,R
3),

T∫
0

∫
Ω

(
1

2
|∇u|2 divφ − tr

(
(∇u ⊗ ∇u)∇φ

) − 〈�u,∇u〉 · φ
)

dx dt

+ 4π

T∫
0

∫
Ω

(divΣt φ + H · φ)θ dH1 dt = 0. (14)

(iv) There exist three vector fields τ :ΩT → S
2 and H+,H− :ΩT → R

3 with H+ + H− = H , such that for almost
every t ∈ [0, T ),
• τt = τ(·, t) is H1-measurable,
• H±

t = H±(·, t) ∈ L2
loc(H

1 θt ,R
3), and

• τt (x) ∈ TxΣt and H±
t (x) ⊥ TxΣt for H1-almost every x ∈ Σt ,

and for every η ∈ C1
0(ΩT , [0,∞)),

T∫
0

∫
Ω

(
1

2
|∇u|2 ∂η

∂t
− aη|u ∧ �u|2 − a∇η · 〈�u,∇u〉 + b∇η · 〈u ∧ �u,∇u〉

)
dx dt

+ 4π

T∫
0

∫
Ω

(
∂η

∂t
− aη|H |2 + a∇η · H − b∇η · (τ ∧ (H+ − H−)

))
θ dH1 dt � 0. (15)
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Next we give a few remarks on how the quantities in this theorem can be interpreted. First note that the functions θt ,
which are supported on the countably 1-rectifiable sets Σt , may be regarded as multiplicity functions for a generalized
type of curves in Ω . By (13), these generalized curves describe the energy concentration for the subsequence {uki

}.
If u happens to be sufficiently smooth, then it is readily checked that the first integral in (14) vanishes. Hence in this
case we have∫

Σt

(divΣt φ + Ht · φ)θtdH1 = 0

for every φ ∈ C1
0(Ω,R

3) and almost every t ∈ [0, T ). In other words, the vector field Ht is the curvature of the
generalized curve given by θt . In general, however, the above identity may be false. The pair consisting of the map
u(·, t) and θt should then be thought of as a geometrical object which has a “curvature” given jointly by �u+ |∇u|2u
and Ht .

Inequality (15), finally, describes (partially) the evolution of the generalized curves given by θt . Again, if u is
smooth, then the first integral vanishes and we have

T∫
0

∫
Σt

(
∂η

∂t
− aη|Ht |2 + a∇η · Ht − b∇η · (τt ∧ (H+

t − H−
t )

))
θt dH1 dt � 0

for every η ∈ C1
0(ΩT ) with η � 0. This is a relaxed version of (12), integrated over [0, T )—up to one discrepancy

in the last term of the integrand. The fact that the quantity τt ∧ Ht in (12) splits up into two parts is not surprising,
since the multiplicity function θt may encode a piece of a curve several times with opposite orientations. If this is the
reason for the appearance of H+

t and H−
t , one would suspect that they must be parallel to Ht and the ratios of the

lengths must be fractions with the denominator θt almost everywhere. We are unable, however, to prove this, owing
to the lack of a sufficiently strong convergence of the relevant quantities.

For the proof of Theorem 1.1, we use similar arguments as in [12] and [18] up to a certain point. In contrast to the
harmonic map heat flow, however, the Landau–Lifshitz equation gives rise to an additional difficulty. The terms

b

∫
Ω×{t}

∇η · 〈u ∧ �u,∇u〉dx and b

∫
Σt

∇η · τt ∧ Ht dH1

in (8) and (12), respectively, are harder to control than the other terms. Unlike the terms with the coefficient a, they
cannot be simplified by a mere integration by parts. This is the reason for most of the new concepts and arguments
that we use.

Several generalizations of the theorem are conceivable. On the one hand, we may consider a sequence of weak
solutions of the Landau–Lifshitz equation. In order to apply the tools that we need for the proof, we have to impose
certain additional conditions (such as the stability hypothesis introduced by Feldman [8] for the harmonic map heat
flow; cf. [20] for a version for the Landau–Lifshitz equation). But then a similar result follows with the same methods.
On the other hand, we may change the dimension of Ω . The expected energy concentration set is always of codi-
mension 2. Thus in dimensions 1 and 2, it is clearly not described by a curvature driven flow. No result of the type
of Theorem 1.1 can then be expected. In dimension 4, the same arguments that we use in this paper still work with
only minor modifications. In order to keep the presentation simple, we leave it to the reader to verify this (as well
as the results for weak solutions). In dimension 5 and higher, however, several of the tools that we use are no longer
available. The most important obstacle to proving results similar to Theorem 1.1 in higher dimensions is the lack of a
so-called monotonicity formula for the Landau–Lifshitz equation. Such a formula exists, e.g., for the harmonic map
heat flow (cf. Struwe [26]) and is used extensively in [12] and [18].

We close this section with the introduction of some more notation. We write Br(x0) for an open ball in R
3 with

centre x0 and radius r . Sometimes we work with two-dimensional balls, and then we normally use the notation
B2

r (x′
0) to avoid confusion (where x′

0 ∈ R
2). At one point, however, we work exclusively in R

2, and then we drop
the superscript. Furthermore, we use the abbreviations Br = Br(0) and B2

r = B2
r (0). We denote the j -dimensional

Lebesgue measure by Lj and the j -dimensional Hausdorff measure by H j (as we have already done for certain
dimensions).
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We write z = (x, t) for a generic point in R
3 × R. In space-time, it is natural to use the parabolic metric

d
(
(x, t), (y, s)

) = max
{|x − y|,√|t − s|}

rather than the Euclidean metric in the context of a parabolic problem such as (1). Therefore, we also consider “balls”
in this metric, for which we use the notation

Pr(x0, t0) = Br(x0) × (t0 − r2, t0 + r2).

Moreover, Pr = Pr(0). The j -dimensional Hausdorff measure with respect to d is denoted by H
j
d .

We often work with Radon measures, and we use the fact that a Radon measure (on Ω , say) can be identified with a
functional in the dual space of C0

0(Ω). When we indicate a convergence of a sequence of Radon measures, we always
mean weak* convergence in (C0

0(Ω))∗.

2. A few tools from geometric measure theory

To study a blow-up measure as in Theorem 1.1, the notion of generalized varifolds that has been introduced by
Ambrosio and Soner [2], and independently by Lin [14,15], is very useful. For the problem that we study in this paper,
we have to modify the theory somewhat, in order to make sense of the notion of an orientation in the generalized
setting. For convenience, we also use a different representation for the generalized varifolds. Before we give the
details, we recall the basic definitions for (ordinary) varifolds. For further details, see Allard [1] or Simon [24].
A good source for other information on geometric measure theory is the book by Federer [7].

Let G(3,1) be the Grassmann manifold of all 1-dimensional linear subspaces of R
3 (which can of course be

identified with the real projective plane). Moreover, let G1(Ω) = Ω ×G(3,1). A 1-varifold on Ω is a Radon measure
on G1(Ω). Important examples are the so-called integral varifolds. Suppose θ :Ω → N∪{0} is a locally H1-integrable
function such that Σ = θ−1(N) is countably 1-rectifiable. Then the varifold V on Ω such that∫

G1(Ω)

ψdV =
∫
Σ

ψ(x,TxΣ)θ(x) dH1(x)

for every ψ ∈ C0
0(G1(Ω)), is called an integral 1-varifold. (Thus in particular the functions θt in Theorem 1.1 give

rise to integral varifolds.)
We also consider the Grassmann manifold G0(3,1) consisting of all oriented 1-dimensional subspaces of R3 (in

other words, the 2-sphere). We set G0
1(Ω) = Ω × G0(3,1). An oriented 1-varifold on Ω is a Radon measure on

G0
1(Ω). If V is an oriented 1-varifold on Ω , then the projection P :G0(3,1) → G(3,1) induces naturally a 1-varifold

on Ω by the push-forward (idΩ ×P)#V .
Suppose θ and Σ are as above and τ :Ω → G0(3,1) is an H1-measurable function such that P(τ(x)) = TxΣ for

H1-almost every x ∈ Σ . Furthermore, let θ1, θ2 :Ω → N ∪ {0} be H1-measurable functions such that θ = θ1 + θ2.
Then the oriented 1-varifold W on Ω defined by the condition that∫

G0
1(Ω)

ψ dW =
∫
Σ

(
ψ

(
x, τ (x)

)
θ1(x) + ψ

(
x,−τ(x)

)
θ2(x)

)
dH1(x)

for every ψ ∈ C0
0(G1(Ω)), is called an oriented integral 1-varifold.

