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Abstract

The free streamline theory in hydrodynamics is an important and difficult issue not only in fluid mechanics but also in mathemat-
ics. The major purpose in this paper is to establish the well-posedness of the impinging jets in steady incompressible, rotational, 
plane flows. More precisely, given a mass flux and a vorticity of the incoming flows in the inlet of the nozzle, there exists a unique 
smooth impinging plane jet. Moreover, there exists a smooth free streamline, which goes to infinity and initiates at the endpoint of 
the nozzle smoothly. In addition, asymptotic behavior in upstream and downstream, uniform direction and other properties of the 
impinging jet are also obtained. The main ingredients of the mathematic analysis in this paper are based on the modified variational 
method developed by H. W. Alt, L. A. Caffarelli and A. Friedman in the elegant works [1,17], which has been shown to be powerful 
to deal with the steady irrotational flows with free streamlines.
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1. Introduction and main results

Important advancement in understanding impingement of a planar jet upon an edge has resulted from the ear-
lier theoretical investigations of A. Powell in [22] and the more investigations summarized by D. Rockwell in [23]. 
Therefore, it is well known that studying the jet impinging upon a wall is directly relevant to understanding of a 
very complex flow field and the dynamical behavior generated underneath a Vertical/Short Take-off and Landing 
(V/STOL) aircraft operating close to the ground. It has been long recognized that, when an aircraft is in this condi-
tion, there are a huge number of complexities associated with the flow field created underneath the aircraft. From an 
analytical point of view, it is also one of the most difficult problems in fluid mechanics.
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Fig. 1. Impinging jet flow.

One of the most interesting and significant aspects of impinging jet flows in mathematics was mentioned by 
A. Friedman in Chapter 3 in his book [17], that the existence of steady incompressible irrotational impinging planar 
jets had been considered by L. A. Caffarelli and himself in their unpublished paper. Fig. 1 schematically represents 
the planar jet impinging on the ground. Recently, the authors investigated the oblique impinging jet flow with the 
irrotational condition in [11], and established the systematical wellposedness of the oblique impinging planar jet with 
one or two asymptotic directions.

The fundamental ingredients in mathematical analysis to investigate the incompressible irrotational impinging 
jet are stream function method and variational method. The latter has been developed by the three mathematicians, 
H. W. Alt, L. A. Caffarelli, A. Friedman in [1,17] in 1980’s, which has been shown to be powerful to solve the elliptic 
equations with free boundaries. Based on the frameworks, a series of significant works on irrotational flows with free 
streamlines have been solved, such as, 3D axially symmetric jet flow in [4], asymmetric jet flow in [2], jets with two 
fluids in [5–7], axially symmetric infinite cavities in [10], jets with gravity in [3], and so on.

In this paper, we will investigate the incompressible impinging jet in rotational flow. The incompressible, inviscid 
planar flows are governed by the following two-dimensional incompressible Euler system,⎧⎪⎪⎨⎪⎪⎩

∂x1u + ∂x2v = 0,

∂x1(u
2 + p) + ∂x2(uv) = 0,

∂x1(uv) + ∂x2(v
2 + p) = 0,

(1.1)

where (x1, x2) ∈ R
2, (u, v) and p denote the velocity field and the pressure of incompressible fluid, respectively.

Before we state the impinging jet flow problem, we give a semi-infinitely long channel as follows.
Consider a symmetric nozzle here, which is bounded by the symmetric axis x1 = 0 and the nozzle wall (see Fig. 2)

N : x1 = f (x2) > 0 for H ≤ x2 < +∞, (1.2)

where f (x2) ∈ C2,α-smooth (0 < α < 1) function in [H, +∞), with

f (H) = b and f (x2) → a > 0 as x2 → +∞. (1.3)

Given an impermeable wall M0 : {x1 > 0, x2 = 0}, which blocks the path of the jets. H is the impingement length 
(the distance from the nozzle opening to the ground) and 2b is the width of the mouth of the symmetric nozzle.

Denote the symmetric axis by I = {(0, x2) | x2 ≥ 0} and MH = {(x1, H) | x1 ≥ b}.
Since, in this paper we will seek an impinging jet with non-positive vertical velocity in the whole flow field, the 

possible flow field is bounded by N, M0, MH and I , denoted as �.
The nozzle wall N and the ground M0 are assumed to be solid, and thus

(u, v) · �n = 0, on N ∪ I ∪ M0, (1.4)

where �n is the unit outer normal of the boundaries.
The free boundary � is a material surface, then velocity field still satisfies the perfect slip boundary condition (1.4)

on �. Furthermore, for the dynamic condition on the free boundary, the classical assumption (neglecting the effects 
of gravity and surface tension) is that the pressure p is constant, say p0 on the free boundary. Hence, due to the 
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Fig. 2. Symmetric impinging jet flow.

Bernoulli’s law for incompressible inviscid flows, the speed of the impinging jet remains a positive constant λ on the 
free boundary, namely,√

u2 + v2 = λ on �. (1.5)

It follows from the continuity equation and the boundary condition (1.4) that the mass flux crossing any section S
transversal to the x2-direction with x2 ≥ H remains a positive constant m0, that isˆ

S

(u, v) · �ldS = m0, (1.6)

where �l is the unit normal of S in the negative x2-direction.
It should be noted that the two-dimensional steady incompressible Euler system is an elliptic–hyperbolic mixed-

type system mathematically, which is the one of main differences to the incompressible irrotational flows. However, 
it’s easy to see that there are two invariants along each streamlines for the steady inviscid flows, the vorticity and 
u2+v2

2 + p. Hence, the strategy here is imposing the vorticity in the upstream replacing the irrotational condition, we 
can still formulate a single elliptic equation to the stream function in which the hyperbolic mode has been taken into 
account, as long as the streamlines are well-defined in flow field. On another side, the negativity of vertical velocity of 
the flows guarantees the well-definition of the streamlines. The similar idea has been applied to solve the ideal com-
pressible subsonic flows in channel in [12–14,29]. Some ideas also inspired by A. Friedman [18] for incompressible 
cavity flows in rotational flows. Then, we can formulate the impinging jet flow problem as follows.

Impinging jet flow problem Given a semi-infinitely long nozzle N as above, the mass flux m0 and vorticity 
ω0 ≤ 0 of the incoming incompressible flows in the inlet, does there exist a unique impinging jet flow, such that a free 
streamline initiates smoothly from the endpoint of the nozzle and goes to infinity in x1-direction, and the pressure 
remains p0 on the free boundary?

Furthermore, we give the definition of the solution to the impinging jet flow problem in the following.

Definition 1.1. (A solution to the impinging jet flow problem) A quadruple (u, v, p, �) is called a solution to the 
impinging jet flow problem, provided that

(1) The smooth curve � is given by a function x1 = g(x2) ∈ C1((h,H ]) with

f (H) = g(H) (continuous fit condition) (1.7)

and

f ′(H) = g′(H) (smooth fit condition), (1.8)

h is the asymptotic height of impinging jet flow, which can be determined uniquely by

λ = m0

h
− 1

2
ω0h. (1.9)
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(2) (u, v, p) ∈ (
C1,α(�0) ∩ Cα(�0)

)3
solves the steady incompressible Euler system (1.1), the boundary condi-

tion (1.4), and the mass flux condition (1.6), where �0 = {(x1, x2) | 0 ≤ x1 < f (x2), for x2 ≥ H ; 0 ≤ x1 <

g(x2), for 0 < x2 ≤ H }.
(3) v < 0 in �0 \ M0.
(4)

√
u2 + v2 = λ and p = p0 on �.

Remark 1.1. A point on MH at which the free streamline of an inviscid flow initiates is called an initial point. Since 
the location of a free initial point is not known a priori, a condition is required for its determination. The classical 
condition for planar flows is the one due to M. Brillouin in [9] and H. Villat [26], requiring that the curvature of a free 
streamline at the free initial point be finite (so-called Villat–Brillouin condition). When the condition is satisfied, the 
streamline curvature is automatically equal to that of the endpoint of the nozzle. For this reason, free initial fitness is 
also called continuous and smooth fit conditions (1.7) and (1.8) here. In fact, in this paper, without imposing the initial 
point of the free streamline, the solution to the impinging jet problem is a family with the free initial point. Hence, we 
will show that the solution is actually unique with the continuous fit condition (1.7).

Our main results can be stated as follows.

Theorem 1.1. Given a semi-infinitely long nozzle N , an incoming flow with mass flux m0 > 0 and a constant vorticity 
ω0 ≤ 0 in the upstream, with

m0 > max
(
−ω0

2
H 2,−ω0

2
a2

)
. (1.10)

Then there exists a unique λ ≥ m0
H

− 1
2ω0H and a solution (u, v, p, �) to the impinging jet flow problem, which 

satisfies the conditions in the Definition 1.1.

Remark 1.2. The impinging jet flows established here possess a uniform direction, more precisely, the vertical veloc-
ity of the impinging jet is always negative except on the ground. Note that we do not impose the vertical velocity of 
the incoming flow in upstream, and it’s easy to check that in fact the condition (1.10) ensures that the negativity of the 
vertical velocity of the impinging jet in the upstream and the positivity of the horizontal velocity in the downstream. 
On the other side, the condition (1.10) implies mathematically that for given m0 and ω0, λ is a decreasing function 
respect to the asymptotic height h, and h can be determined uniquely by λ, due to the relationship (1.9).

Remark 1.3. The important property that the negativity of the vertical velocity of the impinging jet guarantees the 
well-definedness of the streamline in rotational ideal flows. In another word, any streamline can not intersect each 
other, and any point in fluid field can be pulled back to the inlet of the nozzle along one streamline. Since the vorticity 
is an invariance along the each streamline in steady ideal flows, the vorticity of the impinging jet is well-defined in the 
whole fluid field for given the vorticity of the impinging flow in the inlet. Some similar ideas borrowed from the one 
in compressible subsonic flows in infinitely long nozzle in [12–15,28,29].

Remark 1.4. As we mentioned in Remark 1.2, λ is a strictly decreasing respect to the asymptotic height h ∈ [0, H ], 
under the assumption (1.10). Hence, the condition λ ≥ m0

H
− 1

2ω0H is natural and reasonable.

