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Abstract

We consider a one-phase nonlocal free boundary problem obtained by the superposition of a fractional Dirichlet energy plus a 
nonlocal perimeter functional. We prove that the minimizers are Hölder continuous and the free boundary has positive density from 
both sides.

For this, we also introduce a new notion of fractional harmonic replacement in the extended variables and we study its basic 
properties.
© 2016 
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1. Introduction

The recent research has payed a great attention to a class of nonlocal problems arising in both pure and applied 
mathematics. A natural setting in which nonlocal questions arise is given by the class of free boundary problems. 
Roughly speaking, many free boundary problems are built by the competition of two (or more) competing terms: for 
instance, an elastic (or ferromagnetic) energy can be combined with a tension effect (in this setting, the ferromagnetic 
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energy favors the preservation of the values of a state parameter u, while the tension effect tends to make the interface 
given by the level sets of u as small as possible).

In order to take into account possible long-range interactions, some nonlocal energies have been considered in 
these types of free boundary problems. In particular, in [14], a new energy functional was considered, as the sum of a 
fractional Dirichlet energy, with fractional exponent s ∈ (0, 1), and a fractional perimeter, with fractional exponent σ ∈
(0, 1). When s → 1, and when σ → 0 or σ → 1, the energy functional becomes the classical free boundary energy 
considered in [1–3]. An intermediate problem, with a local Dirichlet energy plus a fractional perimeter has been 
studied in [6].

Some results of classical flavor have been proved in [14], such as, among the others,1 a monotonicity formula for 
the minimizers, some glueing lemmata, some uniform energy bounds, convergence results, a regularity theory for the 
planar cones and a trivialization result for the flat case. On the other hand, in [14] no result was proved concerning 
the regularity of the minimizers and the density properties of the free boundary. These type of results are indeed quite 
hard to obtain, due to the strong nonlocal feature of the problem: for instance, differently from the classical case, the 
nonlocal Dirichlet energy provides nontrivial interactions between the positivity and negativity sets of the functions, 
and a local modification of the free boundary produces global consequences in the fractional perimeter.

Goal of this paper is then to provide regularity and density results, at least in the case of the one-phase problem 
(i.e. when the boundary data are nonnegative).

The mathematical setting in which we work is the following. Let s, σ ∈ (0, 1), and � ⊂ R
n be a bounded domain 

with Lipschitz boundary. Following [14], we define

F�(u,E) :=
∫∫
Q�

|u(x) − u(y)|2
|x − y|n+2s

dx dy + Perσ (E,�),

where

Q� := (� × �) ∪ ((Rn \ �) × �
)∪ (� × (Rn \ �)

)
and Perσ (E, �) denotes the fractional perimeter of E in � (see [5] or formulas (1.2) and (1.3) in [14]), that is

Perσ (E,�) := L(E ∩ �,� \ E) + L(E ∩ �,(Rn \ E) \ �) + L(E \ �,� \ E), (1.1)

where, for any disjoint sets A, B ⊆R
n,

L(A,B) :=
∫∫

A×B

dx dy

|x − y|n+σ
.

All sets and functions are implicitly assumed to be measurable from now on.
Let E ⊆R

n and u : Rn → R. We say that (u, E) is an admissible pair if u � 0 a.e. in E and u � 0 a.e. in R
n \ E.

Also, we say that (u, E) is a minimizing pair in � if F�(u, E) < +∞ and

F�(u,E) � F�(v,F )

for any admissible pair (v, F) such that:

• u − v ∈ Hs(Rn),
• u = v a.e. in R

n \ �, and
• E \ � = F \ �.

1 We take this opportunity to amend some minor inconsistencies in [14].
First of all, in Theorem 1.2 and in Lemma 8.3, the condition “um is the extension of um” has to be intended “um is the extension of um ∈

C(Rn)”.
Then, in the statement of Lemma 3.2 “if u ∈ C(Rn)” has to be placed in the beginning, and in the proof of Lemma 3.2 the expression “ min

Br (xo)
u” 

needs to be replaced by “ min u”.

Br (xo)
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Roughly speaking, a pair (u, E) is admissible if E is the positivity set of u, and it is minimizing if it has minimal 
energy among all the possible competing admissible pairs that coincide outside �. For the existence of minimizing 
pairs see Lemma 3.1 in [14].

We remark that this minimizing problem is nontrivial even in the one-phase case, i.e. when the boundary datum u

is nonnegative, since the set E is not necessarily trivially prescribed outside �.
In this setting, our main result is the following:

Theorem 1.1 (Density estimates and continuity for one-phase minimizers). Assume that (u, E) is minimizing in B1, 
with u � 0 a.e. in R

n \ B1 and 0 ∈ ∂E. Assume also that∫
Rn

|u(x)|
1 + |x|n+2s

dx � �, (1.2)

for some � > 0.
Then, there exist c, K > 0, possibly depending on n, s, σ and �, such that for any r ∈ (0, 1/2],

min
{
|Br ∩ E|, |Br \ E|

}
� crn (1.3)

and

‖u‖L∞(B1/2) � K. (1.4)

In addition, if s > σ/2, then, given r0 ∈ (0, 1/4),

u ∈ Cs− σ
2 (Br0), with ‖u‖

C
s− σ

2 (Br0 )
� C, (1.5)

where C > 0 possibly depends on n, s, σ , r0 and �.

We observe that both the growth condition (1.2) and the Hölder exponent in (1.5) are compatible with the degree 
of homogeneity of the minimizing cones, see Theorem 1.3 of [14]. Condition (1.2) is also a standard assumption to 
make sense of the fractional Laplace operator (though some very recent developments in [15] may also allow more 
general notions of suitable fractional Laplace operators for functions with more severe growth at infinity).

It is an open problem to investigate the optimal regularity of the solution (which could be possibly beyond the 
scaling arguments) and to classify (or trivialize) the minimizing cones: see also [6,14] for partial results and additional 
comments on these problems.

It is also an interesting question to study this type of free boundary problems for more general fractional operators 
(see e.g. [22,17] for a classical counterpart).

The rest of the paper is organized as follows. In Section 2 we introduce an extension problem which is useful to 
localize the Dirichlet energy (using a weighted space with an additional variable). This extended problem is differ-
ent than the one considered in [14] since here the fractional perimeter functional is not modified by the extension 
procedure.

In Section 3, we introduce a fractional harmonic replacement in this weighed extended space. Fractional harmonic 
replacements are of course a classical topic in harmonic analysis and they have several applications to free boundary 
problems, see e.g. [3,6] and the references therein. In the literature, a fractional harmonic replacement was also 
studied in [16]. The setting of [16] is different than the one considered in Section 3 of this paper, since here we deal 
with the extended space and, in Section 4, we obtain localized energy estimates in the extended variable. These energy 
estimates play a crucial role in our subsequent density estimates (as a matter of fact, both the replacement of [16] and 
the one of Section 3 here will be used in this paper to prove density estimates from both sides).

In Section 5 we prove the density estimates. First we prove the density of the vanishing set around free boundary 
points, together with a uniform estimate on the size of the solution. Then we use this information to obtain density 
estimates of the positivity set as well, which completes the proof of the double-sided density estimate in (1.3).

By combining the density estimates with the uniform bound on the solution, one also obtains continuity of the 
minimizers, as claimed in (1.5).
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2. An extended problem

In this section we introduce an extension problem in order to localize the Dirichlet energy, by adding one variable 
(see [7]).

We use the following setting. We consider variables x ∈R
n and z ∈R, and we use the notation X := (x, z) ∈ R

n+1. 
We consider the halfspace R

n+1+ := R
n × (0, +∞). The n-dimensional ball centered at 0 ∈ R

n and of radius r > 0 is 
denoted by Br .

Given u : Rn → R, for any (x, z) ∈ R
n+1 we define

u(x, z) :=
∫
Rn

|z|2s u(x − y)

(|y|2 + z2)
n+2s

2

dy =
∫
Rn

|z|2s u(y)

(|x − y|2 + z2)
n+2s

2

dy, (2.1)

see e.g. [7], in particular Section 2.4 there (notice that in [7] in the definition of the extension function u there is also 
a normalizing constant, that we neglect here, since it will not play any role in our problem).

Next result states that if (u, E) is a minimal pair, then (u, E) is minimal for an extended problem:

Lemma 2.1. Let (u, E) be a minimizing pair in Br . Let U be a bounded and Lipschitz domain of Rn+1 that is 
symmetric with respect to the z-coordinate, such that

U ∩ {z = 0} ⊂ Br × {0}.
Then ∫

U

|z|a |∇u|2 dX + Perσ (E,Br) �
∫
U

|z|a |∇ṽ|2 dX + Perσ (F,Br),

for every (ṽ, F) such that:

• F \ Br = E \ Br ,
• ṽ − u is compactly supported inside U ,
• ṽ(x, 0) � 0 a.e. x ∈ F ,
• ṽ(x, 0) � 0 a.e. x ∈ R

n \ F .

Proof. We take (u, E) and (ṽ, F) as in the statement of Lemma 2.1 and we define v(x) := ṽ(x, 0), for any x ∈ R
n.

Notice that (Rn \Br) ×{0} ⊆R
n+1 \U , therefore v(x) = ṽ(x, 0) = u(x, 0) = u(x) for a.e. x ∈R

n \Br . In addition, 
v � 0 a.e. on F and v � 0 a.e. on R

n \ F . Therefore, the pair (v, F) is an admissible competitor for (u, E) and so, by 
the minimality of (u, E), we have that∫∫

QBr

|v(x) − v(y)|2
|x − y|n+2s

dx dy −
∫∫
QBr

|u(x) − u(y)|2
|x − y|n+2s

dx dy

= FBr (v,F ) − FBr (u,E) − Perσ (F,Br) + Perσ (E,Br)

� −Perσ (F,Br) + Perσ (E,Br).

(2.2)

On the other hand, by Lemma 7.2 of [5], up to a normalizing constant, we have that∫∫
QBr

|v(x) − v(y)|2
|x − y|n+2s

dx dy −
∫∫
QBr

|u(x) − u(y)|2
|x − y|n+2s

dx dy

= inf
∫
W

|z|a(|∇w̃|2 − |∇u|2)dX,

where the infimum above is taken over all the couples (w̃, W ) satisfying the following properties:



S. Dipierro, E. Valdinoci / Ann. I. H. Poincaré – AN 34 (2017) 1387–1428 1391
• W is a bounded and Lipschitz domain of Rn+1 that is symmetric with respect to the z-coordinate, such that

W ∩ {z = 0} ⊂ Br × {0},
• w̃ − u is compactly supported inside W ,
• w̃(x, 0) = v(x) for any x ∈R

n.

By construction, we can take w̃ := ṽ and W := U as candidates in the above infimum, and consequently∫∫
QBr

|v(x) − v(y)|2
|x − y|n+2s

dx dy −
∫∫
QBr

|u(x) − u(y)|2
|x − y|n+2s

dx dy

�
∫
U

|z|a(|∇ṽ|2 − |∇u|2)dX.

This and (2.2) give that∫
U

|z|a(|∇ṽ|2 − |∇u|2)dX � −Perσ (F,Br) + Perσ (E,Br),

that is the desired result. �
3. Fractional harmonic replacements in the extended variables

Goal of this section is to introduce a notion of fractional harmonic replacement in the extended variables and study 
its basic properties. In the classical case, a detailed study of the harmonic replacement was performed in [3,6]. See 
also [16] for the study of a related (but different) fractional harmonic replacement.

We set

Br := B 9r
10

× (−r, r). (3.1)

It worth to link the norm in Br for the extended function with the one on the trace, as pointed out by the following 
result:

Lemma 3.1. Let u and u be as in (2.1). There exists Cr > 0 such that

‖u‖L∞(Br ) � Cr

⎛
⎜⎝‖u‖L∞(Br ) +

∫
Rn\Br

|u(y)|
|y|n+2s

dy

⎞
⎟⎠ .

Proof. Let (x, z) ∈ Br . Then x ∈ B 9r
10

and |z| � r . Therefore, if y ∈ R
n \ Br , we have that

|x − y| � |y| − |x| = |y|
10

+ 9|y|
10

− |x| � |y|
10

+ 9r

10
− 9r

10
= |y|

10
.

Hence, if y ∈ R
n \ Br ,

|z|2s |u(y)|
(|x − y|2 + z2)

n+2s
2

� r2s |u(y)|
|x − y|n+2s

� Cr

|u(y)|
|y|n+2s

,

for some Cr > 0. As a consequence∫
Rn\Br

|z|2s |u(y)|
(|x − y|2 + z2)

n+2s
2

dy � Cr

∫
Rn\Br

|u(y)|
|y|n+2s

dy. (3.2)

Moreover,
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∫
Br

|z|2s |u(y)|
(|x − y|2 + z2)

n+2s
2

dy � ‖u‖L∞(Br )

∫
Br

|z|2s

(|x − y|2 + z2)
n+2s

2

dy

� ‖u‖L∞(Br )

∫
Rn

|z|2s

(|x − y|2 + z2)
n+2s

2

dy = C ‖u‖L∞(Br ),

for some C > 0. The latter estimate and (3.2) imply the desired result, up to renaming the constants. �
3.1. Functional spaces

Given r > 0, we consider the seminorm

[v]Hs (Br ) :=
√√√√∫

Br

|z|a |∇v|2 dX,

with a := 1 − 2s ∈ (−1, 1). We denote by H
s(Br ) the closure of C∞(Br ) with respect to the norm

‖v‖Hs (Br ) := [v]Hs (Br ) +
√√√√∫

Br

|z|a |v|2 dX.

We also set Hs
0(Br ) to be the closure of C∞

0 (Br ) with respect to the norm above.
For completeness, we point out that the seminorm [·]Hs (Br ) is indeed a norm on H

s
0(Br ):

Lemma 3.2. If v ∈ H
s
0(Br ) and [v]Hs (Br ) = 0 then v = 0 a.e. in Br .