For a 1-varifold V on Ω , the first variation δV is the functional on C1
0(Ω,R

3) given by

δV (φ) =
∫

G1(Ω)

divL φ(x)dV (x,L).

For an oriented 1-varifold W , we set δW = δ(idΩ ×P)#W .
We now give another representation of the same concepts, before we finally generalize them. Note that any

L ∈ G(3,1) can be identified with the (3 × 3)-matrix belonging to the orthogonal projection onto the orthogonal
complement of L. We denote this matrix by Π⊥

L , and similarly we write ΠL for the matrix of the orthogonal projec-
tion onto L. Any point τ ∈ S

2 = G0(3,1) can be identified with the pair (Π⊥
P(τ),Λτ ), where Λτ ∈ R

3×3 is the matrix

such that Λτξ = τ ∧ ξ for all ξ ∈ R
3. Let F̃ be the space of all pairs (A,B) ∈ R

3×3 × R
3×3 such that
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(a) AT = A,
(b) A2 = A,
(c) trA = 2,
(d) BT = −B ,
(e) B2 = −A.

Then we have a natural diffeomorphism Φ :G0(3,1) → F̃ . If V is an oriented 1-varifold on Ω , then (idΩ ×Φ)#V is
a Radon measure on Ω × F̃ , and this mapping provides a natural identification of the space of oriented 1-varifolds on
Ω with the space of Radon measures on Ω × F̃ . If μ = (idΩ ×Φ)#V , then we have

δV (φ) =
∫

Ω×F̃

(
divφ(x) − tr

(
A∇φ(x)

))
dμ(x,A,B). (16)

Next we relax the conditions (a)–(e) as follows. We replace (b) and (e) by

(b′) A is positive semidefinite and |A|2 � 4,
(e′) |B|2 � 2.

Here | · | denotes the Hilbert–Schmidt norm. Let F be the space of all pairs (A,B) ∈ R
3×3 × R

3×3 such that (a), (b′),
(c), (d), and (e′) are satisfied. We now consider Radon measures on Ω × F .

We have the inclusion map ι : F̃ → F , thus any oriented 1-varifold V on Ω induces a Radon measure (idΩ ×
(ι ◦ Φ))#V on Ω × F . Moreover, we will see that as a result of the relaxation, a map u ∈ C∞(Ω,S

2) also induces a
Radon measure on Ω × F in a natural way. This is the reason why we consider this space.

For any u ∈ C∞(Ω,S
2), we define the functions Au,Bu :Ω → R

3×3 with

Au(x) = 2
∇u(x) ⊗ ∇u(x)

|∇u(x)|2 and Bu(x) = 2
(u(x) ∧ ∇u(x)) ⊗ ∇u(x)

|∇u(x)|2 (17)

for every x ∈ Ω with ∇u(x) �= 0, and Au(x) = A0, Bu(x) = B0 if ∇u(x) = 0 for a fixed (but arbitrary) point
(A0,B0) ∈ F . It is readily checked that (Au(x),Bu(x)) ∈ F at every x ∈ Ω . Now consider the Radon measure μ

on Ω such that for every ψ ∈ C0
0(Ω × F),∫

Ω×F

ψ dμ = 1

2

∫
Ω

ψ
(
x,Au(x),Bu(x)

)∣∣∇u(x)
∣∣2 dx. (18)

Measures of this type will play an important role in the proof of Theorem 1.1.
Motivated by (16), we define

δμ(φ) =
∫

Ω×F

(
divφ(x) − tr

(
A∇φ(x)

))
dμ(x,A,B)

for φ ∈ C1
0(Ω,R

3) whenever μ is a Radon measure on Ω × F . In order to simplify the notation, we often write such
an integral in the form∫

Ω×F

(
divφ − tr(A∇φ)

)
dμ.

That is, the symbols A and B represent the standard coordinate functions on F . Moreover, whenever it is convenient,
we identify a function on Ω with a function on Ω × F that depends only on the first argument. For a measure of the
form (18), we then compute

δμ(φ) =
∫
Ω

(
1

2
|∇u|2 divφ − tr

(
(∇u ⊗ ∇u)∇φ

))
dx =

∫
Ω

〈�u,∇u〉 · φ dx (19)

by an integration by parts.
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For any Radon measure μ on Ω × F , we define

W(μ) = sup

{(
δμ(φ)

)2: φ ∈ C1
0(Ω,R

3) with
∫

Ω×F

φ · Aφ dμ � 1

}
.

Suppose μ = (idΩ ×(ι ◦ Φ))#V for an integral 1-varifold V given by the function θ :Ω → N ∪ {0}. Let Σ = θ−1(N),
as before. If there exists a vector field H :Ω → R

3 such that

δV (μ) +
∫
Σ

φ · Hθ dH1 = 0

for every φ ∈ C1
0(Ω,R3) and H(x) ⊥ TxΣ for H1-almost every x ∈ Σ , then we easily calculate

W(μ) =
∫
Σ

|H |2θ dH1.

If no such H exists, then we have W(μ) = ∞. Thus the functional W can be regarded as a generalization of the
Willmore functional. (See Willmore [28] for a definition and basic properties of the Willmore functional.)

If μ is defined by (18) for a map u ∈ C∞(Ω,S
2), then we obtain

W(μ) �
∫
Ω

|u ∧ �u|2 dx

from (19). If the rank of ∇u is either 2 or 0 at almost every point of Ω , then we have even equality here.
Consider again a general Radon measure μ on Ω ×F . We use the projection Q :Ω × F → Ω to define the weight

measure ‖μ‖ = Q#μ, which is a Radon measure on Ω . The fibre measure μ(x0) on F , which is defined by∫
F

ζ dμ(x0) = lim
r↘0

∫
Br(x0)×F

ζ(A,B)dμ(x,A,B)

‖μ‖(Br(x0))
for ζ ∈ C0(F ),

then exists for ‖μ‖-almost every x0 ∈ Ω . Moreover, we have∫
Ω×F

ψ dμ =
∫
Ω

∫
F

ψ(x,A,B)dμ(x)(A,B)d‖μ‖(x)

for every ψ ∈ C0
0(Ω × F) (cf. Allard [1], Section 3.3). Finally, we define the functions A(μ),B(μ) :Ω → R3×3 by

A(μ)(x) =
∫
F

Adμ(x),

B(μ)(x) =
∫
F

B dμ(x)

at every point where this exists, and A(μ) = A0, B(μ) = B0 elsewhere. Since F is convex, we have (A(μ)(x),

B(μ)(x)) ∈ F for every x ∈ Ω .
If W(μ) < ∞, then Proposition 2.1 in [19], applied to the measure

‖μ‖ A(μ),

implies that there exists a unique ‖μ‖-measurable function H :Ω → R
3 with

H(x) ⊥ kerA(μ)(x) (20)

for ‖μ‖-almost every x ∈ Ω , such that

δμ(φ) +
∫

φ · AH dμ = 0 (21)
Ω×F
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for every φ ∈ C1
0(Ω,R

3) and

W(μ) =
∫

Ω×F

H · AH dμ.

If μ belongs to an integral varifold, then this H coincides of course with the vector field considered earlier.
If μ belongs to a map u ∈ C∞(Ω,S

2)—that is, if it is given by (18)—then we have

‖μ‖ = 1

2
L3 |∇u|2.

We denote the Dirac measure centred at a point p (in Ω , F , or Ω × F ) by δp . Then we have

μ(x) = δAu(x) × δBu(x)

and

A(μ)(x) = Au(x), B(μ)(x) = Bu(x)

for every x ∈ Ω where ∇u(x) �= 0. According to (19) and (21), we have∫
Ω×F

φ · AH dμ = −
∫
Ω

φ · 〈�u,∇u〉dx

for every φ ∈ C1
0(Ω,R

3). Hence

(∇u ⊗ ∇u)H = −〈�u,∇u〉
almost everywhere in Ω . We set

Z = {
x ∈ Ω: dim ker∇u(x) �= 2

}
.

We claim that(
(u ∧ ∇u) ⊗ ∇u

)
H = −〈u ∧ �u,∇u〉

almost everywhere in Z. That is,∫
Z×F

φ · BH dμ = −
∫
Z

φ · 〈u ∧ �u,∇u〉dx (22)

for every φ ∈ C0
0(Ω,R3).