In fact, in Theorem 1.1, we can show that there exists a unique parameter λ ≥ m0
H

− 1
2ω0H , such that the continuous 

fit condition (1.7) holds. However, to obtain the uniqueness of the free boundary and the velocity field, we assume the 
nozzle wall N satisfies the following additional condition

x1 = f (x2) is a monotonic decreasing function. (1.11)

Theorem 1.2. Suppose that the semi-infinitely long nozzle satisfies the additional condition (1.11), then the parameter 
λ and the solution (u, v, p, �) established in Theorem 1.1 is unique and the horizontal velocity u > 0 in �0 \ I . 
Furthermore, the impinging jet flow satisfies the following asymptotic behavior in far fields,

(u(x1, x2), v(x1, x2),p(x1, x2)) → (0, v0(x1),p1) ,
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and

∇u → 0, ∇v → (ω0,0), ∇p → 0,

uniformly in any compact subset of (0, a) as x2 → +∞, where v0(x1) = −m0
a

− 1
2ω0a + ω0x1 and p1 = p0 + λ2

2 −(
m0
a

− 1
2 ω0a

)2

2 .
Similarly,

(u(x1, x2), v(x1, x2),p(x1, x2)) → (u0(x2),0,p0) ,

and

∇u → (0,−ω0), ∇v → 0, ∇p → 0,

uniformly in any compact subset of (0, h) as x1 → +∞, where u0(x2) = λ + ω0h − ω0x2, h is the asymptotic height 
of the impinging jet.

Remark 1.5. The asymptotic behaviors established in Theorem 1.2 gives that the pressure is constant in the inlet 
and the downstream, which seems to be reasonable due to the following reason. Assume that the flow satisfies the 
asymptotic behavior in the inlet as

(u(x1, x2), v(x1, x2),p(x1, x2)) → (u0(x1), v0(x1),p1(x1)) as x2 → +∞,

and satisfies the far field conditions with high order compatibility conditions,

(∇u(x1, x2),∇v(x1, x2),∇p(x1, x2)) → (∇u0(x1),∇v0(x1),∇p1(x1)) as x2 → +∞.

Due to the divergence-free condition, we have

u′
0(x1) = 0.

Moreover, the conservation of momentum gives that

p′
1(x1) = 0,

which implies that the pressure remains constant in the inlet. Similar result follows in the downstream. In fact, p0 on 

the free streamline is the outside pressure, and p1 = p0 + λ2

2 − 1
2

(
m0
a

− 1
2ω0a

)2
is the chamber pressure in the inlet 

of the channel.

The rest of the paper is organized as follows. In Section 2, we will introduce the mathematical setting of the 
impinging jet problem, such as stream function formulation to the incompressible inviscid rotational flows and the 
variational problem with a parameter λ. Furthermore, some preliminaries to the free boundary will be represented 
in Section 3. In Section 4, we will give the existence of the impinging jet flow problem via the variational method. 
Especially, we will show that there exists a unique parameter λ, such that the impinging jet satisfies the continuous 
fit condition. Finally, the uniqueness of the impinging jet flow problem is established in Section 5. In summary, the 
principal new ideas appear in this work center about the formulation of the hydrodynamical problem as a mathematical 
problem in the calculus of variations, the analysis of the free streamlines in rotational flow, such as the regularity 
and the continuous fit condition of free streamlines in rotational flows. Our results here are merely extension of the 
developments due to Garabedian, Lewy, Schiffer in [19] and Alt, Caffarelli, Friedman in [1,17], which were applied 
similarly in the existence proofs for jet and cavity flow given in [2–4,18]. The general background on jets, cavity flows 
and other problems with free streamlines are referred to the references [8,16,21,24,25,27].
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2. Mathematical setting of the impinging jet problem

2.1. Stream function approach

In view of the continuity equation, there is a stream function ψ , such that

∂ψ

∂x1
= −v,

∂ψ

∂x2
= u. (2.1)

It’s easy to check that

(u, v) · ∇ω = 0, (2.2)

and

(u, v) · ∇
( |∇ψ |2

2
+ p

)
= 0 (2.3)

where ω = ∂x1v − ∂x2u is the vorticity of the fluid in two dimensions, and it implies that the vorticity and |∇ψ |2
2 + p

remain a constant along each streamline. The formula (2.3) is so-called Bernoulli’s law in steady incompressible 
flows. In this paper, we assume that the vorticity of the incoming flow is a given constant ω0 ≤ 0, then the vorticity 
of the flow is also ω0, as long as the streamlines are well-defined and can not intersect each other in the whole flow 
field. In fact, in this paper, we search an impinging jet flow with v < 0 in the fluid field and then the streamlines are 
well-defined in the whole flow field, and thus, the stream function satisfies

−�ψ = ω0. (2.4)

Without loss of generality, we impose the Dirichlet boundary value conditions as follows,

ψ = m0 on N ∪ �, and ψ = 0 on I ∪ M0.

Thus, the free boundary of the impinging jet flow can be defined by

� = � ∩ ∂{ψ < m0}. (2.5)

On the free streamline �, the pressure is assumed to be a constant p0, then it follows from Bernoulli’s law that the 
speed remains a constant on �, namely,

|∇ψ | = ∂ψ

∂ν
= λ, (2.6)

where ν is outer unit normal of �.
Hence, we formulate the following boundary problem of the stream function as follows,⎧⎪⎪⎨⎪⎪⎩

−
ψ = ω0, in �0,

∂ψ
∂ν

= λ, on �,

ψ = 0, on I ∪ M0, ψ = m0, on N ∪ �,

(2.7)

where �0 is bounded by N , I , M0 and �.
Once the stream function is solved, the velocity field (u, v) can be obtained via (2.1) and the parameter λ can 

be solved by (2.6). Moreover, the asymptotic height h can be determined by (1.9) and the free boundary � can be 
obtained by the definition (2.5).

Finally, the pressure can be solved along the each streamlines as follows. For any point (x1, x2) ∈ �, which can be 
pulled back along one streamline to the point (κ(ψ), +∞) in the inlet, we have

ψ = −
κ(ψ)ˆ

0

v0(s)ds,

where v0(x1) = limx2→+∞ v(x1, x2). Then, κ(ψ) satisfies the following initial value problem
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{ −κ ′(ψ)v0 (κ(ψ)) = 1,

κ(0) = 0.

Hence, it follows from the Bernoulli’s law that the pressure p can be solved as

p(x1, x2) = p1 + v2
0(κ(ψ))

2
− u2 + v2

2
,

where the constant p1 is the chamber pressure in the entrance of the nozzle.

2.2. Variational approach

To solve the boundary value problem (2.7), we introduce the following variational problem with a parameter λ > 0.
The variational problem (Pλ): Define an admissible set as

K =
{
ψ ∈ H 1

loc(�) | ψ = 0 on I ∪ M0,ψ = m0 on N ∪ MH
}

,

and for any bounded domain D ⊂⊂ � define a functional

Jλ(ψ) =
ˆ

D

|∇ψ |2 + λ2χ{ψ<m0}∩E − 2ω0(ψ − m0)dx1dx2, (2.8)

where χA is the characteristic function of a set A and

E = {(x1, x2) | x1 > 0 and 0 < x2 < H } . (2.9)

Find a ψλ ∈ K such that

Jλ(ψλ) = min
ψ∈K, ψ=ψλ on ∂D

Jλ(ψ).

First, we will show that ψ ≤ m0 in the weak sense under the condition ω0 ≤ 0.

Lemma 2.1. For any minimizer ψλ to the variational problem (Pλ), ψλ ≤ m0 a.e. in �.

Proof. Set ψε
λ(x1, x2) = ψλ(x1, x2) + ε min(m0 − ψλ(x1, x2), 0) for ε ∈ (0, 1). It is clear that ψε

λ ∈ K and ψε
λ ≤ ψλ. 

Furthermore, one has

ψλ < m0 if and only if ψε
λ < m0.

Since ψλ is a minimizer to the variational problem (Pλ), we have

0 ≥ Jλ(ψλ) − Jλ(ψ
ε
λ)

=
ˆ

D

(|∇ψλ|2 − |∇ψε
λ |2 − 2ω0(ψλ − ψε

λ))dx1dx2

= (1 − (1 − ε)2)

ˆ

D

|∇ min(m0 − ψλ,0)|2dx1dx2 +
ˆ

D

2ω0ε min(m0 − ψλ,0)dx1dx2.

(2.10)

Thanks to the condition ω0 ≤ 0 and (2.10), one has

(1 − (1 − ε)2)

ˆ

D

|∇ min(m0 − ψλ,0)|2dx1dx2 ≤ −
ˆ

D

2ω0ε min(m0 − ψλ,0)dx1dx2 ≤ 0, (2.11)

which implies that ψλ ≤ m0 a.e. in D, due to the arbitrariness of D, we complete the proof of Lemma 2.1. �
Next, we will show that the minimizer ψλ satisfies the equation (2.4) in the flow field and |∇ψλ| = λ on the free 

boundary � in the weak sense.
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Proposition 2.2. For any minimizer ψλ to the variational problem (Pλ), we have


ψλ + ω0 ≤ 0 in �, and 
ψλ + ω0 = 0 in � ∩ {ψλ < m0}.
Furthermore,

lim
ε↓0

ˆ

∂{ψλ<m0−ε}

(
|∇ψλ|2 − λ2 − 2ω0(ψλ − m0)

)
η · ν = 0, (2.12)

for any 2-vector η ∈ (
C1

0(E)
)2

, where ν is the normal vector to ∂{ψλ < m0 − ε}.

Proof. First, we will show 
ψλ +ω0 ≤ 0 in � in weak sense. For any D ⊂⊂ � and nonnegative function ξ ∈ C1
0(D)

and ε > 0 sufficiently small, we have

0 ≤ lim
ε→0+

1

2ε
(Jλ(ψλ + εξ) − Jλ(ψλ))

≤
ˆ

D

(∇ψλ · ∇ξ − ω0ξ) dx1dx2

= −
ˆ

D

(
ψλ + ω0) ξdx1dx2,

due to the integration by parts. Hence, the arbitrariness of D implies that 
ψλ + ω0 ≤ 0 in � in weak sense.
Next, we will show that if ψλ ∈ K is a minimizer, then ψλ satisfies 
ψλ +ω0 = 0 in � ∩{ψλ < m0} in weak sense.
Indeed, taking any ξ ∈ C1

0 (D ∩ {ψλ < m0}), then ψλ + εξ ∈ K for any sufficiently small |ε|, we obtain

lim
ε→0

Jλ(ψλ + εξ) − Jλ(ψλ)

ε
= 0.

Then

0 = lim
ε→0

1

ε

ˆ

D∩{ψλ<m0}

(
2ε∇ψλ · ∇ξ + ε2 |∇ξ |2 − 2εω0ξ

)
dx1dx2

=
ˆ

D∩{ψλ<m0}
(2∇ψλ · ∇ξ − 2ω0ξ) dx1dx2.

This implies that
ˆ

D∩{ψλ<m0}
(
ψλ + ω0) ξdx1dx2 = 0,

due to integration by parts, which together with the arbitrariness of D gives that 
ψλ + ω0 = 0 in � ∩ {ψλ < m0} in 
weak sense.