Proof. Let vk ∈ C∞
0 (Br ) be such that ‖vk − v‖Hs (Br ) → 0 as k → +∞. Up to subsequences, we may suppose that

vk → v a.e. in Br . (3.3)

Also, by Proposition 2.1.1 in [12],

⎛
⎜⎝∫

Br

|z|a |vk|2γ dX

⎞
⎟⎠

1
2γ

� Ŝ [vk]Hs (Br ),

for some γ > 1 and Ŝ > 0. Therefore

⎛
⎜⎝∫

Br

|z|a |vk|2γ dX

⎞
⎟⎠

1
2γ

� Ŝ
(
[vk − v]Hs (Br ) + [v]Hs (Br )

)

= Ŝ [vk − v]Hs (Br ) → 0

as k → +∞. This implies that vk → 0 a.e. in Br , up to subsequences, and therefore v = 0 a.e. in Br , thanks 
to (3.3). �

Given ϕ ∈ H
s(B2), we define

Dϕ := {v ∈ H
s(B1) s.t. v − ϕ ∈ H

s
0(B1)

}
.

Now we observe that functions in Dϕ possess a trace along {z = 0}. The expert reader may skip this part and go 
directly to formula (3.6). To give an elementary proof of this fact (which is rather well known in general, see e.g. 
Lemma 3.1 of [23] or the references therein), we make this preliminary observation:
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Lemma 3.3. For any v ∈ C∞
0 (Br ) and any x ∈ B 9r

10
, we define Tv(x) := v(x, 0). Then, there exists C > 0 such that

‖Tv‖L2(B9r/10)
� C‖v‖Hs (Br ).

Proof. For any x ∈ B 9r
10

,

|Tv(x)| = |v(x,0) − v(x, r)|

�
r∫

0

|∂zv(x, z)|dz �
r∫

0

|z|− a
2 |z| a

2 |∇v(x, z)|dz.

So, by Cauchy–Schwarz inequality, for any x ∈ B 9r
10

,

|Tv(x)|2 �
r∫

0

|z|−a dz

r∫
0

|z|a |∇v(x, z)|2 dz = C

r∫
0

|z|a |∇v(x, z)|2 dz.

Hence we integrate over x ∈ B 9r
10

and the desired result easily follows. �
Now, for any w ∈ H

s
0(Br ), we know from the definition of Hs

0(Br ) that there exists a sequence of functions wk ∈
C∞

0 (Br ) such that ‖w − wk‖Hs (Br ) → 0 as k → +∞. By Lemma 3.3, we have that

Twk−wh
(x) = wk(x,0) − wh(x,0) = Twk

(x) − Twh
(x)

and so

‖Twk
− Twh

‖L2(B9r/10)
� C‖wk − wh‖Hs (Br ).

This means that the sequence Twk
is Cauchy in L2(B9r/10), hence it converges to some function, denoted as Tw , 

in L2(B9r/10), which we call the trace of w along {z = 0}. Of course, the trace Tw is defined up to sets of zero 
n-dimensional Lebesgue measure, and a different approximating sequence does produce the same trace: to check this, 
take an approximating sequence w̃k and use again Lemma 3.3 to see that

‖Twk
− Tw̃k

‖L2(B9r/10)
� C‖wk − w̃k‖Hs (Br )

� C‖wk − w‖Hs (Br ) + C‖w̃k − w‖Hs (Br ),

hence Twk
and Tw̃k

have the same limit in L2(B9r/10).
Our next goal is to show that we can trace also ϕ ∈H

s(B2) along B9/10. This is not completely obvious since ϕ /∈
H

s
0(B2), so the above construction does not apply. For this, we observe that:

Lemma 3.4. If ϕ1, ϕ2 ∈H
s(B2) and ϕ1 = ϕ2 a.e. in B5/4, then Dϕ1 = Dϕ2 .

Proof. Let v ∈ Dϕ1 . Then v − ϕ1 ∈ H
s
0(B1). Hence there exists a sequence wk ∈ C∞

0 (B1) such that ‖v − ϕ1 −
wk‖Hs (B1) → 0 as k → +∞. Since ϕ1 = ϕ2 a.e. in B5/4, we have that ‖v − ϕ1 − wk‖Hs (B1) = ‖v − ϕ2 − wk‖Hs (B1). 
As a consequence, ‖v − ϕ2 − wk‖Hs (B1) → 0 as k → +∞, which shows that v ∈ Dϕ2 .

The reverse inclusion is completely analogous. �
Now, given ϕ ∈ H

s(B2), we can take τ ∈ C∞
0 (B3/2) with τ = 1 in B5/4 and consider ϕo := τϕ. By the trace 

construction in H
s
0(B2), we can define the trace Tϕo as a function in L2(B2·9/10). So we define the trace of ϕ in B9/10

as Tϕ := Tϕo . By construction, Tϕ ∈ L2(B9/10). Next observation shows that this definition is independent on the 
particular cut-off chosen:

Lemma 3.5. If ϕ1, ϕ2 ∈H
s
0(B2), with ϕ1 = ϕ2 a.e. in B5/4, then Tϕ1 = Tϕ2 a.e. in B9/10.
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Proof. By construction, for any i ∈ {1, 2}, there are sequences ϕi,k ∈ C∞
0 (B2) such that ‖ϕi − ϕi,k‖Hs (B2) → 0

as k → +∞. Let 	 ∈ C∞
0 (B5/4) with 	 = 1 in B11/10. Let also

ϕ̃1,k := ϕ1,k + 	(ϕ2,k − ϕ1,k).

We claim that

lim
k→+∞‖ϕ1 − ϕ̃1,k‖Hs (B2) = 0. (3.4)

To prove this, we observe that

|ϕ1 − ϕ̃1,k|2 = ∣∣ϕ1 − ϕ1,k − 	(ϕ2,k − ϕ1,k)
∣∣2

� C
(
|ϕ1 − ϕ1,k|2 + |	|2|ϕ2,k − ϕ1,k|2

)
� C

(
|ϕ1 − ϕ1,k|2 + +χB5/4 |ϕ2,k − ϕ1,k|2

)
,

up to renaming C > 0. Hence, since ϕ1 = ϕ2 a.e. in B5/4,

χB5/4 |ϕ2,k − ϕ1,k|2 = χB5/4 |ϕ2,k − ϕ2 + ϕ1 − ϕ1,k|2.
Therefore

|ϕ1 − ϕ̃1,k|2 � C
(
|ϕ1 − ϕ1,k|2 + |ϕ2,k − ϕ2|2

)
.

As a consequence,

lim
k→+∞

∫
B2

|z|a |ϕi − ϕ̃i,k|2 dX = 0. (3.5)

Moreover, we observe that

|∇(ϕ1 − ϕ̃1,k)|2 = ∣∣∇(ϕ1 − ϕ1,k) − ∇(	(ϕ2,k − ϕ1,k))
∣∣2

� C
(
|∇(ϕ1 − ϕ1,k)|2 + |∇	|2|ϕ2,k − ϕ1,k|2 + |	|2|∇(ϕ2,k − ϕ1,k)|2

)
� C

(
|∇(ϕ1 − ϕ1,k)|2 + χB5/4\B11/10 |ϕ2,k − ϕ1,k|2 + χB5/4 |∇(ϕ2,k − ϕ1,k)|2

)
,

up to renaming C > 0. Hence, since ϕ1 = ϕ2 a.e. in B5/4,

χB5/4\B11/10 |ϕ2,k − ϕ1,k|2 = χB5/4\B11/10 |ϕ2,k − ϕ2 + ϕ1 − ϕ1,k|2
and

χB5/4 |∇(ϕ2,k − ϕ1,k)|2 = χB5/4 |∇(ϕ2,k − ϕ2 + ϕ1 − ϕ1,k)|2.
Therefore

|∇(ϕ1 − ϕ̃1,k)|2
� C

(
|∇(ϕ1 − ϕ1,k)|2 + |ϕ2,k − ϕ2|2 + |ϕ1 − ϕ1,k|2

+ |∇(ϕ2,k − ϕ2)|2 + |∇(ϕ1 − ϕ1,k)|2
)
,

which, after an integration, implies that

lim
k→+∞

∫
B2

|z|a |∇(ϕi − ϕ̃i,k)|2 dX = 0.

This and (3.5) give (3.4).
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With this, and setting ϕ̃2,k := ϕ2,k , we have that ϕ̃i,k ∈ C∞
0 (B2), ‖ϕi − ϕ̃i,k‖Hs (B2) → 0 as k → +∞, and, addi-

tionally, if X ∈ B11/10 then

ϕ̃1,k(X) = ϕ̃2,k(X).

Since Tϕi
is the limit in L2(B2·(9/10)) (and so a.e. in B2·(9/10), up to subsequences) of Tϕ̃i,k

as k → +∞, we have, for 
a.e. x ∈ B9/10 ⊆ B11/10 ∩ {z = 0},

Tϕ1(x) = lim
k→+∞Tϕ̃1,k

(x) = lim
k→+∞ ϕ̃1,k(x,0)

= lim
k→+∞ ϕ̃2,k(x,0) = lim

k→+∞Tϕ̃2,k
(x) = Tϕ2(x),

as desired. �
Having defined Tw for any w ∈ H

s
0(B1) and Tϕ for any ϕ ∈ H

s(B2), we now define the trace of any function 
v ∈ Dϕ , by setting

Tv := Tv−ϕ + Tϕ.

To simplify the notation, given a set K ⊆ B1 ∩ {z = 0}, we say that v = 0 a.e. in K to mean that Tv = 0 a.e. in K

(i.e. v(x, 0) = 0 for a.e. x ∈ K , in the sense of traces). We set

Dϕ
K := {v ∈ Dϕ s.t. v = 0 a.e. in K

}
. (3.6)

In some intermediate results, we also need a slightly more general definition in which the values attained at K are not 
necessarily zero. For this, given γ : K →R, we also define

Dϕ
K,γ := {v ∈ Dϕ s.t. v = γ a.e. in K

}
. (3.7)

Notice that Dϕ
K,γ reduces to Dϕ

K when γ ≡ 0. The functional structure of Dϕ
K,γ that is needed for our purposes is 

given by the following result:

Lemma 3.6. Let wj ∈ Dϕ
K,γ be such that

sup
j∈N

∫
B1

|z|a |∇wj |2 dX < +∞.

Then there exists w ∈ Dϕ
K,γ such that, up to a subsequence,

lim
j→+∞

∫
B1

|z|a |w − wj |2 dX = 0 (3.8)

and, for any φ ∈ Dϕ
K,γ ,

lim
j→+∞

∫
B1

|z|a∇wj · ∇φ dX =
∫

B1

|z|a∇w · ∇φ dX. (3.9)

Proof. First, we use Lemma 2.1.2 in [12] and we obtain that there exists w (with finite weighted Lebesgue norm) 
such that (3.8) holds true. Then, by Theorem 1.31 in [19], we obtain (3.9). It remains to show that

w ∈ Dϕ
K,γ . (3.10)

To this goal, we first observe that Hs
0(B1) is closed (with respect to ‖ · ‖Hs (B1)) and convex. Hence Dϕ is also closed 

and convex, and then so is Dϕ
K,γ . Therefore (3.10) follows from (3.8), (3.9) and Theorem 1.30 in [19] (applied here 

with K := Dϕ ). �
K,γ
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Now we define

E (v) :=
∫

B1

|z|a |∇v|2 dX.

Then we have:

Theorem 3.7. Assume that

Dϕ
K,γ =∅. (3.11)

Then there exists a unique �
ϕ
K,γ ∈ Dϕ

K,γ such that

E (�
ϕ
K,γ ) = min

v∈Dϕ
K,γ

E (v).

In particular, taking γ ≡ 0, we have that if Dϕ
K =∅ then there exists a unique �

ϕ
K ∈ Dϕ

K such that

E (�
ϕ
K) = min

v∈Dϕ
K

E (v).

Proof. Let

ι := inf
v∈Dϕ

K,γ

E (v).

We take a minimizing sequence wj ∈ Dϕ
K,γ such that

E (wj )� ι + e−j . (3.12)

By Lemma 3.6, up to a subsequence we have that there exists w ∈ Dϕ
K,γ such that

lim
j→+∞

∫
B1

|z|a∇wj · ∇φ dX =
∫

B1

|z|a∇w · ∇φ dX,

for every φ ∈ Dϕ
K,γ . In particular,

0 � lim inf
j→+∞

∫
B1

|z|a |∇(wj − w)|2 dX

= lim inf
j→+∞

∫
B1

|z|a |∇wj |2 dX +
∫

B1

|z|a |∇w|2 dX − 2
∫

B1

|z|a∇wj · ∇w dX

= lim inf
j→+∞

∫
B1

|z|a |∇wj |2 dX −
∫

B1

|z|a |∇w|2 dX

= lim inf
j→+∞E (wj ) − E (w).

By inserting this into (3.12) we obtain that

E (w)� lim inf
j→+∞E (wj )� lim inf

j→+∞ ι + e−j = ι.

This shows that w is the desired minimizer.
Now we show that the minimizer is unique. The proof relies on a standard convexity argument, we give the details 

for the facility of the reader. Suppose that we have two minimizers w1 and w2, and let w := (w1 + w2)/2. Notice 
that w ∈ Dϕ

K,γ by the convexity of the space, hence

E (w1) = E (w2)� E (w).
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Also w1 − w2 ∈H
s
0(B1), thus

[w1 − w2]2
Hs (B1)

=
∫

B1

|z|a |∇(w1 − w2)|2 dX

=
∫

B1

|z|a(|∇w1|2 + |∇w2|2 − 2∇w1 · ∇w2
)
dX

=
∫

B1

|z|a(2|∇w1|2 + 2|∇w2|2 − |∇(w1 + w2)|2
)
dX

= 2E (w1) + 2E (w2) − 4E (w)

� 0.

This, together with Lemma 3.2, shows that w1 = w2 and so it completes the proof of the uniqueness claim. �
From now on, we will implicitly assume that Dϕ

K = ∅. Then, the minimizer �
ϕ
K introduced in Theorem 3.7 is the 

fractional harmonic replacement that we consider in this paper. Roughly speaking, it is a minimizer with boundary 
datum ϕ of a fractional energy in the extended variables under the additional condition of vanishing in the set K .

3.2. Basic properties of the fractional harmonic replacement

In this subsection, we prove some simple, but useful, properties of the fractional harmonic replacement, such as 
symmetry and harmonicity properties and maximum principles.