This is in fact quite easy to verify if the right coordinates are used. Suppose x ∈ Z with ∇u(x) �= 0. Since ∇u(x)⊗
∇u(x) is positive semidefinite and of rank 2, there exists some R ∈ SO(3) such that

RT
(∇u(x) ⊗ ∇u(x)

)
R =

⎛
⎝ c2

1 0 0
0 c2

2 0
0 0 0

⎞
⎠ (23)

for certain numbers c1, c2 > 0. Replace u by the map ũ(y) = u(Ry + x), then ∇ũ(0) ⊗ ∇ũ(0) is the matrix on the
right hand side of (23). We work with ũ instead of u now (and we drop the tilde again). We also choose coordinates
in the target space such that u(x) = (0,0,1) and

∂u

∂x1
(x) = (c1,0,0) and

∂u

∂x2
(x) = (0,±c2,0).

Then

(u(x) ∧ ∇u(x)) ⊗ ∇u(x) = ±
( 0 c1c2 0

−c1c2 0 0
0 0 0

)
.

Let

�u(x) + ∣∣∇u(x)
∣∣2u(x) = (d1, d2,0).
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Then

〈�u,∇u〉 =
(

c1d1
±c2d2

0

)
,

hence

H(x) =
(

d1/c1
±d2/c2

0

)
.

Thus we have

((
u(x) ∧ ∇u(x)

) ⊗ ∇u(x)
)
H(x) =

(
c1d2

∓c2d1
0

)
= −〈

u(x) ∧ �u(x),∇u(x)
〉
,

which proves (22).
If we assume that Z = Ω , then the energy identities (8) and (12) become formally the same in the framework of

generalized varifolds. This is one of the reasons why this is a useful tool for our problem.
When we work with a map u ∈ C∞(ΩT ,S

2), then we define the functions Au,Bu :ΩT → R
3×3 similarly as above.

They give rise to a Radon measure μ on ΩT × F . The quantities ‖μ‖, δμ, μ(z), A(μ), B(μ), etc., are then defined
similarly as on Ω .

We now briefly discuss another tool from geometric measure theory, namely the measure-function pairs introduced
by Hutchinson [10].

Let M be a manifold, with or without boundary, which is embedded in Rm. If μ is a Radon measure on M and
f :M → R

n a locally μ-integrable function on M , then we say that (μ,f ) is a measure-function pair over M (with
values in R

n). We are mainly interested in the case f ∈ L2(μ,R
n).

To a measure-function pair (μ,f ) we can assign the graph measure [μ,f ] on M × R
n, which is a Radon measure

defined by the condition∫
M×Rn

ξ d[μ,f ] =
∫
M

ξ
(
x,f (x)

)
dμ(x) for ξ ∈ C0

0(M × R
n).

Obviously we can represent the generalized varifold belonging to a map in C∞(Ω,S2) as a graph measure of this type.
More important for our purpose, however, are measure-function pairs of the form (μ,H), where μ is a generalized
varifold with W(μ) < ∞ and H is the function characterized by (20) and (21), interpreted as a function on Ω × F

which depends only on the first argument. In general, this function is not necessarily in L1
loc(μ,R

3). However, if μ

belongs to a map u ∈ C∞(Ω,S
2) such that ∇u is of rank 2 in Ω , then we have even H ∈ L∞

loc(μ,R
3).

Now suppose that we have a sequence of measure-function pairs (μk, fk) over M with values in Rn such that
fk ∈ L2(μk,R

n). Furthermore, we assume that (μ,f ) is another measure-function pair of this type, such that μk → μ.
We say that the sequence {(μk, fk)} converges weakly to (μ,f ) if we have μk fk → μ f . We say that the
convergence is strong if [μk,fk] → [μ,f ] and∫

{(x,y)∈M×Rn: |x|2+|y|2�R}
y2 d[μk,fk](x, y) → 0 as R → ∞

uniformly in k. Other characterizations of these (and similar) notions of convergence are given in [10]. The proof of
the following result is also to be found there.

Proposition 2.1.

(i) Suppose (μk, fk) are measure-function pairs over M such that

sup
k∈N

‖fk‖L2(μk)
< ∞.

If μ is a Radon measure on M with μk → μ, then there exists a function f ∈ L2(μ) such that a subsequence of
{(μk, fk)} converges weakly to (μ,f ).
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(ii) Suppose that the sequence {(μk, fk)} converges weakly to (μ,f ). Then

‖f ‖L2(μ) � lim inf
k→∞ ‖fk‖L2(μk)

.

The convergence is strong if and only if

‖f ‖L2(μ) = lim
k→∞‖fk‖L2(μk)

.

3. Other tools

In this section we collect a few facts that are either proved elsewhere or that follow from known arguments. First we
have an estimate for the derivatives of a solution of the Landau–Lifshitz equation with small energy. The arguments
that prove this result can be found in Sections 5.2 and 5.5 of [20] (although the result is not stated in the same form in
that work).

Lemma 3.1. There exist two numbers C,ε0 > 0 such that every solution u ∈ C∞(P1,S
2) of (1) with

1

2

∫
P1

|∇u|2 dz = ε � ε0,

satisfies

sup
P1/2

(|∇u|2 + |∇2u|2) � Cε.

The next statement gives a version of the so-called monotonicity formula for harmonic maps. A proof for this
formula is given in [20], Section 4.1.

Lemma 3.2. Suppose u ∈ C∞(B1,S
2). For 0 < ρ � 1, set

Φ(ρ) = 1

ρ

∫
Bρ

(
1

2
|∇u|2 − x · 〈�u,∇u〉

)
dx.

Then

Φ(r) − Φ(s) =
∫

Br\Bs

( |x · ∇u|2
|x|3 − x · 〈�u,∇u〉

|x|
)

dx

for 0 < s � r � 1.

We will also need the following estimates. Here we write x = (x ′, x3) for a point in R
3, where x′ = (x1, x2).

Lemma 3.3. Suppose ξ ∈ C1
0(− 1

2 , 1
2 ) and ζ ∈ C1

0(−1,1) satisfy

1/2∫
−1/2

ξ(s) ds =
1∫

−1

ζ(t) dt = 1.

Then there exists a constant C with the following properties.

(i) For every u ∈ C∞(B1,S
2) and every η ∈ C1

0(B2
1/2), the inequality∣∣∣∣

∫
B1

η(x′)ξ(x3)
∣∣∇u(x′, x3)

∣∣2 dx −
∫

B2
1/2

η(x′)
∣∣∇u(x′,0)

∣∣2 dx′
∣∣∣∣

� C‖η‖C1(B2
1/2)

‖∇u‖L2(B1)

(∥∥∥∥ ∂u

∂x3

∥∥∥∥
2

+ ‖u ∧ �u‖L2(B1)

)
+ C‖η‖C0(B2

1/2)

∥∥∥∥ ∂u

∂x3
(·,0)

∥∥∥∥
2

2 2
L (B1) L (B1 )
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holds.
(ii) For every solution u ∈ C∞(P1,S

2) of (1) and every η ∈ C1
0(B1), the inequality∣∣∣∣

∫
P1

η(x)ζ(t)
∣∣∇u(x, t)

∣∣2 dz −
∫
B1

η(x)
∣∣∇u(x,0)

∣∣2 dx

∣∣∣∣
� C‖η‖C1(B1)

∥∥∥∥∂u

∂t

∥∥∥∥
L2(P1)

(
‖∇u‖L2(P1)

+
∥∥∥∥∂u

∂t

∥∥∥∥
L2(P1)

)

holds.
(iii) For every solution u ∈ C∞(P1,S

2) of (1) and every η ∈ C1
0(B1/2), the inequality∣∣∣∣

∫
P1

η(x)ζ(t)
∣∣∇u(x, t)

∣∣2 dz −
∫
B1

η(x)
∣∣∇u(x,0)

∣∣2 dx

∣∣∣∣
� C‖η‖C1(B1/2)

∥∥∥∥∂u

∂t

∥∥∥∥
L2(P1)

(∥∥∇u(·,0)
∥∥

L2(B1)
+

∥∥∥∥∂u

∂t

∥∥∥∥
L2(P1)

)

holds.

Proof. For part (i) of the lemma, we define η̃(x′, x3) = η(x′) and ξ̃ (x′, x3) = ξ(x3). We consider the vector field

A = η̃

(
1

2
|∇u|2e3 −

〈
∂u

∂x3
,∇u

〉)
,

where e3 = (0,0,1). We compute

divA = −η̃

〈
∂u

∂x3
,�u

〉
− ∇η̃ ·

〈
∂u

∂x3
,∇u

〉
.