Finally, we will prove the second part of this proposition. Let

η(x) = η(x1, x2) ∈
(
C1

0(E)
)2

and τδ(x) = x + δη(x),

where δ is a real number and |δ| > 0 is suitable small. Define ψδ
λ(τδ(x)) = ψλ(x) and it’s easy to verify that ψδ

λ ∈ K

and

D(τδ(x))−1 = (I + δ∇ · ηI − δDη)(detDτδ)
−1 and detDτδ = 1 + δ∇ · η + o(δ),

where I is the identity matrix.
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Due to the fact that ψλ is a minimizer to the problem (Pλ), one gets

0 ≤ Jλ(ψ
δ
λ) − Jλ(ψλ)

=
ˆ

{ψλ<m0}∩E∩D

(
|∇ψλ(Dτδ)

−1)|2 − 2ω0(ψ
δ
λ − m0) + λ2

)
detDτδdx1dx2

−
ˆ

{ψλ<m0}∩E∩D

|∇ψλ|2 − 2ω0(ψλ − m0) + λ2dx1dx2

= δ

ˆ

{ψλ<m0}∩E∩D

(
|∇ψλ|2∇ · η − 2∇ψλ · Dη · ∇ψλ

)
dx1dx2

+ δ

ˆ

{ψλ<m0}∩E∩D

(
λ2 − 2ω0(ψλ − m0)

)
∇ · ηdx1dx2 + o(δ).

(2.13)

In view of the arbitrariness of δ, the linear term of (2.13) in δ has to vanish, and then this gives that

0 =
ˆ

{ψλ<m0}∩E∩D

(
|∇ψλ|2∇ · η − 2∇ψλ · Dη · ∇ψλ + (λ2 − 2ω0(ψλ − m0))∇ · η

)
dx1dx2

=
ˆ

{ψλ<m0}∩E∩D

∇ ·
(
(|∇ψλ|2 + λ2 − 2ω0(ψλ − m0))η − 2(η · ∇ψλ)∇ψλ

)
dx1dx2

= lim
ε↓0

ˆ

∂{ψλ<m0−ε}∩E∩D

(
(|∇ψλ|2 + λ2 − 2ω0(ψλ − m0))η − 2(η · ∇ψλ)∇ψλ

)
· νdS

= lim
ε↓0

ˆ

∂{ψλ<m0−ε}∩E∩D

(
(λ2 − |∇ψλ|2 − 2ω0(ψλ − m0)

)
η · νdS,

(2.14)

where we have used the fact that ∇ψλ ‖ ν on the free boundary {ψλ < m0 − ε} ∩ E. �
Finally, we introduce the regularity of the minimizer ψλ to the variational problem (Pλ).

Lemma 2.3. The minimizer ψλ ∈ C0,1(D), that is, ψλ is Lipschitz continuous in any compact subsets of D ⊂⊂ �. 
Furthermore, ψλ ∈ C2,α in any compact subset of � ∩ {ψλ < m0}.

Proof. The Lipschitz continuity of the minimizer can be obtained by similar arguments in Lemma 2.4 in [18].
It follows from Proposition 2.2 that the minimizer ψλ satisfies the equation

−
ψλ = ω0, in the weak sense in � ∩ {ψλ < m0}.
Thanks to the standard interior Schauder estimates to the linear elliptic equation in Chapter 8 in [20], one has

ψλ ∈ C2,α in any compact subset of � ∩ {ψλ < m0}. �
3. Preliminaries

In this section, we will introduce some important lemmas which are established by A. Friedman in [18], such as 
the nondegeneracy lemma and the nonoscillation lemma.

First, we introduce the nondegeneracy lemma, which plays an important role to investigate the properties of the 
free boundary, and the proof follows along the similar arguments in Lemma 2.5 in [18].

Lemma 3.1. Let ψλ be a minimizer to the variational problem (Pλ). There exists a universal constant C∗ such that, 
for any X0 ∈ � with the disc Br(X

0) ⊂ �, satisfying
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1

r

 

∂Br (X0)

(m0 − ψλ)dS ≥ λC∗,

then ψλ < m0 in Br(X
0), where r is enough small.

Lemma 3.2. For any κ ∈ (0, 1), there exists a positive number c∗ = c∗(κ) such that for any minimizer ψλ, if Br(X
0) ⊂

� and r < − c∗λ
ω0

, ω0 < 0, then

1

r

 

∂Bkr (X
0)

(m0 − ψλ)dS ≤ λc∗ implies ψλ = m0 in Bκr(X
0).

Remark 3.1. For ω0 = 0, Lemma 3.2 can be obtained by using similar arguments in Lemma 2.4 in [4] for irrotational 
flows.

The following lemma implies that the free boundary � ∩ ∂{ψλ < m0} has Lebesgue measure zero.

Lemma 3.3. Suppose D ⊂⊂ �, and there exists a positive constant c and 0 < c < 1, such that for any ball Br ⊂ D

with center in the free boundary and r small enough, then

c <
L2 (Br ∩ {ψλ < m0})

L2 (Br)
< 1 − c,

where L2 is the Lebesgue measure.

Next, the convergence of free boundary is stated, and we would like to refer the proof in §3.6 in [17]. Denote 
ϑn = m0 − ψλn, ϑ = m0 − ψλ.

Lemma 3.4. Let U be an open bounded set in R2 and ϑn ∈ C0(U) with

�ϑn = ω0 in U ∩ {ϑn > 0},

∂ϑn

∂ν
= −λ on U ∩ ∂{ϑn > 0},

U ∩ ∂{ϑn > 0} is C1,α (0 < α < 1),

where ν is the outward normal to the boundary U ∩ ∂ {ϑn > 0}. If
λn → λ and ϑn → ϑ uniformly in U, for some ϑ ∈ H 1(U),

U ∩ {ϑn > 0} → U ∩ {ϑ > 0} in measure,

U ∩ ∂{ϑ > 0} is C1,α − smooth (0 < α < 1),

then ϑ satisfies{ �ϑ = ω0 in U ∩ {ϑ > 0},
∂ϑ
∂ν

= −λ on U ∩ ∂{ϑ > 0},
in the weak sense.

Finally, we introduce the following nonoscillation lemma and the uniformly bounded gradient lemma, which is a 
crucial part to study the property of the free boundary in next section.
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Fig. 3. The domain G.

Lemma 3.5. Let G be a domain in E ∩ {ψλ < m0} bounded by two disjointed arcs γ1, γ2 of free boundary, {x1 = α1}
and {x1 = α2} (see Fig. 3). Suppose the γi lies in {α1 < x1 < α2} with endpoints (α1, βi) and (α2, ζi) for i = 1, 2, and 
dist(A, G) ≥ c > 0, then

(α2 − α1)
2

1 + (α2 − α1)2
≤ C max

{
|β1 − β2|2, |ζ1 − ζ2|2

}
,

where C depends only on λ, m0, ω0 and c.

Proof. Set ̃h = max{|β1 − β2|, |ζ1 − ζ2|}. It follows from the definition of G that −�ψλ = ω0 in G. Green’s formula 
implies that

ˆ

G

(x1 − α1)ω0dx1dx2 =
ˆ

G

(x1 − α1)�(m0 − ψλ)dx1dx2

= −
ˆ

∂G

(x1 − α1)
∂ψλ

∂ν
dS −

ˆ

∂G

(m0 − ψλ)
∂x1

∂ν
dS.

(3.1)

Since γ1 and γ2 are two arcs of the free boundary, we obtain
ˆ

γ1∪γ2

λ(x1 − α1)dS = −(α2 − α1)

ˆ

∂G∩{x1=α2}

∂ψλ

∂ν
dS −

ˆ

G

ω0(x1 − α1)dS

−
ˆ

∂G∩({x1=α1}∪{x1=α2})
(m0 − ψλ)

∂x1

∂ν
dS

= I1 + I2 + I3.

(3.2)

Thanks to the Lipschitz continuity of ψλ, we have

I1 = −(α2 − α1)

ˆ

∂G∩{x1=α2}

∂ψλ

∂ν
dS ≤ C(α2 − α1)̃h. (3.3)

For I2 and I3, one gets

I2 = −
ˆ

G

ω0(x1 − α1)dx1dx2 ≤ −ω0(α2 − α1)

ˆ

G

dx1dx2 ≤ −ω0(α2 − α1)
2h̃, (3.4)
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Fig. 4. The domain G in special case.

and

I3 = −
ˆ

∂G∩{x1=α1,x1=α2}
(m0 − ψλ)

∂x1

∂ν
dS ≤ Ch̃2, (3.5)

where we have used the fact

m0 − ψλ ≤ Ch̃, C is the Lipschitz constant.

On another hand,ˆ

γ1∪γ2

λ(x1 − α1)dS ≥ λ(α2 − α1)
2, (3.6)

and then, we have

λ(α2 − α1)
2 ≤C(α2 − α1)̃h − ω0(α2 − α1)

2h̃ + Ch̃2

≤ λ

2
(α2 − α1)

2 + Ch̃2 + C(α2 − α1)
2h̃2.

(3.7)

Hence

(α2 − α1)
2

1 + (α2 − α1)2
≤ C max

{
|β1 − β2|2, |ζ1 − ζ2|2

}
, (3.8)

where C depends only on λ, ω0, m0 and c. �
Remark 3.2. The nonoscillation lemma remains true if one of the arcs γ2 is a line segment on MH (see Fig. 4), 
provided that

∂ψλ

∂ν
≥ λ on γ2. (3.9)

In fact, with the aid the condition (3.9), (3.2) can be written as followsˆ

γ1∪γ2

λ(x1 − α1)dS ≤ I1 + I2 + I3. (3.10)

It is easy to verify that the Lemma 3.5 is true under the condition ∂ψλ

∂ν
≥ λ on γ2. Actually, we can check the fact (3.9)

in Lemma 4.7.

Lemma 3.6. Let X0 = (x0
1 , x0

2) be a free boundary point in � and let G be a compact subset of � and contain X0. 
Then
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|∇ψλ| ≤ C in G ∩ {ψλ < m0},
where C depends only on λ, ω0, c0 and G, but it is independent of m0.

Proof. Set d0 = dist(G, ∂�). For any X ∈ G ∩ {ψλ < m0}, there are some points X1, · · · , Xn = X in G (n depends 
on d0) such that

Xk ∈ Br0(X
k−1) for k = 1, ..., n, r0 = d0

4
.

We choose n0 ∈ {1, 2, ..., n} be the largest number such that B2r0(X
n0) contains a free boundary point X̃. The existence 

of n0 follows from the fact that B2r0(X
1) contains X0. Then m0 − ψλ − ω0

2 (x1 − x0
1)2 is harmonic in B2r0(X

k−1) for 
k ≥ n0 + 2, and Harnack’s inequality gives that

m0 − ψλ(X
k) − ω0

2
(xk

1 − x0
1)2 ≤ C

(
m0 − ψλ(X

k−1) − ω0

2
(xk−1

1 − x0
1)2

)
.