We remark that the fractional harmonic replacement is defined in a whole (n + 1)-dimensional set. This can be 
translated into subset of the halfspace R

n+1+ if the boundary datum is even in z, as the forthcoming Lemma 3.8 will 
point out.

Lemma 3.8. If ϕ(x, −z) = ϕ(x, z) then �
ϕ
K,γ (x, −z) = �

ϕ
K,γ (x, z).

Proof. We let �(x, z) := �
ϕ
K,γ (x, −z). Then � ∈ Dϕ

K,γ . Furthermore∫
B1

|z|a |∇�|2 dX =
∫

B1

|z|a |∇�
ϕ
K,γ (x,−z)|2 dX =

∫
B1

|z|a |∇�
ϕ
K,γ (x, z)|2 dX,

hence � is also a minimizer for E in Dϕ
K,γ . By the uniqueness result in Theorem 3.7, we conclude that � = �

ϕ
K,γ . �

Now we write D0
K to mean the functional space Dϕ

K when ϕ ≡ 0. In this notation, we have that the fractional 
harmonic replacement is orthogonal to D0

K , as stated in the following result:

Lemma 3.9. For every ψ ∈ D0
K ,∫

B1

|z|a∇�
ϕ
K,γ · ∇ψ dX = 0 (3.13)

and

E (�
ϕ
K,γ ± ψ) = E (�

ϕ
K,γ ) + E (ψ). (3.14)

Proof. Notice that for every ε ∈ (−1, 1), we have that �
ϕ
K,γ + εψ ∈ Dϕ

K,γ , therefore E (�
ϕ
K,γ + εψ) − E (�

ϕ
K,γ ) � 0

and then (3.13) follows.
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Then, using (3.13),

E (�
ϕ
K,γ ± ψ) − E (�

ϕ
K,γ ) − E (ψ)

=
∫

B1

|z|a[|∇�
ϕ
K,γ |2 + |∇ψ |2 ± 2∇�

ϕ
K,γ · ∇ψ

]
dX

−
∫

B1

|z|a |∇�
ϕ
K,γ |2 dX −

∫
B1

|z|a |∇ψ |2 dX

= 0,

that establishes (3.14). �
Now we show that the fractional harmonic extension is indeed “harmonic” outside the constrain, i.e. it satisfies a 

weighted elliptic equation in the interior of B1 \ K . The precise statement goes as follows:

Lemma 3.10. We have that

div (|z|a∇�
ϕ
K,γ ) = 0 (3.15)

in the interior of B1 \ K , in the distributional sense.

Proof. Let N be an open set contained in B1 \K . Let ψ ∈ C∞
0 (N ). Then ψ = 0 in K and so ψ ∈ D0

K . Accordingly, 
by (3.13),∫

B1

|z|a∇�
ϕ
K,γ · ∇ψ dX = 0,

which establishes (3.15) in the distributional sense. �
The forthcoming two results in Lemmata 3.16 and 3.17 provide uniform bounds on �

ϕ
K by Maximum Principle. 

To this goal, we need the ancillary observations in the following Lemmata 3.11–3.15:

Lemma 3.11. Let c ∈ R and φ ∈H
s(B1). Let φk ∈ H

s(B1) be a sequence such that

lim
k→+∞‖φ − φk‖Hs (B1) = 0. (3.16)

Let ψ := (φ − c)+ and ψk := (φk − c)+. Then, up to a subsequence,

lim
k→+∞‖ψ − ψk‖Hs (B1) = 0.

Proof. First, we observe that, up to a subsequence, φk → φ a.e. in B1. Accordingly

lim sup
k→+∞

χ{φk>c�φ} � χ{φ=c} and lim sup
k→+∞

χ{φ>c�φk} � χ{φ=c} (3.17)

a.e. in B1. Also, for any domain N compactly contained in B1 \ {z = 0}, we have that φ ∈ W
1,1
loc (N ) and so, by 

Stampacchia’s Theorem (see e.g. Theorem 6.19 in [21]), it follows that ∇φ = 0 a.e. in {φ = c}, and so

|z|a |∇φ|2χ{φ=c} = 0 a.e. in B1.

Therefore, by (3.17),

lim
k→+∞|z|a |∇φ|2χ{φk>c�φ} = 0

and lim |z|a |∇φ|2χ{φ>c�φk} = 0.

k→+∞
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Consequently, by the Dominated Convergence Theorem,

lim
k→+∞

∫
B1∩{φ>c�φk}

|z|a |∇φ|2 dX = 0

and lim
k→+∞

∫
B1∩{φk>c�φ}

|z|a |∇φ|2 dX = 0.

(3.18)

Moreover, by Corollary 2.1 in [18],

[ψ − ψk]2
Hs (B1)

=
∫

B1

|z|a |∇ψ − ∇ψk|2 dX

=
∫

B1

|z|a |∇(φ − c)+ − ∇(φk − c)+|2 dX

=
∫

B1∩{φ>c}∩{φk>c}
|z|a |∇φ − ∇φk|2 dX

+
∫

B1∩{φ>c�φk}
|z|a |∇φ|2 dX

+
∫

B1∩{φk>c�φ}
|z|a |∇φk|2 dX.

We also observe that

|∇φk|2 � 2
(
|∇φk − ∇φ|2 + |∇φ|2

)
and therefore

[ψ − ψk]2
Hs (B1)

� 3
∫

B1

|z|a |∇φ − ∇φk|2 dX

+
∫

B1∩{φ>c�φk}
|z|a |∇φ|2 dX + 2

∫
B1∩{φk>c�φ}

|z|a |∇φ|2 dX.

From this, (3.16) and (3.18), we get

lim
k→+∞[ψ − ψk]2

Hs (B1)
� 0. (3.19)

Now we observe that |z|a |φ − φk|2 → 0 in L1(B1), thanks to (3.16). Therefore (see e.g. Theorem 4.9(b) in [4]), we 
know that, up to a subsequence,

|z|a |φ − φk|2 � h,

for every k ∈N, with h ∈ L1(B1). As a consequence,

|z| a
2 |φk| � |z| a

2 |φ − φk| + |z| a
2 |φ| � √

h + |z| a
2 |φ|.

Consequently,

|z| a
2 |ψ − ψk| � |z| a

2

(
|φ| + |φk| + 2|c|

)
� 2|z| a

2

(
|φ| + |c|

)
+ √

h

and thus
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|z|a |ψ − ψk|2 � C
[
|z|a

(
|φ|2 + c2

)
+ h

]
=: g,

with g ∈ L1(B1). So, by the Dominated Convergence Theorem,

lim
k→+∞

∫
B1

|z|a |ψ − ψk|2 dX = 0.

This formula and (3.19) imply the desired result. �
We need now a technical modification of Lemma 3.11. Namely, given φ ∈ H

s(B1), in order to approximate φ+
in H

s(B1) it is not always convenient to consider the positive parts of the approximating sequence (as done in 
Lemma 3.11), since taking positive parts may decrease the regularity of the smooth functions. To avoid this, we 
introduce a smooth modification of an approximating sequence, which still converges to the positive part in the limit. 
The key step in this procedure is given by the following result:

Lemma 3.12. Let φ ∈ H
s(B1) and fix ε > 0. Then, there exist θε , θε ∈ C∞(R) such that θε(t) � t+ � θε(t) for 

any t ∈R and

‖φ+ − θε(φ)‖Hs (B1) + ‖φ+ − θε(φ)‖Hs (B1) � ε. (3.20)

Proof. Let τ ∈ C∞(R, [0, 1]) such that τ(t) = 0 for any t � 1/2, and τ(t) = 1 for any t � 3/4. Let also 	(t) := t τ (t)

and

θε(t) := ε	

(
t

ε

)
.

By construction, 	(t) � t+ and so θε(t) � t+ for any t ∈ R.
Moreover,

|θ ′
ε|� C, (3.21)

for some C > 0, and

θε(t) = t+ for any |t | � ε. (3.22)

Now we take a nondecreasing function μ ∈ C∞(R) such that μ(t) = 0 if t � −1/100, μ(t) ∈ (0, 1) for any t ∈
(−1/100, 1/100) and μ(t) = 1 for any t � 1/100. Notice that

ι :=
1

100∫
−∞

μ(t) dt � 1

50
. (3.23)

For any r > 0, we define

μr(t) := μ

(
t − 99

100
+ r

)
.

We observe that μr(t) = 0 if t � (98/100) − r , μr(t) ∈ (0, 1) for any t ∈ ((98/100) − r, 1 − r) and μr(t) = 1 for 
any t � 1 − r .

We claim that

there exists r ∈ [0,1] such that

1∫
−∞

μr(t) dt = 1. (3.24)

To prove this, notice that, using the change of variable t̃ = t − 99 + r and recalling (3.23),
100
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1∫
−∞

μr(t) dt =
1∫

−∞
μ

(
t − 99

100
+ r

)
dt

=
1

100 +r∫
−∞

μ(t̃) dt̃ =
1

100∫
−∞

μ(t̃) dt̃ +
1

100 +r∫
1

100

μ(t̃) dt̃

= ι +
1

100 +r∫
1

100

1dt̃ = ι + r.

Now, if r = 0 then ι � 1/50, thanks to (3.23), and if r = 1 then ι + 1 � 1, since ι � 0. So, by continuity, we obtain the 
claim in (3.24).

Notice that the parameter r given by (3.24) will be considered as fixed from now on. We define

T (t) :=
t∫

−∞
μr(ρ)dρ.

We claim that

T (t) = t+ for any |t |� 1. (3.25)

Indeed, if t � −1 then t � (98/100) − r and so we have that T (t) = 0 = t+, since the integrand vanishes. Also, 
if t � 1 then

T (t) =
1∫

−∞
μr(ρ)dρ +

t∫
1

μr(ρ)dρ = 1 +
t∫

1

1dρ = t,

where (3.24) was used. This proves (3.25).
We also claim that

T (t) � t+ for any t ∈R. (3.26)

To prove it, we notice that it is enough to consider the case t ∈ (−1, 1), in view of (3.25). Moreover, T (t) � 0 = t+
for any t � 0, so we can focus on the case t ∈ (0, 1). For this, for any t ∈ (0, 1), we let H(t) := T (t) − t+ = T (t) − t . 
Then

H ′(t) = T ′(t) − 1 = μr(t) − 1 � 0.

Therefore, for any t ∈ (0, 1),

T (t) − t+ = H(t) � H(1) = T (1) − 1 = 0,

due to (3.25), and this completes the proof of (3.26).
Now we define

θε(t) := εT

(
t

ε

)
.

From (3.26), we know that θε(t) � t+ for any t ∈ R. Also,

|θ ′
ε|� C, (3.27)

for some C > 0, and we deduce from (3.25) that

θε(t) = t+ for any |t | � ε. (3.28)
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Having completed the construction of θε and θε , we now prove (3.20). To this goal, by Lemma 2.1 in [18], we have 
that ∇(θε(φ)) = θ ′

ε(φ)∇φ, therefore

‖φ+ − θε(φ)‖2
Hs (B1)

=
∫

B1

|z|a∣∣∇φ+ − θ ′
ε(φ)∇φ

∣∣2 dX

=
∫

B1∩{|φ|<ε}
|z|a∣∣∇φ+ − θ ′

ε(φ)∇φ
∣∣2 dX,

(3.29)

since the other contributions cancel, thanks to (3.22).
We also use (3.21) to see that |z|a∣∣∇φ+ − θ ′

ε(φ)∇φ
∣∣2 χ{|φ|<ε} � C |z|a |∇φ|2 ∈ L1(B1), since φ ∈ H

s(B1), there-
fore, by the Dominated Convergence Theorem and the Theorem of Stampacchia (see e.g. Theorem 6.19 in [21]), we 
have

lim
ε→0

∫
B1∩{|φ|<ε}

|z|a∣∣∇φ+ − θ ′
ε(φ)∇φ

∣∣2 dX � C

∫
B1∩{φ=0}

|z|a |∇φ|2 dX = 0.

This and (3.29) give that

lim
ε→0

[φ+ − θε(φ)]2
Hs (B1)

= 0. (3.30)

Now we observe that |θε(t)| � C(1 + |t |), due to (3.21), and therefore, by the Dominated Convergence Theorem,

lim
ε→0

∫
B1

|z|a |φ+ − θε(φ)|2 dX = 0.

This and (3.30) imply that

lim
ε→0

‖φ+ − θε(φ)‖2
Hs (B1)

= 0. (3.31)

In a similar way (using (3.27) and (3.28) instead of (3.21) and (3.22)), we obtain that

lim
ε→0

‖φ+ − θε(φ)‖2
Hs (B1)

= 0.

This and (3.31) give (3.20) (up to renaming ε). �
As a consequence of Lemmata 3.11 and 3.12 we have the following smooth approximation result for the positive 

part:

Corollary 3.13. Let c ∈ R and φ ∈H
s(B1). Let φk ∈H

s(B1) be a sequence such that

lim
k→+∞‖φ − φk‖Hs (B1) = 0.

Then, there exist sequences of functions θk , θk ∈ C∞(R) such that θk(t) � t+ � θk(t) for any t ∈ R and

lim
k→+∞‖(φ − c)+ − θk(φk − c)‖Hs (B1) = 0 (3.32)

and

lim
k→+∞‖(φ − c)+ − θk(φk − c)‖Hs (B1) = 0. (3.33)

Proof. First we use Lemma 3.11 to say that

lim
k→+∞‖(φ − c)+ − (φk − c)+‖Hs (B1) = 0.

Now, fixed k ∈ N, we use Lemma 3.12 to find θk , θk ∈ C∞(R) such that θk(t) � t+ � θk(t) for any t ∈R and
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‖(φk − c)+ − θk(φk − c)‖Hs (B1) + ‖(φk − c)+ − θk(φk − c)‖Hs (B1) � e−k.

These considerations and the triangle inequality imply (3.32) and (3.33), as desired. �
With this, we can now prove the following result:

Lemma 3.14. Let g, ϕ ∈ H
s(B2) with g − ϕ ∈ H

s
0(B1). Let also c � sup

B1

ϕ. Then (g − c)+ ∈H
s
0(B1).