Thus we find∫
B2

1/2×{s}
η̃

(
1

2
|∇u|2 −

∣∣∣∣ ∂u

∂x3

∣∣∣∣
2)

dx′ −
∫

B2
1/2×{0}

η̃

(
1

2
|∇u|2 −

∣∣∣∣ ∂u

∂x3

∣∣∣∣
2)

dx′

= −
∫

B2
1/2×(0,s)

(
η̃

〈
∂u

∂x3
,�u

〉
+ ∇η̃ ·

〈
∂u

∂x3
,∇u

〉)
dx

for s ∈ (0, 1
2 ) and a similar formula for s ∈ (− 1

2 ,0). Multiplying both sides with ξ(s), integrating over s, and using
Fubini’s theorem, we obtain∫

B2
1/2×(− 1

2 , 1
2 )

η̃ξ̃

(
1

2
|∇u|2 −

∣∣∣∣ ∂u

∂x3

∣∣∣∣
2)

dx −
∫

B2
1/2×{0}

η̃

(
1

2
|∇u|2 −

∣∣∣∣ ∂u

∂x3

∣∣∣∣
)

dx′

= −
∫

B2
1/2×(− 1

2 , 1
2 )

σ̃

(
η̃

〈
∂u

∂x3
,�u

〉
+ ∇η̃ ·

〈
∂u

∂x3
,∇u

〉)
dx,

where

σ̃ (x′, x3) =
⎧⎨
⎩

∫ 1/2
x3 ξ(s) ds x3 > 0,

− ∫ x3

−1/2 ξ(s) ds x3 < 0.

The estimate in (i) follows with Young’s inequality.
Part (ii) is an easy consequence of the energy identity (8).
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For part (iii), it suffices to show that there exists a constant C1 that depends only on a and b, such that∫
B1/2×(−1,1)

|∇u|2 dz � C1

( ∫
B1

∣∣∇u(x,0)
∣∣2 dx +

∫
P1

∣∣∣∣∂u

∂t

∣∣∣∣
2

dz

)
. (24)

Once this is verified, also the inequality in (iii) follows directly from (8). To prove (24), choose a cut-off function
ω ∈ C∞

0 (B1) with ω ≡ 1 in B1/2. As a consequence of (8), we have a constant C2 = C2(a, b,ω) such that∣∣∣∣ d

dt

∫
B1

ω2(x)
∣∣∇u(x, t)

∣∣2 dx

∣∣∣∣ �
∫
B1

ω2(x)
∣∣∇u(x, t)

∣∣2 dx + C2

∫
B1

∣∣∣∣∂u

∂t

∣∣∣∣
2

dx.

Now (24) follows easily from this inequality. �
Next we consider a sequence of maps uk ∈ C∞(Ω,S

2) such that

sup
k∈N

(
E(uk) +

∫
Ω

|uk ∧ �uk|2 dx

)
< ∞.

For such a sequence, a similar energy concentration phenomenon as described in Theorem 1.1 can be observed. This
behaviour and the corresponding energy concentration measure have been studied in [19]. We repeat here the main
results of that paper (in the case of a three-dimensional domain and the target manifold S

2).

Theorem 3.1. Under the above conditions, there exists a subsequence {uki
} with the following properties.

(i) There exists a map u ∈ H 1(Ω,S
2) with

�u + |∇u|2u ∈ L2(Ω,R
3),

such that uki
⇀ u weakly in H 1(Ω,R

3) and

�uki
+ |∇uki

|2uki
⇀ �u + |∇u|2u weakly in L2(Ω,R

3).

(ii) There exists an H1-integrable function θ :Ω → [0,∞), such that for any η ∈ C0
0(Ω),

lim
i→∞

∫
Ω

η|∇uki
|2 dx =

∫
Ω

η|∇u|2 dx + 8π

∫
Ω

ηθ dH1,

and the set Σ = θ−1((0,∞)) is closed relative to Ω and countably 1-rectifiable.
(iii) There exists an H1-measurable vector field H :Ω → R

3 with H(x) ⊥ TxΣ for H1-almost every x ∈ Σ , such
that ∫

Ω

(
1

2
|∇u|2 divφ − tr

(
(∇u ⊗ ∇u)∇φ

) − 〈�u,∇u〉 · φ
)

dx + 4π

∫
Ω

(divΣ φ + H · φ)θ dH1 = 0

for every φ ∈ C1
0(Ω,R

3).
(iv) The inequality∫

Ω

|u ∧ �u|2 dx + 4π

∫
Ω

|H |2θ dH1 � lim inf
k→∞

∫
Ω

|uk ∧ �uk|2 dx

holds.

If we have a sequence of solutions uk ∈ C∞(Ω,S
2) of (1) that satisfy the hypotheses of Theorem 1.1, then the

energy identity (8) implies that for any precompact set K � Ω and for every t0 ∈ (0, T ), we have

sup
k∈N

( ∫
|∇uk(x, t0)|2 dx +

T∫ ∫
|uk ∧ �uk|2 dx dt

)
< ∞.
K t0 K
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Thus, the above result can be applied to restrictions of uk to K × {t0} for almost every t0 ∈ [0, T ), at least after the
choice of a subsequence (which may depend on t0). Parts (i)–(iii) of Theorem 1.1 then follow with relatively little
extra work, except for the statement that θ is integer-valued. Most of the rest of the paper is therefore dedicated to this
quantization property and part (iv) of Theorem 1.1.

4. Two-dimensional blow-up analysis

In this section we work in two-dimensional domains. The results will later be applied to cross-sections of a higher-
dimensional domain. We now write Br(x0) for an open ball in R

2 (or Br if x0 = 0). We also use the notations
F̂ = R

2×2 × R
2×2 and

I =
(

1 0
0 1

)
, J =

(
0 −1
1 0

)
.

Remember that a Dirac measure centred at a point p is denoted by δp .
We study a sequence of maps uk ∈ C∞(B1,S

2). We consider the corresponding measures μk on B1 × F̂ given by∫
B1×F̂

ψ dμk = 1

2

∫
B1

ψ

(
x,2

∇uk ⊗ ∇uk

|∇uk|2 ,2
(uk ∧ ∇uk) ⊗ ∇uk

|∇uk|2
)

|∇uk|2 dx (25)

for ψ ∈ C0
0(B1 × K); in other words, the equivalent of (18) for the maps uk . The weight measures ‖μk‖ on B1 are

then defined similarly as in Section 2.
We examine the blow-up behaviour of this sequence under the assumption that there exists a number ε0 such that

the following conditions are satisfied.

(I) There exists a number θ > 0 such that ‖μk‖ → 4πθδ0.
(II) supk∈N ‖∇2uk‖L1(B1)

< ∞.
(III) Suppose xk ∈ B1 and rk > 0 are such that xk → 0 and rk → 0. If

0 < lim sup
k→∞

∫
Brk

(xk)

|∇uk|2 dx � 2ε0,

then the sequence of rescaled maps vk(x) = uk(rkx + xk) subconverges weakly in H 1
loc(R

2,R
3). The limit is a

non-constant harmonic map v ∈ C∞(R2,S
2) (i.e., it satisfies v ∧ �v = 0) with∫

R2

|∇v|2 dx < ∞.

(IV) There exists a constant C0 such that for any ε ∈ (0, ε0] and for any sequence of balls Brk (xk) ⊂ B1 with

lim sup
k→∞

∫
Brk

(xk)

|∇uk|2 dx � 2ε,

the inequality

lim sup
k→∞

sup
x∈Brk/2(xk)

(
r2
k

∣∣∇uk(x)
∣∣2 + r4

k |∇2uk|2
)
� C0ε

holds.

We want to determine the possible limit measures of the sequence {μk} under these assumptions. We achieve this
by a blow-up analysis similar to what has been done for harmonic maps by Jost [11] and for the harmonic map heat
flow and Palais–Smale sequences for the Dirichlet energy by Qing [21], Ding and Tian [5], Qing and Tian [22], and
Lin and Wang [17]. Typical for this method is that the limit measures are described in terms of so-called “harmonic
bubbles”. These bubbles are harmonic maps which are obtained from rescaled sequences as in (III). It turns out that
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they contain all the information about the limit measure. Since harmonic maps of this type are well understood, we
obtain a good description of any possible limit of {μk}.

Proposition 4.1. Under the hypotheses (I)–(IV), the number θ is an integer. If μk → μ for a Radon measure μ on
B1 × F̂ , then there exists a number σ ∈ [0,1], such that

μ = 4πθδ0 × δI × (
σδJ + (1 − σ)δ−J

)
.