Since �(m0 − ψλ) − ω0 ≥ 0, we also have

m0 − ψλ(X
n0+1)

≤ −
ˆ

B4r0 (X̃)

ω0GXn0+1dx1dx2 −
ˆ

∂B4r0 (X̃)

∂GXn0+1

∂ν
(m0 − ψλ)dS

≤ − Cω0r
2
0 + C

 

∂B4r0 (X̃)

(m0 − ψλ)dS

≤Cω0r
2
0 + Cr0

≤C,

(3.11)

where we have used Lemma 3.1 and the constant C depends only on λ, ω0, c0 and G. Therefore, m0 − ψλ(X) ≤ C

for any X ∈ G. With the aid of the Lipschitz continuity of ψλ(X), we have

|∇ψλ(X)| ≤ C

(
1 + sup

X∈G

(m0 − ψλ(X))

)
≤ C,

where the constant C depends only on λ, ω0, c0 and G, but independent of m0. �
4. Existence of the impinging jet flows

In this section, we establish the existence of the impinging jet flows via the variational approach.
Firstly, for any large L > max{H, b}, denote the segments as follows

NL = N ∩ {x2 < L}, IL = {(0, x2) | 0 < x2 < L}, MH
L = {(x1,H) | b < x1 < L},

M0
L = {(x1,0) | 0 < x1 < L}, TL = {(x1,L) | 0 < x1 < f (L)},

and

Eh
L = �L ∩ {0 < x2 < h}, σL = {(L,x2) | 0 < x2 < H }.

It’s easy to see that functional Jλ(ψ) is unbounded for any ψ ∈ K , then we truncate � by �L and the corresponding 
domain EL as follows (see Fig. 5)

�L is bounded by NL, IL, MH
L , M0

L, TL and σL, EL = {(x1, x2) ∈ �L | 0 < x2 < H }.
Set

φh(x2) =
{

m0 for h < x2 < H,

φ(x ) for 0 ≤ x ≤ h,
(4.1)
2 2
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Fig. 5. Truncated domain.

where

φ(x2) = −1

2
ω0x

2
2 + (λ + ω0h)x2, (4.2)

�L(x1) = min

{
m0,−1

2
ω0x

2
1 + vL

0 x1

}
, (4.3)

and vL
0 = max

{
0,

m0
f (L)

+ 1
2ω0f (L)

}
.

Define a truncated variational problem with the parameter λ as follows.
Truncated variational problem (Pλ,L). Find a ψλ,L ∈ KL such that

Jλ,L(ψλ,L) = min
ψ∈KL

Jλ,L(ψ),

where

Jλ,L(ψ) =
ˆ

�L

|∇ψ |2 + λ2χ{ψ<m0}∩EL
− 2ω0(ψ − m0)dx1dx2, (4.4)

with the admissible set

KL = {ψ ∈ H 1(�L) | ψ = ψ0 on ∂�L},
where

ψ0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m0 on NL ∪ MH
L ,

0 on IL ∪ M0
L,

�L(x1) on TL,

φh(x2) on σL.

(4.5)

Next, we will establish the existence and uniqueness of the minimizer ψλ,L to the truncated variational problem 
(Pλ,L) for any λ > 0 and any L > max{H, b}.

Theorem 4.1. There exists a solution ψλ,L(x1, x2) to the truncated variational problem (Pλ,L) and

ψ(x1, x2) ≤ φh(x2) in �L. (4.6)

Furthermore,

ψ(x1, x2) < φh(x1, x2) < m0 in Eh
L.
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Proof. First, the existence of the minimizer follows from the standard variational method. Denote ψ(x1, x2) =
ψλ,L(x1, x2) for simplicity and let ψk be a minimizing sequence, it follows from the definition of the minimizer 
that

{ψk} is bounded in H 1(�L).

Therefore, there exist two functions ψ ∈ KL and γ ∈ L∞(�L) such that for a subsequence,

ψk → ψ weakly in H 1(�L),

ψk → ψ a.e. in �L,

and

χ{ψk<m0}∩EL
→ γ weakly star in L∞(�L) and 0 ≤ γ ≤ 1.

Moreover, there is a function f ∈ L1(�L) such that for a subsequence,(
|∇ψk|2 − 2ω0(ψk − m0) + λ2χ{ψk<m0}∩EL

)
→ f weakly in L1(�L),

and ˆ

�L

fdx1dx2 ≤ lim inf
k→∞ Jλ,L(ψk).

In view of the definitions of f and γ , we have

γ = 1 a.e. in EL ∩ {ψ < m0} and f = |∇ψ |2 − 2ω0(ψ − m0) + λ2γ.

It follows from the weakly lower semicontinuity of Jλ,L(ψk) with respect to ψk that

Jλ,L(ψ) ≤
ˆ

�L

|∇ψ |2 − 2ω0(ψ − m0) + λ2γ dx1dx2 =
ˆ

�L

fdx1dx2 ≤ lim inf
k→∞ Jλ,L(ψk),

which implies that ψ is a minimizer to the truncated variational problem (Pλ,L).
By virtue of the definition of φh(x2) in (4.1), to obtain (4.6), it suffices to prove that

ψ(x1, x2) ≤ φh(x2) in Eh
L.

In fact, consider an auxiliary function

φτ
h(x2) = −1

2
ω0x

2
2 + (λ + ω0h)x2 + τ,

with a parameter τ ≥ 0. Taking τ be suitable large such that ψ ≤ φτ
h in Eh

L. Decrease τ and denote the smallest 
nonnegative value of τ by τ0, such that ψ ≤ φ

τ0
h holds throughout Eh

L. We claim that τ0 = 0.
Indeed, suppose τ0 > 0. In view of the definition of φτ0

h , it is easy to check that ψ(x1, x2) < φ
τ0
h (x2) on ∂Eh

L. 
Therefore, the equality ψ = φ

τ0
h has to hold at some point X0 = (x0

1 , x0
2) ∈ Eh

L. Since

−�ψ = ω0 and − �φ
τ0
h = ω0 in Eh

L ∩ {0 < ψ < m0},
the maximum principle implies that X0 must be a free boundary point. It follows from Corollary 3.13 in [18] that the 
free boundary � is analysis in the fluid field, thanks to the Hopf lemma, we have

∂(ψ − φ
τ0
h )

∂ν
> 0 at X0,

where ν is outer normal vector of the free boundary. Therefore

λ = ∂ψ

∂ν
<

∂φ
τ0
h

∂ν
= λ + ω0h − ω0x

0
2 at X0,

which leads to a contradiction, since 0 < x0
2 < h. Thus τ0 = 0 and we complete the proof of the second part of 

Theorem 4.1.
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Next, we claim that ψ < φh < m0 in Eh
L. Indeed, it follows from the definition of φh(x2) that{ −�ψ = ω0 and − �φh = ω0 in Eh

L,

ψ ≤ φh on ∂Eh
L.

(4.7)

The strong minimum principle implies that

ψ(x1, x2) < φh(x2) < m0 in Eh
L.

Hence, we complete the proof of Theorem 4.1. �
Theorem 4.1 gives that ψλ,L(x1, x2) ≤ φh(x2) in �L, which plays a crucial role to obtain the monotonicity of 

ψλ,L(x1, x2) respect to x1.

Theorem 4.2. The truncated variational problem (Pλ,L) has a unique minimizer ψλ,L for given λ > 0. Furthermore 
ψλ,L(x1, x2) ≥ ψλ,L(x̃1, x2) in �L for any x1 > x̃1.

Proof. Denote ψ(x1, x2) = ψλ,L(x1, x2) for simplicity. Suppose that ψ1 and ψ2 be two minimizers to the truncated 
variational problem (Pλ,L) and set ψε

1 (x1, x2) = ψ1(x1 − ε, x2) for small ε > 0.
It is clear that

ψε
1 is also a minimizer to the functional J ε

λ,L in the admissible set Kε
L,

where �ε
L = {(x1, x2) | (x1 − ε, x2) ∈ �L} and

Kε
L =

{
ψε ∈ H 1(�ε

L)|ψε = ψε
0 = ψ0(x1 − ε, x2) on ∂�ε

L

}
.

Extend the functions ψε
1 (x1, x2) and ψ2(x1, x2) as

ψε
1 (x1, x2) = 0 for �L ∩ {x1 < ε}, (4.8)

and

ψ2(x1, x2) =
{

m0 for {(x1, x2) | H < x2 < L,f (x2) < x1 < f (x2) + ε},
φh(x2) for {(x1, x2) | 0 < x2 < H,L < x1 < L + ε}. (4.9)

It is easy to check that

ψε
1 ∨ ψ2 = max{ψε

1 (x1, x2),ψ2(x1, x2)} ∈ KL,

and

ψε
1 ∧ ψ2 = min{ψε

1 (x1, x2),ψ2(x1, x2)} ∈ Kε
L.

We claim that

J ε
λ,L(ψε

1 ) + Jλ,L(ψ2) = Jλ,L(ψε
1 ∨ ψ2) + J ε

λ,L(ψε
1 ∧ ψ2). (4.10)

In fact, it suffices to verify thatˆ

�ε
L

(
|∇ψε

1 |2 − |∇(ψε
1 ∧ ψ2)|2

)
dx1dx2 =

ˆ

�L

(
|∇(ψε

1 ∨ ψ2)|2 − |∇ψ2|2
)

dx1dx2, (4.11)

ˆ

�ε
L∩Eε

L

(
χ{ψε

1 <m0} − χ{(ψε
1 ∧ψ2)<m0}

)
dx1dx2 =

ˆ

�L∩EL

(
χ{(ψε

1 ∨ψ2)<m0} − χ{ψ2<m0}
)

dx1dx2, (4.12)

and ˆ

�ε

2ω0
(
ψε

1 − ψε
1 ∧ ψ2

)
dx1dx2 =

ˆ

�L

2ω0
(
ψε

1 ∨ ψ2 − ψ2
)
dx1dx2. (4.13)
L
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To verify the equation (4.11), we haveˆ

�ε
L

(
|∇ψε

1 |2 − |∇(ψε
1 ∧ ψ2)|2

)
dx1dx2

=
ˆ

�L

|∇ψ1|2dx1dx2 −
ˆ

�ε
L∩{ψε

1 >ψ2}
|∇ψ2|2dx1dx2 −

ˆ

�ε
L∩{ψε

1 ≤ψ2}
|∇ψε

1 |2dx1dx2

=
ˆ

�L

|∇ψ1|2dx1dx2 −
ˆ

�L∩{ψε
1 >ψ2}

|∇ψ2|2dx1dx2 −
ˆ

�L∩{ψ1≤ψ2}
|∇ψ1|2dx1dx2

=
ˆ

�L∩{ψ1>ψ2}
|∇ψ1|2dx1dx2 −

ˆ

�L∩{ψε
1 >ψ2}

|∇ψ2|2dx1dx2,

(4.14)

and ˆ

�L

(
|∇ψε

1 ∨ ψ2|2 − |∇ψ2|2
)

dx1dx2

=
ˆ

�L∩{ψε
1 >ψ2}

|∇ψε
1 |2dx1dx2 +

ˆ

�L∩{ψε
1 ≤ψ2}

|∇ψ2|2dx1dx2 −
ˆ

�L

|∇ψ2|2dx1dx2

=
ˆ

�L∩{ψ1>ψ2}
|∇ψ1|2dx1dx2 −

ˆ

�L∩{ψε
1 >ψ2}

|∇ψ2|2dx1dx2.