Proof. By construction g − c ∈H
s(B1). Thus, by Corollary 2.1 in [18], we have that (g − c)+ ∈ H

s(B1). Moreover, 
there exist sequences fk ∈ C∞

0 (B1) and ϕk ∈ C∞(B1) such that fk → g − ϕ and ϕk → ϕ in H
s(B1) as k → +∞, 

respectively.
Now, we define ϕ̃k := ϕk − θk(ϕk − c), where θk is the smooth function given by Corollary 3.13. Notice that ϕ̃k ∈

C∞(B1). Also, by Corollary 3.13, we have that θk(ϕk − c) → (ϕ − c)+ = 0 in H
s(B1), therefore ϕ̃k → ϕ in H

s(B1), 
as k → +∞.

Now we define hk := θk(fk + ϕ̃k − c − e−k), where θk is given by Corollary 3.13. Notice that hk ∈ C∞(B1). 
Also, the support of hk is compactly contained inside B1, since ϕ̃k � ϕk − (ϕk − c)+ = min{ϕk, c} � c (recall that 
θk(t) � t+ for any t ∈ R) and the support of fk is compactly contained inside B1. Therefore, we have that hk ∈
C∞

0 (B1). Also, by Corollary 3.13, we have that hk → ((g − ϕ) + ϕ − c)+ = (g − c)+ in H
s(B1). This implies 

that (g − c)+ ∈ H
s
0(B1). �

For further reference, we point out that a statement analogous to Lemma 3.14 holds when the positive part is 
replaced with the negative part of the functions:

Lemma 3.15. Let g, ϕ ∈ H
s(B2) with g − ϕ ∈ H

s
0(B1). Let also c � inf

B1

ϕ. Then (g − c)− ∈ H
s
0(B1).

Now we establish pointwise bounds, from above and below, of the fractional harmonic replacement:

Lemma 3.16. We have that

�
ϕ
K,γ � max

{
sup
B1

ϕ, sup
K

γ

}
.

Proof. Let

c := max

{
sup
B1

ϕ, sup
K

γ

}

and ψ := (�
ϕ
K,γ − c)+. By Lemma 3.14, we know that ψ ∈H

s
0(B1). Also, a.e. in K ,

ψ = (�
ϕ
K,γ − c)+ = (γ − c)+ = 0

in the sense of traces, hence ψ ∈ D0
K . As a consequence, using (3.13),

0 =
∫

B1

|z|a∇�
ϕ
K,γ · ∇ψ dX =

∫
B1∩{�ϕ

K,γ >c}
|z|a |∇�

ϕ
K,γ |2 dX,

which gives the desired result. �
Lemma 3.17. If ϕ � 0 and γ � 0, then �

ϕ
K,γ � 0.

Proof. Let ψ := (−�
ϕ
K,γ )+ = (�

ϕ
K,γ )−. By Corollary 2.1 in [18] we have that ψ ∈ H

s(B1), and, using Lemma 3.15

with c := 0, we have that ψ ∈ H
s
0(B1). Also, a.e. in K , we have that ψ = (�

ϕ
K,γ )− = (γ )− = 0 in the trace sense. As 

a consequence, ψ ∈ D0 , thus we can use (3.13) and conclude that
K
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0 =
∫

B1

|z|a∇�
ϕ
K,γ · ∇ψ dX = −

∫
B1∩{�ϕ

K,γ <0}
|z|a |∇�

ϕ
K,γ |2 dX,

which gives the desired result. �
3.3. Relaxation of the functional spaces and subharmonicity properties

The purpose of this subsection is to relax the functional prescription in the space Dϕ
K by allowing approximating 

sequences to take also negative values in K . This observation will be exploited to deduce subharmonicity properties 
of �

ϕ
K and it will also play a role in the proof of the monotonicity statement of Theorem 3.20. For this scope, we 

define

D̃ϕ
K := {v ∈ Dϕ s.t. v � 0 a.e. in K

}
. (3.34)

The reader may compare this definition with (3.6): the only difference is that in (3.6) the function is forced to vanish 
on K , while in the latter setting it can also attain negative values on K . Of course, D̃ϕ

K ⊇ Dϕ
K , therefore

inf
v∈D̃ϕ

K

E (v)� min
v∈Dϕ

K

E (v) = E (�
ϕ
K).

We will show that in fact equality holds if ϕ � 0:

Lemma 3.18. If ϕ � 0, then

min
v∈D̃ϕ

K

E (v) = min
v∈Dϕ

K

E (v) = E (�
ϕ
K).

Proof. Let v ∈ D̃ϕ
K . Since |∇v+| � |∇v|, we have that E (v+) � E (v). So, to prove the desired result, we only have 

to show that

v+ ∈ Dϕ
K. (3.35)

For this, we note that v+ ∈H
s(B1), thanks to Corollary 2.1 in [18]. Now we claim that

v+ − ϕ ∈ H
s
0(B1). (3.36)

For this, we use the sequences fk ∈ C∞
0 (B1) and ϕk ∈ C∞(B1) that converge, respectively, to v−ϕ and ϕ in H

s(B1), 
as k → +∞.

We define gk := fk + θk(ϕk), where θk is given by Corollary 3.13. Hence, by Corollary 3.13, we know 
that θk(ϕk) → ϕ+ = ϕ in H

s(B1). Therefore gk → (v − ϕ) + ϕ = v in H
s(B1).

As a consequence, using again Corollary 3.13, we obtain that θk(gk) → v+ in H
s(B1).

Let now hk := θk(gk) − θk

(
θk(ϕk)

)
. We have that hk → v+ − ϕ. We also notice that fk = 0 outside a compact 

subset Kk contained inside B1. Hence gk = θk(ϕk) outside Kk . Therefore hk = θk(gk) − θk

(
θk(ϕk)

)= θk

(
θk(ϕk)

)−
θk

(
θk(ϕk)

)= 0 outside Kk . This shows that hk ∈ C∞
0 (B1) and it completes the proof of (3.36).

Now we observe that v+ = 0 a.e. in K in the trace sense. This and (3.36) complete the proof of (3.35) and so of 
Lemma 3.18. �

While Lemma 3.10 gives that the harmonic replacement is “harmonic” apart from K , next result states that it is 
“subharmonic” in the whole of the domain if the boundary datum is nonnegative:

Lemma 3.19. If ϕ � 0, then for every ψ ∈ H
s
0(B1) with ψ � 0 a.e. in B1, we have that∫

B1

|z|a∇�
ϕ
K · ∇ψ dX � 0.
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Proof. Given ε > 0, we set ψε := �
ϕ
K − εψ . Since �

ϕ
K − ϕ ∈ H

s
0(B1) and ψ ∈ H

s
0(B1), we have that ψε − ϕ ∈

H
s
0(B1). Furthermore, a.e. in K , we have that ψε = −εψ � 0 in the trace sense, therefore ψε ∈ D̃ϕ

K .
From this and Lemma 3.18, it follows that E (ψε) − E (�

ϕ
K) � 0 and this gives the desired result. �

For our purposes we will never use Lemma 3.19, but we stated and proved it since it can be a useful consequence 
of the theory developed so far in Section 3.

3.4. A monotonicity property for the fractional harmonic replacement

Now we show that the fractional harmonic replacement enjoys a monotonicity property with respect to its boundary 
data and the constrain:

Theorem 3.20. Let Hs(B1) � ϕ2 � ϕ1 � 0. Let also K2 ⊆ K1 ⊆ B 9
10

and A1 ⊆ A2 � B 9
10

. Then

E (�
ϕ1
K1∪A1

) − E (�
ϕ1
K1

)� E (�
ϕ2
K2∪A2

) − E (�
ϕ2
K2

).

Proof. We consider the minimization problem in Dϕ2

K1, �
ϕ2
K2∪A2

. In the notation of Theorem 3.7, the associated mini-

mizer will be denoted by �
ϕ2

K1, �
ϕ2
K2∪A2

.

We claim that

�
ϕ1
K1

� �
ϕ2

K1, �
ϕ2
K2∪A2

. (3.37)

To prove this, we let g := �
ϕ1
K1

−�
ϕ2

K1, �
ϕ2
K2∪A2

and ϕ := ϕ1 −ϕ2. Notice that supB1
ϕ � 0, thus we can use Lemma 3.14

(with c := 0) and conclude that h := g+ ∈ H
s
0(B1). Furthermore, in the trace sense, a.e. in K1 we have that h =

(0 − �
ϕ2

K1, �
ϕ2
K2∪A2

)+ � 0, thanks to Lemma 3.17, and so

h ∈ D0
K1

(3.38)

Consequently, for every δ ∈ (−1, 1), we conclude that �
ϕ2

K1, �
ϕ2
K2∪A2

+ δh ∈ Dϕ2

K1, �
ϕ2
K2∪A2

and then, by the minimizing 

property of �
ϕ2

K1, �
ϕ2
K2∪A2

, it follows that E (�
ϕ2

K1, �
ϕ2
K2∪A2

) � E (�
ϕ2

K1, �
ϕ2
K2∪A2

+ δh).

This implies that∫
B1

|z|a∇�
ϕ2

K1, �
ϕ2
K2∪A2

· ∇hdX = 0.

Hence, we have

E (h) =
∫

B1

|z|a∇(�
ϕ1
K1

− �
ϕ2

K1, �
ϕ2
K2∪A2

) · ∇hdX

=
∫

B1

|z|a∇�
ϕ1
K1

· ∇hdX.

Thus, recalling (3.38) and (3.13), we obtain that E (h) = 0. This, together with Lemma 3.2, implies that h vanishes 
and establishes (3.37).

Now we set

η := �
ϕ2

K1, �
ϕ2
K2∪A2

− �
ϕ2
K2∪A2

. (3.39)

Notice that �
ϕ2

K1, �
ϕ2
K2∪A2

−ϕ2 and �
ϕ2
K2∪A2

−ϕ2 belong to H
s
0(B1), hence so does η. Moreover, a.e. in K1, in the sense 

of traces, we have that η = �
ϕ2 − �

ϕ2 = 0. This says that
K2∪A2 K2∪A2
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η ∈ D0
K1

(3.40)

and so we can use (3.14) (with ψ := η here) and conclude that

E (�
ϕ2

K1, �
ϕ2
K2∪A2

− η) = E (�
ϕ2

K1, �
ϕ2
K2∪A2

) + E (η).

Thus, from (3.39),

E (η) = E (�
ϕ2

K1, �
ϕ2
K2∪A2

− η) − E (�
ϕ2

K1, �
ϕ2
K2∪A2

)

= E (�
ϕ2
K2∪A2

) − E (�
ϕ2

K1, �
ϕ2
K2∪A2

).
(3.41)

Now, since K1 ⊇ K2 and �
ϕ2
K2∪A2

= 0 a.e. in K2, we have that

�
ϕ2

K1, �
ϕ2
K2∪A2

∈ Dϕ2

K1, �
ϕ2
K2∪A2

⊆ Dϕ2

K2, �
ϕ2
K2∪A2

= Dϕ2
K2, 0 = Dϕ2

K2

and so

E (�
ϕ2

K1, �
ϕ2
K2∪A2

) � E (�
ϕ2
K2

),

thanks to the minimality of �
ϕ2
K2

.
This and (3.41) imply that

E (η) � E (�
ϕ2
K2∪A2

) − E (�
ϕ2
K2

). (3.42)

On the other hand, from Lemma 3.18, we know that

E (�
ϕ1
K1∪A1

) = min
v∈D̃

ϕ1
K1∪A1

E (v).

Therefore, calling ψ := �
ϕ1
K1

− v, we have that

E (�
ϕ1
K1∪A1

) = min
ψ∈�

ϕ1
K1

−D̃
ϕ1
K1∪A1

E (�
ϕ1
K1

− ψ). (3.43)

Now we claim that

η ∈ �
ϕ1
K1

− D̃ϕ1
K1∪A1

. (3.44)

For this, we recall (3.39), and we have that

η̃ := �
ϕ1
K1

− η = �
ϕ2
K2∪A2

− �
ϕ2

K1, �
ϕ2
K2∪A2

+ �
ϕ1
K1

.

From this, it follows that η̃ −ϕ1 ∈H
s
0(B1). Also, a.e. in K1, we have that η̃ = �

ϕ2
K2∪A2

−�
ϕ2
K2∪A2

+ 0 = 0, in the trace 
sense. Moreover, a.e. in A1 ⊆ A2, we have that η̃ = 0 − �

ϕ2

K1, �
ϕ2
K2∪A2

+ �
ϕ1
K1

� 0, where (3.37) has been exploited. 

These observations imply that η̃ ∈ D̃ϕ1
K1∪A1

, which in turn implies (3.44).
From (3.43) and (3.44), we obtain that

E (�
ϕ1
K1∪A1

) � E (�
ϕ1
K1

− η). (3.45)

Moreover, by (3.40) and (3.14) (used here with ψ := η), we have that

E (�
ϕ1
K1

− η) = E (�
ϕ1
K1

) + E (η).

Thus, formula (3.45) becomes

E (�
ϕ1
K1∪A1

) − E (�
ϕ1
K1

) � E (�
ϕ1
K1

− η) − E (�
ϕ1
K1

) = E (η).

Therefore, recalling (3.42),

E (�
ϕ1
K1∪A1

) − E (�
ϕ1
K1

) � E (�
ϕ2
K2∪A2

) − E (�
ϕ2
K2

).

This concludes the proof of Theorem 3.20. �
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4. Energy estimates for the fractional harmonic replacement

The goal of this section is to prove that the energy of the fractional harmonic replacement in K ∪ A is controlled 
by the energy of the fractional harmonic replacement in K , plus a term of the order of the n-dimensional measure of 
the additional set A. The precise statement of this result goes as follows:

Theorem 4.1. Let ϕ � 0 and ρ ∈ [1/4, 3/4]. Let K ⊆ B1 ∩ {z = 0} and A := Bρ \ K . Then

E (�
ϕ
K∪A) − E (�

ϕ
K) � C |A| ‖ϕ‖2

L∞(B1)
,

for some C > 0 that depends on n and s.

In the local case of the classical harmonic replacement, a statement similar to the one in Theorem 4.1 was obtained 
in Lemma 2.3 of [6]. Also, a fractional case in a different setting was dealt with in Theorem 1.3 of [16] (as a matter 
of fact, the right hand side of the estimate obtained here is more precise than the one in [16] since it only depends on 
the values of ϕ in a fixed ball, and this plays an important role in the blow-up analysis of the problem).