For the proof of this proposition, we use ideas from the papers mentioned earlier and also from Lin and Rivière [16].
One of the tools we need is the following lemma.

Lemma 4.1. There exists a constant C with the following property. Suppose r ∈ (0,1) and f ∈ W 1,1(B1) satisfy

sup
x∈B1\Br

∣∣xf (x)
∣∣ � c. (26)

Then ∫
B1\Br

f 2 dx � Cc
(‖f ‖W 1,1(B1)

+ c
)
. (27)

Proof. It suffices to consider r ∈ (0, 1
8 ]. Choose a cut-off function ξ ∈ C1

0(B1\Br) with 0 � ξ � 1 and ξ ≡ 1 in
B1/2\B2r , such that |∇ξ | � 4 in B1\B1/2 and |∇ξ | � 2/r in B2r\Br . Define g = ξf . Then

‖g‖W 1,1(R2) � ‖f ‖W 1,1(B1)
+ 16πc.

For every s � c, we have

∣∣{x ∈ R
2:

∣∣g(x)
∣∣ > s

}∣∣ � π
c2

s2

by (26), thus we have the estimate

‖g‖L(2,∞)(R2) �
√

π c

in the Lorentz space L(2,∞)(R2). The Sobolev space W 1,1(R2) is continuously embedded in L(2,1)(R2) (cf. Tartar
[27]). Thus it follows that∫

R2

g2 dx � C1‖g‖L(2,1)(R2)‖g‖L(2,∞)(R2) � C2c
(‖f ‖W 1,1(B1)

+ c
)

for certain universal constants C1 and C2. To estimate the remaining part of the integral in (27), we use (26) again. �
Proof of Proposition 4.1. We may assume that a limit μ of the sequence {μk} exists. Let m ∈ N be the minimal
integer such that θ � m. We prove the proposition by induction on m.

Suppose first that m = 1. Then we choose a sequence of radii rk → 0 such that

1

2

∫
Brk

|∇uk|2 dx = min{ε0,2πθ}.

By (III), there exists a subsequence of the sequence defined by vk(x) = uk(rkx) which converges weakly in
H 1

loc(R
2,R3) to a non-constant harmonic map v ∈ C∞(R2,S2) with finite energy. Such a harmonic map must be

conformal and must satisfy

1

2

∫
R2

|∇v|2 dx = 4πM

for some M ∈ N (cf. Sacks and Uhlenbeck [23] and Section 11.5 in Eells and Lemaire [6]). It follows immediately
that M = θ = 1. Moreover, the above convergence is strong in H 1(K,R

3) for every bounded set K ⊂ R
2.
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Fix x0 ∈ R
2 and choose r > 0 such that∫

Br (x0)

|∇v|2 dx � ε0.

Then it follows from (IV) that the above subsequence of {vk} converges to v even in the topology of C1(Br/2(x0),S
2).

Since v is conformal, we have

2
∇v ⊗ ∇v

|∇v|2 = I and 2
(v ∧ ∇v) ⊗ ∇v

|∇v|2 = ±J

on R
2. The claim of the proposition then follows immediately (with σ = 0 or σ = 1).

Next we assume that the statement of the proposition is true whenever θ does not exceed m − 1. We want to show
that it still holds for θ � m.

We fix ε ∈ (0, ε0]. We choose a sequence rk → 0 such that

1

2

∫
B2rk

\Brk

|∇uk|2 dx = ε,

but
1

2

∫
B2ρ\Bρ

|∇uk|2 dx � ε

for every ρ ∈ (rk,
1
2 ]. Then by (IV), there exists a constant C1, such that

lim sup
k→∞

sup
x∈B1/4\B4rk

|x|∣∣∇uk(x)
∣∣ � C1

√
ε.

We apply Lemma 4.1 to f = |∇uk|. Using also (II), we conclude that

lim sup
k→∞

∫
B1\Brk

|∇uk|2 dx � C2
√

ε, (28)

where C2 is a constant that depends only ε0, C0, and the supremum in (II).
Consider the rescaled maps

vk(x) = uk(rkx)

and the corresponding measures μ̃k which are defined similarly as in (25), but with vk instead of uk . Using (III),
we see that there exists a subsequence which converges weakly in H 1

loc(R
2,R

3) to a non-constant harmonic map
v ∈ C∞(R2,S

2) with finite energy. We assume for simplicity that this convergence holds for the full sequence. We
may also assume that μ̃k → μ̃ for a Radon measure μ̃ on R

2 × F̂ . If we can show that there exist m̂ ∈ N and σ ∈ [0,1]
such that∫

R2×F̂

ψ(A,B)dμ̃(x,A,B) = 4πm̂
(
σψ(I, J ) + (1 − σ)ψ(I,−J )

)
(29)

for every ψ ∈ C0
0(F̂ ), then the claim of the proposition follows, because we have (28) for an arbitrarily small number

ε ∈ (0, ε0].
Define

Σ0 = {
x ∈ R

2: ‖μ̃‖({x}) � ε0/2
}
.

Because of (28), we have Σ0 ⊂ B1 whenever ε is chosen sufficiently small. Moreover, this is a finite set. At every
point x0 ∈ Σ0, it is easy to find a sequence sk → 0, such that the maps wk(x) = vk(skx + x0) satisfy

1 L2 |∇wk|2 → ‖μ̃‖({x0}
)
δ0.
2
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Such a sequence also satisfies the conditions (I)–(IV), but with the number

θx0 = ‖μ̃‖({x0})
4π

in (I) instead of θ , which satisfies θx0 � θ − 1. By our assumptions, this means that we have∫
{x0}×F̂

ψ dμ̃ = 4πmx0

(
σx0ψ(I, J ) + (1 − σx0)ψ(I,−J )

)

for certain numbers mx0 ∈ N and σx0 ∈ [0,1]. Similarly as in the first part of the proof we obtain∫
(R2\Σ0)×F̂

ψdμ̃ = 4πm̃
(
σ̃ψ(I, J ) + (1 − σ̃ )ψ(I,−J )

)

for some m̃ ∈ N and σ̃ ∈ [0,1]. Combining these identities, we obtain (29) for

m̂ = m̃ +
∑

x0∈Σ0

mx0

and

σ = 1

m̂

(
m̃σ̃ +

∑
x0∈Σ0

mx0σx0

)
,

and the proof is complete. �
5. Three-dimensional blow-up analysis

We now examine a sequence of solutions uk ∈ C∞(P1,S
2) of the Landau–Lifshitz equation (1) that arises from

rescaling a sequence as in Theorem 1.1 around a typical blow-up point. (We will see later what “typical” means here.)
We define the measures μk on P1 × F which belong to uk and are given by∫

P1×F

ψ dμk = 1

2

∫
P1

ψ
(
z,Auk

(z),Buk
(z)

)∣∣∇uk(z)
∣∣2 dz for ψ ∈ C0

0(P1 × F).

Here Auk
and Buk

are the functions defined similarly as in (17). We assume that μk → μ for a Radon measure μ on
P1 × F . We also assume that this limit measure has a special structure: namely, that there exist a one-dimensional
linear subspace L ⊂ R3 and a number θ > 0 such that

‖μ‖ = 4πθH2 (
(L × R) ∩ P1

)
. (30)

We then fix a unit vector τ ∈ L ∩ S
2. Finally, we assume that

lim
k→0

∫
P1

∣∣∣∣∂uk

∂t

∣∣∣∣
2

dz = 0. (31)

Proposition 5.1. Under the above hypotheses, there exist m ∈ N and σ ∈ [0,1], such that for every ψ ∈ C0(F ),∫
P1/4×F

ψ(A,B)dμ(z,A,B) = πm

4

(
σψ(Π⊥

L ,Λτ ) + (1 − σ)ψ(Π⊥
L ,−Λτ )

)
.

Proof. We consider the functional on C0(F ) that assigns to ψ the number∫
P1/4×F

ψ(A,B)dμ(z,A,B).

Clearly this is represented by a Radon measure on F with total mass πθ/4. Thus it suffices to show that



1004 R. Moser / Ann. I. H. Poincaré – AN 25 (2008) 987–1013
(i) θ ∈ N and
(ii) for any ψ ∈ C0(F ) with ψ � 0 and ψ(Π⊥

L ,Λτ ) = ψ(Π⊥
L ,−Λτ ) = 0, we have∫

P1/4×F

ψ(A,B)dμ(z,A,B) = 0.