(4.15)

Consequently, the equality (4.11) follows immediately.
Similarly, we can check the equalities (4.12) and (4.13) indeed hold.
Since ψε

1 and ψ2 are the minimizers to the variational problems (P ε
λ,L) and (Pλ,L), respectively, the fact (4.10)

gives

J ε
λ,L(ψε

1 ) = J ε
λ,L(ψε

1 ∧ ψ2) and Jλ,L(ψ2) = Jλ,L(ψε
1 ∨ ψ2).

In view of the definition of ψε
1 (x1, x2) and Theorem 4.1, we conclude that ψε

1 (x1, x2) < ψ2(x1, x2) near σL.
Furthermore, we claim that

ψε
1 < ψ2 in the connected component �0

L of �L ∩ {ψ2 < m0} near σL.

Indeed, if the assertion is not true, then there exists a disc B ⊂ �L ∩ {ψ2 < m0} and one has{
ψε

1 < ψ2 in B,

ψε
1 = ψ2 at a point X0 ∈ ∂B,

(4.16)

where ν is the outer normal to ∂B at X0.
The strong maximum principle implies that

∂

∂ν
(ψε

1 − ψ2) > 0 at X0 ∈ ∂B.

Hence, there exists a smooth curve γX0 passing through X0 such that

ψε
1 < ψ2 on the side B of γX0,

and

ψε
1 > ψ2 on the other side C of γX0 .
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We have

∂

∂ν
(ψε

1 ∨ ψ2 − ψ2)(X) → ∂

∂ν
(ψ2 − ψ2)(X

0) = 0, X ∈ B and X → X0,

and

∂

∂ν
(ψε

1 ∨ ψ2 − ψ2)(X) → ∂

∂ν
(ψε

1 − ψ2)(X
0) > 0, X ∈ C and X → X0,

where ν is the outer normal to ∂B at X0.
This implies that ψε

1 ∨ ψ2 is not C1 in a neighborhood of X0. However, it follows from the fact Jλ,L(ψ2) =
Jλ,L(ψε

1 ∨ ψ2) that ψε
1 ∨ ψ2 is a minimizer to the truncated variational problem (Pλ,L), ψε

1 ∨ ψ2 should be C2,α in a 
neighborhood of X0 ∈ �L ∩ {ψ2 < m0}. This leads a contradiction.

Since the part ∂�L ∩ {ψ2 < m0} of ∂�L is a connected arc, it follows from the maximum principle that the 
minimizer ψ can not attain the maximum m0 in �L ∩ {ψ2 < m0}, this gives that �L ∩ {ψ2 < m0} must touch ∂�L ∩
{ψ2 < m0}. We conclude that �0

L coincides with �L ∩ {ψ2 < m0}. Consequently,

ψε
1 ≤ ψ2 in �L.

Furthermore, we have

ψ1 ≤ ψ2 in �L, as ε → 0.

Similarly, we can show

ψ1 ≥ ψ2 in �L.

Hence, we complete the proof of uniqueness.
Specially, taking ψ = ψ1 = ψ2 in previous arguments, we have

ψ(x1 − ε, x2) = ψε(x1, x2) ≤ ψ(x1, x2) in �L,

which implies that ψλ,L(x1, x2) ≥ ψλ,L(x̃1, x2) in �L for x1 > x̃1. �
Since ψλ,L(x1, x2) is a monotonic increasing function with respect to x1, there exists a map x1 = gλ,L(x2) in 

0 < x2 ≤ H , such that

{0 < ψλ,L < m0} ∩ {0 < x2 < H } = {(x1, x2) | 0 < x2 < H,0 < x1 < gλ,L(x2)}.

Lemma 4.3. gλ,L(x2) has at most one limit point as x2 ↑ x̃2 or x2 ↓ x̃2, where x̃2 ∈ (h, H ].

Proof. First, consider the case x̃2 < H . Suppose that there are two limit points as x2 ↑ x̃2 and denoted by x̃1
1 and x̃2

1
with x̃2

1 < x̃1
1 .

Due to the definition of the free boundary and the monotonicity ψλ,L(x1, x2) with respect to x1, we can find two 
sequences {xn

2 }∞n=1 and {x̄n
2 }∞n=1 such that xn

2 ↑ x̃2, x̄n
2 ↑ x̃2 and

ψλ,L(x1, x
n
2 ) = m0 and ψλ,L(x1, x̄

n
2 ) < m0 (4.17)

for 

∣∣∣∣x1 − x̃1
1+x̃2

1
2

∣∣∣∣ <
x̃1

1−x̃2
1

4 , xn
2 < x̄n

2 < xn+1
2 . Lemma 2.3 implies that ψλ,L(x1, x2) is Lipschitz continuous in neighbor-

hood of the segment joining 
(

x̃1
1+3x̃2

1
4 , x̃2

)
to 

(
3x̃1

1+x̃2
1

4 , x̃2

)
.

Denote by En ⊂ EL ∩ {ψλ,L < m0} bounded by the arcs

x1 = 3x̃1
1 + x̃2

1

4
, x1 = x̃1

1 + 3x̃2
1

4
, x̄2 = x̄n

2 (x1) and x2 = xn
2 (x1),

where (x1, xn(x1)) and (x1, x̄n(x1)) are free boundary points and xn(x1) < x̄n(x1) with
2 2 2 2
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hn = sup
x1

{x̄n
2 (x1) − xn

2 (x1)} → 0 as n → ∞.

The existence of domains En follows from (4.17).
Thanks to the nonoscillation Lemma 3.5, we have

(x̃1
1 − x̃2

1)2

1 + (x̃1
1 − x̃2

1)2
≤ Ch2

n,

which contradicts to the assumption x̃2
1 < x̃1

1 for sufficiently large n.
So we obtain the fact

gλ,L(x̃2 − 0) = lim
xn

2 →x̃−
2

gλ,L(x2).

Next, by similar arguments, we have

gλ,L(x̃2 + 0) = lim
xn

2 →x̃+
2

gλ,L(x2),

for any x̃2 ∈ (0, H) and

gλ,L(H − 0) = lim
xn

2 →H− gλ,L(x2). �
Lemma 4.4. gλ,L(x2) is a continuous function in (h, H ] with values in (0, L].

Proof. Lemma 4.3 implies that

lim
x2→x̃+

2

gλ,L(x2) and lim
x2→x̃−

2

gλ,L(x2) exist, for any x̃2 ∈ (0,H).

Denote

gλ,L(x̃2 + 0) = lim
x2→x̃+

2

gλ,L(x2) and gλ,L(x̃2 − 0) = lim
x2→x̃−

2

gλ,L(x2).

It suffices to prove that

gλ,L(x̃2 + 0) = gλ,L(x̃2 − 0) = gλ,L(x̃2) for any x̃2 ∈ (0,H).

Suppose on the contrary that there exists a point x̃2 ∈ (0, H) such that gλ,L(x̃2 − 0) �= gλ,L(x̃2), and without loss 
of generality we assume gλ,L(x̃2 − 0) < gλ,L(x̃2). Then, there exist two positive constants ε > 0 and δ > 0 such that 
there exists a strip as

Fε,δ = {x̃2 < x2 < x̃2 + δ, gλ,L(x̃2 − 0) + ε < x1 < gλ,L(x̃2) − ε},
and { −�ψλ,L = ω0 in Fε,δ,

ψλ,L = m0,
∂ψλ,L

∂x2
= −λ on {(x1, x̃2) | gλ,L(x̃2 − 0) + ε < x1 < gλ,L(x̃2) − ε}. (4.18)

There is a unique solution to the problem (4.18), as

ψλ,L(x1, x2) = −1

2
ω0(x

2
2 − x̃2

2) − (λ − ω0x̃2)(x2 − x̃2) + m0 in Fε,δ. (4.19)

Thus, we claim that it follows from the Cauchy–Kowalewski theorem and unique continuation that

ψλ,L(x2) = −1

2
ω0(x

2
2 − x̃2

2) − (λ − ω0x̃2)(x2 − x̃2) + m0 in Ex̃2, (4.20)

where Ex̃2 = {0 < x1 < L, x̃2 < x2 < x̃2 + δ}.
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In fact, denote

w(x2) = −1

2
ω0(x

2
2 − x̃2

2) − (λ − ω0x̃2)(x2 − x̃2) + m0 in Ex̃2,

and suppose not, we consider two cases as follows.
Case 1. There exists a point X0 = (x0

1 , x0
2) ∈ Ex̃2 with x0

1 ≤ gλ,L(x̃2 − 0) + ε, such that

ψλ,L(X0) < w(x0
2).

Denote the domain G bounded by x2 = x̃2, x2 = x̃2 + δ, x1 = gλ,L(x̃2−0)+gλ,L(x̃2)

2 and x1 = min
{
x0

1 , gλ,L(x2)
}
.

In view of the monotonicity of ψλ,L with respect to x1, we have{

ψλ,L = 
w = −ω0 in G,

ψλ,L ≤ w on ∂G.

Using the strong maximum principle gives that

ψλ,L < w in G,

which is a contradiction to

ψλ,L = w in Fε,δ ∩
{
x1 ≤ gλ,L(x̃2 − 0) + gλ,L(x̃2)

2

}
.

Case 2. There exists a point X0 = (x0
1 , x0

2) ∈ Ex̃2 with x0
1 ≥ gλ,L(x̃2) − ε, such that

ψλ,L(X0) > w(x0
2).

Denote the domain G bounded by x2 = x̃2, x2 = x̃2 + δ, x1 = gλ,L(x̃2−0)+gλ,L(x̃2)

2 and x1 = max{x0
1 , gλ,L(x2)}.

Similarly, we have{

ψλ,L = 
w = −ω0 in G,

ψλ,L ≥ w on ∂G,

and

ψλ,L > w in G,

which leads to a contradiction with

ψλ,L = w in Fε,δ ∩
{
x1 ≥ gλ,L(x̃2 − 0) + gλ,L(x̃2)

2

}
.

Therefore, we complete the proof of the claim (4.20). However, this contradicts with the fact ψλ,L(0, x̃2) = 0.
Hence, gλ,L(x2) is a continuous function in (h, H ]. �
Set

λ(h0) = m0

h0
− ω0

2
h0 for h0 ∈ (0,H ],

then the condition (1.10) ensures that λ′(h0) = −m0
h2

0
− ω0

2 < 0 for h0 ∈ (0, H). This implies that λ ≥ m0
H

− 1
2ω0H and 

h0 can be determined uniquely by λ for given m0 and ω0. Next, we discuss the location of initial point of the free 
boundary gλ,L(H) when the parameter λ − m0

H
+ 1

2ω0H is sufficiently small or large.