To proof Theorem 4.1, we will reduce to the radial case. For this, we will first show that a suitable radial rear-
rangement decreases the energy and then estimate the energy in the radial case. An important step of the proof is also 
obtained by using the monotonicity property of Theorem 3.20, in order to reduce to the case of constant Dirichlet 
datum. The following subsections contain the details of this strategy.

4.1. Symmetric rearrangements

In this subsection, we will consider the symmetric rearrangement in the variable x ∈ R
n, for a fixed z ∈ R. In the 

forthcoming Theorem 4.3 we will show that this rearrangement decreases the energy.
To this goal, we first state a useful density property of polynomials in the space we work with.

Lemma 4.2. Let v ∈H
s(B1) and ε > 0. Then there exists a polynomial pε such that

‖v − pε‖Hs (B1) � ε.

Proof. By the definition of Hs(B1) given in Subsection 3.1, we have that there exists wε ∈ C∞(B1) such that ‖v −
wε‖Hs (B1) � ε. Moreover, by the Stone–Weierstraß Theorem (see e.g. Lemma 2.1 in [13]), we have that there exists 
a polynomial pε such that ‖wε − pε‖C1(B1)

� ε. Therefore

‖wε − pε‖Hs (B1) =
√√√√∫

B1

|z|a |wε − pε|2 dX +
√√√√∫

B1

|z|a |∇wε − ∇pε|2 dX

� ‖wε − pε‖C1(B1)

√√√√∫
B1

|z|a dX � Cε,

for some C > 0. As a consequence,

‖v − pε‖Hs (B1) � ‖v − wε‖Hs (B1) + ‖wε − pε‖Hs (B1) � ε + C ε,

which implies the desired result after renaming ε. �
Now, given v ∈ L∞(B1), and fixed any z ∈R, we consider the Steiner symmetric rearrangement vσ (·, z) of v(·, z)

(see e.g. Section 2 of [9]). With this notation, we are ready to establish the main result of this subsection, that states 
that the symmetric rearrangement in the x variables decreases energy:
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Theorem 4.3. For any v ∈H
s
0(B1),∫

B1

|z|a |∇vσ |2 dX �
∫

B1

|z|a |∇v|2 dX.

Proof. The idea of the proof is to first prove the desired claim for polynomials using some results in [9] and then pass 
to the limit. The details go as follows. By Lemma 4.2, we can take a sequence of polynomials pj such that

lim
j→+∞‖v − pj‖Hs (B1) = 0. (4.1)

Consequently,

lim
j→+∞

∫
B1

|z|a |∇pj |2 dX =
∫

B1

|z|a |∇v|2 dX. (4.2)

Now, for any (η, ζ ) ∈ R
n ×R, we set

f (η, ζ ) := |η|2 + |ζ |2 = |(η, ζ )|2.
Also, for any fixed z ∈R, we set

Bz
1 := {x ∈ R

n s.t. (x, z) ∈ B1}.
Notice that the Steiner symmetric rearrangement of Bz

1 coincides with Bz
1 itself, thanks to (3.1). By formula (4.20) 

in [9], we have that∫
∂∗{x∈Bz

1 s.t. pσ
j (x,z)>t}

f (∇pσ
j )

|∇xp
σ
j | dx �

∫
∂∗{x∈Bz

1 s.t. pj (x,z)>t}

f (∇pj )

|∇xpj | dx,

for any t ∈ R, where ∂∗ denotes, as usual, the reduced boundary in the sense of geometric measure theory. Thus, by 
the Coarea Formula,∫

Bz
1

|∇pσ
j |2 dx =

∫
Bz

1

f (∇pσ
j ) dx

=
∫
R

⎡
⎢⎢⎣

∫
∂∗{x∈Bz

1 s.t. pσ
j (x,z)>t}

f (∇pσ
j )

|∇xp
σ
j | dx

⎤
⎥⎥⎦ dt

�
∫
R

⎡
⎢⎣ ∫
∂∗{x∈Bz

1 s.t. pj (x,z)>t}

f (∇pj )

|∇xpj | dx

⎤
⎥⎦ dt

=
∫

Bz
1

f (∇pj )dx =
∫

Bz
1

|∇pj |2 dx,

for any fixed z ∈ R.
Hence, we multiply by |z|a and integrate, to obtain∫

B1

|z|a |∇pσ
j |2 dX �

∫
B1

|z|a |∇pj |2 dX. (4.3)

Our objective is now to pass to the limit (4.3). The right hand side of (4.3) will pass to the limit thanks to (4.2), so we 
discuss now the left hand side. Since the Schwarz rearrangement is nonexpansive (see e.g. Theorem 3.5 of [21]), we 
have that, for any fixed z ∈ R,
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∫
Bz

1

|vσ − pσ
j |2 dx �

∫
Bz

1

|v − pj |2 dx.

So, we multiply by |z|a and we integrate over z, and we see that∫
B1

|z|a |vσ − pσ
j |2 dX �

∫
B1

|z|a |v − pj |2 dX.

This and (4.1) give that

lim
j→+∞

∫
B1

|z|a |vσ − pσ
j |2 dX = 0. (4.4)

Now, by (4.3) and (4.2), we have that

sup
j∈N

∫
B1

|z|a |∇pσ
j |2 dX < +∞.

Accordingly, by Lemma 3.6 (see also Theorem 1.30 in [19]), we obtain that

lim
j→+∞

∫
B1

|z|a∇pσ
j · ∇φ dX =

∫
B1

|z|a∇vσ · ∇φ dX,

for any φ ∈H
s(B1). As a consequence,

0 � lim inf
j→+∞

∫
B1

|z|a |∇pσ
j − ∇vσ |2 dX

= lim inf
j→+∞

∫
B1

|z|a(|∇pσ
j |2 + |∇vσ |2 − 2∇pσ

j · ∇vσ
)
dX

= lim inf
j→+∞

∫
B1

|z|a |∇pσ
j |2 dX −

∫
B1

|z|a |∇vσ |2 dX.

This, (4.3) and (4.2) yield that∫
B1

|z|a |∇vσ |2 dX � lim inf
j→+∞

∫
B1

|z|a |∇pσ
j |2 dX

� lim inf
j→+∞

∫
B1

|z|a |∇pj |2 dX =
∫

B1

|z|a |∇vσ |2 dX,

as desired. �
4.2. The radial case

The goal of this subsection is to prove Theorem 4.1 in the radial case, that is when the Dirichlet datum is constant, 
K is a ball and A is a ring. More precisely, we prove that:

Lemma 4.4. Let ρ ∈ [1/4, 3/4], r ∈ (0, ρ) and c ∈ [0, +∞). Then

E (�c
Bρ

) − E (�c
Br

) � C c |Bρ \ Br |,
for some C > 0 that depends on n and s.
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Proof. If c = 0, then �c
Bρ

≡ 0 and �c
Br

≡ 0, in virtue of Lemmata 3.16 and 3.17. Thus we may assume that c = 0. In 
fact, by dividing by c = 0, we may assume that c = 1.

We let μ := ρ − r and we observe that

|Bρ \ Br | = |B1| (ρn − rn) = |B1| (ρ − r)

n∑
j=1

ρn−j rj−1

� |B1| (ρ − r)ρn−1 � |B1|
4n−1

(ρ − r) = |B1|μ
4n−1

.

(4.5)

Now we fix φ ∈ C∞(Rn+1) such that φ = 1 = c in R
n+1 \ B1 and φ = 0 in B3/4 × {0}. We let C0 := E (φ). By 

construction φ vanishes in Bρ × {0} ⊇ Br × {0}, therefore, by the minimality properties of �c
Bρ

and �c
Br

, we have 
that

max{E (�c
Bρ

), E (�c
Br

)}� E (φ) = C0 = C0 c. (4.6)

We define

C+ := B5/6 ×
(

−1

2
,

1

2

)

and C− := B4/5 ×
(

−1

4
,

1

4

)
.

By (3.1),

Bρ × {0}� C− � C+ � B1.

Therefore, there exists τ ∈ C∞(Rn+1, [0, 1]) such that τ = 1 in C− and τ = 0 in R
n+1 \ C+.

For any X ∈R
n+1 we define

α(X) :=
(

1 − μ

ρ
τ(X)

)
X = X − μ

ρ
τ(X)X.

Let also 1n+1 be the identity (n + 1)-dimensional matrix. Notice that X �→ τ(X) X is a smooth and compactly sup-
ported function, and so

|Dα(X) − 1n+1| = μ

ρ

∣∣D(τ(X)X
)∣∣� C1μ, (4.7)

for some C1 > 0. Accordingly

|detDα(X)| � 1 − C2μ, (4.8)

as long as μ is small enough.
Now we observe that

α(Bρ × {0}) ⊆ Br × {0}. (4.9)

Indeed, if x ∈ Bρ , then (x, 0) ∈ C−, thus τ(x, 0) = 1, which gives

α(x,0) =
(

1 − μ

ρ

)
(x,0) = r

ρ
(x,0),

proving (4.9).
We also notice that

α(Rn+1 \ B1) ⊆R
n+1 \ B1. (4.10)

Indeed, if X ∈R
n+1 \B1, then in particular X ∈R

n+1 \C+, which gives that τ(X) = 0 and so α(X) = X ∈ R
n+1 \B1, 

establishing (4.10).
Now we claim that

α(B1) ⊆ B1. (4.11)
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To prove this, let X ∈ B1. If X ∈ B1 \ C+, we have that τ(X) = 0, thus α(X) = X ∈ B1 and we are done. If 
instead X ∈ C+ = B5/6 × [−1/2, 1/2], then α(X) = θ(X) X, for some θ(X) ∈ [0, 1], thus α(X) also lies in B5/6 ×
[−1/2, 1/2] = C+ ⊆ B1, and this completes the proof of (4.11).

Now we observe that

if X̃ = (x̃, z̃) = α(X) = α(x, z), then
|z|

1 + C3μ
� |z̃| � (1 + C3μ)|z|, (4.12)

for some C3 > 0, as long as μ is sufficiently small. To prove this, we observe that

z̃ =
(

1 − μ

ρ
τ(X)

)
z,

and this gives (4.12).
Now we define φ�(X) := �c

Br
(α(X)). From (4.9) and (4.10), we have that φ� ∈ Dc

Bρ
, therefore the minimizing 

property of �c
Bρ

gives that

E (�c
Bρ

) � E (φ�). (4.13)

On the other hand, by (4.7), (4.8), (4.11) and (4.12),

E (φ�) =
∫

B1

|z|a∣∣∇(�c
Br

(α(X))
)∣∣2 dX

� (1 + C1μ)2
∫

B1

|z|a∣∣∇�c
Br

(α(X))
∣∣2 dX

� (1 + C4μ)

∫
α(B1)

|z̃|a∣∣∇�c
Br

(X̃)
∣∣2 dX̃

� (1 + C4μ)

∫
B1

|z̃|a∣∣∇�c
Br

(X̃)
∣∣2 dX̃

= (1 + C5μ)E (�c
Br

),

for some C4, C5 > 0, where the change of variable X̃ := α(X) was exploited.
Hence, recalling (4.13), we obtain that

E (�c
Bρ

) � E (φ�) � (1 + C5μ)E (�c
Br

),

provided that μ is small enough. As a consequence, from (4.5) and (4.6),

E (�c
Bρ

) − E (�c
Br

) � C5μE (�c
Br

) � C6 |Bρ \ Br |E (�c
Br

) � C7 c |Bρ \ Br |,
for some C6, C7 > 0, provided that μ is small enough.

This completes the proof of Lemma 4.4 for small μ, say μ � μ0 for a suitable μ0 > 0.
Conversely, when μ > μ0, we have that

E (�c
Bρ

) − E (�c
Br

) � E (�c
Bρ

)� C0 c � C0 cμ−1
0 μ� C8 c |Bρ \ Br |,

for some C8 > 0, thanks to (4.5) and (4.6), which establishes Lemma 4.4 also when μ > μ0. �
Now we generalize Lemma 4.4 to the case in which the Dirichlet datum is still constant, but the supporting sets K

and A are not necessarily radially symmetric. In this framework, we have:

Lemma 4.5. Let ρ ∈ [1/4, 3/4] and c ∈ [0, +∞). Let K ⊆ Bρ ∩ {z = 0} and A := Bρ \ K . Then

E (�c
K∪A) − E (�c

K) � C c |A|,
for some C > 0 that depends on n and s.
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Proof. We point out that Lemma 4.5 reduces to Lemma 4.4 in the special case in which K := Br , with r ∈ (0, ρ). In 
the general case, we argue as follows. We take r such that |Br | = |K|. Then

|A| = |Bρ \ K| = |Bρ | − |K| = |Bρ | − |Br | = |Bρ \ Br |. (4.14)

Also, we define ψ := c−�c
K . Notice that 0 �ψ � c, due to Lemmata 3.16 and 3.17 and ψ ∈ H

s
0(B1). Thus ψ ∈ D0

K,c

and so its symmetric rearrangement ψσ in the variable x ∈ R
n (as defined in Subsection 4.1) satisfies ψσ ∈ D0

Br ,c
.

Let ψ� := c − ψσ . Then ψ� ∈ Dc
Br

, therefore, by the minimality of �c
Br

, we have that

E (�c
Br

)� E (ψ�) = E (ψσ ).

On the other hand, by Theorem 4.3, we know that E (ψσ ) � E (ψ). As a consequence

E (�c
Br

)� E (ψ) = E (�c
K).

Now we remark that K ∪ A = Bρ , therefore

E (�c
K∪A) − E (�c

K) = E (�c
Bρ

) − E (�c
K) � E (�c

Bρ
) − E (�c

Br
).

Then, using Lemma 4.4,

E (�c
K∪A) − E (�c

K)� C c |Bρ \ Br |.
This and (4.14) complete the proof of Lemma 4.5. �
4.3. Completion of the proof of Theorem 4.1

With the arguments introduced till now, we can complete the proof of Theorem 4.1. The idea is that, by the 
monotonicity property in Theorem 3.20, one can reduce to the case of constant boundary data and then use Lemma 4.5. 
The details of the proof go as follows.