For the proofs of both statements we use ideas of Lin [13] and of Lin and Rivière [16].
We first exploit the fact that the Landau–Lifshitz equation can be represented in the form (3) or (4). We note that

|∇uk|2uk =
3∑

α=1

∂uk

∂xα
∧

(
uk ∧ ∂uk

∂xα

)

and √
a2 + b2

∣∣div(uk ∧ ∇uk)
∣∣ =

∣∣∣∣∂uk

∂t

∣∣∣∣.
With the compensated compactness method of Coifman, Lions, Meyer, and Semmes [4], we can prove the estimate

∥∥∣∣∇uk(·, t)
∣∣2uk(·, t)

∥∥
H1(B3/4)

� C1
∥∥∇uk(·, t)

∥∥2
L2(B1)

+ C1
∥∥∇uk(·, t)

∥∥
L2(B1)

∥∥∥∥∂uk

∂t
(·, t)

∥∥∥∥
L2(B1)

in the Hardy space H1(B3/4) for every t ∈ (−1,1), where C1 is a constant that depends only on a and b. We also have√
a2 + b2

∣∣�uk + |∇uk|2uk

∣∣ =
∣∣∣∣∂uk

∂t

∣∣∣∣,
thus ∥∥�uk(·, t)

∥∥
H1(B3/4)

� C2
∥∥∇uk(·, t)

∥∥2
L2(B1)

+ C2
(∥∥∇uk(·, t)

∥∥
L2(B1)

+ 1
)∥∥∥∥∂uk

∂t
(·, t)

∥∥∥∥
L2(B1)

for another constant C2 that depends only on a and b. Standard estimates for singular integrals involving Hardy spaces
(see, e.g., Theorem 3 in Section III.3.1 of Stein [25]) now imply that there exists a constant C3 = C3(a, b), such that

∥∥∇2uk(·, t)
∥∥

L1(B1/2)
� C3

(∥∥∇uk(·, t)
∥∥

L2(B1)
+ 1

)(∥∥∇uk(·, t)
∥∥

L2(B1)
+

∥∥∥∥∂uk

∂t
(·, t)

∥∥∥∥
L2(B1)

)
.

In particular we have

lim sup
k→∞

‖∇2uk‖L1(P1/2)
< ∞. (32)

We now assume that L = {(0,0)} × R for simplicity. Because of (30) and (31), the monotonicity formula of
Lemma 3.2 (applied to uk(·, t) for every k ∈ N and t ∈ (−1,1)) implies

lim
k→∞

1∫
−1

∫
B1\Br

|x · ∇uk|2
|x|3 dx dt = 0

for every r > 0. Since ‖μ‖ is supported on {(0,0)} × R
2, this means that

lim
k→∞

∫
P1

∣∣∣∣∂uk

∂x3

∣∣∣∣
2

dz = 0.

For r > 0, let P 2
r = (−r, r) × (−r2, r2). On P 2

1/2, define the functions

Fk(s, t) =
∫

B2 ×{(s,t)}

∣∣∣∣∂uk

∂x3

∣∣∣∣
2

dx′
1/2
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and

Gk(s, t) =
∫

B2
1/2×{(s,t)}

∣∣∣∣∂uk

∂t

∣∣∣∣
2

dx′.

Moreover, for (s0, t0) ∈ P 2
1/4, let

F ∗
k (s0, t0) = sup

0<r�1/4

(
r−3

t0+r2∫
t0−r2

s0+r∫
s0−r

Fk ds dt + r−1

s0+r∫
s0−r

Fk(s, t0) ds

)

and

G∗
k(s0, t0) = sup

0<r�1/4

(
r−1

t0+r2∫
t0−r2

s0+r∫
s0−r

Gk ds dt + r

s0+r∫
s0−r

Gk(s, t0) ds

)
.

We have

lim
k→∞‖Fk‖L1(P 2

1/2)
= lim

k→∞‖Gk‖L1(P 2
1/2)

= 0,

hence for any c > 0,

lim
k→∞ L2({(s, t) ∈ P 2

1/4: F ∗
k (s, t) � c

}) = 0 (33)

and

lim
k→∞ L2({(s, t) ∈ P 2

1/4: G∗
k(s, t) � c

}) = 0. (34)

Using also (32), we can find a sequence of points (sk, tk) ∈ P 2
1/4, such that

lim
k→∞F ∗(sk, tk) = lim

k→∞G∗(sk, tk) = 0 (35)

and

lim sup
k→∞

∥∥∇2uk(·, sk, tk)
∥∥

L1(B2
1/4)

< ∞. (36)

Define

vk(x
′, x3, t) = uk

(
x′

4
,
x3

4
+ sk,

t

16
+ tk

)
.

These are again solutions of (1). Because of (35), there exists a sequence εk → 0 such that∫
B2

1 ×P 2
r

(
r−3

∣∣∣∣ ∂vk

∂x3

∣∣∣∣
2

+ r−1
∣∣∣∣∂vk

∂t

∣∣∣∣
2)

dz +
∫

B2
1 ×(−r,r)

(
r−1

∣∣∣∣ ∂vk

∂x3
(x,0)

∣∣∣∣
2

+ r

∣∣∣∣∂vk

∂t
(x,0)

∣∣∣∣
2)

dx � εk (37)

for every k ∈ N and every r ∈ (0,1]. Moreover, for any η ∈ C0
0(P1), we have

lim
k→∞

∫
P1

η|∇vk|2 dz = 8πθ

1∫
−1

1∫
−1

η(0,0, s, t) ds dt (38)

by (30). Using part (ii) of Lemma 3.3, we see that

lim
k→∞

∫ ∣∣∇vk(x,0)
∣∣2 dx = 16πθ.
B1
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Since we have (37), Lemma 3.2 then implies

1

r
lim sup
k→∞

∫
Br (x0)

∣∣∇vk(x,0)
∣∣2 dx � 32πθ (39)

uniformly in x0 ∈ B1/2 and r ∈ (0, 1
2 ].

Choose two cut-off functions ξ ∈ C∞
0 (− 1

2 , 1
2 ) and ζ ∈ C∞

0 (−1,1) such that

1/2∫
−1/2

ξ(s) ds =
1∫

−1

ζ(t) dt = 1.

For r ∈ (0, 1
2 ], set

ξr (s) = r−1ξ(s/r), ζr (t) = r−2ζ(t/r2).

Fix also a function η ∈ C∞
0 (B2

1/2), and for x′
0 ∈ B1/2 and r ∈ (0, 1

2 ] set

ηx′
0,r

(x′) = η

(
x′ − x′

0

r

)
.

Then (37), (39), and Lemma 3.3 imply∣∣∣∣
∫
P1

ηx′
0,r

(x′)ξr (x
3)ζr (t)

∣∣∇vk(x
′, x3, t)

∣∣2 dz −
∫
B2

1

ηx′
0,r

(x′)
∣∣∇vk(x

′,0,0)
∣∣2 dx′

∣∣∣∣ → 0 as k → ∞ (40)

uniformly in x′
0 and r .

Define now

wk(x
′) = vk(x

′,0,0).

From (38) and (40), we obtain

lim
k→∞

∫
B2

1

η|∇wk|2 dx′ = 8πθη(0)

for every η ∈ C0
0(B2

1 ). That is, the sequence {wk} satisfies the hypothesis (I) from Section 4. Hypothesis (II) follows
from (36). Combining (40) with Lemma 3.1, we find that (IV) is true. Using also (37) and the regularity results of
Hélein [9], we easily show (III). Thus we can apply Proposition 4.1, and we immediately obtain (i).

To show (ii), we argue by contradiction. Suppose there exists a function ψ ∈ C0(F ) with ψ � 0 and ψ(Π⊥
L ,Λτ ) =

ψ(Π⊥
L ,−Λτ ) = 0, such that∫
P1/4×F

ψ(A,B)dμ(z,A,B) > 0. (41)

For (s, t) ∈ P 2
1/4, define

fk(s, t) = 1

2

∫
B2

1/4

ψ
(
Auk

(x′, s, t),Buk
(x′, s, t)

)∣∣∇uk(x
′, s, t)

∣∣2 dx′.

Then we have

lim inf
k→∞

1/16∫ 1/4∫
fk(s, t) ds dt > 0. (42)
−1/16 −1/4
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For c > 0, define

Zc
k = {

(s, t) ∈ P 2
1/4: fk(s, t) � c

}
.

We claim that there exists a number c > 0 such that

lim inf
k→∞ L2(Zc

k) > 0. (43)

To see this, suppose c > 0 is such that

lim inf
k→∞ L2(Zc

k) = 0.