Lemma 4.5. gλ,L(H) → L, as λ ↓ m0
H

− 1
2ω0H .
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Proof. Suppose not, then there exists a subsequence λk >
m0
H

− 1
2ω0H such that

lim
λk→ m0

H
− 1

2 ω0H

gλk,L(H) = ã < L.

In view of the condition λ ≥ m0
H

− 1
2ω0H and λ′(h) < 0 for h ∈ (0, H), one has

φ(x2) = −1

2
ω0x

2
2 + (λ + ω0H)x2 < −1

2
ω0H

2 +
(

m0

H
+ 1

2
ω0H

)
H = m0, in EL. (4.21)

Theorem 4.1 implies that

ψλ,L(x1, x2) ≤ min{m0, φ(x2)} < m0 for x2 ∈ (0,H). (4.22)

Thanks to Lemma 3.4, we have

ψλ,L = m0 and
∂ψλ,L

∂x2
= λ on {(x1,H), ã < x1 < L}.

It follows from the Cauchy–Kowalewski theorem and unique continuation that

ψλ,L(x2) = −1

2
ω0(x

2
2 − H 2) + (λ + ω0H)(x2 − H) + m0, (4.23)

which is a contradiction to ψλ,L(0, H) = 0. �
Lemma 4.6. gλ,L(H) < b, for sufficiently large λ > m0

H
− 1

2ω0H .

Proof. Suppose on the contrary, gλ,L(H) ≥ b.
Case 1. There exist the free boundary points in �L.
Since the free boundary � connects the point (gλ,L(H), H) to the point (L, h), there exists a free boundary point 

X0 = (x0
1 , x0

2) and r > 0 independent of λ such that

either Br(X
0) ⊂ �L ∩ {x2 > h/2} or Br(X

0) ⊂ {x1 > a} ∩ {x2 > h/2}. (4.24)

It follows from nondegeneracy Lemma 3.1 near the free boundary point for (4.24) that

m0

r
≥ 1

r

 

∂Br (X0)

(m0 − ψλ,L)dS ≥ λC∗,

we obtain a contradiction for sufficiently large λ.
Case 2. There is no free boundary point in �L.
Let X0 = (x0

1 , H), L > x0
1 > b. Similarly, we can derive a contradiction by using the nondegeneracy lemma about 

the boundary point X0 when λ is sufficiently large. �
Lemma 4.7. If gλ,L(H) > b then ∂ψλ,L

∂ν
≥ λ on the segment � = {(x1, H) | b < x1 < gλ,L(H)}.

Proof. Along the similar arguments in Theorem 2.2, choose η(x) ∈ (
C1(EL)

)2
such that

η = 0 on ∂EL \ � and EL ∩ ∂{ψλ,L < m0}, η · ν ≤ 0 on �,

and set τδ = x + δη(x), ψδ
λ,L(τδ(x)) = ψλ,L(x) for some small parameter δ > 0.

Since ψλ,L is the minimizer to the truncated variational problem (Pλ,L), we have

0 ≤ J (ψδ
λ,L) − J (ψλ,L)

= δ

ˆ

{ψλ,L<m0}∩EL

(
|∇ψλ,L|2∇ · η − 2∇ψλ,L · Dη · ∇ψλ,L

)
dx1dx2

+ δ

ˆ

{ψ <m }∩E

(λ2 − 2ω0(ψλ,L − m0))∇ · ηdx1dx2 + o(δ).

(4.25)
λ,L 0 L
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Using the similar arguments in (2.14) and the equality (4.25) give that

0 ≤
ˆ

∂({ψλ,L<m0}∩EL)

(
(λ2 − |∇ψλ,L|2

)
η · νdS

=
ˆ

�

(
(λ2 − |∇ψλ,L|2

)
η · νdS,

(4.26)

which implies that ∂ψ
∂ν

≥ λ on �, due to η · ν ≤ 0 on �. �
To check the continuous fit condition to the free boundary, namely, there exists a λ, such that gλ,L(H) = b, we will 

show the continuous dependence of ψλ,L with respect to λ. First, we give the following theorem on the convergence 
of the solution and the free boundary.

Theorem 4.8.

ψλn,L → ψλ,L weakly in H 1(�L) and a.e. in �L,

and

gλn,L(x2) → gλ,L(x2) for any x2 ∈ (h,H ],
as λn → λ.

Proof. Since 0 ≤ ψλ,L ≤ m0, there exists a subsequence of ψλn,L such that

ψλn,L → ω weakly in H 1(�L) and a.e. in �L.

We claim that ω is in fact a minimizer to the truncated variational problem (Pλ,L). Denote ψn(x1, x2) =
ψλn,L(x1, x2).

Step 1. ∂{ψn < m0} ∩ �L → ∂{ω < m0} ∩ �L in the Hausdorff distance.
First, we recall the definition of Hausdorff distance d(A, D) between two sets A and D as

d(A,D) = inf

{
ε > 0 | D ⊂

⋃
X∈A

Bε(X) and A ⊂
⋃
X∈D

Bε(X)

}
.

For any X ∈ �L and the ball Br(X) with small r > 0, if Vr = Br(X) ∩ ∂{ω < m0} =∅ and ω = m0 in Br(X), then 
the minimizer ψn to the truncated variational problem (Pλn,L) satisfies that m0 −ψn is small in Br(X) for sufficiently 
large n. It follows from Lemma 3.4 for ψn that ψn = m0 in Br

2
(X).

If ω < m0 in Br(X), it is clear that ψn < m0 in Br
2
(X). Then the both cases imply that Br

2
(X) ∩ ∂{ψn < m0} =∅

for sufficiently large n.
On the other hand, if V n

r = Br(X) ∩ ∂{ψn < m0} = ∅ for sufficiently large n, we can obtain that Br
2
(X) ∩ ∂{ω <

m0} =∅ by similar arguments. Hence, we have the convergence of the free boundary in the Hausdorff distance.
Step 2. χ{ψn<m0}∩EL

→ χ{ω<m0}∩EL
in L1(�L).

In view of Lemma 3.1 and Lemma 3.2, taking the limit n → ∞, we can deduce that Lemma 3.1 and Lemma 3.2 still 
hold for ω. Hence, we can obtain that the result in Lemma 3.3 is still valid to ω by using Lemma 3.1 and Lemma 3.2, 
which implies that

∂{ω < m0} has Lebesgue measure zero. (4.27)

Let Ur be an r-neighborhood of ∂{ω < m0} and denote Mr,L = |�L ∩ Ur |. It follows from Lemma 3.3 that

Mr,L ↓ 0 as r ↓ 0. (4.28)

Hence, for sufficiently large n, we haveˆ ∣∣χ{ψn<m0}∩EL
− χ{ω<m0}∩EL

∣∣dx1dx2 ≤
ˆ

dx1dx2 =Mr,L. (4.29)
�L �L∩Ur
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This together with (4.28) gives that χ{ψn<m0}∩EL
→ χ{ω<m0}∩EL

in L1(�L).
Step 3. ∇ψn → ∇ω a.e. in �L.
Let E be any compact subset of �L ∩ ({ω < m0} ∪ int{ω = m0}), since −
ψn = ω0 in E, and ∇ψn → ∇ω

uniformly in any compact subset E of �L ∩ ({ω < m0} ∪ int{ω = m0}), the result in (4.27) implies that ∇ψn → ∇ω

a.e. in �L,
Step 4. ω is a minimizer to the truncated variational problem (Pλ,L).
It suffices to verify that

Jλ,L(ω) ≤ Jλ,L(v), (4.30)

for any function v − ω ∈ H 1
0 (�L).

Obviously, v ∈ KL and set

vn = v + (1 − η)(ψn − ω),

where η ∈ C1
0(�L) and 0 ≤ η ≤ 1. It’s easy to see that vn ∈ KL.

Since ψn is a minimizer to the truncated variational problem (Pλn,L), one hasˆ

�L

|∇ψn|2 + λ2
nχ{ψn<m0}∩EL

− 2ω0(ψ
n − m0)dx1dx2

≤
ˆ

�L

|∇vn|2 + λ2
nχ{vn<m0}∩EL

− 2ω0(v
n − m0)dx1dx2.

(4.31)

Taking n → ∞ and using the convergence results in Step 2 and Step 3 give thatˆ

�L

|∇ω|2 + λ2χ{ω<m0}∩EL
− 2ω0(ω − m0)dx1dx2

≤
ˆ

�L∩{η=1}
|∇v|2 + λ2χ{v<m0}∩EL

− 2ω0(v − m0)dx1dx2

+
ˆ

�L∩{0≤η<1}
|∇v|2 + λ2χ{v<m0}∩EL

− 2ω0(v − m0)dx1dx2.

(4.32)

Set a sequence {�j
L}∞j=1 such that

�
j
L → �L, and �

j
L ⊂ �

j+1
L for any j ≥ 1,

and a cut-off function ηj ∈ C1
0(�

j
L) such that ηj = 1 in �j

L, and 0 ≤ ηj ≤ 1. Replacing η by ηj in (4.32), we have
ˆ

�L

|∇ω|2 + λ2χ{ω<m0}∩EL
− 2ω0(ω − m0)dx1dx2

≤
ˆ

�L

|∇v|2 + λ2χ{v<m0}∩EL
− 2ω0(v − m0)dx1dx2.

(4.33)

Due to the arbitrariness of v ∈ KL, this implies that ω is a minimizer to the truncated variational problem (Pλ,L). 
Hence, thanks to the uniqueness of the minimizer to the truncated variational problem (Pλ,L) in Theorem 4.1, we have 
ψλ,L = ω, then the first convergence result in Theorem 4.8 is obtained.

Next, we will show the second part of this theorem.
Consider x0

2 ∈ (h, H) firstly, there exists a subsequence still labeled by gλn,L(x0
2) such that

gλn,L(x0
2) → gλ,L(x0

2) as n → ∞,

where the point X0
n = (gλn,L(x0), x0) is a free boundary point of the minimizer ψλn,L.
2 2
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Then, it suffices to show that the limit point X0 = (gλ,L(x0
2), x0

2) is a free boundary point of ψλ,L.
With the aid of Lemma 3.1 and Lemma 3.2, we have

c ≤ 1

r

 

∂Br (X0
n)

(m0 − ψλn,L)dS ≤ C for some C > c > 0,

where r is sufficiently small such that 0 < r < r0, r0 is independent of n.
Taking n → ∞, we obtain

c ≤ 1

r

 

∂Br (X0)

(m0 − ψλ,L)dS ≤ C,

which implies that X0 = (gλ,L(x0
2), x0

2) is a free boundary point of ψλ,L. Hence,

gλn,L(x0
2) → gλ,L(x0

2) for any x0
2 ∈ (h,H).