Proof of Theorem 4.1. We define c� := ‖ϕ‖L∞(B1), K
� := K ∩ Bρ and

A� := Bρ \ K� = Bρ \ (K ∩ Bρ) = Bρ \ K = A.

From Lemma 4.5, we have

E (�c�

K�∪A�) − E (�c�

K�) � C c� |A�| = C ‖ϕ‖L∞(B1) |A|. (4.15)

On the other hand, we see that c� � ϕ � 0 a.e. in B2, K� ⊆ K ⊆ B 9
10

and A� = A � B 9
10

, therefore, by Theorem 3.20,

E (�
ϕ
K∪A) − E (�

ϕ
K)� E (�c�

K�∪A�) − E (�c�

K�).

Combining this with (4.15), we obtain the desired result. �
5. Density estimates

In this section, we deal with density estimates. A crucial ingredient of our argument will be the estimate previously 
obtained in Theorem 4.1.

5.1. Density estimates from one side

We start by proving a density estimate from one side and a uniform bound on the minimizers.

Lemma 5.1. Assume that (u, E) is minimizing in B1, with u � 0 a.e. in R
n \ B1 and 0 ∈ ∂E.

Then, there exist δ, K > 0, possibly depending on n, s, and σ such that

|B1/2 \ E|� δ (5.1)

and

‖u‖L∞(B1/2) � K. (5.2)
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Proof. The proof is an appropriate modification of the one in Lemma 3.1 of [6], combined with some results in [16]. 
First we prove (5.1). For this, for any r ∈ [1/4, 3/4], we define

Vr := |Br \ E| and a(r) := H n−1((∂Br) \ E
)
. (5.3)

The terms Vr and a(r) play the role of volume and area terms, respectively.
We suppose, by contradiction, that

V1/2 < δ (5.4)

(of course we are free to choose δ suitably small, and then we will obtain a contradiction for such fixed δ). We set

A := Br \ E. (5.5)

By Lemma 3.3 in [14] we have that

u� 0 a.e., (5.6)

hence u � 0 a.e. in E and u = 0 a.e. in R
n \ E.

In particular, u � 0 a.e. in E∪A and u = 0 a.e. in (Rn\E) \A =R
n\(E∪A). As a consequence, the pair (u, E∪A)

is admissible.
Accordingly, from the minimality of (u, E), we obtain that FB1(u, E) � FB1(u, E ∪ A), that is

Perσ (E,B1) − Perσ (E ∪ A,B1) � 0. (5.7)

Also, by (1.1),

Perσ (E,B1) − Perσ (E ∪ A,B1) = L(A,E) − L(A,Rn \ (E ∪ A)). (5.8)

Hence, recalling (5.7), we conclude that

L(A,Rn \ A) = L(A,E) + L(A,Rn \ (E ∪ A))

= 2L(A,Rn \ (E ∪ A)) + Perσ (E,B1) − Perσ (E ∪ A,B1)

� 2L(A,Rn \ (E ∪ A))

� 2L(A,Rn \ Br).

(5.9)

Furthermore, using the fractional Sobolev inequality (see e.g. [10]), we have that

‖χA‖2

L
2n

n−σ (Rn)
� C

∫∫
R2n

|χA(x) − χA(y)|2
|x − y|n+σ

dx dy,

for some C > 0, which may be written as

V
n−σ

n
r � 2C L(A,Rn \ A). (5.10)

From this and (5.9), possibly renaming constants, we deduce that

V
n−σ

n
r � C L(A,Rn \ Br). (5.11)

Now, using polar coordinates, we see that, for any x ∈ A ⊆ Br ,

∫
Rn\Br

dy

|x − y|n+σ
�

∫
Rn\Br−|x|

dz

|z|n+σ
� C

+∞∫
r−|x|

ρ−1−σ dρ � C (r − |x|)−σ ,

up to renaming constants. Therefore, integrating over x ∈ A = Br \ E, we obtain that

L(A,Rn \ Br)� C

∫
Br\E

(r − |x|)−σ dx

� C

r∫
a(ρ) (r − ρ)−σ ρn−1 dρ � C

r∫
a(ρ) (r − ρ)−σ dρ.
0 0
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So, we plug this into (5.11) and we conclude that

V
n−σ

n
r � C

r∫
0

a(ρ) (r − ρ)−σ dρ.

Now we fix t ∈ [1/4, 1/2] and we integrate this estimate in r ∈ [1/4, t]: we conclude that

t∫
1/4

V
n−σ

n
r dr � C

t∫
0

⎡
⎣ t∫

ρ

a(ρ) (r − ρ)−σ dr

⎤
⎦ dρ � C t1−σ

t∫
0

a(ρ)dρ � C Vt , (5.12)

again up to renaming the constants. Now we iterate this estimate by setting, for any k � 2,

tk := 1

4
+ 1

2k
and vk := Vtk .

Since Vr is monotone in r , we have that

tk∫
1/4

V
n−σ

n
r dr �

tk∫
tk+1

V
n−σ

n
r dr � V

n−σ
n

tk+1
(tk − tk+1) = 2−(k+1) v

n−σ
n

k+1 .

Hence, if we write (5.12) with t := tk we obtain that

v
n−σ

n

k+1 � Ck vk,

up to renaming the constants. Also, by (5.4), v2 < δ, which is assumed to be conveniently small. Then, it is easy to 
see that vk � Cηk , for some C > 0 and η ∈ (0, 1) (see e.g. formula (8.18) in [11]) and so

0 = lim
k→+∞vk = V1/4. (5.13)

As a consequence, |B1/4 \ E| = 0, which is in contradiction with the fact that 0 ∈ ∂E (in the measure theoretic sense) 
and so it establishes (5.1).

Now we show the validity of (5.2). To this scope, we take r = 3/4 in (5.5) and we consider the s-harmonic 
replacement of u in E ∪ B3/4 = E ∪ A, according to Definition 1.1 in [16] (notice that the replacement considered 
in [16] is defined in a setting different than the one introduced in Section 3 in this paper; as a matter of fact, the 
framework introduced in Section 3 only plays a role in the forthcoming Subsection 5.2). Namely, we define u� the 
function that minimizes the fractional Dirichlet energy

∫∫
QB1

|v(x) − v(y)|2
|x − y|n+2s

dx dy

among all the functions v :Rn → R such that v−u ∈ L2(Rn), v = u a.e. in R
n \B1 and v = 0 a.e. in (Rn \E) \B3/4 =

R
n \ (E ∪ A).
The existence (and, as a matter of fact, uniqueness) of such u� is ensured by Lemma 2.1 of [16].
We set ψ := u� −u. Notice that ψ = 0 a.e. in (Rn \B1) ∪ (Rn \ (E ∪A)). Hence, by formula (2.8) of [16] (applied 

here with K := R
n \ (E ∪ A)),∫∫

QB1

|u(x) − u(y)|2
|x − y|n+2s

dx dy −
∫∫
QB1

|u�(x) − u�(y)|2
|x − y|n+2s

dx dy

=
∫∫ |ψ(x) − ψ(y)|2

|x − y|n+2s
dx dy.

(5.14)
QB1
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Also

u� � 0 a.e., (5.15)

thanks to (5.6) and Lemma 2.4 in [16]. So, since u� = 0 a.e. in R
n \ (E ∪ A), we see that the pair (u�, E ∪ A) is 

admissible.
Therefore, by the minimality of (u, E), we have that

FB1(u,E) �FB1(u�,E ∪ A).

This and (5.14) give that∫∫
QB1

|ψ(x) − ψ(y)|2
|x − y|n+2s

dx dy

=
∫∫
QB1

|u(x) − u(y)|2
|x − y|n+2s

dx dy −
∫∫
QB1

|u�(x) − u�(y)|2
|x − y|n+2s

dx dy

=FB1(u,E) − FB1(u�,E ∪ A) + Perσ (E ∪ A,B1) − Perσ (E,B1)

�Perσ (E ∪ A,B1) − Perσ (E,B1) .

(5.16)

Now we recall that (−�)su� = 0 in B3/4 ⊆ E ∪ A, due to Lemma 2.3 in [16]. Therefore, recalling (5.15), we can use 
the fractional Harnack inequality (see e.g. Theorem 2.1 in [20]) and obtain that

sup
B1/2

u� � C inf
B1/2

u�. (5.17)

Now we claim that

‖u�‖2
L2(B1/2\E)

� c0

(
sup
B1/2

u�

)2
, (5.18)

for some c0 > 0. To prove this, we use (5.17) to see that

‖u�‖2
L2(B1/2\E)

=
∫

B1/2\E
u2

� dx

�
(

inf
B1/2

u�

)2 |B1/2 \ E|�
(
C−1 sup

B1/2

u�

)2 |B1/2 \ E|

and this proves (5.18), thanks to (5.1).
Furthermore, since ψ = 0 a.e. in R

n \ B1, we have that

∫∫
R2n

|ψ(x) − ψ(y)|2
|x − y|n+2s

dx dy �
∫

B3/4

⎡
⎢⎣ ∫
Rn\B1

|ψ(x) − ψ(y)|2
|x − y|n+2s

dy

⎤
⎥⎦ dx

=
∫

B3/4

⎡
⎢⎣ ∫
Rn\B1

|ψ(x)|2
|x − y|n+2s

dy

⎤
⎥⎦ dx

�
∫

B3/4

⎡
⎢⎣ ∫
Rn\B2

|ψ(x)|2
|z|n+2s

dz

⎤
⎥⎦ dx

= c ‖ψ‖2
L2(B3/4)

,

(5.19)

for some c > 0. Then, since ψ = u� in B1/2 \ E, we deduce from (5.18) and (5.19) that
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(
sup
B1/2

u�

)2
� c−1

0 ‖ψ‖2
L2(B1/2\E)

� c−1
0 ‖ψ‖2

L2(B3/4)

� C

∫∫
R2n

|ψ(x) − ψ(y)|2
|x − y|n+2s

dx dy

= C

∫∫
QB1

|ψ(x) − ψ(y)|2
|x − y|n+2s

dx dy,

(5.20)

for some C > 0. Now we claim that

u� � u a.e. in R
n. (5.21)

To prove it, we set β := (u − u�) and we remark that

β+ = 0 a.e. in (Rn \ B1) ∪ (Rn \ E). (5.22)

Thus, from formula (2.7) in [16], we have that∫∫
QB1

(
u�(x) − u�(y)

) (
β+(x) − β+(y)

)
|x − y|n+2s

dx dy = 0. (5.23)

Moreover, fixed ε ∈ (0, 1), we define uε := u − εβ+. We notice that

uε � 0 a.e. in E. (5.24)

Indeed, let x ∈ E: if β+(x) = 0 then uε(x) = u(x) � 0 (up to negligible sets); if instead β+(x) > 0, then β+(x) =
u(x) − u�(x), thus uε(x) = (1 − ε)u(x) + εu�(x) � 0, thanks to (5.15). This proves (5.24).

From (5.22) and (5.24), we obtain that (uε, E) is an admissible competitor for (u, E), therefore, by the minimality 
of (u, E), we see that∫∫

QB1

(
u(x) − u(y)

) (
β+(x) − β+(y)

)
|x − y|n+2s

dx dy � 0.

This and (5.23) give that∫∫
QB1

(
β(x) − β(y)

) (
β+(x) − β+(y)

)
|x − y|n+2s

dx dy � 0.

On the other hand (see e.g. formula (8.10) in [11]), we have that(
β(x) − β(y)

) (
β+(x) − β+(y)

)
�
∣∣β+(x) − β+(y)

∣∣2,
so we deduce that∫∫

QB1

∣∣β+(x) − β+(y)
∣∣2

|x − y|n+2s
dx dy � 0.

This says that β+ = 0 a.e. in R
n, which in turn implies (5.21).

From (5.20) and (5.21) we obtain that(
sup
B1/2

u
)2

� C

∫∫
QB1

|ψ(x) − ψ(y)|2
|x − y|n+2s

dx dy.

By plugging this into (5.16) we conclude that
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(
sup
B1/2

u
)2

� C
(

Perσ (E ∪ A,B1) − Perσ (E,B1)
)
.

Hence, recalling (5.8), we deduce that(
sup
B1/2

u
)2

� C
(
L(A,Rn \ (E ∪ A)) − L(A,E)

)
� C L(A,Rn \ (E ∪ A))

� C L(B3/4,R
n \ B3/4)

� C,

up to relabeling the constants. This completes the proof of (5.2). �
Now, recalling the definition in (2.1), we prove a uniform bound also for the extension function of minimizers. 

This will play a crucial role in the proof of Lemma 5.3, in order to obtain that the constant δ does not depend on the 
quantity � (see formula (5.25) below). Indeed, differently from the “local” case (see [6]), the energy estimate for the 
fractional harmonic replacement provided by Theorem 4.1 depends on the L∞-norm of the extension function, and 
this makes the blow-up analysis more delicate.

More precisely, we have:

Lemma 5.2. Let (u, E) be a minimizing pair in B1, with u � 0 a.e. in R
n \ B1 and 0 ∈ ∂E. Suppose that∫

Rn

|u(y)|
1 + |y|n+2s

dy � �, (5.25)

for some � > 0. Let also u be the as in (2.1).
Then, there exists K > 0, possibly depending on n, s, and σ such that

‖u‖L∞(B5/9) � K. (5.26)

Proof. The proof of (5.26) is a suitable variation of the one of (5.2). The difference here is that we will consider the 
harmonic replacement that we constructed in Section 3. For this, we consider the extension function u of u, as defined 
in (2.1).