We may assume that L2(Zc
k) � 2−k for every k ∈ N; otherwise we replace our sequence by a subsequence. Define

Y c
� =

∞⋃
�=k

Zc
k.

Then L2(Y c
� ) � 21−�, and fk < c outside of Y c

� for any k � �. Thus

lim inf
k→∞

1/16∫
−1/16

1/4∫
−1/4

fk(s, t)dsdt � c

16
+ 1

2
‖ψ‖C0(F ) lim inf

k→∞

∫
B2

1/4×Y c
�

|∇uk|2dz

� c

16
+ 22−�πθ‖ψ‖C0(F )

for any � ∈ N. By (42), this is only possible for sufficiently large values of c.
Now because of (32)–(34) and (43), we can find a sequence of points (sk, tk) ∈ P 2

1/4 such that (35) and (36) hold
true, and in addition,

lim inf
k→∞ fk(sk, tk) > 0. (44)

Similarly as in the first part of the proof, we see that a subsequence of the maps

wk(x
′) = uk

(
x′

4
, sk, tk

)

satisfies the conditions (I)–(IV) in section 4. But then Proposition 4.1 contradicts (44). This concludes the proof. �
6. Proof of Theorem 1.1

Suppose now that uk ∈ C∞(Ω × [0, T ),S
2) are solutions of the Landau–Lifshitz equation (1) that satisfy the

hypotheses of Theorem 1.1. Then it follows from the energy identity (8) that for every precompact set K � Ω and
every t0 ∈ (0, T ), we have

sup
k∈N

( ∫
K

|∇uk(x, t0)|2 dx +
T∫

t0

∫
K

|uk ∧ �uk|2 dx dt

)
< ∞. (45)

We consider the measures μk on ΩT × F given by∫
ΩT ×F

ψ dμk = 1

2

∫
ΩT

ψ(z,Auk
,Buk

)|∇uk|2 dz for ψ ∈ C0
0(ΩT × F).

Because of (45), we may assume that there exist a function u ∈ H 1
loc(ΩT ,S

2) and a Radon measure μ on ΩT × F

such that uk ⇀ u weakly in H 1
loc(ΩT ,R

3) and pointwise almost everywhere, and μk → μ (possibly after the choice
of a subsequence). Using the representation (4) of the Landau–Lifshitz equation and passing to the limit, we see
immediately that u is a weak solution.
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It also follows from (45) that there exist Radon measures μt on Ω × F for almost every t ∈ [0, T ), such that

∫
ΩT ×F

ψ dμ =
T∫

0

∫
Ω×F

ψ dμt dt

for every ψ ∈ C0
0(ΩT × F). We define mt = ‖μt‖. We also consider the measures

mt
k = 1

2
L3

∣∣∇uk(·, t)
∣∣2.

Fix a function ξ ∈ C1
0(Ω) and define

fkξ (t) =
∫
Ω

ξdmt
k

and

fξ (t) =
∫
Ω

ξdmt .

For any ζ ∈ C0
0(0, T ), we have

lim
k→∞

T∫
0

fkξ (t)ζ(t) dt =
T∫

0

fξ (t)ζ(t) dt.

By (8), we have

d

dt
fkξ (t) = −

∫
Ω×{t}

(
aξ

∣∣∣∣∂uk

∂t

∣∣∣∣
2

+ a∇ξ · 〈∇uk,�uk〉 − b∇ξ · 〈∇uk,uk ∧ �uk〉
)

dx.

Using (45), we find that

sup
k∈N

T∫
t0

∣∣∣∣ d

dt
fkξ (t)

∣∣∣∣dt < ∞

for every t0 > 0. That is, the sequence {fkξ } is bounded in BV(t0, T ). Hence we have fkξ (t) → fξ (t) for almost every
t ∈ [0, T ). Since C1

0(Ω) is dense in C0
0(Ω), this means that

mt
k → mt (46)

for almost every t ∈ [0, T ).
For almost every t ∈ [0, T ), we also have uk(x, t) → u(x, t) at almost every x ∈ Ω . By (45) again, the sequence

{uk(·, t)} is bounded in H 1(K,R
3) for every K � Ω . We conclude that

uk(·, t) ⇀ u(·, t) weakly in H 1
loc(Ω,R

3) (47)

for almost every t ∈ [0, T ). Using (45) and Fatou’s lemma, we also find that

lim inf
k→∞

∫
Ω

∣∣∣∣∂uk

∂t
(x, t)

∣∣∣∣
2

dx < ∞ (48)

for almost every t ∈ [0, T ).
Fix t ∈ [0, T ), such that (46), (47), and (48) hold. Then Theorem 3.1 can be applied locally to a subsequence of

{uk(·, t)}. Hence there exists a locally H1-integrable function θt :Ω → [0,∞) such that Σt = θ−1
t ((0,∞)) is closed

and countably 1-rectifiable, and

mt = 1 L3
∣∣∇u(·, t)∣∣2 + 4πH1 θt . (49)
2
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Moreover, we have∫
Ω

∣∣u(x, t) ∧ �u(x, t)
∣∣2 dx � lim inf

k→∞

∫
Ω

∣∣uk(x, t) ∧ �uk(x, t)
∣∣2 dx.

Fatou’s lemma then implies that �u + |∇u|2u ∈ L2
loc(ΩT ,R

3).
Consider the measures

λk = L4
∣∣∣∣∂uk

∂t

∣∣∣∣
2

on ΩT . We may assume that there exists a Radon measure λ on ΩT such that λk → λ. Define

S =
{
z0 ∈ ΩT : lim inf

r↘0
r−1λ

(
Pr(z0)

)
> 0

}
.

We claim that the parabolic Hausdorff dimension of S is at most 1. To see this, define

Sij = {
z0 ∈ ΩT : r−1λ

(
Pr(z0)

)
� i−1 for every r ∈ (0, j−1)

}
.

These are closed sets, and therefore a standard covering argument involving Vitali’s covering lemma shows that Sij

has locally finite H1
d -measure. Consequently, the set

S =
∞⋃
i=1

∞⋃
j=1

Sij

satisfies H
γ

d (S) = 0 for every γ > 1. Hence for almost every t0 ∈ [0, T ), we have

S ∩ (
Ω × {t0}

) = ∅. (50)

Fix a t0 such that (49) and (50) hold. Choose a point x0 ∈ Σt0 such that θt0 is approximately continuous at x0 and the
approximate tangent space Tx0Σt0 exists. (This is true mt0 -almost everywhere on Σt0 .) Then there exists a sequence
rk ↘ 0 such that

lim
k→∞

1

rk

∫
Prk

(x0,t0)

∣∣∣∣∂uk

∂t

∣∣∣∣
2

dz = 0,

and such that the rescaled maps

vk(x, t) = uk(rkx + x0, r
2
k t + t0)

satisfy

lim
k→∞

∫
B1

ξ(x)
∣∣∇vk(x,0)

∣∣2 dx = 8πθt0(x0)

∫
Tx0 Σt0

ξ dH1

for every ξ ∈ C1
0(B2). With the help of part (iii) of Lemma 3.3, we conclude that

lim
k→∞

∫
P1

η|∇vk|2dz = 8πθt0(x0)

1∫
−1

∫
Tx0Σt0

η dH1 dt

for every η ∈ C0
0(P1). That is, a subsequence of {vk} satisfies the hypotheses of Proposition 5.1. Therefore, the mea-

sures μ̃k on P1 × F that belong to vk subconverge to a measure μ̃ on P1 × F which satisfies∫
P

ψ(A,B)dμ̃(z,A,B) = πm̃

4

(
σ̃ψ(Π⊥

L̃
,Λτ̃ ) + (1 − σ̃ )ψ(Π⊥

L̃
,−Λτ̃ )

)

1/4
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for two numbers m̃ ∈ N and σ̃ ∈ [0,1], where L̃ = Tx0Σt0 and τ̃ ∈ L̃ ∩ S
2. By the construction of μ̃, this formula

determines θt0(x0) as well as the fibre measure μ(x0,t0) of μ at the point (x0, t0). Namely, we have

θt0(x0) = m̃

and

μ(x0,t0) = δΠ⊥
L̃

× (
σ̃ δΛτ̃

+ (1 − σ̃ )δ−Λτ̃

)
.