Finally, we will show that gλn,L(H) → gλ,L(H) as n → +∞.
Suppose not, there exists a subsequence still labeled by λn such that gλn,L(H) → gλ,L(H) + β, β �= 0.
Case 1. β < 0. Due to the convergence of the free boundary in Lemma 3.4, we have

∂ψλ,L(x1,H)

∂x2
= λ if gλ,L(H) + β < x1 < gλ,L(H).

It follows from the uniqueness of the Cauchy problem that

ψλ,L = −1

2
ω0(x

2
2 − H 2) + (λ + ω0H)(x2 − H) + m0 in V,

where V is a �L-neighborhood of the streamline {(x1, H) | gλ,L(H) + β < x1 < gλ,L(H)}. In view of the unique 
continuation, we obtain ψλ,L = m0 on the segment {(x1, H) | 0 < x1 < L}, which is impossible.

Case 2. β > 0 and gλ,L(H) < b.
It follows from the Theorem 2.2 that

∂ψλ,L(x1,H + 0)

∂x2
= λ if gλ,L(H) < x1 < b,

which also leads to a contradiction.
Case 3. β > 0 and gλ,L(H) > b.
It follows from Lemma 4.7 that we have

∂ψλn,L(x1,H − 0)

∂x2
≥ λn on

{
x2 = H,b < x1 < gλ,L(H) + 7β

8

}
.

Denote Gn as a connected domain, bounded by x1 = gλ,L(H) + β
4 , x1 = gλ,L(H) + 3β

4 , x2 = H and x1 = gλn,L(x2). 

Set xn
2 = sup

{
x2 | gλn,L(x2) = gλ,L(H) + β

4

}
, then one has

H − xn
2 → 0 as n → +∞.

It follows from the nonoscillation Lemma 3.5 and Remark 3.2 for ψλn,L that

β2

4 + β2
≤ C(H − xn

2 )2,

which leads a contradiction for sufficiently large n. �
Lemma 4.5 and Lemma 4.6 yield directly the continuous fit condition, namely, there exists a λL ≥ m0

H
− 1

2ω0H

such that

gλL,L(H) = b.

Denote hL = sup{x̄2|ψλL,L < m0 in EL ∩ {x2 < x̄2}} and the corresponding solution ψλL,L satisfies

ψλL,L(x1, x2) < m0 in EL, if and only if 0 < x1 < gλL,L(x2). (4.34)
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4.1. Proof of Theorem 1.1

In view of (4.34), there exist a subsequence Lk → ∞, a constant λ and a funciton ψλ, such that

λLk
→ λ, ψλLk

,Lk
→ ψλ, hLk

→ h̄ uniformly in any compact subsets of �̄,

and

v
Lk

0 → v0 uniformly,

where v0 = m0
a

+ 1
2ω0a.

Moreover, ψλ(x1, x2) is a minimizer to the variational problem (Pλ) and ψλ(x1, x2) is a monotonic increasing with 
respect to x1. Thus, there exists a function x1 = gλ(x2) such that

ψλ(x1, x2) < m0 in E if and only if x1 ∈ (0, gλ(x2)), (4.35)

and

ψλ(x1, x2) < m0 for x2 ∈ (0, h̄). (4.36)

Along the similar arguments in the proof of Theorem 4.8, one has

gλ(x2) = lim
Lk→∞gλLk

,Lk
(x2) for x2 ∈ (h̄,H ] and gλ(H) = lim

Lk→∞gλLk
,Lk

(H).

Lemma 4.9. The function gλ(x2) is finite valued for h̄ < x2 ≤ H and h̄ satisfies (1.9), that is to say h̄ = h is the 
asymptotic height.

Proof. Suppose that 
⋃

k(βk, αk) is the union of maximal intervals such that gλ(x2) is finite valued in the union set 
and βk ≥ αk+1 for any k. We claim that the number of the intervals is finite.

Indeed, if not, there exists a subsequence (βki
, αki

) such that

βki
≥ αki+1 , αki

− βki
→ 0 as i → ∞.

It follows from the definition of the interval (βki
, αki

) that

gλ(αki
− 0) = lim

x2→α−
ki

gλ(x2) = +∞ and gλ(βki
+ 0) = lim

x2→β+
ki

gλ(x2) = +∞. (4.37)

Set

Gi ⊂
{
(x1, x2) | x1 < gλ(x2), x2 ∈

(
αki

+ βki

2
,
αki+1 + βki+1

2

)}
,

and Gi satisfies

∀ X = (x1, x2) ∈ Gi, ∃ x̄2 such that x1 = gλ(x̄2) and X̄ = (x1, x̄2) ∈ �.

However, we can derive a contradiction in Gi by using the nonoscillation Lemma 3.5 for sufficiently large i. Then, 
we conclude that the number of the intervals is finite.

Let

α1 = H, βk > αk+1, k = 1,2, ...,m.

It follows from the Corollary 3.13 in [18] that the free boundary satisfies the flatness condition for x2 ∈ (h̄, h̄ + ε)

for sufficiently small ε. Then, there exists a sufficiently large x0
1 > 0 such that the free boundary can be written in the 

form

x2 = k(x1) in � ∩ {x1 > x0
1}, (4.38)

where the function k(x1) is a monotonic function.
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In view of the definition of h̄ and the flatness property of the free boundary, one has

k(x1) → h̄ and k′(x1) → 0 as x1 → +∞.

Thanks to the standard elliptic estimates, we have

Dj [ψλ(x1, x2) − φh(x1, x2)] → 0 in � ∩ {0 < x2 < k(x1)} as x1 → +∞, j = 0,1,2,

which implies that h̄ satisfies (1.9), that is h̄ = h.
Next, we will show the number of the interval (βk, αk) is one and β1 = h. Suppose not, the number of the interval 

(βj , αj ) is more than 1, namely, m > 1.
Thus, there exists a domain �1 ⊂ �,

�1 = {k(x1) < x2 < k̃(x1), x1 ≥ x0
1} for large x0

1 > 0,

where x2 = k(x1) and x2 = k̃(x1) are the free boundary arcs, x2 = k(x1) is finite valued in (βi, αi) and x2 = k̃(x1) is 
finite valued in (βj , αj ) (i �= j).

It follows from the blow-up argument that

ψλ(x1, x2) → ϕ(x2) as x1 → +∞, (x1, x2) ∈ �1,

and ϕ(x2) satisfies that⎧⎪⎪⎨⎪⎪⎩
−�ϕ = ω0 if α < x2 < β,

ϕ(α) = ϕ(β) = m0,

−ϕ′(α) = ϕ′(β) = λ,

(4.39)

where β = limx1→∞ k(x1) and α = limx1→∞ k̃(x1). It is easy to show that the problem (4.39) has a unique solution as

ϕ(x2) = −1

2
ω0x

2
2 + (λ + ω0β)x2 + m0 − 1

2
ω0αβ,

where λ = −ω0
2 (β − α).

The assumption m > 1 implies that β − α < H − h. Furthermore, we have

m0

h
− ω0

2
h = λ = −1

2
ω0(β − α) < −1

2
ω0(H − h), (4.40)

that is

m0 < ω0h
2 − 1

2
ω0Hh = ω0

(
h − H

4

)2

− 1

16
ω0H

2 ≤ − 1

16
ω0H

2. (4.41)

which contradicts with the condition m0 > − 1
2ω0H

2 in Theorem 1.1. �
Next, we will show the uniqueness of the parameter λ.

Proposition 4.10. There exists a unique λ ≥ m0
H

− 1
2ω0H , such that the free streamline � satisfies the continuous fit 

and smooth fit condition.

Proof. Suppose that (ψλ, �, λ) and (ψ̃λ̃, �̃, ̃λ) be two solutions to the impinging jet flow problem with � : x1 = g(x2), 
�̃ : x1 = g̃(x2) and g(H) = g̃(H) = b. We claim that λ = λ̃.

Indeed, without loss of generality suppose that λ > λ̃.
In view of the relation (1.9) and the monotonicity between λ and h, we have

h < h̃, (4.42)

where h and h̃ are asymptotic heights of the two impinging jets, respectively.
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Set ψ̃ε

λ̃
(x1, x2) = ψ̃λ̃(x1 − ε, x2) and choose ε ≥ 0 to be the smallest number denoted by ε0, such that ψλ(x1, x2) ≥

ψ̃
ε0

λ̃
(x1, x2) in � and ψλ(X

0) = ψ̃
ε0

λ̃
(X0) for some X0 ∈ �̄. Next, consider the following two cases for ε0.

Case 1. If ε0 > 0 then the maximum principle gives that X0 /∈ � ∩ {ψλ < m0} and |X0| ≤ C, then X0 ∈ � ∩ �̃ε0 . 
Due to the choice of ε0, we have{ −
ψλ = −
ψ̃

ε0

λ̃
= ω0 in � ∩ {ψλ < m0},

ψλ = ψ̃
ε0

λ̃
= m0 at X0 ∈ � ∩ �̃ε0 ,

(4.43)

the maximum principle implies that

∂ψλ

∂ν
<

∂ψ̃
ε0

λ̃

∂ν
at X0, ν is outer normal vector,

which implies that λ < λ̃, we derive a contradiction.
Case 2. If ε0 = 0, we can choose X0 = A. Then we have ψλ(x1, x2) < ψ̃λ̃(x1, x2) in � ∩ {ψλ < m0}, it follows 

from the results in Corollary 11.5 in [17] that

λ = ∂ψλ

∂ν
≤ ∂ψ̃λ̃

∂ν
= λ̃ at A,

which leads a contradiction to our assumption λ > λ̃.
Moreover, the free boundaries are not only continuous, but also smooth at the endpoints of the nozzle. The proof 

is similar to the problem in [4,18], we omit it here.
Hence, we complete the proof of Proposition 4.10. �
Finally, we will prove the property (3) in Definition 1.1, namely, the vertical velocity of impinging jet flow estab-

lished here is indeed negative in �0 \ M0. Consider v = − ∂ψλ

∂x1
in �0 and satisfies the equation


v = 0 in �0.

It suffices to prove v(x1, x2) < 0 in any compact subset of �0.
For any compact subset D ⊂⊂ �0 with smooth boundary, we have{


v = 0 in D,

v = − ∂ψλ

∂x1
≤ 0 on ∂D,

(4.44)

the maximum principle gives that v(x1, x2) < 0 in D.
Note that along N ∪ �, ψ = m0, it follows from the boundary condition (1.4) that

∂x1ψλ(F (x2), x2)F
′(x2) + ∂x2ψλ(F (x2), x2) = 0,

where

F(x2) =
{

f (x2), (F (x2), x2) ∈ N,

gλ(x2), (F (x2), x2) ∈ �,

is a C1 function.
Therefore, the outer normal derivative satisfies

∂ψλ

∂ν
(F (x2), x2) = ∂x1ψλ (F (x2), x2)

√
1 + F ′(x2)2.

On the other hand, ψλ attains its minimum on N ∪ �, it follows from the Hopf Lemma that

v = −∂ψλ(x1, x2)

∂x1
< 0, on ∂�0 \ M0.