Moreover, we set

A := B3/4 \ E (5.27)

and we observe that E ∪ B3/4 = E ∪ A. We consider the fractional harmonic replacement of u, as introduced in 
Section 3, by prescribing B9/10 \ (E ∪ A) as vanishing set. More precisely, with the notation of Theorem 3.7, we 
consider �u

B9/10\(E∪A). For shortness of notation, we define

w̃ := �u
B9/10\(E∪A). (5.28)

Notice that w̃ = u in B2 \ B1, therefore (up to extending w̃ outside B2) we can say that

w̃ = u in R
n+1 \ B1. (5.29)

Notice also that

w̃ � 0 in R
n+1. (5.30)

Indeed, u � 0 thanks to Lemma 3.3 in [14], and so u� 0, in view of (2.1). Therefore (5.30) follows from Lemma 3.17.
Now we set

F := E ∪ A (5.31)

and we claim that
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w̃(x,0) � 0 a.e. x ∈ F, and w̃(x,0) � 0 a.e. x ∈ R
n \ F. (5.32)

For this, we first observe that we only need to prove that w̃(x, 0) = 0 a.e. x ∈ R
n \ F , thanks to (5.30). Now, if 

x ∈ B9/10 \F then w̃(x, 0) = 0 by the definition of harmonic replacement in (5.28). Moreover, if x ∈ (Rn \B9/10
) \F

then (x, 0) ∈R
n+1 \B1 (recall (3.1)), and so, by (5.29), we have that w̃(x, 0) = u(x, 0) = u(x) = 0, since x ∈ R

n \E. 
This shows (5.32).

Now we define U := B 11
10

and we observe that

U ∩ {z = 0} = B 99
100

× {0} ⊂ B1 × {0},
thanks to (3.1). This, (5.31) and (5.32) imply that the assumptions of Lemma 2.1 are satisfied (with r := 1), and so∫

U

|z|a |∇u|2 dX + Perσ (E,B1) �
∫
U

|z|a |∇w̃|2 dX + Perσ (F,B1).

Recalling (5.29), we can rewrite the formula above as∫
B1

|z|a |∇u|2 dX + Perσ (E,B1) �
∫

B1

|z|a |∇w̃|2 dX + Perσ (F,B1). (5.33)

Now we observe that, by (1.1),

Perσ (E ∪ A,B1) − Perσ (E,B1) = L(A,Rn \ (E ∪ A)) − L(A,E),

therefore, recalling (5.31), we have that

Perσ (F,B1) − Perσ (E,B1) = L(A,Rn \ (E ∪ A)) − L(A,E)

� L(A,Rn \ (E ∪ A)) � L(B3/4,R
n \ B3/4) � C,

for some C > 0. From this and (5.33), we conclude that∫
B1

|z|a |∇u|2 dX −
∫

B1

|z|a |∇w̃|2 dX � C. (5.34)

Now we set � := w̃ − u. Notice that

� = 0 in R
n+1 \ B1, (5.35)

thanks to (5.29). Moreover, if x ∈ B9/10 \ (E ∪ A) then (in the sense of traces)

�(x,0) = w̃(x,0) − u(x,0) = −u(x,0) = −u(x) = 0,

since x ∈ R
n \ E (recall also the definition of fractional harmonic replacement in (5.28)). Hence,2 � ∈ D0

K , where 
K := B9/10 \ (E ∪ A). Therefore, (3.14) gives that∫

B1

|z|a |∇u|2 dX =
∫

B1

|z|a |∇w̃|2 dX +
∫

B1

|z|a |∇�|2 dX.

Plugging this information into (5.34), we obtain∫
B1

|z|a |∇�|2 dX � C. (5.36)

Also, from (5.35) and Lemma 3.8 (recall that u is even in z by definition), we have

2 The careful reader may have noticed that K here recalls the set notation in the fractional harmonic replacement framework and of course cannot 
be confused with the constant K in (5.26).
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∫
B1

|z|a |∇�|2 dX =
∫

Rn+1

|z|a |∇�|2 dX = 2
∫

R
n+1+

|z|a |∇�|2 dX,

where Rn+1+ := R
n+1 ∩ {z > 0}. So we set 2∗

s := 2n
n−2s

and we use Proposition 1.2.1 in [12], obtaining that

∫
B1

|z|a |∇�|2 dX � C

⎛
⎝ ∫

Rn

|�(x,0)|2∗
s dx

⎞
⎠

2/2∗
s

� C

⎛
⎜⎝ ∫

B1/2\E
|�(x,0)|2∗

s dx

⎞
⎟⎠

2/2∗
s

� |B1/2 \ E|
2

2∗
s
−1

∫
B1/2\E

|�(x,0)|2 dx

� |B1/2 \ E|
2

2∗
s

(
inf

B1/2\E
|�|
)2

� C

(
inf

B1/2\E
|�|
)2

,

(5.37)

for some C > 0, thanks to (5.1) (notice that the Hölder inequality was also used).
Now we notice that, if x ∈ B1/2 \ E, then �(x, 0) = w̃(x, 0) − u(x, 0) = w̃(x, 0) − u(x) = w̃(x, 0) in the sense of 

traces. Using this information into (5.37) we get∫
B1

|z|a |∇�|2 dX � C

(
inf

B1/2\E
|w̃|
)2

. (5.38)

Now we observe that B5/9 is compactly contained in B1 \ K , where K = B9/10 \ (E ∪ A). Indeed, by (3.1) and 
(5.27),

B5/9 = B 1
2
×
(

−5

9
,

5

9

)
� B 3

4
× (−1,1)

⊂ ((E ∪ A
)∩ B9/10

)× (−1,1) ⊂ B1 \ K.

Also, Lemma 3.10 says that

div (|z|a∇w̃) = 0

in the interior of B1 \K , in the distributional sense. Therefore (recalling also (5.30)) we can use the Harnack inequality 
(see e.g. Theorem 2.3.8 in [18]) and we obtain that

sup
B5/9

w̃ � C inf
B5/9

w̃,

for some constant C > 0 independent of w̃. This, together with (5.38) and (5.30), gives that

∫
B1

|z|a |∇�|2 dX � C

(
inf

B1/2\E
w̃

)2

� C

(
inf

B5/9

w̃

)2

� C

(
sup
B5/9

w̃

)2

,

up to relabeling C. From this and (5.36) we obtain that

sup
B5/9

w̃ � C, (5.39)

for some C > 0, depending only on n, s and σ .
Now we claim that

w̃ � u in R
n+1. (5.40)

To prove this, we set β := u − w̃, and we observe that β+ = 0 in Rn+1 \ B1, due to (5.29). Furthermore, if x ∈
R

n \ (B9/10 \ (E ∪ A)
)
, then β+(x, 0) = (u(x,0) − w̃(x,0))+ = 0 in the sense of traces. Therefore, by (3.13),
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∫
B1

|z|a∇w̃ · ∇β+ dX = 0. (5.41)

Now we fix ε ∈ (0, 1) and we define uε := u − εβ+. Notice that

uε = u in R
n+1 \ B1. (5.42)

Also, we observe that

uε � 0. (5.43)

Indeed, if β+ = 0 then uε = u� 0; if instead β+ > 0 then uε = (1 − ε)u + w̃ � 0. This proves (5.43).
Moreover, if x ∈ R

n \ E,

uε(x,0) = u(x,0) − ε (u(x,0) − w̃(x,0))+ = −ε (−w̃(x,0))+ = 0,

thanks to (5.30). This, (5.42) and (5.43) imply that the assumptions of Lemma 2.1 are satisfied with U := B 11
20

, and 
so ∫

U

|z|a |∇u|2 dX �
∫
U

|z|a |∇uε|2 dX.

Using (5.42), we can write∫
B1

|z|a |∇u|2 dX �
∫

B1

|z|a |∇uε|2 dX,

which, recalling the definition of uε , implies that∫
B1

|z|a∇u · ∇β+ dX � 0.

This and (5.41) give that∫
B1

|z|a |∇β+|2 dX =
∫

B1

|z|a∇β · ∇β+ dX � 0.

Therefore, we have that β+ = 0 in B1. This and (5.29) imply (5.40).
From (5.39) and (5.40) we obtain that

sup
B5/9

u� C,

for some C > 0, possibly depending on n, s and σ . This shows (5.26). �
We remark that the finiteness of � in (5.25) is only used in order to have a well-defined extended function u. In 

particular, the quantity K in Lemma 5.2 does not depend on �.

5.2. Density estimates from the other side

In Lemma 5.1, a density estimate from one side was obtained, namely we proved that the complement of E has 
positive density near the free boundary.

The purpose of this subsection is to prove that also the set E has positive density near the free boundary.
To this goal, we need to modify appropriately the argument in Lemma 5.1, by using the machinery developed 

in the previous sections. With respect to the argument developed in the proof of Lemma 5.1, in this subsection the 
sets in (5.3) and (5.5) are replaced by the similar quantities in which the intersection with E (rather than with the 
complement of E) is taken into account (see (5.44) and (5.45) below).
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This apparently minor difference causes a conceptual difficulty in terms of harmonic replacements: indeed, in the 
proof of Lemma 5.1, the competitor was built by extending the positivity set of the minimizer u, while, in the case 
considered here, the positivity set gets reduced in the competitor, i.e. the competitor is forced to attain zero value 
on a larger set, and this makes its Dirichlet energy possibly bigger. For this reason, one needs to estimate the error 
in the Dirichlet energy produced by this further constrain on the zero set. This is the point in which Theorem 4.1
and Lemma 5.2 come into play. Indeed, for this estimate, we need to control the energy difference with a term only 
involving the measure of the additional zero set and the local size of the data (this is the reason for introducing the 
fractional harmonic replacement in the extended variables in Section 3 and for considering the extended problem in 
Lemma 2.1).

Lemma 5.3. Let (u, E) be a minimizing pair in B2, with u � 0 a.e. in R
n \ B2. Suppose that∫

Rn

|u(y)|
1 + |y|n+2s

dy � �,

for some � > 0.
Assume also that 0 ∈ ∂E.
Then, there exists δ > 0, possibly depending on n, s and σ such that

|B1/2 ∩ E|� δ.

Proof. First of all, we notice that u � 0 in the whole of Rn, thanks to Lemma 3.3 of [14]. Also, for any r ∈ [1/4, 3/4], 
we define

Vr := |Br ∩ E| and a(r) := H n−1((∂Br) ∩ E
)
. (5.44)

The desired result will follow by arguing by contradiction. Suppose that the desired result does not hold. Then 
V1/2 < δ. We will find a contradiction by taking δ conveniently small. To this goal, we set

A := Br ∩ E. (5.45)

We let u :Rn+1 →R be the extension of u, according to (2.1).
We consider the fractional harmonic replacement of u, as introduced in Section 3, prescribing (B9/10 \ E) ∪ A as 

supporting sets, i.e., in the notation of Theorem 3.7, we consider �u
(B9/10\E)∪A, and we define, for short,

ṽ := �u
(B9/10\E)∪A. (5.46)

Notice that ṽ = u in B2 \ B1, so up to extending ṽ outside B2, we can write

ṽ = u in R
n+1 \ B1. (5.47)

We also set

F := E \ A. (5.48)

We notice that

ṽ(x,0) � 0 a.e. x ∈ F , and ṽ(x,0) � 0 a.e. x ∈R
n \ F . (5.49)

Indeed, u � 0 due to Lemma 3.3 in [14], hence u � 0, in view of (2.1). Therefore ṽ � 0, thanks to Lemma 3.17. As 
a consequence ṽ(x, 0) � 0 in the trace sense. So it only remains to prove that ṽ(x, 0) = 0 a.e. x ∈ R

n \ F . For this, 
notice that

R
n \ F =R

n \ (E \ A) = (Rn \ E) ∪ A.

So, if x ∈ (B9/10 \ E) ∪ A, we have that ṽ(x, 0) = 0 by definition of fractional replacement. Also, if x ∈ (Rn \
B9/10) \E, then (x, 0) ∈ R

n+1 \B1, due to (3.1), and so, by (5.47), in this case we have ṽ(x, 0) = u(x, 0) = u(x) = 0, 
since x ∈ R

n \ E. This proves (5.49).
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Now we define U := B 11
10

and we observe that

U ∩ {z = 0} = B 99
100

× {0} ⊂ B1 × {0},
due to (3.1). From this, (5.48) and (5.49), we see that the assumptions of Lemma 2.1 are satisfied (with r := 1): so we 
obtain that∫

U

|z|a |∇u|2 dX + Perσ (E,B1) �
∫
U

|z|a |∇ṽ|2 dX + Perσ (F,B1).

Thus, using again (5.47),∫
B1

|z|a |∇u|2 dX + Perσ (E,B1) �
∫

B1

|z|a |∇ṽ|2 dX + Perσ (F,B1). (5.50)

Now, by (5.48),

Perσ (F,B1) − Perσ (E,B1) = Perσ (E \ A,B1) − Perσ (E,B1)

= L(A,E \ A) − L(A,Rn \ E).

By inserting this information into (5.50) and recalling (5.46) we obtain that

L(A,Rn \ E) − L(A,E \ A) �
∫

B1

|z|a |∇ṽ|2 dX −
∫

B1

|z|a |∇u|2 dX

= E (�u
(B9/10\E)∪A) − E (u).

(5.51)

On the other hand, u vanishes on (B9/10 \ E) × {0}, thus, by the minimality of �u
B9/10\E , we have that

E (�u
B9/10\E) � E (u).

Using this inequality into (5.51) and recalling Theorem 4.1, we obtain

L(A,Rn \ E) − L(A,E \ A) � E (�u
(B9/10\E)∪A) − E (�u

B9/10\E)

� C |A| ‖u‖2
L∞(B1)

.
(5.52)

From Lemma 5.2, we have a uniform bound on ‖u‖L∞(B1). This and (5.52) give

L(A,Rn \ E) − L(A,E \ A) � C |A|.
Then, the argument in [6] can be repeated verbatim (see in particular from the first formula in display after (3.2) to 
the fifth line below (3.4)) and one obtains that V1/4 = 0. This contradicts the fact that 0 ∈ ∂E and so it completes the 
proof of Lemma 5.3. �

By putting together Lemmata 5.1 and 5.3 we obtain:

Corollary 5.4. Assume that (u, E) is minimizing in B1, with u � 0 a.e. in R
n \ B1 and 0 ∈ ∂E. Suppose that∫

Rn

|u(y)|
1 + |y|n+2s

dy � �,

for some � > 0.
Then, there exist δ, K > 0, possibly depending on n, s and σ such that

min
{
|B1/2 \ E|, |B1/2 ∩ E|

}
� δ (5.53)

and

‖u‖L∞(B1/2) � K. (5.54)
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We remark that the quantity K appearing in (5.54) does not depend on �. This fact will allow us to rescale the 
picture and deduce from (5.54) a universal growth from the free boundary, as stated in the following result:

Corollary 5.5. Assume that (u, E) is minimizing in B6, with u � 0 a.e. in R
n \ B6 and 0 ∈ ∂E. Suppose that∫

Rn

|u(y)|
1 + |y|n+2s

dy � �,

for some � > 0.
Also, for any x ∈ B1 ∩ E, we define d(x) := dist(x, ∂E) to be the distance of a point x from the free boundary.
Then, there exists K > 0, possibly depending on n, s and σ such that

|u(x)| � K(d(x))s−
σ
2 for any x ∈ B1 ∩ E. (5.55)

Furthermore,

|u(x)| � K|x|s− σ
2 for any x ∈ B1 ∩ E. (5.56)

Proof. We fix x0 ∈ B1 ∩ E and we set r0 := d(x0). Let also p0 ∈ ∂E ∩ ∂Br0(x0) be such that r0 = d(x0) = |x0 − p0|. 
Notice that r0 � 1, since 0 ∈ ∂E, and so |p0| � 2.