These arguments work for almost every t0 ∈ [0, T ) and H1-almost every x0 ∈ Σt0 . Hence there exists a function
θ :ΩT → N ∪ {0}, such that θ(x, t) = θt (x) for ‖μ‖-almost every point (x, t) ∈ ΩT , and thus

∫
ΩT

η d‖μ‖ = 1

2

∫
ΩT

η|∇u|2 dx + 4π

T∫
0

∫
Σt

ηθ dH1 dt

for every η ∈ C0
0(ΩT ). Moreover, there exist two functions σ :ΩT → [0,1] and τ :ΩT → S

2 with τ(x, t) ∈ TxΣt for
almost every t and H1-almost every x ∈ Σt , such that for every ψ ∈ C0

0(ΩT × F), we have

∫
ΩT ×F

ψ dμ = 1

2

∫
ΩT

ψ(z,Au,Bu)|∇u|2 dz + 4π

T∫
0

∫
Ω

[
σψ(x, t,ΠTxΣt ,Λτ )

+ (1 − σ)ψ(x, t,ΠTxΣt ,−Λτ )
]
θ dH1 dt. (51)

So far we have proved parts (i) and (ii) of Theorem 1.1. For part (iii), it suffices to use Theorem 3.1 again. Only
part (iv) remains to be proved.

Let ε0 be the constant from Lemma 3.1. Define the set

Σ =
{
z0 ∈ ΩT : lim inf

r↘0
r−3‖μ‖(Pr(z0)

)
� ε0

}
.

Using Lemma 3.1, we see that for every point z0 ∈ ΩT \Σ , there exists a radius r > 0 such that a subsequence of {uk}
converges to u in C1(Pr(z0), S

2). We conclude that Σ is closed and Σt × {t} ⊂ Σ for almost every t ∈ [0, T ). With a
covering argument, we see that H3

d (Σ ∩ K) < ∞ for every compact set K � ΩT . Thus in particular L4(Σ) = 0.
For δ > 0, define

Uδ = {
z ∈ ΩT : dist(z,Σ) < δ

}
,

where dist is the distance function with respect to the parabolic metric d . Then we have

lim
δ↘0

∫
Uδ

η|∇u|2 dz = 0

for every η ∈ C0
0(ΩT ). Hence

T∫
0

∫
Σt

ηθ dH1 dt = lim
δ→0

∫
Uδ

η d‖μ‖.

We finally consider the vector fields Hk :ΩT → R
3 that satisfy Hk(x) ⊥ kerAuk

(x) for ‖μk‖-almost every x ∈ ΩT

and ∫
ΩT ×F

φ · AHk dμk = −δμk(φ)

for every φ ∈ C1
0(ΩT ,R

3). Also consider the function

g(z,A,B) = |A|2 − 2
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on ΩT × F . Note that g is non-negative by condition (c) in the definition of F in Section 2. Now define

Vδk = {
z ∈ Uδ: g

(
z,Auk

(z),Buk
(z)

)
� 1

}
.

Then for every z ∈ Vδk , we have either ∇uk = 0 or the rank of ∇uk is 2. By (22), the identity

∫
Vδk

φ · BHk dμk = −
T∫

0

∫
Ω

φ · 〈uk ∧ �uk,∇uk〉dx dt

holds for every φ ∈ C0
0(ΩT ,R

3). Integrating both sides of (8), we thus obtain

0 =
∫

Vδk

(
∂η

∂t
− aηHk · AHk + a∇η · AHk − b∇η · BHk

)
dμ +

∫
Ω\Vδk

(
1

2
|∇uk|2 ∂η

∂t
− aη|uk ∧ �uk|2

− a∇η · 〈�uk,∇uk〉 + b∇η · 〈uk ∧ �uk,∇uk〉
)

dx dt

for every η ∈ C1
0(ΩT ).

Note that∫
Σ×F

g dμ = 0

by (51). Hence

lim
δ↘0

lim
k→∞

∫
Uδ×F

g dμk = 0,

and we conclude that

lim
δ↘0

lim
k→∞‖μk‖(Uδ\Vδk) = 0. (52)

Let χδk be the characteristic function of Vδk , and define the functions

H̃δk(z,A,B) = χδk(z)Hk(z)

on ΩT × F . Observe that∣∣H̃δk(z,A,B)
∣∣2 � C1

∣∣uk(z) ∧ �uk(z)
∣∣2

for a universal constant C1 at every point (z,A,B) ∈ ΩT × F such that ∇uk(z) �= 0. Thus for any K � Ω and
t0 ∈ (0, T ), we have

lim sup
k→∞

∫
K×(t0,T )

|H̃δk|2 dμk < ∞

for every δ > 0. By Proposition 2.1, we may assume that the measure-function pairs (μk, H̃δk) converge weakly to a
pair (μ, H̃δ). Clearly H̃δ′ = H̃δ in Uδ′ × F whenever δ′ � δ. Let now

H̃ (z,A,B) =
{

H̃1(z,A,B) if z ∈ Σ,

0 else.

This is the pointwise limit of H̃δ as δ ↘ 0. We claim that

δμ(φ) =
T∫

0

∫
Ω

φ · 〈�u,∇u〉dx dt −
∫

ΩT ×F

φ · AH̃ dμ (53)

for every φ ∈ C1(ΩT ,R
3). To verify this, we calculate
0
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δμk(φ) =
∫

ΩT \Uδ

φ · 〈�uk,∇uk〉dz +
∫

Uδ\Vδk

φ · 〈�uk,∇uk〉dz −
∫

Vδk

φ · AH̃δk dμ.

We have

lim
δ↘0

lim
k→∞

∫
ΩT \Uδ

φ · 〈�uk,∇uk〉dz =
T∫

0

∫
Ω

φ · 〈�u,∇u〉dxdt

and

lim
δ↘0

lim
k→∞

∫
Vδk

φ · AH̃δk dμ = lim
δ↘0

∫
Uδ

φ · AH̃δ dμ =
∫
Σ

φ · AH̃ dμ.

Here we use Lebesgue’s convergence theorem in the last step. Finally,

lim
δ↘0

lim
k→∞

∣∣∣∣
∫

Uδ\Vδk

φ · 〈�uk,∇uk〉dz

∣∣∣∣ � lim
δ↘0

lim
k→∞ sup

ΩT

|φ|
(

‖μk‖(Uδ\Vδk)

∫
suppφ

|uk ∧ �uk|2 dz

)1/2

= 0

by Hölder’s inequality and (52) and (45). This shows (53). With a similar reasoning, we find that

T∫
0

∫
Ω

φ · 〈u ∧ �u,∇u〉dx dt −
∫

ΩT ×F

φ · BH̃ dμ = lim
k→∞

T∫
0

∫
Ω

φ · 〈uk ∧ �uk,∇uk〉dx dt

for every φ ∈ C0
0(ΩT ,R

3). With the help of Proposition 2.1, we also obtain the inequality

T∫
0

∫
Ω

η|u ∧ �u|2 dx dt +
∫

ΩT ×F

η|H̃ |2 dμ � lim inf
k→∞

T∫
0

∫
Ω

η|uk ∧ �uk|2 dx dt

for every η ∈ C1
0(ΩT ) with η � 0. Passing to the limit in (8), we therefore find

0 �
T∫

0

∫
Ω

(
1

2
|∇u|2 ∂η

∂t
− aη|u ∧ �u|2 − a∇η · 〈�u,∇u〉 + b∇η · 〈u ∧ �u,∇u〉

)
dx dt

+
∫

ΩT ×F

(
∂η

∂t
− aη|H̃ |2 + a∇η · AH̃ − b∇η · BH̃

)
dμ.

Now we define

H+(x, t) = σ(x, t)H̃ (x, t,ΠTxΣt ,Λτ(x,t))

and

H−(x, t) = (1 − σ(x, t))H̃ (x, t,ΠTxΣt ,−Λτ(x,t)).

Taking the representation (51) for μ and identity (53) into account, we obtain (15) as well as the other claims from
part (iv) of Theorem 1.1.

Remark. We have mentioned earlier that we do not know whether the vector fields H+ and H− are parallel to
H almost everywhere. In other words, our arguments do not prove that H̃ is a function that depends only on the
variable z. Note, however, that if we had strong convergence of the measure-function pairs (μk, H̃δk) to (μ, H̃δ), then
Proposition 2.1, together with Jensen’s inequality (applied to fibre measures of μ) would imply that H̃ depends only
on the first argument. Thus the statement in part (iv) of Theorem 1.1 could be improved in this case. Although strong
convergence in this sense may be too much to expect in general, a further analysis of the higher order energies given
by uk ∧ �uk might give a better understanding of the energy concentration.
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