So we obtain that the vertical velocity v < 0 in �0 \ M0.
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Now, we can conclude that there exists a (u, v, p, �) satisfies

λ ≥ m0

H
− 1

2
ω0H, � : x1 = gλ(x2), u = ∂x2ψλ, v = −∂x1ψλ,

and p is determined by the Bernoulli’s law, which is a solution to the impinging jet problem. Hence, we complete the 
proof of Theorem 1.1.

5. Uniqueness of the impinging jet flow

In this section, we will show the uniqueness of the impinging jet flow, namely, the solution (u, v, p, �) to the 
impinging jet flow problem is unique under the additional condition (1.11) on the nozzle wall N . Moreover, the 
asymptotic behavior in upstream and downstream are obtained in this section.

First, we will establish the monotonicity of ψλ with respect to x2 under the condition (1.11). Recall the minimizer 
ψλ,L to the truncated variational problem again and extend the function �L(x1) as follows

�̃L(x1) =
{

�L(x1) if 0 ≤ x1 ≤ f (L),

m0 if f (L) ≤ x1 ≤ L,
(5.1)

where �L(x1) = min
{
m0,− 1

2ω0x
2
1 + vL

0 x1

}
and vL

0 = max
{

0,
m0

f (L)
+ 1

2ω0f (L)
}

.

We claim that

0 ≤ ψλ,L(x1, x2) ≤ �̃L(x1) in �L. (5.2)

The monotonicity (1.11) of the nozzle wall N and the definition of �̃L(x1) implies that it suffices to prove 
ψλ,L(x1, x2) ≤ �̃(x1) in GL, where GL = �L ∩ {0 ≤ x1 ≤ f (L)}.

On the other hand, taking a smallest τ0 ≥ 0, such that

ψλ,L(x1, x2) ≤ �̃L(x1) + τ0 in GL.

Since ψλ,L(x1, x2) ≤ �̃L(x1) on ∂GL, similar to the proof of Theorem 4.1, we can obtain τ0 = 0. Therefore, (5.2)
holds.

Next, we give the monotonicity of ψλ,L with respect to x2.

Proposition 5.1. Suppose the condition (1.11) holds, then the solution ψλ,L(x1, x2) to the truncated variational prob-
lem (Pλ,L) is monotonic with respect to x2, that is to say,

ψλ,L(x1, x2) ≥ ψλ,L(x1, x̃2) in �L, for any x2 > x̃2. (5.3)

Proof. The proof is similar to the one of Lemma 4.2 under the condition (5.2), and we omit it here. �
Thus the solution to the truncated problem (Pλ,L) satisfies that ψλ,L(x1, x2) is monotonic increasing with respect 

to x1 and x2. Similar to the previous Lemma 4.3 and Lemma 4.4, we can show that the free boundary of the truncated 
problem (Pλ,L) can be described by a monotonic function x2 = kλ,L(x1). Similar to Section 4, there exists a sequence 
ψλ,Lk

→ ψλ in any compact subset of �, if Lk → +∞, and the free boundary � is given by a function x2 = kλ(x1) ∈
C1(h, H ].

Proposition 5.2. Suppose that the semi-infinitely long nozzle satisfies the additional condition (1.11), then the solution 
ψλ established in Section 4 is unique.

Proof. Assume that ψλ and ψ̃λ̃ are two solutions to the impinging jet flow. In view of the monotonicity of free 
boundary in the previous arguments, then we may assume that the free boundaries of ψλ and ψ̃λ̃ can be denoted as 
follows

� : x2 = kλ(x1) and �̃ : x2 = k̃λ(x1).
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In Section 4, we obtain the uniqueness of λ, namely, λ = λ̃, which gives that

lim
x1→∞ kλ(x1) = lim

x1→∞ k̃λ(x1) = h.

Suppose ψλ(x1, x2) �= ψ̃λ(x1, x2) in �. Without loss of generality, we assume that there exists some x̃1 ∈ (b, +∞)

such that

kλ(x̃1) > k̃λ(x̃1). (5.4)

Set

ψε
λ(x1, x2) = ψλ(x1, x2 + ε) for ε ≥ 0,

and denote ε0 as to be the smallest number such that ψε0
λ (x1, x2) ≥ ψ̃λ(x1, x2) in � and there exists a point X0 ∈ �̄

with ψε0
λ (X0) = ψ̃λ(X

0). The assumption (5.4) implies that ε0 > 0, then the maximum principle gives that X0 /∈
� ∩ {ψε0

λ < m0} and |X0| ≤ C, we conclude that X0 ∈ �ε0 ∩ �̃. In view of the choice of ε0, we have{ −
ψ
ε0
λ = −
ψ̃λ = ω0 in � ∩ {ψε0

λ < m0},
ψ

ε0
λ = ψ̃λ = m0 at X0 ∈ �ε0 ∩ �̃,

(5.5)

and the maximum principle implies that

λ = ∂ψ
ε0
λ

∂ν
<

∂ψ̃λ

∂ν
= λ at X0, ν is outer normal vector.

That is a contradiction. Therefore, we obtain the uniqueness of ψλ. Finally, the uniqueness of the free boundary � is 
done, due to the definition (2.5). �
Proposition 5.3. The impinging jet flow satisfies the asymptotic behavior at the far fields, namely

(u, v,p) →
{

(0, v0(x1),p1) , uniformly in any compact subset of (0, a), as x2 → +∞,

(u0(x2),0,p0) , uniformly in any compact subset of (0, h), as x1 → +∞,
(5.6)

where p1 = p0 + λ2

2 −
(

m0
a

− 1
2 ω0a

)2

2 , v0(x1) = −m0
a

− 1
2ω0a + ω0x1 and u0(x2) = λ + ω0h − ω0x2.

Furthermore,

∇u → 0, ∇v → (ω0,0), ∇p → 0, uniformly in any compact subset of (0, a), (5.7)

as x2 → +∞, and

∇u → (0,−ω0), ∇v → 0, ∇p → 0, uniformly in any compact subset of (0, h), (5.8)

as x1 → +∞.

Proof. Define the function ψn
λ (x1, x2) = ψλ(x1, x2 + n) for x2 > −n

2 and n is sufficiently large. In view of the 
property of the nozzle N in (1.2) and (1.3), it follows from the elliptic estimates that we have

‖ψn
λ‖C2,α(G) ≤ C(G) for sufficiently large n, (5.9)

where G is any compact subset of S = (0, a) × (−∞, +∞).
It follows from Arzela–Ascoli Lemma that there exists a subsequence still labeled by ψn

λ , such that

ψn
λ → ψ0 uniformly in C2,α(G), (5.10)

for any G � S. Furthermore, ψ0 satisfies the equation⎧⎪⎪⎨⎪⎪⎩
−
ψ0 = ω0 in S,

ψ0(0, x2) = 0, ψ0(a, x2) = m0,

0 ≤ ψ (x , x ) ≤ −ω0 x2 + v x in S.

(5.11)
0 1 2 2 1 0 1
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We can solve the problem (5.11) that

ψ0 = �(x1) = −ω0

2
x2

1 + v0x1, in S. (5.12)

Hence, (5.10) and (5.12) give that

∇ψλ = (−v(x1, x2), u(x1, x2)) → (−ω0x1 + v0,0), (5.13)

uniformly for any x1 ∈ (0, a) as x2 → +∞.
Furthermore, we have

∇u → 0, ∇v → (ω0,0), ∇p → 0, uniformly in any compact subset of (0, a),

as x2 → +∞.
Next, we consider the asymptotic behavior in the downstream. It follows from Corollary 3.13 in [18] that the free 

boundary x2 = kλ(x1) satisfies

x2 = kλ(x1) ∈ C1,α for x2 ∈ (h,h + ε) and (x1, x2) ∈ � ∩ {x1 > x0
1},

for small ε > 0 and large x0
1 > 0. Moreover, the flatness condition and Corollary 3.13 in [18] imply that

k′
λ(x1) → 0 as x1 → +∞, and |k(j)

λ (x1)| ≤ C for j = 2,3.

Similarly, we define the function ψn
λ(x1, x2) = ψλ(x1 + n, x2) for x1 > −n

2 and sufficiently large n. Using the 
standard elliptic estimate, we have

‖ψn
λ‖C2,α(G) ≤ C(G) for sufficiently large n, (5.14)

where G is any compact subset of S1 = (−∞, +∞) × (0, h) with h satisfies (1.9).
It follows from Arzela–Ascoli Lemma that there exists a subsequence ψn

λ such that

ψn
λ → ψ̄ in C2,α(G), (5.15)

for any compact G � S1. Furthermore, ψ̄ solves uniquely the following problem (5.16).⎧⎪⎪⎨⎪⎪⎩
−
ψ̄ = ω0 in S1,

ψ̄(x1, h) = m0, ψ̄(x1,0) = 0,

ψ̄(x1, x2) ≤ φh(x2) in S1.

(5.16)

Obviously,

ψ̄ = φ(x2) = −1

2
ω0x

2
2 + (λ + ω0h)x2, in S1. (5.17)

Hence, (5.15) and (5.17) give that

∇ψλ = (−v(x1, x2), u(x1, x2)) → (0, λ − ω0h + ω0x2), (5.18)

uniformly for any x2 ∈ (0, h) as x1 → +∞.
Furthermore, we have

∇u → (0,−ω0), ∇v → 0, ∇p → 0, uniformly in any compact subset of (0, h),

as x1 → +∞. �
Proposition 5.4. Suppose that the condition (1.11) holds, we have

u = ∂ψλ

∂x2
> 0 in �0 \ I. (5.19)
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Proof. We consider u = ∂ψλ

∂x2
in �0 and satisfies the equation


u = 0, in �0.

It suffices to prove u(x1, x2) > 0 in any compact subset of �0.
For any compact subset D � �0 with smooth boundary, we have{


u = 0 in D,

u = ∂ψλ

∂x2
≥ 0 on ∂D.

(5.20)

The maximum principle gives that u(x1, x2) > 0 in D.
Note that along N ∪ �, ψλ = m0, using the boundary condition (1.4), that is to see that

∂x1ψλ(, x1,H(x1)) + ∂x2ψλ(x1,H(x1))H
′(x1) = 0,

where H(x1) ∈ C1 and

H(x1) =
{

f −1(x1), (f (x2), x2) ∈ N,

kλ(x1), (x1, kλ(x1)) ∈ �.

Therefore, the outer normal derivative satisfies

∂ψλ

∂ν
(x1,H(x1)) = ∂x2ψλ (x1,H(x1))

√
1 + H ′(x1)2.

On the one hand, ψλ attains its minimum of at N ∪ �, it follows from the Hopf Lemma that

u = ∂ψλ(x1, x2)

∂x2
> 0, on ∂�0 \ I.

So we obtain that the horizontal velocity u > 0 in �0 \ I . �
Hence, we complete the proof of Theorem 1.2.
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