Now, we define

ur0(x) := r
σ
2 −s

0 u(r0x + p0) and Er0 := 1

r0
(E − p0) , (5.57)

and we observe that (ur0 , Er0) is a minimizing pair in B6/r0(p0/r0). Also, notice that B4 ⊂ B6/r0(p0/r0). Indeed, if 
x ∈ B4 then∣∣∣∣x − p0

r0

∣∣∣∣� |x| + |p0|
r0

� 4 + 2

r0
� 4

r0
+ 2

p0
= 6

r0
,

and so x ∈ B6/r0(p0/r0). Therefore, we can say that (ur0, Er0) is a minimizing pair in B4. Moreover, by construction, 
0 ∈ ∂Er0 . Furthermore, we see that∫

Rn

|ur0(y)|
1 + |y|n+2s

dy = r
s+ σ

2
0

∫
Rn

|u(y)|
rn+2s

0 + |y|n+2s
dy � �r0,

for some �r0 > 0 depending on r0. So we can apply Corollary 5.4 to (ur0, Er0) obtaining that

‖ur0‖L∞(B2) � K, (5.58)

for some K that depends only on n, s and σ .
Now we set ω := p0−x0

r0
, and we observe that ω ∈ B2 (and so −ω ∈ B2). Therefore, from this and (5.58) we get

|ur0(−ω)| � K.

On the other hand, recalling (5.57),

ur0(−ω) = r
σ
2 −s

0 u(−r0ω + p0) = r
σ
2 −s

0 u(x0).

The last two formulas imply that

|u(x0)| �Kr
s− σ

2
0 = K(d(x0))

s− σ
2 ,

which shows (5.55).
Finally, (5.56) follows from (5.55) and the fact that 0 ∈ ∂E. This concludes the proof of Corollary 5.5. �



1424 S. Dipierro, E. Valdinoci / Ann. I. H. Poincaré – AN 34 (2017) 1387–1428
5.3. Completion of the proof of Theorem 1.1

In order to end the proof of Theorem 1.1, we recall a Hölder continuity property for nonlocal solutions:

Lemma 5.6. Assume that (−�)su = 0 in B1, with u ∈ L∞(B1). Then u ∈ C1(B1/2) and

‖u‖C1(B1/2)
� C

⎛
⎝‖u‖L∞(B1) +

∫
Rn

|u(x)|
1 + |x|n+2s

dx

⎞
⎠ ,

for some C > 0.

Proof. First of all, by Theorem 2.6 of [8], we know that u ∈ Cα(B9/10). Then we can apply Theorem 2.7 of [8] (say, 
in B3/4) and obtain the desired result. �

Now we provide a rescaled version of Lemma 5.6.

Corollary 5.7. Assume that (−�)su = 0 in Bt(q), for some t > 0 and q ∈ R
n, with u ∈ L∞(Bt (q)). Then u ∈

C1(Bt/2(q)) and

‖∇u‖L∞(Bt/2(q)) � C t−1

⎛
⎜⎝‖u‖L∞(Bt (q)) + t2s

∫
Rn\Bt (q)

|u(x)|
|x − q|n+2s

dx

⎞
⎟⎠ ,

for some C > 0.

Proof. For any x ∈ B1, we define v(x) := u(tx + q). Notice that, by construction, (−�)sv = 0 in B1, and v ∈
L∞(B1). Hence, we are in position to apply Lemma 5.6 to the function v, obtaining that v ∈ C1(B1/2) and

‖∇v‖L∞(B1/2) � C

⎛
⎝‖v‖L∞(B1) +

∫
Rn

|v(x)|
1 + |x|n+2s

dx

⎞
⎠ , (5.59)

for some C > 0. Now we observe that

‖v‖L∞(B1) = ‖u‖L∞(Bt (q)) and ‖∇v‖L∞(B1/2) = t‖∇u‖L∞(Bt/2(q)). (5.60)

Moreover, using the change of variable y = tx + q ,∫
Rn

|v(x)|
1 + |x|n+2s

dx =
∫
Rn

|u(tx + q)|
1 + |x|n+2s

dx

= t2s

∫
Rn

|u(y)|
tn+2s + |y − q|n+2s

dy.

(5.61)

We observe that

t2s

∫
Bt (q)

|u(y)|
tn+2s + |y − q|n+2s

dy � t2s‖u‖L∞(Bt (q))

∫
Bt (q)

dy

tn+2s

� Ct2s‖u‖L∞(Bt (q))t
nt−n−2s � C‖u‖L∞(Bt (q)),

(5.62)

up to renaming C. Also,∫
n

|u(y)|
tn+2s + |y − q|n+2s

dy �
∫

n

|u(y)|
|y − q|n+2s

dy.
R \Bt (q) R \Bt (q)
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Using this and (5.62) into (5.61) we obtain that∫
Rn

|v(x)|
1 + |x|n+2s

dx � C‖u‖L∞(Bt (q)) + t2s

∫
Rn\Bt (q)

|u(y)|
|y − q|n+2s

dy.

Plugging this and (5.60) into (5.59) we get the desired result. �
Now we can complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We define, for any r > 0,

ur(x) := r
σ
2 −su(rx) and Er := 1

r
E (5.63)

and we apply Corollary 5.4 to the minimizing pair (ur , Er), with r ∈ (0, 1/2]. For this, notice that∫
Rn

|ur(y)|
1 + |y|n+2s

dy = rs+ σ
2

∫
Rn

|u(y)|
rn+2s + |y|n+2s

dy � �r,

for some �r > 0 depending on r . Then, (1.3) follows from (5.53). Also, (1.4) is a consequence of (5.54).
Now we prove (1.5). For this, since Theorem 1.1 deals with interior estimates, we may suppose that

the minimizing property of (u,E) holds in B72 instead of B1. (5.64)

Now we assume that s > σ/2 and we fix x, y ∈ B1/2. We claim that

|u(x) − u(y)| � C |x − y|s− σ
2 . (5.65)

Let p := (x + y)/2 and r := |x − y|. Notice that we may suppose that

r � 1

100
, (5.66)

otherwise the fact that |u(x) − u(y)| � 2‖u‖L∞(B1/2) would give (5.65). Then, there are three possibilities:

B5r (p) \ E =∅, (5.67)

B5r (p) \ E =∅ and u(x) = u(y) = 0, (5.68)

B5r (p) \ E =∅ and either u(x) > 0 or u(y) > 0. (5.69)

If (5.68) holds true then (5.65) is obvious, therefore we consider only the possibilities (5.67) and (5.69).
If (5.67) holds, we consider R > 0 such that d(p) = R, where we recall that d(x) = dist(x, ∂E) denotes the 

distance of x from ∂E. By (5.67), we have that 5r < R < 2.
Also, we have that

B10(p) ⊂ B12, (5.70)

indeed if x ∈ B10(p) then

|x| � |x − p| + |p| < 10 + 2 = 12,

and so x ∈ B12. This proves (5.70). Therefore, recalling (5.64) and using Corollary 5.4, we see that

|u(x)| � K(d(x))s−
σ
2 , for any x ∈ B10(p). (5.71)

Also, if x ∈ BR(p),

d(x)� |x − p| + d(p)� R + R = 2R,

therefore, from (5.71) (recall that R < 2), we obtain that

|u(x)| � KRs− σ
2 , for any x ∈ BR(p), (5.72)

up to renaming K .
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Now we use Lemma 2.3 in [16] and we obtain that (−�)su = 0 in BR/2(p). Moreover, from Corollary 5.4 and 
recalling (5.64) and (5.70), we have that ‖u‖L∞(BR/2(p)) � K . So we are in position to apply Corollary 5.7 (with 
t := R/2 and q := p), thus obtaining that

‖∇u‖L∞(BR/4(p)) � C R−1

⎛
⎜⎝‖u‖L∞(BR/2(p)) + R2s

∫
Rn\BR/2(p)

|u(x)|
|x − p|n+2s

dx

⎞
⎟⎠ . (5.73)

We notice that, by (5.72),

‖u‖L∞(BR/2(p)) � KRs− σ
2 . (5.74)

Moreover, ∫
Rn\BR/2(p)

|u(x)|
|x − p|n+2s

dx

=
∫

Rn\B10(p)

|u(x)|
|x − p|n+2s

dx +
∫

B10(p)\BR/2(p)

|u(x)|
|x − p|n+2s

dx.

(5.75)

Now we observe that, if x ∈ R
n \ B10(p), then 10 < |x − p| � |x| + |p| � |x| + 2, and so |x| > 8. Hence,

|x − p|� |x| − 2 = 3

4
|x| + 1

4
|x| − 2 � 3

4
|x| + 2 − 2 = 3

4
|x|.

Therefore,∫
Rn\B10(p)

|u(x)|
|x − p|n+2s

dx � C

∫
Rn\B10(p)

|u(x)|
|x|n+2s

dx � C �. (5.76)

Furthermore, using (5.71), we obtain that, if x ∈ B10(p) \ BR/2(p), then

|u(x)| � K(d(x))s−
σ
2 �K (|x − p| + d(p))s−

σ
2 = K (|x − p| + R)s−

σ
2 .

As a consequence,∫
B10(p)\BR/2(p)

|u(x)|
|x − p|n+2s

dx � K

∫
B10(p)\BR/2(p)

(|x − p| + R)s− σ
2

|x − p|n+2s
dx.

So, by making the change of variable y = (x − p)/R, we obtain∫
B10(p)\BR/2(p)

|u(x)|
|x − p|n+2s

dx �K

∫
B10/R\B1/2

(R|y| + R)s− σ
2

Rn+2s |y|n+2s
Rn dy

� K Rs− σ
2 −2s

∫
Rn\B1/2

(|y| + 1)s− σ
2

|y|n+2s
dy � CK Rs− σ

2 −2s ,

for some C > 0. This information, (5.76) and (5.75) give∫
Rn\BR/2(p)

|u(x)|
|x − p|n+2s

dx � C � + CK Rs− σ
2 −2s .

Plugging this and (5.74) into (5.73), we conclude that

‖∇u‖L∞(BR/4(p)) � C R−1
(
KRs− σ

2 + C �R2s + CK Rs− σ
2

)
� C Rs− σ

2 −1, (5.77)

up to relabeling C (recall that R < 2).



S. Dipierro, E. Valdinoci / Ann. I. H. Poincaré – AN 34 (2017) 1387–1428 1427
From (5.77) we obtain that, for any a, b ∈ BR/4(p),

|u(a) − u(b)| � C Rs− σ
2 −1|a − b|.

Since R > 5r , we have that x, y ∈ BR/4(p), and so

|u(x) − u(y)| � C Rs− σ
2 −1|x − y|

= C Rs− σ
2 −1r1−s+ σ

2 |x − y|s− σ
2 � C|x − y|s− σ

2 ,

where C may change from step to step. This says that (5.65) holds true in this case.
Now let us suppose that (5.69) holds true. Then there exist z ∈ B5r (p) \ E and η ∈ {x, y} such that u(η) > 0. In 

particular η ∈ E and so there exists ζ on the segment joining η and z such that ζ ∈ ∂E. Notice that, since the ball is 
convex, we have that ζ ∈ B5r (p).

Hence, we have the following picture: ζ ∈ ∂E, x and y lie in B3r (p) and B1(ζ ) ⊆ B2 (where the minimization 
property holds, recall (5.64) and (5.66)).

Thus, with a slight abuse of notation, we suppose, up to a translation, that ζ = 0. So our picture becomes that 0 ∈
∂E, x and y lie in B10r , with our minimizing property in B1.

So we consider the minimizing pair (ur , Er) as in (5.63), which is minimizing in B1/r ⊇ B50 (recall (5.66)). In this 
way, we apply formula (5.54), thus obtaining

‖ur‖L∞(B25) � K.

Notice that r−1x, r−1y ∈ B10 ⊂ B25, hence

|ur(r
−1x)| + |ur(r

−1y)| � 2K.

So we obtain

|u(x) − u(y)| = rs− σ
2 |ur(r

−1x) − ur(r
−1y)|

� 2Krs− σ
2 = 2K|x − y|s− σ

2 .

This proves (5.65), which in turn implies (1.5), thus completing the proof of Theorem 1.1. �
We complete this paper with a brief comment about the two-phase case (i.e. when the function u in Theorem 1.1

is not assumed to be nonnegative to start with). The additional difficulties in this setting arise since the fractional 
harmonic replacements do not behave nicely with respect to the operation of taking the positive part, namely the 
positive part of the harmonic replacement is not necessarily harmonic in its positive set. As an example, considering 
the fractional harmonic replacement introduced in [16], one can consider the fractional harmonic function u(x) :=
xs+ − 1 in (0, +∞), with fixed boundary data in (−∞, 0) ∪ (1, +∞); similarly, in the case of the fractional harmonic 
replacement introduced here in Section 3, one can consider the case s = 1/2 and the harmonic function on R

2 given 
by u(x, y) = xy.

This difficulty arising at the level of the fractional replacements in the two-phase problem reflects also into the 
proof of the density estimates here (precisely in the computations below (5.14) and (5.46)).

For these reasons, we believe that the investigation of density estimates and continuity properties for two-phase 
fractional minimizers is an interesting open problem.
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